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Reaction time as recovery time after perturbation 

Abstract 

This paper introduces a preliminary model of reaction time th at is derived from 
dynamic system theory. This alternative for the random walk model of reaction 
time applies another definition of information change and, as a consequence, 
another stop-criterion. Where the random walk in random walk models stops 
when a bound is reached, the walk in the dynamical model stops when it con
verges, or, in other words, when the system recovers stability. The mathematical 
formulation of the dynamical model is not yet complete. However, by computer 
simulation it can be shown that the model yields correct predictions about the 
reaction time distribution . First we wil! explain the background of this new model 
of reaction time, then the model is explained and compared with the traditional 
random walk model. 

Critical slowing down 

A central concept in non-linear dy nam ic system theory (e.g. chaos theory, catastro
phe theory, synergetics, bifurcation theory) is the concept of stability. These theories 
describe the time-course of behavioral variables of the system in terrns of attractors 
and transitions between them. In this volume much attention is given to catastrophe 
theory. Catastrophe theory (Thom, 1975) can be used to study transitions between 
simple point attractors. These phase transitions are accompanied by so-called cata
strophe flags. Hence, these flags indicate the presence of a non-linear phase transi
tion. One of these flags is critical slowing down, a delayed recovery of stability af ter 
perturbation in the transition phase (Gilmore, 1981). 

This flag can also be found in other theories of nonlinear dynamics. In earlier 
papers, to detect the flag critical slowing down, we suggested to look at reaction 
times. Our prediction, derived from catastrophe theory, is that reaction times are 
higher near a transition. This hypothesis is relatively easy to test. It is also consistent 
with common sen se and many developmental models. For instance, Siegler and Jenk
ins (1989) have looked at higher reaction times of subjects in the transition between 
the so-called sum and min strategy for simple arithrnetic problems. In a study of 
Hosenfeld, van der Maas, and van den Boom (1997) we tested this prediction for the 
development of analogical reasoning. In this study 80 children were tested 8 times 
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three weeks apart. Evidence for the sudden jump in this study was not very convinc
ing, but we did find statistical significant indications of anomalous variance and crit
ical slowing down as measured by reaction time. 

There is however a problem with this line of work. The prediction of longer reac
tion time~ is derived from an implicit and informal model of reaction time that seems 
to be inconsistent with the main models of reaction times in psychology. 

Reaction time models 

Reaction time is a very general response measure in psychology. It is the time 
between stimulus presentation and response. The response itself could be any behav
ior, but is often simple and discrete. Typical examples are a choice reaction time test 
with two arrows as stimuli, a lexical decision task with correctly and incorrectly 
spelled words, and a multiple choice exam. In all these cases the standard model of a 
reaction time is the random walk model, shown in figure 1. 

A 

1= 
Infor
mation 

B 

RT random walk 
r---------------------------T1-----------------BoundA 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - time 

r-------------------------------------------BoundB 

Fig. 1. The random walk model. Information I makes stationary steps over time in either the A or B 
direction. When a bound is reached the response is generated. 

In this simplified model the two choices A and B (left or right, correct or incor
rect, etc.) are depicted on the y-axis. The x-axis represents time. The system builds 
up information, each piece of information having a possible effect on the walk. 
Whenever the information hits the A or B bound the system makes a response with 
a reaction time RT. Bounds can be adjusted, possibly even during the run. There 
exist different mathematical formulations of this model and slightly different vari
ants like the accumulator model and the run model (Luce, 1986; Ratcliff, 1988). 
These models lead to predictions about the form of the reaction time distribution, 
the relation between speed and accuracy, and the effects of various experimental 
manipulations. 

The random walk model does not refer to the concept of stability. The random 
walk model is not some kind of gradient system whereas this is required for an inter
pretation of critical slowing down in terms of reaction time. Such an interpretation 
refers to processes as depicted in figure 2. 
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Fig. 2. Reaction time as recovery time af ter a perturbation. The perturbation is a stimulus, some new 
information, which, af ter some time, looses its effect, af ter which, in this example, behavior A con
tinues. 

This figure shows a dynamical system that is perturbed by a stimulus. Behavior A 
looses stability but is, af ter some time (the reaction time), recovered. In this case A 
is recovered but also B could have happened. 

What is the big difference with the random walk model? The most striking differ
ence is the stop criterion. We assume that a system will only give a response when 
it's judgment stops changing, e.g. when it has become stabIe (e.g. dI/dt < E for some 
time). Epsilon determines the accuracy of the process. Related to this difference in 
stop criterion is a more subtIe differerence in the definition of information, especially 
in the defintion of information change. In figure 2 the change in information 
decreases af ter some time until information converges to a stabIe state. This means 
that information change is non-stationary. 

In random walk modeIs, however, information change is defined to be stationary 
(dI/dt = c). In the simplest random walk model at each time point I, information, 
makes one step to A or B. In more complex mode Is the steps are sampled from a time 
invariant distribution (Ratcliff, 1988). In both cases the information change is sta
tionary. If this change is stationary, the random walk always hits a bound (see Luce, 
1986). If the information change over time goes to zero it is well possible that the 
bounds are never hit. All random walk models exclude this possibility because it can 
lead to infinite reaction times in these modeis. 
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So this assumption of stationary increments is very important. Is it also, as Luce 
(1986) says, by no means unreasonable? 

We doubt this. Lets take a look at the definition of information. It could be neural 
activity, subjective certainty, or a measure of match, to give some examples. For each 
of these interpretations, information change varies over time. Luce (1986) already 
mentioned this for the neural interpretation: for constant input neural activity stabi
lizes quickly. If it were subjective certainty it seems reasonable to suppose that this 
also converges to a certain level. It will certainly not increase indefinitely. And also 
a match with some scheme will give non stationary increments in match value. Just 
af ter stimulus presentation dl/dt will be larger for most decision processes we can 
think of. For instance, a simple arrow to the right is identified as such within 300 ms 
and then the information growth probably ends. We are certain then and we don't 
increase certainty by looking longer at the stimulus. Note that dI/dt also decreases as 
function of T in computational techniques as optimizing, for instance, optimizing the 
likelihood of a statistical model. We think that for most interpretations or definitions 
of I, dI/dt decreases as function of t. 

In the literature on random walk models of reaction time the possibility of nonsta
tionary information change is sometimes recognized. Ratcliff (1980) formulates a 
model th at allows discrete change in the drift parameter of the diffusion process. 
Heath (1981) proposes a tandem random walk model for non-stationary random 
walks. In both proposals, however, the stop criterion is still based on bounds and not 
on convergence. If we use convergence as stop criterion we get the dynamical model 
of reaction time. 

The dynamical model of reaction time 

Figure 3 illustrates the dynamical model of reaction time in which dI/dt decreases 
over time. Stimulus evaluation (A or B) is performed by some kind of neural system 
that minimizes a measure of mismatch between stimulus and intemal representation. 
The stimulus can be considered as a perturbation of this system that restores equilib
rium as soon as possible. As such, the system can be understood as a kind of gradi
ent system. In its most elementary form the potential function is quadratic. 

The dynamical model and the random walk model agree in most aspects. In both 
models information is build up for making a choice or decision. The dependent vari
able is either the amount of information (somehow quantified) or the subjective cer
tainty of the choice. In both cases a continuously changing behavior is forced to 
become discrete. The system should make this simplification in some way. Here the 
two models differ. The dynamical model assumes that this occurs when the state of 
the system, in terms of the amount of information or certainty, is not changing any
more, whereas in the random walk model it occurs whenever the amount of informa
tion or certainty reaches a higher or lower bound. In simple words, according to the 
random walk model we take decisions when we are sure enough, according to the 
dynamical model we take decisions when our jugdement stops changing. Figure 4 
shows the time course of both models. 
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Fig. 3. A dynamical model of reaction time. The information processing system is modelled as a sim
ple recursive neural network in which a measure of mismatch with pre-Iearned pattems is minimized. 
As soon as the mismatch value converges a reaction is produced. At the bottom of this figure a pos si bie 
model is shown for a two choice task. The location of the litde bali represents the present state of cer
tainty or information, either in the A or B region. The discrete response is only given when the bali has 
lost its speed and falls through the small opening in one of the minima I . 

1 The figure shows a bali in each minimum to illustrate that reaction time depends on the curvature of 
the minimum. If we use one bali the model is more similar to the random walk model, if we use two 
balls the model is more similar to the accumulator model. 
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Fig. 4. The random walk and the dynamical model compared. 

Our prediction of higher reaction times in the transition phase is derived from this 
dynamical model of reaction times. Catastrophe theory predicts that the curvature of 
the existing minima decreases near the transition point. This flattening of the minima 
is essential for critical slowing down. It leads, among other things, to a delayed 
recovery of equilibrium. Since we took equilibrium as stop criterion in the dynami
cal model of reaction time, we predict reaction times to be longer. 

Note that both models explain the speed-accuracy trade-off by use of adjustments 
of stop criterion parameters. In a random walk model the bounds are adjusted to 
change this trade-off, in the dynamical model E is changed. Furthermore, the random 
walk model generates the same predictions as the dynamical model for elementary 
reaction time tasks. In these cases the dynamical stop mIe can be replaced with the 
classical stop mIe without too much risk. It is then safe to assume that a random walk 
towards A will never return to B. But for more complex tasks, like a multiple choice 
exam, we only respond when our judgment stops changing. 

Finally, note how the dynamical model explains how the system responds when 
there is simply not enough information to make a confident response. As long as I 
(information) converges the system responds. Consequently, the system will not give a 
response when the system is captured in a non-converging trajectory (an oscillation for 
instance). In the random walk model the picture is different. Although random drift 
will always lead to a hit of the bound (Luce, 1986), lack of information leads per def
inition to long reaction times. In contrast, in the dynamical model responses can be 
uncertain but fast. This is one example of a differential prediction of the dynamical 
model. 

Mathematical formulation 

A further evaluation of this dynamical interpretation of reaction times requires a 
mathematical analysis of the consequences of this stop criterion. To wh at kind of 
reaction time distributions does the dynamical model lead? That is, what is the dis
tribution of stop times of the balI when it is randomly placed in the neighborhood of 
a minimum. As in random walk models the answer depends on several assumptions 
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conceming the fonn of the minimum, the fonn of the distribution of start positions of 
the balI, the kind of dynamics (gradient or Newtonian gradient), and the E parameter 
for stopping. If we assume that the minimum is quadratic and the initial distribution 
is nonnal, the distribution of stop times is skewed to the left, where it should be 
skewed to the right. This is derived as follows: 

We take a gradient system di/dt = - À. i, i.e. potential .5 À. F· 
then iet) = io exp (-À.t) À.>O, io is the random initial value 
Suppose io > E> ° and stop when Idi/dtl < E, then T=(l/À.) ln(io À./E) 
Suppose distribution of io is f, cumulative F. 
th en p(T>t) = P((l/À.) ln(io À./E»t) = P (io > (vÀ.) exp(À.t)) = 1 - F((E/À.) exp(À.t)) 
and distribution of T: f((E/À.) exp(À.t)) E exp(À.t). This distribution T, assuming f is a 
nonnal distrubition, is skewed to the left instead of the right. 

However, we could also take another fonn of the minimum, for in stance potential 
ln(i2+ 1). In this case the landscape is flat with one minimum. Then di/dt = 2i / (i2+ 1). 
By computer simulation it can be shown that, for nonnally distributed initial posi
tions and for a large set of values of the parameters, the distribution of stop times is 
skewed to the right (see figure 5). It may be possible to give a complete model by 
replacing the diffusion model of Ratc1iff (1980) by some variant of the Omstein
Uhlenbeck process (Gardiner, 1994). 

Discussion 

According to catastrophe theory phase transitions can be recognized by a number 
of qualitative properties. Some of these properties like a sudden jump, bimodality 
and anomalous variance are already known and used in developmental research. 
Other catastrophe flags, like hysteresis and critical slowing down, open up new 
possibilities to test for transitions and to interpret developmental processes. To 
operationalize critical slowing down we looked into the consequences of instabil
ity in transition periods on reaction times. Based on a dynamical model of reaction 
time we expect reaction times to be importantly longer when the system is in tran
sition. This dynamical model differs from the standard random walk model with 
respect the nature of information increments (stationary or not), and consequently 
with respect to to the stop criterion. We explored the consequences of these dif
ferences in some detail. It is c1ear that stability considerations are not part of the 
standard model and lead to a different view of reaction time. From a dynamical 
point of view, the assumption of stationary increments of infonnation does not 
hold, and a choice is made when this infonnation converges, not when it hits a 
bound. 
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Fig. 5. Derivation of reaction time distribution for two possible dynamica! models. Model A, in con
trast to model B, can he analyzed easily but leads to wrong predictions. The difference is found in the 
choice of potentia! function . Model B can he simulated on the computer and very robustly leads to cor
rectly skewed distributions. 
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