

















concerning the form of the minimum, the form of the distribution of start positions of
the ball, the kind of dynamics (gradient or Newtonian gradient), and the € parameter
for stopping. If we assume that the minimum is quadratic and the initial distribution
is normal, the distribution of stop times is skewed to the left, where it should be
skewed to the right. This is derived as follows:

We take a gradient system di/dt = - A i, i.e. potential .5 A i*

then i(t) = iy exp (-At) A>0, i, is the random initial value

Suppose iy > €> 0 and stop when Idi/dtl < €, then T=(1/A) In(iy A/€)

Suppose distribution of i; is f, cumulative F.

then p(T>t) = P((1/A) In(iy A/e)>t) = P (i > (/M) exp(At)) = 1 - F((e/A) exp(At))

and distribution of T: f((e/A) exp(At)) € exp(At). This distribution T, assuming f is a
normal distrubition, is skewed to the left instead of the right.

However, we could also take another form of the minimum, for instance potential
In(i%+1). In this case the landscape is flat with one minimum. Then di/dt = 2i / (i%+1).
By computer simulation it can be shown that, for normally distributed initial posi-
tions and for a large set of values of the parameters, the distribution of stop times is
skewed to the right (see figure 5). It may be possible to give a complete model by
replacing the diffusion model of Ratcliff (1980) by some variant of the Ornstein-
Uhlenbeck process (Gardiner, 1994).

Discussion

According to catastrophe theory phase transitions can be recognized by a number
of qualitative properties. Some of these properties like a sudden jump, bimodality
and anomalous variance are already known and used in developmental research.
Other catastrophe flags, like hysteresis and critical slowing down, open up new
possibilities to test for transitions and to interpret developmental processes. To
operationalize critical slowing down we looked into the consequences of instabil-
ity in transition periods on reaction times. Based on a dynamical model of reaction
time we expect reaction times to be importantly longer when the system is in tran-
sition. This dynamical model differs from the standard random walk model with
respect the nature of information increments (stationary or not), and consequently
with respect to to the stop criterion. We explored the consequences of these dif-
ferences in some detail. It is clear that stability considerations are not part of the
standard model and lead to a different view of reaction time. From a dynamical
point of view, the assumption of stationary increments of information does not
hold, and a choice is made when this information converges, not when it hits a
bound.
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v =12 V(@) = In(12+1)
dI/dt = - ¢ I + (diffusion) dl/dt = -2/(1%+1)
I(t) = I, exp(-ct)
f(T) = f(e exp(ct)) € c exp (ct) It)y="?

f(T) = ?

where f is distribution of I,
€ is stop criterion :

dI/dt < € then stop
Fig. 5. Derivation of reaction time distribution for two possible dynamical models. Model A, in con-
trast to model B, can be analyzed easily but leads to wrong predictions. The difference is found in the

choice of potential function. Model B can be simulated on the computer and very robustly leads to cor-
rectly skewed distributions.
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