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Recursive estimation in nonlinear dynamics: 
Application to the analysis of stage transition and chaos 

Introduction 

The recent spectacular progress in nonlinear dynamics has given rise to a para
digm shift in developmental psychology. Not only was some of the most impor
tant early work in nonlinear dynamics explicitly devoted to the analysis of devel
opmental processes (e.g., Thom, 1975), but there also became available a new 
mathematical framework that enabled the unambiguous representation, and some
times even the definitive solution, of old controversial issues in developmental 
theory (cf. Molenaar & Oppenheimer, 1985; Molenaar, 1986a, 1986b). Perhaps 
the most important early contribution of nonlinear dynamics in this respect con
cemed the analysis of sudden qualitative transitions in the behavior of selforga
nizing systems (Thom, 1975; Nicolis & Prigogine, 1977; Haken, 1983). It was 
shown th at such transitions (called bifurcations, catastrophes, or phase transi
tions) constitute the hallmark of selforganization in a way which closely resem
bles Piaget's epigenetic theory of stagewise cognitive development (Molenaar, 
1986b

). Thus, a principled mathematical theory of stage transitions became avail
able that definitively settled a long controversy about the explanatory value of 
Piaget's theory (e.g., Brainerd, 1978). In retrospect this may not be such a sur
prizing coincidence, because Thom' s (1975) catastrophe theory and Piaget' s 
(1985) epigenetic theory were both inspired by Waddington's (1957) epigenetic 
evolutionary theory. 

Our applied work within the new nonlinear dynamics paradigm of developmental 
psychology started with the elaboration of catastrophe models and methods for the 
analysis of stage transitions (van der Maas & Molenaar, 1992), including transitions 
occurring in stochastic developmental processes (Molenaar & Hartelman, 1996). 
Consecutively, this work was extended to the study of causal mechanisms underlying 
cognitive stage transitions, using artificial neural network models of information pro
cessing (e.g., Raijmakers, van der Maas, & Molenaar, 1996). Recently, another 
extension has been made in which specific dynamic models of phase transitions are 
directly fitted to observed time series (Molenaar & Raijmakers, 1997). The latter so
called recursive model fitting approach (to be defined below) provides new, power
ful inductive tools that enable detailed micro-genetical analyses of nonlinear dynam
ical systems during transition. 
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The next step in this line of research conceming the analysis of stage transitions 
might involve an extension to chaotic processes. Chaos theory has already found 
interesting applications in various fields of psychology (e.g., Basar, 1990). More
over, it tums out that the emergence of chaos in simple nonlinear models is associ
ated with the occurrence of a cascade of bifurcations (Ou, 1993), while several dis
tinct types of phase transitions are indicative of the emergence of specific chaotic 
regimes such as intermittency, crises, etc. (Beck & Schlögl, 1993; Ou, 1993). 
Given the importance of a small set of prototypical models in chaos theory (logis
tic map, Ikeda map, etc.), it would seem worthwhile to extend the recursive model 
fitting approach to the micro-genetical analysis of these chaotic maps during phase 
transitions. Before such an extension can be carried out, however, we will first have 
to deal with an entirely new phenomenon associated with chaotic systems, namely 
their pathological properties with respect to model fitting if the observed output is 
corrupted by measurement noise. This will be the topic of the remainder of this 
paper. 

Statement of the problem 

Suppose one wants to estimate the fractal dimension of the invariant set of a 
chaotic map on the basis of an observed time series which is corrupted by addi
tive measurement noise. Of course, the fractal dimension in which one is inter
ested pertains to the true (noise-free) trajectory of the chaotic map. From a tradi
tional signal analytical point of view, the presence of additive measurement noise 
would not seem to present any special problems in the reconstruction of the true 
trajectory of the map underlying the observed time series. However, it was shown 
by Casdagli, Eubank, Farmer, & Gibson (1991) th at the presence of even a negli
gible amount of measurement noise puts disproportionally severe limits on the 
fidelity with which the fractal dimension of the underlying strange aUractor can be 
determined: 'lt is now a well-known fact th at chaos limits long-term predictabil
ity. We have shown that when projected into /ower dimensions, chaos may a/so 
impose limits to short term predicatbility. For a dynamical system who se dimen
sion and leading Lyapunov coefficient are sufficiently large, projection onto a low 
dimensional time series causes an explosion in the noise amplification. As a 
result, it is impossible to reconstruct localized states from measurements of any 
reasonabie precision. The time series is unpredictable for times much less than the 
Lyapunov time and it becomes indistinguishable from one generated by a random 
process. This is true even when the dynamical system is known. Note th at this is 
not true for nonchaotic systems ... ' (Casdagli et al., 1991, p. 96. Italics in the 
original). 

Presently, we will consider whether this problem in reconstructing localized states 
from noisy series also generalizes to the estimation of parameters in an underlying 
chaotic map. To ease the comparison somewhat, the nonlinear lkeda map which fig
ures prominently in the examples given by Casdagli et al. (1991) will also be used in 
the simulation study presented below. 
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Recursive estimation 

Parameter estimation in the nonlinear Ikeda map corrupted by additive measurement 
noise will be carried out by means of a recursive technique: the so-called extended 
Kalman filter (EKF). First we will give a concise introduction to the EKF in general 
terms, then its application to the Ikeda map will be detailed. For a more detailed 
description of the EKF, the reader is referred to Molenaar & Raijmakers (1997) and 
Molenaar (1994). 

At a general level, recursive parameter estimation can be defined for a nonlinear 
state-space model represented by 

x(t+1) = fl+,[x(t)] + wet) 

y(t) = ht[x(t)] + vet) 

where: 

- x(t) is a latent q-variate state process 
- y(t) is a p-variate manifest process 
- fl+'[.] and ht[.] are nonlinear vector-valued time-varying functions that are suffi-

ciently smooth (cf. Sage & Melsa, 1971, p. 93, footnote, for an exact specifica
tion of the smoothness conditions ) 

- wet) is a q-variate white noise innovations process; cov[w(t), w(t+t')] = ö(t')Wt, 
where ö(t') = 1 if t' = 0 and ö(t') = 0 otherwise 

- vet) is a p-variate white noise measurement error process; cov[v(t), v(t+t')] = 
ö(t')Vt 

It is noted that the set of unkown (possibly time-varying) parameters, denoted by the 
vector-valued process O(t), say, constitute part of the state x(t). Hence (recursive) 
estimates of x(t) include estimates of the parameters in O(t). 

The recursive estimator of the state x(t), based upon observations y(t) up to time t, 
is denoted by x(t I t). The recursive nature of the estimator is apparent from the fol
lowing schematic repreentation: 

x(t+ 1 I t+ 1) = fl+\[x(t+ 1 I t)] + gl+\ 

where the q-variate vector gt+\ denotes the information gain due to the availability of 
y(t+ 1). Given suitable starting values x(O I 0), this recursive scheme yields time
dependent estimates x(t I t), inc1uding O(t I t). 

Recursive estimation in the Ikeda map 

The Ikeda map, which is used extensive1y in the exarnples given by Casdagli et al. 
(1991), is a bivariate real-valued map defined as 
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where <Pt = b - 6/[1 + X(t)2 + X2(t)2]. Tak.ing for instance a = .7 and b = .4, the tra
jectories generated by this map are chaotic. 

The Ikeda map can be simply rewritten as a special instance of the nonlinear state
space model introduced in the previous section. Letting xlt) = a and X4(t) = b, we 
obtain: 

x(t+l) = 1 + X3(t)[X(t)cos(<Pt) - X2(t)Sin(<Pt)] 

x2(t+1) = X3(t)[X(t)sin(<Pt) + xit)cos(<Pt)] 

where <Pt = X4(t) - 6/[1 + X(t)2 + xit?]. Notice that there is no innovations process 
w(t) influencing the latent state process x(t). 

The relationshlp between x(t) and the un.ivariate manifest process y(t) is given by 

y(t) = x(t) + v(t) 

where v(t) is taken to be univariate Gaussian white measurement noise with variance 
V. Clearly, the 2-dimensional Ikeda map is projected onto a lower dimensional (uni
variate) time series, in accordance with the Casdagli et al. (1991) scenario. The recur
sive estimate x(t I t) inc1udes the time-dependent estimates X3(t I t) and xit I t) of a 
and b, respectively. 

Simulation experiment 

Using the state-space representation of the Ikeda map as specified in the previous 
section, noise corrupted y(t) series, t=I,2, ... ,1000, were generated using the follow
ing parameter values: a = .7, b = .4, V = 0, .001, .01 or .1. In what follows, only the 
case in which the measurement noise variance V = .01 will be considered, because 
this yields a signal-to-noise ratio of the same order as for which Casdagli et al. 
(1991) found pathological reconstruction results. The signal-to-noise ratio is defined 
as SNR = var[x(t)]/var[y(t)]. For V = .01, SNR = .974. 

Figure IA shows the recursive estimate of a (the true value of which is a = .7). Fig
ure 1B shows the recursive estimate of b (the true value of which is b = .4). It appears 
that the recursive estimates quickly stabilize withln a 95% confidence interval about 
their true values. More specifically, the standard errors of a and b at t = 1000 are .00852 
and .01235, respectively. The one-step-ahead prodeiction error variance is .03087. 
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Fig. lA. Recursive estimate of a in Ikeda map a-true = .7; V = .01; SNR = .974. 
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Fig. lB. Recursive estimate of bin Ikeda map b-true = .4; V = .01; SNR = .974. 
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In closing this section, we present a result of applying the recursive estimator 
(EKF) to an instance of the Ikeda map with time-varying coefficient a(t): 

a(t) = a(t-l) + .7/1000; t=1, ... ,1000; a(O)=O 

As before, b is constant (b=.4), and y(t), t=l, ... ,1000, is in all other respects gener
ated like before. In particular, V=.Ol. 

Figure 2 presents the recursive estimate of X3(t) = a(t). It is seen that the EKF 
nicely recovers the time-varying trajectory of a(t), which starts in a region where the 
Ikeda map is not chaotic and after some time enters a chaotic region (including the 
terminal value a(1000) = .7). 
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Fig. 2. Recursive estirnate of aCt) in Ikeda map aCt) = aCt-I) + .7/1000; a(O) = 0 V = .01; SNR = .996. 

Conclusion 

Perhaps the main conclusion is that the Casdagli et al. (1991) results conceming the 
impossibility of reconstructing localized states in the presence of additive measure
ment noise do not seem to carry over to parameter estimation in the Ikeda map 
under the same noise conditions as considered by Casdagli et al. That is, the 
obtained recursive EKF parameter estimates do not appear to behave pathological 
and their approximate 95% confidence intervals contain the true values during 
almost all times. Yet this result should be considered as preliminary, requiring much 
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further elaboration in almost all respects. To arrive at more definitive conclusions, 
large-scale Monte Carlo studies are required using alternative, high-dimensional state 
evolutions. Also our recursive estimation technique should be embedded in an expec
tation-maximization (EM) algorithm which will increase the fidelity of the parameter 
estimates thus obtained. 

To further underpin our cautionary remarks conceming the strictly preliminary sta
tus of the results reported in this paper, we note some phenomena that would indeed 
seem to qualify our main conclusion in some important respects. To begin with, 
according to standard signal analytical principles one would expect the recursive esti
mate of a constant parameter to become constant itself as time increases. More 
specifically, the recursive estimates of the constant parameters a and b in the Ikeda 
map should converge to stabie values as time increases. In fact, this convergence to 
stabie estimated values should be quite fast, given the presence of only a small 
amount of measurement noise. Yet Figures IA and I B appear to tell a different story: 
the variation of the recursive estimates of a and b does not seem to wane as time pro
ceeds. Clearly, this apparent lack of consistency requires further scrutiny before more 
definite conclusions can be drawn. 

Another noteworthy phenomenon is that the so-called extended Kalman smoother 
does not seem to work for parameter estimation in the Ikeda map. The extended 
Kalman smoother can be interpreted as the application of the EKF forwards in time 
(as reported in this paper), followed by an another application backwards in time. It 
can be proved that this will yield optimal recursive estimates. Yet, for reasons which 
are presently unknown, only the extended Kalman filter (EKF) works. This is all the 
more surprizing because the Ikeda map has an explicit inverse. These and similar 
phenomena observed in the present simulation study indicate that the obtained results 
should be interpreted with great caution. 

In closing, we would like to reiterate the importance of applications of recursive fil
tering techniques in the micro-genetical analysis of chaotic maps during phase trans i
tions. Such applications can provide detailed empirical evidence of the existence of 
new varieties of selforganization in developmental processes. As alluded to erlier, this 
constitutes the next logical step in our ongoing work on statistical modeling of stage 
transitions in epigenetical processes. The approach presented in this paper addresses 
an important preliminary issue in this endeavour, that also in itself would seem to have 
profound and interesting implications for applied nonlinear dynamics. 
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