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The paper describes how stochastic optimization techniques can be used to model 
profit maximizing producer behaviour in a spatial continuum. The main methodolog­
ical issues to be addressed are, first, that the representation of optimal allocations in 
a spatial continuum naturally leads to models that contain integrals over space, and 
secondly, that the resulting model tends to have a multi-level structure, i.e. requires 
sol ving nested optimization problems because it should combine the profit maximiza­
tion by individual producers with market clearing at regionallevel. As an illustration , 
we specify four regional modeIs . The first determines the optimal output level for 
factories that emit pollutants which reduce the crop output of neighbouring farmers. 
The main issue is to compute the associated level of compensation to be paid by the 
factories to the farmers. The second model deals with optimal zoning . It computes the 
optimal crop routing for farmers who can choose to sell their crop to factories situated 
at given locations. This is an optimization problem in functional space, which can be 
reformulated as a dual stochastic optimization problem . In the third model, the farmer 
has the possibility of routing his crop along different roads or distribution nodes to 
the various factories for processing. It can describe the optimal choice of distribution 
centres at given locations , around plants or cities, and produces optimal boundaries 
for the zones that supply to or buy from these centres. The fourth model deals with 
the problem optimalland consolidation, and distinguishes between consolidation pro­
cesses with and without side-payments. To each of these four models we associate a 
stochastic quasi-gradient (SQG- )procedure for attaining the (global) optimum, which 
has a natural interpretation as a learning device for decentralized adaptive planning. 
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consolidation. 
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1. INTRODUCTION 

The growing concerns about the environmental and social sustainability of land­
utilization patterns have led to a revival of interest in problems of optimal spatial 
allocation. With respect to the environmental aspects, questions include at the 
lower geographical scales, issues such as the optimal siting of intensive livestock 
industry in relation to the surrounding crop farms in the neighbourhood, and at 
a higher scale the impact of afforestation on temperature and rainfall. As regards 
social sustainability, one could, among many other, mention the questions how to 
organise squatter settiements around fast growing towns, and at village level, how 

lThe authors wish to thank Guenther Fischer, Kirit Parikh, T .N. Srinivasan, Alfred Steyn, 
the participants of the KNAW Colloquium, and a referee for their comments and suggestions . 
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to deal with the ongoing process of land fragmentation, whereby farmers sometimes 
have to cultivate isolated parcels of a few square meter in surface. Spatial aspects 
also play an essential role in the design of new transport infrastructure. 

So far, a wealth of geographical data has been collected to deal with such prob­
lems, on climate, soils, settiement patterns and land cover. Part of these data 
originate from remote sensing, and have mainly been incorporated in Geographical 
Information Systems, which can produce highly detailed maps but contain only 
few and very simple decision support tools. As a rule, the geographically explicit 
tools either describe a separate optimal decision at every point on the map without 
accounting for spatial interdependencies, or limit themselves to optimization over 
a relatively small number of regional units, at the expense of geographical detail. 
The aim of this paper is to show that stochastic optimization techniques all ow to 
represent spatial interdependencies while maintaining geographical detail. 

The subject of optimization over a spatial continuum has been studied in location 
theory, in connection with the problem of optimal facility location. This problem 
usually amounts to finding the geographical location of an industrial facility that 
minimizes the cost of transporting goods to that location from a surrounding region 
or vice versa. The early location models are classical transportation models that 
only select the best out of a finite number of alternatives and treat the region as 
a finite number of fields identified by their barycentre (see e.g. Beck and Goodin 
(1982), for an application to dairy farms). Subsequent location/pricing models 
treat the site as a continuous choice variabie and simultaneously calculate the 
consumer price at every point in the region on the basis of the distance from the 
facility (Hansen et al. (1987) and Drezner (1995) for a survey). 

However, the question of optimalland use requires a broader treatment. It calls 
for an explicit spatial representation of land use itself, with surfaces being allo cat­
ed to competing uses so as to maximize, say, the total revenue in the region, as 
opposed to the cost minimization of the location/pricing modeis. Consequently, 
from a modeling point of view new methodological challenges must be addressed. 
The first issue is that the representation of optimal allocations in a spatial contin­
uum naturally leads to models that contain integrals over space, which in general 
cannot be eliminated analytically, in view of the variability in the underlying GIS­
information. The second issue is that the resulting model, which combines opti­
mal routing and profit maximizing decisions by individual producers, with market 
clearing at regionallevel, tends to have a multi-Ievel structure, i.e. requires solving 
nested optimization problems. 

The aim of this paper is to show that stochastic optimization techniques can 
be applied to address both issues. We specify four regional models in which profit 
maximizing producers are operating within a spatial continuum and compete on 
land and commodity markets. These producers are supposed to face given market 
prices when trading with the rest of the economy and the only endogenous prices to 
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be considered are those prevailing in trade among producers, this in order to avoid 
the intricacies of price adjustment in a fuIl general equilibrium setting. To every 
model we associate a decentralised, stochastic quasi-gradient (SQG- ) procedure for 
attaining the (global) optimum (see Ermoliev (1988)). Since in this paper we are 
more interested in such algorithms as devices for decentralized adaptive learning 
than as efficient tools for computations, we only refer in passing to operational 
issues such as the computationaIly efficient choice of step-size. 

The paper proceeds as foIlows. In Section 2 we describe by means of simple 
examples how stochastic optimization models can be used for planning problems in 
spatial continuum. Next, we deal with applications of increasing complexity. First, 
in Section 3, we study a model that determines the optimal output level for fac­
tories that emit poUutants which spread over the neighbouring environment, and 
reduce the crop output of local farmers. The main issue is to compute the associat­
ed level of compensation to be paid by the factories to the farmers. The technical 
difficulty is to deal with an integral in the objective of a convex program. Our sec­
ond problem (Section 4) deals with optimal zoning. It computes the optimal crop 
routing for farmers who can choose to seIl their crop to factories situated at given 
locations. We indicate that this zoning aspect generates an optimization problem 
in functional space, which can be reformulated as a dual stochastic optimization 
problem. The model of Section 5 extends this approach to include optimal routing: 
the erop can be sent to the various factories along different roads or distribution 
nodes. As this enables us to account for the cost of spreading over dispersed fields, 
we can use this model as a planning tooI for optimalland consolidation and describe 
how the solution path generated by the SQG-algorithm can be interpreted as a se­
quence of land transactions with side-payments, that eventuaIly converges to the 
optimum. However, in many practical situations it will be unrealistic to suppose 
that such side payments can be mobilized, because individual farmers are of ten 
reluctant to participate in land transactions if their farm becomes less profitable in 
the process. To deal with this case, we formulate an alternative model that maxi­
mizes the revenue without side payments of the least favoured. Section 6 concludes. 

2 . SOLVING SPATlAL PLANNING PROBLEMS BY STOCHASTIC OPTIMIZATION 

To illustrate the difficulties that arise when modeling the decisions in a spatial 
continuum, let us start with two simple examples. The calculation of the barycentre 
of a given geographic region is a weU known case. One might think of the possibly 
dispersed farmland whose "cent re" has to be determined, say, in order to serve as 
the coIlection point for the harvest . Let X denote the region and A ç X the (not 
necessarily connected) land of a given farmer. The barycentre of A can now be 
calculated by minimizing 

F(h) = i Ilx - hl1 2dx, (1) 
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where 11 . 11 is the Euclidean distance, which is equivalent to the stochastic opti­
mization problem of minimizing the expectation function F(h) = IA Ilx- hI1 2dG(x), 
where G( x) = ~ is a probability measure. This is an important point, as it con-

JA ~X 

nects the spatial planning problem to stochastic optimization. 

The solution2 h* = 1Axd: can be computed by discretization, numeri cal inte­

gration, either directly, or via sequential Monte Carlo simulation. Discretization 
is common in GIS-packages. It approximates (1) by a grid of N points xj, and 

E ·xj 

computes the barycentre as the average coordinate, h = y. Sequential Monte 
Carlo simulation proceeds as follows. Sample at iteration t = 1,2, ... a point x(t) 

at random and independently, such that Prob.[x(t) E Al = ïXddX , and define the 
A x 

approximate solutions 

h(t + 1) = h(t) - Pt (h(t) - x(t)), t = 1,2, .. . (2) 

Notice that (2) is an SQG-algorithm, since 2 (h(t) - x(t)) is the gradient of the 
random (sample) function under the sign of the integral in (1). If the step-size Pt 
satisfies: 

00 00 

Pt ~ 0, LPt = 00, LP; < 00, (3) 
t=1 t=1 

then the sequence h(t) will converge to h*, with probability 1. This requirement 
will be met for Pt = t, which corresponds to the sample mean calculation: 

1 
h(t) = Et (l 

.=1 x Z 
(4) 

The advantage of (2) as opposed to (4) is that it does not require storing a large 
bundie of information, since in (2) the estimation of h* proceeds sequentially, with 
a simple updating rule af ter each new observation. Procedure (2) is actually an 
SQG-algorithm for minimizing the integral (1) . 

Clearly, in an economie context the squared Euclidean distance will seldom be 
the relevant concept, as transport cost minimization would call for, say, minimiza­
tion of average distance itself rat her than average squared distance. Moreover, 
problem (2) allows for infinitely many routes from point x to the variabie "home" 
h*. It seems more realistic to treat this home or market outlet as fixed (let this be 
point b for base) and to let the farmer choose the shortest (or cheapest) route, by 
searching for collection points h i, i = 1, ... , r. 

2C I I " d' . I (x. ,O)dx f (O ,x,)dx 
a cu atlOn IS coor mate-wlse : hl = 1 ' h2 = '! . 

A(I,O)dx A(O,I)dx 
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The associated zoning pattern is defined by a function i(x) which indicates that 
point i attracts x: i(x) = argminillx - hili + Ilhi - bil. This function can be shown 
in a GIS zone-map. Other "statistics" could include, for example, the total cost 

Zo = L ~in [llx - hili + Ilhi - bil] dG(x), (5) 

where G( x) might reflect the demand for transport (i.e. the crop output at point 
x) and the traffic on the various roads: 

Zi = L (5;(x)dG(x), i = l, ... ,r, 

where Di(X) = I if i(x) = i and 0 otherwise. These values Zo, ZI, ••• , Zr can be 
estimated by discretization but also as minimizers of 

F(z) = (zo - L min [llx - hili + Ilhi - bil] dG(x)r + 

L (Zi - L Di(X)dG(x)r 
I 

(6) 

The associated SQG-procedure, which is similar to (2), will sequentially process a 
large amount of information and with probability I yield a consistent estimate of 
z. The examples discussed can all be dealt with relatively easily by discretization 
methods, because their first-order optimality conditions yield an explicit solution 
for the unknown parameters q. We now turn to models that do not possess this 
special property. 

3. OPTIMAL LAND USE IN THE PRESENCE OF POLLUTION 

We consider industrial plants whose pollution negatively affects neighbouring 
land users. If the emissions consisted only of pollutants such as CO2-gases that 
tend to dissipate quickly into the atmosphere, the analysis could focus on reduction 
of aggregate emissions, and there would be no need for a locational study. However, 
most emissions have a definite local component whose cumulative effects depend on 
location specific factors such as soil type, hill slope, crop coverage and climatological 
factors. 

The spreading of emissions of a given pollutant is naturally represented via 
two-dimensional density functions. These are defined over the geographical region 
under consideration and measure the incidence (fraction) of pollutant emitted by a 
factory that is located at given site and generates depositions at every point in the 
region. The factory might be a chemical plant or an intensive livestock farm. The 
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decision problem is to confront every factory with the land users in its neighbour­
hood (actually in its environment) who suffer from the emissions, i.e. to maximize 
total income or welfare of the region while internalizing the environment al effects, 
and this naturally leads to optimization over a spatial continuum. Polluters will 
pay compensation to the land users. This will affect their profitability, and size of 
operation at every site, as weIl as the revenues and eropping patterns of the land 
users around them. 

3.1. Model Formulation 

The model is specified as follows. We denote the given geographical space of 
region by the set X c R! and consider S fixed factory sites indexed s, located at 
bS EX. A factory at site s makes use of an emission permit for a quantity q'k of 
pollutant k, for k = 1, . .. , K . This use of permits is taken to increase its revenue 
RS(qS) from the factory like an ordinary inputj formally: 

Assumption R (Revenue function of factory at fixed site s): For every site s, 
the revenue function RS: R~ --t R, RS(qS) is increasing, continuously differentiable 
with respect to qS , it has uniformly bounded derivative, and is strictly concave in 
the input qS. 

The emissions are dispersed around the factory by various physical processes 
such as winds and groundwater flows. Let the density function 'ljJk(x) , defined 
over X describe the dispersal of emissions according to Ck(X) = Es q'k'IjJk(x) , the 
incidence of pollutant k at location x, where x is a two- or three-dimensional vec­
tor. This reduces environment al quality at point x, leaving less natural inputs 
h( x) = w( x) - c( x) for crops, where w is the given resource availability, and affect­
ing the revenue from crop farming at location x. The local revenue function r( h, x) 
satisfies: 

Assumption r (revenue function of farm at point x) : the revenue function 
r: R K 

X X --t R, r( h, x) is integrable in x and, almost everywhere in X, con­
tinuously differentiable w.r.t. the input hj it has uniformly bounded derivative, 
and is strictly concave in h. 

In Assumptions Rand r, the requirement of continuous differentiability can be 
relaxed, but it will be seen to offer the advantage of ensuring uniqueness of the 
market clearing prices. Concavity implies that the damage becomes more serious 
at higher pollution intensities. The converse assumption of increasing returns in 
pollution would open up the possibility of polluting without further damage an 
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already fully spoiled area, but this would introduce non-convexity. Yet the for­
mulation allows to promote the factories that are surrounded by land (or water) 
whose revenue is relatively insensitive to pollution. 

Concavity is taken to be strict to keep the optimal q* unique. Finally, in As­
sumption r, integrability in x is obviously necessary for integral calculations, while 
uniform boundedness of the derivative to q is a requirement of the SQG-procedure 
itself, which could be relaxed but is maintained for simplicity. Below we will com­
ment on the qualification "almost everywhere." 

The problem is now to define the optimal production levels, while maximizing 
the revenue in the region and to determine the compensatory payments of the 
factories to the other users of environmental resources. The revenue maximizing 
regional model is: 

max E R'(q') + j r(h(x), x)dG(x) 
• 

qS ~ 0, all s, h(x), all x, subject to (7) 

where G(x) is a distribution on the domain X, and the symbols under the max­
imization denote choice variables. This is a convex program, since the objective 
is concave and the constraint set linear. It has an infinite number of constraints. 
Let us briefly characterize the solution of this problem. We assume that h( q, x) is 
everywhere on X positive in the optimum. Since R'(q') is increasing in q' and the 
density is nonnegative, the constraint holds with an equality and we can substitute 
hk(q, x) = Wk(X) - E. qi.'l/Jk{x), which leads to the unconstrained problem: 

max {ER.(qS) + jr(h(q,X),X)dG(X)} 
q'~O, v. S 

and yields the same optimal solution as the decomposed problems: 

and 

max {RS(qS) - pSqS} , for every s 
q' 

max {r(h,x) - p(x)h} , for all x, 
h 

where p( x) clears the balance 

• 

(8) 

(9) 

(10) 

(11) 
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and clearing priees satisfy 

PÎc = J Pk(x)'ljJZ(x)dG(x), (12) 

and 

( ) 
_ 8r(h,x) 

Pk x - 8h
k 

. (13) 

Hence, the eompensation payments satisfy: 

PROPOSITION 3.1 (COMPENSATION PAYMENTS BY POLLUTERS): Under As­
sumptions Rand r, the regional revenue maximization (7) implies that: 

(1) every factory s pays a total transfer Lk p'kqic to farmers; 
(2) every spot x receives LsLkPk(X)'ljJi.(x)qic. 

PROOF: Follows directly from (12, 13) and the first-order optimality eonditions: 

8RS( qS) s = J 8r( h( q, x), x) ol.S( )dG( ) s 
8qic qk 8hk 'l'k X X qk· 

Q.E.D. 

This proposition implies that the reeeipts of a erop farmer from faetory s will 
inerease with (i) the emission qic, (ii) the dispersion density 'ljJi.( x) to loeation x, 
and (iii) the marginal damage &TJ~~X) at loeation x. To put it differently, farmer 
x sells his resource endowment Wk (x) to himself as hk (q, x), and to the factory as 
'ljJi.( x )qic, at the same priee Pk (x). Conversely, factory s buys endowments at priees 
PÎc and will have to restrict its emissions (and possibly even close down) if its pol­
lution dissipates to loeations x where the damage is important, either beeause the 
loeation itself is vulnerable or beeause ot her factories ean pollute it less harmfully 
(i.e. ean obtain more revenue from a marginal unit of pollution qk). Therefore, this 
ean be interpreted as a loeation model, even though loeation bS is fixed. 

3.2. Solution Procedure 

Problem (7) ean be solved by an SQG-proeess. Define the function 

f(q,x) = ERS(qS) + r(h(q,x),x), 
S 

where hk(q,x) = Wk(X) - Lsqic'ljJi.(x), with gradient 

8f(q,x) = 8RS(qS) _ 8r(h,x)'ljJs(x) 
8qk 8qk 8hk k . 

(14) 

(15) 
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The spatial optimization problem (7) is now to maximize 

F(q) = J f(q,x)dG(x), (16) 

on the compact convex set Q, which is taken to be specified as Q = {q I 0 :S q :S q}. 
The SQG-algorithm considers a sequence of random drawings x(t) from the set X 
and starting from a given q(l) = ql E Q, adjusts q(t) according to: 

q(t + 1) = IIQ (q(t) + Pt 8f(q(i~ x(t))) , t = 1,2, ... , (17) 

where IIQ is the projection operator on Q (i.e. the point in Q nearest to the pro­
jected point), and the scalar step-si ze Pt converges to zero according to some appro­
priate step-size rule. From the general results on the convergence of SQG-methods 
i t follows that if f (q, x) is differentiable and concave in q, almost everywhere on 
G, then process (17) converges, with probability 1, to the optimal solution of (16), 
for step-size Pt chosen as in (3). The representation in a continuum has special 
attraction for spatial problems hecause, once an optimal value q* has been esti­
mated, GIS-tools allow to produce, say, an "altitude" map of the farm revenues 
r(h(q*,x),x). Furthermore, on ce problem (16) has been solved, the results can he 
compared in a spatially explicit manner with those that do not allow for compen­
sation where the permits have zero price and the factories maximize RS(qS), while 
the land-users are confronted with given pollution levels. 

As an alternative to the SQG-method, one might consider using deterministic 
techniques after having approximated the function F(q) by its sample mean: 

1 N 
FN(q) = N L,f(q,x(i)), 

Î=l 

(18) 

where the values x( i) are independent samples from G( x). For most of the models 
discussed in this paper, however, the value N would have to be extremely large, and 
this would require a large numher of terms f(q, x(i)), which might, moreover, he 
highly non-smooth and not available explicitly. For the SQG-procedure (17), the 
convergence principle can he understood as follows. Since the direction af(q~~,x(t)) 

coincides "on average" with the gradient FJ: l , i.e. 

J 8f(q(t), x(t))d = 8 J[f(q(t), x)dx] 
8q x 8q , (19) 

on average the value F( q) increases from one iteration to the next, and for a step­
size moving to zero at appropriate speed, the sequence {q( t)} generated hy adjust­
ment rule (15) will converge to the optimal solution. In fact this rule can he viewed 
as a stochastic decentralisation procedure. It has an "evolutionary" interpretation 
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as a decentralised learning process. Once a point x( t) has been selected by at ran­
dom within the region (the mutation), the vector q(t) E Q gradually changes its 
composition (the select ion) so as to improve performance (survival). Whereas a 
deterministicgradient method would use the gradient f aj(~(:).x)dG(x) and thus as­

sume the distribution G(x) to be known to the planner, this SQG-adjustment only 
improves fitness from the perspective of the randomly chosen point x(t), without 
use of any information on the distribution or on the value F at any other point x. 
Thus, the process is perfectly decentralised and derives its coordination (optimality 
of allocations ) from the infinite repetition of events and a relatively "naive" adjust­
ment to current pressure as expressed through the quasi-gradient. And, while the 
single point has a negligible influence on the final outcome, the optimal solution 
is eventually determined by the shape of the distribution G(x), jointly with the 
function f ( q, x) and the set Q. 

Let us briefly return to the qualification, "almost everywhere" in conjunction 
with the "integrability in x" of Assumption r. This is a significant relaxation of 
the usual demands that differentiability and concavity properties should apply ev­
erywhere on the domain. It is important in a spatial context, as it allows for the 
representation of natural discontinuities due to, say, rivers or roads. Technically, 
the role of this qualification is expressed in the following simple lemma: 

LEMMA 3.2 (MEAN VALUE): Consider the distribution G(x) and the function 
f:Q x X -t R, f(q,x), which is integrable w.r.t. x. IJ, almost everywhere on X 
(the points where this does not ho/d have measure zero), f(q,x) is concave w.r.t. 
q, then F(q) = f f(q,x)dG(x) is concave on Q. 

PROOF: Choose two arbitrary points ql and q2 from Q and consider an ar­
bitrary convex combination q3 = >.ql + (1 - >.)q2' for any >. E [0,1]. Then, by 
concavity w.r.t. q, >.f(ql' x) + (1 - >.)f(q2,X) ~ f(q3,X) almost everywhere on 
G(x). Therefore, >. f f( ql, x )dG( x) + (1 - >')f f( q2, x )dG(x) ~ f f( q3, x )dG(x) and 
F(q) is concave on Q. Q.E.D. 

4. ZONING PROBLEM 

Assigning land to factories located at given sites is known as zoning. Instead of 
describing a physical flow of pollutants from a point to a surface, zoning assigns 
surfaces to given locations. Assume that farm output is carried from the fields 
to the collection point, which might be a factory, but also a city and even the 
farmer's own homestead. Every field is assumed to grow the most profitable crop 
(combination) at every spot and the harvest is carried to a cent ral site to be chosen 
so as to yield the highest revenue af ter accounting for transportation costs. Thus, 
fields are optimally associated to sites. 



M.A. J(eyzer and Vu. Ermoliev 291 

4.1. Model Formulation 

Let the variabie q denote, as before, the input into the factory. We also define a 
physical flow Yk (x) of harvested erop k from point x to si te s, located, say, at point 
bSo The model will, as in (7) have an integral in its objective but, in addition, the 
objective will contain the spot-specific endogenous variabie YZ(x) . This introduces 
the difficulty that the exogenously given density function should be replaced by an 
endogenous routing decision. 

Transportation costs are denoted by wk( x ), a function that should be integrable 
on G( x). They might be a function of the Euclidean distance between x and bS

." 

The formulation could easily be generalized to account for possible asymmetry 
in transportation costs (up-hilljdown-hill), but here we disregard this aspect for 
convenience. Let qS now denote the aggregate flow of erop output to point bS, to be 
used as input by the factory, and let the revenue function RS (qS) satisfy Assumption 
R. 

Without loss of generality, we now write the revenue function at spot x in a 
more explicit form as r( h, Ó, x), where Ó is the residual production factor which, 
in view of the strict concavity in Assumption r, can be taken to be essential for 
production (i.e. r( h, 0, x) is equal to zero) and guarantees homogeneity of degree 
one in (h, ó). This factor serves to ensure full specialization of all crops from one 
spot to a single destination. We rephrase Assumption r accordingly: 

Assumption r1 (revenue function of farm at point x): the revenue function 
r: R K 

X [0,1] x X ~ R, r(h, Ó, x) is integrable in x and, almost everywhere on 
X, continuously differentiable W.r.t. the inputs (h, ó)j it has uniformly bounded 
derivative, is concave, homogeneous of degree one in (h, ó), strictly concave in h, 
increasing in Ó, and such that r(h,O,x) = 0. 

Finally, let Pk denote the purchasing price that clears the commodity market k 
at site s, whose balance reads: 

q'k - J yk(x)dG(x) ~ 0, all k and s. (20) 

To represent this model formally, we proceed in the way that is usual in location 
analysis and replace the unknown supply function yk( x) by a well specified function 
of prices, as follows . For prices ps define the profit functions: 

II"(pS) = max (RS(qS) - LPkq'k) , all s, (21) 
q'~O k 

which is convex non-increasing in input price ps (see Varian, 1992). For spot x, the 
profit from routing the erop to site s, is: 

7r
S(pS 

- WS(x), x) = max L(Pk - Wk(X))Yk + r( -y, Ó, x), 
y~O k 

(22) 
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for 8 = 1, and is convex nondecreasing in output price (pS - WS(x)). Competitive 
market prices pS solve the master problem:3 

min 2:rrs(pS) + Jmax7r S (pS - wS(x),x)dG(x). 
p'~O, 'ris S S 

(23) 

This program finds prices ps that minimize the aggregate producer surplus, which 
is the dual to the (primal) maximization of aggregate producer surplus in terms of 
commodity allocations. We use the dual problem because it is a standard convex 
program, whereas the primal is a problem in functional space. We now check that 
the objective of dual problem (23) has aggregate excess supply as its derivative 
and, hence, reaches its minimum at prices that clear the markets. 

Continuous differentiability in Assumption rl implies strict convexity in p of 
this objective (see Ginsburgh and Keyzer 1997, ch. 2), while strict concavity in 
Assumption R ensures continuous differentiability of 11"(pS). Hence, by Hotelling's 
lemma, optimal inputs qS satisfy 

S anS(pS) 
q = - aps (24) 

while, almost everywhere on X, 7rS(pS - WS(x), x) is continuously differentiable, and 
outputs yS are given by: 

(25) 

where 8S
( x) = 1 if routing to s yields maximal profit, and 0 otherwise. Notice that 

by construction, the routing will be the same for all commodities produced at point 
x. Finally, the first-order optimality conditions of (23) ensure satisfaction of the 
commodity balances: 

J yS(x)dG(x) = qS. (26) 

We also mention that by the conjugate function theorem, the problem in quantity 
terms dual to (23) can be written: 

max 2: RS(qS) + J (2: r( _yS(x), 8S(x), x) - 2: 2: wk(x)yk(x)) dG(x) 
S S S k 

3 Although model (23) only deals with farm output., it is relatively straightforward to account 
for inputs, by treating outputs and inputs separately, in (21, 22), with their own prices. The 
profit functions wil! then have two arguments, the first for output p~ and the second for input 
prices p: at market s, and read II'(p~ , p:) and 71"' (p~ - w' (x), p: + w' (x), x), where the transport 
casts w' (x) are deducted from the output price and added to the market price, to arrive at farm 
level prices. These profit functions should, al most everywhere on X, be jointly convex in the 
first two arguments, increasing in output prices and decreasing in input prices, and continuously 
differentiable in x. 
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qS ~ 0, yk(x) ~ 0, 8S(x) ~ 0, all k, s, all x , subject to (27) 

qk - J yk(x)dG(x) :s 0, all k and s, E8S (x)=1 , 
S 

which is a problem in functional space. 

4.2. Solution Procedure 

Let us now turn to the solution procedure for model (23). The problem is to 
mmlmlze 

V(p) = J v(p,x)dG(x) (28) 

on a compact convex price set P = {O < p :s p :S p}, for v(p, x) = L:s IP(pS) + 
maxs 7r

S(pS - WS( x ), x). Due to the maxs=-operator, the function v(p, x) is non­
smooth but under Assumption r1 it is convex in pS and any stationary point is a 
global optimum. 

The solution procedure can be cast into an SQG-form for (decentralized) price 
adjustments. At step t = 1,2, .. . , the change of prices from p( t) to p( t + 1) is 
initiated by the random choice of alocation x(t) from the distribution G(x). This 
change decreases the aggregate profit function v(p, x) = L:s IP(pS) + maxs 7r

S(pS -
WS(x), x) at x(t) : 

( 
ov(p(t), X(t))) 

p(t + 1) = IIp p(t) - Pt op , t = 1,2, . . . , (29) 

where IIp is the projection operator on P. In fact, procedure (29) defines a stochas­
tic Walrasian tatonnement of the type described in Ermoliev et al. (1997). Recall 
from (24) and (25) that since net supply is the derivative of the profit function, the 
value - av(p(~~.x(t)) is simply the net demand of point x(t), where the net demand 
from factories s is taken to be spread uniformly over the surface. As in the deter­
ministic Walrasian tatonnement, the procedure changes prices in the direction of 
net demand until aggregate (i .e. expected) net demand becomes zero eventually 
and markets are cleared. 

4.3. Zoning 

The sol ut ion of model (23) will yield market clearing prices ps, from which in­
put demands qS by factories and farm supplies yk(x) can be recovered via (24) 
and (25), respectively. This raises the question as to the properties of the optimal 
values yk(x). Indeed, under relatively mild assumptions about transportation costs 
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wk(x), and about the differentiability of revenue function r( h, 8, x), it is possible to 
show that, almost everywhere on X, yk( x) will be non zero for at most one destina­
tion s and that this destination will be the same for all outputs k. This amounts 
to asserting that the model generates a specialized zoning, i.e. an integer valued 
mapping s(x) that is single valued, almost everywhere on x, thus creating a unique 
association between spots and factories . 

Assumption W (unit cost of transportation from x site sj: The cost of trans­
porting one unit of commodity k to site s, wk(x) is, almost everywhere on X, (i) 
nonnegative and continuously differentiable in x. Moreover, (ii) almost everywhere 
on X and for every k and pair [s, s'], s =1= s', the difference Ck (x) = wk( x) - wk' (x) 
has non-zero gradient whenever c(x) = 0. 

Assumption r2 (difJerentiability) : the revenue function r( h, 8, x) is almost ev­
erywhere on X continuously differentiable in x. 

Various specific formulations of the cost functions, such as the Euclidean dis­
tance, guarantee satisfaction of Assumption W(ii) . Geometrically, this is because 
two circles with different centres can only share points but no arcs. We can now 
state and prove: 

PROPOSITION 4.1 (SPECIALIZATION OF SPOTS): Let Assumptions R, ri, r2 
and Whold. Then, (a) program (23) partitions the region X into zones with a 
common routing such that (a) no zone will produce for more than one factory, and 
(b) the number of zones is finite. 

PROOF: Continuous differentiability of the revenue functions ensures that pro­
gram (23) has a unique solution p •. Now for an arbitrary pair of sites [s, s'], s =1= s', 
define the function z( x) = 'Tr

s (ps. - W s (x), x) - 'Tr., (ps'. - w" (x), x). By Assumptions 
W(i) and r2, the function z(x) is continuously differentiable almost everywhere on 
X. Also partition x into (Xl, X2), where Xl refers to the first coordinate of x (a 
scalar) and X2 the other coordinate (we assume for convenience that the space is 
two-dimensional). The proof proceeds in two stages. 

First, we keep X2 fixed at an arbitrary value xg in X and characterize the fixed 
points for Xl, as defined by z(Xl, xg) = 0, as follows. One possibility is that there 
are no solutions. This means that either z(xl, xg) > ° (meaning that s dominates 
s') or z( Xl, xg) < ° (s' dominates s) for all points on the line X2 = xg. If solutions 
exist, these can be of two kinds: isolated or on closed segments along the line 
X2 = xg. Since X is compact, the nu mb er of closed segments must be finite, and 
the fixed point counting theorem in Ortega and Rheinboldt (1970, p. 150) says 
that, because z( x) is continuously differentiable and X is compact, the number 
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of isolated solutions is fini te as weIl. We can therefore construct around the line 
X2 = xg, a band consisting of neighbourhood sets Nj(xg), indexed j = 1, .. . , J that 
fully cover this line and do not overlap. 

Secondly, consider the perturbed fixed points close to xg, say, at xg + € within 
the band. If there were no fixed points at xg, this may still be the case at xg + € but 
this only means that the domination persists. Otherwise Z(Xl' xg + €) = 0 might 
have some fixed points. Consider in the neighbourhood Nj(xg) of the j -th solution 
at xg, the set of perturbed solutions Zj(xg) = {Xl I z(X1,xg + y) = 0, 0 :S y :S 
€, (Xl, X2) E Nj (xg) }. If this segment persisted, the set Zj (xg) would have positi ve 
surface but would contradict Assumption W(ii). If it does not persist, it can be­
come an intersection or disappear altogether. In both cases Zj(xg) has zero surface 
on X (property (a)) and partitions Nj(xg) in a finite number of zones (property 
(b)) . Alternatively, assume that Nj(xg) is the neighbourhood of an isolated root. 
In this case, by the implicit function theorem, the perturbation defines, for posi­
tive € chosen sufliciently small, a continuous function on Nj(xg) for which Zj(xg) 
also has zero surface on X. Therefore, for all j, the set Zj (xg) has zero surface 
partitions Nj (xg) in a finite nu mb er of zones . This holds in a band around every X 

and since € > 0, it follows that the uni ons of all sets Zj (xg) has zero surface, and 
since it holds for an arbitrary pair [s, s'], the property holds for all pairs, proving 
(a) and (b). Q.E.D. 

The result has an easy geometrie interpretation. For given prices p, the func­
tion z(x1, X2) can be thought of as a mountain . Consider the intersection of this 
mountain with a horizontal plane at given altitude (sea level) . On this plane, mark 
the locations where the land that lies below sea level in blue, and those above sea 
level in black. Because the function is continuously differentiable, the resulting 
map will now delineate islands and lakes. The distinction will only be ambiguous 
if the mountain is exactly tangent to sea level. But this tangency will disappear 
af ter an arbitrarily small rise in sea level (property (a)). Assumption W(ii) imp lies 
that there are no such planes . Property (b) establishes that the number of islands 
and lakes will be fini te. 

4.4. Errors in Evaluation of Gradient: Interpretation as a Learning Process 

So far, we have assumed that the stochastic gradients (net supplies) could be 
evaluated without errors. SQG-methods have the special attraction that they can 
accept errors in calculation. Let us denote an estimate of this gradient by ((t). 
We assume that both ((t) and the step-size Pt are defined on a probability space 
(0, F , P) and that they are Ft-measurable, where F1, F2 , . .. is a sequence of a­
fields (see e.g. Billingsley, 1986). This amounts to requiring that ((t) and Pt are 
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defined on the basis of information from Ft available at time t, for example the 
history of prices p( 1), ... ,p( t) and locations x( 1), .. . , x( t). 

We will suppose that the process leams from earlier mistakes and has the ability 
of gradually eliminating any bias eventually. For example, assuming an additive 
error t:( t) that is independent of the location x( t), we could replace process (29) 
by: 

p(t + 1) = IIp (p(t) - Pt((t)) , t = 1,2, ... (30) 

for 

1"( ) _ av(p(t), x(t)) ( ) 
., t - ap + t: t , (31) 

where t:(t) is an Ft-measurable (random) vector of errors with conditional expec­
tation: 

E[t:(t) I Ft] = b(t), 

such that the following assumption holds (Ermoliev, 1988): 

Assumption E (Error specification): 
(i) bias elimination: 11 b( t) 11 ::; 7-, for fixed al > 0, 
(ii) bounded variance: E[lIt:(t) - b(t)11 2 I Ft] ::; 0'2, for fixed 0'2 > o. 
(iii) non-vanishing step-size: Pt 2: 0, L~l Pt = CXJ, with probability 1, 
(iv) step-size convergence: E [L~l (ptllb(t)11 + p;E[II((t)11 2 I Ft])] < CXJ. 

(32) 

Requirement (i) ensures that the bias 11 b( t) 11 in the conditional expectation of 
t:( t) is to vanish in the course of iterations. It means that gradually everyone leams 
to make unbiased estimates of desired net trades. The requirement (ii) of bounded 
variance means that errors should not be infinite. It usually is innocuous as the 
error can usually be assumed to satisfy 11t:(t)11 ::; C for some fixed C > o. Require­
ments (iii) and (iv) are a generalization of condition (3). It is possible to develop 
this error specification in various directions, for example by allowing for location 
specific errors, whose bias only needs to vanish in the aggregate. Finally, notice 
that, since every point x has zero surface, the individuallocation has no incentive 
to behave strategically by communicating false signais. Vet it has no incentive to 
communicate correct signals either. 

5. LAND CONSOLIDATION 

The zoning approach can also be used to study land consolidation, with a similar 
learning interpretation for the associated SQG-process. When applied at village 
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level, the zoning problem (23) allows to reassign land among farmers, and the 
potential revenue from this consolidation process can be evaluated. However, model 
(23) has the limitation that it does not account for aspects of parcel configuration: 
fragmentation, unbalanced shape, and lack of contiguity of parcels do not affect 
the cost of production. In reality fragmentation can be costly, because the farmer 
may have to spend much of his time commuting and transporting farm implements 
from one plot to the other. Here we extend the zoning model to account for 
the cost of fragmentation. The first model in this section determines the optimal 
parcel structure, while the second imposes an additional restriction on equitable 
distribution of gains from consolidation. 

In model (23), the cost of production only depends on the distance between the 
point x in the field and the homestead located at bS

• This might be unrealistic, as 
the farmer can visit his plots more easily if they are located close together than if 
they are dispersed over a wide area. Hence we must also account for the distance 
between plots. To obtain such a measure of spread, we all ow every farm s to be the 
user of not more than, say, J distribution centres or roads indexed sj, as in Section 
2. Farmer s could be thought of as taking his bullock cart with seeds or manure to 
some roadside location near his plots and distributing these inputs over his fields 
with manuallabour, or conversely, collecting his crops with manuallabour before 
loading them on the cart. We continue referring to bS as the homestead but it 
might also be the location of the marketing post of farmer s, who could choose to 
live somewhere along this road. 

The main assumption is that there is a given, fini te number of alternative routes 
given to every farmer (which might be the same for different farmers), and that 
farmers have the right of passage through neighbouring fields, to ensure that lack 
of contiguity of parcels does not pose any problem. This amounts to assuming that 
land fragmentation and parcel shape only matter to the extent that they cause 
parcels to be spread more widely, but the number of parcels itself does not affect 
cost. 

5.1. A Model of Constrained Land Consolidation 

Formally, we assign at most J distribution centres or roads to every farm s. 
We can, for example, decompose the transportation cost from the field x to the 
homestead (or market) bS into two parts: from x to hsj and from hsj to bSo Thus, 
total transport costs per unit is a function wZj(x), say, as in Section 2: 

(33) 

where a~ is a unit cost for transport, say, by foot, bk a unit cost for transport by 
cart, and 11 . 11 denotes a vector-norm and measures the distance between x and bS

, 

and a distance between cent re of operations and the homestead (for a road j that 
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is inaccessible to farmer s, transportation costs will be given a prohibitively high 
value). This yields as an immediate extension of model (23) 

min [2:: W(pS) + J m~x 7r
S(pS - wSj(x), x )dC(X)] . 

p'~O, 'Is S SJ 

(34) 

At every point x , the farmers make a separate decision which distribution cent re 
to use. It would be interesting to allow for endogenous determination of a single 
location hS for every farm but the resulting profit maximization problem would not 
be concave with respect to this location. 

5.2. Regional Model with Fixed Land Base 

Program (34) determines an optimal schedule for land consolidation. Alterna­
tively, to represent farm operations for a given pattern of land fragmentation, one 
may define the distribution Cs (x) which specifies the given association bet ween 
point x and farmer s: 

(35) 

This is actually a regional model with separate farms and a fixed land base per 
farm. lts solution will, for every farm, describe the optimal land allocation to 
various crops and the zones indexed j will become the fields of the farm. More­
over, every regional model will have a differentiable supply response function qS(pS). 

5.3 . Restrictions on Land Consolidation 

Land consolidation transactions obviously generate a change in the land dis­
tribution. A distinction can be made between a centralized and a decentralized 
process of transactions. In a centralized land consolidation process all participants 
start by pooling their land resources together. Next, one computes the optimum 
of (34), jointly with the cost for every site (household). At the end of the process, 
a compensation is paid to the losers, which is financed either from taxes on those 
who gain, or from external funds (village development), according to some agreed 
ru Ie for sharing the surplus from cooperation. In many situations, the extern al 
funds to compensate losers directly or through development of infrastructure will 
be lacking. In addition, participants are of ten reluctant to accept compensation 
payments, because the consolidation process has lasting consequences and calls for 
recurrent payments which, in view of weak enforcement mechanisms, might not be 
forthcoming on ce the consolidation process has been completed. Moreover, farmers 
will rarely be able to provide side payments in cash. 
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Vnder such conditions, participants will tend to prefer a system that guarantees 
some fairly distributed gain in the direct revenue from farming, and maximizes 
the relative gain of the least-favoured. It is relatively straightforward to modify 
(34) accordingly. Let Va" denote the original income of farmer s in (34), which is 
assumed to be positive. We will solve: 

q'k ~ 0, y~i(x) ~ 0, ósi(x) ~ 0 all j , k, s, all x , subject to (36) 

q'k - L J y~i(x)dG(x) ~ 0, all k and s , Lósi(x) = l. 
J ~ 

The st ru ct ure of this problem differs from that of the earlier models because of the 
mins operator. This requires some reformulation. 

5.4. Solution Procedure 

Let us define the S-dimensional simplex A = {(,V, ... , À5) ~ 0 I Es ÀS = I} 
and represent the mins f f' (. )dG( x) part as minÀEA f Es À' f' (. )dG( x ), because this 
enables us to compute the gradients directly. The variables ÀS can be interpreted 
as welfare weights (or as value-added tax rates incremented by unity). We also 
define scaled prices i? = ÀSp', and scaled profit functions terms 

fî'(pS , ÀS) = max T~ [Às RS(qS) - LPicqZ] , all s, 
q'~O vos k 

(37) 

which is convex non-increasing in scaled input price ps and convex non-decreasing 
in welfare weight ÀS. For spot x, the scaled profit function is: 

?fsi (pS - ÀSw' ( x), À', x) = max T~S [L (pk - ÀswZj (x) )Yk+ ÀSr( -y, 1, x)]. (38) 
y~O Vo k 

Noticing that pEP since 0 ~ P ~ p, the resulting nested formulation is: 

_min Jv(p,À,x)dG(x), 
pEP,ÀEA 

for 

v(p, À, x) = L [fî'(p" ÀS) + max?fS(pS - Àswsi(x), ÀS, x)] , 
• SJ 

(39) 

(40) 

which is jointly convex in (p, À). We can solve this problem by an SQG-procedure 
similar to (29): at each step t = 1, 2, ... the price vector p(t) is adjusted in the 
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direction 8v(p(t);:t) ,x(t)) and À( t) in the direct ion 8v(P(t);jt),x(t)). We propose the 

following decentralized stochastic adjustment procedure: 

-(t + 1) = II (-(t) _ 8v(p(t) , À(t), x(t))) 
p p p Pt 8p , (41 ) 

À(t + 1) = IIA (À(t) - Pt 8v(p(t)';it ), X(t))) , t = 1,2, ... , (42) 

where Pt is the step-size that is supposed to satisfy (3). Note that, as in (29), 
the price adjustment is a stochastic Walrasian tatonnement, but in addition, the 
weights are adjusted so as to give higher weight to those who stand to gain less, 
relative to the original situation Vcr We summarize this as a proposition. 

PROPOSITION 5.1 (DECENTRALISED LAND CONSOLIDATION WITHOUT LOS­

ERS): Let Assumptions R, r1, r2 and Whold. Then, with probability 1, procedure 
(41, 42) with step-size Pt satisfying (3) converges to the (global) optimum of (39, 
40) which also solves (36). 

PROOF: Since v(p, À, x) is jointly convex in (p, À) on the compact, convex do-
main P x A, convergence follows as in Section 2. Q.E.D. 

Procedure (41 , 42) is remarkably simple and transparant, despite the appar­
ent complexity of problem (36). We start from given p(t) and À(t) and select a 
point x(t) at random. Next, we choose the most profitable destination sj, for all 
commodities produced at x to be shipped t~. Finally, we compute the SQG as 
derivative W.r.t. pS and ).S of the associated "total profit" function [fiS (pS ,).S) + 
irS(pS - Àswsj (x) , ).s, x)] (if there are several, choose, say, the one with lowest index 
value). 

6. CONCLUSION 

The approach described in this paper is currently applied in two projects. The 
first implements the model of Section 3 with pollution to a region in Poland where 
the ammonia emissions from the intensive livestock industry currently reduce the 
crop yields of surrounding farms. The second application studies, on the basis of 
detailed household surveys, the causes of land fragmentation and the scope for land 
consolidation in two villages in India. 

With respect to the lat ter application, we have so far treated land as a perfect­
ly divisible commodity and this enabled us to reach relatively strong conclusions 
about the convergence of the processes of land allocation and consolidation, even 
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when restrictions are being imposed on transactions. However, in reality land 
transactions are difficult and the question to be faced is, therefore, whether the 
models and adjustment processes presented here bypass important elements. 

First, in reality land is always indivisible to some extent. Farmers own plots 
of different size and quality and transactions relate to plot surfaces, not to points, 
precisely because agents cannot keep on transacting forever. Now, if we drop the 
divisibility assumption and partition the surface X into N fixed parcels, the optimal 
land consolidation model (39, 40) becomes 

(43) 

for 

To solve this problem, i.e. to clear the land market, the decentralized SQG­
procedure (29) can be used as before, now with x(t) sampled from the discrete 
dis tri but ion {x\ ... , xN } instead of G( x). The difference between the calculat­
ed optimal V N (ft, ).) and V CP', ).) will estimate the welfare loss from maintaining 
a given parcel size as weU as the associated price distortion (ft - jJ). A similar 
discretization approach can be used for the other models in this paper. 

Secondly, if parcels are large, the resulting optimum would of ten be significantly 
lower than the unconstrained one, even for divisible parcels. This might frustrate 
the progress of transactions, because some potential gainers might prefer the status 
quo to a time consuming negotiation process that only brings marginal improve­
ment, and that might even end before a Pareto-efficient solution is reached, i.e. as 
soon as the least-favoured cannot improve their position. 

Thirdly, by treating the locations hsj of the distribution centres as given for 
every farm, we avoid the nonconvexity that emerges as soon as this variable is 
made endogenous. Though convergence of the SQG-procedure is preserved wh en 
prices and locations are adjusted simultaneously, it will be to a stationary value 
that is not necessarily the global optimum. This could by itself already explain 
the inability of a decentralized transaction process to converge to a Pareto-efficient 
solution. 

FinaUy, even though under process (41,42) no one will be worse off eventuaUy, 
in the course of the adjustment process some participants might lose while others 
gain. Hence some participants might want to step out: the losers because they 
fear further losses and the winners because they want to consolidate their position. 
Thus, the process of transactions might end prematurely for lack of participants. 
It is possible to adjust the SQG-procedure accordingly, by restricting the random 
select ion of points to an appropriately defined part of the distribution. One might 
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also look for "matching" pairs of transactions. However, this raises complex issues 
of strategic behaviour and mechanism design and is a topic for further investigation. 

Another challenge for further research is to characterize the type of non-convexi­
ties and discontinuities that can be "healed" by the integral operation. Lemma 3.2 
has illustrated the advantage of modelling in a spatial continuum, as opposed to 
a discretized space, since this allows to neglect specific discontinuities and non­
convexities, as characterized by the "almost everywhere"-qualifier. However, we 
have only considered problems for which this qualification is given as part of the 
problem specification. It would seem useful to formulate conditions on the model 
itself which allow to neglect non-convexities and discontinuities that appear in it, 
because of the healing effect of integration. In the model of pollution control this 
might allow to study increasing returns in pollution, and in the land consolidation 
model to determine endogenously the location of distribution centres. 
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