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ABSTRACT: Financial markets consist ofmany traders having different "beliefs" about 
future earnings and prices of stocks, and therefore traders use different trading strate
gies, such as fundamental versus technical analysis. We discuss the concept of Adaptive 
Belief Systems, where a financial market is viewed as a nonlinear, evolutionary sys
tem between competing trading strategies. Agents choose their prediction strategy 
from a finite set and revise their beliefs according to evolutionary fitness measured by 
accumulated realized profits or wealth. Bifurcation routes to market instability and 
complicated, chaotic asset price fluctuations may arise when the agents sensitivity to 
differences in fitness, the diversity of beliefs and/or the fitness memory increase. Tech
nical analysts may survive evolutionary competition and are not necessarily driven out 
of the market by fundamentalists. The evolutionary dynamics is characterized by an 
irregular switching between phases where fundamentalists dominate the market and 
prices are close to the RE-fundamental value and phases where technical analysis dom
inates and prices follow a self-fulfilling upward or downward trend . Technical analysts 
are not "irrational," but boundedly rational and may in fact earn above average net 
profits and achieve higher accumulated wealth than fundamentalists. 
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1. INTRODUCTION 

There has been a long and still ongoing debate whether prices of risky financial 
assets are completely determined by economie fundament als or whether traders' ex
pectations or beliefs affect asset prices significantly. For example, Keynes already 
argued that: "Investment based on genuine long-term expectation is so difficult as 
to be scarcely practibIe. He who attempts it must surely lead much more labori
ous days and run greater risks than he who tries to guess better than the crowd 
how the crowd will behave; and given equal intelligence, he may make more dis
astrous mistakes}} (Keynes (1936), p. 157). In Keynes view, stock prices are not 
completely determined by economie fundamentals, but investors "animal spirits" 
constitute an additional source of stock price fluctuations. More recent collections 
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comments on an earl ier draft. Financial support by the Netherlands Organization of Scientific 
Research (NWO) under grant B46-365 is gratefully acknowledged. W.A. Brock would like to 
thank the National Science Foundation under Grant # SBR-9422670 and the Vilas Trust for 
financial support. None of the above are responsible for errors and shortcomings in this paper . 
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of articles arguing that "market psychology" plays a significant role in the pric
ing of risky assets can e.g. be found in Shiller (1989) and Thaler (1994). Among 
financial practitioners, there also seems to be a commonly shared view that the 
large volatility so frequently observed in financial markets these days can not be 
attributed completely to economic fundamentals, but that the "psychological state 
of the market" may lead to sudden, large changes in stock prices triggered by news 
about small changes in fundamentals. 

In modern financial market theory however, it has often been emphasized that 
the view that "market psychology" affects asset prices is incompatible with the ef
ficient market hypothesis (EMH) and the rational expectations hypothesis (REH), 
see e.g. Fama (1970) or Malkiel (1987). In particular, market psychology, techni
cal analysis and noise traders are viewed as "irrational" behaviour and therefore 
incompatible with a theory where markets consist of rational traders optimizing 
their short or long term utility such as accumulated profits or wealth. In a perfectly 
rational world every trader has, given all his or her available information, correct 
expectations and trading can only occur because of asymmetric information. 

In this paper we discuss the concept of an Adaptive Belief System (ABS), that is, 
a financial market consisting of many heterogeneous agents with competing trading 
strategies based upon different beliefs about future prices. For some agents beliefs 
may be completely determined by economic fundamentals; others use simple tech
nical trading strategies and may have (temporary) upward or downward biased 
beliefs. Traders update their beliefs or trading strategies over time according to an 
evolutionary "fitness" measure, such as accumulated past profits or wealth. The 
nonlinear evolutionary interaction in such a heterogeneous world may lead to asset 
price fiuctuations similar to those observed in real markets. In particular, when 
traders are very sensitive to differences in fitness of trading strategies or when the 
diversity in beliefs is high, market instability and complicated asset price fiuctu
ations may arise, characterized by an irregular switching between phases where 
prices are close to their fundament al value and optimistic or pessimistic phases 
where prices deviate in an upward or downward trend from their fundament al val
ue. These complicated asset price fiuctuations are driven by (boundedly) rational 
evolutionary select ion of trading strategies ("rational animal spirits"). It is impor
tant to note that in such a heterogeneous agents world, technical analysis is not 
irrational, but may in fact earn higher profits during certain periods or even lead 
to above average accumulated wealth. 

Rather than challenging rational expectations theory or trying to find an alterna
tive to rational expectations equilibrium (REE), our theory builds on the extensive 
work in REE theory by expressing beliefs in terms of deviations from a structural 
REE model. These deviations can be viewed as each REE trader's beliefs about 
how the deviations from REE by the rest of the trading community might show up 
in equilibrium prices. Indeed truly rational traders must take into account the be-
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havior of other "non-rational" traders in the trading community. Our theory leads 
to a decomposition of excess returns of the risky asset, consisting of an "REE" part 
which is a Martingale Difference Sequence (MDS) plus an "endogenous dynamicai" 
part which is contributed by our theory. This "extra part" is rather like "endoge
nous uncertainty" in the sen se of Kurz's book (1997) which develops a theory of 
rational belief equilibria (RBE). Brock, Lakonishok and LeBaron (1992) have doc
umented that some popular parameterizations of the EMH such as GARCH models 
tend to under predict (over predict) returns (volatility) following buy signals and 
tend to over predict returns following sell signals of certain trading strategies. Sig
nificance is measured by bootstrapping the null distribution of trading strategy 
statistics under the null model under scrutiny. Our theoretical decomposition of 
returns may shed light on economic forces causing such empirical findings. 

Let us now relate the present paper to some of our other recent work on ABS. 
Brock and Hommes (henceforth BH) (1997a) introduced an evolutionary dynamics 
in a demand-supply cobweb model with heterogenous agents, where sophisticated 
predictors such as rational expectation are more costly to obtain than simple rule of 
thumb predictors such as adaptive expectations. They showed that a rational route 
to randomness, i.e. a bifurcation route to complicated, chaotic equilibrium price 
fluctuations , occurs when traders become more sensitive to differences in fitness 
(past net realized profits ) associated to the different expectations schemes. Brock 
(1997) and BH (1997b, 1998) introduce the same evolutionary dynamics into the 
present discounted value asset pricing model, and investigate rational routes to 
randomness in a heterogeneous agent asset pricing model. 

The present paper emphasizes two novel aspects of ABS. In previous work, for 
analytic tractability attention has been mainly focussed on the case where fitness 
is given by net realized profits in the most recently observed period. Here we will 
focus on the case where fitness is given by accumulated past realized profits and 
show that a similar bifurcation route to eomplieated asset priee fluctuations oeeurs 
when the memory of the fitness measure inereases. Secondly, we present an exam
ple of a "Large Type Limit" (LTL). The LTL concept was sketched in Brock (1997) 
and Broek and de Fontnouvelle (1999) and will be more rigorously developed in BH 
(1999). In the ABS examples studied in BH (1997b, 1998) the number of different 
trader types is small, e.g. two, three or four, including types sueh as fundamen
talists, trend followers, contrarians or upward or downward biased traders. In real 
marktets, one would expeet many different types of traders. A Large Type Limit 
(LTL) is a deterministie "approximation" of a market with many different traders 
types, where initial beliefs are drawn from some random distribution. The LTL is 
a type of ensemble limit rather like thermodynamic limits in statistical meehanics. 
It is motivated by observing that equilibrium equations in our models tend to have 
a form which is a function of expressions that look like sample moments. This 
leads to taking a type of limit so that t'hese sample moments converge to pop-
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ulation moments . For particular distributions of characteristics, one may obtain 
closed form solutions for these population moments and thus obtain closed form 
expressions for objects that appeared intractabie. Here we will study a simpie, but 
typical example of an LTL, and investigate bifurcation routes to market instability 
and complicated dynamics. 

The LTL theory developed here may be used to form a bridge between analytical 
results and the literature on artifical evolutionary stock market with computer 
simulation of as set trading, which has become very popular in the last few years 
(see e.g. Arthur et al. (1997), LeBaron et al. (1999) and LeBaron's review (1999)) . 
Unfortunately there are no analytical results available in the simulation literature. 
We believe our notion of Large Type Limit may be useful as a theoretical approach 
to this more computationally oriented literature. 

The plan of the paper is as follows. In Section 2 we present the present discount
ed value asset pricing model with heterogeneous agents. Section 3 focusses on the 
two type case, with fundamentalists versus trend chasers. Two key parameters of 
the model are the memory in fitness, i.e. the rate of decay of past profits in the 
traders' fitness functions, and the "intensity of choice" to switch trading strategies, 
i.e. the traders' sensitivity to differences in profits. We show that market instability 
and complicated asset price fluctuations arise when the intensity of choice becomes 
high and/or memory in the fitness measure increases. In Section 4 we go to the 
ot her extreme and treat Adaptive Belief Systems with a large number of belief 
types. Here we introduce the notion of belief characteristic space and the notion of 
Large Type Limit (LTL), and investigate bifurcation routes to complicated price 
fluctuations for the LTL. Finally, Section 5 concludes. 

2. ADAPTIVE BELIEFS IN THE BASIC MEAN VARIANCE FRAMEWORK 

Consider an asset pricing model with one risky asset and one risk free asset. 
Let Pt, denote the price (ex dividend) per share of the risky asset and let {yd be 
a stochastic dividend process of the risky asset at time t. Let there be a risk free 
asset which is perfectly elastically supplied at gross return R. We have 

for the dynamics of wealth where bold face type denotes random variables at date 
t + 1 and Zt denotes the number of shares of the risky asset purchased at date 
t. Let Et, Vt denote conditional expectation and conditional variance based on a 
publically available information set such as past prices and dividends and let Eht 

and Vht denote conditional expectation and variance of investor type h. We shall 
sometimes call these conditional objects the "beliefs" of trader type h. Assume each 
investor type is a myopic mean variance maximizer so that demand for shares, Zht 
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solves 

Max{EhtW t+1 - (a/2)Vht (Wt+1)}' I.e., (1) 

Zht = Eht (pt+l + Yt+1 - Rpt)/aVht(pt+1 + Yt+1 - Rpt}, 

where the parameter a measures the risk aversion. Let Zst denote the supply of 
shares per investor at date tand nht the fraction of investors of type h at date t. 
Then equilibrium of supply and demand implies, 

(2) 

Hence, in the case when there is only one type h, equilibration of supply and 
demand yields the pricing equation 

(3) 

Given a precise sequence of information sets Ft we may use (3) to define a not ion 
of fundamental solution by letting Eht, Vht denote conditional mean and variance 
upon Ft. Now specialize (3) to the special case of zero supply of outside shares, 
i.e., Zst = 0, for all t, to obtain2 

(4) 

It is weIl known that (4) typically has infinitely many solutions but, for the standard 
case R > 1, only one fundamental solution satisfies the "no bubbles" condition 

lim(EIPt/ Rt
) = 0, 

where the limit is taken as t -t 00, provided the series summation El {yt/ Rt-l} is 
absolutely convergent. In the special case where the dividend process {yd is IID, 
i.e. E {Yt+1 I Fd = 'iJ is constant,3 the fundament al solution has the particularly 
simple form 

p; = Ti = 'iJ / (R - 1). 

Now return to the case of heterogeneous beliefs. Assuming that the conditional 
variance is the same for all types h, i.e. Vht == "V;, the market equilibrium equation 
(2) can be rewritten as 

Rpt = L nhtEht(Pt+1 + Yt+l) - a "V; (Pt+l + Yt+1 - RpdZst, 

2For the general case of time varying supply Z.I of outside shares one may proceed similarly 
by replacing YI+l in (4) by yf,l+l = YI+1 - az.1 Vhl(PI+l + YI+d and interpret yf,l+l as the risk 
adjusted dividend; see Brock (1997) . The special case Z.I = 0 of zero supply of outside shares is, 
up to a constant, equivalent to the case of constant supply of outside shares , i.e. Z.I = z., for all 
t. 

31t is easy to generalize the development to cases where the dividend process {yt} is not lID. 
See e.g. Brock and Hommes (1997b) for an example with the dividend process given by a random 
walk with martingale difference sequence errors. 
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which for the case of zero supply of outside shares, i.e. Zst = 0, simplifies to the 
pricing equilibrium equation4 

(5) 

In order to proceed, we shall make some simplifying assumptions concerning the 
beliefs of type h : 

Al. Vht(Pt+l + Yt+l - Rpd = Vt(Pt+l + Yt+! - Rpt) = (7'2, for all h,t. 

A2. Eht(Yt+d = Et(Yt+d, for all h, t. 

A3. All beliefs Eht (PHl) are of the form 

Eht(pt+l) = Etp;+! + fh(Xt-t, . .. , Xt-d, for all h, t. 

Assumption Al states that beliefs about the conditional variance are constant and 
are the same for all types.5 6 Assumption A2 amounts to homogeneity of beliefs 
on the one step ahead predictor of earnings; as stated above here we will focus on 
the case of lID dividends, i.e. Et(YHd = '[j, for all h, t. Finally, assumption A3 
restricts the beliefs Eht(pt+d to time stationary functions fh of past deviations of 
a commonly shared view of the fundamental. We write fht = fh(Xt-l, ... , Xt-L). 

These assumptions allow us to improve tractability by working in the space 
of deviations from the benchmark fundamental. Let Xt = Pt - p;, denote the 
deviation from the fundamental solution. Notice that working in deviations from 
the fundament al also allows us to consider more general dividend processes {ytl, 
with p; the corresponding fundamental. Using assumptions A2 and A3 in the 
equilibrium equation (5), and since L.: nht = I for all tand the fundamental solution 
p; satisfies (4), the equilibrium equation can be rewritten in deviations form: 

(6) 

Turn now to the development of the dynamics of the fractions nht. Recall that 
all traders are assumed to have common, constant conditional variances (7'2 = 

4See Footnote 2. 
5Notice that we assume that our traders only have differences of opinion on the conditional 

mean of the returns distribution. There is not a contradiction in allowing them to have the same 
opinions on conditional variances . Indeed in a diffusion context one can follow Dan Nelson's work 
(cf. Bollerslev, Engle and Nelson (1994)) on continuous record asymptotics and argue that one 
should expect easier agreement on conditional varianees than conditional means. 

6Recently, Gaunersdorfer (1999) investigated a similar heterogeneous beliefs asset pricing mod
el with identical, but time varying conditional beliefs on varianee for all types h, given by an 
exponential moving average. Instead of a 3-D dynamical system as in Broek and Hommes (1998), 
she then obtains a 5-D dynamical system, with similar bifurcation routes to complicated asset 
price fluctuations . 
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Vht(Rt+d, on excess returns Rt+l = Pt+l + Yt+1 - Rpt. Let Pht 
consider the goal function 
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(7) 

N ote that (7) is equivalent to the ob jective (1) up to a constant, so the optimum 
choice of shares of the risky asset is the same. Denote the optimum solution of (7) 
by z(Phd. 

Before we define the "fitness function" we compute the realized excess return 
over period t to period t + 1, 

Rt+l = Pt+1 + Yt+l - Rpt = Xt+l + P;+1 + Yt+1 - RXt - Rp; 

= Xt+l - RXt + P;+1 + Yt+l - Et(P;+1 + Yt+d + Et(p;+1 + Yt+d - Rp; 

== Xt+1 - RXt + bt+1' (8) 

Notice that, since p; satisfies (4), bt+1 is a Martingale Difference Sequence (MDS) 
W.r.t. Ft, i.e. E{ bt+1 I Fd = 0 for all t. Indeed we may view the decomposition (8) 
as separating the "explanation" of realized excess returns Rt+1 into the contribution 
Xt+l - RXt of the theory being exposited here and the convent ion al Efficient Markets 
Theory term bH1 .7 

A simple form for the fitness function or the performance measure 7r(Rt+t, phd, 
IS 

(9) 

that is, fitness is given by realized profits for trader type h.s Notice that in general, 
realized return depends upon stochastic dividends and is given by R t+1 = Xt+l -

7Studies like Brock et al. (1992) parametrize 6t+1 by, for example, a GARCH or EGARCH 
model, and test for the presence of an "additional term" Xt+! - RXt by bootstrapping the null 
distribution of objects like trading strategies under the null hypothesis that Xt+! - RXt = 0 for 
all t. Brock et al. (1992) reject the null hypothesis that Xt+! - RXt = O. Hence, it appears that 
extra structure is needed to "explain" excess returns data. This kind of finding motivates our 
theoretical work . 

8 Another possibility for the performance measure is e.g. 7rh,t = 7r(Rt+1, Pht) = Rt+1Z(Pht) -
(a/2)[z(Pht)Fu 2

, where the second term captures risk adjustment; see Gaunersdorfer (1999) on 
the risk adjusted case . The non-riskadjusted case considered here may be regarded as a fitness 
function that is slightly inconsistent with the traders being myopic mean-variance maximizers 
of wealth, in the sense that in their optimal portfolio decisions traders take risk into account, 
whereas the updating of beliefs is determined by non-risk adjusted realized profits. On the other 
hand, from a practical viewpoint accumulated realized profits or wealth may be the most relevant 
performance measure real market practitioners care about. 
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RXt + 8t+1. In Section 3 we will mainly focus on the deterministic skeleton, i.e. the 
nonlinear as set pricing dynamics, with 8t+1 = 0 for all tand constant dividend yper 
time period. However, Section 3 also contains some numerical simulations with a 
stochastic dividend process Yt = Y + Ct, where "tt is lID, with a uniform distribution 
on a small interval [-c, +c], to investigate the effect of noise upon the as set pricing 
dynamics. Notice that in the lID dividend case we simply have 8t+1 = Ct+1· 

More generally, one can introduce memory into the fitness measure, by consid
ering a weighted average of past realized profits, as follows, 

(10) 

where the parameter w represents the "memory strength" . In the special case 
w = 0, fitness coincides with realized profit in the most recently past period; at 
the ot her extreme case w = 1, fitness coincides with accumulated wealth. In the 
intermediate case 0 < w < 1, fitness is an exponentially moving average of past 
realized profits. 

The updated fractions nh,t will be given by the discrete choice probability 

(11) 

where the parameter (3 is the intensity of choice measuring how fast agents switch 
between different prediction strategies; see Broek and Hommes (1997a) for a moti
vation of using the discrete choice set up for predictor selection. In the extreme case 
when the intensity of choice is infinite, the entire mass of traders uses the strategy 
that has highest fitness. At the other extreme, when the intensity of choice is zero, 
the mass of traders distributes itself evenly across the set of available strategies 
and all fractions will be constant and equal. The higher the intensity of choice (3, 
the more "rational" traders are in the sense that they become more sensitive to 
the fitness of the different trading strategies. 

The Adaptive Belief system is thus given by market equilibrium (6) and updat
ing of fractions (11), with fitness given by (9) and (10). The timing of updating 
of beliefs is important. We can only all ow the fractions nh,t on the RHS of (6) to 
depend upon observable deviations Xt-1 at date t - 1 and further back in the past. 
Therefore, on the RHS of (11) fitness U and return Rare dated at time t - 2, 
to ensure that past realized profits R t+1- j z(Ph,t-j), j ~ 1, are indeed observable 
quantities that can be used in predictor selection. 

3. FUNDAMENTALISTS VERSUS TREND CHASERS 

In this section we investigate a simple example of an ABS with two different 
trader types. The first type are fundamentalists, believing that at each date t the 
asset price Pt will be at its RE fundament al value p;, or equivalently at each date 
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their expected deviation from the fundamental equals zero, that is, fIt == O. The 
second trader type consists of "trend chasers," expecting 

Trend following may be seen as an extremely simple example of technical analysis, 
where traders believe that prices will deviate from the RE fundamental, following 
a constant growth rate. Brock and Hommes (1998) investigate the same 2-type 
example as well as other simple examples with three or four different trader types, 
focussing on the special case where memory is only one lag, i.e. W = 0, so that the 
performance measure becomes realized profit in the previous period. They show 
that, when average per period costs for fundamentalists are larger than average 
per period costs for trend chasers, an increase in the intensity of choice (3 leads to 
a rational route to randomness, that is, a bifurcation route to chaotic asset price 
fluctuations. More precisely, an increase of the intensity of choice (3 causes the 
fundamental steady state to become unstable in a pitchJork bifurcation in which 
two additional stable non-fundament al steady states are created. As the intensity 
of choice increases further the two non-fundamental steady states become unstable 
in a Hopf-bifurcation and periodic, quasi-periodic and even chaotic asset price 
fluctuations arise for large values of the intensity of choice. All these results have 
been shown for the case where memory is only one single period, i.e. for w = O. 
Here we investigate the effect of the memory parameter w, and its role in generating 
market instability. It will be convenient to work with the difference in fractions 

mt == nIt - n2t = Tanh(~[Ul,t-2 - U 2,t-2 - Cl), (12) 

where the parameter C represents the per period average costs of fundamentalists. 
This cost C may be positive because "training" costs must be borne to obtain 
enough "understanding" of how markets work in order to believe that they should 
price according to the EMH fundamental. Straightforward computation, using (6), 
(12), (9) and (10), shows that in the case of fundamentalists versus trend chasers 
the dynamics is described by 

1 - mt 
RXt = 2 gXt-l 

(3 gXt-3 
mt = Tanh( -2 [WUt-l - --2 (Xt-l - R Xt-2 + 8t - l ) - Cl) 

aa 
gXt-3 

Ut = WUt_l - --2-(Xt-l - RXt-2 + 8t-d - C, 
aa 

(13) 

(14) 

(15) 

where Ut = Ul ,t - U 2,t is the difference in fitness of the two trader types and 8t - l 

is the stochastic component in the realized excess returns, which in the case of 
an lID dividend process Yt-l = Y + Ct-l coincides with the stochastic term Ct-I. 
Substituting (14) into (13) leads to a system of difference equations which is of 
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third order in Xt and of first order in Ut, or equivalently a four dimensional first 
order system. We are now ready to explore existence and stability of steady states 
of (13)-(15): 

LEMMA 3.1: (Existence and stability of steady states for (13)-(15)). Let m eq = 

Tanh( - 2(f~w))' m* = 1 - 2R/ 9 and x* be the positive solution (if it exists) of 

Tanh(~[(R-I)9(x*)2 - Cl) = m*. 2(I-w) a<1 2 

(a) For 0 < 9 < R, El = (0, meq
) is the unique, globally sta bie steady state. 

(b) For 9 > 2R, there exist three steady states El = (O,meq
), E2 = (x*,m*) and 

E3 = (-x*, m*) ; the steady state El = (0, m eq
) is an unstable saddle point. 

( c) For R < 9 < 2R there are two possibilities: 
(i) if m* < m eq then El is the unique, (locally) stabie steady state . 
(ii) if m* > m eq then there are three steady stat es El, E2 and E3; the steady 
state El = (0, m eq

) is an unstable saddle point. 

PROOF: From (13) we get that a steady state (x*,m*,u*) has to satisfy 

R * 1 - m* * 
x = 2 gx, 

implying x* = 0 or R = g(l - m*)/2. Solving the latter for m* yields 

* 2R m = 1--. (16) 
9 

According to (14) and (15), for the deterministic skeleton (i.e. with 8t - 1 = 0), we 
also have m* = Tanh(~u). Solving u*, as a function of x*, from (15) then yields 

m* = Tanh( f3 [(R - l)g (x*? - Cl). 
2(1 - w) aa2 

(17) 

The fundamental steady state is then given by (0, m eq
) = (0, Tanh( - 2(f~w))) and 

the non-fundamental steady states are (x*, m*) and (-x*, m*), where m* is given 
by (16) and x* is the postive solution (if it exists) of (17). For 0 < 9 < R, m* < -1 
so that the fundamental steady state is the unique steady state. For 9 > 2R, 
o < m* < 1 and (17) has one positive solution x* and one negative solution -x* so 
that two non-fundamental steady states exist. Finally, for R < 9 < 2R, (17) has 
two solutions if and only if m* = 1 - 2R/ 9 > m eq

. Finally, the stability results of 
the fundamental steady state follows easily from (13). The eigenvalues of the fun
damental steady state are ÀI = (1-;;;q)9 = (1 - Tanh( - 2(f~w)))g/(2R) and À2 = O. 
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Obviously ),1 >- 1, if and only if m* > meq • Q.E.D. 

Hence, when the trend chasers extrapolate only weakly (0 < 9 < R), then 
the fundamental steady state El is globally stabie. If costs G = 0 the steady 
state fractions of fundamentalists and trendchasers are equal for any fJ, since the 
difference in realized profits is zero at x = O. Now if G > 0, we see that the mass 
on fundamentalists decreases to zero as the intensity of choice fJ increases to +00 
or when the memory becomes infinite (i .e. the weight w approaches +1). This 
makes economic sense. There's no point in paying any cost in a steady state for 
a trading strategy that yields no extra profit in that steady state. As intensity of 
choice fJ increases or the weight of net realized profits increases, the mass on the 
most profitable strategy in net terms, increases. When the trendchasers extrapolate 
very strongly (g > 2R) there are always two additional non-fundamental steady 
states E2 and E3, one above and one below the fundamental steady state, even 
when there are no information costs. Finally, the case of strongly extrapolating 
trendchasers (R < 9 < 2R) and positive information costs for fundamentalists, i.e. 
G > 0, is the most interesting. For fJ = 0, meq = 0 > m*, whereas for large fJ or for 
w close to 1, m eq ~ -1 < m* . Hence, as the intensity of choice increases or when 
memory becomes infinite, a pitehJork bifurcation occurs for some fJ = fJ* or for 
some w = w*, in which the fundament al steady state El becomes unstable and two 
additional (stabie) steady states E2 = (p*, m*) and E3 = (-p*, m*) are created. 
Additional memory thus leads to the same primary bifurcation as an increase of 
the intensity of choice, and the creation of non-fundament al steady states. In 
particular, there exist critical values fJ* and w*, such that for fJ > fJ* and/ or for 
w* < w ::; 1, the fundament al steady state is an unstable saddle point. 

BH (1998) show that, in the special case when memory is only one single pe
riod, i.e. for w = 0, as the intensity of choice fJ increases beyond the primary 
bifurcation value fJ*, a secondary bifurcation occurs, namely a Hopf bifurcation in 
which the non-fundamental steady states become unstable and two (coexisting) at
tracting invariant circles are created on which periodic or quasi-periodic asset price 
fluctuations occur. Moreover, as the intensity of choice is further increased, even 
chaotic asset price fluctuations arise. Here we explore what happens when memory 
strength w increases beyond its primary bifurcation value w* . By introducing mem
ory into the fitness function, the dimension of the dynamical system has increased 
from 3 to 4. An analytical treatment of the local stability of the non-fundament al 
steady states, therefore becomes more delicate, and we use numeri cal simulations 
to investigate the bifurcation scenario. In all our numeri cal simulations we ob
served that, as the memory parameter increases the secondary bifurcation is again 
a Hopf-bifurcation of the non-fundament al steady states, in which two (coexisting) 
invariant circles, one around each of the two non-fundament al steady states, are 
created. 
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Figure 1 shows plots of the attractors in the (Xt, md plane without noise (la,c,e) 
and with noise (1 b,d,f) added to the dividend process and to the system equation 
(13). Immediately after the secondary bifurcation, periodic or quasi-periodic fluc
tuations occur. In Figure la, the orbit converges to one of the two attracting in
variant" circles" created af ter the Hopf bifurcation of the non-fundamental steady 
states. As w increases (Figure Ic), the invariant circle grows and almost has the 
shape of a "rectangie" . For even larger w-values (w 2: 0.95, including w = 1 as 
in Figure Ie) in all our numerical simulations orbits converge to the fundament al 
steady state. It is important to note however that for w > w· the fundament al 
steady state is a saddle point, and therefore it must be locally unstable. Adding 
small noise to the dividend process and system equation (13) will therefore drive 
asset prices away from the fundament al steady state again, as illustrated in Fig
ure 1f. Figure 2 shows the time series, both with and without noise, corresponding 
to the attractors in Figure 1. Prices are characterized by a switching between an 
unstable phase of an upward (or downward) trend and a stable phase with prices 
close to their fundamental value. In the noise free case, this switching seems to 
be fairly regular. In the presence of small noise however, the switching becomes 
higly irregular and unpredictable. Notice also that in the case when fitness equals 
accumulated net wealth, i.e. w = 1, the length of the period where one of the two 
groups dominates the market tends to become longer. 

At this point, the reader is urged to compare Figure 1 to Figure 1 and the 
subsequent discussion in BH (1998, pp. 1250-1251), for the case where fitness is 
realized profit in the last period, i.e. w = 0 and f3 large. These figures are very 
similar. BH (1998) argue that in the case w = 0 and f3 large the system is close 
to having a homoclinic orbit, with time paths diverging from the fundamental 
steady state along the unstable manifold in the horizont al direction, and returning 
close to the steady state along the stable manifold in the vertical direction. We 
conjecture that, for f3 fixed, as the memory parameter w approaches + 1 the system 
also gets close to having a homoclinic orbit. A proof of this conjecture about the 
global dynamical behaviour when memory strength increases seems to be hard, 
since for w > 0 the system is 4-D; in any case a proof is beyond the scope of 
this paper. However, the result should not co me as a complete surprise, because 
in the case w = 0 and f3 large along the periodic and chaotic equilibrium time 
paths, average profits of the trend chasers will be higher than average profits of the 
fundamentalists due to fundamentalists' positive information costs.9 Therefore, in 

9 A natural question is whether the positive per period information costs for fundamentalists 
is the main reason for obtaining these results. BH (1998) also investigate a number of examples 
with three or four different trader types, without any information costs for fundamentalists, for 
the finite memory case w = O. In these examples, along the cycles and chaotic equilibrium paths 
average profits of non-fundamental traders are not necessarily smaller than average profits of 
fundamentalists. Whereas the precise role of information costs in the evolutionary competition 
with large memory remains to be investigated, these examples suggest that similar results may 
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FIGURE 1. Attractors for different values of the memory parameter w, with all other 

parameters fixed at f3 = 1, C = 1, 9 = 1.2, R = 1.1 and a = 0'2 = 1. (a - b)w = 0.72, 
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(c - d)w = 0.75, and (e - f)w = 1. In (b) , (d) and (f) dividend noise Ót (added to the dividend 

process) and system noise (added to equation (13)) have been added, both drawn from a 

uniform distribution on the interval [-0 .05,0.05] in (b) and (d) and the interval [-1,1] in (f) . 
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FIGURE 2: e and f. Time series corresponding to the attractors in Figure 1, with and without 

nOlse . The time series for w = 1 in (e-f) correspond to the case where fitness is given by 

accumulated net wealth . 
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the case w = 0 and f3 large, accumulated net wealth of the trend chasers becomes 
larger than accumulated net wealth of the fundamentalists. This suggests that also 
in the case when f3 is fini te and fixed and memory w gets sufficiently close to 1, 
fundamentalists may not be able to drive out trend chasers. Instead, even with 
large memory the (noisy) evolutionary dynamics is characterized by an irregular 
switching between periods where the market is dominated by trend followers and 
prices diverge from the fundament al and periods where differences of accumulated 
profits of fundamentalists and trend followers become large enough to push prices 
back close to the fundamental. This suggests that, as memory increases, the system 
gets close to having a homoclinic orbit associated to the fundament al saddle point 
steady state. 

In summary, we conclude that the bifurcation scenario w.r.t. the memory pa
rameter w (with f3 fixed) is essentially the same as the rational route to randomness 
w.r.t. the intensity of choice f3 (with w fixed at 0). Increasing the sensitivity of 
traders to yesterday's profits has a similar effect as increasing memory of past gen
erated profits. Memory thus appears to be another possibly destabilizing force in 
the evolutionary adaptive belief system with accumulated realized profits as the 
fitness measure. When fitness equals accumulated wealth, random "news" about 
fundamentals may trigger temporary speculative bubbles. 

A word of caution about the generality of these results needs to be said howev
er. In recent work in progress, Brock and Hommes (1999) show that if the fitness 
measure is given by risk adjusted profits (see Footnote 8), when costs for all trad
ing rules are zero and memory is infinite, all bounded orbits in the evolutionary 
dynamics must converge to the RE fundamental steady state. In the risk adjusted 
case, more memory is thus a stabilizing force. In the non risk adjusted case, the 
fact that in their evaluation of the performance of the different trading strategies 
traders do not take into account the risk they have taken in accumulating their 
wealth, thus plays an important role for memory to become a destabilizing force 
and the survival of non-fundamental traders in the evolutionary competition. In 
general, the role of memory in generating stability or instability is thus ambiguous. 

4 . LARGE TYPE LIMITS 

In the previous section we focused on a very simple example of an adaptive belief 
system, with only two trader types. Brock and Hommes (1998) present a detailed 
analysis of bifurcation routes to chaotic asset price fluctuations, in a number of 
other examples with two, three or four different types of traders. In real markets 
however, one would expect a much larger degree of heterogeneity, with a large 
number of different beliefs or trading strategies. In this section we discuss the 

be true in cases without any information costs. 
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notion of Large Type Limit (LTL), which is in fact a (deterministic) dynamical 
system approximating a market with many different trader types. The notion of 
LTL for the asset pricing model was discussed already in Brock (1997). Here we 
present a simpIe, concrete example of an LTL; a more detailed treatment will be 
given in Brock and Hommes (1999) . Broc.k and de Fontnouvelle (1999) investigate 
LTLs in the overlapping generations model. 

In order to motivate the concept of Large Type Limit (LTL) consider the equi
librium equation 

(18) 

Now suppose there are parameter vectors 0, </>, and functions f(·), and U(·), such 
that for each h, and each t, we have 

Furthermore, suppose that there is a joint distribution function G(·, .), for example, 
multivariate normal from which Oh , </>h are drawn for each h. Divide both numerator 
and denominator of (18) by Hand observe that (18) may be rewritten as 

RXt = Ê{exp(,BU(~, Xt-I, ... ))f(0, Xt-I' . . . )} / Ê{exp(,BU(~, Xt-I, ·· .))}, (19) 

where Ê denotes the analog estimator (1/ H) E, i.e., 

Ê{.} == (1/ H) L {.}. 
Note that we have written 0 and </> with tildes to encourage the reader to view them 
as random variables. We now have the notation and framework set up to motivate 
and to introduce the notion of LTL. 

Arthur et al. (1997) and LeBaron et al. (1999) (cf. LeBaron's review (1999)) 
have been conducting evolutionary adaptive simulations of "artificial stock mar
kets" that parallels the literature on "artificiallife." We wish to formulate an an
alytical apparatus that will enable us to obtain some analytic insight into the be
havior of these simulation experiments. The simulation experiments can be viewed 
as a "computer model" of a real world stock market that goes much further than 
pencil and paper analytics in helping us understand what goes on in real markets. 

The "artificial stock market" of Arthur et al. (1997) and LeBaron et al. (1999) 
operates by starting out with a population of H "rules" (which are rather like our 
fht functions ). These rules compete against each other over time and replicate 
according to their relative fitnesses (rather like our equilibrium dynamical system 
(19)) . There is another layer of complexity in the artificial stock markets that is 
not present in our equilibrium dynamical system (19). It is "sex" and "mutation". 
In Arthur et al. (1997) and LeBaron et al. (1999) rules are coded as bitstrings and 
a version of Holland's classifier system and genetic algorithm is used to produce 
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new rule types, while the lowest performing rule types are discarded from the 
"ecology" to make room for the new ones. Our framework can make a very crude 
approximation to these dynamic simulations with evolutionary forces of mutation 
and sexual reproduction if we assume these forces operate in a slow scale of time 
relative to the replication time scale, "t," operating the equilibrium dynamical 
system (19). Here is the crudest but most tractabie approximation. Draw a system 
(19) of size H "species" of "rules" Jh, and run it for T periods, then draw another 
system (19) of size H independently, and run it for T more periods. Repeat this 
process. We can use LTL theory to study the behavior of this sequence of dynamical 
systems for large T. We build this ensemble by first describing a "trial." Draw 
H "samples" Uh,4>h) from the joint distribution Ge,') at date 0, one for each 
h = 1,2, ... ,H and fix them for all future times. This gives us, via the equilibrium 
equation, equation (19), one dynamical system which we call a "trial" dynamical 
system. Build an ensemble of dynamical systems by considering a collection of N 
trial dynamical systems. We are now in a position to pose and possibly answer 
questions about the "average" behavior of this ensemble for large Hand large N. 
We are particularly interested in the behavior for large H. Indeed under modest 
regularity conditions on the sampling process the sample moments appearing on the 
RHS of (19) converge in probability to the population moments. If the regularity 
conditions are strengthened on the sampling process, the quality of the convergence 
is strengthened. In fact we can obtain exponentially Jast convergence of each sample 
moment to its population counterpart under regularity conditions and lID sampling 
(cf. Ellis (1985), Chapter 2). Since the RHS of (19) is a smooth function (ceo) of 
quantities that converge exponentially we might expect exponential convergence of 
the RHS of (19) as H -t 00. In any event, this motivates analysis of the population 
counterpart of (19) in a first cut at a complete probabilistic analysis. 

We conduct the first cut analysis of (19) here by replacing, from now on, all 
sample moments by their population counterparts and analysing the resulting de
terministic dynamical system 

RXt = E{ exp(,BU(~, Xt-I, ... ) )1(0', Xt-l, ... )} / E{ exp(,BU(~, Xt-l, ... ))}. (20) 

This raises the problem of calculating the population moments appearing on the 
RHS of (20) for specific applications. We illustrate the power of LTL theory here by 
calculating a representative example. We calculate an example of an LTL for the 
case where fitness is realized profits in the most recently observed period (i.e. the 
weight w = 0) and where parameters are distributed multivariate normal. Recall 
from (9) that actual realized profits are given by 

( Jht - RXt-2 
7rh,t-2 = R t - 1z Ph,t-2) = ( 2 )(Xt-l - RXt-2 + 8t - 1 ) 

aa 

where {8t} is the Martingale Difference Sequence component in the decomposition 
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of the excess returns process {Rd . In the notion of (22)-(24) below, we obtain, 

If we set 8t - 1 = 0 we get what we shaU eaU "the skeleton" of the stochastic 
dynamical system (21). We wish to uncover stabilizing and destabilizing economie 
forces by studying the skeleton. 

We specialize U and J in (20) to, 

Uht = (Xt-l - RXt-2)[(Jht - RXt_2)/(aa2)], 

Jht = Jt(fh) = BOh + BlhXt-l + .. . + BLhXt-L' 

thus, (20) becomes 

RXt = E{ exp[77Pt-I!t-2( B)lJt( B)} / E{ exp[77Pt-I!t-2( B)]}, 

where, 77 = /3/(aa2), 

Jt(B) = Bo + B1Xt-l + ... + BLXt-L, 

(22) 

(23) 

(24) 

Pt-l = Xt-l - RXt-2' T = 77Pt-I, So = T, SI = TXt-2-1,·.·, SL = TXt-2-L, and put 
exp(77Pt-I!t-2(B)) = exp(L: sjBj). 

In order to calculate a closed form expression for the RRS of (23) we use moment 
generating function formulae from norm al distribution theory. Note that 

E{exp(n)} = exp(E(n) + (1/2)Var(n)) 

for normal random variabIe n = L:sjBj. Note also that E{exp(L:sjBi)Bd can be 
obtained by simply differentiating E{exp(L:s jBj)} w.r.t Sk. 

Assume that the B's are uncorrelated (i.e. independent for this multivariate 
norm al case) for simplicity. It is straightforward to extend the method to correlated 
B's. Thus, we see that it is easy to use moment generating function formulae for 
multivariate normals to obtain the following closed form expres sion for equation 
(23), 

RXt = mo + 77Pt-1a02 + altXt-l + ... + aLtXt-L, where, 

akt = mk + 77Pt-la/Xt-2-k, 77 = /3/(aa2), 

(25) 

(26) 

with the mean mk = EBk and ak
2 the varianee of Bk. Notice that, if the maximum 

nu mb er of lags used in the (linear) predictors is L, then the large type limit (LTL) 
becomes a (nonlinear) difference equation in x of order L + 2, or equivalently an 
L + 2 dimensional dynamical system. 

The simplest special case of (25) that still possesses dynamics arises in the pure 
bias case when Jt( B) = Bo. When there is no intrinsic mean bias, i.e. mo = EBo = 0, 
the simplest LTL becomes 

RXt = mo + 77Pt-la02 = mo + 77a02(Xt_l - RXt-2) = 77a02(Xt_l - RXt-2). (27) 
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The natural bifurcation parameter for this system is 0: = rW02
• For this second 

order system, it is easy to see that instability occurs, with complex eigenvalues 
leaving the unit circle, as 0: increases beyond the bifurcation point O:c = 1. Hence 
an increase in choice intensity fJ, a decrease in risk aversion "a", a decrease in 
conditional variance a 2 , or an increase in diversity of beliefs a0

2 can push 0: beyond 
O:c and set off instability of the fundamental steady state x = 0 in (27) . 

We conclude that in the pure bias case, such as (27), instability tends to appear 
when rt == fJ / (aa2) increases and when the variance a5 of the tJo-distribution in
creases. Therefore one expects an increase in heterogeneity dispersion to increase 
chances of instability in these pure bias cases. 

Next consider a more general example with linear predictors with 3 lags, i.e. 
ft(tJ) = tJo + tJIXt-1 + tJ2Xt-2 + tJ3Xt-3. The LTL in (25)-(26) then reduces to the 5-D 
dynamical system 

RXt = mo + mlXt-1 + m2Xt-2 + m3Xt-3 

+rt(Xt-1 - RXt_2)(a02 + aI2xt_IXt_3 + a/Xt-2Xt-4 + a/xt-3xt-s),(28) 

where rt = fJ/(aa2). Steady states of (28) are the fundament al steady state x = 0 
and solutions x* (if they exist) of 

(29) 

where Ti = mI +m2+m3 and (j2 = ai+ai+a5. From this expression it is clear that 
two non-fundamental steady states, one positive and one negative, exist when the 
sum Ti of the means mi of the three trend parameters gi is large enough. Indeed, 
increasing one of the means mi leads to a pitchfork bifurcation of the fundament al 
steady state and the creation of two non-fundament al steady states in the LTL. In 
fact, a further increase of one of the means mi leads to a bifurcation route to compli
cated price fluctuations in the LTL similar to the bifurcation route for the two-type 
case discussed in Section 3, with a Hopf bifurcation of the non-fundament al steady 
state leading to periodic, quasi-periodic and even chaotic fluctuations in the LTL. 
However, here we will focus on a different bifurcation route, in an example where 
the fundament al steady state is the unique steady state of the LTL. 

Figure 3 shows some (projections of) attractors of the 5-D LTL in the Xt -
Xt-I plane, for increasing values of the parameter rt = fJ/(aa 2), with the other 
parameters fixed at mo = 0, mI = 0.5, m2 = 0.2, m3 = 0.1, a~ = 1, ai = 0.1 and 
ai = a5 = 0.05. The reader may easily check that for this choice of the parameters 
(29) has no real solutions, so that the fundament al steady state is the unique steady 
state of the LTL. Increasing the parameter rt is equivalent to increasing the intensity 
of choice fJ, decreasing the risk aversion parameter a, or decreasing the belief on the 
variance a 2 of the returns process. Figure 3 suggest that the fundament al steady 
state loses stability through a Hopf-bifurcation, in which an attracting invariant 
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circle is created, with (quasi- )periodic dynamics. As the parameter TI increases 
further, the invariant circle breaks up into astrange attractor with complicated 
asset price fluctuations as illustrated in the time series in Figure 4. For TI-values 
larger than 1.5, the LTL becomes globally unstable and prices diverge to infinity. 

It is important to note that this bifurcation scenario for the LTL, is similar to the 
bifurcation scenario in some of the examples with only three or four trader types, 
analyzed in BH (1998). In these few type examples, the primary Hopf bifurcation 
and the consecutive breaking of the invariant circle into astrange attractor are due 
to diversity in bias, that is , when types with positive and negative bias-parameter b 
in their linear forecasting rules fht = gXt-l + b, coexist. Opposite biases among the 
different types generate this bifurcation scenario in the few type examples. For the 
LTL, this particular bifurcation scenario also seems to be related to diversity in bias 
parameters among the many different trader types, as measured by the varianee O"~ 
of the bias. From (29) it is clear that wh en this diversity is large, the fundamental 
steady state will be the unique steady state. In all our numeri cal simulations of the 
LTL (28) with large diversity in bias, we observed a similar bifurcation scenario as 
illustrated in Figure 3. 

More generally, one may ask what is the relationship between bifurcation routes 
to complicated asset price fluctuations in the LTL and in a typical sample with 
many traders with initial beliefs drawn from the corresponding distribution. A 
more detailed analysis of this relationship will be given in BH (1999), but here 
we wish to make a brief rem ark. It can be argued that regularity conditions on a 
"population linearization" of (20) can be located so that if for the LTL the prima
ry bifurcation is one of the generic co-dimension one bifurcations lO as TI increases 
through a critical value TIc, then the probability that the primary bifurcation of 
the "sample linearization" of (19) is the same co-dimension one bifurcation goes to 
unity as H --t 00 . In fact, we expect the complete bifurcation route to complicated 
dynamics in the LTL to be similar to the bifurcation scenario in a typical sample 
with many traders. 

5. CONCLUDING REMARKS 

The theory we have started to build is difficult and controversial. When one 
wishes to build an extension of classical finance models to include evolutionary 
choice over a space of trading strategies one must expect controversy. Our pa
per is motivated by the kinds of evidence of departures of rational expectations 
equilibrium in real markets reviewed e.g. in Shiller (1989) and Thaler (1994), and 

lOThe co-dimension k of a bifurcation is the minimum number of parameters needed so that 
the bifurcation occurs in generic k-parameter families of dynamical systems. Co-dimension one 
bifurcations are thus the most common, since th~y already occur generically when varying one 
single parameter; see Kuznetsov (1995) for an introduction to bifurcation theory. 
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increases, the attracting invariant circle with (quasi-) periodic dynamics breaks into a astrange 

attractor with chaotic asset price fluctuations . 



W.A. Broek and G.H. Hommes 131 

eta = 1 350 

o 500 

eta 1.400 
5.0 r-------~~~----~------------~ 

x 

o 500 

eta = 1.440 

o 500 

o 500 

FIGURE 4. Asset price fiuctuations in the LTL for different values of the parameter 1). 



132 Rational Animal Spirits 

also observed in experimental markets, e.g. in Smith et al. (1988). An attractive 
feature of our theory is that the models are formulated in deviations from a ra
tional expectations fundamental solution. REE is thus nested as a special linear 
subcase within our nonlinear evolutionary adaptive belief system. As aresult, our 
theory leads to a decomposition of excess returns into a convent i on al REE mar
tingale difference sequence part and an endogenous evolutive dynamics part. This 
decomposition makes the theory suited for empirical testing. Our theory may be 
viewed as an attempt to "back oW' from REE in a bounded rationality sense, as 
in Sargent (1993), but nests REE in such a way that REE-econometrie technology 
such as methods based up on orthogonality conditions can be readily adapted to 
test the "significance" of the extra "free parameters" that our theory adds to REE 
theory. In related recent work, for example Baak (1999) implemented statistical 
tests for the "significanee" of the "extra parameters" embodied in the departures 
from REE for US cat tIe data. For stock market data, trading volume will play 
an important role in this testing because the heterogeneity of beliefs in our theory 
is associated with a typically larger level of trading volume than theories such as 
REE which impose more homogeneity on beliefs. De Fontnouvelle (1999) develops 
a theory which extends Brock and Hommes (1997a) to noisy REE settings which 
should be helpful in the extension we propose. 

There is an alternative way of looking at our formulation. Kleidon's recent 
review of literature on market "pathologies" such as crashes and blowoffs (Kleidon 
(1993)) stresses that there can be situations where traders are uncertain about 
the behavior of other traders and this can lead to momentary departures from 
rational expectations equilibrium. He reviews experimental work on bubbles and 
crashes which shows that markets with more "experienced traders" converge onto 
the fundamental but there may be blowoffs and crashes in the first one or two 
trials. He also reviews work that uncovers conditions that frustrate convergence 
to equilibrium. The main point in this part of Kleidon's review is that models 
which do " ... not assume irrational behavior but that relax the assumption that 
prices necessarily fully aggregate individual information ... allow for deviations from 
a fully revealing REE, with consequent booms and crashes," are very useful for 
understanding the sources of market "pathologies" like the Crashes of October 
1987, 1989 (Kleidon and Mehra (1997, p. 657)). Confidence in such models is 
strengthened by their consistenee with the experiment al results. These models 
focus the attention on concepts such as "external news" and "internal news." 

We think a theory is needed that nests both views in a way such that econometrie 
methods are suggested to test the null of REE against the alternative. Pro-REE 
economists loosely argue that the situations in which these extra free parameters 
are significant may not be frequent. Anti-REE types argue that such departures 
may be frequent for anti-REE types. We wish to contribute to the task of building 
a theory in which the data can speak to this issue. In spite of the evidence reviewed 
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by Kleidon, the controversy on REE still rages. 
Another important question concerning our work is whether the types of de

partures from REE and the types of nonlinearities that we focus upon here might 
not be "washed out" by aggregation across a rich enough heterogeneity of trader 
typesY After all in demand theory recent work of Hildenbrand (1994) and Grand
mont (1992) suggests plausible assumptions on heterogeneity of demanders so that 
aggregate demand ends up "downward sloping" so that the usual Walrasian ad
justment dynamics are stable. Might not a similar force "wash out" the potentially 
destabilizing forces caused by the type of trader heterogeneity discussed here? No
tice however, that in our theory the heterogeneity actually present at any given 
time is "endogenous" in the sense that it is evolutionarily "selected" from a "pop
ulation" of heterogeneity. This is a different situation than the one discussed by 
Hildenbrand and Grandmont. Indeed in the LTL there are a continuum of poten
tial types and the amount of mass put upon each type evolves according to the 
trading performance of that type relative to the other types. This evolutionary 
selection adds another layer of dynamics onto the market dynamics which results 
in the equilibrium dynamics which we study. This evolutionary selection dynamic 
can counter act the "washing out" effect of aggregation because mass is attracted 
to parts of the heterogeneity space that performs well. 

Turn now to another force which can check the "washing out" effect of aggre
gation. Our theory may be extended using the statistical mechanics approach to 
financial economics discussed in Brock (1993) . In that work financial models are 
developed where expectational complementarities cause a breakdown of the law 
of large nu mb ers because they induce strong dependence in the statistical sense. 
Laws of large numbers and central limit theorems require weak dependence. The 
framework developed in Brock (1993) is still econometrically tractable even though 
the law of large numbers and the central limit theorem breaks down. This is so 
because recent results on the Curie-Weiss model of statistical physics are extend
ed in Brock (1993) to develop tractable limit results in the context of financial 
markets models. We plan to develop a related extension of our theory by adding 
expectational complementarities along the lines of Brock (1993). This extension 
hopes to uncover useful sufficient conditions on expectational complementarities so 
that aggregation does not "wash them out ." 

Finally, there is a serious issue of econometric identification from data of effects 
that look like "contagion, bubbles, herding, etc." but which are plausibly just 
sensible market pricing of fundamentals. A good place to see the heart of this 
identification problem is the literature on the recent financial crises. Good places 
to start are Calvo (1998), Calvo and Mendoza (1998), Krugman (1998), and Garber 
et al. (1998). 

Note that Garber argued that much of these extreme financial movements are 

11 We thank Dave Furth ror pointing out this aggregation problem. 
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primarily fundamentally driven in an REE setting. I.e., the bot tom line is that 
REE theory can do a good job of explaining these recent financial movements once 
one takes into account the impact on the underlying fundament al of real world 
factors such as the interaction between potential insolvency chains with induced 
moral hazard in the regulatory framework of lending institutions such as banks. 
This nexus can act as a magnifier of shocks to fundamentals in the underlying 
REE pricing process so that REE returns look like they contain social interaction 
effects such as contagion when such effects are absent. The relative size of volume 
movements over time may be useful in assisting econometric identification here. 

Since financial crises are cited as an example of market induced instabilities like 
those studied in our work, let us look more closely at the recent crises. Calvo 
(1998) states "Recent financial crises in emerging markets have shared the follow
ing characteristics: 
1. have been preceded by large capital outfiows, 
2. evolved through a complicated interaction among the domestic financial and non 
financial sectors, international investors and banks, and sovereign governments, 
3. few people were able to predict them, 
4. led to a sharp growth slowdown, if not sheer output collapse." 
In point 2, Calvo is referring to phenomena such as moral hazard in banks, sovereign 
government actions, uncertainty of default, bad incentives inherent in existing reg
ulatory structures, and the like. These are all components of the "baseline funda
mental" in our theory. 

Hence, the only addition of our theory is the pos si bIe magnification or distortion 
of the equilibrium market returns process from the implicit REE market returns 
process in our theory. So the econometric identification issue is this. How can one 
use observable data on returns, volatility of returns, trading volume, etc. in the 
asset markets as well as data on observable components of the underlying funda
mental where many components of the underlying fundament al are not observed by 
the scientist but are observed by the market participants to adduce evidence for de
partures from REE pricing as developed by our theory or any theory of departures 
from REE pricing? 

This is not an easy problem, but it must be attacked in our view if economics 
is going to make any progress in narrowing the width of disagreements amongst 
scientists on the nature of the dynamics of crises like the recent financial crises. 
See Krugman (1998) for a recent commentary on the depth of this disagreement. 
At the risk of repeating ourselves let us conclude this paper with a short comment 
on what audiences we are trying to reach and what we are trying to do here. 

Audiences for this work include not only academics but also policy makers. 
There is a lot of interest amongst policy makers in financial social interactions 
measurement and research. Af ter all whenever the topic of regulation to assure 
"orderly" markets comes up, one is talking about pos si bIe problems caused by 
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social interactions in the financial markets. Terms such as "bubbles," "excessive 
speculation," "market panics," "herding," etc., reflect policy maker and public con
cern in this area. It is very difficult to measure and quantify such effects not only 
in theory, but also in empirical work. The work discussed here may be seen as 
an attempt to build a theory in which "excessive speculation" can be measured. 
In future work, we hope to contribute to "measuring" in both financial data and 
experiment al markets whether the endogenous speculative part of the theory IS 

significant. 
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