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In th is paper a price and quantity adjustment process in continuous time is considered 
for an economy with production factors and final goods. We assume that each final 
good is produced by a constant returns to scale production technology with only factor 
goods as inputs . The price and quantity adjustments take place on the markets for 
factor goods only. During the process, the prices in the final good markets adjust 
instantaneously by setting the price of a final good equal to the production costs. Pro­
duction adjusts instantaneously to meet the demand and keeping the output markets 
in equilibrium. 
The adjustment process consists of three consecutive parts. First, in the short run part 
of the process the factor prices are assumed to be rigid and only quantity adjustments 
take place until an out of equilibrium situation is reached in which on each market 
either equilibrium under supply rationing prevails or excess demand and no supply 
rationing is observed. Next, in the mid run the factor prices are adjusted upwards in 
markets with excess demand , while on the ot her factor markets the supply rationing is 
adjusted to keep them in equilibrium. This process of adjusting quantity constraints in 
factor markets with excess supply and prices on factor markets with excess demands is 
shown to lead to a supply constrained equilibrium. Thirdly, in the long run the factor 
prices in markets with supply constraints are decreased, whereas supply constraints 
and prices in all other factor markets adjust to keep those markets in equilibrium. It 
is shown that eventually a Walrasian price system is reached . 
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1. INTRODUCTION 

Most studies in general equilibrium theory focus on the existence of competitive 
equilibria in various settings. Interesting extensions of the standard Arrow-Debreu 
general equilibrium model with complete markets, include models with overlapping 
generations, models with uncertainty and market incompleteness, and models with 
asymmetrie information. Issues of existence and (in)determinateness of equilibrium 
are fairly well understood. 

It is rat her striking that very little progress has been made on the modelling of 
economies that are out of equilibrium and the modelling of the forces that could 
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drive an economy to an equilibrium state. The most frequently studied adjustment 
process is still the Walrasian tatonnement process as formalized by Samuelson 
(1941). Nevertheless, the Walrasian tatonnement process has many shortcomings. 

One of the most obvious problems related to Walrasian tatonnement is its lack 
of con vergen ce for many economies. The first example of such an economy has 
been given by Scarf (1960). The results of Sonnenschein (1972, 1973), Mantel 
(1974), and Debreu (1974) implicate that many economies exist for which Wal­
rasian tatonnement does not lead the economy to a Walrasian equilibrium. Part 
of this lack of convergence may be overcome by making distributional assumptions 
on the characteristics in the economy. The results of Hildenbrand (1983) imply 
that sufficient heterogeneity in income leads to the Law of Demand and taton­
nement stability, and those of Grandmont (1992) imply that sufficient dispersion 
in preferences leads to an aggregate excess demand function derived from a single 
Cobb-Douglas preference relation. 

An alternative to making distributional assumptions on characteristics, is to 
assume that the price adjustment process is more sophisticated. Several processes 
have been shown to be convergent under fairly weak assumptions, see Smale (1976), 
van der Laan and Talman (1987), Kamiya (1990), and Herings (1997). 

However, even when convergence takes place, it takes some time before the 
equilibrium price system is reached. The relevant market signals for an out-of­
equilibrium process are then no longer the ones given by the notional excess de­
mand used in the Walrasian tatonnement process. Instead, it is more reasonable to 
use market signals related to the effective excess demand associated with a Drèze 
equilibrium, see Drèze (1975). Walrasian tatonnement is then replaced by a pro­
cess as described in Veendorp (1975). Again, in gener al such a process does not 
converge, see Day and Pianigiani (1991) and Böhm (1993). Extending more so­
phisticated price adjustment mechanisms to include effective demand signals will 
lead to adjustment processes displaying con vergen ce to a Walrasian equilibrium, 
see Herings, van der Laan, Talman and Venniker (1997), and Herings, van der Laan 
and Venniker (1998). 

For an economy with two types of goods, i.e. production factors and final goods, 
and in which each of the final goods is produced by a constant returns to scale 
product ion technology using the factor goods as inputs, Drèze (1991) also considers 
an adjustment process based on effective demand signals. His process distinguishes 
between quantity and price adjustments, where the former takes place infinitely 
faster than the latter. Drèze's process is motivated by five empirical regularities: 
(i) firms price at average cost plus a mark-up; (ii) no rationing of final demand; 
(iii) downwards rigidity of nominal wages; (iv) persistent unemployment; (v) CES­
Leontief technology with constant returns; see Drèze and Bean (1991). Drèze shows, 
under some assumptions, that the process converges to an equilibrium state of the 
economy with supply rationing on some of the factor inputs, but no rationing on 
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final demands. 
In this paper we show that the five empirical regularities mentioned earlier can 

be incorporated in an adjustment process as specified in Herings, van der Laan, 
Talman and Venniker (1997), or even in the more general process in Herings, van der 
Laan and Venniker (1998), without losing the property that a Walrasian equilibrium 
is obtained in the long run . 

Initially, the economy may be in an arbitrary state with the possibility of ra­
tioning on the supply-side. We first formulate a short-term process of quantity 
adjustment leading to an excess demand state at the original prices: markets are 
either in equilibrium with the possibility of rationing on the supply-side for factor 
markets, or, for the factor markets, there is excess demand even though the factor 
supply is maximal. 

Then a mid-term adjustment process is formulated, where prices of factors in 
excess demand are adjusted upwards, and markets in equilibrium are kept in equi­
librium by adjusting either prices or rationing constraints. The mid-term process 
reaches a supply constrained equilibrium: all markets are in equilibrium, rationing 
on the supply-side is possible in the factor markets, and prices of factors are at 
least as high as at the initial state, with no rationing if the price is higher. 

Finally, we introduce a long-term process, a non-tatonnement process , where 
prices of all commodities may be adjusted downwards or upwards. All markets 
are kept in equilibrium and along a sequence of supply constrained equilibria, the 
economy is shown to reach a Walrasian equilibrium. 

Although we restrict our analysis to pricing at average cost without mark-ups, 
positive mark-ups can be dealt with easily. The downwards rigidity of nominal 
wages is maintained in the short-term and mid-term process, but abandoned in the 
long-term process in order to reach a Walrasian equilibrium. There is persistent 
unemployment, disappearing only in the limit of the long-term process. Firms use 
a general constant returns to scale technology. The process is therefore consistent 
with the empirical observations of Drèze and Bean (1991). 

2. THE MODEL 

Given any positive integer k, we denote the set of indices {l, .. . , k} by hand the 
set of indices {O, 1, .. . , k} by 12. Furthermore, R~ = {x E R k I Xj 2: 0, Vj E h} 
and R~+ = {x E R k I Xj > 0, Vj Eh}. A vector of zeroes is denoted by Q.. lts 
dimension will be clear from the context. 

We con si der an economy [ = ({xh, (wh, m h), thhEIH' {c1hEh' s) with I< +L+1 
commodities. Commodity ° serves as a numeraire commodity with price Po = 1, 
a commodity indexed by k = 1, .. . ,I< is a production factor k, and a commodity 
indexed by 1 = 1, ... ,L is a final good 1. The prices of the production factors are 
denoted by the vector p E R~ and the prices of the final goods by q E Rt. 
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We assume that each final good is produced by a constant returns to scale 
production technology using the factor goods as inputs. Let cl(p) be the minimum 
cost to produce one unit of final good I at factor prices p E 1R~. If the cost 
function cl : 1R~ -t 1R+ is continuously differentiable, then it follows with Euler's 

law that cl(p) = l:f=l pkai(p), where ai(p) = a~l:) is the net input quantity of 
product ion factor k to produce one unit of the final good Z at factor prices p. We 
allow that the vector al(p) E 1R~ contains zero elements. From the assumption 
of constant returns to scale it follows that al(p) contains at least one positive 
element at each p. Continuous differentiability of cl implies that al(p) is continuous 
in p. So, the production activities can be represented by the nonnegative I< x L 
technology matrix A(p) = [al(p), . .. , é(p)] describing the net input requirements 
at factor prices p for producing unit amounts of the outputs, being continuous in p 
and satisfying that each column contains at least one positive element. We assume 
that also each row contains at least one positive element, implying that at any price 
vector p each production factor is required as an input in at least one production 
activity, i.e. for all p we have that l:IEh ai(p) > 0, k E h. 

There are H households, indexed h = 1, . . . , H. Household h initially holds 
an amount m h of the numeraire commodity and a nonnegative vector wh E 1R~ 
of production factors. The vector w E 1R~ is defined by w = l:hEIH wh and 
m E 1R by m = l:hElH m h. Household h derives utility only from the numeraire 
commodity and the final goods. His consumption set is given by X h = 1Rt+!. 
For a consumption bundie xh E X h, x3 denotes the consumption of the numeraire 
commodity and x?, Z E h, the consumption of final good Z. The preferences of 
household hare given by a preferenee relation t h on X h • 

Let Z C IThEIH 1R~ be the collection of H K -dimensional vectors ( = ((1, ... , (H) 
defined by 

TI K h h Z = {( E 1R+ IQ::; ( ::; w , hEI H }. 

hEIH 

For each h E IH, the vector (h E 1RZ is a nonnegative vector less than or equal 
to wh. Then a state s = (p, () E 1R~ x Z of the economy is defined as a price 
system p for the production factors and for every household h a vector of quantity 
constraints (h on the supply of the production factors. The quantity constraint 
(f is the maximal amount of production factor k which household h expects to be 
ab Ie to sell. In this paper the focus will be on downwards rigidities of prices of 
product ion factors, in accordance with empirical regularity iii) of Drèze and Bean 
(1991). If such downwards rigidities exist, the initial state of the economy, denoted 
by s = (]i, () E 1R~ x Z is of importance. With respect to the economy E the 
following assumptions are made. 

Al. For every household hE IH, the consumption set X h is given by 1Rt+!. 
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A2. For every household h E IH, the preferenee relation !::h is complete, transitive, 
continuous, strongly monotonie and strictly convex. 

A3. For every household hE IH, m h > 0 and wh ~ Q.. Moreover, w ~ Q.. 

A4. For every final good 1 E h, the cost function cl : lR~ -t lR+ is weakly 
increasing, concave, continuously differentiable, and homogeneous of degree 

K ac1(p) 
one. For every p E lR+, for every kElK, L:IEh apk > o. 

A5. At the initial state s E lR~ x Z it holds that fiT A(fi) ~ Q.. 

The assumption of strict convexity of the preference relations is for the sake of 
simplicity and allows us to work with demand functions instead of demand cor­
respondences. It is well-known that Assumption A4 on the cost functions can be 
derived from assumptions on primitive concepts. A cost function d from lR~ into 
lR+ is said to be weakly increasing if pI ~ p2 implies Cl (pI ) > CI(p2). Assumption 
A5 says that at the initial state the production cost of each final good is positive. 

Because of the assumption of constant returns to scale, the price ql( s) of final 
good I in state s = (p, () of the economy follows from the price system pand is 
given by 

(1) 

The supply of production factors by the households in state s of the economy is 
given by 

(2) 

since (h is the amount household h is allowed to sell. In a supply constrained 
equilibrium, (h coincides with the amount sold by household h. The income of 
household h at state s is given by 

(3) 

At any state a household collects his income from his initial holdings of the nu­
meraire commodity and the expected value of the sale of factors. At state s, the 
demand Xh( s) = (x~( s), xNs), ... ,xi(s)) T E lRL

+! of household h is defined as the 
best element xh for !::h on X h under the budget constraint 

x~ + L ql(s)x~ ~ rh(s). (4) 
IEh 

Because of the assumptions made on preferences, this element is unique and 
lies on the budget hyperplane. The tota:l demand at state s is given by x( s) = 
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(xo(s),xl(s), ... ,xds))T = LhEIHxh(S) with xo(s) the total demand for the nu­
meraire commodity and Xt(s) the total demand for final good i, 1= 1, ... ,L. In 
the following we denote the total demand for final goods at state s by d( s) = 
(Xl(S), ... ,XL(S))T. The total input of the production sector needed to produce 
this demand d( s) for final goods at state s is given by 

ZD(S) = A(p)d(s). (5) 

We define a supply constrained equilibrium as follows. 

DEFINITION 2.1: A supply constrained equilibrium (SCE) for the economy Eis 
a state s* E 1R~ x Z such that zD(s*) = zS(s*). 

At an equilibrium state s* = (p*, e) the expectations eh of each household h 
about its supply possibilities are fulfilled and the income of household h is given by 
rh(s*). Since by equation (5) the total production of final goods equals the total 
demand for final goods and hence at an equilibrium state all commodity markets 
are in equilibrium, it follows from Walras' law that at an equilibrium state s* 
also the total demand for the numeraire commodity, xo( s*), equals the total initial 
holdings, m, of the numeraire commodity. 

At a supply constrained equilibrium, households are not necessarily able to sell 
their entire initial factor endowment. On the contrary, typically it holds that eh < 
wh for some households. The economy is then in a situation of underemployment 
at an equilibrium state. There is some but not a full utilization of all production 
factors. The underemployment rate of factor k is given by (Wk - zP(S*))jWk. If for 
some household h the indifference surfaces associated to any strictly positive xh do 
not intersect the boundary of 1R~+1, then there is a positive total demand for all 
final goods and the underemployment rate of factor k is less than one because of 
Assumption A4. 

A Walrasian equilibrium arises when at a supply constrained equilibrium the 
underemployment rate of all production factors is equal to zero. An exception is 
made for the case where the price of some factor is zero. Since households do not 
derive utility from product ion factors, underemployment of a production factor 
with zero price forms no real constraint. 

DEFINITION 2.2: A Walrasian equilibrium (WE) for the economy E is an SCE 
s* such that, for all k E Ix, pi,(Wk - LhEIH (kh) = o. 

Given the initial state s, we denote the set of price vectors greater than or equal 
to p by P, i.e. 
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The foUowing definitions are helpful when describing the adjustment process. 

DEFINITION 2.3: A p-state for the economy E is a state s = (p, () E R~ x Z 
with p = p. 

~ K 
DEFINITION 2.4: A P-state for the economy E is a state s = (p, () E R+ X Z 

with pEP. 

Our price and quantity adjustment process can be decomposed into three parts: 
a short-term, a mid-term, and a long-term process. Starting from the initial state 
s, the short-term process yields a path of p-states until a p-state is reached at which 
the quantity constraints are such that total factor demand exceeds total factor sup­
ply, and total factor demand only strictly exceeds total factor supply if the factor 
is used at fuU capacity. We caU such a p-state an excess demand p-state. 

DEFINITION 2.5 : An excess demand p-state (ED p-state) for the economy E is 
a p-state s E R~ x Z such that zD(s) ~ zS(s) and zP(s) > zr(s) implies (~ = w~, 
hE I H • 

Analogously, we define an excess demand P-state. 

DEFINITION 2.6: An excess demand P-state (ED P -state) for the economy E is 
a P-state s E R~ x Z such that zD(s) ~ zS(s) and zP(s) > zr(s) implies (~ = w~, 
hE I H . 

In the mid-term process the prices of factors that are in positive excess demand 
wiU rise, while quantity adjustments wiU keep the other markets in equilibrium. 
Continuing from the excess demand p-state found by the short-term process, the 
mid-term process yields a path of excess demand P-states, which ends at a supply 
constrained P -equili brium. 

DEFINITION 2.7: A supply constrained P-equilibrium (SC P-equilibrium) for 
the economy E is an SCE s* E R~ x Z such that p* ~ pand Pk > Pk implies 
(kh = w~ for all h. 

All concepts defined so far are static in nature. In Drèze (1991), a dynamic 
process is described that starts at an arbitrary initial state s and that leads, under 
certain conditions, via an ED p-state to an SC P-equilibrium. We will give an­
ot her process that satisfies the five empirical regularities of Drèze and Bean (1991) 
and that, for an economy satisfying Al-A5, leads via short-term adjustments of 
p-states to an ED p-state, via mid-term adjustments of ED P-states to an SC P-
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equilibrium, and via long-term adjustments of SCEs to a WE. 

3. THE DRÈZE PROCESS 

In Drèze (1991), a discrete price and quantity adjustment process is proposed 
for the model of the previous section. lts main characteristics are that quantities 
move faster than prices and that prices of production factors are downwards rigid, 
refiecting the fundament als of Keynesian economics. 

To be more precise, let E.k, kElK, be small positive numbers. For numbers ç~ 
satisfying 0 < ç~ < ~ and such that w~ is an integer multiple of ç~ for all hand k, 
and (small) positive numbers 8k , the quantity constraint Cr in the market for factor 
k is adjusted by discrete steps of size ç~ and the price Pk is increased by discrete 
steps of size 8k .2 Starting from an initial state s, this adjustment continues until 
an approximate SC P-equilibrium is reached. An approximate SC P-equilibrium 
is a state of the economy such that in the market for each factor k the absolute 
value of the difference between supply and demand is at most E.k and the price is 
at least equal to ih. As argued by Drèze (1991), such an approximate equilibrium 
seems to be tolerabie, since then the differences bet ween demand and supply can 
be absorbed by small adjustments in productivity, product quality or inventories. 
Furthermore, along the process, only price increments may occur and hence the 
empirical regularity iii) of Drèze and Bean (1991) is satisfied along the path of 
states generated by the process. 

In the Drèze process, quantities are adjusted as long as in some factor market 
either excess supply prevails or excess demand for factor k exceeds Ek and at least 
one household is rationed on supply in that market. The process continues until 
a situation is reached where all factor markets are in excess demand and for any 
factor k it holds that either excess demand is at most equal to E.k or excess demand 
is more than E.k and all households are unconstrained in that market. When the 
first situation holds for all markets, the economy has attained an approximate 
SC P-equilibrium and the process terminates. Otherwise, the process switches to 
price adjustments. Because of price adjustment, the economy may return to a state 
where quantity adjustments prevail. 

Given some initial state s at which any number Cr is a nonnegative integer 
multiple of ç~, the Drèze process generates a sequence of states s(t), t = 0,1, ... , 
starting at s(O) = s. The state s(t) belongs to one out of two possible regimes. 
Either 
(i) there exists a factor k such that 
either (a) zP(s(t))-zr(s(t)) < 0, or (b) zP(s(t))-zr(s(t)) > E.k and zr(s(t)) < Wk, 

or 
(ii) for all kElK, both (a) and (b) do not hold. 

2This is a slight generalization of Drèze (1991), who takes ç~ independent of h. 
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In regime (i) there is scope for quantity adjustment to equilibrate the markets 
by tightening the rationing constraints in case (a) of excess supply, and, if possible, 
weakening the rationing constraints in case (b) of excess demand. In regime (ii) 
there is no scope for quantity adjustment and prices will adjust . If regime (i) holds 
true, then an arbitrary index k for which (a) or (b) holds is taken. In case (a) 
z~(s(t)) > 0, so there exists at least one household h such that (~(t) = KÇ~ with K 
a positive integer. Then an arbitrary household h satisfying this condition is taken 
and a quantity adjustment takes place by setting (~(t + 1) = (~(t) - a, while all 
ot her quantities and prices at stage t + 1 are set equal to those in t. In case (b) 
z~(s(t)) < Wk and there exists at least one household h such that (~(t) = wZ - KÇZ 
with K a positive integer. An arbitrary household h satisfying this condition is 
taken and a quantity adjustment takes place by setting (~(t + 1) = (~(t) + ç~, 
while all other quantities and prices at stage t + 1 are set equal to those in t. The 
process proceeds in this way until a stage t is reached in which regime (ii) occurs. 
Suppose there exists an index k' such that 

(6) 

Then z~,(s(t)) = Wk' (because otherwise case (b) of (i) is true) and hen ce there 
is excess demand for factor k' without rationing of the households, while for each 
factor k for which condition (6) is not true the excess demand is nonnegative but at 
most ék. The price of an arbitrary factor k for which condition (6) holds is raised 
by setting Pk(t + 1) = Pk(t) + bk, while all other quantities and prices at stage 
t + 1 are set equal to those in t. The process continues by adjusting quantities in 
case regime (i) occurs again, and by adjusting prices if regime (ii) holds true and 
condition (6) holds for at least one k. The process terminates if a state s(t) is 
reached in which (ii) is true and 0 ~ zP(s(t)) - z~(s(t)) ~ ék for all k and hence 
s(t) is an approximate SC ft-equilibrium. 

Drèze shows that this process reaches such a state within a fini te number of 
steps if the demand functions of the households for final goods satisfy the condi­
tions of Non Inferiority and Marginal Propensity to Consume. Non Inferiority rules 
out inferior goods and Marginal Propensity to Consume states that the marginal 
propensity to spend is less than, and bounded away from, unity. That is, higher 
income leads to strictly more consumption of the numeraire commodity. 

4. THE PRICE AND QUANTITY ADJUSTMENT PROCESS 

The price and quantity adjustment process of this paper is based on the same 
empirical regularities as the Drèze process. It consists of a short-term, a mid-term 
and a long-term process. 

In the short-term process, prices are kept fixed and only quantities are adjusted 
until each factor market is in equilibrium under supply rationing or is in excess 
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demand without supply rationing. When the first case is true for all factor markets, 
the process has reached an SC P-equilibrium. When the second case holds for at 
least one factor market an ED p-state is reached. This part of the path is referred 
to as the short-term adjustment process and corresponds to states in regime (i) of 
the Drèze process. 

After reaching an ED p-state, mid-term adjustments take place in which the 
prices of factors in excess demand are adjusted upwards, and factor markets in 
equilibrium are kept in equilibrium by either quantity or price adjustments. This 
corresponds to regime (ii) of the previous section. Although mid-term and short­
term adjustments may alternate and the rationing regimes in the markets may 
differ between different periods of mid-term adjustments, we will show that the 
process eventually reaches an SC P-equilibrium, a concept that is empirically weIl 
supported. 

Proceeding from such an SCE found by the short-term and mid-term adjust­
ments, a long-term adjustment process takes place, which is shown to reach a 
Walrasian equilibrium along a path of SCEs. As argued by Drèze (1991), there 
are two main roads to attain such an equilibrium, namely downwards price fiexi­
bility and fiscal expansion. In fact, these two ways are two si des of the same coin. 
Increasing the numeraire commodity balances of the households by a fiscal expan­
sion policy triggers a relative downward adjustment of the prices. Therefore, in 
the long-term process we concentrate here on the instrument of downward price 
adjustments, which can be modelled by introducing a variable refiecting the price 
level of the factor prices. Indeed, in the long-term process, prices of factors with 
supply rationing are decreased, whereas rationing schemes and prices of factors 
without rationing are adjusted to keep all markets equilibrated. 

It is possible that the short-term process ends at an SC P-equilibrium. In general 
this will happen if the prices of all factors are high initially. Then there is no mid­
term process. It is also possible that the mid-term process ends at a WE. This 
situation will occur if the prices of all factors are low initially. In this case there 
is no long-term process. Generically, it cannot happen that the short-term process 
generates a WE. In fact, this can only be the case if p is a Walrasian equilibrium 
price system, which is, generically, not the case. The formal descriptions of the 
short-term, mid-term and long-term processes are given in Sections 6, 7 and 8. 

It is not realistic that all factor prices are downwards rigid, even in the short 
run. It is certainly possible to extend the price and quantity adjustment process 
of this paper in several directions. One option is to introduce a group of factors, 
whose markets are always cleared by price adjustments and never by quantity 
adjustments, see also Herings and Drèze (1998). For those factors, prices could 
adjust downwards, even in the short run. 
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5. THE REDUCED TOTAL EXCESS DEMAND FUNCTION 

To facilitate the exposition, we introduce the so-called reduced total excess de­
mand function in this section. Along the short-term process all prices are kept 
fixed , while quantities may adjust, i.e. for all k it holds that Pk = Pk and (f ::; wZ, 
h E I H . In the mid-term process for all k the following complementarity condi­
tions prevail: (f < wZ for at least one h implies Pk = Pk, and Pk > Pk implies 
(f = w~, hE I H . The long-term process is characterized by a similar complemen­
tarity condition involving also the price level of the factor prices. Owing to these 
complementarities between prices and quantities, it is possible to describe the price 
and quantity adjustment for a factor good by a single variabie. 

The set of variables defining the prices and rationing schemes is taken to be the 
set 

where Yo = {O} x lR~. To any Y = (YO , YI, .. . , YK)T E Y we relate a unique price 
system p(y) E lR~ and a unique rationing scheme (h(y) E lR~, hEI H, satisfying 
(h (y) ::; wh. To do so, let gZ : [0 , 1] -t [0,1] be continuous, nondecreasing functions 
satisfying gZ(O) = 0, g~(1/2) = (f /w~ and gf(l) = 1.3 For Y E Y, we define 

Pk(Y) = (1- YO)Pk + max{O, Yk - I}, k E h, 
(~(y) = g~(min{l, Yd )w;, k E h, hE IH . 

(7) 

(8) 

The variabie Yo reflects the long-term price level and is restricted to vary between 
zero and one. For k EIK , the variabie Yk determines the price and rationing on 
factor market k. Observe that Yk = 0 implies (f(y) = 0, 0 ::; Yk ::; 1 implies 
0::; (f(y) ::; wZ, and Yk ~ 1 implies (f(y) = wZ· Furthermore, Pk(Y) = (I-Yo)Pk if 
Yk ::; 1 and Pk(Y) = (1 - YO)Pk + Yk - 1 > (1- YO)Pk if Yk > 1. In particular, it holds 
that Pk(Y) ~ Pk if Yo = O. So, any Y E Yo induces a state s(y) = (p(y), ((y)) in 
lR~ x Z satisfying the short-term or mid-term complementarity conditions between 
prices and quantities mentioned above. In particular, the vector v E Yo with Vk = ~, 

k E IK , induces the initially given state s. The short-term and mid-term processes 
generate vectors Y that belong to Yo. 

In the following, let the set Y be given by 

Y = {Y E Y I q(s(y)) ~ DJ, 

so any Y E Yinduces a price vector p(y) such that for each final good the production 
costs are positive. We will show that the price and quantity adjustment process will 
never generate prices at which some output is a free commodity, so that we may 
restrict attention to the set Y. Clearly, this holds for the short-term and mid-term 

3If wi = 0, then the value of gi(1/2) can be chosen arbitrarily between zero and one. 
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processes because of Assumption A5 and the fact that p(y) 2 fi if y E Yo. For the 
long-term process, this follows from part (vi) of Lemma 5.1 below. 

We define the demand xh : Y --> ]RL+! of household h by xh(y) = xh(s(y)), the 
best element for t h on X h under his budget constraint (4) taking into account 
the prices q(s(y)) for the final goods and income rh(s(y)) = m h + p(y)T(h(y). In 
this way we obtain total demand for money and final goods, x(y), total demand 
for final goods, d(y), total input needed to produce this demand, zD(y), and total 
factor supply, zS(y). Total excess demand for factors at state s(y) equals 

z(y) = zD(y) - ZS(y), Y E Y. (9) 

The function z : Y --> ]RK is called the reduced total excess demand function. 
The price and quantity adjustment process can be described in terms of y and the 
reduced total excess demand function z only. Notice that, for y* E Y, s(y*) is a 
supply constrained equilibrium if and only if z(y*) = Q, and a Walrasian equilibrium 
when in addition Yö = 1 or Yk 2 1 for all k Eh. 

We give some properties of the reduced total excess demand function Z, among 
which its continuity, a version of Walras' law, and its boundary behaviour, i.e. the 
behaviour of z when Yk = 0 or Yk --> 00 for some kElK. 

LEMMA 5.1: Let the economy E satisfy the Assumptions Al-A5. Then 

(i) z is continuous on Y, 

(ii) p(y)TZ(Y) = m - xo(y), for all y E Y, 

(iii) for k E h, Yk = 0, implies Zk(y) 20, 

(iv) there exists a real number M > 0 such that for all y E Yo, max{Yl' ... ' YK} 2 
M implies Zk(y) < 0 for some k Eh, 

(v) there exists a real number M > 0 such that for all y E Y \ Yo, max{yl, ... , YK} 
2 M implies z(y) =1= Q, 

(vi) if (yn )nEN is a sequence of points in Y such that z(yn) 
yn --> y, then q(s(Y)) ~ Q. 

PROOF: 

Q, n E lN, and 

(i) For every y E Y, by definition, q(s(y)) ~ Q, and rh(s(y)) > 0, h E IH . 

From Theorem 4.2.5 in Herings (1996) and the continuity of the function r h in y, 
it follows that xh, h E IH, is a continuous function on Y. From this the continuity 
of z follows trivially. 
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(ii) Since preferences are strongly monotonie, for each household hEI H , the 
budget constraint will be satisfied with equality, 

x~(y) + L ql(s(y))x~(y) = rh(s(y)) = m h + p(y)T (h(y), Y E Y. 
IEh 

Summing up over all households and substituting q(s(y))T = p(y)T A(p(y)) , we get 

xo(y) + p(y)T A(p(y))d(y) = m + p(y)T ZS(y). 

Since A(p(y) )d(y) = zD (y) this reduces to 

p(y)T Z(Y) = m - xo(y) . 

(iii) If Yk = 0, then (t(y) = 0, h E IH, and hence Zk(y) = zP(y) ~ o. 
(iv) Suppose the statement is false. Then, for every ME IN, there exists yM E Yo 

such that max{yf'1", .. . , y~q = Mand z(yM) ~ Q.. Then it follows from (ii) that 
xo(yM) is bounded by mand that Zk(yM) ~ ;;; , k E h, so 

Zp(yM) ~ ~(yM) + r:: ~ Wk + r:: , k E h. 
Pk Pk 

Hence, the demand for factors is bounded, and therefore the product ion of final 
goods is bounded, and so the demand d(yM) is bounded. Define pM = p(yM) and 

pM = IIp1M~ oo . Consider a convergent subsequence of (pM, ((yM))ME"f'l with limit , 

say, (p, C). Let k' E h be such that Pk' = 1. Let h' E IH be a household with 

wZ: > O. Since yrJ ~ 00 it holds that C~: = wZ:. The budget constraint of household 
h' is given by 

X~' + L cl(pM)x~' = m h' + pMT (h' (yM) . 
IEh 

Dividing this constraint by IlpMll oo results in 

1 h' '" I -M h' 1 h' -MT h' M 
IlpMll oo Xo + I~ C (p )xl = IlpMll oo m + p ((y). 

It follows that the sequence of normalized incomes of household h' 

( lh' -MT h' M 
IlpMll oo m + p ((y ))MEN 

is convergent with limit pTCh
' ~ wZ: > O. The sequence of normalized numeraire 

and final goods prices 
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converges to (0, c(p)) > Q, where the inequality follows since the price cl(p) of 
a final good I using factor k' as an input exceeds Pk,a~,(p) = a~,(p) > 0, because 
Pk' = 1. Since the price of the numeraire commodity in (0, c(p)) is zero, and income 
of household h' is positive, Ildh' (yM) 11 00 -+ 00, a contradiction to the boundedness 
of d(yM). 

(v) Suppose the statement is false. Then, for every M E 1N, there exists yM E 
Y \ Yo such that max{y~, ... , y~q = Mand z(y) = Q. Then, 

z?(yM) = ~(yM) :s: Wk, k E Ix. 

The demand for factors is bounded, and therefore the production of final goods is 
bounded, and so the demand d(yM) is bounded. Notice that xo(yM) is bounded 
by m. The derivation of a contradiction is now identical to case (iv), which proves 
the statement. 

(vi) Suppose the statement is false . Then, there is a sequence (yn )nEN in Y such 
that z(yn) = Q, n E 1N, yn -+ y, and there is k' E Ix such that qk'(S(Y)) = O. 
The sequence of incomes (mh + p(yn) T (h(yn) )nEN of a household h is convergent 
with limit m h + p(y) T (h(y) > O. The sequence of numeraire and final goods prices 
(1, q(S(yn)))nEN is convergent with limit (1, q(s(y))). Since qds(y)) = 0 and the in­
come of household h is positive, Il xh(s(yn))l loo -+ 00, a contradiction to z(yn) = Q, 
nE 1N. Q.E.D. 

The statements (iv) and (v) of Lemma 5.1 will be used to show that the ad­
justment process does not leave the set {y E Y I 0 :s: Yk :s: M, k E Ix} for an 
arbitrarily chosen number M satisfying both statements. Furthermore, statement 
(vi) claims that for any convergent sequence of points in Y such that all factor 
markets are in equilibrium, it holds that also the limit point is in Y, i.e. if we have 
a convergent sequence of points inducing positive product ion costs for the final 
goods and satisfying that all factor markets are in equilibrium, then the produc­
tion costs induced by the limit point are also positive. This property is useful in 
showing that the reduced excess demand is well-defined at any limit point of the 
long-term process. Before giving any further proofs, we give the formal definitions 
of the short-term, mid-term and long-term process in the Sections 6, 7, and 8. For 
ease of notation, let ys be the subset of Y given by 

ys = {y E Yo I 0 :s y k :s 1, k E Ix}. 

The up per boundary of ys is given by ys = {y E ys I Yk = 1 for at least one k E 
IK}. Furthermore, let ym and yl be subsets of Y given by 

ym = {y E Yo I 3k E Ix, Yk 2 I} 

yl = {y E Y I min{Yl' .. . , yd :s: I}. 
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6. THE SHORT-TERM PROCESS 

In the short-term process only quantities are adjusted, whereas prices stay put . 
These adjustments correspond to adjustments of the vector yin the subset ys of Y 
defined in the previous section. The initial state sis represented by v E Y", given 
by Vk = ~, k EIK. Recall that Vo = O. The quantity adjustments are governed 
by the excess demands on the factor markets. For any point Y reached by the 
short-term process it holds that Y E ys and there exists ï E [0,1 J such that for 
every k EIK, 

if Zk(Y) < 0, 
if z,.(y) = 0, 
ifzk(y) >0. 

(10) 

The dynamics corresponding to (10) are as follows. The initial state v satisfies the 
properties given above for ï = 1. It is the starting point of the path generated 
by the adjustment process. The adjustment process starts by decreasing ï, i.e. 
decreasing Yk if there is excess supply in the market for commodity k, and increasing 
Yk if there is excess demand in the market for commodity k. The process continues 
like this, until one of the markets gets equilibrated, say the market for factor kl. 
Then Ykl adjusts such that the market for factor P stays in equilibrium, whereas Yk 

for any factor k in excess supply is kept minimal (equal to b) and for any factor k 
in excess demand is kept maximal (equal to 1- b). This induces supply rationing 
in those markets which is, when compared to the initial state, relatively maximal in 
case of excess supply and relatively minimal in case of excess demand. If there was 
excess supply in the market for commodity kl before it got equilibrated, then Ykl 
is increased away from the minimum value, ~ï, and if there was excess demand in 
the market for commodity kl before equilibration, then Ykl is decreased away from 
the maximum value, 1 - ~ï. The process continues until a market for a commodity 
k2 i- k l gets equilibrated, af ter which also Yk2 adjusts such that the market for 
factor k2 stays in equilibrium. It may happen that in order to keep the market 
for factor P in equilibrium, Ykl becomes equal to the minimum value ~ï or to the 
maximum value 1 - ~ï. In the first case, Ykl is kept equal to ~ï and excess supply 
results in this market . In the latter case Ykl is kept equal to 1 - ~ï and excess 
demand results in the market for commodity P. 

In general, the short-term process proceeds by allowing the variabie Yk to vary 
between the bounds band 1 - b when the market for factor k is in equilibrium 
and keeping Yk on this lower (upper) bound when that market is in excess supply 
( demand) . The short-term process terminates as soon as a point y* E ys is reached 
in which all markets are in equilibrium or ï has become equal to zero. In the former 
case the point y* induces an SC P-equilibrium. In the latter case it follows from 
(10) that Yk = 1 for any commodity k in positive excess demand, 0 ~ Yk ~ 1 
for any commodity k in equilibrium, and Yk = 0 for any commodity k in positive 
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excess supply. However, by property (iii) of Lemma 5.1 we have that Zk(Y*) ~ 0 
when Yk = o. So, if, = 0 it holds for any k that either Zk(Y*) > 0 and Yk = 1, so 
(f(y*) = w~, h E I H , or Zk(Y*) = 0 and 0 :::; Yk :::; 1. Therefore, if Zk(Y*) = 0 for 
all k, then y* induces an SC P-equilibrium at prices p. If not, we have that Yk = 1 
for at least one index k and so y* E ys and y* induces an ED p-state. Therefore, 
the short-term process ends either at an SC P-equilibrium with price vector p or 
at an ED p-state. 

The properties of the short-term adjustment process are closely related to the 
ideas underlying the Walrasian tatonnement process, but now with adjustments of 
quantities instead of prices. In fact, at a point Y reached by the process we have 
that Yk' = minkEIK Yk if Zk'(Y) < 0, so that Yk' has been maximally decreased from 
the initial value and therefore supply rationing is maximally thightened from the 
initial supply rationing if there is excess supply of commodity k'. On the ot her 
hand, Yk' = maXkEIK Yk if Zk' (y) > 0, so that Yk' has been maximally increased 
from the initial value and therefore supply rationing has been maximally weakened 
from the initial supply rationing if there is excess demand for commodity k'. 

When the short-term process ends at a point y* inducing an SC P-equilibrium, 
the process continues with long-term adjustments to find a Walrasian equilibrium. 
Observe that in this case it typically holds that maxkEIK Yk < 1. It is possible to give 
robust examples where the short-term process terminates at an SC P-equilibrium; 
it suffices to take p sufficiently high. In case the short-term process ends at a point 
y* inducing an ED p-state it holds that maxkEIK Yk = 1, i.e. y* E VS. In this 
case the mid-term process is needed to take the economy to an SC P-equilibrium. 
Generically, the short-term process will not generate a WE. 

To follow the short-term path numerically, we formulate an algorithm that gener­
ates points satisfying (10) for an approximation of the reduced total excess demand 
function in Section 11. Since the equations in (10) are not solvable explicitly in 
general, it is clear that we have to resort to an approximation in one way or another 
anyhow. The approximation is constructed in such a way that its inaccuracy can 
be made arbitrarily small. It will be shown in Section 11 that the points Y E ys 
satisfying (10) for the approximation form a piecewise linear path. For the mo­
ment, just note as a heuristic that the dimension of the space ys x [0,1] of the 
parameters (y,,) is equal to K + 1, whereas there are K independent equations in 
(10) that have to hold with equality, leaving one degree of freedom. For a generic 
differentiable economy, one expects the solution set of (10) to be a 1-dimensional 
piecewise differentiable manifold with boundary. For such proofs in comparable 
settings, we refer to Herings (1996, 1997). 

7. THE MlD-TERM PROCESS 

The properties of the mid-term adjustment process can be formulated as follows. 
A point Y reached by the mid-term process belongs to the set ym and there exists 
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a ~ 1 such that for every kElK, 

Yk = a, if Zk(Y) > 0, 
o ~ Yk ~ a, if Zk(Y) = o. 
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(11) 

Notice that a point y* E Y' inducing an ED p-state satisfies these properties for 
a=1. 

The mid-term process initially proceeds from an ED jJ-state induced by a point 
y* E Y' found by the short-term process by increasing a from one. Then Yk is 
increased from one and therefore Pk from Pk if there is excess demand in the market 
for factor k. The process no longer operates by making quantity adjustments only. 
The price of a factor k in excess demand is kept maximal by keeping Yk equal to 
a and the variable Yk corresponding to the market of a factor k in equilibrium is 
adjusted to keep this market in equilibrium. As soon as the market of a factor k 
with Yk = a becomes in equilibrium, Yk gets decreased away from a. On the other 
hand, if for the market of a factor k in equilibrium, Yk becomes equal to a, then 
Yk is not increased above a but is kept equal to a and excess demand may occur 
on this market. Again these properties are closely related to the ideas behind the 
Walrasian tatonnement process. Furthermore, the adjustment in the market for a 
factor k switches from quantity adjustment to price adjustment if the value of the 
variable Yk switches from below 1 to above 1 and reversely if the value goes from 
above 1 to below 1. In the lat ter case the price Pk has fallen back on its initial 
value Pk. This expresses the hypotheses that quantities adjust faster than prices 
and that factor prices are downwards rigid. 
~ Any state s(y) induced by a point Y reached by the mid-term process is an ED 
P-state. So, starting from the ED p-state induced by a point y* found by the 
short-term process, the mid-term process follows a path of ED P-states. Because 
of property (iv) of Lemma 5.1, there exists some M > 0 such that Zk(Y) < 0 for 
some k E Ix if Ilylloo ~ M. Since z(y) ~ Q. for any point Y on the mid-term path, 
this implies that Ilylloo < M for any such y. From this it follows that the mid-term 
path either comes back to a point y" in Y' at which a = 1, and hence YZ* = 1 for 
all markets k in excess demand and YZ* ~ 1 for all markets in equilibrium, or ends 
at a point y satisfying z(y) = Q.. In the lat ter case all markets are in equilibrium 
and it holds that p(y) ~ pand Pk(JJ) > Pk implies (~(y) = w~ for all h. So, supply 
constraints are only active in markets that face a binding downwards price rigidity 
and hence an SC P-equilibrium has been found. In the former case a second ED p­
state has been found and the process returns inside Y' and continues by increasing 
Î from zero with short-term adjustments until again a point in ys is reached which 
induces an SC P-equilibrium with all prices equal to the initially given prices or 
a new point in Y' is found inducing an ED jJ-state. In the lat ter case the process 
continues with mid-term adjustments in ym, and so on. The combination of short­
term and mid-term adjustment processes eventually leads to an SC P-equilibrium. 
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An SC P-equilibrium y is a WE if min{Yt, . . . , YK} ~ 1. So, it may occur that 
the mid-term process ends at a WE, for instance if all factor prices are low enough 
initially. 

Again, as a heuristic, the dimension of the space ym X [1,(0) of the parameters 
(y, Cl!) is K + 1, whereas all J( equations in (11) that have to hold with equality 
are independent, leaving one degree of freedom. Therefore, one should expect the 
set of solutions to (11) to be a 1-dimensional piecewise differentiable manifold with 
boundary for a generic differentiable economy. 

8. THE LONG-TERM PROCESS 

Both the Drèze process and the sequence of short-term and mid-term processes 
described in the previous sections converge to an SC P-equilibrium, which in some 
cases might actually be a WE. To reach a WE in general, factor prices should also 
be adjusted downwards in the long run. The long-term process generates a path of 
points y E Y n yl satisfying 

i(y) = Q. (12) 

Along the path generated by the long-term process, prices and quantities are ad­
justed such that all factor markets are equilibrated. According to equations (7) 
and (8), any y satisfying (12) induces an SCE where, for k E h, 

Pk(Y) = (1 - YO)Pk and (r(y) = g~(Yk)W~, hE IH, 
Pk(Y) > (1 - YO)Pk and (r(y) = w~, hE IH, 

if Yk ~ 1, 
if Yk > 1, 

(13) 

i.e. the price of a factor k subject to supply rationing is decreased to (1- YO)Pk and 
the price of a factor without rationing is greater than or equal to this lower bound. 
These properties are again closely related to the ideas underlying the Walrasian 
tatonnement process. Notice that at any point Y on the path of the long term 
process at least one factor price does not exceed the initial price since Y E yl and 
therefore min{Yll . .. ,YK} ~ 1. 

Starting from a point Y generated by either the short-term or mid-term process 
and inducing an SC P-equilibrium, the parameter Yo is initially increased, implying 
that the prices of factors subject to supply rationing are all decreased proportion­
ally. Simultaneously, the parameters Yk, kElK, adjust to keep all markets in 
equilibrium. Rationing schemes adjust in factor markets for which Yk < 1, whereas 
prices adjust in factor markets for which Yk > 1. When Yk switches from below 1 to 
above 1, the adjustment regime in that market switches from quantity adjustment 
to price adjustment, and reversely. 

Property (vi) of Lemma 5.1 guarantees that the long-term process does not 
leave Y. Because of property (v), there exists some M > 0 such that i(y) f= Q 
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if Ilyll oo 2:: M, and hen ce the path of the long term process remains in Y. The 
long-term process terminates at a point Y E Y in the boundary of Y satisfying 
Yo = 1, or min{YI, ... ,YK} = 1, or Yo = o. Ifyo = 1, then a WE obtains. lndeed, 
(1- YO)Pk = 0 for all k, and therefore, for any k E h, either Pk(Y) > (1- YO)pk = 0 
and (f(fj) = w~, h E IH, or Pk(Y) = (1 - YO)Pk = O. In the former case there is no 
rationing in factor market k. In the latter case rationing is not binding, because 
the factor price is equal to zero. If min{YI, . . . ,YK} = 1, also a WE obtains, 
since then (h(fj) = wh, h E IH. In case Yo = 0 it holds that Y belongs to Yo, so 
an SC P-equilibrium is induced again. The process switches either to mid-term 
adjustments generating points in ym inducing a path of ED P-states, or to short­
term adjustments generating points in ys inducing a path of ]}-states. Again, as 
a heuristic, the dimension of the parameter space Y n yl is 1< + 1, whereas all 1< 
equations in (12) are independent, leaving one degree of freedom. For a generic 
differentiable economy, one expects the set of solutions to (12) to be a l-dimensional 
piecewise differentiable manifold with boundary. 

For a generic economy, the adjustment process can be summarized as follows. 
The combination of short-term, mid-term and lon~-term processes eventually con­
verges to a WE. There is an odd number of SC P-equilibria and an odd number 
of WEs. Recall that an SC P-equilibrium might also be a WE, in which case the 
equilibrium counts for both. Consider the first SC P-equilibrium reached by ei­
ther the short-term or the mid-term process. It is either also a WE or a starting 
point of a path described by the long-term process (12) having either another SC 
P-equilibrium or a WE as its other end point. In the former case, the second SC 
P-equilibrium is a starting point of a path from the short-term and the mid-term 
process, leading to a new SC P-equilibrium. This third SC P-equilibrium is then 
again either also a WE or the starting point of a second path described by the long­
term process (12) having yet another SC P-equilibrium or a WE as another end 
point, and so on. Because all paths are bounded, eventually an SC P-equilibrium 
is found that either is a WE or leads to a WE. The path starting from v leads to 
one WE and contains an odd number of SC P-equilibria. Any ot her connected set 
of points in Y satisfying (10), (11) or (12) is either a loop containing no WE and 
an even number of SC P-equilibria or a path having two different WE as its end 
points and containing no other WE and an even nu mb er of SC ft-equilibria. 

9. AN ILLUSTRATIVE EXAMPLE 

We consider an economy with a numeraire commodity, one fin al good and 
two production factors. The technology to produce the final good is given by 
Xl = 2v'ZIZ2' with Xl the output and Zk 2:: 0 the input of production factor 
k, k = 1,2. Cost minimizing behaviour of the product ion sector gives a(p) = 

OVPdPI' ~Vpdp2)T as the vector of inputs needed to produce one unit of the 
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output. The cost function is given by c(p) = y'P1P2. It follows that q(s) = y'P1P2. 
We assume that there is one representative agent, with utility function defined by 
u(xo, Xl) = XOX1. The initial endowment is given by w = (1,2)T and m = 4. This 
specification of the economy is closely related to the model of Malinvaud (1977), 
in which there is only one factor. The Walrasian equilibrium prices are given by 
p* = (2,I)T and q* = V2. In the calculations that follow, it is useful to keep in 
mind that 

We now take s = (iJ,() with iJ = (lt,lt)T and (= (t,lr as the initial 
state of the economy. The functions 9k, k = 1,2, are given by 9k(ek) = ek, ek E 
[0, 1], where ek indicates the extend to which factor k is employed. Indeed, both 
factors are employed at a rate of 50 % at the starting point . Straightforward 
calculations show that the income of the representative household at state s is 
given by r(s) = 6~ and that q(s) = lt, giving a demand for the final good equal 
to d(s) = 21

1
2. Factor demand is zD(s) = (1 2

1
4

, 121
4)T, which exceeds the supply of 

factors zS(s) = ( = (t, 1) T. Since factors are not used at full capacity, supply of 
factors will instantaneously adjust to meet the demand. 

In the system (10), the parameter I decreases from 1 to !~, Yk increases from 
t to fik = 185' k = 1,2, inducing p(y) = iJ and ((y) = (185' !~)T. At y, the market 
for factor 2 is equilibrated, while the market for factor 1 is still in excess demand. 
Quantities in the market for factor 2 are adjusted now to keep that market in 
equilibrium. On this part of the path it holds that 

z~(p, () = (2 and P = iJ. 

Supply of factor 1 continues to increase. So, in (10), I decreases from ~~ and 
simultaneously Y2 decreases away from 1 - ti in such a way that the market for 
factor 2 remains in equilibrium. The increase in supply of factor 1 leads to more 
income, more demand for the final good, and therefore more demand for both 
factors. So, this part of the adjustment process corresponds to the Keynesian 
multiplier effect. Supply of factor 2 remains increasing to equilibrate that market. 
The process generates the path of points y given by Yo = 0, Y2 = ~ + kY1 moving 
from y = (0, 185' 185)T to Y = (0,1, ~!)T E ys with p(y) = iJ and ((y) = (1, l;)T. 
Equivalently, the process generates states (p, () satisfying p = iJ, (2 = ~ + ~(1, 
1
8
5 ~ (1 ~ 1. At the ED j}-state s(y), factor 1 is used at its maximum capacity, 

but there is still excess demand for it. The mid-term process comes into play to 
increase its price. 

The adjustment process turns from short-term to mid-term adjustments by in­
creasing a from one in system (11), keeping Y1 = a, and allowing Y2 to vary between 
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o and a to keep market 2 in equilibrium. As long as Y2 ~ 1, it holds that 

z~(p, () = (2, (1 = 1 and P2 = P2. 

The increase in PI leads to more income for the agent, leading again to higher 
demand for output, and consequently higher factor demands. Supply rationing in 
the market for factor 2 will diminish further. Straightforward calculations show 
that the path is given by Yo = 0, Y2 = ~ + ~YI until at a = 1 ~ the point y* = 
(0, 1~, ~f is reached, inducing an SC P-equilibriumstate with p(y*) = (2, l~)T and 
((y*) = (1, 1 ~) T. Equivalently, the process generates states (p, () satisfying (1 = 1, 
P2 = P2, (2 = ~ + ~PI, 1 ~ ~ PI ~ 2, until at PI = 2 it holds that ZI(P, () = O. At this 
SC P-equilibrium, the price of the first factor is above its initial price and there is 
no supply rationing in the market for this factor. The price for the second factor is 
still equal to its initial price, and this factor is underutilized. lts employment rate 
did increase, however, from 50 % initially to 67 % now. 

Finally, consider the long-term process. To clear all markets without rationing, 
the price of the second factor will have to decrease. The price of the first factor 
adjusts to keep that market in equilibrium. On this part of the path it holds that 

zD(p, () = ( and (1 = 1. 

Decreasing P2 leads to more demand for factor 2. Due to the Cobb-Douglas specifi­
cation of technology, this is an income-neutral adjustment for the agent. However, 
decreased input prices lead to a decrease of the final good price, and an increased 
final good demand. Straightforward calculations show that the path is given by 
YI = q + 1 ho, Y2 = 3(I:'Yo) ' 0 ~ Yo ~ ~, until the point y** = (~, 2, 1 f is reached, 
inducing a WE with p(y**) = (2,1) Tand ((y**) = (1,2) T. Equivalently, the process 
generates states (p, () satisfying PI = 2, (1 = 1, (2 = ~, ~ 2: P2 2: 1. 

It is interesting to consider the development of the national product during 
the course of the adjustment process. There are two ways to define the national 
product. One is to consider the demand for the fin al product and the alternative 
is to consider production actually possible with the factors supplied. During the 
short-term and mid-term processes these definitions are different, because of the 
mismatch in factor supply and factor demand. The most appropriate definition 
would be to consider the minimum of the two, since this would correspond to trade 
in the final good actually realized if trade had to take place during either the 
short-term or the mid-term process. Due to the specifics of the example, this is 
equivalent to taking the second definition. In this example, output can be verified 
to increase monotonically during the entire adjustment process. It starts at 1.41 at 
the initial state. When the second factor market equilibrates at s(jj), output has 
risen to 1.51, and it attains a value of 2.21 at the ED p-state s(y). The mid-term 
adjustment process leads to the SC P-equilibrium state s(y*) for which the output 
is 2.31. Finally, the Walrasian output level is 2.83. 
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10. CONVERGENCE RESULTS 

In the example of the previous section, it is possible to solve for the path of 
the adjustment process analytically, due to the Cobb-Douglas specification of pref­
eren ces and technology. In this section we give an algorithm that generates an 
approximation of the path for any economy satisfying Al-A5. The algorithm will 
solve (10), (11) and (12) for a piecewise linear approximation of the reduced total 
excess demand function z. The technique of simplicial approximation for the study 
of adjustment processes under price rigidities has already been introduced by van 
der Laan (1982) and has been applied to the adjustment from constrained equilib­
rium to Walrasian equilibrium in Herings (1996), Herings, van der Laan, Talman 
and Venniker (1997) and Herings, van der Laan and Venniker (1998). Alterna­
tively, we could invoke differentiability assumptions, and prove that for a generic 
economy (10), (11) and (12) yield a 1-dimensional solution path that connects the 
initial state s to a uniquely determined WE, see Herings (1996, 1997) for similar 
proofs in this setting. We have opted for the piecewise linear approximation, since 
the proofs are less tedious and provide us with an implementable algorithm. 

Let Y denote the subset of points in Y that satisfy (10), (11) or (12). Not all the 
points in the set Y will actually be reached by the adjustment process. This will 
only hold for the points that are connected to the starting point v = (O,~, ... , ~)T 
inducing the initially given state s. The component of v in Y, i.e. the maximally 
connected subset of Y containing v, is denoted by yv. 

DEFINITION 10.1: The price and quantity adjustment process for the economy 
[ is given by yv. 

The price and quantity adjustment process is defined by considering explicitly 
the points generated by it. Since we have given a topological definition of the pro­
cess, we also give a topological definition of con vergen ce. 

DEFINITION 10.2 : The price and quantity adjustment process for the economy 
[ is convergent if yv is an arc having the starting point v and a WE as its boundary 
points. 

An arc is a set homeomorphic to the unit interval [0, 1]. Any arc described as the 
zero points of a system of continuously differentiable functions satisfying certain 
regularity properties is the solution of a system of differential equations, see for 
instance Garcia and Zangwill (1981). This is the approach adopted by Smale (1976) 
and Kamiya (1990) in their price adjustment processes for pure exchange economies 
without price rigidities. Such a system of differential equations will depend on the 
excess demand function and its first derivatives, exactly the amount of information 
indicated by Saari and Simon (1978). However, in our process there are three 
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reasons for nondifferentiabilities. The first one is due to the fact that along the 
path of the process a supply constraint for a household may change from binding to 
nonbinding and vice versa. The second one is obtained when for a factor a change 
occurs in the short-term or mid-term complementarity conditions (10) and (11). 
The third one occurs when a change is made from quantity adjustment to price 
adjustment or vice versa, i.e. for some k E IK the value of the variabie Yk crosses 1 
or the value of the variabie Yo changes form zero to positive or the reverse. These 
problems can be solved by taking a sequence of systems of differential equations. 
We avoid these problems by using the technique of simplicial approximation. In 
fact, this technique only needs continuity of the underlying function. 

Although each point y belonging to yv is in Y, the simplicial technique to trace 
this path approximately may generate points not in Y. However, if y E Y \ Y, then 
q/( s(y)) = 0 for at least one 1 E h, so Z-(y) is not defined. To solve this problem, 
we compactify the consumption sets. The compactification should be such that it 
does not affect the adjustment process. To take care not to influence the short­
term and mid-term process, observe that property (ii) of Lemma 5.1 guarantees 
that total factor demand, and therefore total demand for final goods is bounded for 
all y E Yo by, say, MI > O. Next, with respect to the long-term process, we define 
Wmax = max{ WI, ... , WK}. Using the same arguments as Debreu (1959), it can be 
derived that maximal production possible by using at most W max of each factor, 
is bounded by some M 2 > O. If total demand for some final good is greater than 
or equal to M 2

, then the required inputs of at least one factor must exceed W max , 

contradicting factor market equilibrium. Sa, any bound M greater than or equal 
to max{MI , M 2

} can be taken to compactify the consumption sets. The resulting 
reduced total excess demand function, for simplicity denoted again by Z- can be 
shown to be continuous on Y by standard arguments and the set Y and therefore 
the price and quantity adjustment process is unaffected by this compactification. 

For t E 1N, 0 ~ t ~ J{ + 1, a t-dimensional simplex or t-simplex is defined as 
the convex huIl of t + 1 affinely independent vectors yl, ... ,yt+1 in RK+1, called 
the vertices of the simplex, and is denoted by U(yl, . . . ,yt+1) or shortly by u. A 
k-face of a t-simplex u is the convex huIl of k + 1 vertices of u, 0 ~ k ~ t. A 
(t - l)-face of a t-simplex u is called a facet of u. A triangulation E of the set 
[0,1] x R~ is a locally finite collection of (1< + l)-simplices such that [0,1] x R~ 
is the union of all simplices in E and the intersection of any two simplices in E 
is either empty or a common face of bath. The mesh size of a triangulation E is 
defined by mesh(E) = sup{llx - ylloo I x, y E u, u E E}. 

Given a proper triangulation4 E of [0,1] x R~, a function Z : Y ~ R K is called 
the piecewise linear approximation of the reduced total excess demand function Z­
on Y with respect to E if for each vertex yi E Y of any simplex U(yl, . .. ,yK+2) E E, 

4Properness is a technical condition on the tr!angulation, which wil! be explained in the next 
section. 
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Z(yj) = z(yj) and Z is affine on each face in Y of a simplex in E. In the next 

section we describe an algorithm that generates a one-one, piecewise linear, con­
tinuous function 71' : 10, IJ --t Y such that 71'(t), t E [0,1], satisfies (10), (11) or 
(12) with respect to Z . Moreover, it holds that 71'(0) = v, and that 71'(1) = y* E Y 
yields a Walrasian equilibrium with respect to Z, in the sense that Z(y*) = ° and 
either y~ = 1 or min{y;, ... 'YK} 2: 1. We refer to 71' as the approximate price and 
quantity adjustment process. 

THEOREM 10.3: Let the economy [ satisfy Assumptions At-AS. Let E be a 
proper triangulation of [0, IJ X 1R~. Then, for every y E 71'([0,1]) n y· there exists 
a real number 1 E [0,1 J such that for every k E h 

1 ~ 

Yk = 21' if Zk(y) < 0, 
1 1· ~ 
21 ::; Yk ::; 1 - '21' if Zk(y) = 0, 

1 ~ 

Yk=1- 2/, ifZk(Y) >0, 

for every y E 71'([0,1]) n ym there exists a real number a 2: 1 such that for every 
kE h 

Yk = a, ° ::; Yk ::; a, 

if Zk(y) > 0, 
if Zk(y) = 0, 

and for every y E 71'([0,1]) n (yl \ Yo) it holds that Z(y) = Q. 

PROOF: Analogous to the proof of Theorem 1 in Herings, van der Laan and 
Venniker (1998). Q.E.D. 

The next theorem shows the accuracy of the approximation along the piecewise 
linear path. 

THEOREM 10.4: Let the economy [ satisfy Assumptions At-AS. Then, for every 
é > ° there exists 8 > ° such that for every proper triangulation E of [0, 1 J x 1R~ 
satisfying mesh(E) < 8, it holds that 

t. for every y E 71'((0,1]) n Y·, for every k E h, 

Zk(y) < é , 

-é < Zk(y) < é, 

Zk(y) > -é, 

f 1 
Z Yk = 2/ , 
f 1 1 1 
Z 21 < Yk < - 21' 
ifYk = 1- h, 

2. for every y E 71'([0,1]) n ym, for every k E h, 

Zk(y) > --é, if Yk = a, 
-é < Zk(y) < é, ifO::; Yk < a, 
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3. for every y E 7r([0, 1]) n (yl \ Yo), Ilz(y)lloo < c. 

PROOF : Analogous to the proof of Theorem 2 in Herings, van der Laan and 
Venniker (1998). Q.E.D. 

Although the assumptions made on the model are not sufficient to guarantee 
that yv is convergent, the piecewise linear path traced by the algorithm always 
ends with a point y* yielding a Walrasian equilibrium with respect to Z. The last 
part of Theorem 10.4 shows that y* is an approximate Walrasian equilibrium, i.e. 
at y* the excess demand z(y*) can assured to be arbitrarily close to zero by taking 
the mesh size of the triangulation small enough. Using this it can be proved that 
yv contains a Walrasian equilibrium. The next ~heorem says that yv always con­
nects the starting point with a WE, even when yv is not convergent. 

THEOREM 10.5: Let the economy [ satisfy Assumptions Al-A5. Then yv con­
tains a WE. 

PROOF: Analogous to the proof of Theorem 5.4.1 in Herings (1996). Q.E.D. 

The final result shows that the whole path of the approximate adjustment pro­
cess gets arbitrarily close to yv. The reverse is not necessarily true, but holds if 
yv is convergent. For a nonempty compact set S of R n we define the distance 
function ds: R n 

-t R by ds(y) = minYEs Ily - y112' y E R n
. Notice that both the 

sets yv and 7r([0, 1]) are compact. 

THEOREM 10.6: Let the economy [ satisfy Assumptions Al-A5. Then, for ev­
ery c > ° there exists 8 > ° such that for every proper triangu/ation ~ of [0,1] x R~ 
satisfying mesh(~) < 8, it holds that 
(ij for every tE [0,1], dY.(7r(t)) < c, 
(iiJ for every y E yv, d7r ([O,l)) (y) < c if the price and quantity adjustment process is 
convergent. 

PROOF: Analogous to the proof of Theorem 3 in Herings, van der Laanand 
Venniker (1998) . Q.E.D. 

11. TECHNICAL DETAILS OF THE ALGORITHM 

Let R = {r E R K I rk E {-I,O,+I},k Eh} be the set of K-dimensional sign 
vectors. For any r E R, define the sets J-(r), JO(r), and J+(r) by J-(r) = {k E 

h I rk = -I}, JO(r) = {k E h I rk = Ol, J+(r) = {k E h I rk = +1}. Let i-(r), 
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iO(r), and i+(r) denote the number of elements in these respective sets. For any 
r =1= Q., define the (iO(r) + 1)-dimensional set YS(r) by 

1 
YS(r) = {y E ys I 3Î E [0,1] such that Vk E r(r) : Yk = 2"Î' 

1 1 
Vk E ]O(r) : 2"Î ~ Yk ~ 1 - 2"Î' 

1 
Vk E ]+(r) : Yk = 1 - 2"Î }, 

for any r =1= Q. with i+(r) ~ 1, define the (iO(r) + 1)-dimensional set ym(r) by 

ym(r) = {y E y m I 3a ~ 1 such that Vk E ]+(r) : Yk = a, 

V k E ]0 (r) : Y kSa, 

Vk E ]-(r) : Yk = ° }, 
and for any r =1= Q. with i+(r) = 0, define the (i°(r) + 1)-dimensional set yl(r) by 

yl(r) = {Y E yl I Vk E ]-(r) : Yk = o}. 

For r =1= Q., the (i°(r) + 1)-dimensional set Y(r) is defined by Y(r) = yS(r)uym(r)u 
yl(r), where any of the sets YK(r), K E {s, m, I}, is assumed to be empty if it is 

K not defined above. For ease of notation, we denote Y(Q.) = [0,1] X 1R+. 
Let ~ be a triangulation of Y (Q.) such that for any r =1= Q. and for any K E {s, m, 

I} the restriction of ~ to any nonempty set yK (r) induces a triangulation ~K( r) in 
W(r) + 1)-simplices of YK(r). Such a triangulation of Y(Q.) is said to be a proper 
triangulation and has the property that for any r =1= Q., the collection of simplices 
~(r) = ~S(r) U ~m(r) U ~I(r) yields a triangulation of Y(r). Again for ease of 
notation, we denote ~(Q.) = ~, so that for any r E R, ~(r) triangulates Y(r). For 
the remainder of this section some proper triangulation of Y(Q) is assumed to be 
given, for example we can take the J('-triangulation as proposed by Todd (1978). 

Let r E R be a sign vector with iO(r) = t, for some t E ]J.c, and let (f(Yo, ... ,yt+l) 
be a (t + 1)-dimensional simplex in ~(r). Consider solutions 

(.Ào, ... , .À t+1, (/l-k)kEI-(r)uI+(r») E 1RK+2 

of the following system of !{ + 1 equations: 

j~, Àj ( z(~j) ) - kEI_(~I,(/k ( rk~(k) ) = ( ~ ) , (14) 

where e(k) denotes the k-th !{-dimensional unit vector. lf.À j ~ 0, j E ]?+1' and 
/l-k ~ 0, k E ]-(r) U J+(r), then (.Ào, . .. ,.Àt+1,(/l-khEl-(r)UI+(r») is called an ad­
missible solution to (14). An admissible solution of this (1< + 1)-system is called 
nondegenerate if at most one of the J( + 2 variables is equal to zero. The usual 
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assumptioll made in the literature that there exist no degenerate admissible solu­
tions is not very convincing for the problem under consideration. Following Eaves 
(1971) , Todd (1976), Wright (1981), Herings, Talman and Yang (1996) and others, 
nondegeneracy can be handled by applying lexicographic pivoting. A row vector 
of lRm is said to be lexicographically positive if it is nonzero and its first nonzero 
component is positive. An m x m-matrix A is said to be lexicopositive if each row 
is lexicographically positive. For r E Rand at-simplex T(yl, ... , yt+l) E ~(r) with 
t = iO(r), let the (I( + 1) x (I( + 1 )-matrix Ar,'T be defilled by 

A", ~ ( Z(:') Z(y: .. ) -r,,:(k') -r,K_,:(kK -') ) , 

where {P, ... , kK - t } = J-(r) U J+(r). Now we have the following definition. 

DEFINITION 11.1: Let T be a t-simplex in Y and let r be a sign vector with 
iO(r) = t . Then T is r-complete if T is a facet of a simplex in ~(r) and A;,; exists 
and is lexicopositive. 

Given an r-complete t-simplex T(yI, ... ,ytH) in Y(r), system (14) has all ad-
missible sol ut ion with Ào = 0 and (Àl, ... , Àt+l,J.lkl, ... ,J.lkK-,) equal to the first 
column of the matrix A;,; , for any (t + l)-simplex cr(yO,yl, . .. ,yt+l) in ~(r) hav­
ing T as a facet. Due to the properties of a triangulation, there is only one such 
simplex if T lies in the boundary of Y (r) and there are precisely two such simplices 
otherwise. The basic idea of the algorithm is, starting in v, to generate for varying 
vectors r ERa unique sequence of adjacent r-complete facets of simplices in ~(r) . 

DEFINITION 11.2: An rl -complete simplex Tl and an r 2-complete simplex T 2 

are adjacent complete simplices if r l = r2 = rand Tl and T2 are both facets of a 
simplex cr of ~(r) in Y, or if Tl is a facet of T 2 and T 2 is a simplex of ~(rl), or if 
T2 is a facet of Tl and Tl is a simplex of ~(r2) . 

The next lemmas show that the sequence of adjacent complete simplices is u­
niquely determined. Lemma 11.3 determines the unique complete starting simplex, 
Lemma 11.4 determines movements in the interior of a region Y (r) and Lemma 11 .5 
considers the case where a complete facet in the boundary of a region Y(r) is gen­
erated. 

LEMMA 11.3: Let the sign vector r be such that rk = -1 ij Zk( v) ~ 0 and 
rk = + 1 ij Zk( v) > O. Then the O-simplex T = T( {v}) is an r-complete simplex and 
is not an r-complete simplex Jor any other sign vector r E R. 
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PROOF: Consider the matrix Ar,T given by 

o 

This matrix is not singular and its inverse is given by 

A-I = ( al 
r ,T 

o 

wh~re the vector a is given by ak = rk zk(v), k E h. Since ak > 0 if z(v) =I- 0 and 
-rk > 0 if Zk(V) = 0, the matrix A;,~ is lexicopositive. Moreover, there is no other 
sign vector r E R for which the matrix Ai,; is also lexicopositive. Q.E.D. 

LEMMA 11.4: Let (7 be a (t + l)-simplex of E(r) in Y where r is a sign vector 
with iO( r) = t. If (7 has an r-complete facet T, then exactly one of the fol/owing 
cases holds: 

1. The simplex (7 is an i -complete simplex for precisely one sign vector i and 
no facets of (7 other than T are r-complete. 

2. The simplex (7 has exactly one other r-complete facet Tand (7 is not an i­
complete simplex. 

PROOF : Analogous to the proof of Lemma 3.5 in Herings, Talman and Yang 
(1996). Q.E.D. 

LEMMA 11.5: Let T be an r-complete t-simplex being a facet of a simplex of 
E(r) in Y where r is a sign vector with iO(r) = t. Suppose that T is a subset of 
Y(r) where iO(r) = t - 1. Then exactly one of the following cases holds: 

1. The simplex T is an r-complete simplex for precisely one sign vector r =I- r 
and T has no i-complete facets; 

2. Precisely one facet of T is i-complete and T is not an r-complete simplex for 
any sign vector r =I- r. 

PROOF: Analogous to the proof of Lemma 3.6 in Herings, Talman and Yang 
(1996). Q.E.D. 
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The next theorem follows from the results stated above. 

THEOREM 11.6: Let the economy [ satisfy Assumptions Ai-A5. Let ~ be a 
proper triangulation of Y (Q.) and let 7 be an r-complete simplex for some r E R. If 
7 = {v} or if both r = Q. and 7 C {y E ym I min{YI, . . . ,YK} ~ I} or if both r = Q. 
and 7 C {y E yl I min{Yb .. . ,YK} = I} or if both r :S Q. and 7 C {Y E yl I Yo = I}, 
then there exists exactly one adjacent complete simplex to 7. Otherwise, 7 has ex­
actly two adjacent complete simplices . Moreover, for some N > 0, there exists a 
finite sequence of simplices 7°, .. . , 7 N , 7 N i- 7°, such that 7° = {v} , 7

N has just 
one adjacent complete simplex, and 7 n - 1 and 7 n are adjacent complete simplices 
forn=l , ... ,N . 

The sequence of simplices mentioned in the theorem can be generated by an 
algorithm that starts in 7° and makes alternating lexicographic pivot steps in sys­
tem (14) and replacement steps in the triangulation in order to determine the next 
complete simplex. The final simplex generated by the algorithm, 7 N , ind~ces a 
Walrasian equilibrium with respect to the piecewise linear approximation Zand 
thus according to the last part of Theorem 10.4 an approximate Walrasian equilib­
rium. We conclude with the steps of the algorithm. 

STEPS OF THE ALGORITHM 

STEP O. Take v = (0, t, ... , t)T, r as in Lemma 11.3,7 = {v} , and let 0" be the 
unique simplex in ~(r) having 7 as a facet. 

STEP 1. Make a lexicographic pivot step in (14) with the vector (1, z (y)T)T 
where y is the vertex of 0" opposite to 7. 

STEP 2. If (l, z (yi)T)T, for some i E I?+I ' is the leaving column, go to Step 3 
with 7 equal to the facet of 0" opposite to yi. Otherwise, (0, rh e( h) T) T is the leaving 
column for some h E I-(r) U I+(r) and go to Step 4. 

STEP 3. Stop if either both r = Q. and min{Yb ... ,YK} = 1 for every y E 7 or 
both r :S Q. and Yo = 1 for every y E 7. If 7 E ~(r) for some r i- r, then go to Step 
5. Otherwise there is precisely one simplex 0' E ~(r) , 0' i- 0", sharing 7 with 0". Set 
0" = 0' and return to Step 1. 

STEP 4. Set rh = 0. Stop if both r = Q. and min{Yb ... ,YK} ~ 1 for all Y E T. 

Otherwise there is precisely one simplex 0' E ~(r) containing 7 as a facet. Set 
0" = 0' and return to Step 1. 

STEP 5. Let h be the unique index for which 'fh i- rh. Set r = rand make a 
lexicographic pivot step with (0, -rhe(h)T)T. Go to Step 2. 
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