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Fig. 4. The random walk and the dynamical model compared. 

Our prediction of higher reaction times in the transition phase is derived from this 
dynamical model of reaction times. Catastrophe theory predicts that the curvature of 
the existing minima decreases near the transition point. This flattening of the minima 
is essential for critical slowing down. It leads, among other things, to a delayed 
recovery of equilibrium. Since we took equilibrium as stop criterion in the dynami­
cal model of reaction time, we predict reaction times to be longer. 

Note that both models explain the speed-accuracy trade-off by use of adjustments 
of stop criterion parameters. In a random walk model the bounds are adjusted to 
change this trade-off, in the dynamical model E is changed. Furthermore, the random 
walk model generates the same predictions as the dynamical model for elementary 
reaction time tasks. In these cases the dynamical stop mIe can be replaced with the 
classical stop mIe without too much risk. It is then safe to assume that a random walk 
towards A will never return to B. But for more complex tasks, like a multiple choice 
exam, we only respond when our judgment stops changing. 

Finally, note how the dynamical model explains how the system responds when 
there is simply not enough information to make a confident response. As long as I 
(information) converges the system responds. Consequently, the system will not give a 
response when the system is captured in a non-converging trajectory (an oscillation for 
instance). In the random walk model the picture is different. Although random drift 
will always lead to a hit of the bound (Luce, 1986), lack of information leads per def­
inition to long reaction times. In contrast, in the dynamical model responses can be 
uncertain but fast. This is one example of a differential prediction of the dynamical 
model. 

Mathematical formulation 

A further evaluation of this dynamical interpretation of reaction times requires a 
mathematical analysis of the consequences of this stop criterion. To wh at kind of 
reaction time distributions does the dynamical model lead? That is, what is the dis­
tribution of stop times of the balI when it is randomly placed in the neighborhood of 
a minimum. As in random walk models the answer depends on several assumptions 
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conceming the fonn of the minimum, the fonn of the distribution of start positions of 
the balI, the kind of dynamics (gradient or Newtonian gradient), and the E parameter 
for stopping. If we assume that the minimum is quadratic and the initial distribution 
is nonnal, the distribution of stop times is skewed to the left, where it should be 
skewed to the right. This is derived as follows: 

We take a gradient system di/dt = - À. i, i.e. potential .5 À. F· 
then iet) = io exp (-À.t) À.>O, io is the random initial value 
Suppose io > E> ° and stop when Idi/dtl < E, then T=(l/À.) ln(io À./E) 
Suppose distribution of io is f, cumulative F. 
th en p(T>t) = P((l/À.) ln(io À./E»t) = P (io > (vÀ.) exp(À.t)) = 1 - F((E/À.) exp(À.t)) 
and distribution of T: f((E/À.) exp(À.t)) E exp(À.t). This distribution T, assuming f is a 
nonnal distrubition, is skewed to the left instead of the right. 

However, we could also take another fonn of the minimum, for in stance potential 
ln(i2+ 1). In this case the landscape is flat with one minimum. Then di/dt = 2i / (i2+ 1). 
By computer simulation it can be shown that, for nonnally distributed initial posi­
tions and for a large set of values of the parameters, the distribution of stop times is 
skewed to the right (see figure 5). It may be possible to give a complete model by 
replacing the diffusion model of Ratc1iff (1980) by some variant of the Omstein­
Uhlenbeck process (Gardiner, 1994). 

Discussion 

According to catastrophe theory phase transitions can be recognized by a number 
of qualitative properties. Some of these properties like a sudden jump, bimodality 
and anomalous variance are already known and used in developmental research. 
Other catastrophe flags, like hysteresis and critical slowing down, open up new 
possibilities to test for transitions and to interpret developmental processes. To 
operationalize critical slowing down we looked into the consequences of instabil­
ity in transition periods on reaction times. Based on a dynamical model of reaction 
time we expect reaction times to be importantly longer when the system is in tran­
sition. This dynamical model differs from the standard random walk model with 
respect the nature of information increments (stationary or not), and consequently 
with respect to to the stop criterion. We explored the consequences of these dif­
ferences in some detail. It is c1ear that stability considerations are not part of the 
standard model and lead to a different view of reaction time. From a dynamical 
point of view, the assumption of stationary increments of infonnation does not 
hold, and a choice is made when this infonnation converges, not when it hits a 
bound. 
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Fig. 5. Derivation of reaction time distribution for two possible dynamica! models. Model A, in con­
trast to model B, can he analyzed easily but leads to wrong predictions. The difference is found in the 
choice of potentia! function . Model B can he simulated on the computer and very robustly leads to cor­
rectly skewed distributions. 
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