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This paper has three goals: 

• It gives a brief up-to-date account of the uniqueness of competitive equilibria 
when markets are incomplete. 

• It demonstrates by means of an example that when markets are incomplete 
multiple competitive equilibria can be obtained even though all agents have 
Cobb-Douglas preferences. 

• It suggests a new computational method to generate examples of multiple com
petitive equilibria. 

KEYWORDS: Incomplete financial markets, multiplicity of competitive equilibria, com
putation of competitive equilibria. 

JEL CODES: D52 , D58 . 

1. INTRODUCTION 

Financial market models are extremely useful, both for providing good theoretical 
intuition as weU as for making practical financial decisions. The perhaps most 
fundamental insight of financial market models is that no financial instrument can 
be studied in isolation. It is always the contribution to a portfolio of assets which 
is the most important characteristic of any single financial instrument. Moreover, 
on many financial markets a hu ge number of traders takes decisions independent
ly from each ot her , decisions which are clearly motivated by self-interest. And 
neither on product markets nor on labor markets are prices as flexible as on fi
nancial markets. Hence, the notion of a competitive equilibrium clearing a system 
of interdependent markets suggests itself as a natural theoretical foundation un
derlying financial market models. Indeed many of the most important financial 
market models like the CAPM, the Black and Scholes option pricing model and 
the Modigliani-Miller model, for example, can be phrased in terms of competitive 
equilibria. Results like the CAPM beta-pricing formula or the Black and Scholes 
option pricing formula refer to some competitive equilibrium. 

1 Acknowledgements : The research was done while the second coauthor was a visiting scholar 
at the Hoover Institution at Stanford University. The first and the third co au thor are indebted 
to Curtis Eaves who invited them to Stanford University in Summer 1997 and Spring 1998. 
Furthermore, all authors are grateful to Deutsche Forschungsgemeinschaft for financial support. 

165 
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Unfortunately, these pricing formulae depend on the particular equilibrium cho
sen. Hence if there are multiple competitive equilibria these results are indetermi
nate in some important aspect . In the CAPM, for example, the beta-coefficients 
which determine the assets ' risk premiums differ across multiple equilibria (cf. Bot
tazzi, Hens and LöfHer (1998)) . Hence, to provide a sound theoretical foundation 
the uniqueness of its competitive equilibria is essential for financial market models. 

Recently the theoreticalliterature on complete financial markets has made some 
progress in providing acceptable restridions leading to a unique competitive e
quilibrium. In this literature the following two approaches can be distinguished. 
Whereas the older literature referred to restrictions on the traders' heterogeneity of 
beliefs combined with specific fundional forms of their risk aversion fundions (like 
assuming identical beliefs and identical HARA-utility functions ) the new literature 
allows for any heterogeneity of beliefs and is able to achieve unique equilibria from 
assuming that each trader's relative risk aversion is sufficiently small. 

Only recently there have been some successful attempts to actually use the 
heterogeneity of agents' charaderistics in order to obtain unique financial market 
equilibria. The general idea that aggregation can create useful structure goes back 
to the seminal paper by Hildenbrand (1983). In this spirit, but based on the 
ingenious parametrization of agents' charaderistics chosen in Grandmont (1992), 
Calvet, Grandmont and Lemaire (1998) demonstrate that the aggregate excess 
demand function has the gross substitution property if agents' beliefs display some 
certain form of heterogeneity. However, this approach hinges on the unrealistic 
assumption of complete financial markets. 

The question of unique competitive equilibria in incomplete markets has been 
addressed only very recently. Extending both approaches to incomplete markets 
leads to the introduction of further assumptions restricting the assets' payoffs and 
the traders' endowments. Laitenberger (1998), for example, is the only one whose 
results for incomplete markets are based on the heterogeneity of agents' attitudes 
towards risk. He demonstrates various results for incomplete markets using much 
stronger restrictions than for complete markets. 

In this paper we demonstrate by means of an example that when markets are 
incomplete small relative risk aversion is not sufficient to obtain unique financial 
market equilibria. We make this point by explicitly computing multiple equilibria 
for one example economy. Whereas the computation of one competitive equilibrium 
for any given economy has long been studied (cf. Kehoe (1991) and more recently 
Herings (1996) for excellent surveys), no efficient computational methods are known 
by which multiple equilibria can be computed; or, at least, by which one equilibrium 
can be computed out of which the existence of multiple competitive equilibria can 
be inferred. The lat ter would be a successful method to detect multiplicity if an 
equilibrium with a negative index could be computed. By the index theorem (cf. 
Dierker (1972), Mas-Colell (1985) for the Arrow-Debreu model, and Hens (1991) for 
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the general equilibrium model with incomplete markets in the one-good-case) there 
must then be multiple equilibria. Standard computational methods are, however, 
bound to compute equilibria with a positive index (cf. Mas-Colell (1985)). 

The main example of our paper is constructed by a new method to compute 
multiple competitive equilibria. This method has been obtained by the following 
observation. Note that for the general question of uniqueness we are not interested 
in whether one given particular economy has multiple equilibria but whether with
in some class of economies examples with multiple equilibria can be found. The 
trick of our method is to take the data of two prospective competitive equilibria as 
given and then to compute the characteristics of an economy (within some class of 
economies) which generates the preassigned data as its competitive equilibria. Fol
lowing this new approach we were even able to compute equilibria with a negative 
index. 

The remainder of the paper is organized as follows. In the next section we 
present a simple model of an exchange economy with incomplete financial mar
kets, define its competitive equilibria and derive some invariance properties on the 
number of competitive equilibria. Thereafter we briefly review some recent results 
on the uniqueness of competitive equilibria when financial markets are incomplete. 
This lays the foundation for understanding why even with Cobb-Douglas prefer
ences standard arguments known from the complete markets case for obtaining 
uniqueness break down when markets are incomplete. We present the data of the 
example showing the multiplicity of equilibria in exchange economies with Cobb
Douglas preferences when financial markets are incomplete and finally we present 
our new method to compute multiple equilibria. 

2. THE MODEL 

The model chosen is the simplest version of a general equilibrium model with 
incomplete financial markets. We refer to Magill and Quinzii (1996) and Hens 
(1998) for an account of the fuIl variety of the general model. For the purpose of 
this paper it will however be legitimate to restrict attention to exchange economies 
with a finite horizon in which a single consumption good is available in a finite 
number of states of the world. These states represent symmetrie uncertainty among 
a fini te number of traders. The basic intuition is that without these simplifying 
assumptions the equilibrium set would only become larger thus weakening our result 
which shows that with Cobb-Douglas preferences the equilibrium set may have 
at least three elements. Nevertheless this very simple gener al equilibrium model 
is still general enough to include cornerstones of finance like the static CAPM 
(cf. Geanakoplos and Shubik (1989) for displaying the CAPM as a special case 
of this model). Within this very simple model the 'fundamental theorem of asset 
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pricing' can be proved which provides the foundation for the important no-arbitrage 
reasonings as applied in the Black and Scholes and the Modigliani-Miller model. 

The details of the model are as follows: 
There are two periods t = 0, 1. In the second period a finite number of states, 

s = 1, ... , S, may occur. Uncertainty is assumed to be symmetric across traders. 
In each state s = 1, .. . , S there is a spot market on which a single consumption 

good is traded. The consumption good should be interpreted as a Hicks-Leontief 
'composite commodity' called 'expenditure for commodities in state s'. The com
posite commodity is infinitesimally divisible, hen ce the commodity space of the 
model is R S

, the Euclidean space of dimension S. 
Traders i = 1, ... ,I are described by their consumption sets Xi eRs, their 

utility functions Ui : Xi -+ Rand their endowments wi E Xi. We will evoke 
the standard assumptions Xi = R!, Ui is continuous, strictly monotonic, strictly 
quasi-concave for every i = 1, .. . ,I. In period t = ° agents can trade, without any 
short sales restrictions, j = 1, . .. , Jassets delivering A~ E R units of the single 
consumption good in state s = 1, ... ,S. Asset trades have to be self-financing, i.e. 
agents face the budget restriction q . Bi :S 0, where q E R J denotes the vector of 
asset prices and Bi E R J is agent i's portfolio choice. The characteristics of the as set 
markets can be summarized by the matrix of asset payoffs (A~)~~~:: :::~ = A E RSxJ

. 

Thus the financial market model is given by 

S S i i I 
GEI = [R ,(R+, U ,w )i=l' Al · 

A portfolio of assets B E R J results in a vector of period one payoffs (AB) ERs. 
Financial markets are called 'complete' if any vector of income transfers y E R S 

can be achieved on the asset markets by choice of some portfolio B E R J
, i.e. if 

the column span of the payoff matrix A, (A) is equal to R S
. Otherwise financial 

markets are 'incomplete'. The latter case is commonly assumed to be the more 
realistic one because of transaction costs, bounded rationality, moral hazard, and 
adverse selection (cf. Magill and Quinzii (1996, Chapter 1)). 

Note that the model chosen in our paper does not explicitly include consump
tion in the first period. However, as Geanakoplos and Polemarchakis (1986) have 
pointed out, on restricting the asset payoffs such that A~ = 1, while A{ = 0, 
j = 2, .. . , J, and A! = 0, s = 2, ... , S , i.e. for 

consumption in s = 1 can be interpreted as first period consumption. 
Denoting by xi E R! agent i's planned consumption, her second period budget 

constraints are xi :S wi + ABi. Note that these constraints do not include spot 
market prices. This is because of strict monotonicity of Ui in each state spot 
market prices would be strictly positive. Hence, since assets pay off in units of the 
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consumption good, budget constraints are invariant with respect to spot market 
pnces. 

Now we are in a position to define the central concept of financial market models. 

DEFINITION 2.1 : A competitive equilibrium is an allocation (;,ê) and a vector 
* of asset prices q such that 

(1) 

(2) 

(3) 

(;i,êi) E arg max Ui(x) S.t. q.f)::; 0 À x::; w i + Af), 
OElR J 

%ElR~ 
I * . I . 

L: x' = L: w', 
i=1 i=1 

I *. 
L: f)' = O. 
i=1 

The assumptions on Ui assure tl'at xi in (1) is unique. 
Since the utility functions Ui are strictly monotonie, consumers maximizing their 

utility always exhaust tomorrow's budget constraints, i.e. we can substitute the 
*. *. 

inequalities by equalities. Therefore, knowing f)', x' can be computed by 
*. . *. 
x' = w' + Af)'. 

This equation allows to transform the maximization problems of the consumers, to 
restrict attention to portfolio demands and to neglect consumption plans. We get 
the following definition. 

* DEFINITION 2.2 : A financial market equilibrium is a portfolio allocation f) and 
* a vector of asset prices q such that 

(1) 

(2) 

*. . . * 
f)' E arg max U'(w' + Af)) S.t. q.f)::; 0 À wi + Af) 2:: 0, 

8E1R.1 
I *. 

L: f)' = O. 
i=1 

Asset demand is homogeneous of degree zero in asset prices. Therefore, consid
ering the number of equilibria we have to introduce a price normalization. It is a 
well-known result that after such a normalization the nu mb er of equilibria is gener
ically fini te. So, speaking of a unique equilibrium means the existence of exactly 

* one equilibrium price vector q af ter normalization. The maximizing property of 
equilibria requires asset prices to be arbitrage-free, i.e. there cannot be a positive 
revenue tomorrow without investment today. Denote the set of these arbitrage free 
asset prices by 

Q = {q E lEe I,B f) E lEe with q . f) ::; 0 À Af) > O} . 
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For simplification the following assumptions on the asset matrix A are made. 

ASSUMPTION A 

(i) There are no redundant assets, i.e. rank A = J. 

(ii) There always exists a desirabie portfolio, i.e. there is iJ E RJ such that AiJ > o. 

A(i) implies that there is a one-to-one correspondence between consumption and 
portfolio plans, because every consumption plan is financed by exactly one portfolio 

*. 
plan. Therefore, () ' is the only maximizer in (1) of Definition 2.2. A(ii) assures 
that today's budget constraint is satisfied with equality. 

We are now able to prove that changing the asset matrix of a GEI-economy does 
not change the number of equilibria, as long as the asset span (A) remains the same. 

THEOREM 2.3: Consider two GEI-economies [Rs , (R!, Ui,wi){=l' A)] and [Rs , 
(R!, Ui, Wi){=l' B)] such that (A) = (B). Then - after price normalization - both 
economies have the same number of financial market equilibria and therefore of 
competitive equilibria. 

PROOF:2 Let E(A) and E(B) be the normalized equilibrium price sets. We 
have to show 

1 E(A) 1=1 E(B) 1 . 

If q E E(A), there are Oi E RJ,i = 1, ... ,1, such that (0= (Oi){=l,q) is financial 
market equilibrium for [RS

, (R!, Ui ,Wi){=l' A)]. Then it is straightforward to verify 

that ({j = ({ji){=l' q) defined by 

{ji = (BT B)-l BT A Oi (i = 1, ... ,1), 

q = BT A(AT A)-l q 

is a financial market equilibrium in [RS
, (R!, Ui, Wi){=l' B]. 

(1) 

(2) 

Starting with an equilibrium according to B we could reason analogously. There
fore, since the matrix products in (1) and (2) are invertible, the sets E(A) and E(B) 
must have the same number of elements. Q.E.D. 

REMARK : Since the nu mb er of equilibria is invariant with respect to different 
representations of the same asset span, for the purpose of showing uniqueness we 

2For those who know the concept of no-arbitrage equilibria (cf. Magill and Quinzii (1996» 
the content of this theorem should be clear, because obviously the asset matrix does not influence 
the no-arbitrage equilibria as long as the matrix span is the same. 
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can always select one such representation which is most suitable for our argument. 
Given some representation by an asset matrix A E lRsxJ useful properties like 
gross substitution or monotonicity need to be demonstrated only for some matrix 
B E lRs x J which represents the same asset span as A, i.e. B = AM for some 
invertible J x J matrix M. Especially, this implies that given Assumption A (ii) 
when examining uniqueness of financial market equilibria Theorem 2.3 allows us 
to restrict ourselves to asset matrices with one non-negative asset. 

Moreover, in the case of complete markets, for example, without loss of generality 
we can restrict attention to 'Arrow securities ' , i.e. to securities which pay off one 
unit of the commodity in exactly one state, so that the asset matrix A is the S x S 
identity matrix . Choosing the identity matrix in the case of complete markets 
it is straightforward that financial market equilibria are equivalent to Walrasian 
equilibria in the Arrow-Debreu model. 

Under the standard assumptions on utility functions mentioned above the ex

istence of competitive equilibria can be established given some restrictions on the 
joint distribution of endowments and the asset market structure (A, (wi){=t) are sat
isfied (cf. Gottardi and Hens (1996)). The lat ter guarantee continuity and bound
ary behavior of excess demand. A sufficient condition for the satisfaction of these 
restrictions are interior endowments, i.e. the assumption that w i ~ 0, i = 1, .. . ,J. 
In order not to run into difficulties due to boundary endowments, throughout this 
paper we therefore assume interiority of endowments. In addition to the assump
tions needed for existence much stronger assumptions are necessary for uniqueness. 
To these assumptions we turn in the next section. 

3 . UNIQUENESS OF FINANClAL MARKET EQUILIBRIA 

The uniqueness of competitive equilibria has been the subject of intensive re
search within the Arrow-Debreu model. For a recent account of this area of research 
see Mas-Colell, Whinston, and Green (1995, Chapter 17.F). Only recently a sys
tematic study of this question has begun for incomplete financial market models 
(cf. Detemple and Gottardi (1998) and VoB (1997)). 

In the early stages of gener al equilibrium theory it was believed that uniqueness 
of competitive equilibria should follow from agents' optimization behavior. It has, 
however, become dear that only very little structure, like continuity, homogeneity, 
and Walras Law, is actually implied by utility maximization on a complete set of 
markets. In fact without posing further restrictions on the individual characteristics 
the equilibrium price set is essentially arbitrary (cf. Mas-Colell (1977)). Recently, it 
has been shown that similar 'no structure results' can be obtained with incomplete 
financial markets (cf. Bottazzi and Hens (1996), Gottardi and Hens (1998)). 

In order to achieve unique competitive equilibria besides the standard continuity, 
monotonicity and convexity assumptions further restrictions on the distribution of 
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agents' characteristics have to be imposed. A huge variety of approaches has been 
suggested to serve this purpose. To present the most important ones in a sys
tematic way, it is instructive to display them around the 'Weak Axiom of Revealed 
Preferences'. From a mathematical point of view, to achieve the uniqueness of com
petitive equilibria amounts to assure that a certain nonlinear system of equations 
- the interdependent system of market clearing conditions - has a unique solution. 
Under certain differentiability assumptions on the agents ' utility functions it can 
be demonstrated that for a generic set of endowments this system of equations, say 
B(q) = 0, has a fini te number of normalized solutions (cf. Hens (1991)), which we 

* * denote by E = {qE QIB(q) = Ol. 
The differentiability assumptions are the following ones. 

ASSUMPTION U For all i E I the utility functions Ui R! ~ R satisfy the 
following properties: 

(i) Ui is continuous on R! and Coo on R!+. 

(i i) {x E R! I Ui(x) ~ Ui(x)} ç R!+ for all xE R!+. 

(iii) VUi(x) E R!+ for all xE R!+ . 

(iv) For all xE R!+ h·D2Ui(X)h < 0 for all hE R S
\ {Ol such that VUi(x)h = o. 

Here V Ui (x) denotes the vector of partial deri vates of Ui and D2 Ui (x) is the 
Hessian matrix. 

Let us first define the so-called 'Weak Axiom of Revealed Preferences' which is 
always fulfilled by individual asset demand functions, but which is not necessarily 
a property of the market demand function. 

DEFINITION 3 .1: B : Q ~ R J satisfies the Weak Axiom of Revealed Preferences 
(WARP) if q . B(ij) 2: 0 whenever ij. B(q) ~ o. 

Given Assumption U it is more convenient to consider the following version. 

DEFINITION 3.2: B : Q ~ R J satisfies the Differentiable Version of the Weak 
Axiom of Revealed Preferences if whenever B(q) . v = 0 for a vector v E R J 

V · 8qB(q)v ~ o. 

Under the differentiability assumptions on the utility function Definition 3.1 and 
Definition 3.2 are essentially equivalent . This follows form a direct adaptation of 
the corresponding proof in the Arrow-Debreu model. 
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We have mentioned above that for a generie set of endowments the set of nor
malized equilibrium priee systems is finite. The importanee of WARP is that if it 
were to hold for market demand it would imply eonvexity of the equilibrium set 
(cf. Hildenbrand and Kirman (1988, Proposition 6.2.), whieh ean be adapted to 
our setting). Henee, for a generie set of endowments equilibria are unique. 

Regrettably, WARP is not an additive property, i.e. besides individual demand 
functions satisfy WARP, this is not neeessarily true for the market demand. But a 
stronger property - restricted monotonieity - is additive if the restriction is with 
respect to the same normalizing vector aeross agents. 

DEFINITION 3.3: The asset demand function 0 : Q -t Ie is restricted monoto
nous with respect to n E lR/ if for all q, ij E Q wi th (q - ij) . n = 0 i t holds that 
(q - ij) . (O(q) - O(ij)) :::; 0, where n is sueh that q' n > 0 for all q E Q. 

Again , there is an analogous differentiable version. 

DEFINITION 3.4: The asset demand function 0 : Q -t ]RJ is restricted monoto
nous in the differentiable version with respect to n if for all v E ]RJ with n . v = 0 
for all q E Q it holds that v·8qO(q)v:::; 0, where n is sueh that q·n > 0 for all q E Q. 

If the demand function 0 is differentiable, then Definition 3.3 and Definition 3.4 
are equivalent. Obviously, if individual demand functions are monotonous with 
respect to the same normalizing vector n, this is also true for the market demand. 
Besides monotonieity implies WARP. 

These propositions ean be shown by adaptation of the analogous proofs in the 
Arrow-Debreu model (cf. Mas-Colell (1985, Proposition 5.7.3. (i) and (iii))3). 
Therefore, restricted monotonieity of the market demand function for assets implies 
uniqueness of equilibria. 

Another property whieh leads to uniqueness of the finaneial market equilibria is 
the so-ealled gross substitution property whieh requires that the demand for eaeh 
as set is falling in its own priee and inereasing in the other asset priees. 

DEFINITION 3.5 : The asset demand function 0 : Q -t ]RJ satisfies the gross 
substitution property if the Jaeobian matrix has negative diagonal and positive 
off-diagonal elements, i.e. for all j E J and all q E Q it holds that 

8qj Oj (q) < 0 

and 

3The proofs use slightly stronger forms of monotonicity and WARP, but a modification is 
simpIe. 
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Obviously, this property is additive, i.e. if the individual demand function ex
hibits the gross substitution property, this is also true for the market demand. 
Concerning uniqueness we obtain the following conclusion. 

THEOREM 3 .6: If the market asset demand () : Q --t JEe satisfies the gross sub
stitution property and if Q ç R~+, then financial market equilibria are unique. 

PROOF: The proof is similar to the proof in the Arrow-Debreu model (cf. Arrow 
and Hahn (1971, Chapter 9, Corollary 7, second proof, p. 223)), but it needs some 
further considerations about the underlying fini te sequence of prices because one 
has to take care that it has to stay within the no-arbitrage price set Q. For a 
thorough treatment see VoB (1997, Theorem 3.2.10). Q.E.D. 

The restriction in Theorem 3.6 to asset matrices for which all no-arbitrage price 
vectors are strictly positive is indeed a limiting assumption. Even a simple as set 
structure like 

A=(~ ~) 
o -1 

does not satisfy this property. What makes the restriction worse is the fact that 
there is even no asset structure with the same matrix span guaranteeing strictly 
positive no-arbitrage prices (cf. Theorem 2.3) . It is not known whether Theo
rem 3.6 holds without the assumption of strictly positive as set prices. 

Now, we are in the position to use the presented proper ties to gain classes of e
conomies for which financial market equilibria are unique. Since many of the proofs 
are quite long, but not very complicated, we do not give them in detail, but only 
present the ideas and give references for further information. 

3.1. Representative Agent Economies 

The assumption of a 'representative agent' is often made in financial market 
models, especially when seeking to determine simple formulae for asset prices. This 
amounts to assuming that the excess demand of the economy can be thought of as 
being derived from the optimization problem of only one agent. In technical terms, 
one assumes I = 1, hen ce neglecting the heterogeneity of agents. In effect, risk 
premiums of assets, for example, can be related to aggregate endowments, w l (cf. 
Magill and Quinzii (1996, Chapter 3) for an account of representative agent as set 
pricing). Indeed, under the assumption of a representative agent, risk premiums 
are well determined because the underlying competitive equilibrium is unique. 
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Since I = 1 market demand is generated by an individual demand function, 
hence it satisfies WARP. The existence of a representative agent is obvious for a 
one-agent economy. Moreover, as we will show later, even with several agents, for 
certain special classes of preferences the market demand can still be thought of as 
being derived from one hypothetical agent's decision problem, given the hetero
geneity of agents is limited. 

3.2. Special Utility Functions 

3.2.1. Quasi-linear Utility Functions 

Quasi-linear utility functions are characterized by indifference curves 
which are displacements of each other along one axis. 

DEFINITION 3.7: A utility function Ui : R x R!-l is quasi-linear in the jirst 
good if 

where Vi : R!-l --+ Ris continuous on R!-l, Coc on R!+l, strictly monotonic and 
strictly concave on R!+l. Besides for all X-I E R!+l : {X-I E R!-l I Vi(X_I) 2: 
Vi(X_I)} c R!+l . 

If we restrict attention to asset structures which incorporate first period con
sumption, from quasi-linearity of every agent's utility function in the first good, we 
obtain uniqueness of financial market equilibria. Since we have to use first order 
conditions, we have to require sufficiently large endowments today if we remain to 
restrict today's consumption to be non-negative. 

THEOREM 3.8: Let [RS
, (R!, Ui,wi){=I,AJ be a GEI-economy withjirst period 

consumption where consumers have quasi-linear utility junctions. Ij wl is suffi
ciently large jor all i E I 4, then jinancial market equilibria are unique. 

PROOF: Restricted monotonicity of the individual asset demand functions with 
respect to the first unit vector is obtained by applying the 'implicit function theo
rem' to the first order conditions (cf. VoB (1997, Theorem 4.1.7)) . Q.E.D. 

4 An explicit condition is given in VoB (1997,_p. 63), but th is requires much work for little 
insight. 
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3.2.2. Quasi-homothetic Utility Functions 

Another important class of utility functions is given by quasi-homothetic func
tions. These are those functions which exhibit indifference sets that are related by 
proportional expansions along rays through some point a E IRs . 

DEFINITION 3.9: A utility function Ui : IR! - {ai} -t IR is quasi - homothetic 
if there is - given a constant vector ai E IRS 

- a function Vi : IR! -t IR such that 
for all x E IR! - {ai} 

Ui(x) = Vi(ai + x) 

and Vi satisfies for all y E IR! 

for all À E IR++ and some k E IR. 

The subclass of additively separable quasi-homothetic utility functions is very 
close to the so-called HARA-class which are expected utility functions. 5 

Results concerning uniqueness of financial market equilibria are summarized in 
the following theorem. 

THEOREM 3.10: Let [IRs , (IR!, Ui,wi){=l' Al be a GEI-economy where the utility 
Junctions Ui are quasi-homothetic and w i + ai ~ 0 Jor all i EI. IJ one oJ the 
Jol/owing conditions is satisfiedJ financial market equilibria are generically unique: 

(i) PreJerences are identical homotheticJ i. e. there is a Junction V such that 
Vi = V Jor all i E IJ and besides either ai + wi E (A) Jor all i E I or the 
ai + w i , i = 1, ... , IJ are collinear. 

(ii) The vectors ai + wi, i = 1, ... , IJ are collinear and elements oJ (A). 

PROOF: The conditions (i) or (ii) on the vectors ai + w i allow a transformation 
of consumers' maximization problems such that together with the homothetici
ty property we get the existence of a representative consumer (under the addi
tional assumptions of identical preferences resp. the collinearity of the vectors 
ai + w i

, i = 1, .. . ,I). So, the results of Section 3.1 can be applied (cf. Detem
ple and Gottardi (1998, Theorems 3.1 and 4.1) and Vofi (1997, Theorem 4.1.5)). 

Q.E.D. 

5For a discussion of expected utility functions and especially HARA-functions cf. Section 3.3. 
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3.2.3. Quadratie Utility Functions 

Quadratic utility functions are also a special type of expected utility functions 
(cf. Section 3.3). In the finance literature they are applied especially in combi
nation with the Capital Asset Pricing Model because they allow to compute the 
utility out of mean and variance according to the underlying probability measure. 

DEFINITION 3.11: A utility function Ui : .IR! -+ .IR is a quadratie utility function 
if 

Ui(x) = tp~(xs - ~aix;) 
s=1 

. ss' . 
where pI E .IR++, ES=1 p~ = 1 and al E .IR++. 

Quadratic utility functions are not monotonic everywhere, they have some sati
ation point. Therefore, we have to assure that this point is not attainable. This is 
realized by the assumption 

1 - aiws > 0 V i E I A V s E S 

where w := El=1 w i
. 

Moreover, uniqueness is only obtained for interior equilibria since quadratic u
tility functions do not satisfy Assumption U. 

THEOREM 3.12: Let [.lRs , (.IR!, Ui ,wi ){=I' AJ be a GEI-eeonomy with quadrat
ie utility functions whieh satisfy the assumption of monotonieity. If there is a 
p E .IR!+ su eh that pi = P for all i E I, i.e. if there is an objeetive probability 
measure, then there is at most one interior finaneial market equilibrium. 

PROOF: Using the market clearing property of equilibria it is possible to com
pute the unique equilibrium price vector out of the first order conditions to the 
maximization problems. Q.E.D. 

3.3. Expected Utility Hypothesis 

In financial markets models additive separability comes as a by-product of the 
well known expected utility hypothesis, which amounts to assuming that 

s 
Ui(xi) = L p~ui(x~), i = 1, ... ,I. 

s=1 
According to this assumption agents' beliefs and their attitudes towards risk can be 
separately described by some probability ~easure pi on the state space {I, ... , S} 
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and some von Neumann-Morgenstern utility function for expenditure ui : R+ --+ R. 
With respect to uniqueness of financial market equilibria the expected utility hy
pothesis becomes very powerful when it is combined with further restrictions on 
the heterogeneity of beliefs, the functional forms of the risk aversion and possibly 
some restrictions on the distribution of agents' endowments. 

3.3.1. HARA-Functions 

Following Arrow (1970) and Pratt (1964), agents' absolute risk aversion is de
fined as a function of state income x s E R+: 

. " 
i u' (xs) 

ARA(xs)=- .'( )' 
u' Xs 

DEFINITION 3.13: Agents have hyperbolic absolute risk aversion (HA RA), if 
(ARAi(xs)t 1 is a linear function in state income x., i.e. [ARAi(xs)J-l = cé + f3 ixs 
where ai E R+ and f3i E R. 

Note that this defines a second order differential equation for the von Neumann
Morgenstern utility function ui. It is weIl known that a solution is given by 

for f3i =I 0 and f3i =I 1, . 
for f3i = 0, 
for f3i = 1. 

For f3 i = -1 the HARA-function is equal to the quadratic utility function. For 
f3i ~ 0 all HARA-functions are quasi-homothetic. Therefore, we can apply the 
results of Section 3.2.2. The functions Vi are identical for all consumers if f3i = f3 
for some f3 and the beliefs are homogenous, i.e. there is p E R!+ such that pi = P 
for all i E I (cf. Gorman (1953)). On the other hand, all additively separable 
quasi-homothetic utility functions are HARA-functions (cf. Pollak (1971) and VoB 
(1997)). 

3.3.2. Small Relative Risk Aversion 

Allowing for any degree of heterogeneity of beliefs but still not sacrificing unique
ness of financial market equilibria is possible by assuming small values of agents' 
relative risk aversion, 
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if this assumption is combined with some restrictions on the asset structure and 
on the distribution of endowments. 

Mitjushin- Polterovich- Th eo rem 

In the case of expected utility functions it is possible to gain results in the GEI
model which are analogous to the 'Mitjushin-Polterovich-Theorem' in the Arrow
Debreu model (cf. Mitjushin and Polterovich (1978)): under special assumptions 
the asset demand functions are restricted monotonous with respect to the endow
ment vectors. Regrettably, for restricted monotonicity of the market demand and 
therefore for uniqueness the strong assumption of collinear endowments is neces
sary. 

The Assumption UU on Ui : 114 --+ 1R which implies Assumption U for Ui is 
given in the following. 

ASSUMPTION UU 

(i) ui is continuous on 1R+ and Coc on 1R++. 

(ii) limx_oui'(x) = 00. 

(iii) Ui' (x) > 0 for all x> O. 

(iv) ui"(x) < 0 for all x> O. 

THEOREM 3.14: Let [1Rs,(1R~,Ui,wi)f=l,Al be a regular GEI-economy with 
expected utility functions Ui such that 

• RRAi(xs) < 4 for all Xs > 0, 

• there exists a fundamental set R ç S, z.e. R ç S with 1 R 1= J and AR is 
invertible such that A S\RAR1 2: 0, 

• wi, i = 1, .. . ,I, are collinear, 

then financial market equilibria are unique. 

PROOF: The expected utility hypothesis together with the existence of fun
damental sets allows to transform the consumers' maximization problems such 
that the well-known Mitjushin-Polterovich-Theorem can be applied and restricted 
monotonicity of the asset demand functions (}i with respect to normalizing vectors 
AR1Wk is gained. Therefore, collinear endowments assure restricted monotonicity 
of the market demand with respect to some normalizing vector which - together 
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with the finiteness of the equilibrium price set (regularity) - implies uniqueness (cf. 
Bettzüge (1998)). Q.E.D. 

REMARK : For general utility functions satisfying Assumption U, a modified 
version of the 'Mitjushin-Polterovich-Theorem' can be applied if endowments are 
spanned (cf. Hens (1995, p. 168) and VoB (1997, Corollary 4.2.6)). 

Cross Substitution 

Willing to assume that agents' relative risk aversion is even not greater than 
one, we can dispense with the disturbing assumption of collinear endowments. Re
sults along this line are based on a theorem by Varian (1985), which derives the 
gross substitution property of market demand under a similar condition within the 
Arrow-Debreu model. Transferring this theorem to incomplete financial l~'larkets 
was so far only pos si bie under severe restrictions on the asset structure. 

THEOREM 3.15: Let [lRS
, (lR!, Ui,wi){=l,A] be a CEI-economy where Ui,i = 

1, ... ,IJ satisjies the expecled utility hypothesis and RRAi(xs) :S 1 Jor all Xs > O. 
IJ A is non-negative and weakly separatingJ i.e. Jor all s E SJ A~ > 0 Jor one j E J 
and A~ = 0 Jor all k E J \ {j} J then jinancial market equilibria are unique. 

PROOF: Applying the 'implicit function theorem' to the first order conditions 
of consumers' maximization problems the special structure of A allows to gain the 
gross substitution property for the individual and therefore market asset demand 
functions which implies uniqueness (cf. VoB (1997, Corollary 4.3.4)). Q.E.D. 

Two Assets 

In the case of only two assets besides non-negativity there are no further restric
tions on A necessary to get the gross substitution property. But uniqueness can be 
proven even without the non-negativity assumption. 

THEOREM 3.16: Let [lRs , (lR!,Ui,wi){=l,A] be a CEI-economywith two assets 
and with expecled utility Junclions Ui such that RRAi(xs) :S 1 Jor all Xs > O. Then 
jinancial market equilibria are unique. 

PROOF: Applying the 'implicit function theorem' to the first order conditions 
of consumers' maximization problems gives monotonicity of the individual asset 
demand functions with respect to the same unit vector, and therefore of market 
demand which implies uniqueness (cf. Becker (1995, pp. 40-41) and Bettzüge 



T. Hens, K. Schmedders, B. VofJ 181 

(1997, Proposition 2.2.)). Q.E.D. 

The next section will demonstrate that restrictions on the relative risk aversion 
are not sufficient for uniqueness of equilibria: further requirements have to be put 
on the economy. This is a very important observation since as mentioned above -
in the Arrow-Debreu model - no further restrictions are necessary. 

4 . COBB-DOUGLAS PREFERENCES 

4.1. The Merits of Cobb-Douglas Preferences 

In the context of financial markets agents are said to have Cobb-Douglas pref
erences if they satisfy the expected utility hypothesis and their von Neumann
Morgenstern utility functions are logarithmic, i.e. if 

s 
Ui (xi) = L P: ln(x~) for all xi E 1R~+ . 

• =1 

Note that Cobb-Douglas preferences satisfy Assumption UU on 1R~+. Since besides 
endowments are strictly positive, it does not matter that utility is not defined on 
the boundary of iR!. 

They are of ten used when markets are complete because of their following merits: 

Complete Markets 

Cobb-Douglas preferences satisfy the Assumption UU from the previous sec
tion on 1R!+ which implies that the 'Linear Pricing Rule', qT = 'VUi(xi)A, is a 
necessary and sufficient condition for utility maximization. Traders' investment 
decisions based on Cobb-Douglas preferences reduce to fixing the shares which de
termine, how period one income 7r • w i E 1R++ should be distributed, i.e. x~( 7r) = 
P~ 7r~:i, for all 7r E 1R~+, s = 1, . .. , S . From these demand functions it is easy to see 
that the gross substitution property is satisfied and hence that competitive equilib
ria are unique. Moreover, equilibrium prices are easily computed since they are the 
solution to the linear system of equations 'Lf=1 p~( 7r . w i

) = 'Lf=1 7r .w~, S = 1, ... , S. 

Incomplete Markets 

When markets are incomplete, economies with Cobb-Douglas preferences lose 
all the nice properties mentioned above. 

To see this we start with the following simple example taken from VoB (1997). 
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EXAMPLE 4.1: Let 

Then the excess demand functions for goods are given by 

Z1(-lr) = 71"2+71"3+71"4 _~, 
471"1 4 

Z2(7I") = 71"1 + 71"3 + 71"4 _ ~, 
471"2 4 

1 71"1 + 71"2 
Z3(7I") = Z4(7I") = -- + ( )' 

2 2 71"3+71"4 

and the Jacobian has the sign-pattern 

The intuition underlying this example is that - when markets are incomplete -
the asset payoff matrix may introduce some complementarities among consump
tion demand, x, hence destroying the gross substitution property. Indeed note that 
in this example the asset matrix is such that demand has to be the same in the 
last two states. This clearly shows that gross substitution cannot be expected for 
consumption demand. However, if gross substitution was to hold for as set demand 
then, arguing via the financial market equilibrium concept, this would be sufficient 
for the uniqueness of equilibria. There are examples where gross substitution does 
not hold for consumption demand while it still holds for asset demand (cf. VoB 
(1997)). But in Example 4.1 gross substitution fails as well for asset demand. 

EXAMPLE 4.1 (CONTINUED): Asset demands are 

() _ q2 - 3q1 () _ 3q2 - q1 - 4q3 () _ 3q2q3 - 2q~ + 3q1q3 - 2q1q2 
1 - 4q1 ' 2 - 4( q3 - q2) , 3 - 4q3( q3 - q2) 

Hence for 4q3 = 3q2 
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REMARK : Note that the gross substitution property is not invariant with re
spect to different asset structures representing the same asset span. Indeed, in 
Example 4.1 instead of A we could also consider the asset matrix 

( 

1 00) 
B = 0 1 0 

001 
001 

with (B) = (A). Then, by the proof of Theorem 3.15 excess demand satisfies gross 
substitution. 

4.2. Multiplicity of Competitive Equilibria with Cobb-Douglas Preferences 

Recall those uniqueness results mentioned in Section 3 which apply to the case 
of Cobb-Douglas preferences. 

First note that for Cobb-Douglas preferences the relative risk aversion is equal to 
one. Moreover, Cobb-Douglas preferences belong to the HARA-class. Hence, with 
homogenous beliefs equilibria are unique. Moreover, with heterogeneous beliefs 
uniqueness is obtained if one of the following conditions is satisfied: 

• There are only two assets. 

• The asset payoff matrix is weakly separating and non-negative. 

• Endowments are collinear and there exists a fundamental set. 

• Endowments are collinear and elements of the asset span. 

As the following example demonstrates, in general, however when markets are in
complete there can be multiple competitive equilibria even if all agents have Cobb
Douglas preferences. 

EXAMPLE 4.2: There are two agents, five states and three assets. The agents' 
utility functions are 

U1
(X

1
) = O.lln x~ + 0.21n x~ + 0.31n x1 + O.lln x! + 0.31n x~, 

U2
(X

2
) = 0.31n xi + 0.21n x~ + 0.11n x~ + 0.31n x~ + 0.11n x~. 

They hold the initial endowments 

1.5942379526 . 10-2 

2.9374491276.10-3 

w 1 = 6.1116956313 . 10-2 

2.6125379370 . 10-1 

1.3112543254 . 10-1 

6.5484744962.10-3 

6.1159308802 . 10-2 

,w2 = 4.6047779430.10-3 

7.1874620630.10-1 

7.6887456746.10-1 
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The asset matrix is given by6 

A= 

1 
o 
o 

o 
1 
o 

o 
o 
1 

1 5.7551080261 -11.211070031 
-49.735960347 -14.564562225 1.4276396811 

This economy has at least the following three equilibria: 

3.1569068369 . 10-3 1.9333947185 . 10-2 

2.0847535004 . 10-2 4.3249222926 . 10-2 

(x-I, x2
, 7/ ,lP, q) = ( 5.6794692704· 10-2 8.9270415519 . 10-3 

4.0 . 10-1 5.8 . 10-1 

( ~1 ~2 êI Ofl2 ~) ( x ,x, , ,q = 

-1 -2 -1 -2 ( (x ,x ,0 ,0 ,êj) = 

5.0 . 10-1 4.0 . 10-1 

( 

-1.2785472689 . 10-2
) ( 1.2785472689 .10-2 

) 

1.7910085876 . 10-2 , -1.7910085876.10-2 , 

- 4.3222636089 . 10-3 4.3222636089 . 10-3 

( 1.~)), 
1.6 

3.2964558373 . 10-3 1.9194398185 . 10-2 

1.6548013477 . 10-2 4.7548744453 . 10-2 

5.2816066068 . 10-2 1.2905668188 . 10-3 

4.2 . 10-1 5.6 . 10-1 

5.5 . 10-1 3.5 . 10-1 

( 

-1.2645923689 . 10-2
) (+ 1.2645923689 . 10-

2 
) 

1.3610564349.10-2 , -1.3610564349.10-2 , 

-8.3008902451 . 10-3 +8.3008902451 . 10-3 

( 1.! )), 
1.1 

5.53593779 . 10-3 

2.98288576 . 10-3 

4.72273200 . 10-2 

4.06826530 . 10-1 

6.28208646 . 10-1 

1.69549162 . 10-2 

6.11138722 . 10-2 

1.84944143 . 10-2 

5.73173470 .10-1 

2.71791354 . 10-1 

6Note that this asset matrix does not satisfy the assumption of desirabie portfolios, i.e . As
sumption A. As we demonstrate in the next section this 'defect' is innocuous since all agents will 
still satisfy their budget restrictions with equality if at least one of the assets has a positive price. 
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( 

-1.04064417 . 10-2
) ( 1.04064417· 10-

2 
) 

4.54366309 . 10-5 , -4.54366309 . 10-5 , 

-1.38896363 . 10-2 1.38896363 . 10-2 

( 11.30311~~)). 
0.786198913 

In the next section we explain how Example 4.2 has been found. 

5. A NEW METHOD TO COMPUTE MULTIPLE COMPETITIVE EQUILIBRIA 

Up to now the computation of competitive equilibria has been phrased as the 
following problem: 

(PI) Given some characteristics of an economy compute some equilibrium for this 
economy. 

The computation of competitive equilibria amounts to solving a nonlinear system 
of interdependent equations. If demand functions are given, or can at least be 
explicity derived from maximization of the utility functions subject to the budget 
constraints, then one could try to solve the system of excess demand equations 
()(q) = O. Explicit knowledge of the demand functions can however seldomly be 
expected. To circumvent this problem we work on the so-called extended system 
which is the system of equations given by the first order conditions for utility 
maximization and the market clearing conditions. For instance with Cobb-Douglas 
preferences, when markets are incomplete, in general, demand functions need to be 
obtained as a solution to a polynomial equation of degree equal to the number of 
states S . 

The most successful algorithms to compute competitive equilibria are 'homotopy 
algorithms' (see Garcia and Zangwill (1981) for a survey) . The idea of a homotopy 
algorithm is to solve (PI) along a continuous path in the characteristics' space, the 
so-called homotopy path, which starts with a simple economy for which a solution is 
obvious and which then gradually updates the characteristics of the simple initial 
economy towards the economy for which the competitive equilibrium is actually 
wanted. A standard approach is to start with a single agent economy and then to 
gradually introduce the other agents out of which the economy in question consists. 
For the single agent economy the unique competitive equilibrium is obviously the 
no-trade allocation of initial resources, which is then gradually updated along the 
homotopy path towards the competitive equilibrium of the heterogeneous agent 
economy in question. 

The advantage of homotopy algorithms is that they are almost always able to 
compute some competitive equilibrium. Their disadvantage with respect to finding 
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multiple equilibria is however that for any given set of characteristics they are 
bound to find at most one competitive equilibrium. And this equilibrium has a 
positive index since along a homotopy the indices of the equilibria do not change 
(cf. Mas-Colell (1985)) and the initial equilibrium in the economy obviously has a 
positive index. Likewise the global Newton method (cf. Smale (1976)) is bound to 
compute equilibria with positive index only. 

There is one important exception to this remark, namely the all-solutions algo
rithm of Drexler (1978) and Garcia and Zangwill (1979, 1981) which is only known 
to work for sure in the case of polynomials. See Li (1997) for a recent survey. 

Finally, note that a first 'quick and dirty' idea to use homotopy algorithms to 
compute multiple equilibria for a given economy, say with two agents, is to run the 
homotopy algorithm twice; once starting with the first agent being the single agent 
in the initial economy and once starting with the second agent. If we are lucky, 
doing this we can find two different homotopies leading to two different equilibria. 

The disadvantage of all the existing algorithms is their point of view to compute 
solutions for any given set of the economy's characteristics. To find multiple equi
libria within some class of economies like those with Cobb-Douglas preferences, it 
is necessary to do an exhaustive search in the space of the economy's characteristics 
and for any such data run the algorithm which itself might rely on an exhaustive 
search of starting points. 

Instead we propose to proceed in the following way. Note that we are not 
merely interested in computing equilibria of some particular given economy. We 
are interested in whether within some class of economies there are some particular 
economies having multiple equilibria. Therefore, we turn the question (PI) upside 
down: 

(P2) Given two prospective equilibria, find some economy (within some class of 
economies) such that these equilibria are competitive equilibria for the econ
omy found. 

We solve (P2) by a trial and error procedure, which mimics a homotopy algorithm: 

1. For some given economy solve (PI): 

Given some initial parameters of the utility functions, p(O), the 
endowments, w(O), and the asset structure, A(O), compute an e
quilibrium asset price system, q(O), and an equilibrium allocation 
of assets, 0(0), and of consumption bundies, x(O). 

2. Take the solution of Step 1 as the starting point for the procedure of comput
ing the economy's characteristics rationalizing two asset market equilibria: 

Double the system of equations describing a solution to Step 1, i.e. 
(p(O),w(O),A(O)) is the initial solution to the "reverse" procedure 
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of computing characteristics rationalizing the two initial equilibria 
(q1(0), 01(0), X1(0)) = (q2(0), O2(0), X2(0)). 

187 

3. Consider a homotopy in which the data of the second equilibrium in Step 2 
are changed slightly away from the first equilibrium: 

Fix some new candidate equilibrium (q,O,x) and define the homo
topy 

((q2(À),02(.~),X2(À)) = À(q2(0) ,02(0),X2(0)) + (1 - À)(q,O,x), 

leaving the first equilibrium unchanged. 

4. Update the characteristics of the economy along the homotopy considered in 
Step 3: 

Increase À in small steps form 0 to 1 solving the system of equations 
in terms of the economy's characteristics (p,w, A). 

FoUowing the Steps 1-4 we were eventually able to find the first two equilibria in 
Example 4.2 given in the previous section. 

From the numerical values displayed in Example 4.2 one can infer which data 
we have taken as given and which have been computed by our algorithm. We took 
as given the agents' utility functions, the first ten payoffs of the asset matrix, the 
equilibrium aUocations in the last two states as weU as the asset prices. 

Since for Cobb-Douglas preferences excess demand cannot explicitly be comput
ed when markets are incomplete we worked on the extended system, which given 
the notation introduced in Section 2 reads as foUows. 

For aU i = 1, .. . ,1 it is 

~ p~xA.{ = \iqi , (' 1 J) L. A J = , ... , 
s=l • 

X~ = w!+AsOi, (s=l, ... ,S) 

q·Oi = O. 

Besides markets are cleared, i.e. 

I . 
L: 0' = O. 
i=l 

Here commodity market clearing has been omitted since it foUows from asset mar
ket clearing. The budget identity q . Oi = 0 is assumed since we normalized one 
asset price to be positive. To be sure, we prove the foUowing lemma. 
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LEMMA 5.1 : Let U satisfy the Assumption U, then 

* . 
B E arg max U(x) s.t . q. B :::; 0 1\ x:::; w' + AB 

",elR~ 
eelRJ 

* satisfies q. B = 0, if qj > 0 for some j E 1, . .. ,J. 

* ~ * 
PROOF: Suppose not, i.e. q. B < O. Consider B = B +éej, where ej is the j-th 

uni t vector in Ie and é E IL Then for some small but posi ti ve é, ê satisfies q. ê :::; 0 
and w i + Aê 2: O. From the first order condition we know 

. *. . 
'VU(w' + A B)AJ = qJ > O. 

Hence 
. ~ . * 

U(w' + AB) > U(w' + A B) 

for some é small enough which is a contradiction to the maximizing property of 
* B (cf. Magill and Quinzii (1996, Proposition 31.2)). Q.E.D. 

In solving the extended system we solve the nonlinear system of independent 
equations, given by the first order conditions, in those variables which are not re
stricted in sign, i.e. in the asset payoffs in the last two states and the portfolio 
holding of agent 1 (those of agent 2 being then determined from the asset market 
clearing). We choose initial endowments and consumption in the first three states 
such that the budget restrictions and the non-negativity constraints on consump
tion are satisfied. 

For the details of our computation, a source code of our programm can be 
obtained on request. It can however not be expected to find an exact solution 
to the extended system. Computers work with some precision but not perfectly. 
The numeri cal values of our example are exact up to the following maximal errors. 
To check the precision use the following values for the marginal utility of income 
Ài

, i = 1,2, in the three equilibria, 

).1 = 3.6, ).2 = 2.085, 

~1 = 3.445, ~2 = 1.955, 
,).1 = 5.4417381, ~2 = 8.19317872 . 10-2 • 

Plugging in these À-values together with the other equilibrium values it is obtained 
that the maximum errors, F, in the extended system are 

P = 4.44 . 10-15
, 

ft 2.84 . 10-14 , 

ft' = 1.4.10-14
. 
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Moreover the Jacobian at the three equilibria have the following determinants, D , 

lJ = -1.62.108
, 

ÎJ = + 1.0637 . 108
, 

iJ = -6.55· 109
. 

Hence the second equilibrium has a negative index! 
Finally, we point out that the third equilibrium has been found by solving the 

standard computational problem (PI) with the characteristics of the economy found 
by (P2) taken as the input data. Then, on starting with agent 1 being the rep re
sentative agent in the initial economy from which the homotopy algorithm starts, 
the first equilibrium is obtained and starting with the second agent the third equi
librium is obtained! Hence even this 'quick and dirty' way of computing multiple 
equilibria does work in our example. 

6. SUMMARY 

The uniqueness of competitive equilibria is very important for a sound founda
tion of financial market modeis. We have outlined that uniqueness can be achieved 
by appropriate restrictions on the agents beliefs combined with assumptions on 
their risk aversions as wen as on the market structure. The general rule is that 
incompleteness of markets requires even more severe restrictions than complete 
markets. In particular it was shown that the assumption of Cobb-Douglas prefer
ences is no longer sufficient to obtain the gross substitution property and that under 
this assumption multiple equilibria are possible when markets are incomplete. The 
latter was obtained by a novel approach to compute multiple competitiveequilibria. 
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