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Analysis of multitrait multimethod matrices 

R. KÖLTRINGER 

A review of the psychological literature by Schmitt and Stults 
(1986) revealed that the following procedures are of ten used to an
alyze multitrait multimethod (MTMM) matrices: 
- exploratory factor analysis 
- smallest spa ce analysis (SSA) 
- analysis of variance, including 

a. nonparametric alternatives 
b. confirrnatory factor analysis (CFA) 

Of all these analytical strategies, only the CFA approach leads to 
numerical estimates of validity, method, and residual variance 
components of the indicators. Therefore the other procedures will 
not be described in detail. 

THE GENERAL CFA MODEL FOR MTMM-DATA 

Consider n persons who are rated using m different methods of 
measurement on t traits. This research design results in a (mt x 1) 
vector of observed variables x, which can be se en as a linear func
tion of t + m factors ç as follows: 

x=Aç+o (1) 

where 
- A is a (mt x (t + m» matrix of factor loadings 
-ç is a «t + m) x 1) vector of t trait and m method factors 
- 0 is a (mt x 1) vector of residuals. 

Assuming that the residuals are uncorrelated with each other 
and with the factors, equation (1) gives the standard factor analytic 
decomposition 
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L = A <I> A' + 8 0 (2) 
where 
- L is an (mt xmt) observed covarianee (or correlation) matrix 
- A is defined as in (1) 
- <I> is a (t + m) x (t + m) covarianee (or correlation) matrix of the t + 

m factors 
- 8 0 is an (mt x mt) diagonal matrix of residu al variances. 
In order to simplify further discussion it is useful to partition <I> as 

<l>tm 1 
<l>mm 

where 
- <l>tt is a (t x t) symmetrie submatrix of <I> that contains trait factor 

varianees and covarianee 
- <l>mm is an (m x m) symmetrie submatrix of <I> that con ta ins 

method factor varianees and covarianees 
- <l>mt (= <I>'tm) is an (m x t) rectangular submatrix of <I> that contains 

covarianees of the m method factors with the t trait factors 
and A as 

where 
- At is an (mt x t) submatrix of A that con ta ins zeros, except for the 

loadings of observed variables on their respective trait factors 
- At is an (mt x m) submatrix of A that contains zeros, except for the 

loadings of the observed varia bles on their respective method 
factors. 

Assuming that the factor analytie model of L represented by 
equation (2) is va lid and that scores on the mt observed measures 
follow a multivariate normal distribution, Jöreskog (1969, 1971) 
developed procedures for obtaining maximum likelihood estimates 
of all model parameters in A, <1>, and 8 0. The significa nee of each of 
the parameters in the model may be tested by forrning a z-value of 
the parameter estimate by dividing its asymptotie standard error. 
In addition to the test of each individual parameter estimate, 
maximum likelihood estimation yields an overall X2 goodness-of-fit 
test, whieh is a test of the difference in fit between a given model 
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and a completely saturated model that perfectly reproduces the 
data. 

Problems of the CF A-approach 
Besides the difficulties inherent in covariance structure analysis 

as a whole (e.g. the rather restrictive distributional assumptions), 
CFA models for MTMM data have several additional problems. 
The full CFA model for MTMM data, as represented in equation 
(2), is only identified for t ~ 3 and m ~ 3. However, as Kenny (1976) 
pointed out, the model can, with further restrictive assumptions, 
be used to test MTMM matrices with smaller dimensions. It can be 
shown that the use of other methods applicable to smaller matrices 
requires the same (restrictive) assumptions (Alwin, 1974). 

Even under the condition t ~ 3 and m ~ 3, trait-method covari
ances are empirically underidentified. Applications in which pa
rameters in <l>mt we re estimated resulted in 
- factor loadings or factor intercorrelations greater then 1.00 for 

standardized data, 
- the presence of Heywood Cases (estimates of unique variance 

close to zero), and 
- very large standard errors for some parameters (because of high 

intercorrelations of the parameter estimates). 
Constraining <l>mt to be a null matrix leads to orthogonality of the 
trait and method factor space, a condition that is highly desirabie 
since it results in a decomposition of the variance of each indicator 
into an additive combination of trait, method, and residual 
(random error) variance. Our present knowledge about the em
pirical nature or practical importance of trait-method interactions 
is very limited. It is possible that small trait-method correlations do 
not effect the trait and method factor loading estimates sub
stantively but exaggerate the residual variances. In order to pro
vide guide-lines for the interpretation of CFA models for MTMM
data, simulation studies on this point are required. 

When t ~ 3 and m ~ 3 and all the parameters in <l>mt are fixed to 
zero, the CFA model for MTMM data may still be empirically un
deridentified because of overfactoring (Rindskopf, 1984). It is wen 
known that at least three measures of each factor are needed to 
identify orthogonal factor modeis. Therefore, in the case of a CFA
model with a t = 3 and m = 3 MTMM -design, Heywood cases and 
related problems are very likely if some factor intercorrelations 
and factor loadings of the same factors are close to zero. 

To ensure nonnegativity of unique variances in eö a procedure 
outlined by Rindskopf (1983) can be used: The technique requires 
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the observed measures to be treated as y-variables and the specifi
cation of exogenous latent variables (ç), whose variance is fixed to 
one, as trait, method, and residual variables. Instead of the usual 
parameterization of MTMM modeIs, the factor loadings and then 
the residual effects are estimated in r, while the matrices eo, eE, 

and <I> are not used. Since it is not the unique variances that are di
rectly estimated but the effects of the unique factors, the residual 
variances, which are the squares of these effects, will always be 
positive. However, it is clear, that an empirically underidentified 
model with some large standard errors and highly correlated pa
rameter estimates will still be underidentified if the described pa
rameterization is used. 

Some researchers have suggested the inclusion of a general fac
tor in the model represented in equation (2). This general factor can 
- in the presence of both trait and method factors - account for di
mensions which inflate all the correlations in a given MTMM ma
trix (e.g. a general trait dimension or a response set factor). But the 
interpretation of such a general factor is rather indeterrninate. It 
therefore seems to be preferabIe not to allow for this specification. 

Representing the trends present in MTMM data is a complicated 
undertaking with many subjective components. Several authors 
who analyzed the same published MTMM matrix arrived at di
rectly contradictory conclusions (Widaman, 1985). 

HIERARCHICALL Y NESTED MODELS FOR MTMM DATA 

Most of the problerns mentioned above can be circumvented by 
the strategy of nested model testing. Specifically, the probability of 
accepting a wrong model with a good fit and the danger of over
factoring may be rninimized by the systematic comparison of vari
ous alternative modeIs. In order to re duce the intuitive dimension 
of the stepwise testing procedure, Widaman (1985) proposed an 
array of models for MTMM matrices, based on th ree possible 
structures of trait and method factors: 
- no trait (or method) factors; 
- trait (or method) factors with fixed intercorrelations: either 0, in-

dicating a high level of discriminant validity, or 1, indicating total 
lack of discriminant validity, and 

- trait (or method) factors with freely estirnated intercorrelations. 

Cross-classifying of the two structures results in the taxonomy 
of models for MTMM data presented in table 1. 
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TRAIT STRUCTIJRE 

no trait factors 

t trait factors 
(fixed unit inter-

correlations) 

t trait factors 
(fixed zero inter-

correlations) 

t trait factors 
(freelyestimated 
intercorrelations) 

table 1: 
Taxonorny of structural rnodels for MTMM-data 

(following Widarnan 1985) 

METHOD STRUCTURE 

no method factors m method factors m method factors 
(fixed unit (fixed zero 

correlations) in tercorrela tions) 

Ho: null model 1 general method m methods only 
(not clearly (orthogonal) 

interpretable) 

1 general trait 2 general factors 1 general trait + 
(not clearly (not identified) mmethods 

interpretable) (orthogonal) 

t traits only t traits (orthogonal) t traits (orthogonal) 
(orthogonal) + 1 general method +mmethods 

(orthogonal) 

Hl: t traits only t traits (oblique) + H2: t traits (oblique) 
(oblique) 1 general method +mmethods 

(orthogonal) 

m method factors 
(freely estimated 
in tercorrelations) 

A: m methods only 
(oblique) 

B: 1 general trait + 
mmethods 

(oblique) 

t traits (orthogonal) 
+ mmethods 

(oblique) 

H3: full model 
t traits (oblique) + 

m methods (oblique) 
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Note that table 1 is demarcated into nine areas. A particular 
model is nested within all other models separated by at least one 
line of demarcation lying to the right and/or below the model in 
question. 

Fitting and comparing all of the models listed in table 1 might 
lead to the selection of a best-fitting model. But following this 
strategy is rather cumbersome. Widaman (1985) preferred another 
rationale, which is based on parsimony. With this approach it is 
reasonable to start with a highly restricted (but theoretically pos
sible) model and relax restrictions only if a model fails to represent 
adequately a set of data: 

Ho Null Model: 
Hypothesis: lack of correlation among observed variables. 
Parameters: eo (At, AlTlI and <l>mt fixed to zero; <l>tt = I, <l>mm = 1). 

Hl First alternative Model: 
Hypothesis: covariation among observed variables is due only 
to trait factors and their intercorrelations. 
Parameters: At,<I>tt, and eo; (AlTlI and <l>mt fixed to zero, <l>mm = I). 

H2 Second alternative Model: 
Hypothesis: (orthogonal) method factors are also present). 
Parameters: At,<I>tt, Am, and eo (<I>mt fixed to zero, <l>mm = 1). 

H3 Full Model: 
Hypothesis: (oblique) trait factors and (oblique) method factors 
account for the observed correlations. 
Parameters: At,<I>tt, AlTlI <l>mm, and eo (<I>mt fixed to zero). 

There is at least one problem concerning the above test strategy: 
the importance of trait factors for the reproduction of the MTMM 
matrix is tested against a highly restrictive Null Model (Ho). It can 
be argued that the probability of accepting the alternative model 
(significant trait factors) is high, even if the alternative model is 
wrong. 

Nested model comparisons 
In order to test the degree of convergent validity (and, if neces

sary the degree of discriminant validity) models A and B in table 1 
must also be estimated. Assume that the Full Model H3 represents 
the data quite weIl on statistical and practical grounds. Then, if the 
fit of H3 (t oblique trait factors and m oblique method factors) is 
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substantially better than the fit of model A (no trait factors, m 
oblique method factors), there is a significant amount of covariance 
among measures uniquely explained by the trait factors - th is rep
resents convergent validity. 

To test for discriminant validity, the fit of model H3 should be 
compared with the fit of Model B, which has fixed perfect inter
correlations among trait factors (and m oblique method factors) . 
Comparison of the fit of the models Hl (oblique trait factors only) 
and H2 (oblique trait and orthogonal method factors) gives a test 
statistic for the significance of the method variance among measures. 
Finally, the discriminability of method effects can be tested by com
paring the models H2 (t oblique traits and m orthogonal method 
factors) and H3 (t oblique traits and m oblique method factors). 

Table 2 summarizes the described nested model comparisons 
for MTMM matrices. As can be seen from this tabie, the coefficient 
Q Oöreskog, 1974) is preferred as the a test statistic for the model 
comparisons (other possible measures are described in Loehlin, 
1987, pp. 69-71). Q is defined as the ratio of decline in X2 to change 
in degrees of freedom; Q > 2.0 indicates that the improvement of fit 
is substantial and not merely the result of chance: 

X2(Hx) - X2(Hy) 
Q = df(Hx) - df(Hy) 

Since subsequent models in the test series do not always differ 
by the same degrees .of freedom, the PRE-coefficient Delta, pro
posed by Bentler and Bonett (1980) should not be applied. But this 
measure is very useful to assess the level of practical fit of a given 
model in addition to its statistical fit. 

The results of the model comparisons summarized in table 2 are 
"ideal" in the following sense: first, the proportion of covariation 
among observed measures uniquely representable as convergent 
validity (e.g. due to trait factors) is significant. Second, there is a 
pronounced degree of discriminant validity. Third, the covariation 
explained by method factors is also quite high. 

Anomalies in the proposed test sequence most of ten occur when 
unnecessary factors are included in the model. As Rindskopf (1984) 
pointed out, overfactoring is present when a factor has 
1. no large loadings, or 
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table 2: Nested model comparisons for MTMM data 

MODElS 

Mo specifications x2 df l P anomalies 2 

Ho no trait factors 
no method factors 36 ..................... 

Hl t traits onl y 
(oblique) 24 ............ .. .. ..... 

H2 t (oblique) traits, 
m (orthogonal) methods 15 ..................... 

H3 t (oblique) traits, 
m (oblique) methods 12 ... .. .. ............ .. 

A m methods only 
(oblique) 24 ... .................. 

B 1 general trait, 
m (oblique) methods 15 ..................... 

MODEL COMPARISONS (predicted outcomes for "normal" MTMM matrices) 

comparison testing for: 

HO Hl 
Hl H2 
H2 H3 
A H3 
B H3 

significance of trait factors 
significance of method factors 
discriminability of method effects 
convergent validity 
discriminant validity 

I FOT t=3 and m=3. 

2 Space fOT indicating the OCCUTTence of Heywood Cases etc. 
3Q>2 

2. only one large loading, or 

Q 
accepted 
model 3 

3. only two large loadings, and close to zero correlations with all 
other so-called rea I factors (factors with two or more large 
loadings) 

In all of these situations, the model will be empirically underiden
tified: 
- In the first case, the factor can have correlations with other factors 

over a fairly wide range without substantially changing the re
produced covariance matrix. 

- In the second case, the nonzero loading cannot be separated reli
able from residual variance, and the result can be an impossibly 
large loading accompanied by a negative unique variance. 
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- In the third case, the lack of correlation between that factor and 
other factors leads to underidentification. (A one factor model 
with two indicators is not identified!). 

It should be noted that "large loading" and "statistically significant 
loading" are not necessarily the same in this context. A factor 
which causes anomalies in the test sequence may have three or 
four statistically significant, but numerically low loadings! 

Example 
The application of the proposed test series for the analysis of 
MTMM matrices will now be demonstrated with data from a pilot 
study for the international research project Quality of Attitude 
Questions conducted in Austria, 1987. A sample of 179 persons 
from Vienna were asked about their "job satisfaction" (tl), 
"satisfaction with their finandal situation" (t2), "satisfaction with 
their sexual situation" (t3), "satisfaction with their sodal contacts" 
(t4), and their "overall happiness" (t5) . The responses of each par-

table 3: Correlations among 15 answers of 179 respondents to 
questions concerning t=5 traits, each measured with m=3 
methods 

Xl X2 X3 X4 X5 X6 x7 X8 X9 XlO Xn Xl2 Xl3 Xl4 Xl5 
m=l 

tI Xl 1 

t2 X2 .463 1 

t3 X3 .239 .274 1 

t4 X4 .383 .285 .347 1 

t5 X5 .445 .447 .536 .436 1 

m=2 

tI X6 .826 .426 .233 .307 .402 1 

t2 X7 .456 .720 .141 .233 .372 .548 1 

t3 X8 .168 .125 .786 .263 .439 .275 .180 1 

~ X9 .231 .175 .253 .556 .326 .314 .247 .370 1 

t5 XlO .396 .375 .513 .371 .665 .382 .399 .483 .359 1 
m=3 

tI Xn .751 .388 .178 .359 .405 .821 .458 .193 .379 .430 1 

t2 X12 .420 .668 .205 .301 .422 .513 .721 .142 .234 .385 .553 1 

t3 X13 .257 .226 .726 .267 .490 .332 .211 .743 .341 .482 .362 .362 1 

~ X14 .325 .260 .277 .650 .365 .385 .261 .340 .629 .384 .529 .453 .466 1 

t5 X15 .302 .305 .261 .202 .486 .312 .318 .271 .425 .590 .424 .448 .440 .390 1 
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ticipant to th ree (identical) questions were measured on each of 
these five dimensions. The three questions differed only with re
spect to the scales used: a five-point scale (ml), a nine-point scale 
(m2), and a magnitude scale (m3)' 

The intercorrelations of the 15 indicators resulting from this re
search design are presented in tab Ie 3. All analyses were performed 
using the LISREL VI program (Jöreskog and Sörbom, 1983). 

The results of the nested model comparisons are given in table 
4. The outcomes presented in this table can be interpreted as 
follows: 
1. Both trait and method factors uniquely explain a highly signifi

cant proportion of variance. 

table 4: Nested model comparisons for the matrix in table 3 

MODELS 
Mo spedfications X2 df P anomalies 

Ho no trait factors 
no method factors 1997.73 105 .000 

Hl t=5 traits only 
(oblique) 312.63 80 .000 

H2 t=5 (oblique) traits, 
m=3 (orthogonal) methods 107.12 65 .001 

H3 t=5 (oblique) traits, 
m (oblique) methods 157.44 65 .000 

A m=3 methods only 
(oblique) 1402.01 90 .000 

B 1 general trait, 
m=3 (oblique) methods 915.95 75 .000 TOOO) < 0 2 

MODEL COMPARISONS 
accepted 

comparison testing for: Q model 

HO Hl significance of trait factors 67.4 Hl 
Hl H2 significance of method factors 13.7 H2 
H2 H3 discriminability of method effects H2 
A H3 convergent validity 51.8 H2 
B H3 discriminant validity 80.8 H2 

1 For model H3 (I oblique Iraits, m oblique melhods), iterations do not con-
verge. Therefore, the method factor intercorrelations were fixed to 1 in order to test for the 
discriminability of method effects. 
2 Parameter not significant 
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2. The best fitting model H2 with 5 oblique traits and 3 orthogonal 
methods (though statistically rejectable) is acceptable on practi
cal grounds: Delta = .946. 

3. The parameter estimates of H2 cannot be fully trusted because 
the method factor intercorrelations are empirically underiden
tified. The reason for this problem lies in (mostly) significant but 
numerically low loadings in the nine-point scale method factor 
(m2). The corresponding five loadings and their standard errors 
we re estimated to be .156 (.063), .212 (.079), .274 (.086), .202 
(.096), and -.097 (.111). So, the dilemma is that this factor cannot 
be deleted without substantially increasing the goodness-of-fit 
statistic, whereas including this factor leads to biased estimates 
of va lid, method, and residual variance components, if the 
method factors are correlated. 

CONCLUSIONS 

There is no obvious simple solution for this dilemma, except the 
inclusion of additional real factors, which can make the iterative 
estimation procedure more stabie. In the original analysis of the 
given MTMM-matrix (see Költringer and Kluscarits, 1988), five 
factors were added: four (perfectly measured) socio-demographic 
variables and one response set dimension (extreme score ten
dency). Within the resulting (good fitting) model, slightly higher 
method effects and z:ather high method factor intercorrelations 
were estimated: r(m1, m2) = .549 (.156), r(mv m3) = .498 (.131), and 
r(m2, m3) = .651 (.105). 

In general, the more traits and methods that are included in the 
MTMM-design, the lower the probability of less than three "large" 
loadings per factor, i.e., the greater the chance of detecting low or 
moderate method (or trait) variance components when actually 
only low or moderate method (or trait) effects are present. 
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