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Detection of developmental transitions 

Abstract 

Catastrophe theory can be very useful in research conceming developmental transi­
tions. A very powerful and reliable technique for fitting catastrophe mode Is is the 
method of Cobb. Applying catastrophe theory without restrictions means that co­
ordinate transformations should be implemented in the method of Cobb. However, 
this will cause over-parametrisation and invariance problems. In this paper it will be 
shown th at these problems can be solved by using non-parametric smoothing tech­
niques and so-called level crossing characteristics of a stochastic process. 

Introduction 

Since the introduction, by Piaget, of his epigenetic model of development, a lively 
discussion emerged on the plausibility of this model (Piaget, 1960; Flavell, 1971; 
Brainerd, 1978; Fisher & Silvem, 1985) and stage-wise developmental models in 
general. In a stage-wise developmental model one distinguishes stages that corre­
spond to qualitatively different behaviour pattems. Furthermore, development is 
accompanied by abrupt transitions between these stages. According to Piaget, con­
servation acquisition necessitates learning new logical rules. A particular develop­
mental stage of a subject can be characterised by the set of logical rules that are used. 
A transition between stages leads to a sudden change in cognitive capacities. The dis­
cussion on the plausibility of stage-wise developmental modeIs, has for a long time 
been obstructed because of a lack of consensus about the formal definition of both a 
stage and a transition. Often a transition is described as a 'large and rapid change'. 
With such a definition it is difficult to construct empirical criteria, necessary for the 
detection of transitions in experimental research. Recently it has been shown (van der 
Maas & Molenaar, 1992) that catastrophe theory can be used to develop a formal 
transition theory and anacceptable methodology. Such a methodology consists of 
applicable definitions of stages and transitions, as weB as statistical techniques 
(Hartelman, 1997a) for detecting transitions and modelling stage-wise developmental 
models. 

The aim of catastrophe theory is to describe processes that exhibit transitions as 
weB as c1assifying processes with respect to their qualitative, transitional properties. 
For the application of catastrophe theory we distinguish three approaches: catastrophe 
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detection, catastrophe modelling and catastrophe analysis. In catastrophe analysis one 
investigates the known 'equations of motion' of the process by means of the mathe­
matical tools provided by catastrophe theory. In the social sciences this approach is 
of ten beyond our reach because the processes under study are most of ten ill-defined. 
In catastrophe detection one uses so-called flags (Gilmore, 1981), certain characteris­
tics of the behavioural variabie in a catastrophic process, which can be used as indi­
cators of a transition. The application of these flags requires a minimum of informa­
tion about the system. The application of flags for developmental processes in general, 
and conservation acquisition in particular, has been discussed thoroughly by van der 
Maas (1992). This paper deals with catastrophe modelling, which consists of fitting 
and testing catastrophe models. A very reliable technique for fitting catastrophe mod­
els is the method of Cobb. However, in this technique it is not possible to imp Ieme nt 
smooth co-ordinate transformations, which are crucial in catastrophe theory. This will 
lead to over-parametrisation and invariance problems. Solution to these problems will 
be presented in this contribution, which consists of using kemel density estimates and 
so-called level crossing characteristics of a stochastic process. We will start with a 
small introduction to catastrophe theory. A description of the method of Cobb will be 
given in §3. Finally, in §4 the transformation problems and proposed solutions will be 
discussed. In §5 a statistical technique for testing the presence of a transition will be 
applied to conservation acquisition data of van der Maas (1992). 

Catastrophe Theory 

Catastrophe theory deals with gradient systems, which are specific dynamical sys­
tems, the behaviour of which can be described by one (smooth) function. These func­
tions, which are of ten called potential functions, depend on so-called state (behav­
ioural) variables Yl> ... , Yn and control variables (model parameters) Cl' .•• , Cm. The 
state variables describe the state of a system, and the control variables determine the 
change of the state in time. In catastrophe theory gradient systems are classified with 
respect to their qualitative properties. This classification is induced by co-ordinate 
transformations. Two systems are equivalent if their corresponding potential func­
ti ons can be transformed into one other by a change in the co-ordinate system. This 
means that in catastrophe theory one is not interested in the quantitative properties of 
a system but in the qualitative properties of a system, i.e. those properties that do not 
depend on the choice of the measurement scales. The classification leads to the par­
tition of the class of gradient systems into equivalence classes. Two members of the 
same equivalence class exhibit the same qualitative behaviour and the corresponding 
potential functions are the same up to a change in the co-ordinate systems. By using 
an appropriate co-ordinate transformation <p: (Yl> ... , Yn) -7 (xI> ... , xn) one can trans­
form a potential function into a canonical, most simple polynomial form, which is the 
same for all members of the same equivalence class. This canonical form can thus be 
used to label the equivalence class. The classification of gradient systems in cata­
strophe theory is illustrated by the classification of smooth potential functions, using 
a tree structure, in Figure 1. 
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Fig.!. Classification scheme in catastrophe theory. The class of smooth functions can be partitioned 
into a number of equivalence c1ass (italic). The functions are the corresponding canonical potential func­
tions. 

From Figure 1 we see that gradient systems can be partitioned into an equivalence 
class with so-called non-critical potential functions and a group of systems with crit­
ical potential functions. The canonical form of the potential function of non-critical 
systems is linear in one canonical variabie x I (The terms critical, non critical, Morse, 
Non-Morse, ... in Figure 1 are connected to functions. However, in the case of gradi­
ent systems there is one-to-one relation between gradient systems and the corre­
sponding potential functions. Therefore, we can also use these terms to label the gra­
dient systems). The group of critical systems can be partitioned into an equivalence 
class of Morse systems and a group of Non-Morse systems. The canonical potential 
function for Morse systems is a sum of quadratic functions. Finally, the group of 
Non-Morse systems can be partitioned into a number of equivalence classes, so­
called catastrophe systems (Fold, Cusp, ... ). The canonical potential function of such 
an equivalence class is the sum of a Morse-function and a so-called catastrophe func­
tion. As an example, consider a gradient system with n state variables y\> ... ,Yn and m 
control variables C\>. "'Cm' If this system is equivalent to a cusp catastrophe, then the 
canonical potential function is 

(1) 

for certain i. The parameters a,~ depend on the control variables Cl'" .,Cm. The first 
function between brackets is the catastrophe function, the second function is the 
Morse-function. Only catastrophe systems exhibit transitions. In the case of the cu sp 
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catastrophe potential function in (1), the occurrence of a transition depends only on 
the fonn of the catastrophe function, which depends on the parameters a and ~. An 
important advantage of catastrophe theory is that the number of equivalence classes 
is limited. There are only 7 equivalence classes, i.e. qualitatively different transition 
modeis, if the number of state variables does not exceed 2 and if the number of con­
trol variables does not exceed 4. Therefore, catastrophe theory can be very useful in 
those fields of research where model selection is a difficult task. 
How a transition can occur will be explained by a discussion of the behaviour of uni­
dimensional gradient systems ( with one control variabie), the dynamics of which can 
be described by 

dx dV (x; c) 
dt -- dx (2) 

x is a behavioural variabie, that describes the state of the system, c is a control vari­
able and t denotes time. V is the potential function. According to (2) the change in x 
over time is equal to minus the first derivative of V with respect to the state variabie 
x. If the state of the system x is such that dV(x;c)/dx is zero, then the state x will not 
change. Such a state is called an equilibrium state. We distinguish two types of equi­
librium states: stabie and unstable. A sm all perturbation to a system, which actual 
state is a stabie equilibrium state, leads to a movement back to the stabie equilibrium 
state. In contrast, for an unstable equilibrium state, a small perturbation will lead to a 
movement away from the unstable equilibrium state, towards a stabie equilibrium 
state. The qualitative fonn of the potential function detennines the qualitative behav­
iour of the system, which is related to the configuration of the stabie and unstable 
equilibrium states of the system (equilibrium surface). Consider two gradient systems 
with the following potential functions : 

(3) 

V 1 is a Morse function, V 2 is a special instance of a cusp catastrophe function. The 
equilibrium surfaces for these systems are depicted in Figure 2. 

The equilibrium surface of the first system consists only of stabie equilibria. How­
ever, for the second system the equilibrium surface has stabie and unstable equilib­
ria. At certain c-values (bifurcation points), a stabie equilibrium and an unstable 
equilibrium coalesce and disappear, af ter which the system is forced to move towards 
another stabie equilibrium. The result is a sudden change in the state of the system: 
a transition. This example illustrates the difference between Morse-systems and cat­
astrophe systems. The Morse- and non-critical models do not exhibit transitions, 
whereas catastrophe systems do. 

In this short introduction only the most important points in catastrophe theory are 
discussed. For a more detail description, see Poston & Stewart (1978), Gilmore 
(1981) or Castrigiano & Hayes (1993). 

The most successful applications of catastrophe theory deal with systems for 
which the equations of motion are known. However, in experimental research we 
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Fig. 2. Equilibrium surfaces of a Morse system with potential function (X-C)2 and a special instance of 
a catastrophe system with potential function. 

of ten only have limited information, of ten in the form of a finite number of discrete 
observations. Moreover, real-life systems are often perturbed by random influences. 
This raises the questions: how can we apply catastrophe theory to stochastic systems 
in experimental research. That is, how do we define a stochastic attractor and bifur­
cation and can we apply the classification scheme in catastrophe theory to stochastic 
systems? How can we fit catastrophe models to data? 

Method of Cobb 

A most promising approach to a stochastic catastrophe theory has been developed by 
Cobb (1978; 1980; 1981). Cobb considers stochastic processes that can be described 
by a stochastic differential equation. He adds to the gradient system (2), a random 
process in the form of the derivative of a Wiener process. 

dx __ dV (x; c) B ( . ) dW (t) 
dt - dx + x, c dt (2) 

The increments of a Wiener process, i.e. W(t+Llt)-W(t), are normally distributed 
with variance Llt. The function B(x;c) determines the size of the variance of the noise 
and is called the diffusion function. Cobb often sets this diffusion function to a con­
stant s. The probability density function (POF) of the state x will ultimately converge 
to a limiting stationary probability density function (SPOF). This SPOF, which is C 
exp (-V (x; c)) where C is an integration constant, is used to characterise the behav­
iour of the stochastic system. Therefore, there is a unique relation between the poten-
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tial function and the SPDF. The stable (unstable) equilibria correspond to modes 
(antimodes) of the SPDF. A stochastic bifurcation occurs when the number of 
modes/antimodes changes as the control variabIe is varied. The qualitative form of 
the deterministic potential V is equivalent to the corresponding SPDF. In order to 
obtain information about the qualitative form of the potential function, one can apply 
catastrophe theory, and in particular the classification scheme, to the SPDF. 

A catastrophe model is fitted by substituting the representative potential function 
of the class of mode Is that is considered, in the expression for the SPDF. For 
instance, the SPDF for the cusp catastrophe, with one state variabIe x and two con­
trol variables Cl and C2' is 

Ps (x; a, ~) = C exp (ax + ! ~X2 - i x4
) (5) 

In order to be able to vary the scale and location of the model, Cobb implements a 
linear sc ale transformation x ~ (x - À) I cr, where À is a location and cr a scale para­
meter, determining respectively the location and scale of the cu sp model with respect 
to the state variabie axis. Furthermore, the canonical parameters a,b in the model 
depend on the measured control variables Cl and C2' This relation is in the method of 
Cobb assumed to be linear 

(6) 

The cu sp catastrophe model is now fitted, by estimating the parameters À, cr, ao, ah 
a2' ~o, ~l' ~2 by means of maximum likelihood estimation. 

Transformation problems of the method of Cobb 

Simulation studies (Hartelman, 1997a) show that the method of Cobb is a powerful, 
robust and reliable tooI for estimating the parameters of a catastrophe model. How­
ever, there are two important problems associated with this technique. Both problems 
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Fig 3. Equivalence of equilibrium surfaces. Two systems are equivalent if there are (smooth ) co-ordi­
nate transformations such that the equilibrium surfaces can he transformed into one another. 
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concern the application of co-ordinate transformations. In catastrophe theory we are 
interested only in the qualitative behaviour of systems. This, for instance, enables one 
to partitioning the class of gradient systems into a number of disjunct equivalence 
classes. The behaviour of two systems in an equivalent class is qualitatively the 
same. The qualitative properties of interest are those properties that are left 
unchanged under smooth co-ordinate transformations. Without going into the details, 
we consider the equilibrium surfaces of the systems (3). In Figure 3 we have drawn 
alternative equivalent models for both systems. 

These are equivalent because there are co-ordinate transformations such that the 
equilibrium surface of one can be transforrned into the other. Notice that the equilib­
rium surfaces of the Morse system and the cusp system are not equivalent. 

The use of co-ordinate transformations is of utmost importance in catastrophe the­
ory, because application of these lead to the celebrated classification scheme. How­
ever, in the method of Cobb only linear transformations are used. That is, the state 
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Fig. 4. Time series of two equivalent stochastic systems. The second system is obtained by transform­
ing the state variabie x of the first system by means of y = x + x3• 
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variabie is scaled linearly and the canonical parameters a, ~ depend linearly on the 
control variables Cl and C2 according to (6). If we want to make fuH use of the bene­
fits of catastrophe theory, then the complete class of smooth co-ordinate transfonna­
tions should be implemented in the method of Cobb. However, this leads to invari­
ance and over-parametrisation problems. 

lnvariance 

As an example of the invariance problem, consider the time series in Figure 4. 
The second time series is sampled from a process that is obtained by transfonning 

the state variabie x of the first system by means of the transfonnation y = x + x3. The 
control variables are fixed for both processes. According to the approach of Cobb, 
the SPDF gives infonnation about the number of stabie equilibrium states (or attrac­
tors). For this purpose we have depicted in Figure 5 the experimental frequency his­
tograms of the processes in Figure 4. 
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Fig. 5. Frequency histograms of time series in Figure 4. 

From Figure 5 we see that the number of modes is not invariant with respect to 
sc ale transfonnations. This means that the stochastic equilibrium states and stochas­
tic bifurcations, as defined by Cobb, are not invariant. The occurrence of a bifurca­
tion thus depends on the measurement sc ales that are used. The invariance problem 
is caused by the transfonnation mle for PDF's, which is not in accordance with the 
transfonnation mIe for potential functions. Our solution to this problem uses an alter­
native characterising function of a stochastic process, that transfonns properly. This 
altemative function, which is called the level crossing function, is equal to the SPDF 
multiplied by the diffusion function, i.e. E> (x) = Ps (x) B (x) (for convenience we 
omit here the explicit dependence on the control variables). It is easy to show that the 
number of modes of this function is invariant with respect to co-ordinate transfonna­
tions. If the diffusion function is constant, then the level crossing function is propor­
tional to the SPDF. Therefore, applying the level crossing function can be considered 
as a generalisation of the method of Cobb. Stochastic stabie equilibrium states are 
defined as modes of the level crossing function. A stochastic bifurcation occurs when 
the number of these modes changes. 

176 Detection of developmental transitions 



This newly defined characterising function is called the level crossing function, 
because it is directly related to certain level crossing probabilities. Let a level crossing 
of a level x be a pair of time series observations that lie on opposite sides of level x 
(see Figure 6), and let the probability of the occurrence of this event, with time step~, 
be denoted by pó (x). Then it can be shown (Hartelman, 1997a) that the level crossing 
probability for a level x divided by ..J(M21t) is, up to a negligible term if the time step 
is small, equal to the level crossing function, i.e. pó (x)/..J(M21t) = 0(x) + O(..J~). 
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Fig. 6. Level crossing probability and construction of level crossing function . 

Furthermore, the number of experimental level crossings can he used to estimate the 
level crossing function. Let Nó(x) be the experimental number of level crossings of 
level x from a time series with N observations. It is shown (Hartelman, 1997a) that the 
fraction of level crossings divided by (..J~/21t) converges almost sure, as N goes to 
infinity, to the level crossing function up to a negligible term of order O(..JM. That is 

E> (x) almost sure > 0 (x) + 0 (M 
N , Ó (7) 

The experimental level crossing plots for the time series in Figure 4 are depicted 
in Figure 7. 
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Fig. 7. Experimentalleve1 crossing plots for time series in Figure 4. 
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From Figure 7 we see that, according to our new definitions, and in accordance 
with the equivalence of the systems bistability is preserved. 

Over-parametrisation 

The models that are fitted by the method of Cobb are canonical catastrophe modeis, 
up to linear scale transformations. However, it is very unlikely that real systems 
under study are already in this canonical form. Furthermore, testing a catastrophe 
model versus altemative non-catastrophe models is carried out by comparing the cat­
astrophe model with a linear model by means of likelihood statistics. However, in 
catastrophe theory one is only interested in the qualitative behaviour of systems, 
which means that in a proper hypotheses testing procedure one should compare com­
plete equivalence classes. In contrast, in the method of Cobb, the class of catastrophe 
models is compared to the class of non-catastrophe modeis, by picking from both 
classes a model that is supposed to be good representative model. The linear model 
is in most cases a very poor representative model for the class of non-catastrophe 
models. As an example, consider the data in Figure 8, which are clearly sampled 
from a model that exhibits a rapid acceleration, which is not a transition. 

• • • • • •• • • • • • 
• 

• 
• • • •• ••• • •. --~~--------.~-----------+---------------------------------

Fig. 8. Logistic growth curve data. Because a linear model does not fit to the data very weU, it will be 
a poor representative model of the class of non-bifurcation modeis, in case of a bifurcation testing tech­
nique. 

For these data the linear model is clearly a poor representative of the class of non­
catastrophe models. Alogistic growth curve would be a more appropriate model. 
In order to overcome these problems one should implement the complete class of 
smooth co-ordinate transformations in the method of Cobb. However, this will lead 
to over-parametrisation problems. In catastrophe theory, one is allowed to apply a 
family of co-ordinate transformations <I> (x, c), i.e. for every fixed c the measurement 
scale x is transformed into a measurement scale y according to y = <I> (x, c). The only 
requirement is that this family of transformation functions is smooth in c. However, 
applying such a family of co-ordinate transformations to a data set consisting of a 
finite number of observations, such as in Figure 9, means that every x-value of an 
observation can arbitrarily be transformed, independent of the other observations. 
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Fig. 9. Any fini te set of observations fits perfectly to a cusp if the complete c1ass of co-ordinate trans­
formations is used. 

Therefore, the observations in Figure 9, which are clearly lying on a straight line, 
can be transforrned in such a way that they lie on a cusp equilibrium surface. In this 
way it is possible to fit a catastrophe model perfectly to every data set. To overcome 
this problem, one either has to restrict the class of allowed transformations (Cobb 
makes a very drastic restriction to linear transformations), or one has to make 
smoothness assumptions. In the latter case, smoothing the data by using kemel den­
sity estimation is an appropriate and reliable technique. 

A kemel density estimate of the density of a random variabie is obtained by adding 
(Gaussian) noise to the observations. Consider a random variabie Z, with unknown 
density f, and observations ZJ""'Zn' Let Z* be a random variabie which is obtained 
by picking randomly one of the observations Zj , and adding Gaussian noise with zero 
mean and standard deviation h. The kemel density estimate of f is the density of Z*, 
which is 

N J (Z -Zj't 
f
N 

(z) =~ L -l- e - 2 -h-j 
i=l -V2n h 

(8) 

The 'parameter' h controls the amount of smoothing. If h is very small then the 
kemel density estimate is a sum of large and narrow peaks located at the observa­
tions. If h is large then the data is over-smoothed, resulting in a gaussian density with 
large deviation and located at the mean of the observations. Under certain conditions, 
with respect to h (Silverrnan, 1986), the kemel density estimate converges to the true 
density. In the same way, kemel density estimates can be used to estimate multivari­
ate densities. The kemel method is non-parametric, in the sense that only the 
'smoothing parameter' h has to be estimated. h can reliably be deterrnined, for 
instance, by least-squares cross validation (see Silverrnan, 1986). 

In contrast to the parametric technique of Cobb, one can estimate the density 
model by using a (multivariate) kemel density estimate of the joint probability den-
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sity function. The kemel density estimates are smooth and, therefore, catastrophe the­
ory can be applied to these estimates unrestrictedly. Mathematically analysing the 
kemel density estimate leads to the appropriate canonical model and the necessary 
co-ordinate transformations to put the model into a canonical form. In this way, the 
complete class of co-ordinate transformations is applied indirectly by smoothing the 
data. 
Kemel density estimation can also be used to construct an algorithm for testing the 
presence of a transition. For this purpose, we make use of the mode testing algorithrn 
of Silverman (1981; 1983). Consider the data in Figure 10 sampled from a stochas­
tic catastrophe system with one state. variabie x and one control variabie c. 

-3 -2 2 
c-

• -2 

Fig. 10. Example data set and corresponding configuration of modes, with respect to x-direction, of the 
kemel density estirnate. 

For this data set we can determine the kemel density estimate of the joint proba­
bility density function of x and c. For this purpose we have to estimate, for 
instanee by cross-validation, two smoothing parameters hx and he for respectively 
the x- and c direction. For every c we can determine the location of the modes of 
the kemel density estimate in the x-direction. Similar as in the method of Cobb, 
these correspond to the stable equilibrium states of the system. Assume that the 
configuration of the modes is as depicted in Figure 10. From Figure 10 we clearly 
see that the system possesses two bifurcation points. It can be shown (Hartelman, 
1997a) th at the number of bifurcation points decreases as the am ou nt of smooth­
ing in the x-direction is increased, i.e. if hx is increased or, in other words, if the 
standard deviation in the x-direction of the noise on the data is increased. This 
behaviour is illustrated by Figure 11. Increasing the standard deviation of the 
noise in the x-direction will eventually lead to the disappearance of the bifurca­
tions. 

180 Detection of developmental transitions 



-3 

Fig.ll. Kemel smoothing of an equilibrium surface. If the amount of smoothing in the x-direction (hx) 

is increased, then a bifurcation will eventually disappear. 

Therefore, there is, at fixed he' a critical amount of smoothing, such that for hx > herit, 
the estimated equilibrium surface has no bifurcation points, whereas for hx < herit the 
equilibrium surface does possess a bifurcation point. Intuitively it is clear that herit 
will be large for models that do possess a bifurcation, whereas for non-bifurcation 
model herit will be small. It has been shown (Hartelman, 1997a) that one can actually 
use the size of herit as a statistic to test the occurrence of a bifurcation. To test the 
hypothesis that a bifurcation is present, one has to compare herit of the data with herit 
of a reference model that does not possess a bifurcation. This reference model should 
be chosen in such a way that the class of non-bifurcation models is given a 'fair' 
chance of explaining the data. An appropriate candidate reference model is the ker­
nel density estimate with hx=herit. As an example, the reference model for the data in 
Figure 10 is indicated in Figure 11. This model is 'on the edge' between the class of 
bifurcation models and the class of non-bifurcation models. Furthermore, we stay as 
close to the data as possible 

The following algorithm is proposed to test the hypothesis that a bifurcation is present 

a. Determine he by cross-validation with respect to the marginal kemel density of c. 
b. Determine herit. The reference model is now completely known. 
c. Sample data sets from the reference model. 
d. Determine critical window width for sampled data sets. 
e. The p-value (probability that a bifurcation is present) is the number of times that 

a sampled critical window width is smaller than the original herit. 

In this hypotheses testing procedure one does not have to pick two appropriate mod­
els and compare them. In contrast, the reference models are data-driven. Moreover 
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the complete class of co-ordinate transformations are implemented in an indirect 
way. A small simulation study (Hartelman, 1997a) shows that this technique is reli­
able. 

Application of kernel bifurcation testing algorithm to conservation acquisition 
data 

As an example of the use of the bifurcation testing algorithm in the previous section 
it has been applied to data from a conservation experiment by van der Maas (1992). 
The aim of the experiment was to find evidence that conservation acquisition is a 
stage-wise developmental process, accompagnied by transitions. The data that are 
discussed here are collected by using the item depicted in Figure 12, which is part of 
a larger computer test that was used in a longitudinal study with 101 children, rang­
ing from 6.2 to 10.6 years of age. 
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Fig 12. Test item in conservation experiment Fig. 13. Data from conservation experiment (van der 
of van der Maas (1992) Maas, 1992), for item in Figure 12. The independent 

and behavioural variabie are respectively age (years) 
and water level (cm). 

The item consists of two glasses of different widths. One of the glasses is filled with 
water, and a subject has to determine the height of the water level in the second glass, 
if the water was poured into this glass. The study did not include measures for con­
trol variables. For illustrative purposes we have analysed the data with age as control 
variabie. We have omitted observations for which the level response is near the top 
or bottom of the glass. A margin of 0.25 cm is used. This leads (taking into account 
missing data) to 721 observations. It is expected that older children give the correct 
response, i.e. level O. In contrast, younger children are not capable of taken into 
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account the difference in glass widths and will probably choose a water level that is 
the same as in the first glass. This is supported by the data, which are plotted in Fig­
ure 13. Therefore, there is a change in response, from level 0.75 to level 0, as childen 
grow older. However, this does not necessarily imply that a transition is present. To 
investigate whether a transition is present we first determined the kemel density esti­
mate for the data. This is plotted in Figure 14. 
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Fig. 14. Kemel density estimate for the conservation data in Figure 12. 

10 

Figure 14 also contains, in the horizontal plane, the configuration of modes of the 
density with respect to the level variabie, which corresponds to the configuration of 
stabie and unstable equilibrium states. Figure 14 clearly shows that there are two 
equilibrium states, one at the level 0.75 and one at the level O.O. In the first case sub-
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jects respond incorrectly by giving the same height as the water level in the flTSt 
glass. In the second case subjects respond correctly. From Figure 14, and in particu­
lar the height of the kemel density estimate at the modes, we also see that the prob­
ability that a level response of 0.75 is given decreases as age increases, wheras the 
probability that a correct response is given increases (the fact that the probability of 
a correct response decreases for subjects over age 10 is clearly caused by the small 
number of observations in this region). Figure 14 gives us astrong indication that 
there is a bifurcation point at ±7 years (we ignore the small circle at the bottom of the 
Figure 14, because of the small number of observations in the neighbourhood of this 
circle). In order to ascertain that there is indeed a bifurcation we applied the kemel 
estimate algorithm in the previous section. This resulted in a p-value, i.e. the proba­
bility that a bifurcation is present, of p=0.87. 

Discussion and conclusions 

With catastrophe theory it is possible to develop a methodology for testing the pres­
ence of transitions in experimental research. It delivers relevant and applicable defi­
nitions of a stage and a transition. Furthermore, the classification scheme can be very 
useful if one does not have clear knowledge about the appropriate model. 

Since the development of catastrophe theory (Thom, 1975) in the early seventies 
there has only been constructed a few techniques for estimating catastrophe modeis. 
Besides the method of Cobb, we mention the regression technique of Guastello 
(1988), and the least squares technique GEMCAT (Oliva, Desarbo, Day & Jedidi, 
1987). With the method of Guastello one is not capable of distinguishing between 
data from a catastrophe model and completely noisy data (Alexander, Herbert, 
Deshon & Hanges, 1992). With GEM CAT one is not capable of distinguishing 
between a stabie equilibrium state and an unstable equilibrium state (Hartelman, 
1997a). 

The method of Cobb is areliabie technique for estimating a catastrophe model 
using cross-sectional data. However, the domain of application of this method is 
rather restricted. It can only be used if the noise is homogeneous, i.e. constant for 
every state variabie value, and if linear transformations are sufficient to obtain a 
canonical form. Furthermore, the statistics which are used by Cobb are not sufficient 
to reliably test hypotheses with respect to the presence of a transition. 

If the stochastic noise term is not homogeneous, then, instead of using the proba­
bility density function, one should apply an altemative function, such as the level 
crossing function, to characterise the stochastic system. A stochastic equilibrium 
state and transition, defined with respect to the qualitative form of the level crossing 
function, correspond to qualitative properties of the system. This means that the 
occurrence of a transition does not depend on the measurement scales. The level 
crossing function can easily be estimated by using time level crossing properties of 
time series data. However, experience has shown that, in general, the number of 
observations should be large and the size of the time step should be small in order to 
obtain reliable estimates. 
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If the noise is homogeneous, then the over-parametrisation problem in the 
method of Cobb can be solved by smoothing the (cross-sectional) data using kemel 
density estimation. In this way the complete class of co-ordinate transformations 
can be used. As aresult it is possible to develop a transition testing algorithm that 
is in complete correspondence with catastrophe theory. That is, it is possible to test 
models with respect to their qualitative properties. In contrast to the method of 
Cobb, that consists of a comparison of a canonical cusp model and a linear model, 
the technique in §4.2, compares the class of transition models with the class of non­
transition modeis. 

The application of the kemel hypotheses testing technique to the conservation data 
of §5 is merely discussed as a first example of the statistical technique. However, the 
p-value as well as the form of the kemel density estimate in Figure 14, strongly indi­
cate th at a transition is present. The actual conservation test of van der Maas (1992) 
consisted of 4 items. The kemel technique has also been applied to the remaining 
items. The results for two of those items are similar as the one discussed in this paper 
(Hartelman et al., 1998). 
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