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1. INTRODUCTION 

In recent years, I have been intrigued by the pervasiveness, in standard general 
equilibrium modeis, of underutilisation of resources reflecting pure coordination 
failures rather than price distortions. As explained in Section 1.1 of Drèze (1997), 
my interest in that topic grew out of empirical as well as theoretical preoccupa­
tions. That paper is concerned with the existence of supply-constrained equilibria, 
i.e. equilibria where some markets clear through quantity constraints on supply, 
with no constraints on demand. It contains the following result, based on standard 
assumptions: if some relative prices are downward rigid, unlimited underutilisation 
of the associated resources is possible, i.e. may persist on ce established, even when 
the downward rigid prices are compatible with competitive equilibria. Stronger 
results are proved in Herings and Drèze (1998), where in particular suflicient con­
ditions are given under which there exists a connected set of supply-constrained 
equilibria, including a competitive equilibrium and a no-trade equilibrium. 

The pervasive existence of supply-constrained equilibria at arbitrary prices (pos­
sibly but not necessarily competitive) raises an important question: how do they 
come about? The discussion in Drèze (1997) emphasizes the role of expectations, in 
economies with incomplete markets. "In particular, the coordination failure could 
take the form of supply constraints expected in the future and spilling over to cur­
rent markets. Or it could take the form of supply constraints experienced today, 
as a legacy of the past or as a consequence of a current surprise (like an oil shock 
or the Gulfwar), and accompanied by expectations of future similar constraints, 

1 Paper prepared for the proceedings of the Conference "Theory of markets and their function­
ing," KNAW, Amsterdam, July 1998. I thank Roald Ramer for a perceptive remark on earlier 
work which eventually led to the present paper, and I thank Jean-Jacques Herings and Fabrizio 
Germano for their comments on a first draft of the present paper . 
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resulting together in current and anticipated underutilisation of resources". 2 That 
possibility is illustrated in Drèze (1997, Section 4) on a streamlined "Real Business 
Cycle" model and on the Barro-Grossman-Malinvaud three-good model. 

The discussion in Drèze (1997) also makes a passing reference to dynamics. 
"The movement from one supply-constrained equilibrium to another is a topic in 
dynamics, inviting the study of adjustment processes defined over prices ( . . . ), 
quantities, price expectations and plans".3 The present paper is a modest step in 
that direction. It deals with an exchange economy where resources are supplied 
inelastically to the market (they cannot be consumed directly) .4 Two kinds of 
commodities are distinguished: F-commodities , whose prices are flexible and whose 
supply is never constrained; and G-commodities, whose prices are downward rigid 
but whose supply is subject to quantity constraints. 

A tatonnement process in continuous time is defined, in terms of prices and sup­
ply constraints. It starts from arbitrary vectors of prices and supply constraints. 
Prices of F-commodities adjust up or down, proportionately to excess demands, as 
under Walrasian tatonnement . Prices of G-commodities adjust upward only, wh en 
aggregate effective demand exceeds unconstrained supply. Supply constraints for 
G-commodities adjust up or down , proportionately to the discrepancy between 
effective demand and effective (i .e. constrained) supply. Vnder "naturai" assump­
tions, the process converges to a supply-constrained equilibrium (Theorem 4.1). 
That result may be seen as a first extension of standard stability analysis to sticky 
pnces. 

The "natural" assumptions are strict gross substitutability, as could be expected 
if only to clear the markets for F-commodities through price adjustments, and ab­
sence of inferior goods. Non-inferiority plays for quantity-adjustments a role com­
parable to that of substitutability for price-adjustments. 5 It is the microeconomic 
translation of a positive "marginal propensity to consume". 

This paper extends earlier work. In Drèze (1991), 1 analyse the stability of an 
adjustment process in downward-rigid prices and supply constraints, for a produc­
tion economy with a linear technology. The adjustment process concerns the input 
markets . An always desired numeraire in fixed supply limits (artificially, I think 
today) price level increases. Vnder a non-inferiority assumption, I obtain finite 
convergence of a discrete non-tatonnement process to an approximate supply con­
strained equilibrium. The same model is studied by Herings et al. (1999), who 
dispense with the non-inferiority assumption and prove convergence to equilibrium 
(supply-constrained under downward price rigidities, competitive under price flex­
ibility) of an adjustment rule which however uses more information and does not 

2Drèze (1997, p . 1746). 
3Drèze (1997, p . 1753). 
4 As explained below , I have in mind an application to input markets. 
SIn Herings and Drèze (1998) , the two assumptions are combined in the single Assumption A.7 

viewed as the natural extension of substitutability to a framework allowing for supply constraints . 
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seem amenable to economic interpretation. Still, their methodology should prove 
relevant to a number of problems, including one mentioned in Section 6 below. 

In Drèze (1992), 1 give a summary description of a tatonnement process in con­
tinuous time which starts from a supply-constrained equilibrium and converges to 
a competitive equilibrium thanks to price increases for commodities in equilibrium 
and to exogenous upward adjustments of supply constraints when all commodities 
are supply-constrained. Unfortunately, an inconsistency is present in the definition 
of the process.6 Still, some ideas used in the present paper originate there, and a 
consistently reformulated version of that process might be worth studying. 

The technical side of this paper is based on earlier work with Paul Champsaur 
and Claude Henry; see Champsaur et al. (1977). Using that work, the proof of the 
theorem below boils down to elementary calculus. 

The present paper has one merit: it studies a natural, transparent process, 
requiring only market-by-market information and mimicking some aspects of the 
functioning of decentralised market economies; the equilibrium concept is sensible 
and empirically relevant; the conclusion of the theorem is clear and simple. 

As against this merit , there are a number of drawbacks. First, I do not prove 
existence of solutions, referring only to Section 5 of Champsaur et al. (1977) for a 
description of a suitable method for proving existence. Of course, I had in mind the 
requirements for existence while designing the process. I do not expect problems 
in verifying existence, but had to postpone the task due to time constraints. 

Second, the model below does not include production. I started with the inten­
tion of using the same specification as in Drèze (1991), where the linear technology 
sidesteps the issue of equilibrium on product markets: supply is unbounded at 
prices computed from input prices (possibly with a mark-up); all the action is 
concentrated on input markets. I now realise that the approach used here could, 
and should, be extended to a standard production economy, as in Drèze (1997) or 
Herings and Drèze (1998). Still, I invite readers to follow me in interpreting the 
exchange economy below as describing trade in inputs. Downward price rigidities 
are more prevalent on input markets than on product markets, for reasons that 
deserve further analysis. 

Third, the model does not include money - in spite of the fact that downward 
price rigidities are more often nominal than real. The overall price level in the model 
below is exogenous at the initiation and evolves according to the adjustment rule 

6 A full description of that process is given in the mimeographed paper "Stability of Monotone 
Price Adjustment" which I circulated and presented at the KNAW Conference on "Theory of 
markets and their functioning" held in Amsterdam, July 1998. A perceptive rem ark by Roald 
Ramer led me to uncover the inconsistency. For the benefit of Conference participants, the 
inconsistency consists in specifying that some markets are in equilibrium (equality of effective 
supply and demand) while others are in excess demand. This violates Walras law, which is used 
in the proof of the stability theorem. A neat beginners's mistake! I thank Roald Ramer and 
present my apologies to participants, asking them to discard the paper circulated in Amsterdam . 
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in virtual time. Of course, the speed of adjustment is arbitrary, and no significance 
should be attached to the specific rates of adjustment introduced below on grounds 
of simplicity. An explicit treatment of money is essential to study inflation and the 
role of monetary policy. In the model below, one could distinguish between present 
and future commodities, and recognise that manipulations of nominal interest rates 
affect the relative prices of present versus future commodities, thereby sidestepping 
some (not all) nominal rigidities. Introducing money supplied by banks at set 
nominal interest rates to accommodate a transactions demands, as done in Drèze 
and Polemarchakis (1998a, b), should not raise any difficulty.7 

Fourth, interesting dynamics concern non-tatonnement, with trading out of e­
quilibrium. A step in that direction is taken in Drèze (1991), but rests on a naive 
specification of expectations. That territory is insufficiently explored at present and 
defines a natural priority for further research - not a new one, of course, witness the 
concluding sentence in Drèze (1991): " ... the major challenge to all students of price 
dynamics remains that of modelling non-deterministic expectations and stochas­
tic sequential decision-making by consumers and firms." One merit of the process 
studied here is that its simplicity (and relevance) makes it a natural candidate for 
a non-tatonnement extension. 

The paper is organised as follows. The model is defined in Section 2 and the 
process in Section 3. Section 4 is devoted to the stability theorem. Section 5 is 
devoted to two special cases, where the simplicity of the process reveals some in­
teresting qualitative properties. Section 6 offers a concluding remark. 

2. THE MODEL 

I consider an exchange economy defined by: 

- F + G commodities, indexed respectively i, j = 1··· F and k, f = 1··· Gj 
commodities in the first group have flexible prices q E R~ and are referred 
to as F-commoditiesj commodities in the second group have downward-rigid 
prices p E R~ and are referred to as G-commoditiesj 

- H agents, indexed h = 1 ·· · H, with initial endowments ("ph,wh) E R~ x R~, 
consuming (zh, xh) E R~ x R~, with preferences represented by uh(zh, xh).8 

All endowments are supplied to an exchange, and all consumptions are bought 
from the exchange. Thus, direct consumption of endowment is ruled out (as is 
typical for inputs, once leisure is distinguished from specific labour services). 

7With set interest rates and an accommodating supply of loans, the commodity "loans" would 
belong to the G-commodities, with a demand-determined constraint on effective lending. 

8The non-standard notation, whereby different symbols (prices and quantities) are used for 
F-commodities and G-commodities, reflects a preference for clarity over elegance. 
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I study a virtual tatonnement process in prices and quantities, defined in con­
tinuous time t 2:: 0, by: 

- supplies ('ljJh ,wh) and demands (zh(t),xh(t)) addressed by the agents to the 
exchange; 

- price and quantity signals (q(t),p(t),a(t)) E R~ x R~ x [0, I]G addressed by 
the exchange to the agents. 

Thus, at all t 2:: 0, the exchange announces: 

- for each F-commodity i, a price qj(t) 2:: 0; 

- for each G-commodity k, a price Pk(t) > ° and a rationing coefficient ak(t) E 
[0, 1]. 

This entails the stipulation that the exchange buys from each agent h the 
quantity 'ljJf of F-commodity i and the quantity ak(t)w~ of G-commodity k, i = 
1· ·· F, k = 1··· G. Rationing is thus assumed proportional (as a shortcut for the 
more natural random scheme used e.g. in Drèze (1991)). 

The income of agent h at time t is 

yh(t) = L: qj(t) 'ljJ; + L: Pk(t) ak(t) w~ . (1) 
k 

The demand of agent h at time t is9 

I formulate my assumptions directlyon individual and aggregate demand func­
tions. 

ASSUMPTION 1 

For each h = 1 ... H, demand is defined by the continuously differentiable de­
mand functions (z\xh)(q,p,yh), homogeneous of degree zero in (q,p,yh), which 
satisfy, for all (q, p, yh) E R~ x R~ x ~, qT zh + pT xh = yh (local non-satiation 
of preferences ). 

REMARK 

The differentiability assumption can be weakened to Lipschitz continuity, at some 
technical complication which did not seem to pass a cost-benefit test. 

9qT , a row vector , is the transpo.:;e of q, a column vector . 
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ASSUMPTION 2 

For all i = 1 · ·· F, for all k, € 
(q ,p,yl .. . yH) E R~ X R~ X R~ : 

1 ... G, for all h = 1··· Hand for all 

8z
h 

8xZ L h8zf h8xZ , > 0 > 0 and w > 0 '" Wi 8 h > 0 (non-l·nferl·orl·ty). 8yh - , 8yh - h i 8yh ' ~ Y 

Note that strict inequality is only required for weighted sums across individuals. 

ASSUMPTION 3 

For all i,j = 1··· F,j i i, for all k, € = 1··· G, € ik, and for all (q,p, yl . .. yH) 
E R~ X R~ X R~: 

'" (8x Z .I,h 8xZ) 0 
L.J 8. + 'P, 8 h > , 

h q. Y 

NOTATION AND DEFINITIONS 

L (88XZ + w; 88z~) > 0 (substitutability). 
h Pi y 

Aggregate supply, exogenous and fixed , is normalised to unity for each commod­
ity (choice of physical units) . That is: 

L1jJf=1'LW~=1, i=1 ··· F, k=1 .. ·G. 
h h 

Aggregate demand at time t is 

Zj(t) = Lzf (q(t),p(t) , yh(t)) 
h 

:= L zf (q(t) ,p(t), a(t)) = Zj (q(t),p(t), a(t)) j 
h 

Xk(t) = LXZ (q(t) ,p(t),yh(t)) 
h 

:= L xZ (q(t),p(t), a(t)) = Xk (q(t),p(t), a(t)). 
h 
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In the definition of my tàtonnement process, and in the proof of the theorem to 
follow, I use extensively indicator functions, denoted :1(.). Thus, 

:1 (ak = 1) = 1 if ak = 1 

o if ak < 1 

1 - :1(ak < 1), a.s.o .. 

Compact symbols for complex indicators are introduced as needed. 
The following almost standard definition is used in the statement of the theo­

rem. IQ 

DEFINITION 2.1: A supply-constrained equilibrium is a tuple (q, p, a, Z, X) E 

RF X R G X [0 I]G X RF X R G such that . + +, + + . 

- for all i = 1···F, Zi = Zi(q,p,a) = 1; 

- for all k = 1··· G, X k = Xk(q,p,a) = ak ~ 1. 

lam interested here in economies with F ~ 0 and G ~ 1.11 

3. THE PROCESS 

My main concern is the stability of the following Tàtonnement Process T P, 
presented in the form of adjustment rules for the prices q( t), p( t) and the quantity 
signals a(t) announced by the exchange. The rules mimiek market adjustments 
with flexible prices for the F-commodities, downward rigid prices and quantity 
constraints on supply for the G-commodities . The rules are simple and specific, 
but amenable to standard generalisations (to strictly-positive monotone Lipschitz­
continuous functions of the arguments below). 

PROCESS TP 

- Initiation: 

(q(O),p(O)) E R~+ x R~+ are given (arbitrary); 

a(O) E (0, I]G is given (arbitrary); 

lOThe term "supply-constrained equilibrium" was introduced by van der Laan (1980) and bor­
rowed by Dehez and Drèze (1984) then Drèze (1997) . Herings (1996) refers to "underemployment 
equilibrium", and that term is retained by Herings and Drèze (1998); it avoids the possible 
misinterpretation of "supply-constrained" as "constrained by insufficient supply" . 

11 For G = 1, price rigidities reduce to a constraint on price normalisation, but equilibria with 
0' < 1 still exist . Although 1 discuss a special case with F = 0 in Section 5.1, I have always 
regarded F > 1 as the relevant case. 
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- Adjustment: for all t ~ 0, for all i = 1 ... F, k = 1 . . . G : 

~~; := q;(t) = q;(t) . (Z;(t) - 1); 

d~k := Pk(t) = Pk(t) . (Xk(t) - 1) . 3(Xk(t) > 1 = ak(t)); 

d~k := àk(t) = (Xk(t) - ak(t)) . [1 - 3 (Xk(t) > 1 = ak(t))]. 

It should be understood that 

Z(t) = Z(q(t),p(t),a(t)), 

X(t) = X(q(t),p(t),a(t)), 

where (q(t),p(t),a(t)) are defined by process TP. 
Thus, prices of F-commodities adjust upward or downward in proportion to 

excess demand. (Reminder: aggregate supply is normalised to unity.) 
Prices of G-commodities are downward rigid. They adjust upward in proportion 

to excess demand when, and only when, supply of the relevant commodity is un­
constrained (ak = 1). That feature reflects the desirabie property that "quantities 
adjust faster than prices" (for those commodities whose prices display stickiness); 
it is encapsulated in the indicator function attached to the adjustment rule for 
Pk : 3(Xk > 1 = ak) is zero when X k ::; 1, ak < 1 or both. 

The quantity signals (supply constraints ) adjust upward or downward in re­
sponse to effective excess demand, subject to remaining in [0, 1].12 When Xk > ak 
and ak < 1, ak is raised: idle resources which are demanded are released; converse­
ly, resources for which there is no demand go out of use. 

This is a simpie, straightforward and well-behaved process. The existence the­
ory in Section 5 of Champsaur et al (1977)13 should apply routinely - an assertion 
that remains to be verified systematically. 

4. A STABILITY THEOREM 

At any point along the tatonnement process, it is natural to define (virtual) 
nominal "national income" Y(t) as the aggregate value of resources used, which is 
also the sum of individual incomes yh(t) : 

Y(t) = E q;(t) + E Pk(t)ak(t). 
; k 

12Thus, ak = 0 when Xk > Ctk = 1; the lower bound, Ctk ;::: 0, is never violated because Xk ;::: O. 
13Definitions, details and references can be found there. 
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Aggregation of the budget equations (1) yields 

L qi(t) (Zi(t) - 1) + L Pk(t) (Xk(t) - ak(t)) = 0, (2) 
k 

L qj(t) (Zj(t) - 1) + L qi(t)Zi(t) + L Pk(t) (Xk(t) - 1) 
i k 

+ L Pk(t) (Xk(t) - äk(t)) = O. 
(3) 

k 

Using (2), 

dY . . 
-d = L qi(t) + L Pk(t) + L Pk(t) (Xk(t) - ak(t)) 
tik k 

[1 - J (Xk(t) > 1 = ak(t))] 

= L qi(t) + LPk(t) + L Pk(t) (Xk(t) - ak(t)) - LPk(t) 
(4) 

i k k k 
= L qi(t)(Zi(t) - 1) + LPk(t) (Xk(t) - ak(t)) = O. 

i k 

Thus, nominal national income is constant along the process. The evolution 
of real income is of unknown sign, because the adjustments in the prices of F­
commodities may be positive or negative. 

THEOREM 4.1: Let there exist continuous solutions 
(q(t),p(t), a(t), (z\ xh)(th=l ... H) to the system defined by process T P. 

Under Assumptions 1, 2 and 3, process T P is quasi-stable and every limit point 
of a trajeetory is a supply-constrained equilibrium.14 

PROOF: I use the Lyapunow function 

A(t) = L qi(t) IZi(t) - 11 + L Pk(t) IXk(t) - ak(t)1 
i k 

and prove that ~~ := Ä(t) ~ 0 with Ä(t) = 0 iff A(t) = 0, Zi(t) = 1 for all 
i = 1 · ·· F, Xk(t) = ak(t) ~ 1 for all k = 1·· . G. 

I drop the explicit time reference, since all variables and derivatives are evaluated 
at t, and calculate: 

Ä(t) = L [qi(Zi - 1) + qi Z;] [J(Zi > 1) + J(Zi = 1, Zi > 0)] 
• 

- L [qi (Zi - 1) + qi Zi] [J(Zi < 1) + J(Zi = 1, Zi < 0)] 

14 Adynamie process P is "quasi-stable" iff apy limit point of a trajectory is an equilibrium 
(i.e. rest point) of the process. 
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+ L Pk (Xk - 1) (5) 
k 

+ L Pk (Xk - ak) [J(Xk > Uk) + J (Xk = Uk, Xk > 0)] 
k 

- L Pk (Xk - ak) [J(Xk < Uk) + J(Xk = Uk, Xk < 0)]. 
k 

Write J/(Z) for [J(Zi > 1) + J(Zi = 1, Zi > 0)], J/(Z) for 1 - J/(Z), J;;(X) 
for [J(Xk > Uk) + J(Xk = Uk,Xk > 0)] and Jk«X) for 1 - J;;(X) . Using (3), 
equation (5) simplifies to: 

Ä(t) = 2 L qi(l - Zi) Jj«Z) - 2 L qi Zj Ji«Z) 

-2 L Pk (Xk - ak) Jk«X), 
(6) 

k 

where 
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In order to establish the non-positivity of A(t) in (8), some regrouping and vali­
dation is needed. The first term will be combined with the third, and the second 
with the fifth. The reasoning thus proceeds in three steps. 

STEP 1 

In the third term, qj 2: 0 when .:J? (Z) = 1 and qj :::; 0 when .:J/ (Z) = l. 
When qj > 0, ~ .:1;«Z) > 0 by Assumption 3 because i i= j, and similarly 

~ > O. Accordingly, all components of the sum over jare positive when qj > 0 
J • 

with Li .:J/(Z) + Lk .:J((X) > 0, and they contribute negatively to A(t). When 
qj :::; 0, i.e. when .:J/(Z) = 1, F-commodity j is included in Li qi ~ .:Ji«Z). In 

that case, it is necessary to use the property that Li qi ~ + Lk Pk ~ = 1-Zj .15 

From this it follows that 

'" 8Zi < '" 8Xk < '" 8Zi >() L. qi ~ .:Ji (Z) + L. Pk ~.:Ji (X) = 1 - Zi - L. qi ~.:Ji Z 
i qJ k qJ i qJ 

- L Pk 8>lXk .:J?(X) :::; 1 - Zj, 
k uqj 

where the inequality follows from the fact ~ .:J/(Z) > 0 when qj < 0 because i i= 
j, and ~ > O. Accordingly, combining the first term in (8) with the components 

of the sum over j in the third term for which qj :::; 0, .:J/ (Z) = 1, one obtains 

where the inequality follows from qj < 0 whereas the terms in square bracket are 
non-negative, as just shown. Consequently, the first and third terms in (8) taken 
together contribute non-positively to A(t), and negatively when qj i= 0 for some j, 
with Li .:J/(Z) + Lk .:Jk«X) > o. 

15 At the risk of being pedantic, it is a property of the Slutsky matrices that 

For each h, the terms in the square bracket. add up to one by weak monotonicity, and 
Lh (zj - tPj) = Zj - 1. 
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STEP 2 

The fourth term in (8) is non-positive, by Assumption 3, because ~ > 0 and 

:h«X) = 1 implies 'Ïlk = 0, so that k =I R and ~ > 0; whereas Pi ~ O. This term 
is strictly negative when Pi > 0 for some R, with L:i .1;«Z) + L:k Jk«X) > O. 

STEP 3 

The last term in (8) is non-positive when ài ~ 0, Jr (X) = 1. The components 
for which ài ~ 0, J/(X) = 1, may be combined with the second term in (8) to 
yield 

L Pi à i J/(X) [1 - LW; (L qi ~zt Ji«Z) + L Pk ~x~ Jk«X))] ~ O. 
i h i uy k uy 

The sums in parentheses are for each h less than or equal to one, so their weighted 
sum over h is less than or equal to L:h wf = 1. Non-positivity then follows from 
àiJ/ ::; O. Thus the second and last term in (8) taken together contribute non­
positively to Ä(t), and negatively when à i =I for some R, with either L:i .1;«Z) + 
L:k Jk«X) > 0 if à l > 0 or L:i J?(Z) + L:k Jç(X) > 0 if à l < o. 

We may thus conclude that Ä(t) ~ o. To verify that Ä(t) < 0 unless A(t) = 0, 
note first that L:i Ji«Z) + L:i Jk«X) > 0 unless Zi ~ 1 for all i = 1··· F and 
Xk ~ CXk for all k = 1··· G. Similarly, L:i .1;>(Z) + L:k Jç(X) > 0 unless Zi ~ 1 
for all i and Xk ~ CXk for all k. In either case, (2) would imply Zi = 1 for all i and 
Xk = CXk for all k, i.e. A(t) = o. It thus follows from the conclusions of the three 
steps that Ä(t) < 0 whenever qj =I 0 for some j or Pi > 0 for some R or à i =I 0 for 
some R, i.e. whenever A(t) =I o. Using Theorem 6.1 in Champsaur et al. (1977), 
the proof is complete. Q.E.D. 

5. TWO SPECIAL CASES 

5.1. Fixed Prices 

This special case, of purely pedagogical interest, is obtained by setting F = 0 
and Pk(t) = 0 for all k and t. Thus, I define a quantity-adjustment process (QP) 
for an economy with fixed prices. 

PROCESS QP 

F = 0; p(t) = P > 0 is given and constant. 

- Initiation: 
cx(O) E (0, I]G is given (arbitrary). 
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- Adjustment: 

~ := elk(t) = (Xk(t) - O!k(t)) [1 - J (Xk(t) > 1 = O!k(t))]. 

The quasi-stability of process QP follows as a direct corollary of Theorem 4.l. 
Equation (8) simplifies to 

Ä(t) = 2 L Pk elk Jk«X) - 2 L Pi ell L Pk Jk«X) L aaX~ w; :::; 0, 
kik h Y 

where the inequality still follows as per step 3 in the proof of the theorem. 
With constant prices, Y(t) = Lk Pk O!k(t) now defines real (as well as nominal) 

national income. lts evolution is given by 

Thus, the aggregate use of resources is monotone non-increasing over time; it 
is constant over time intervals when there is no excess demand for a fully used 
resource, and strictly decreasing over time when such excess demand arises - a 
situation often described as one of "inflationary pressure" (and characterised by 
price inflation under process T P). In asense, process QP has a "contractionary 
bias" : the quantity adjustments carried out to bring effective supply in agreement 
with effective demand trace out a contractionary spiral (lower incomes from sales 
of endowment result in lower demand overall); when prices are fixed, aggregate 
income contract ion is the only avenue open to eliminate excess demand for some 
fully used commodity, i.e. one for which X k > 1 = O!k. 

It is interesting to note that a "contractionary bias" is not inherent to quanti­
ty adjustments per se; rather, it is a feature associated with supply rationing, as 
opposed to demand rationing. For the model of Section 2, one can define demand­
constrained equilibria, and a dual process whereby constraints on demand are ad­
justed upward or downward in response to effective excess demands. Under such a 
process, Say's Law operates: (unconstrained) supply creates its own demand; the 
role of quantity constraints is to choke off demand on markets where it exceeds 
potential supply, thereby creating spillovers which raise demand on other markets. 
In contrast, Say's Law is inoperative in presence of constraints on supply.16 It is 
unfortunate, but undeniable, that quantity adjustments in decentralised market 
economies take the form of supply constraints, resulting in the contractionary bias 
illustrated above. That unfortunate feature results both from market forces (the 
competition among buyers to overcome demand rationing, a competition rationally 

16Morishima (1976, Chap . 7) contains an interesting discussion of Say's Law under price 
rigidities. Here, one could rem ark that "demand creates its own supply" - within the limits of 
resource availability. 
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anticipated by sellers), and from market imperfections (small numbers of sellers, 
organised collusion, price rigidities aimed at correcting the inefficiencies resulting 
from incomplete markets ... 17). This is not the place to expand on that fruitful 
theme. 

A further insight into the operation of process Q P is obtained by assuming, as 
usually done in macroeconomics, that aggregate demand for any commodity k is a 
function of prices pand aggregate income Y. In the present special case, a simple 
assumption entails a similar property for income derivatives . 

ASSUMPTION 4 

For all k, R = 1· .. G and for all (pj y1 ... yH) E 1R~ x 1R~, the covariances, across 

agents, of marginal propensities to consume ~ with endowments w; are equal to 
zero: 

" 8xZ (h 1 ) ~ 8yh wl - H = O. 

It follows from Assumption 4 that, in our special case, 

X· =" 8xZ" . hl" 8xZ '" . 8Xk · 
k ~ 8yh 7 Pi Ctl Wl = H ~ 8yh 7 Pi Ctl:= 8Y Y::; 0, 

where the inequality follows from Assumption 2 and Y < O. This also implies 
Xk = 0 for all k when Y = 0, i.e. when L:k .J(Xk > 1 = Ctk) = O. 

Thus, if process Q Pstarts from Ctk(O) < 1 for all k, then Y(O) = 0, Xk(O) = 0 for 
all k, and all the discrepancies between effective demands and effective supplies are 
corrected by bringing the quantity constraints Ctk(t) progressively doser to the 
initial effective demands Xk(O). 

Two cases are usefully distinguished. If Xk(O) < 1 for all k, then process QP 
will converge to an equilibrium where the supply of every commodity is constrained 
below one: the process simply validates X(O) as a supply-constrained equilibrium, 
at the given (arbitrary) prices p.1S The process is then exempt from contractionary 
bias, since Y is constant. It eliminates excess demands by raising supply constraints 
where needed, and brings effective supply down to the level of effective demand 
elsewhere. In an application to input markets, firms simply hire the inputs (or use 

17That last imperfection is spelled out as a rationale for (second-best) wage rigidities in Drèze 
and Gollier (1993). 

180f course, X(O) = X (p, 0'(0)) = X (p, Y(O)) is not an arbitrary vector . For given p, Assump­
tion 1 (continuously differentiable demands) implies that X(O) varies continuously with Y(O), 
defining a one-dimensional set of supply-constrained equilibria, in agreement with the general 
theory in Herings (1996). 
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the capacities) needed to satisfy demands, and fire inputs (or keep capacities idle) 
when not needed to satisfy demand. 

When Xk(O) > 1 for some k, the corresponding ak will rise form ak(O) < 1 until 
it reaches unity.19 From that point on, the process becomes contractionary: Y < 0, 
entailing Xe < 0 for all f; in order to absorb the excess demand for commodity k, 
income must fall, and will fall as a consequence of decentralised quantity adjust­
ments, entailing falling demand for all commodities; the contractionary spiral is at 
work. This is of course the point where the special case of fixed prices becomes 
uninteresting. More generally, the price Pk of the G-commodity in excess demand 
will rise, as in process T P, speeding up the overall adjustment · and limiting the 
impact of the contractionary bias. 

One final remark is in order. If process QP converges to an equilibrium with 
binding supply constraints for all commodities, the associated coordination failure 
could be remedied by raising some or all supply constraints (the a's) exogenously. 
This would lift Y and consequently all X k 's. In this case, supply would create its 
own demand - leaving it to process Q P to bring about the further adjustments in 
individual ak 's needed to match the increments in the corresponding X k 's. This 
remedy to the coordination failure could be used until some aCs) reach unity. At 
that stage, price adjustments for the fully used commodities offer the only avenue 
to raise Y. My second special case expands on this rem ark. 

5.2. Fixed Shares 

Another instructive special case is obtained when the demand functions have 
the special property of "fixed shares", embodied in the following assumption. 

ASSUMPTION 5 

There exists a vector h,8) E f}.F+G = {h,8) E lR~+GI Li Îi + Lk fJk = I} such 
that, for all i = 1··· F, for all k = 1·· · G and for all (q,p, a) E lR~+ x lR~+ x (0, l]G, 
qi Zi(q , p, a) = Îi Y(q,p, a) and Pk Xk(q,p, a) = fJk Y(q,p, a). 

Applied to inputs, this assumption imposes fixed factor shares, as under a Cobb­
Douglas product ion function. Applied to consumption goods, this assumption im­
poses fixed budget shares, as under a Cobb-Douglas utility function. This is of 
course a very special case. 20 It leads to a simple property, for which less restrictive 
sufficient conditions are worth investigating. 

19S0 far process QP parallels the achievements of the short-term process in Herings et al. 
(1999) . 

2°It is also the special case privileged in the "Real Business Cycles" literature. 
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COROLLARY 5.1: Let ("ij,p,a,Z,X) define a supply-constrained equilibrium and 

let (q, p, a, Z, X) be a limit point oJ Process TP with initiation q(O) = "ij, p(O) = 
p, D:(O) E (0, I]G. Under Assumption 5: 

(i) IJ L:k Pk D:k(O) > L:k Pk ak, 

then q>"ij, p ~ p, a~ a with ak> ak whenever ak < 1;21 

(ii) IJ L:k Pk D:k(O) < L:k Pk ak, 

then q<"ij, p= p, a< a. 

PROOF OF (i): It follows from (4) that , along the process, Y(t) = 0, so that 
Y(t) = Y(O) = L:i"iji + L:k Pk D:k(O) > L:i"iji + L:k Pk ak· 

~ . y1o\ -
Consequently, for all i = 1 · ·· F, Zi(O) = ~ > Zi = 1 and for all k = 

1· ·· G, Xk(O) = Ok !(o) > X k = ak. 
. h . 

This in turn implies qi(O) = Zi(O) - 1 > O. But 4;(0) Zi(O) + qi(O) Zi(O) = 

li Y(O) = 0, so that 2';(0) = [-q;(O) Zi(O) / qi(O)] < o. 
These relations continue to hold for t > 0, so long as Zi(t) > 1. As Zj(t) 

approaches 1, q;(t) approaches o. Limit points accordingly verify Zj= 1, qi > 
qj(O) = "ijj. 

Turning to G-commodities, two cases should be distinguished, according as 
Xk(O) > 1 or Xk(O) :::; 1. For all k such that Xk(O) > 1, if D:k(O) ~ 1, then the rea-

soning just adduced for F-commodities applies unchanged and X k = 1 = ak~ ak 
and Pk> Pk(O) = Pk. If D:k(O) < 1, then äk(O) = Xk(O) - D:k(O) > 0 with Pk(O) = 
0, Xk(O) = O. Thus, for all t such that D:k(t) < 1, äk(t) ~ Xk(O) - 1 > 0 and D:k(t) 
rises monotonically until D:k(tk) = 1 for some value tk :::; [1 - D:k(O)] / [Xk(O) - 1]. 
From that point onwards, äk(t) = 0, Pk(t) = Xk(t) - 1 ~ 0, and limit points will 

again satisfy X k= 1, Pk> Pk(O) = Pk' ak= 1 ~ ak, with ak> ak whenever ak < 1. 
For all k such that Xk(O) :::; 1, the adjustment proceeds on quantities alone, with 

äk(O) = Xk(O) - D:k(O), Xk(O) = 0, Pk(O) = o. These relations continue to hold for 

t> 0 so long as Xk(t) = Xk(O) #- D:k(t), so that limit points verify ak=Xk= Xk(O). 
But Y(O) > L:j "ijj + L:k Pk ak implies Xk(O) > Xk("ij,p, a) = ak, so that ak > ak · 

Combining the different cases, the conclusion of the corollary follows, with a ~ a, 
i.e. ak> ak for some k. Indeed, L:k Pk D:k(O) > L:k Pk ak rul es out ak = 1 for all 
k; and ak < 1 implies ak> ak both when Xk(O) > 1 and when Xk(O) :::; 1. 

PROOF OF (ii): In this case, Zi(O) < 1 for all i = 1· · · F and Xk(O) < X k = 
ak :::; 1 for all k = 1··· G. For F-commodities, the argument in the proof of (i) 

21Vector inequalities obey x ~ Y iff Xi ~ Yi for all i; x ~ Y iff x ~ Y and x -:f. Y; x > y iff Xi> Yi 
for all i . 
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holds with inequality signs reversed, so that q< q. For G-commodities, the argu­
ment in the next-to-Iast paragraph in the proof of (i) holds with inequality signs 
reversed, so that p= P, a < a. Q.E.D. 

This corollary has two important implications, one normative and one positive. 
Both concern the consequences of exogenous shocks inlerprelable as shocks affect­
ing individual incomes, here introduced as exogenous modifications of the vector 
a. A natural, but not exclusive, interpretation would be that expectations about 
sales of the endowment (e.g. employment) enter the definition of (permanent) in­
come, and are subject to exogenous shocks (revisions of expectations). Another 
interpretation would be that macroeconomic policies affect incomes and income 
expectations. 

The normative implication is the following. Consider a sequence of supply­
constrained equilibria ëV = (qV, pV, aV, ZV, XV) where ë v+1 is a limit point of process 

T P with initiation (qV, pV, av+1 (0)) , where Lk Pk ak+1 (0) > Lk Pk ak. It follows 
from the corollary that av+1 2: aV

• Accordingly, the sequence aV
, v = 1,2···, 

will converge to tG = (1···1) E ]RG. That is, the sequence ë V will converge, v --t 

00, towards a compelilive equilibrium. In other words, fiscal policy is potentially 
effective in this model. It can overcome the coordination failure sustained by 
downward price rigidities, and bring the economy to full use of its resources. 

The positive implication is the following. The operation of process T P leads 
the economy to a supply-constrained equilibrium. An exogenous shock will upset 
the equilibrium and restart the process. For shocks interpretable as income shocks 
(leading to a combination of price and quantity adjustments), the corollary defines 
comparative-statics properties which constrain the evolution of the economy. The 
predictions allowed by the corollary are thus usefully sharper than those imp lied 
by the static theory in Drèze (1997) or Herings and Drèze (1998), which they 
complement. 

It might also prove possible to characterise further the inflation-employment 
trade-off implied by Assumption 5 and its robustness to alternative assumptions. 

Thanks to its simplificatory power, the "fixed shares" assumptions permits other 
applications, that will not be developed here for lack of space, but two of which 
will be described succinctly. One application consists in introducing constraints on 
relative prices, i.e. real rigidities. A price index is a linear function of (q,p), say 
aT q + bT p. A reallower bound on the price Pk then takes the form Pk 2: )..k(aT q + 
bT p). Consistency requires bT ).. < 1, under which condition one can solve for the 
reduced conditions p 2: (I -)..bTt1 )..aT q:= Cq. Consider then a sequence of supply­
constrained equilibria ë V

, where ë v+1 is a limit point of process T P with initiation 
(qV,pV+l(O), aV) and Pk+1(O) = fl max (pk' (CqVh) + (1 - fl)Pk' Vnder Assumption 
5, there exists fl > 0 such that the sequence of supply-constrained equilibria ë V 

converges to a supply-constrained equilibrium satisfying Pk 2: )..k(aT q + bT p) for all 
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k = 1· .. G. In this way, both nominal and real rigidities can be taken into account. 
Another application brings out explicitly the time dimension. In an elemen­

tary two period framework, a single nominal interest rate relates the present (first 
period) values of future resources to their spot prices in the second period. Us­
ing Assumption 5, it is easy to spell out some consequences of exogenous changes 
in that interest rate. Starting from a supply-constrained equilibrium, an increase 
in the nominal rate of interest defines new initial conditions for process T P. The 
process then converges to a new supply-constrained equilibrium, that compares as 
follows with the starting one: (i) the price level is lower in period one, but higher 
in period two; (ii) real national income is lower in period one, but higher in period 
two. The model is thus of potential usefulness for discussing monetary policy. 

6. CONCLUDING REMARK 

Theorem 4.1 contributes a partial answer to the question raised in the second 
paragraph of the introduction : how do supply-constrained equilibria come about? 
The partial answer is: through a natural process of price and quantity adjustments, 
with arbitrary starting point. Elementary dynamics thus confirm the robustness 
of that equilibrium concept, previously recognised in static analysis . 

A complementary program, illustrated in Section 5.2, would study how the in­
efficiency inherent in supply constraints can be remedied through a combination of 
trend inflation and demand stimulation, in economies where removing downward 
nominal price rigidities is either undesirable (the rigidities are second best) or im­
possible (e.g. the market power of some agents cannot be curbed, on "political 
economy" grounds). The work of Herings et al. (1999) carries out that program, 
for a sophisticated adjustment rule. It was remarked in my interpretation of pro­
cess QP that my simple adjustment process parallels the achievements of their 
short-run phase. It should be dear that process T P parallels the achievements of 
their first and second phases combined. The normative implication of my corollary 
outlines an alternative to their third phase. As of now, all avenues remain worth 
exploring. 

Section 5 above is also of some methodological interest. It illustrates how addi­
tional macroeconomic implications follow from additional assumptions, of the kind 
routinely used by macroeconomists . To microeconomists, such assumptions look 
unappealing. But so do standard assumptions like convexity of production sets. 
The integration of microeconomics and macroeconomics, to which many of us as­
pire, cannot ignore that particular path. 
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