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Preface 

Coherent vortex structures are common features of quasi-geostrophic or two
dimensional turbulence. In the oceans and in the planetary atmospheres, vortices 
are abundant: the high and low-pressure areas on weather maps are in fact huge 
vortices embedded in the global zonal atmospheric currents, and satellite obser
vations have revealed the occurrence of large- and mesoscale vortices in virtually 
all parts of the world's oceans. Because of their relative longevity it is obvious 
th at these vortex structures play an important role in the transport of physical 
properties such as mass, momentum and heat (and in the ocean also salt and 
biochemical components). F or this reason the dynamics of geophysical vortices 
have attracted the attention of an increasing number of meteorologists and 
physical oceanographers during the last two decades or so. 

Under typical atmospheric and oceanic conditions the quasi two-dimensio
nality of the motion on the larger scales is governed by the planetary rotation 
and/or the density stratification and, in addition, by dynamical constraints 
imposed by the 'flatness' of the domain itself. Two-dimensionality of motion can 
also be established in other ways, for example by external magnetic forces or by 
simply enc10sing the fluid in an essentially two-dimensional domain. Such situa
tions are encountered in magneto-hydrodynamic flows, in certain plasma con
figurations (tokamaks), in accretion disks of neutron stars, and also in soap 
films. Therefore, studying the dynamics of coherent vortex structures is not only 
relevant to geophysical fluid dynamics, but also to other fields of physics, such 
as plasma physics and astrophysics. 

In 1983 Prof. Benoit Cushman-Roisin took the initiative to organize a collo
quium on 'Modelling of Oceanic Vortices' at the Florida State University, 
Tallahassee (USA). The purpose of this meeting was to bring together the various 
scientists involved in modelling and observational studies of oceanic vortices in 
order to discuss and summarize recent developments and to exchange ideas for 
future work. The meeting appeared to fill a gap, and was followed by similar 
colloquia in 1985, 1987, 1988 and 1990, the latter two at the University of Liège 
(Belgium) and at Dartmouth College, Hannover (USA) , respectively. Through 
the years the number of participants from outside the USA, in particular from 
Europe, steadily increased and it seemed appropriate to organize the next collo
quium in the series again somewhere on the 'other' side of the Atlantic Ocean. 
On 11-13 May 1993, under the auspices of the Royal Netherlands Academy of 
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Arts and Sciences, the sixth colloquium on 'Modelling of Oceanic Vortices' was 
held in Amsterdam, in the Academy building. This time the meeting was 
organized by a committee consisting of Benoit Cushman-Roisin (Dartmouth 
College, USA), David G. Dritschel (University of Cambridge, UK), GertJan F . 
van Heijst (Eindhoven University of Technology, The Netherlands) and Gordon 
E. Swaters (University of Alberta, Canada), and gathered over 50 mainly North
American and European participants with backgrounds in physical 
oceanography, dynamical meteorology, plasma physics and theoretical physics. 

This book contains a collection of extended abstracts of most of the presenta
tions at the Amsterdam colloquium. At the present stage of research on oceanic 
vortices, efTorts seem equally divided between the general study of the behaviour 
of vortices per se (e.g., stability, interaction, merger), on one hand, and the 
investigation of their role in the overall chain of oceanic processes (e.g., 
geostrophic turbulence, oceanic circulation ), on the other. These two lines of 
research are reflected in the oral and poster presentations at the colloquium. It 
is hoped th at this collection of contributions may serve as a useful description 
of the state-of-the-art , not only for physical oceanographers, but for anybody 
interested in coherent vortex structures. 

GertJan F. van Heijst 
Eindhoven, March 1994 

The Colloquium on Modelling of Oceanic Vortices was organized under the 
au spi ces of the Royal Netherlands Academy of Arts and Sciences, which also 
provided financial support. 
Additional financial support was obtained from the Department of Technical 
Physics, Eindhoven University of Technology; the Dorgelo Foundation, 
Eindhoven; and the J. M. Burgers Centre for Fluid Mechanics. 
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Allan R. Robinson 

Vortices and Jets: Dynamics, Interactions and Forecasts 

Abstract 

This review is concerned with the estimation of physical fields in the use of such 
fields in interdisciplinary research and modeling. Field estimates via data 
assimilation meld observations and dynamics and provide an efficient means of 
representing the physical processes which influence biogeochemical , ecological , 
acoustical and other processes in the sea. Dynamically adjusted fields can be dif
ferentiated and th us allow the influence of dynamical processes from observa
tions via the quantitative study of energy and vorticity budgets, productivity 
rates, etc. A general discussion of processes and methodology is followed by a 
detailed review of the ocean forecast system developed at Harvard University. 
The model sets and algorithms are first overviewed. and then the issues are 
ilIustrated by nowcasts, forecasts and simulations carried out in various loca-
ti ons in the world ocean. 

I. Introduction 

This lecture summarizes research on the dynamics of realistic oceanic vortices. 
The approach adopted is to simulate synoptic realizations of the ocean via real 
ocean data assimilation into oceanic dynamical modeIs. Process studies are then 
carried out by balance of terms studies for the vorticity and energy balances. 
General processes are then approached by inference from the synthesis and 
statistics of a number of synoptic realizations and by regional intercomparisons. 
The system used by the Harvard group for realistic simulations, and real time 
nowcasts and forecasts is shown in Figure 1. It is a modular, flexible and por
table system which has been utilized in eleven locations throughout the world 
ocean during the past several years. Two examples will be presented. The first 
is the general circulation of the Eastern Mediterranean Sea which is comprised 
of a number of multiscale interactive jets and vortices. The second is the physi
cal, biological and chemical dynamics of the spring bIoom in the northeast 
Atlantic Ocean. During and af ter the bIoom, physical dynamics of interacting 
vortices can control biological effects of primary production and carbon uptake, 
with implications for c\imate change processes. The remaining material in this 
note is excerpted from a submitted manuscript entitIed 'Physical Processes, 
Field Estimation and Interdisciplinary Modeling' by this author. 

A.R . Robinson 



HARVARD OCEAN FORECAST SYSTEM 

CUM SYNOP 
OBS 

DATABASES 

FEAT 
EOFS 
CORR MODELS 
ETC. 

PARAB RAYS 
EQN 

ACOUSTIC PROP. MODELS 

OA DATA 
NALYSIS 

ADJT Ol ETC. 

DYNAMICAL 
MODELS 

~TAR 
B!OLqG 
€HEM 
v.~ 

BIOGEOCHEMICAL MODELS 

* START-UP 
MODULE 

Fig. I. Schematic of the forecast system. 
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2. The Eastern Mediterranean 

The Eastern Mediterranean is interesting in its own right, but also serves as a 
test basin for ocean circulation and c1imate dynamics studies, for forecasting 
research and the development of operational modeis, and for the development 
of the 'arbitrary regional approach' to include subregions of interest within a 
full-scale basin. In th is section we: demonstrate the real data initialization of the 
QG model in domains with islands and with irregular coastlines which are par
tially open and partially c1osed, illustrate dynamical adjustment and interpola
tion, and illustrate the concept of embedded subregional domains for dynamical 
process studies. 

The set of domains so far studied in the Eastern Mediterranean is shown on 
Figure 2a. The Eastern Mediterranean upper thermocline general circulation is 
now known to be constituted from subbasin scale cyclonic and anticyclonic 
gyres linked by free and boundary jet segments and filaments (Robinson el al. , 
1991). Thus the five domains of Figure 2a, full basin, Levantine half basin, Sicily 
Straits region , Rhodes gyre and Mersa-Matruh gyre were chosen for interest, 
data-availability, subbasin gyre dynamical studies and sensitivity studies. 

The international cooperative research program for the Physical 
Oceanography of the Eastern Mediterranean (POEM Group, 1992) has collected 
and pooled four (th ree half-basin , one almost full basin) high resolution general 
circulation data sets. Robinson and Golnaraghi (1993) have performed data 
driven simulations and dynamical process studies (Golnaraghi, 1993) based on 
these data. Figure 2b shows respectively quasisynoptic objective analysis 
initialization field in the main thermocline from late-Marchjearly-April 1986 and 
Figure 2c shows the dynamically adjusted fields twenty days after initialization. 
The dynamica I adjustment process is nearly completed in five days in the main 
thermocline and in twenty days in the deep water (not shown). Topographic 
vortex stretching has been found to be essential for the dynamical maintenance 
of the subbasin scale circulation features. An interesting process of ring forma
tion from the interaction of the Mid-Mediterranean set with the Mersa-Matruh 
gyre takes place a few days into the simulation, which has been dynamically 
analyzed by the EVA scheme by Golnaraghi (1993) . The ring forms from the 
extended meander seen in Figure 2c. The EVA analysis region indicated on 
Figure 2b is shown larger on Figure 2d. The three phase process of ring forma
tion is summarized in the cartoons of Figures 2e,f,g. The process is unusual and 
involves a large burst of (finite-amplitude) baroclinic instability (Figure 2f). 
However, another analyzed ring formation event in vol ving the same jet and sub
basic scale gyre observed in November 1985 occur via the difTuser-like 
mechanism known for Gulf-Stream ring forrnations. 

A full basin, quasisynoptic nowcast for late-August jearly-September with 
mesoscale resolution is ilIustrated in Figure 3. It is to our knowiedge, the first 
high resolution full basin synoptic circulation estimate that has been obtained. 
One-half degree of latitude and longitude nominal sampling produced the expec
ted error map of Figure 3a. The bold masking contour is at 80% expected error. 
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(a) 

(h) Day 0 

T (c) Day 5 

Fig. 3. a) Expected error of the objective analysis, contour interval of 20%; b) map of associated 
surf ace velocity; c) five day forecast. 
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There is a data gap due to instrument failure in the southeast Levantine and a 
larger data gap in the southeast Ionian where no ship voyaged. The coastal 
objective analysis technique employed introduces along the efTective coastal 
boundary, the shelfjbreak at 600 m depth, a horizontally uniform set of density 
profiles inferred from near coastal data (Robinson et al., 1991; MillifT and 
Robinson, 1992). This prohibits geostrophic flow into the coast and provides a 
coastal anisotropy in the objective analysis. However, it is the coastal 
'pseudodata' th at provides the apparent low error right along the coast on 
Figure 3a. The initialization objective analysis field is shown on Figure 3b and 
the five-day initially dynamically adjusted field on Figure 3c. The dynamical 
interpolation results in the flow fields sketched in Figure 3d, which also depicts 
the synthesized features- permanent, transient and recurrent- indicated in all of 
the POEM data sets. In AugustjSeptember 1987 the Ionian Atlantic Stream enter
ing through the Straits of Sicily is seen to have three filaments which feed the 
Mid-Mediterranean Jet. 

3. The Northeast AtIantic 

This oceanic region appears to be populated with energetic midocean mesoscale 
eddies with radii typically in the range of 50- 100 km and time scales of months. 
The upper ocean can be acted upon by vigorous atmospheric forcing. Studies 
will be reviewed from the 1989 JGOFS North AtIantic Spring BIoom Experiment 
centered at '" 47°N 19°W. Issues to be iIIustrated include: the initialization of 
the eddy resolving model via remotely sensed data and the use of feature mode Is 
only; the coupling of the surface boundary layer model to the deep ocean model; 
the use of dynamica I hindcasts and simulations to produce realistic vertical and 
horizontal transport fields for biological studies, and the coupling of the physical 
and biogeochemical models for productivity and cycling research. 

Nowcasts were provided in real time (Robinson et al., 1992) for the JGOFS 
experiment based on sea surface height information obtained from the Geosat 
satellite borne radar altimeter (Douglas and Cheney, 1990). The domain was 
540 km by 750 km with the pattern of satellite ground tracks spaced about 1.5 
degrees longitude apart. Each track was repeated every 17 days. It is not possible 
to locate unambiguously the local undisturbed sea level (z = 0) height from 
altimeter data alone (Glenn et al., 1991) and the zero level was set to depict the 
cyclones with additional information from some AXBTS which indicated the 
presence of cold core eddies. From this information and from past knowledge of 
eddies in the general area (Kupferman et al., 1986; Groupe Tourbillion, 1988), 
the indices of eddy feature mode Is (radius, depth of the thermocline, maximum 
sound speed, etc.) were evaluated which were used to initialize the QG model. 
Dynamical adjustment and dynamica I interpolation then provide a consistent 
estimation of the mesoscale fields throughout the domain. This also provides the 
mesoscale environment for estimation and study of all the physical and related 
fields in the upper ocean. The evolution of the physical fields is shown on Fig. 4 
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in terms of the vorticity field. The eddies first persist, begin to interact and dis
tort. The interaction between the Standard and Small eddies, for example, 
elongates and then begins to break up Small. These interactions provide the 
basis for significant nutrient transports into the upper ocean. Year day 115 is 
near the start of the bIoom, 151 at the end of the bIoom, and 181 is weIl into 
normal summertime conditions. 

The coupled surface boundary layer modei was attached and driven by 
forecast and/or shipboard estimates of the atmospheric wind, heat, and fresh 
water fluxes. Some estimate is required also for initial mixed layer tempera tu re 
and depth. For the hindcast illustrated, a constant initial mixed layer depth 
based on c1imatology was chosen and an initial mixed layer tempera tu re was 
obtained from the adjustment of a surface extrapolated QG model temperature 
profile with heat conservation. The SBL rapidly achieves equilibrium with the 
surface flux and mesoscale eddy forcings. In this case there was an initial period 
of light winds and shallow mixed layer followed by a storm which markedly 
altered the temperature characteristics of the near surface ocean by deepening 
and cooling the mixed layer (Robinson et al., 1992). The three-dimensional SBL 

run provides the vertical and horizontal transport fields required for OBCE model 
hindcasts. The biological results (McGillicuddy, 1993) are shown on Figure 4. 

Nutrient enhancement due to original and prior doming of the isopycnal and 
isonutrient surfaces in the cyc10nic eddies is apparent in the nitrate initial condi
tion on day 115; the phytoplankton is uniform and low at the end of the winter. 
The vertical velocity of the feature-model initialization is zero. Between days 115 
and 151, a bioom occurs that removes nearly all of the nitrate from the mixed 
layer. The phytoplankton bi oma ss distribution reflects the initial nitrate distribu
tion in that the enhanced nitrate within the eddies has allowed the bioom to 
proceed much further there. Note the eddy-eddy interactions as shown in the 
vorticity field. Particularly, the small eddy has interacted vigorously with the 
standard eddy resulting in transport processes which have significantly increased 
the nutrient concentration in the center of the small eddy via entrapment. 
Between days 151 and 180, the increased nutrient in the center of the small eddy 
gives rise to a local maximum in phytoplankton biomass. The continued eddy
eddy interactions have now produced a nutrient enhancement within the 
standard eddy which is an order of magnitude greater than the background con
centration outside of the eddies. The nutrient transports due to eddy-eddy inter
actions are in this case much larger than the submesoscale enhancements pre
viously hypothesized to be the most important biological efTects of mesoscale 
motions ( Woods, 1988). 
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James C. McWilliams 

Statistical Dynamics and Coherent Vortices in Two-Dimensional 
and Planetary Turbulence 

Abstract 

Results are presented for initial-value pro bI ems in two-dimensional flows and 
three-dimensional, rotating, stably stratified (i.e., planetary-scale) flows with 
small diffusivities. The domains and initial conditions are spatially homogeneous 
and isotropic (though only in a particular sen se for the latter problem). In each 
problem the evolution is dominated by coherent vortices that spontaneously 
emerge around the time of maximum dissipation. The vortex populations evolve 
by a lengthy sequence of combi nato rial interactions until non-chaotic end-state 
configurations are achieved. In the three-dimensional flow, the vortices effect a 
significant departure from the isotropy prediction of Charney (1971). 

Two-dimensional turbulence 

Two-dimensional turbulence has been investigated quite extensively, in certain 
aspects more so than any other type or regime of turbulent flow. To be brief I 
will not attempt to review the literature here, other than to refer the reader to 
the review papers by Kraichnan and Montgomery (1980) and McWilliams 
(1983 )-plus other articles in the same issue of Journal de Méchanique- written 
near the end of the "classicai" period prior to the discovery of the importance 
of coherent vortices, and to a recent paper by Weiss and McWilliams (1993), 
from whose references some of the "modern" period can be explored. 

The primary attractions in examining two-dimensional turbulence are 
twofold: (1) by having one fewer spatial dimension than natural fluid motions, 
it is more accessible to numerical and at least some kinds of theoretical calcula
tions, and (2) by having only two components of velocity, it provides an 
archetype for anisotropic turbulence of various types commonly found in 
planetary fluid motions (see bel ow). 

The velocity incompressibility condition in two dimensions is 

( 1 ) 

J.C. McWilliams 15 



for velocity components (ti , v ) and coordinates ( x, y ). This permits a representa
tion in terms of a streamfunction t/! , 

at/! 
tI= --

ay' 

The governing equation is 

at/! 
v=-a' x 

aq at/! aq at/! aq 4 
- +-- - --= -vV q 
at ax ay ay ax ' 

where q is the vorticity field , 

and v is a small hyperviscosity (see, e.g. , Sadourny and Basdevant, 1981). 
Among the inviscid invariants of (3) are the energy and enstrophy, 

(2) 

(3) 

(4) 

(5) 

I otTer the following summary of the most important properties of freely evolv
ing, spatially homogeneous two-dimensional turbulence at large Reynolds num
ber. The first four items are classical, and the last four are modern. 

• As v -+ 0, the dissipation rate of Evanishes, while that for V remains fini te. 
• The characteristic time for nonlinear (i.e., turbulent) evolution is ,..,. V- 1

/2 

and for significant enstrophy dissipation is -- V - 1
/2 log [ I/ v]. 

• t/!( x, y ) and q(x, y) evolve towards a state of statistical isotropy from nearly 
all initial conditions. 

• There is a preferential transfer of energy towards larger spatial scales and of 
enstrophy towards smaller ones, hence towards its dissipation. 

• Coherent vortices spontaneously emerge from random initial conditions on 
the time scale of enstrophy dissipation and subsequently dominate the 
statistical dynamics for as long as they remain chaotic (see below). The prin
cipal means of their non-conservative evolution is merger of close, like-sign 
vortices. 

• A vortex-based dynamical system successfully mimics key aspects of the 
statistical dynamics of the turbulence; it is called "punctuated Hamiltonian 
dynamics", where intervals of conservative mutual advection of vortices are 
punctuated by abrupt, dissipative transformations, representing mergers. 

• There exist fundamental solutions in which the coherent vortex population 
exhibits self-similar evolution in spatial size and/or time (i.e., scaling 
behavior). 

• Af ter the occurrence of all possible mergers, the nonlinear, chaotic evolution 
nearly always ends in a final dipole vortex configuration (a modon). 
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I believe that the preceding comprises a fairly mature understanding of the 
statistica 1 dynamics of two-dimensional turbulence. With this perspective, there
fore , we now turn to its most plausible three-dimensional analogue - homo
geneous, rotating, stratified turbulence. We are not yet ready, of course, to make 
such a broad summary of its dynamics. 

PIanetary turbulence 

Planetary fluid motions commonly evolve under the influences of planetary rota
tion and sta bIe density stratification. A long-standing theoretical prediction 
(Charney, 1971; Rhines, 1979; Herring. 1980) is th at the flow evolves to have 
isotropic spatial dependence; furthermore , previous numerical assessments (Hua 
and Haidvogel, 1986; McWilliams, 1989), based upon sparse and anisotropic 
computational grids, have appeared to confirm this prediction. Here we test th is 
prediction with adense, fully isotropic computational grid in a spatially 
homogeneous domain. The results can be summarized as follows. The solution 
exhibits significant anisotropy associated with the emergence of long-lived 
l coherent), spatially intermittent vortex structures that control the flow evolu
tion. This, I believe, is generic behavior that has particular manifestations in, for 
example, the phenomena of Jupiter's Red Spot, tropospheric cyc1ones, 
stratospheric polar vortices, and oceanic Gulf Stream Rings. Over a very long 
time scale, the coherent vortices undergo successive combinatorial interactions 
until reaching an approximate evolutionary end-state consisting of two vertical 
columns containing vortex cores of common sign. A more formal presentation 
of these results (and with better graphics) is made in McWilliams et al. (1993). 

An asymptotic regime relevant to planetary-scale motions is defined by small 
viscosity, incompressibility, rapid rotation rate Q , and strongly stabie ambient 
density stratification '!E. The characteristic frequencies for rotation and stratifica
tion are f = 2Q and N = J - Ir '!E. In this regime, f and N are large compared to 
fluid recirculation rates. It follows that the velocity is anisotropic in the sen se 
that the vertical component w (parallel to the gravitational vector) is weak com
pared to horizontal components u and v. Thus, u, vare nearly non-divergent in 
x, y and can be represented approximately by a streamfunction 1/1: u = - ~ and 
v = ~. The theoretical prediction of isotropy applies to the spatial dependence of 
1/1 in a stretched coordinate frame (x, y, 7 :::)' 

The governing equation is 

(6) 

where q is the potential vorticity field, 

(7) 
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V is now the three-dimensional spatial gradient operator, and v is a small hyper
viscosity. Note the formal similarities with (3 )-( 4). We solve (6 )-( 7) in a periodic 
domain of non-dimensional extent 2n x 2n x f 2n. The initial condition in '" is a 
Gaussian random realization of an isotropic wavenumber spectrum peaked at 
scales intermediate between the domain and grid-resolution. The initial energy, 
E = ~! [( ~) 2 + ( ~ )2 + (f ~) 2 ] dx, is one, which defines the time-scale of the 
evolution. The eq"uations are discretized by finite ditTerences, and the numerical 
integration is by a fully implicit multigrid method (see Yavneh and McWilliams, 
1993). To achieve the large grid dimension of 3203

, we developed an efficient 
parallel algorithm for the Cray C-90 supercomputer. 

The initial stage of evolution is a broadening of the spectrum. Energy is trans
ferred preferentially towards larger scales and thus away from the smaller scales 
at which dissipation occurs. In contrast, potential enstrophy, V = ~ ! q2 dx, is 
transferred towards smaller scales, resulting in its dissipation (Charney, 1971; 
Rhines, 1979; Herring, 1980). These etTects are seen in Fig. 1, where E decreases 
by only 4% over the integration but V decreases by nearly two orders of 
magnitude. The ra te of enstrophy dissipation reaches a maximum at t ~ 1, af ter 
several nonlinear advection times (of order V - 1/2). Thereafter the rate of spec-

, 
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t 
Fig_ I. Time series of (he energy E, potential enstrophy V, and kurtosis K. All quantities are nor
malized by (heir initial values. 
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trum broadening diminishes, and the flow develops substantial intermittency; in 
particular, the kurtosis of q, K = fq4 dX/ Oq2 dX]2, grows monotonically from its 
initial Gaussian value and eventually reaches very large va lues (Fig. 1). 

Figure 2 shows the isotropic wavenumber spectrum for q: S(K), 
K = Jk~ + k~, + (~k J2. Only near the time of maximum enstrophy dissipation 
does S(K) approach the K -

1 inertial-range form previously predicted (Charney, 
1971); it is also quite broad-band and has a steep decay in the dissipation range 
at very large K. lts subsequent evolution is slow movement of its centroid 
towards smaller K and further steepening at large and intermediate K. 

The spectrum anisotropy can be measured by 

A(k) = 2S=(jk/N) 
[ S~ (k ) + S, (k ) ]' 

(8) 

where the lD q spectra, S,,(k,,), 1] = x, y,~, are integrals over the plane of 
wavenumbers perpendicular to their wavenumber argument k,,. Our solution 
shows significant departures from isotropy (i.e., A == I): at small k, A < 1, 

10 
15 

14 
10 

1 

K 

Fig. 2. Wavenumber spectra SIK) at 'I = 2.2, '2 = 5.0, 'J = 10.0, and '4 = 20.4. SIK) is the squared 
modulus of the 3D Fourier transform of q integrated over wavenumber shells of constant 
wavenumber magnitude. The reference line represents a function OC K - I. 
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whereas at intermediate and large k, A > I in two distinct wavenumber bands 
(Fig. 3). The former is in the inertial range, where the theoretical prediction of 
isotropy applies, and the latter is in the dissipation range. The degree of inertial
range anisotropy grows systematically after the time of maximum dissipation 
rate. 

The rate of spectrum migration and the increases in intermittency and 
anisotropy are associated with the emergence of coherent vortices (McWilliams, 
1989), which are isolated concentrations in q (Fig. 4). Their shape, at the time 
of emergence, is roughly spherical in (x, y, ~ =) with monotonic decay from the 
central extremum. They move by mutual advection in an essentially conservative 
fashion, except during close approaches when dissipative transformations occur. 
The most important of these are mager (e.g., Melander et al., 1988) and attach
ment (McWilliams, 1989); these are horizontal and vertical combinations of Iike
sign vortices. As a consequence of these transformations, the population of vor
tices decreases and their average size increases in all dimensions. However, the 
merger and attachment events cause dissimilar transformations in vortex shape: 
merger involves mixing of !luid parcels in horizontal planes and th us a complete 
combination of the q fie\ds of the component vortices, whereas attachment 

2.2 

1.9 

1.6 

.-
...:.:::: 1.3 --« 

1.0 

0.7 

0.4 1 
1 0

2 
1 10 

k 

Fig. 3. Spectrum anisotropy A (k) at the same times as in Fig. 2. 
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involves no vertical parcel exchange (because of velocity anisotropy) and thus 
retains the distinct extrema of the component vortices. In both events the trans
formed vortex is approximately axisymmetric about a vertical axis. and its q 
field is everywhere of one sign and decays monotonically in x, y but not 
necessarily in ::. Each such vortex is, by itself, a sta bIe, stationary state of the 
inviscid dynamics that results from the organizing processes of horizontal 
axisymmetri::ation (Melander et al., 1987) and vertical alignment (McWilliams, 
1989; Polvani, 1991; Dritschel and Saravanan, 1993). 
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Fig. 4. Potential vorticity q(x. y, N=/fl at (a) f = 5.0. (b) f = 10.0, (c) f = 25 .6. and (d) f = 72.1. 
The curves beneath the images show the opacity (Iert) and grey·scale hue (right) as a runction or 
q, centered about q = O. 

J.C. McWilliams 21 



Over a very long time scale, the chaotic mutual advection leads to a succes
sion of mergers and attachments, resulting in a configuration of coherent vor
tices that is agiobal stationary state of the inviscid dynamics. Thereafter the 
only non-conservative evolution is very slow difTusion, and S(K) is equally slow 
in its evolution. This "final" configuration consists of two, opposite-sign, axisym
metric vertical columns each containing many vortex cores of common sign; the 
final time in Fig. 4 approaches this configuration, although as yet not all the 
mergers and attachments have occurred. 

The behavior of coherent vortices and their roles in the statistical dynamics of 
turbulence are fundamental processes we are just beginning to understand, but 
it is c1ear that they are of great importance in planetary circulations. 
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E. G. Pavia, M. López and P. Ripa 

Axisymmetrization of Warm Oceanic Vortices 

Abstract 

Previous studies have shown that in many cases eccentric vortices become 
axisymmetric. In this work we report the results of a numerical experiment per
formed with the shallow-water, reduced-gravity model for elongated warm 
eddies. The evolution of these eddies is invariably toward less-eccentric states 
and, often, includes the shedding of a small portion of mass. An attempt is made 
to characterize this process by defining an intensive quantity. 

Introduction 

Warm eddies are common and important features in the oceans, because their 
properties are both distinct and persistent. Satellite imagery allows us to witness 
the generation and evolution of many oceanic vortices. For example, it has been 
observed th at Gulf Stream meanders of ten break off to form long-Iasting eddies, 
which carry away warm waters to colder regions. The evolution of these eddies, 
in turn, plays a significant role in determining the characteristics of wide areas 
in the ocean. 

In this work we analyze the evolution of oceanic eddies similar to those men
tioned above, by utilizing a primitive equation numerical model. Such a model 
is used because: one, we are able to study a series of eddies with very different 
eccentricities and strengths; and two, the ensuing states of the initially prescribed 
model eddies can be easily tracked. We expect a wide variety of eddy-behaviors, 
since previous works (e.g. Ripa, 1987) have shown th at many of these vortices 
are unstable, particularly the most eccentric ones. Previous studies using 
approximate models (e.g. McCalpin , 1987) indicate th at weak elliptical vortices 
evolve toward a circular state, a process known as axisymmetrization. But, do 
elongated eddies (unstable, but not necessarily weak) become axisymmetric in 
order to achieve a more stabie state? If so, it would be desirabie to be ab Ie to 
characterize this process. 

The next section outlines the model used and the form of the initial condi
tions. 
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The model 

The shallow-water, reduced-gravity ocean model is written here as a pair of 
Lagrangian momentum equations: 

Du ah 
-=Iv-g'-, 
Dl ax 
Dv . ,ah 
-= -ju-g-, 
Dl ay 

( I ) 

(2) 

where u and vare the velocity components in the x and y directions, respec
tively, I is time, 1 is the constant Coriolis parameter, g' is the reduced gravity, 
and h is the thickness of the active layer. The latter vanishes at the eddy's edge 
and, since resolving this frontal line is crucial for this study, we will use a par
tic1e-in-cell (PIC) method to solve (I )- ( 2). This requires one more pair of 
Lagrangian equations, namely 

Dx 
-=u 
Dl ' 

(3) 

Dy 
(4) -=v 

Dl ' 

making it [system (1 )-( 4)] a four-by-four system for each of the N particles' 
po si ti ons and velocities (Xi' Yi' Ui' Vi' i = 1,2,3, . .. , N). The initial partic1e dis
tribution yields the initia I h-field and their prescribed velocities should 
correspond to the initial velocity fields [see (5 )-( 7) ahead]. The numerical 
integration of ( 1 )-( 4) by the PIC method assures conservation of mass; thus the 
continuity equation h, + (hu) .. + (hv)r = 0 complements (1 )- (2), but it is not 
explicitly solved. The reader is referred to previous works for details and exam
pIes of the use of the same PIC model as employed here (e.g. Pavia and 
Cushman-Roisin, 1990). 

An exact solution of the above described system, consisting of an elliptical 
c10ckwise rotating, anticyc10nic vortex, was first given by Cushman-Roisin el al. 
( 1985) and called the Rodon solution. Ripa (1987) transformed variables and 
equations to a frame rotating at the same rate as the eddy, Q, so that the h con
tours become stationary, thereby obtaining a steady version of the Rodon. We 
will use another form of the latter version of the solution to prescribe the initial 
conditions of the model, namely: 

[ (/-;, Q) 1/2J rly, 
Uo = I + ~:.~ :.~ (5) 
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[ 
b (j Q)1 /2] 

VO= 1+~ ~ Qx, (6) 

(7) 

where a and bare the minor and major semiaxes, respectively, and 

H = (;:,) (f - 2Q)[Q(f - Q)] 1/
2, (8) 

is the center depth of the eddy. This vortex is fully characterized by two inten
sive parameters which are the aspect ratio, r = a/b, and the ratio of the c10ckwise 
rotation of the vortex to the Coriolis parameter, S = Q/j [or by the Rossby 
number, Ro == S + (S - S2) 1/2] ; as well as one extensive parameter (say the total 
volume), and three geometrical parameters: the po si ti on of the center of mass 
and the initial orientation. The instability of elliptical eddies to infinitesimal per
turbations for the whole range of values of the parameters 

O<r~1 0<S<0.5 , (9) 

was studied by Ripa (1987). 
In the next section, the evolution of a series of widely diverse eddies will be 

investigated by means of a numerical experiment. 

The numerical experiment 

The main numerical experiment consists of a series of runs with eddies whose 
initial conditions correspond to all cases varying S from S = 0.05 to S = 0.45, 
every 0.05 , and the aspect ratio from r = 0.1 to r = 0.9, every one tenth. These 81 
cases inc1ude a wide range of the parameter space (9). Each run is time
integrated until l = 500j- l, which is considered long term in all cases. The 
resulting h-field was fitted with a second order polynomial of the form 

ft ::::; A - B X 2 - Cy2 + 2Dx + 2Ey + 2Fxy, (10) 

which, after some manipulation of the six coefficients, yields the x - y coor
dinates of the center of the eddy, its orientation (0), the maximum depth (H) , 
and the minor (a) and major (b) semiaxes (mean radius [R = (ab)1 /2] and 
aspect ratio [r = a/b] can be calculated from these last two). The theoretical 
rotation rate of the vortex, assuming the eddy passes adiabatically through a 
series of Rodon-like states, is obtained using the numerical values of Rand H 
to solve for Q in (8). In doing so we make the transformation Q = j( 1 - cos ex.) /2, 
0< ex. < n/2, so that (8) becomes H = (Rf) 2 sin (2ex.)/8g' . This theoretical rotation 
rate is compared with the measured one dO/dl. 
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We consider this procedure (10) to be successful if its root-mean-square (rms) 
error is less than 20%. Larger rms errors indicate that the original eddy has 
broken up into two or more parts, so that the resulting h-field is not 
appropriately fitted by ( 10). The results , therefore, must be discarded. Not sur
prisingly, this is the situation for several of the most eccentric eddies, while the 
less eccentric ones showed the smaller rms errors. Furthermore, in the cases with 
rms error of less than 20% the ditTerence between the parameters of the original 
eddy (prescribed) and those of the final (fitted) eddy seemed proportional to the 
eccentricity of the original eddy. This ditTerence is mainly in aspect ratio, r, and 
to alesser extent in S. A general result is that in all cases the evolution was 
toward greater r (all eddies "axisymmetrize" somewhat), and expel mass (the 
estimated volume of the final eddy was smaller than the volume of the original 
one). In contrast, changes in S seemed to depend on the sign of the potential 
vorticity, q; i.e. for q < 0, the value of S increased and for q ~ 0, S decreased, 
changed littIe or not at all. 

A couple of typical ex am pIes include: 

a. Evo/ution of a highly elongaled eddy 

The evolution of an eddy whose initial parameters are r = 0.2 and S = 0.15 is 
examined at iJl = f - I intervals; i.e. the least-squares procedure (10) is performed 
every ft = 1. This particular case is chosen because it exhibited one of the most 
dramatic parameter changes during the main experiment. 

To help us visualize the nature of the step-by-step parameter change, we 
define an intensive quantity 

(11 ) 

where qo and Vare the potential vorticity of the center and the volume of the 
eddy, respectively. We expect this quantity to be approximately conserved 
because the system con serves potential vorticity. and we assume the eddy to 
conserve most of its mass. If potential vorticity and all the mass is conserved in 
one single blob, and if the eddy were to change its position in parameter space, 
then it should move along a particular isoline of j.i. The evolution may be 
divided into two stages. During the first stage, characterized by rapid changes, 
the eddy departs from its original isoline, and apparently does not conserve j.i. 

This is so because the least-squares procedure overestimates the size of the eddy 
when it undergoes distortion and shedding of mass. During the second stage, the 
eddy regains an almost elliptical shape and, despite high-frequency inertial 
oscillations, the trajectory c10sely follows its j.i-isoline. This is a particularly 
drama tic case, which we examined in detail in order to check the results of the 
numerical experiment. 

b. Evo/ution of a stabie eddy 

The evolution of an eddy with r = 0.6 and S = 0.05 is similarly examined, it 
moves relatively littIe within the parameter space. The small movement is mainly 
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toward greater r with even smaller change in S. In contrast with the previous 
case, this eddy is selected because its initial position in parameter space is 
located within the stabie region of all the stability diagrams considered. [The 
eigenperturbations of the eddy's linear stability analysis are n-order polynomials, 
all eddies are sta bie for n < 3, and Ripa's (1987) diagrams include n> 3 up to 
n = 6. The corresponding stability diagrams for n = 7 and n = 8 present new 
instability areas suggesting that perhaps the high Ro region is full of higher
order instability tongues; but the eddy-parameters of this case remain outside of 
them.] From time series of rand other parameters we observe that besides a 
small axisymmetrization, inertial oscillations are the only action taking place. 
Other minor changes are more likely due to numerical dissipation than stability 
reasons. 
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Chuan Shi* and Doron Nof+ 

Eddy Splitting along Boundaries 

Abstract 

This paper addresses the question of what happens to an eddy that is forced 
"violently" against a boundary by an advective current or another vortex. The 
detailed temporal evolution of such a collision on an f-plane is examined using 
a barotropic model, a one-and-a-half-layer contour dynamics model and an 
isopycnic, primitive equation model. Our calculations show that an eddy splits 
into two along the wall: acyclone to the right and an anticyclone to the left 
(looking otTshore). 

Introduction 

Colli sion of eddies with boundaries is inevitable mainly because of two pro
cesses. First, the variation of the Coriolis parameter with latitude forces eddies 
toward the western boundaries of the ocean. Second, advection by main currents 
or propulsion induced by neighboring eddies also force eddies toward the ocean 
walls. The former process causes a "soft" and "gen tie" impact with the western 
wall because of the p-induced westward speed is relatively sm all 
[O( 1 km day -I)] so that it takes many days [O(PRd) - I, where Rd is the 
Rossby radius] for a significant fraction of the eddy (i.e., a di stance comparable 
to the eddy diameter) to be pushed into the wall. The latter processes, on the 
other hand, can be of a more "explosive" and "violent" nature as advection 
[O( 10-100 km day -I)] can push an eddy into the wall so rapidly that gross dis
tortions in the eddy shape (and structure ) can occur in a matter of days. The 
"gentie" eddy-wall interaction process has been studied extensively in Shi and 
Nof (1993) and the present article focuses on the more "explosive" and "violent" 
collision. Shi and Nof ( 1993) have shown that a soft collision is typically 
associated with (1) a small leakage from the eddy rim which forms a thin jet 
along the wall, and (2) a transformation of the eddy into a half-circular struc
ture that migrates steadily along the wall (a wodon). We shall show in the pre
sent study that a violent colli sion causes more drastic etTects. In particular, the 
eddy will not only migrate along the wall but will also split into (wo eddies with 
an opposing sense of rotation. 

In this study, an eddy is conceptually cut by a wall at t = 0 (as if the advection 
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forced violently the eddy into the wall). Our aim is to explain the subsequent 
development of the eddy-wall collision. We shall first use the so-called contour 
dynamics method, which will be applied to an eddy on an f-plane. We shall then 
investigate this process using a constant potential vorticity eddy in an isopycnic 
model (noting that the contour dynamics method is a Langrangian approach , 
whereas the isopycnic model is a Eulerian method). We shall show that both of 
these studies point to a new counter-intuitive eddy splitting proces. We speak 
here about a counter-intuitive process because intuitively we would expect that 
an eddy that is cut by a wall would simply leak along the wall until its outer 
rim leaks out completely and its core is merely "kissing" the wall (Nof, 1988). 
It turns out, however, that such a benign state is never reached and that instead 
both the core and the leaked fluid are forced farther and farther into the wal!. 

A contour dynamics model 

In the following discussion , we present the contour dynamics results of a 
barotropic model. Earlier studies have shown that, in an open ocean, a 
barotropic eddy with b < 2 is linearly unstable (Flierl, 1988). Therefore, for the 
barotropic model, we shall focus on the evolution of a linearly stabie eddy 
(b > 2) colliding with a wal!. Before presenting the detailed evolution of the 
eddy-wall collisions, it is recalled th at the evolution of a barotropic cyclone is 
the mirror image of its anticyclone counterpart. Therefore, it is sufficient to pre
sent only a cyclonic (or anticyclonic) evolution. 

For the case of the linearly stabie eddy-wall collision in a barotropic model 
(Fig. 1), there are two stages in the evolution process. In the first stage 
(t = 0-120) the stabie eddy leaks fluid along the wall and the eddy's outer radius 
decreases (and eventually reduces to less than 2). In the second stage (t > 120), 
the eddy is unstable. The annulus fluid is peeled quickly off the parent eddy 
because the interior fluid advects the annulus fluid toward the wal!. For t> 160, 
a new, large anticyclonic eddy detaches from the parent eddy. This new, 
anticyclonic, eddy consists of all the original annulus fluid. Another important 
evolution process is that, during this eddy-wall collision, the interior of the eddy 
is forced toward the wall by the leaked vortex on the left (looking offshore). As 
the interior is continuously forced toward the wall, its shape changes from a cir
cle to a near-semicircle. It moves to the right (whereas the offspring eddy moves 
to the left) due to the image effect. As time goes on, the mutual advection of an 
anticyclone on the left and a cyclone on the right leads both eddies farther 
toward the wal!. Eventually, we see a new anticyclonic eddy on the far left and 
a cyclonic eddy on the far right. It is also worth pointing out that, during the 
splitting process, outside fluid slowly intrudes into the new eddy through a 
streamer. Our ca1culations show that, once detached from its parent eddy, the 
new anticyclonic eddy moves to the left at a constant speed, and that the 
remaining cyclonic core migrates to the right at a different constant speed. 
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Fig. I. The temporal evolution of the inner and outer fronts of an initially stable barotropic eddy 
from t = 0 to t = 200. The cyc10nic eddy leaks its annulus fluid (shaded area) to the left and the 
leakage gradually forms an anticyc10nic eddy moving to the left (looking offshore). The cyc10nic 
interior of the parent eddy moves toward the wall and rnigrates steadily to the right. 

AD iSOPYCDic, primitive equatioD model 

To verify the new eddy splitting process presented earlier, we now use an isopyc
nic, primitive equation model described in Shi and Nof (1993). This Bleek and 
Boudra (1986) isopycnic model uses an Eulerian method, whereas the contour 
dynamics model uses a Langrangian method. Since the isopycnic model is a 
primitive equation model, it includes more dynamical processes than are con
tained in the contour dynamics model. For example, Kelvin waves are generated 
in an isopycnic model but such waves are not present in a contour dynamics 
model. Fig. 2 illustrates an anticyclonic eddy collision corresponding to such an 
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Fig. 2. Con tours of the potential vorticity anomaly of an anticyclonic eddy colliding with a wal!. 
The annulus !luid is advected anticyclonically to form a weak cyclonic eddy migrating to the right. 
The original eddy becomes half-circular and moves at a constant speed to the left. 

eddy that is suddenly cut ofT by a vertical wal\. From t = 0 day to t = 20 days, 
the interior anticycIonic fluid advects the annulus anticycIonic fluid to the right, 
and this process is compatible with that of Fig. 1. At t = 10 days, due to 
instability of the eddy, the shape of the interior is deformed. On day 20, the 
cycIonic annulus fluid is pushed farther to the right by both the interior and the 
image efTect. At t = 30 days, this anticycIonic-wall collision produces a new 
cycIone to the right along the wal\. Similar to the result of the contour dynamics 
study shown in Fig. 1, the newly formed cycIonic eddy is weak compared to its 
anticycIonic counterpart. This new, weak , cycIonic eddy moves slowly to the 
right. The area of the new eddy in Fig. 2 is approximately 100% of th at of the 
initial annulus, which is identical to the final area of the new eddy in Fig. 1. 

Interactions of the interior with the annulus force the interior to move farther 
into the wall. Then, the initia I constant potential vorticity eddy is transforrned 
into a half-circular wodon-like eddy (e.g., Shi and Nof 1993). In a fashion 
similar to the result shown Fig. I, the present numerical calculation shows th at 
the remaining parent eddy migrates to the left at a constant speed of 
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4.2 km day - I. By using the wodon solution of Shi and Nof ( 1993), we obtain an 
analytical speed of 4.0 km day - I, which agrees weil with the numerical calcula
tion. The isopycnic model also shows that eddy-wall collisions generate a Kelvin 
wave propagating along the wall. Such a wave was, of course, not present in the 
contour dynamics model because the contour dynamics technique filters these 
waves out. 

Comparison with oceanic observations 

One of the most comprehensive surveys of eddy-wall collisions is that of Vidal 
et al. (1992) who examined Loop Current rings. They identified the collision 
from temperature, salinity and dynamic topography distributions. As suggested 
by our modeIs, they found that, when the anticycIonic eddy collided with the 
continental slope, the eddy translated to the left. During the collision process, 
the anticycIonic ring shed approximately one third of its volume to the right. 
They also found that a cycIonic ring was formed to the right of the parent ring 
as suggested by our model. Because of the relatively large amount of mass that 
was lost from the parent eddy, we speculate that the actual collision was similar 
to our collision processes, all of which have been termed "violent" collision. 

While the above observations compare favorably with our model, the follow
ing data do not necessarily support our model predictions. Vukovich and Wad
dell (1991) used data from xBTjhydrographic cruises in the Gulf of Mexico and 
from satellite images to study collisions of a warm-co re ring with the western 
slope. They indicated that the collisions of the anticycIonic ring with the con
tinental slope induced a large-scale flow to the left in the upper layer near the 
slope. There was a cycIonic ring to the lejt of the Loop current warm-core ring 
along the slope. The line-up is the cycIone to the left and the anticycIone to the 
right, which is different from both our model results and the observations of 
Vidal et al. (1992). We speculate that the cycIonic ring of Vukovich and Waddell 
(1991) could have been generated by shelf water being pushed to deep regions 
by the anticycIonic ring. This process is, of course, absent from our analysis as 
our boundaries were taken to be vertical. 
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J. Sommeria 

Organized Vortices as Maximum Entropy Structures 

Abstract 

A theory of equilibrium statistical mechanics for two-dimensional perfect fluids 
is summarized. It predicts the organization of a turbulent flow into a steady final 
structure. In the limit of low energy, the final structure is explicitly obtained as 
an expansion in the successive moments of the probability distribution function 
for the initial vorticity field. The previous results of point vortex statistics and 
selective decay into minimum enstrophy structures appear as speciallimits of 
this theory. 

A good agreement is obtained with direct numerical computations and some 
experimental re su lts. Applications to isolated vortex structures (monopoles and 
modons) are particularly developed here. 

1. Introduction 

The formation of coherent structures in strongly turbulent regimes is a 
remarkable property of two-dimensional turbulence. Such organization is obser
ved in large scale oceanic or atmospheric flows, and can be reproduced in 
laboratory experiments. A general explanation of this long time organization has 
been proposed by Onsager (1949), in terms of equilibrium statistical mechanics 
for a set of point vortices. This is a remarkable anticipation since observations 
we re very scarce at that time. This idea has been developed then by 
Montgomery & Joyce (1974), who have obtained explicit predictions by a mean 
field approximation. The result appears as a relationship between locally 
averaged vorticity and stream function, which characterizes a steady solution of 
the Euler equations (possibly in a rotating or translating frame of reference). 
However, the modeling of a continuous vorticity field by a set of point vortices 
can lead to inconsistencies: in particular the maximum vorticity is not bounded 
by the initial maximum, as it should for the two-dimensional Euler equations. 

This contradiction is resolved by a new theory proposed by Robert (1990), 
Robert & Sommeria (1991), and independently by Miller (1990). This equi
librium statistical theory is performed directlyon the continuous Euler equa
tions. Then, the standard procedure for Hamiltonian systems of particles is not 
available, but still the method is justified (on a weaker basis) by a set of rigorous 
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properties (Robert 1990, Robert 1991). The result is again a steady solution of 
the Euler equation, on which fine scale vorticity fluctuations are superimposed. 
The relationship between vorticity and stream function is different than in 
Montgomery & Joyce (1974), and it is now quite consistent with the properties 
of the continuous Euler equations. Nevertheless, the relationship of 
Montgomery & Joyce is recovered in what we call the dilute limit, for which 
non-zero vorticity occupies only a small area of the domain. Another interesting 
limit is the case of low energy, in which the minimum enstrophy states (Leith, 
1984) can be obtained. 

A brief overview of the theory is given in section 2, referring to the original 
papers for a more thorough discussion and justification. The general properties 
of the resulting equilibrium structures are discussed in section 3, with emphasis 
on the important limit of low energy, for which the results can be linearized and 
expanded as a function of the energy. The application to isolated vorticity struc
tures is emphasized in this paper: the case of monopole is studied in section 5, 
while the case of modons is discussed in section 6. 

2. Principle of the statistica I theory 

The Euler equations are known to develop very complex vorticity filaments, and 
a deterministic description of the flow would require a rapidly increasing 
amount of information as time goes on. However, the conservation laws of the 
system bring important constraints to the evolution, and an essential property 
of the present theory is to take into account all the known conservation laws for 
the Euler equation (unlike the truncated spectra I modeis, Kraichnan , 1975). In 
addition to the energy, the vorticity of each fluid particle is conserved, which 
results in the conservation of any function of the vorticity. It is often convenient 
(but not necessary) to approximate the vorticity field by patches with uniform 
vorticity level. Then the area of each level is conserved. Additional conservation 
laws for angular or linear mementum are also obtained in specific geometries. 

In spite of these constraints, the vorticity field can still take many configura
tions, especially as the filaments become finer and finer. The idea of the statisti
cal description is to give the same weight to all these possible configurations, 
called the microscopie states. Nevertheless we have to consider only the possible 
configurations which have the right va lues of the conserved quantities. Then it 
is remarkable that, if we introduce a coarse grain (macroscopie) description, 
most of the microscopie state will be close to a given macroscopie state. Thus, 
this optimal state is very likely to be reached if the vorticity configuration is 
chosen at random. 

More specifically, a macroscopie state is defined as the field of probability 
Pi(r) of finding the level ai in a small neighbourhood of the point r. The most 
pro ba bie macroscopie state is obtained by maximizing the entropy 

where s(p) = - LPi Log Pi' (1) 
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with the constraints brought by the conserved quantities. These are the energy, 
the total area 

F; = f p;d 2r 
D 

of each vorticity level i, and the linear or angular momentum if these quantities 
are conserved (due to specific symmetries of the fluid domain). The energy E is 
expressed in terms of the vorticity field w( r) and the associated stream function 
t/!( r) defined by 

-At/! = w, t/! = const. on boundaries, (2) 

(3) 

The energy can be also expressed in terms of the macroscopic state by replacing 
w( r) in (3) by the locally averaged vorticity w( r), and using the corresponding 
stream function 'P, defined by 

-A'P=w (4) 

(the vorticity has fine-scale fluctuations , but these fluctuations are smoothed out 
for the quantities obtained as integral of the vorticity, like the stream function 
or the energy). 

The variational problem is treated by introducing the Lagrange parameters 
corresponding to the conserved quantities, so that the first varia ti ons satisfy 

JS - L oc;JF; - pJE = ° 
As a consequence, the optima I probability Pi (r) is related to the equilibrium 
stream function 'P by the relationship (see Robert & Sommeria, 1991). 

e -";- pa;'P 

p;(r) = Z( 'P) , with Z( 'P) = - L e -";-pu; 'P. 

(5) 

(6) 

Then the locally averaged vorticity w( r) is expressed by (4) as a function f".p of 
the stream function 'P. The resulting flow can be calculated in a self-consistent 
way by solving the corresponding partial difTerential equation. A steady Euler 
flow is characterized in general by the existence of a relationship between vor
ticity and stream function , so the function f".p selects a particular steady inviscid 
flow. We notice that in the absence of the energy constraint, i.e. p = 0, Pi is 
uniform so that the mixing is complete. In general, the energy constraint 
prevents complete mixing and a flow structure remains. 

This structure depends on the Lagrange parameters, which are not directly 
given. (We do not know about the possibility of a thermal bath that could set 
the temperature of the system, like in usual thermodynamics). Generally the 
available information is rather integral quantities, like the energy and the other 
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conserved quantities known from the initial condition (but other kinds of 
integral constraints can be obtained in forced cases). In summary, the stream 
function 'P, together with the Lagrange parameters, are obtained by sol ving the 
system of equations resulting from (4), (6) and the integral constraints 

L aiea; - /Ja;'P 
i = I 

-LJ'P = fa.p( 'P) = --Z-(-'P-)-

'P = const. at the boundaries 
e - a , - pa; 'P 

f d 2r = F i = I, n - I 
D Z( 'P) " 

1/2 t ( -LJ'P) 'P d 2 r = E. 

(7a) 

(7b) 

(7c) 

(7d) 

The general case of a continuous distribution of vorticity levels is a 
straightforward generalization of (7). The final state depends then on the energy 
and the continuous probability distribution function g( a) of the vorticity levels, 
given by the initial condition: g( a) d( a) is the fraction of the domain with vor
ticity between a and a + da. The terms e - a.; are then replaced by a continuous 
function À( a) ~ 0, 0, so that 

e - {Ja'P 
p(a, r) = À(a) Z( 'P) ' f

+ OCo 
with Z( 'P) = À(a) e - /Ja'P da 

-x, 

and the system (7) becomes 

+ oc e - /Ja'P 
-LJ'P=j~.{J ('P)=f aÀ(a)--da 

- x Z( 'P) 
(8a) 

'P = con st. at the boundaries (8b) 
e - /Ja'P g(a) 

f À(a) --d2r=--
D Z( 'P) IDI 

(8c) 

1/2 f 'P( - LJ 'P) d 2r = E. 
D 

(8d) 

3. Methods of determination and general properties of the equilibrium states 

The solution of the problem (7) must be generally obtained by a numerical 
method. It requires much less spatial resolution than solving the initial Euler 
equations, since the fine-scale vorticity structures have been filtered out by the 
statistical averaging. Nevertheless, the problem is still difficult because it 
gene rally involves bifurcations with several parameters, and the Lagrange 
parameters OCi' pare only indirectly determined by the n integral constraints. 
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A direct attack to this problem is presented by Thess & Sommeria ( 1993), and 
applied to the organization of a jet in a channel: (7) is discretized on N grid 
points (by a finite difference method), which yields a set of N + n algebraic equa
tions, that can be solved by the Newton's method. The different branches of solu
tion are then followed by continuity: Starting from a known solution, the 
parameters are va ried by small steps, and the previous solution is used as the 
initial guess for the Newton's method. Equilibrium states can be obtained also as 
the final state of relaxation equations (Robert & Sommeria, 1992) which conserve 
all the constants of the motion, while entropy monotically increases. Notice 
finally that a new method of relaxation has been proposed by Turkington & 
Whitaker (1993), and applied to a shear layer with great efficiency. 

Useful information can be also obtained from the theory without sol ving the 
problem (7) or (8). Indeed the function f",. p( '1') has general properties discussed 
in Robert & Sommeria (1991) . It is always a monotonous function bounded by 
the minimum and maximum initial vorticity levels ai (this function is strictly 
increasing when p < 0, and strictly decreasing wh en P> 0). The mean field 
approximation of Joyce & Montgomery (1974) for point vortices can be 
recovered from (7) in the limit Z( '1') ----+ I. This limit is obtained when most of 
the domain is filled by the zero vorticity level, and vorticity patches occupy a 
very small area, which is reasonable for a point vortex model. 

There is another interesting special limit when the argument pa'P is small and 
the results can be expanded in powers of this quantity. This will appear to 
correspond to the limit of low energy. We shall restrict the analysis to vorticity 
distributions which are symmetrie with respect to a, and remain so in the equi
librium state, i.e. the funetion À( a) is also symmetric. In this restricted case, the 
ex pan sion of p( a, r) and the set of equations (7) yields 

[
al- A l 3a3- A 2a ] 

p(a,r)= À(a) 1-aP'P+ 2 (P'P)2_ 2 (P'P)3+ . .. 

3A 4 -A ; 3 
-L1'P=-A 2p'P- 6 (P'P)- · ··) 

[
a l <a

2
) ] 

À(a)=g(a) l+pa<'P ) - 2 pl<'P2) + ... 

E=_IDI <a
2

) p«'P2) _ <'P )2 )+ . .. 
2 

(9) 

( 10) 

(11 ) 

(12) 

The integral constraints associated with the eonservation of the global probabil
ity distribution of vorticity have been inverted to give explicitly À( a) by the 
expansion (11), as a function of the spatial ave rages < tpn ). The suceessive 
momenta of the function À(a) are denoted 
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At the lowest order, À(a) = g(a), so that An is equal to the moment 

of the global vorticity distribution. However, difTerences appear at higher orders 
as indicated by (11). The partial difTerential equation (10) can be solved by suc
cessive approximations, together with the conditions (11) and (12). 

At the lowest order, the vorticity is an eigenfunction of the Laplacian with 
eigenvalue PA 2 , which must be negative (i.e. p < 0), as a consequence of the 
positivity of energy in (12). Then each eigenfunction of the Laplacian initiates a 
branch of solutions, but we can check that the branch corresponding to the 
lowest eigenvalue has always the maximum entropy, and must be selected. The 
result of the statistical theory then corresponds to the minimum enstrophy struc
ture in this limit. The eigenvalue of the Laplacian < a 2

) p is of the order 111 DI, 
so that, using the energy value (12), (Pa IP)2 is of order 

E 

Therefore the expansion is indeed valid for low energy. More precisely, the ratio 
of the energy over the initial enstrophy defines an initial scale of motion, and the 
expansion is valid when this initial scale is sufficiently small in comparison with 
the size of the domain. 

The deviation from this linear approximation can be obtained by sol ving (10) 
by a perturbation method. The corrective term in IP3 has the sign of (Ku - 3), 
where Ku is the Kurtosis of À(a), i.e. Ku = A4/A~, which is equal to the Kurtosis 
of the vorticity distribution g( a) in first approximation. Therefore, in the domain 
of validity of the expansion (i.e. low energy), we can predict the behaviour of the 
function ( •. p( lP) from the successive momenta of the initial probability distribu
tion function of vorticity. For instance, in the case of two non-zero vorticity 
levels a and -a which occupy a total area F, Ku = IDI /F/F. If F> 101/3, the 
coefficient of the cubic term IP3 in (10) is negative (('.P ( lP) behaves like a tanh), 
while if F < 101 /3, the coefficient is positive (( •. p( lP) behaves like a sinh). Notice 
that a similar expansion can be obtained from the results of Joyce & 
Montgomery (1974), but the coefficient of the cubic term is then only A 4/2, 
which is always positive. This result is recovered in the new theory wh en the 
Kurtosis is very large, which is indeed obtained in the dilute case, for which the 
area of the initial vorticity patches is small. I Notice finally th at when À( a) is a 

I This expansion should apply to typical computations of two-dimensional turbulence, with initial 
state at small scale, predicting a nearly linear relationship between vorticity and stream function . 
However the time of evolution is long before reaching a final state, so that small viscosity efTects 
can modify the distribution of vorticity levels, leading to a high Kurtosis. Therefore the behaviour 
in sinh obtained by Montgomery el al. (1992) can be explained, at least qualitatively. 
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gaussian, Ku = 3, so the cubic term vanishes. Moreover, it is th en easily shown 
by the exact calculation of f",.p( lP) , th at all the higher order terms also vanish: 
the relation between vorticity and stream function is linear (however, the corres
ponding vorticity distribution function g( a) depends on the energy and is 
generally not gaussian). 

Coming back to the general case, f",.p appears obviously as a single-valued 
function. However the method of Langrange multipliers leading to (7) or (8) 
allows only to find solutions Pi of extremal entropy which are continuous. Dis
continuous solutions mayalso exist, as in the case of the modons discussed in 
section 6. Then, if the optimal functions Pi are continuous and strictly positive 
on some open connected subset D' c 0, the same argument on Lagrange multi
pliers works on D' and shows that the representation (7) or (8) of this solution 
holds on D'. Therefore the function f",.p could take several values, on different 
subsets D' , separated by discontinuities of at least one of the Pi . Moreover, it 
can be proved that if one of the optimal functions Pi is strictly equal to zero at 
some point, th en the solution Pi is discontinuous. 

4. Tests and applications of the theory 

The result of the theory has been found in good agreement with direct numerical 
computations of the Navier-Stokes equations at high Reynolds number in 
several configurations. One of the simplest geometries is a channel with periodic 
boundary conditions in x and impermeable transverse boundaries. The case of 
a shear layer in a channel with stream-wise periodic boundary conditions has 
been investigated by Sommeria et al. (1991). Good agreement is also obtained 
for a jet in the same domain by Thess & Sommeria (1993). We shall present 
similar comparisons in the next section, for the problem of vortex merging in a 
large domain. 

Different kinds of fluid systems can be described by a two-dimensional 
dynamics, mostly in Geophysical Fluid Dynamics and plasma physics. The 
extension of the theory to quasi-geostrophic systems is straightforward, even in 
multilayer cases, by replacing the vorticity by the potential vorticity. Therefore, 
a new way of understanding and predicting the organization of atmospheric and 
oceanic systems can be developed. For instance, it is possible to predict the for
mation of coherent jets and vortices like the Great Red Spot of Jupiter, as 
shown by Sommeria et al. (1991) and Michel et al. (1994) . 

The dynamics of an electron plasma in a magnetic field can be described by 
the 20 Euler equations, as shown by the beautiful experiments of Fine et al. 
(1991), and Peurrung & Fajans (1993). In this context the point vortex statistics 
has been applied to a circular domain by Pointin & Lundgren (1976) and Smith 
& O'Neill (1990), and the difference with the present theory remains to be 
tested. The similar flow of a liquid metal in a uniform magnetic field has been 
experimentally studied by Denoix et al. (1993), and a good fit with the present 
theory is obtained. However, such flows are strongly confined by the fluid 
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domain, and possible boundary layer detachments make the problem more com
plex. 1 shall discuss here the case of vorticity structures in a very large domain, 
for which boundary efTects are not important (but the ergodicity of such an open 
system and its possibility to really reach a statistical equilibrium are more ques
tionable). 

5. Application to the vortex merging and the organization of a monopole 

To apply the statistical theory, we need first to note the conserved quantities 
associated with the specific symmetries. In an unbounded domain, the two com
ponents of the linear momentum Pare conserved, as weil as the angular 
momentum M: 

(these quantities depend on the choice of the origin of the position vector r). The 
corresponding Lagrange multipliers have to be introduced in (5). The modifica
tion is straightforward and leads to equilibrium states of the fonn 

i.e. steady Euler flows in a translating or rotating frame of reference. There are 
two cases, depending on the total circulation 

r= t wd2r. 

For the case of monopoles th at we consider in this section, r #- 0, while the case 
r = ° (dipoles) is postponed to next section. If I' #- 0, the tenn U.r can always be 
suppressed by a change of the coordinate origin, taking r' = r + U/2}'. Then a 
purely rotating structure is obtained, and the linear momentum, calculated with 
the new origin, must vanish: otherwise it would rotate with the structure and 
would not be conserved. This means that the centre of the rotation must be the 
centre of mass of the vorticity distribution 2 (If }' = 0, the structure is translating 
with velocity U, but since the ,;entre of mass cannot move, we must have U = 0, 
this is just a regular limit of the case }' #- 0). 

The equilibrium state has been obtained by Delbende et al. (1994) as the final 
evolution of the relaxation equations proposed by Robert & Sommeria (1992). 
A turbulent difTusion tenn increases the entropy, while keeping constant all the 

2 However, this is only possible ifthe centre ofmass is defined, i.e. if r#o. Otherwise, P does not 
depend on the origin of the coordina tes: then if P "" 0, we must have y = 0, and get a translating 
structure. 
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conserved quantities, until a maximum entropy state is reached. From a numeri
cal point of view, it is necessary to have boundaries, and a circular domain, cen
tred at the centre of mass of the vorticity field , would be appropriate to keep the 
conservation laws. However, for practical reasons, we have used instead a 
square domain while still imposing the conservation of angular momentum. 
Since the domain is much wider than the size of the vorticity distribution, this 
brings only weak perturbations. 

The equilibrium state depends on the vorticity distribution function g(a), the 
total vorticity area F, the angular momentum M, and the energy E. We restriet 
ourselves to the case of initial vorticity patches with a single non-zero vorticity 
level w = a with total area F. The equilibrium vorticity structure still depends on 
the two non-dimensional parameters M/(aF 2) and E/(aF) 2, while the area F and 
vorticity a determine the size and typical vorticity of the structure. We have still 
restricted the problem to an initial state with two circular vortices of radius R 
whose axis are separated by a distance d. This is the classical problem of sym
metrie vortex merging, and the final structure depends only on a single 
parameter di R. 

In this problem, the final equilibrium state appears to be always axisymmetric, 
with exponentially decreasing vorticity at large distance. The radial structure of 
the vorticity depends on the parameter di R, but the central core has always a 
very similar vorticity profile, shown in fig. la. For high values of the angular 
momentum (large d) , a small proportion of the total vorticity is expelled at 
fairly large distances, with little change in the central core. Therefore merging is 
not prevented by the conservation of angular momentum, and we have never 
obtained equilibrium states with two separated vortices. This is the case even for 
ratios di R> 3.3, for which it is not supposed to occur (see for instanee, 
Christiansen & Zabusky 1973). The two vortex system with large separation 
may be a particular set of stabie states which cannot initiate the mixing pro
cess 3. However, when a complex vortex distortion is initiated, we can explain 
the merging process and its final axisymmetric organization by the tendency of 
the system to increase its entropy, with the constraints of the conservation laws. 

Quantitative agreement with direct numerical computations of the Navier
Stok es equations is indeed obtained. Although we are interested in the inviscid 
dynamics, a small viscosity must be introduced to avoid the development of fine
scale noise (and the vorticity field must be smoothed at the edge of the patches). 
For applying the theory to a real flow, it is essential to assume thaI viscosity has 
no significant effect on the distribution of the vorticity levels, during the time of 
formation of the final equilibrium structure: then the only effect of viscosity is to 
suppress the local fluctuations of the equilibrium state, leading to a vorticity 
field equal to the local average of the inviscid theory w(r) . We use a pseudo
spectral code in a periodic domain with symmetry conditions in x and y, so that 

3 Nevertheless, further investigation of possible two vortex equilibrium states has still to be per
formed, with a rigorous test for bifurcations, and the search for possible discontinuous equilibrium 
states. 
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Fig.1. Vortex merg!ng and final equilibrium state (2 initial vortÏces of radius R = 1/ 16, vorticity 
a = 1, resolution 2562, viscosity v = 2.10 -5); (a) Radial vorticity profile of the predicted equi
librium state for two ratios diR; (b) Snapshots from a direct numerical computation of the merg
ing (d/R = 3.18); (c) Representation of Log( w) versus stream function 'l' af ter organization into an 
axisymmetric state (t = 274); (d) Representation of Log [wl(a - w)] versus 'l' for the same points 
as in (c): the linear behavior predicted by the theory is checked in the vortex core. 

the square [0, I] x [0, I] has impermeable boundaries. The merging process is 
illustrated by the snapshots of Fig. I b. At the end of the merging process, we can 
distinguish two regions: a strongly mixed central core, and spiral arms which 
roll up around the core. A final axisymmetric vortex structure is obtained at 
t = 200 (with a very slow decay due to viscosity). 

The quantitative agreement with theory is best checked by plotting vorticity 
versus stream function from the final state of the numerical computation. Two 
representations are given in Fig. Ic, d (at t = 274). We first ob serve that all the 
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points nearly collapse on a single curve, an indication for a steady solution of 
the Euler equations. The point vortex statistics predicts an exponential function 
which should be represented by a straight line on Fig. Ic. There is clearly a dis
crepancy, especially near the vorticity maximum. By contrast, the present theory 
predicts a straight line for the representation of Fig. ld, which is indeed weil 
verified in the core of the vortex. However discrepancy appears in the spiral 
region. This result can be interpreted as the consequence of st rong mixing in the 
core but only incomplete mixing outside. Indeed the filaments are in the first 
approximation stretched by the irrotational axisymmetric flow induced by the 
vortex core. This is an organized motion, rather than a complete mixing process. 
There is here a fundamental alternative: does the mixed core extend more and 
more in the limit of long times and vanishing velocity? Instead, does a barrier 
to mixing, or a complex set of barriers, remain in the inviscid limit? Limitations 
to mixing appear also in other cases, for instance in the partial merging of two 
unequal vortices (Dritschel & Waugh, 1992). In any case, the completely mixed 
state predicted by the theory is clearly a good starting point to study the merg
mg process. 

6. Maximum entropy solutions for a modon 

Now let us consider the organization of an initial state with zero total vorticity 
r = 0, surrounded by an infinite irrotational fluid. The linear momentum P is 
now an important conserved quantity, while the angular momentum only deter
mines the position of the structure: we choose the origin such that it vanishes. 
We then define the x axis parallel to P, and use the usual polar coordinates r, 
(J. At large distance from the vorticity region, the stream function is the dipolar 
field 

P sin(J 
'P=--

2nr 

(obtained as an expansion of the Biot-Savart formula). 
We first notice that a continuous maximum entropy solution in the whole 

domain is now impossible (except for the degenerate case p = 0, with zero 
energy). Indeed, each probability Pi would be a function of ('P - Uy). Since 
'P -+ ° at large distance, the argument is then dominated by Uy (U # 0), which 
takes all the values between - 00 to + 00, so that the probability could not 
vanish everywhere at large distance. Therefore the equilibrium probabilities can
not decay smoothly in the whole domain, and lor each vorticity level, we must 
have a discontinuity, beyond which p = ° (The same result holds for U = 0, 
although the justification is a little Ie ss simpie). We shall make the hypothesis 
th at all the probabilities are continuous inside a domain D, and drop to zero on 
the same line: the boundary of D. Inside this domain, the flow must be steady 
in the frame of reference translating at a velocity U. Therefore the line of prob-
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ability discontinuities must keep the same shape, and the whole domain 0 trans
lates at constant speed U: the boundary of 0 is a streamline in the translating 
frame of reference. 

Outside 0 , the flow is irrotational, and is therefore uniquely determined by 
the boundary of 0 and its velocity U. This velocity can be related to the 
momentum Pand a boundary integral, using an integration by parts 

p= VIDI +f y u · dl:= CD VIDI . 

The velocity on the boundary depends only on the outside flow, so that the coef
ficient CD depends only on the shape of the domain o. It is convenient to use 
the non-dimensional variables r' , a' and the stream function cP in the translating 
frame or reference 

r=Rr' , with nR 2 = IDI, 

where ao is a characteristic vorticity of the initial condition. We can write the 
energy as the sum of the internal energy and the translation energy 

1 p 2 
E=(aoR 2)2- f cP(-AcP)d2r'+ 2" 

2 D 2nCD R 

In fact, because of the continuity of the velocity at the boundary of 0, the two 
terms must be of the same order, which imposes astrong constraint on the 
domain area nR 2 ~ p 2j E. Then, the determination of the equilibrium states 
requires to solve a non-dimensional version of (8), with the new integral condi
tions (denoted by primes): 

Fao 
g'(a') = R

2 

g(aoa' ), 

The probability distribution g( a) is relative to the initial area F where the vor
ticity is non-zero (the value a = 0, for which g( a) is not defined must be excluded 
of all the integrals involving a). We have again the impermeable boundary con
dition cP = 0, but also an imposed velocity on the boundary, by continuity with 
the outside flow. The necessity for these two conditions will determine the shape 
of the boundary, and the value of R. 

Therefore the shape and structure of the modon is in principle predicted by 
the statistical theory in terms of the conserved quantities, although the general 
problem is difficult. However we can use the expansion presented in section 3. 
At the first order, we get the classical modon, translating at velocity U = U/ P, 
with the vorticity confined to a circular domain with R = P / ( 2nE) 1/ 2. The inter
nal stream function 
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is expressed in terms of the Bessel functions J o and J I . X I must be a zero of J I , 
and the condition of highest entropy selects the first zero (x I ~ 3.83). Indeed, the 
expansion of the entropy gives at this order 

x~ E' 
S = cons! - 2( a 2 > + ... 

The next order correction can be obta ined by a perturbation method, and the 
shape of the domain must be corrected together with the function <P. Such an 
expansion is valid if 

E 
a 2 FR 2 ~ 1 

o 
( . h ' P

2

) Wit R-=E (13 ) 

which is true if the scale R of the modon is sufficiently large. In the opposite 
limit, the area R 2 defined by P 2/E may become smaller than the initial vorticity 
area F. A possible organization in th at case is the formation of two modons with 
partly opposing directions, such that the momentum of each individual modon 
is greater than the initial one, allowing a larger scale p 2/E. In any case, such a 
system of two modons occupies a wider area, and it has c1early a higher entropy 
than a single modon. Therefore, we can understand that the condition (13), and 
the corresponding linear relationship between vorticity and stream function is a 
quite common feature. 

Part of this work is supported by the European network "Two-dimensional tur
buIence, vortices and geophysical flows" (grant ERBcHRxcT920001). 
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B. Legras* and O.G. Dritschel + 

Vortex Stripping 

Abstract 

We examine below the process of "stripping", the sharp removal of peripheral 
vorticity from vortices in a two-dimensional flow when the critical points of the 
global stream function field penetrate the vortex. We show that arbitrarily sharp 
vorticity gradients can be produced at the vortex edge and that the stripped 
filaments may undergo Hamiltonian mixing. A theory which allows detailed 
quantification is possible in several simple but relevant cases. We also show that 
the combination of stripping and diffusion or eddy-viscosity leads to surprisingly 
rapid vortex decay, with hyperviscosity leading to additional spurious effects. As 
regards the enstrophy cascade concept for 20 flows , we find that the process of 
stripping short-circuits this cascade, thereby putting into question long-held 
beliefs. 

Keywords: vortex dynamics - coherent structures - two-dimensional turbulence 

1. Introduction 

Two-dimensional turbu\ence is often considered a useful paradigm for geophysi
cal fluid dynamics. Extensive numerical experiments have led to the conc\usion 
that two-dimensional turbulence is dominated by long-lived coherent vortices 
moving through a sea of quasi-passive filamentary structures [I]. 

These filaments are generated by the straining of vorticity structures in the 
velocity field mainly controlled by the large vortices. The saddle points of the 
stream function field are characterised by a deformation tensor having two real 
eigenvalues, one positive and one negative, and are consequently the places 
where vorticity structures are compressed in one direction while being elongated 
in the direction of straining [8, 16]. This mechanism is very effective when a 
small structure is strongly deformed on a much shorter time-scale than that 
associated with significant changes of the deformation field along a Lagrangian 
trajectory. In this case, vorticity gradients intensify and are only bounded by dis
sipation effects. 

A second generation mechanism of vorticity filaments-which has been largely 
overlooked in the literature on two-dimensional turbulence- is wave breaking 
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on the periphery of vortices. Two phenomena are involved here. The first is the 
formation of nonlinear critical layers, lo which classical analytical treatment 
may be applied to study the initial stages of perturbation development on a 
weakly unstable vorticity profile [14]. When a sharp vorticity interface is 
involved, the instability can be investigated using the modern numerical method 
of contour surgery [4] , and it can be shown [2] that a cascade of folding occurs 
which generates an extremely complicated structure of embedded filaments on 
the vorticity interface. There exist. however, nonlinear stability bounds which 
restrict the growth of such perturbations [3]. In particular, the mean-square dis
placement of the interface is conserved, and it is believed, on the basis of many 
numerical experiments, that the filaments remain close to the initial location of 
the vorticity interface. This phenomenon, known as "filamentation", is certainly 
important in determining an efTective turbulent difTusion acting on the vorticity 
profile of a coherent vortex, but as just noted probably injects little material into 
the background flow. 

12Z 10 FEB 1989 

440K 

Fig. I. Reconstruction of the potential vorticity on the isentropic surface e = 440K on \0 
February 1989, using contour advection with surgery [15]. 
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The second phenomenon, that we denote as "stripping", is associated with the 
deformation of a vortex by an external straining field produced by other vortices 
(or any imposed non-uniform flow). The superposition of a vortex having closed 
streamlines and an external straining field (i.e. u = yx - Dy, v = - yy + Dx) yields 
a total stream function field having two critical points, often located inside the 
vortex, and associated separatrices passing through these critical points, capable 
of transporting fluid to large distances from the vortex into the background flow. 
For some combinations of y and D, the vortex may be destabilized, resulting in 
tearing, folding and appreciable filament generation [5]. 

These phenomena are particularly relevant to the dynamics of the 
stratospheric polar vortex which forms during winter over the Arctic and the 
Antarctic. The polar vortex persists during most of the winter season and it acts 
as a barrier to subtropical air masses. The consequent isolation of cold polar air 
in turn favours the chemical reactions responsible for ozone destruction [12]. 
During spring, the vortex is tom apart and ozone loss is propagated to lower 
latitudes. The final tearing (called the "final warming" in the meteorological 
literature ) is, however, preceded by progressively more violent events such as 
that shown in Fig. 1 where we see how a broad filament is emitted from the vor
tex and carried to lower latitudes while thinner structures remain glued to the 
vortex edge. 

2. Stripping 

With these motivations in mind, we now focus on the phenomenon of stripping. 
We consider the simple but in many ways generic case of a single vortex (or a 
row of vortices) under uniform adverse shear in a pure two-dimensional 
framework. 

2.1. Critical points 

When a finite adverse shear is applied at t = 0 to a circular vortex, the vortex 
reacts by rapidly elongating, then by differentially rotating, and finally by eject
ing a tongue of peripheral vorticity along the direction of the shear (see Fig. 2a). 
The instantaneous stream function exhibits two symmetrically-placed critical 
points (zero velocity points) just within the region dividing the core-bound vor
ticity from the escaping vorticity tongue. At a later stage (see Fig. 2b) the 
expelled tongue elongates into a filament attached to the vortex through an 
exceedingly thin section at the very location of the critical point. Stripping has 
then reached a quasi-equilibrium in which the vortex is nearly a stationary solu
tion of the Euler equations. This can be demonstrated by plotting the stream 
function versus the vorticity and verifying that a functional relationship is 
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Fig. 2. Vorticity chart of a vortex within a row of vortices submitted to a uniform adverse shear. 
(a): early time. (b): quasi-equilibrium stage. F our streamline con tours, in black, are superimposed 
on each view to locate the critical points and to outline the stream function field. 

closely satisfied within the vortex. This nearly stationary situation persists only 
for an isolated vortex ; for a vortex street, the flow continues to evolve as vor
ticity filaments produced by one vortex interact with neighbouring vortices 
[ 10]. 

2.2. Mixing and sharpening of the vortex edge 

Upon passing close to a critical point, filaments are folded and split into two 
parts, one continuing its joumey towards a neighbouring vortex and the over 
one sweeping along the vortex edge (see Fig. 3). Iterating this process leads to 
Hamiltonian mixing, a subject which has been well-studied when the velocity 
field varies periodically in time [13]. Here, however, the oscillations of the vor
tex are induced by the filaments themselves, so the velocity field is aperiodic; yet, 
the observed mixing bears the main characteristics of Hamiltonian chaos. It dif
fers totally from a down-gradient vorticity diffusion. Instead, the vorticity 
gradient increases dramatically on the edge of the vortex as demonstrated by the 
cross-section shown in Fig. 3. This is simply a consequence of stripping remov
ing the periphery of the vortex while leaving the interior in~act. The filaments 
may, however, crowd in the vicinity of the vortex edge and reduce the steepness 
of the profile by diffusive smoothing of the transverse structure as soon as 
viscous scales are reached. But when they are carried away, the sharp edge 
remains. A sharp edge is indeed observed at the periphery of the polar vortex by 
in-situ aircraft measurements [15] and is found to be most pronounced follow-
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Fig. 3. Same vortex as in figure 2 at a later stage of its evolution after several foldings of the 
expelled filaments. The vorticity cross-section is taken along the segment shown on the figure. 

ing astrong perturbation of the vortex, in agreement with our analysis. One of 
the main difficulties of numerical weather forecast models is their inability to 
resolve such structures. We will come to this point bel ow. 

3. Quasi-adiabatic stripping 

A more quantitative understanding of stripping is attainable in the case of 
slowly-changing external flow. It can be shown [11] that when an initially cir
cular, monotonie, isolated vortex is subrnitted to a slowly growing external 
shear, it evolves along a quasi-equilibrium path (through states resembling that 
shown in Fig. 2b) while progressively eroding until the shear is strong enough 
to indefinitely stretch the small remaining core. A prineipal result is that the 
critical value of the shear (for the final vortex tearing) depends almost 
exc1usively on the ratio A/comax of the shear to the maximum vorticity within the 
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vortex; that is there is Iittle dependence on the vorticity profile. This critical 
value is A = A (= 0.135w l1lllx for pure adverse shear. The universality comes from 
the fact that a distributed vortex generically has, to leading order, a parabolic 
core profile and that higher-order corrections to this profile shape have an 
increasingly negligible effect as the radius of the eroding vortex decreases. 

In addition, it has been observed that during the whole evolution the vorticity 
con tours within the vortex exhibit only small deviations from a pure elliptical 
shape. As a consequence, we can use the results of the elliptical model [9] in 
which a vortex is represented by a nested stack of elliptical disks of vorticity. By 
taking the continuous limit of this model for an initially axisymmetric vorticity 
profile w(r) bounded by a sharp edge at the vorticity level w = w(R), we obtain 
the following integral equation for the equilibrium: 

0 =2a(r)(l-a(r)) Ir 2 '( ' )d . _(I-a(r))2 Ir 4 a(s) '()d 
J SWS oS 4 S 2 WS S 

r ( I + a( r ) ) 0 rol - a (s) 

I + a 2(r) IR 1+ a 2(R) 
+A-w(r)- 2 (l+a(s))w'(s)ds+ w(R), 

( I + a( r ) ) r I + a( R ) 
(I) 

where a(r) is the eccentricity of the vorticity contour w(r), and 0 ~ r ~ R. In 
addition to (I), we need an extra condition for quasi-stationary stripping which 
allows one to determine R. This condition is that the critical point is located at 
the tip of the vortex. More accurately, since we know that the separatrices form 
a right angle at this point, we may demand th at the sides of this angle are 
tangent to the outermost ellipse. This condition is: 
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Fig. 4. Eccentricity at the vortex center as a function of A/w m a • . Dotted line : numerical sim ula
tion of the Euler equations by contour dynamics. Solid line : the prediction obtained from solving 
(I) and (2). 
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with x R = fiR j( 1 + a 2
( R) )/( I - a 2

( R)). These equations can be reduced to a 
single second-order differential equation for a(r) which can be solved numeri
cally or by Padé approximation. Fig. 4 compares the results of this approximate 
method with th at of a direct numerical simulation, for the stripping of the initial 
profile w(r) = ~ (I + cos (nr)). We obtain an accurate prediction of the erosion 
up to the final tearing, with an error of Ie ss than 3% in the critical shear. 

A progressive growth of external shear seems to be a more realistic condition 
than an abrupt application of it. Nevertheless, we have seen in Fig. 2b that even 
in this later case the vortex can reach a state of quasi-equilibrium af ter being 
strongly deformed. ft is thus likely that the above results characterise a broad 
range of cases. The extension to more general combinations of strain and rota
tion will be presented elsewhere. It is also feasible to incorporate higher-order 
deformations in a perturbative way to deal with cases of non-uniform straining 
fields such as those encountered during the inelastic interaction of two vortices 
[7 ]. 

4. Diffusive effects 

We have so far neglected the effect of diffusion and have studied stripping as an 
inviscid mechanism except in assuming th at the filaments dissipate when they 
get very thin. This latter effect is, however, a consequence rather than an 
ingredient of stripping. Diffusion plays a significant role in stripping when the 
scale of the vortex is small enough (how small will be seen below) and/or when 
one uses an artificial eddy viscosity to represent unresolved dynamics in large
eddy simulations (Iike in the current generation of general circulation models of 
the atmosphere and the ocean) . 
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Fig. 5. Evolution of the area of vorticity contours as a function of time. with and without shear. 
at Re = 12500 for a Gaussian vorticity profile with WIn'IX = I a t 1=0. Vorticity contours are 
(I) = 0.5. 0.6. 0.7 and 0.8. Dotted line : pure ditTusive decay. Solid line : convective·difTusive decay 
with A = 0.1. 
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Let's see what we get when ditTusion is coupled with stripping. Qualitatively, 
we can understand th at there will be an accelerated decay of the vortex when 
one balances the ditTusive flux of vorticity (accentuated by the presumed tight 
gradients along the vortex edge) across the separatrices of the stream function 
with the advection away by the extern al flow. We expect a fast linear decay. 
Fig. 5 compares the decrease of the area of several interior vorticity contours, for 
the initial Gaussian profile w(r) = exp( - ~), in the presence and absence of 
adverse shear at Reynolds number Re = w" lllx a 2jv = 6250. In this example, the 
edge is located at approximately w = 0.5. The enhancement of ditTusion is 
obvious, the more so for the con tours which are close to the edge, but it also 
increases (by 20%) for the most interior level. As a consequence, the vorticity 
maximum W",ax also decreases much faster than in the absence of shear. Fig. 6 
shows the evolution of w"'''x for various values of Re. The decay is linear until 
the critical value of vortex tearing is reached, and then there is a sharp exponen
tial decay as the vortex is extended as a filament. We see th at tearing always 
occurs for the same critical value of W"IllX' independent of Re, corresponding to 
A = Ac, the critica I shear value for inviscid stripping. For a given profile, the 
tearing time (not shown) is approximately proportional to the Reynolds 
number. 

In large-eddy simulations, one may expect from the above observations that the 
combined etTect of eddy viscosity and strain leads both to a premature disap
pearance of small-scale eddies and to an enhanced erosion of large-scale structures 
[ 17] , as conjectured previously in [6]. It is a mechanism which may explain why 
some coherent patterns like atmospheric blocking anticyclones are not properly 
maintained during the integration of numerical weather forecast modeis. 

It must be added that the use of hyperviscosity (i.e. using vp ( -1 )"V 2Pw 
instead of vV 2

), a common parameterisation of eddy-viscosity, may delay some 
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Fig. 6. Evolution of W max as a function of time for va rio us values of Re. as indicated on the 
figure. with A = O.I. Dotted line : critica I value of W max for tearing. 
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what the final tearing since the maximum vorticity decays more slowly than in 
the case of normal difTusion. But there are also some spurious efTects. Hyper
viscosity is not a difTusive operator: artificial oscillations develop across a sharp 
edge leading to an up-gradient pumping of vorticity inside the vortex. This 
violates vorticity conservation, of course, and can enhance maxima by 20% 
above their initial value (or more if p > 2). The consequences of this result for 
forced simulations require further analysis. We can say, however, that it casts 
doubt on the statistics of small-scale vortices in experiments using hyperviscosity 
(see [6] for further remarks ) and on the reported occurrences of cusp-shaped 
vortices in low-resolution experiments. 

5. Stripping and the enstrophy cascade 

We remark that the ability of stripping to produce in one step and in 
approximately an eddy-turnaround time structures at the dissipation scale from 
initially large-scale vorticity gradients goes against the classical cascade concept. 
The latter assumes the existence of an inertial range in which the fluctuations are 
statistically independent of both the large-scale flow and dissipation. We see here 
that, on the contrary, we cannot assume any homogeneity or isotropy of the 
small scales since they are fully dependent on the large-scale flow. It remains to 
be seen whether the kind of Hamiltonian chaos we have encountered above is 
ab Ie to restore, at least partially, statistical independence for small-scale fluctua
tions. Any efTort to restore the classical theory will, however, have to contend 
with a very recent result (R. Benzi, personal communication) th at the 
Kolmogorov relation on third-order correlations, which can be derived exactly 
from the Navier-Stokes equations on the sole assumption of statistical 
homogeneity and isotropy, is never satisfied by known data on two-dimensional 
turbulence, unless conditions that forbid coherent vortices are imposed. 
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Dieter Etling and Siegfried Raasch 

Formation of Vortices in Rotating Thermal Convection 

Abstract 

We have investigated the problem of thermal convection subject to background 
rotation by means of a three-dimensional , non-hydrostatic numerical model. In 
accordance with the set up of laboratory experiments, a fluid layer in solid rota
tion is heated by applying a constant heat flux at the lower boundary. In the 
non-rotating case, more or Ie ss random convection cells develop af ter the heated 
layer has reached a certain critical height. If background rotation is applied, 
these cells are replaced by vortices with vertical axis, whose strength and dimen
sions depend on the applied heat flux and on the background rota ti on rate. 

Introduction 

Turbulent thermal convection is manifested in many geophysical flow systems. 
Examples are the mixed layer in the ocean or the convective boundary layer 
(CBL) in the atmosphere. The convective atmospheric boundary layer has been 
treated extensively through field experiments and numerical simulations during 
the last decade. 

Although atmospheric and oceanic convective boundary layers are developing 
on a rotating Earth, only little attention has been given to the influence of back
ground rotation on turbulent convection. This may stem from the observational 
fact that the typical time-scale in the atmospheric CBL of about 30 minutes is 
much shorter than the inertial time scale of about 15 hours for mid latitudes. 
Nevertheless, recent labo ra tory experiments on rotating turbulent convection 
(e.g. Boubnov and Golitsyn, 1990; Fernando et al., 1991; Maxworthy and 
Narimousa, 1991) have been performed with respect to geophysical applications. 
In addition to this work, results of numerical simulations on the rotating con
vection problem will be presented here. 

Rotating turbulent convection 

In order to compare field observations, laboratory experiments and numerical 
simulations it is necessary to define characteristic values for the convective 
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boundary layer. In the case of vanishing mean wind the CBL can be fully 
described by the surface kinematic heat flux w'O~ and the inversion height 11. 
With w' O~ and 11, a characteristic velocity w. can be defined by: 

(
g_ )1 /3 

w. = liw'O~11 (I) 

where g is the acceleration due to gravity and (f a mean temperature of the CBL. 

In a rotating CBL we need the angular frequency Q of the rotation as an addi
tional scaling factor. It is usual to use the Coriolis parameter f = 2Q for this pur
pose. For application to oceanic or atmospheric problems f = 2Q sin qJ, where qJ 

is geographic latitude and Q the Earth's angular frequency, as usual. A charac
teristic non-dimensional number may now be formed from the governing 
parameters 11 , w. and f by 

w. 
Roc = jh (2) 

which we may call a "convective" Rossby number. We will use ROe for evalua
tion of our numerical simulations of rotating turbulent convection. 

The influence of background rotation on the CBL has been investigated with 
a three-dimensional LES model, similar to the approach used e.g. by Moeng 
( 1984). The model equation and the numerical techniques are described in detail 
in Raasch and Etling (1991) and will therefore not be repeated here. The prin
ciple setup of the experiments is as follows. 

All runs start with an atmosphere at rest. The initial temperature stratification 
is neutral up to a height of 800 m with a stabie layer of 1 K/ IOO m aloft, in order 
to allow a rapid growth of the CBL in the beginning of the simulation. The 
boundary layer is heated by imposing a constant uniform surface heat flux of 
0.1 Kms -I (about 125 Wm -2). At the start of the simulation, convection is 
enforced by a vertical velocity perturbation applied in the lower part of the 
neutral layer. 

Model results 

From model runs, no difference in the CBL structure has been found for non 
rotating case and cases with coriolis parameter typical for the earth 
(f = 10 -4 S - I) . Therefore f was increased artificially ("fast rotating planet" ) and 
the simulations were repeated for fixed surface hear flux but different rotation 
rates. 

Numerical simulations have been performed for a non-rotating case (f = 0) 
and th ree fast rotating cases (f = 0.01, 0.03, 0.05 s - I). The related values of the 
convective Rossby number are RO e = 00, 0.16, 0.053, 0.03 respectively. Without 
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going into further details, the model results might be summarized as follows con
cerning vertical profiles of horizontally-averaged quantities: 

- mean temperature gradient increases with increasing rotation rate. No weil 
mixed CBL like in the non-rotating case is found. 

- Vertical heat flux due to resolved scale motions is decreased for increasing 
rotation, subgrid-scale heat flux is increased at the same time. 

- Variances of vertical and horizontal velocity components are decreased with 
increasing rotations. The ratio of vertical to horizontal variance is also 
decreasing to near isotropic conditions. 

Marked changes in the flow structure can be also observed when the back
ground rotation is increased. This is iIIustrated in figures land 2, where 
streaklines of the horizontal flow patterns are displayed. For the non-rotating 
case (Fig. I) , convergence lines, marking the boundaries of convective cells, 
exhibit little rotation. If background rotation is applied , these cells are modified 
by vortices with vertical axis as can be seen in Fig. 2. Strength and dimensions 
of these vortices depend on the applied heat flux and on the background rota
tion rate. The scale of convective cells (updrafts and downdrafts ) is decreased for 
increasing rotation. 

These type of vortices have also been observed in laboratory experiments on 
rotating convection by Boubnov and Golitsyn (1990), Fernando et al. (1991) 
and Maxworthy and Narimousa (1991). 
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Fig. 1. Streaklines of horizontal motions in a non-rotating CBL. Horizontal cross section at 
z = 0.05 h. 
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Fig. 2. Streaklines of horizontal motions in a rotating CBL (f = 0.03 s - I, Ro,. = 0.053). Horizontal 
cross section at z = 0.5 h (top) and z = 0.07 h (bottom). 
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Conclusions 

Through numerical simulations we have shown, that background rotation has a 
marked influence on turbulence characteristics and flow morphology of a con
vective boundary layer. But for typical surface heat flux, as observed in the 
atmospheric CBL, we had to increase the Coriolis parameter up to a factor of 100 
compared to situation on earth in order to obtain small Rossby numbers. With 
f = 10 - 4 S - I , as usual for geophysical applications, sm all va lues of Ro , can be 
only obtained for deep convection in the ocean. In this case, the buoyancy flux 
lfu/QC is in the order of lO - R m] s - ~ for lfo= 100 W m - 2 at the ocean-atmos
phere boundary. If we take h ~ 2 km, as observed for deep ocean convection, we 
obtain Ro , ~ 0.4. Hence it is very likely, that the Earth's background rotation is 
much more important in oceanic situations than for the atmospheric CBL. Indeed 
recent field observations (e.g. Schott and Leaman, 1991) and numerical simula
tions (Jones and MarshalI , 1993) on deep convection in the ocean have revealed 
vortex-like structures like those displayed in Fig. 2, but some more field data are 
necessary in order to check our numerical results against geophysical observa
tions. 
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R. Verzicco*, J.B. Flór +, G.J.F. van Heijst + and P. Orlandi* 

Interactions of Dipoles with Cylinders: Experiments and Numerical 
Simulations 

Abstract 

Flow visualizations and numerical simulations of the centred collision between 
a dipole and a circular cylinder have shown that the main feature is the forma
tion of oppositely signed vorticity at the cylinder wall. The thin layer of wall 
vorticity rolls-up in two compact patches, which couple with the primary lobes 
and, by self-induced motion, move away from the cylinder along curved trajec
tories. The diameter of the cylinder (D e ) plays an important role in the 
dynamics of the collision. As D e decreases the wall vorticity increases but, since 
a larger dissipation is a fundamental topic which also occurs in a number of 
practical situations, the secondary lobe becomes less pronounced. Measurements 
of the vorticity distribution before and af ter the collision have shown that the 
primary lobes preserve their original relationship w = f( I/I} and that the 
secondary vorticity tends to organize into structures with a similar w = f( I/I} . 
The difTerences between advection of vorticity and of passive markers have been 
also analysed. 

Introduction 

The interaction of vortices with (solid) boundaries is a fundamental fluid 
dynamic topic which also occurs in a number of practical situations The interac
tion with the ground of the trailing vortices of an airplane during take-ofT, or the 
free surface signature by the trailing vortices of submarines are two examples of 
the wide range of phenomena in which these flows are involved. The case of a 
pair of rectilinear vortices impinging on a solid flat wall has been investigated 
numerically and experimentally by a number of authors (e.g. van Heijst & Flór 
( 1989), Orlandi (1990}) and the generation of secondary vorticity at the wall 
was found to play a fundamental role in the interaction process. 

For the interaction of a dipole with a circular cylinder, the curvature of the 
body adds the radius as a new parameter that makes the flow more complex. A 
recent numerical study by Orlandi (1993) considers the interaction for no-slip 
and free-slip boundary conditions. In the ideal latter case, af ter the collision, the 
dipole con serves its original shape and w-I/I scatter plots confirm that a Iinear 
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relationship is attained again. On the other hand with the no-slip condition the 
secondary vorticity, interacting with the primary vortex, forms two dipolar 
structures that move along circular trajectories. Even in this case scatter plots 
present a c1ear tendency to attain the Iinear relationship eventually. 

The simulations by Orlandi (1993) we re limited to interactions with very 
small cylinders since for comparison only the experiments by Homa et al. ( 1988) 
were available. The present study describes laboratory and computer 
experiments in a large range of cylinder radii. The main goal is the comprehen
sion of the physics of the interaction process, in particular, with respect to the 
efTect of the diameter of the cylinder. The results indicate that the smaller the 
diameter of the cylinder the higher is the peak vorticity at the wall. These high 
peak va lues produce large vorticity gradients and a large dissipation. As a final 
result the secondary lobes have a reduced intensity. 

Scatter-plots between vorticity and streamfunction have been finally analysed 
to investigate the distribution of the vorticity inside primary and secondary vor
tices. Experimental results have partially confirmed those obtained by Orlandi 
( 1992): both vortices attain the same relationship but while in the numerical 
simulation it is linear, in the experiments the function w = f( Ijl) has a sinh-like 
shape. 

Numerical method 

The numerical code is the same as described by Orlandi ( 1993), and is here sum
marized briefly. Although the model has the possibility to solve the 20 Navier
Stokes equations in terms of wand Ijl in genera I curvilinear coordinates, it is 
simplified by introducing apolar coordinate system with a clustering of com
putational points near the cylinder. Non-uniform coordinates are mandatory to 
accurately describe the generation and the difTusion of wall vorticity that is the 
leading process of the flow. For the same reason the vorticity at the cylinder wall 
has been obtained by difTerencing the vorticity definition in the radial direction. 
In this way the vorticity at the wall is connected with the vorticity inside the 
field . The external boundary was located at 4 dipole radii where the condition 
w = 0 was imposed. 

A finite difTerence scheme second order-accurate in space and in time has been 
used to solve the equations. The nonlinear terms have been discretized by the 
Arakawa (1966) scheme that, in the inviscid limit, con serves energy and 
enstrophy. This conservation property ensures not only the stability of the 
calculation but also the correct energy transfer. 

The advancement in time has been obtained by a third-order Runge-Kutta 
scheme which calculates the nonlinear terms explicitly and the viscous terms 
implicitly. The large stability limit (CFL ~ j3) allows a large L1 tand a conse
quent CPU saving. 
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Experimental set-up 

The experimental set-up was the same as that of van Heijst & Flór (1989) and 
only the main features are described. The experiments were carried out in a 
plexiglass tank 90 x 115 x 30 cm, with a working depth of 21 cm, filled with a 
linearly-stratified salt solution. The vertical variation in density was obtained by 
using a two-tank system. In the experiments described here the final density 
profile was linear with the corresponding buoyancy frequency N ~ 1.88 rad s - I. 

The dipole generator consisted of a remote controlled injection mechanism 
which injected the fluid horizontally, at the level of its equilibrium density Ps, 
through a circular orifice submerged in the tank. The fluid was visualized by the 
thymol-blue pH-indicator. After the collapse of the turbulent region and the sub
sequent emergence of the dipolar structure a thin-walled plexiglass cylinder of 
diameter D e was placed in the tank to realize a centred collision between the 
dipole and the cylinder. The positioning of the cylinder was done most carefully 
in order to avoid the generation of internal waves that would disturb the motion 
of the dipole. The evolving flow was then recorded photographically at several 
times by a camera fixed over the centre of the tank. 

In order to get quantitative information about the flow evolution a second set 
of experiments was carried out by adding polystyrene particles of uniform den
sity and injecting the fluid at the level of these particles. Streak photography and 
digital image analysis en ab Ie to reconstruct the velocity field to determine the 
associated distributions of the vorticity and the stream function. 

Results 

Experiments 

When the fluid is pushed out of the orifice it forms a 3D turbulent jet 
(Re'"'- 0(10 3

)) that, being discharged in a stratified fluid, collapses within a time 
of the order of one eddy turnover-time, resuIting in a 2D structure at the level 
of its equilibrium density (van Heijst & Flór ( 1989), Voropayev et al. (1991)). 
The resulting structure is a large-scale dipole, of diameter D D' whose rela
tionship between wand Ijl is nonlinear, possibly of a sinh-like shape (Flór & van 
Heijst (1994)). When the formation process is completed it is argued, from flow 
visualizations , that most of the initial vorticity is concentrated in the dipole and 
only very weak patches are left behind in the wake. The dipole moves along a 
straight trajectory with a constant velocity and, apart from viscous difTusion, the 
structure of the dipole does not change in time. The cylinder was placed after the 
formation of the dipole, when the direction of translation was evident. 

When the dipole is close to the cylinder a thin layer of oppositely signed vor
ticity is generated at the wall. This vorticity difTuses in the field and is entrained 
by the two dipole halves, which advect it far from the cylinder. As aresuIt, layers 
of vorticity are continuously peeled from the surface and this process continues 
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a) 

b) 

c) 

Fig. I. Time evolution of the centred coJlision between a dipole and a circular cylinder, 
D D = 2D c , Re = 500. (a) Experimental results. Numerical results: (b) passive scalars released in 
the dipole (solid lines) and at the cylinder surface (shaded contours), (c) vorticity contour plots 
(solid lines for positive values, dottet for negative values). The distortion of the circular cylinder 
as vi si bie in (b. c) is a graphical artifact. 

even when primary structures have moved from the body. This mechanism has 
been evidenced by putting some fluorescein at the surface ofthe cylinder (Fig. la). 

Thin layers of vorticity are very unstable and tend to roll-up to organize 
themselves into compact patches. Each lobe of the primary dipole couples with 
those patches to form asymmetrie pairs moving along a curved trajeetory. This 
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phenomenon has been observed in all experiments for different values of D c. In 
particular it was observed th at as De decreases the vortex pairs cover a larger 
di stance downstream the cylinder and their trajectories have a smaller radius of 
curvature. These results agree with the numerical simulations by Orlandi (1993) 
who performed simulations with De = 0.03D D' Voropayev et al. (1992) also 
showed, by experimental visualizations, th at it is possible to find a suitable D c 
(with D c ~ D D) such th at at the final stage of the interaction a new dipole with 
a reduced intensity is found beyond the cylinder. This last result has been 
investigated numerically in more detail. 

A fundamental question conceming the dynamics of coherent structures is the 
relationship between the vorticity wand the stream function Ijl . On short time 
scales viscous effects can be neglected and the structure is stationary, in a frame 
co-moving with the vortex. Then the Navier-Stokes equation reduces to 
J( Ol, tP) = 0 with Ol and tP the vorticity and the stream function evaluated in the 
co-moving frame. Provided that the function fis integrable, any Ol = f( tP) 
satisfies J( Ol, tP) = 0, showing that a large class of solutions f are possible. In the 
present work the function f has been evaluated by the velocity field obtained 
from the digitization of the streak photographs. In Fig. 2 scatter plots of Ol and 
tP are shown before (Fig. 2a) and some time after the collision (Fig. 2b). After 
the collision the lobe of the main structure maintains its coherence while the 
vorticity generated at the cylinder organizes to form the second branch in the 
scatter-plot which has a different slope than the original one. The comparison 
between Fig. 2a and 2b provides evidence that after the collision the Ol = f( tP) 
relaxes towards a relationship with a uniform slope which is approximately the 
same slope as that of the original vortex dipole. 
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Fig. 2. Scatter plots of (j) and I/!: (a) before the collision, (b) af ter the collision (only the upper 
half of the domain is considered). 
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Numerical Results 

To simulate the initial condition of experiments with a simple model, the Lamb 
( 1932) solution (w = k 2 1/J) has been modified with the vorticity peaks slightly dis
placed. The displacement of the peaks produces a shift in the positive and 
negative branches of the initial scatter plot resembling the sinh-like w-I/J rela
tionship of Fig. 2a. 

Simulations with different cylinder diameters have shown th at the smaller the 
value of D c the larger is the wall vorticity (since w'" VI / R, where VI is the 
tangential velocity and R = D c/2) (Fig. 3). This high vorticity is confined within 
thin layers and, because of the intense gradients, a large dissipation occurs. As 
a consequence the secondary lobes are not intense Iike the high wall vorticity 
would suggest. The trajectories of the upper main lobe are shown in Fig. 4. As 
expected for large D e they do not present large curvatures, meaning th at the 
positive and negative circulations are of the same order. In contrast, when 
D c ~ D D the secondary lobe has a small circulation and tends to rotate around 
the primary lobe. The trajectory for D e = 0.0 I D D consists of a c10sed loop 
followed by a curve representing a translation of the structure beyond the cylin
der. It means th at for D c below a certain value the dissipation is so st rong th at 
the secondary lobe is not intense enough to migrate with the primary. The 
primary dipole looses part of its vorticity and af ter the interaction a new 
weakened dipole forms beyond the cylinder. 

In the present study attention is focussed on acollision with De = 0.5D D and 
a Reynolds number of 500. The numerical results show the main features of the 
experimental observations and the vorticity contour plots (Fig. Ic) resembIe the 
pictures of the evolving dye concentration (Fig. I a J. 

The main difference between the experiment and the vorticity con tours is the 
large dissipation of filaments of vorticity that survive for a shorter time than 
filaments of dye. This behaviour is characteristic of experiments with markers 
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Fig. 3. Time evolution of the extremal value of the wall vorticity in the upper half plane: 
-- Dc= DD' .... Dc= O.5D D. -- - Dc = O.25D D· 

72 Interaction of dipoles with cylinders 



·O~--~------~-------r------~--~ 
-2 -I o 

X 

Fig. 4. Trajectories ofthe upper primary lobe: --Dc= Dv. --- D c =O.5Dv • 
. . . D c = O.25DfJ. - - - D c = O.03Df) (Orlandi (1992)). - . - D c = O.OIDv . + experiment by 
Homa el al. (1986) D c =O.03DfJ' • present experiment at D c =O.5Dv . 

and is due to the large Schmidt number which, from one side, prevents the 
advection of vorticity and dye to be the same but, on the other hand, allows to 
follow the history of the folding of layers of vorticity. For large-scale structures, 
where the efTects of viscosity are negligible. patterns of dye and patches of vor
ticity be have in the same way. To evidence this behaviour the evolution of 
passive scalars released inside the dipole and at the cylinder surface (Iike the 
experiment of Fig. I a) has been simulated (Fig. I b). A Schmidt number Sc = 10 
has been used. Although for the laboratory experiment the Schmidt number has 
a value Sc,,- O( 103

), the numerical demonstration clearly demonstrated the 
efTect of the reduced difTusivity. Numerical and experimental results show that , 
when the dipole approaches the cylinder, the shear determines the accumulation 
of the scalar on a small part of the cylinder surface. Subsequently the scalar is 
convected in the field . In contrast the vorticity is shed from a larger part of the 
surface, showing th at the difTerence is due to the fact that the vorticity is con
tinuously generated at the wall, while the passive scalar is not. 

The structure of the vorticity inside the new dipoles has not been computed 
for this case but here we refer to results obtained by Orlandi (1993) for a similar 
case. The numerically determined scatter-plots show the same tendency as in the 
experiments: the primary lobe preserves its original relationship while the wall 
vorticity organizes in such a way that it attains a relationship similar to that of 
the primary structure. 

Conclusions 

Laboratory and computer experiments have been performed to investigate the 
dynamics of centred collisions of a dipole against a circular cylinder. In the 
whole range of D e va lues considered, similar features have been observed, i.e. 
when the dipole collides with the cylinder it splits in two lobes and each one 
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couples with the wall vorticity to produce asymmetrie dipoles moving along cur
ved trajectories. The diameter of the cylinder has been seen to play a role in the 
generation of the wall vorticity and in the distance travelled, by the emerging 
pairs, beyond the cylinder. In particular as Deincreases the secondary lobes 
become more pronounced and the trajectories of the newly formed vortices 
become more and more orthogonal to the trajeetory of the primary dipole. In 
contrast for small D e (De = O( 10 - 2) D D) the primary lobes, af ter moving along 
a c10sed loop, couple again beyond the cylinder. These observations are consis
tent with numerical simulations by Orlandi (1993). 

The analysis of the distribution of the vorticity, before and af ter the collision, 
has confirmed th at the primary lobes conserve their original reJationship 
w = f( l/I) while the secondary vorticity becomes concentrated in compact patches 
attaining the same f Passive scalars and vorticity have been seen to be advected 
similarly in the larger structures, but quite differently in the elongated regions 
where the different diffusivities play an important role. 
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V.T. Grinchenko, V.S. Maderich and V.1. Nikishov 

Mixing and Restratification in Stably Stratified Fluids 

Abstract 

The restratification effect on mixing is considered. The model of "blocking" 
collapse of the three-dimensional turbulent vortices explains the mixing 
efficiency dependence on the turbulent Richardson number. The "Iayered struc
ture" mode of the decaying turbulence is identified alongside with known wave 
and vortical modes. It is shown th at restratification can be determined essen
tially by molecular processes. 

Introduction 

Turbulent mixing is a general process of mass and energy transfer in geophysical 
flows. It is known that buoyancy forces result in a restriction of vertical scales 
of vortices in a stably stratified medium. A spatio-temporal intermittency of tur
bulent vortices leads to their collapse. This collapse causes a counter-gradient 
flux of mass th at results in a partial restoring of the undisturbed stratification 
(restratification) and thus decreases the diapycnal transport. 

For these reasons the structure of the collapsed state of turbulence is of con
siderable importance to the mixing process. The aim of this paper is to analyse 
some peculiarities of the dynamics and energetics of the restratification process. 
The results are considered with reference to mixing processes in the ocean. 

The restratification effect on mixing efficiency 

The mixing efficiency is a measure of the fraction of the available kinetic energy 
used to mix fluid . A number of laboratory experiments is known in which mix
ing was produced by a vertically or horizontally moving grid in a tank or in a 
stably stratified flow channel. In these cases the mixing efficiency can be 
described by an integral form of a flux Richardson number Rf = All/AK (Lin
den, 1980). Here All is the layer potential energy increase, AK is the kinetic 
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energy of turbulent vortices available for mixing. The mixing efficiency is 
calculated as 

where Ps, PI are the densities of fluid before and after mixing, respectively, z is 
the vertical coordinate directed upward, D is the height of the layer, U is the 
grid velocity, CD is the drag coefficient of the grid, and L", is the scale of vortices 
mixing the medium. In a first approach th is scale is assumed to be proportional 
to the mesh length M, and the ratio À. = L", IM is considered as a constant. The 
mixing efficiencY' can be computed also by using measurements of the vertical 
buoyancy flux gp/w/IPo as 

where t = xl U, x is the streamwise coordinate, t L = xLI U, and X L is the length 
of work section. 

The dependence of Rf on the influence of buoyancy forces is defined by the 
turbulent Richardson number Rio = M 2 N 2 I U2

• The resuIts of computations of 
Rf( Rio} are shown in Fig. !. Despite the significant data scatter it can be obser
ved th at with small Ri o the mixing efficiency increases with Rio, whereas with 
large Rio it decreases. 

Rf o Linden (1980) 
o Linden (1980) 
• Maderich el al. (1993) 
• Maderich el al. (1993) 
x Barrel , Van Alla (1991) 
• Slillinger el al. (1983) 
" I1sweire el al. (1983) 
o Jaeshelal.(1991) 
v Bril1er (1985) 

Fig. 1. Dependenee of the flux Rich:lrdson number Rf on the turbulent Richardson number Rio 
according to the experiments on turbulence decay. 
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Consider now the physical interpretation of these results. During the 
restratification process the potential energy of a three-dimensional vortex trans
forms into kinetic energy associated with the collapse and with the radiating 
intemal waves. The collapse processes are prevented when vortices are packed 
c10sely enough. Thus, a porti on of the potential energy is seized and is non
available for transformation into kinetic energy. 

Let us evaluate these "blocking" efTects in the case of an initial two-Iayer 
stratification with a density difTerence L1p and buoyancy L1b =gL1p/po, where Po 
is the undisturbed value of the density in the lower layer. For simplicity it is 
assumed that a regular system of spherical turbulent vortices is generated behind 
a moving grid. The distance between their centres is M. In the initial stage of 
evolution the turbulent vortices expand isotropically with time t as 
I/M = (Ut/M)I /2. The buoyancy forces put a limit to the vertical growth of the 
vortex. lts maximal vertical size Inwx is achieved for t = t n when the buoyancy 
forces are balanced by the inertial ones, thus 

I /M -R· - 1/4(N )1 /2 ",ax - 10 I te , (1) 

where Nî = L1b/M . It is assumed that Nlt" ~ 1 by the analogy with the linear 
stratification case (Maderich et al., 1988). We may expect that the picture of 
mixing depends on the ratio Imax/M. 

If I"'{lx ~ M, the process of gravitational collapse of vortices is not developed 
and the final thickness Hf of the mixed layer is Hf/M", À, whereas the mixing 
efficiency 

Rf ", ÀRio (2) 

according to Fig. 1 increases with the growth of Rio . 
When Imax ~ M , the collapse of vortices starts af ter reaching Imax- It ceases 

when the horizontal vortex si ze becomes comparable with M. It is supposed that 
the volume of the vortex, I!wx ~ I v /~, is conserved since as t> te entrainment 
abruptly diminishes so that in first approximation it is negligible. Here I v, IH are 
the vertical and horizontal scales of the vortex, respectively. Then the final thick
~ess of the mixed layer with I H ~ M is Hf/ M ..... Riü 3/4. The efficiency of mixing 
IS 

As can be seen from Fig. 1 this dependence is not contradicted by the 
experimental data for large Rio. 

(3) 

The mechanism of restratification described by (2 )-( 3) afTects the mixing pro
cesses of a large c1ass of the turbulent flows. The results of a number of 
experiments (Linden, 1979; Maderich et al., 1993) also indicate the reduction of 
the mixing efficiency with larger Richardson number Rio. 
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Layered structure dynamics 

The eoexistenee of the internal waves, quasi-horizontal vortiees and layered 
struetures in the eollapsed turbulenee was clearly demonstrated in the 
experiments on turbulenee deeay. A linear analysis of these motions was earried 
out by Pearson and Linden (1983). They showed the existenee of persistent 
viseous motions, whieh were driven by buoyaney forees. A sealing analysis of the 
Boussinesq equations without the dissipative terms was provided by Riley et al. 
(1981) and Lilly (1983). I t was shown th at the veloeity field of eollapsed tur
bulenee ean be deeomposed into internal waves and quasi two-dimensional tur
bulenee. Table I summarizes the sealing amplitudes of time t, pressure p, 
horizontal veloeity V H' vertieal veloeity wand buoyaney b for this isotropie 
sealing, depending on the Froude number F = V H/I vN for large Reynolds num
ber Re= VHI V/V. Here <5 = Iv /lH is the aspeet ratio; Iv, IH are the vertieal and 
horizontal seales of motion, respeetively, and Nis the Väisälä frequeney. 

We extended this sealing to include the layered strueture dynamies that is 
driven by the buoyaney field with amplitude bo and with eonditions of strong 
anisotropy (<5 ~ I) and small Re and F. The results are included in Table I. The 
eorresponding dimensionless Boussinesq system of equations for linearly 
stratified undisturbed fluid is then 

3F2(8V H/8t + V· VV H) = - V HP + 82V H/8z2 + <52V~V H' (4) 

3<52F2(8w/at + V . Vw) = -8p/az + b + <5 2(8 2w/8z2 + <52V~W), (5) 

V H" V H + 8w/8z = 0, (6) 

8b T/8t + 3V · Vb T+ IV = GT(82bT/8;:2 + <52V~bT)' (7) 

abs/at + 3V . Vbs + w = Gs(a2bs/8z2 + <52V~s). (8) 

Table I. Amplitude scales for tlows 

Flows P VH b 11' 

Po 

Turbulence 10 VOl V2 
0 Vo Vo loN2 

( Re ~ I, F ~ I, J - 1 ) 
Waves N - I V;F - I Vg Vg VgN 

(Re ~ I, F <,; I, J - 1 ) 
Vortices IN Viii V2 

H VH VH F 2J V~/ v l 
(Re ~ I, F <,; I, J - 1 ) 

Layered structures \l/~2 N - 2J - 2 It·N 2[j 1~. N2\1 - 1 J[j ItN2v - I J2[j bo 
( Re < I, F <,; I, J <,; 1 ) 
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Here h Tand h s are the temperature and salinity components of the buoyancy 
h=hT+hs , 

XT is the temperature conductivity, Xs is the difTusivity. The parameters ê n ê s 
describe the relation between efTects of difTusion and buoyancy forces, whereas 
3 is a measure of the mixing degree of the collapsing density inhomogeneities. 
The main terms in the equations are underlined. 

In the case of a one-component fluid (êT = ê) and (Re ~ 1, F ~ I, J ~ 1) the 
system of equations (4 )-( 8) can be reduced to a single equation in the auxiliary 
function Q( x, y , =, t) : 

:t~;4 + 3 [J-= (~:~, ~~) + J,= (~:~, ~;) ] - V~Q = ê ~:~, (9) 

where V H ' 1\', h, are expressed in terms of Q by 

1\' = - V~Q, (10) 

Here Je' J,= are Jacobians. The value of the nondimensional parameter ê = 1 
yields the reJation between the vertical and horizontal scales of the most slowly 
decaying mode given by Pearson and Linden (1983). Equation (9) can be useful 
in the modelling of large classes of intrusion-like currents. 

Con si der now the solutions of (9) describing the dynamics of weakly mixed 
(3 ~ 1) isolated axisymmetrical intrusion. The solution of linearized equation (9) 
by the Fourier transform method can be written as 

1 f X Q(r, =, t) = --~ exp(ik 3= - êk~ t) F(k 3) dk 3, 
(2n)- - x 

F(k 3 )= LO<: Qo(m, k 3 )JO(mr)exp ( _:2~r t)mdm, 

where Qo is the Fourier representation of the initial distribution Qo, and 
m2 = k~ + k~. Asymptotics for large tand moderate z gives 1\' '" t - 9/ 2 for 
ê = O( 1), 11' '" t - J J 14 for ê< 1, whereas 1\ ' '" t - 6/5 (Maderich et al., 1988) for a 
strongly mixed patch (3 = O( 1 ), ê ~ 1). Thus the efTects of partial mixing and dif
fusion accelerate the process of restratification. 

Effect of diffusion on layered structure decay 

In this section we consider the evolution of layered structures in a temperature 
and salinity stratified fluid. It is assumed that double-difTusion instability efTects 
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are absent. The linearized system of the equations (4)-(8) can be reduced to a 
single equation for the vertical velocity: 

( II ) 

The solutions are sought of the form 

w = Woexp( al + ik . r) . ( 12) 

The expressions for the decay rates are 

a I = - vk 2 + Y T . n T + )' s . n s + ... , 

a 2 = - XTe + J' T · n T + J'~Y TS · nTn s / vk 2 + .. . , 
a 3= -Xsk 2 + Ys · ns + J'~Y.'>7· ·nTnS/Ve+ . . . , 

where J'r = Pr/(Pr - I) , Ys = Sc/(Sc-I), Yrs = Pr/ (PrSc-1 -I), 
S /(P -IS I N 2 2/ k 4 N 2 2/ k 2 k 2 k 2 k 2 2 k 2 

YST= c r c- J, n T= Tm v , n s = s m v , m = 1+ r =m + 3' 
were found by series expansion in the parameter Re ~ = (N~ + N s ) m 2 /v2 k 6 4, l. 
This inequality characterizes the relation between the inertial and buoyancy 
effects. The first solution represents the viscous decay mechanism and others 
-the diffusion mechanism (thermal conduction and salt diffusion, respectively). 
The decay rates of the last solutions have the minimums defined by the balance 
of buoyancy, viscous and diffusion effects. 

The presence of a salt stratification results in an enhancement of the decay of 
the second solution (a 2) because the collapse effect increases. This effect causes 
the decrease of the perturbation vertical scale and the intensification of the diffu
sion process. Conversely, the decay ra te of the third solution (a3) decreases 
wh en temperature stratification is involved. The small inhomogeneities of the 
temperature disappear due to thermal conduction and the temperature profile is 
quickly restored. However, the collapse of the salt inhomogeneities gives ri se to 
temperature profile perturbations that oppose the collapse ("anticollapse" J. 
Thus, the decay rate of the perturbations described by the third solution is Ie ss 
than th at of the other ones. 

Effect of shear current on layered structure decay 

In the ocean a wide spectrum of shear flows exists, inc\uding quasi-horizontal 
vortices and internal waves. They influence the behaviour of layered structures. 
Some problems of the effects of viscosity and diffusivity on the velocity perturba
tion were studied by Criminale and Cordova (1985 J. In this section it is 
demonstrated that the decay of the velocity and scalar perturbations in the 
presence of shear is different. 
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Evo/ution of ve/ocity 

The linearized equation for the vertical velocity perturbations in a shear flow 
(U = (0, 0, Gz )) can be derived from the Boussinesq system of equations, yield
mg 

(13 ) 

where L 1 = 8jat - X TA, L 2 = a/at - vA , G = const. 
F ollowing Phillips (1966 ) we consider the solution in the next form 

111= W(t)exp[i(k.r-kIGzt)]. ( 14) 

By substitution in (13) we obtain the equation for the amplitude W( t) 

where 

a=m/k. 

A3 = XT k 3/kîG. 

Three parameters (A; , i = 1, 2, 3) defining the evolution of the layered struc
tures are determined by the relations between buoyancy, shear velocity, viscosity 
and sca1ar diffusion. The system of solutions (modes) was found by an 
asymptotic method for the case of a dominant viscosity contribution (A 2 ~ 1): 

where 

W 1 =f1 - 1 exp[4Jdr) +O(A ; I)] , 

W2 =f1 - 2 exp[4J2(r) + O(A ; I )] , 

4Jd r )=Ad f1dr-AIA ; 1 f f1- 2dr, 

4J 2(r)=A 3 f f1dr+AIA ; 1 f f1 - 2dr. 

( 16) 

(17 ) 

The second solution decays more slowly than the first one. Here we have some 
analogy with the non-shear case (Pearson and Linden, 1983). The same solu
tions can be obtained for the perturbation amplitudes of the horizontal com
ponents of the velocity. 
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Evolution of huoyancy 

The equation for the buoyancy perturbation can be derived in a similar manner, 
yielding 

(18 ) 

The buoyancy perturbation h has the same form (14) as lt ·, viz. 

h = B(t) exp[i(k· r - k, Gt.:)]. 

For the amplitude B we have the equation 

Unlike the case of the absence of mean shear, the equation for the amplitude B 
ditTers from the equation for the velocity amplitude. The solutions are 

B, = ti - 2 exp[ <p, (r) + o( A; ' )] 
B2=exp[<P 2(r)+0(A ; ')]. 

(20) 

(21 ) 

The decay rate of the solution B 2 is less than that of B, , as it was with W, and 
W2 • In distinction from the non-shear case the decay rates of the solutions W2 

and B2 are ditTerent. The presence of shear flow implies a new energy exchange 
mechanism between velocity perturbations and basic flow. It causes the above
mentioned ditTerence of the decay of the velocity and scalar perturbations. 

Conclusions 

The present study has produced the following results: 

1. The performed analysis of experimental data and theoretical estimates 
demonstrates th at the restratification is an etTective mechanism th at controls 
diapycnal transport in a stably stratified medium. 
2. Whereas the process of mixing is carried out by turbulent vortices with large 
Reynolds and Peclet numbers, the non-turbulent stage of the mixing process 
(restratification ) is essentially determined by molecular processes. 
3. The presence of salinity stratification causes the enhancement of the decay 
rate of temperature inhomogeneities; however, the lifetime of the salinity 
inhomogeneities increases when the temperature stratification is involved. 
4. The decay ra te of the scalar (temperature, salinity) perturbations is less than 
that of the vertical velocity perturbations in shear flow in comparison to the case 
when the shear is absent. 
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M ichael A. Spa" 

Mixing and Transport in the Mediterranean Salt Tongue 

Abstract 

The influences of time dependent motions on the mixing and transport of salt 
and heat in the Mediterranean salt tongue are considered. Two points of view 
are presented, the first considers salt as a passive tracer which is simply advected 
with the local flow while the second assumes salinity is dynamically active in 
determining the local velocity field and, hence, its own advection. The time 
dependent motion in this case is driven by baroclinic instability of the large scale 
flow. The results indicate that both mixing due to turbulent motions and eddy 
fluxes resulting from baroclinic instability are likely to be important in determin
ing the large scale distribution of salinity in the Mediterranean salt tongue. 

Introduction 

The present study is motivated by recent Eulerian and Lagrangian observations 
near 1000 m in the Mediterranean salt tongue in the eastern North Atlantic. 
These data indicate that the low frequency motion within the salt tongue is 
zonally enhanced, has small meridional scales, and exceeds the mean velocities 
by more than an order of magnitude (Spall et al., 1993). The nature of the obser
ved variability is consistent with two distinct source mechanisms. Wave motions 
found to the south of the salt tongue are believed to be the signature of 
baroclinic Rossby waves generated at the meandering Cape Verde Front to the 
south (Spall , 1992). The low frequency zonal motions found within the salt 
tongue are consistent with the baroclinic instability of the large scale flow (Spall , 
1993 ). 

Turbulent mixing 

The Lagrangian trajectories have been used to estimate the horizontal dif
fusivities in the vicinity of the salt tongue and the relative influences of turbulent 
mixing and mean advection on the dispersion of water parcels. The theory of 
mixing due to homogeneous, stationary turbulence (Taylor, 1921) is used to 
estimate mixing coefficients. The results indicate that mixing is non-
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homogeneous with the zonally enhanced motions within the core of the salt 
tongue (8- 25xI06 cm 2 s - I) more efTective at mixing than the wave motions 
which dominate the variability to the south of the salt tongue (3-5x 1 06 cm 2 s - 1 ) . 

The mixing is also non-isotropic within the core of the salt tongue due to the 
zonal nature of the variability while the mixing to the south of the salt tongue 
is essentially isotropic. A comparison with mixing coefficients calculated directly 
from the dispersion of the floats gives the same result within 95% confidence 
limits, indicating that the floats are in a random walk regime and th at dispersion 
is weil represented by stationary homogeneous turbulence. 

The relative influence of the time dependent motion on the dispersion of 
passive parcels may be estimated by the ratio of the root mean square displace
ment due to random mixing and the displacement due to the mean advection. 
This ratio is plotted in Figure I as a function of time for the zonal component 
(X) and meridional component (Y) of the wave-like floats (south of the salt 
tongue core) and zonal floats (within the salt tongue core). Because the con
tribution from the mean advection increases linearly with time and the mixing 
dispersion increases as the square root of time, the mean component will even
tually dominate the dispersion. At the level of mixing estimated from the floats , 
however, the time dependent motion is still dominant over the mean after 5 
years. Thus, over the time scale of the observations, the mixing of water parcels 
in the Mediterranean salt tongue is dominated by turbulent mixing. Additional 
data would probably result in weaker mean velocities and an even larger con
tribution due to the time dependent motion. 
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A baroclinic instability mechanism 

Traditional models of the large scale salt balance in the Mediterranean salt 
tongue have been based on the steady advection-diffusion equations. Numerical 
mode Is allow for time dependent motion and an active salinity field but typically 
have either non-eddy resolving or marginally eddy-resolving resolution. While 
these prognostic models incorporate more realistic physics, basin scale computa
tions prohibit extensive explorations of parameter space and local dynamics are 
often dependent on the basin scale circulation, making cause and effect difficult 
to sort out. We present here a simple theory which might account for observed 
characteristics of the low frequency variability within oceanic subtropical gyres, 
and demonstrates how an active salinity field might give rise to fluxes of heat 
and salt which are important in the overall budgets in the region of the salt 
tongue. 

Linear theory 

Linear quasigeostrophic stability theory is a useful starting point to illustrate the 
basic mechanism at work. The t:quations appropriate for non-zonal flows are 
derived from the conservation of quasigeostrophic potential vorticity by making 
use of a simple coordinate transformation (Pedlosky, 1979). The mean velocity 
profile used in the stability analysis is based on the hydrographic data of Saun
ders (1982) appropriate for the large scale flow in the North Atlantic east of the 
Mid-Atlantic ridge and within the core of the salt tongue, approximately 35 N 
to 45 N. The essential features of the mean state are southward flow in the upper 
500 m, a reversal with northward flow bet ween 500 mand 2000 m, and weak 
southward flow between 2000 mand the bottom. The background stratification 
is taken to be exponential. 

The maximum growth rate as a function of the mean flow direction and the 
wave vector direction are shown in Figure 2. This preferentially zonal orienta
tion of the perturbations results from the competition between maximal energy 
release for a wave vector oriented parallel to the mean flow and the beta effect, 
which stabilizes the flow for perturbations across the mean potential vorticity 
gradient (Pedlosky, 1979 j. This demonstrates that, for weak vertical shears typi
cal of subtropical gyre interiors, the stabilizing influence of beta is sufficiently 
st rong that the only perturbations which can efficiently extract energy from the 
mean flow are nearly zonal. This zonal enhancement of the low frequency 
variability is qualitatively consistent with observations found in many regions of 
the subtropical gyres. 

The waves have periods of between 3 and 10 years so that the perturbations 
are essentially stationary during the growth period (0.5 to 1 year). The most 
unstable modes have wavelengths of approximately 75 to 100 km. The depths of 
the maximum and minimum eddy density fluxes may be directly related to the 
basic parameters which define the mean state. F or a vertical velocity profile typi
cal of the Canary Basin at latitudes of the salt tongue, the maximum positive 
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eddy density flux is centered near the core of the Mediterranean salt tongue and 
has a similar vertical scale of 1000 m. This similarity suggests that these eddy 
fluxes might contribute to the offshore flux of salt in this region. 

Nonlinear regime 

Although Iinear theory is very useful for understanding the underlying physics of 
the perturbations, a nonlinear model is required to investigate the large 
amplitude regime and to obtain a quantitative estimate of the salt flux carried 
by these waves. A random superposition of small perturbations between 50 km 
and 300 km wavelength were added to a uniform velocity profile at the center 
of a periodic channel (300 km in length) in a nonlinear primitive equation model 
(SPEM, Haidvogel et al., 1991) and integrated for 700 days. Af ter 250 days the 
initially uniform meridional flow has developed large amplitude zona I jets which 
then become unstable and break down into mesoscale eddies with amplitude 
1-5 cm s - I , close to the observed eddy kinetic energy in this region. 

The zonal density flux on day 400 at the center of the channel is shown in 
Figure 3. The basic structure predicted by the simple linear theory carries over 
into the large amplitude interactive wave regime. There are a variety of scales 
which develop out of the initial conditions, however, the dominant meridional 
wavenumber is on the order of 100 km, in general agreement with linear theory. 
In th is large amplitude regime, there is a significant transfer of energy from the 
low frequency , zonal regime of the growing waves to the more isotropic higher 
frequency mesoscale band as the jets become unstable. It is important to note 
that the mesoscale eddies which result from the instability of the early zonal jets 
do not prohibit the continued westward flux of density due to baroclinic 
instability of the large scale flow. 
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This is demonstrated in Figure 4, which shows the meridionally averaged 
zonal density flux as a function of time. The first 250 days are in the small 
amplitude linear regime, the fluxes are of the correct sign to release potential 
energy of the mean flow into kinetic energy of the growing waves. Af ter 250 days 
the perturbations become large, an order of magnitude larger than the mean 
flow, and break down into meso scale eddies. After the first set of waves have 
become unstable (400 days), the mean state is still unstable and continues to flux 
density to the west in genera I agreement with linear theory. Two more wave 
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cycles of growth and instability take place between days 400 and 700. The final 
cycle is much weaker than those previous because of the potential energy 
represented by the vertical shear in the mean state has essentially all been con
verted to the kinetic energy of the eddy field. Physics which are unresolved in 
the present simple model serve to maintain the observed mean large scale flow 
and provide an energy source for the continued eddy density flux. 

Salt transport 

The previous discussion has been in terms of the eddy density flux, however, as 
salinity makes an important contribution to the density of seawater within the 
salt tongue, these unstable waves also transport salt. An important parameter in 
relating density flux to salt flux is the horizontal density ratio RH' which 
measures the relative influences of temperature and salinity to the zonal horizon
tal density gradient. A value of RH> I indicates that the temperature gradient 
contributes more strongly to the density gradient than salinity. The c1imatologi
cal value of RH within the core of the salt tongue increases from approximately 
1.05 at 15° W to 1.25 at 27° W. The nonlinear primitive equation model was 
integrated using both temperature and salinity with a linear equation of state 
and RH = 1.2. Integrating over the meridional extent of the salt tongue, 
approximately 10° of latitude, the ave rage salt flux carried by these waves would 
be approximately 2x I 0(; m 3 m - 1 ppt. The total anomalous flux of salt through 
the Strait of Gibraltar is estimated to be approximately 1.6 x 106 m 3 s - 1 ppt 
(Bryden and Kinder, 1991 j. 

It is likely th at in the real ocean, which cantains many processes not con
sidered here, the present mechanism will be Ie ss etTective at transporting salt 
than is found in this simple calculation. The main points in th is analysis are that 
the theory is consistent with the observed variability, that the structure of the 
salt transported by the waves is very similar to the observed structure of the salt 
tongue, and th at the waves are capable of transporting an amount of salt which 
may be important in the overall salt budget of the Mediterranean salt tongue. 
It would, of course, be interesting ta investigate this mechanism in the context 
of a more complete ocean model, which includes frontal regions, mesoscale 
eddies, Meddies, external forcing, small scale mixing, and an explicit 
Mediterranean outflow. 
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Georgi Sutyrin 

Nonlinear Rossby Waves and Vortices 

Abstract 

Interaction between planetary waves and vortices are analysed by decomposing 
into vortex and wave flow fields. The longtime evolution of astrong vortex is 
considered by assuming a quasi-stationary distribution of the potential vorticity 
inside the vortex core. The radial structure of the symmetrie circulation in the 
vortex is described providing zero azimuthal velocity at the core boundary. The 
model describes weakening of the vortex, decreasing of its size, shrinking of the 
core and the development of a shielding annulus around the vortex core, 
depending only on the meridional position of the vortex center. The results are 
compared with numerical simulations using a semi-spectral quasigeostrophic 
model. 

Introduction 

Large-scale vortex structures, remaining coherent during many turnaround 
times, have been recognized to be typical in quasi-two-dimensional planetary 
flows. Such intense vortices, e.g. tropical cyclones in the atmosphere, frontal 
rings and lenses in the ocean, the Great Red Spot of Jupiter and other giant 
eddies occurring in the atmospheres of the outer planets, maintain their iden
tities while traveling over distances much larger than their typical size. Thus, 
providing highly anisotropic transport of trapped fluid with different physical 
properties, coherent vortices are of fundamental interest for understanding the 
general atmospheric and oceanic circulations. 

Over the past decade, observational programs, theoretical analyses, numerical 
simulations and laboratory experiments have improved increasingly our under
standing of the structure and dynamics of planetary vortices. The results are 
summarized in books and reviews, e.g. Khain & Sutyrin, 1983; Kamenkovich et 
al. 1986; Flierl, 1987; Korotaev, 1988; McWilliams, 1991 ; Hopfinger & van Heijst , 
1993; Nezlin & Sutyrin, 1994. In particular, substantial progress has been 
made on interaction of intense vortices with highly dispersive Rossby waves 
being generated due to the background gradient of the potential vorticity in 
planetary flows. 

In analytical studies of steadily propagating anticyclones without Rossby 
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wave radiation (Nycander & Sutyrin, 1992) or of the initial acceleration of a 
monopolar vortex on the beta-plane (Sutyrin & Flierl, 1994), a symmetric cir
culation was prescribed. The problem was reduced to calculating the asymmetric 
circulation, the so-called beta-gyres, which modifies the vortex translation. Here 
we consider the nonlinear feedback between the vortex and the generated 
Rossby waves, thus allowing for the description of a change in the symmetric 
vortex structure due to the meridional drift of the vortex centre. 

Decomposition into vortex and wave flows 

We consider a localized vortex on the beta-plane using the equivalent-barotropic 
quasigeostrophic approximation which is a generic model for the quasi-two
dimentional planetary flows. A basic property of an inviscid flow is the material 
conservation of the potential vorticity (PV) in fluid particles. In the absence of 
a flow, PV depends only on the meridional coordinate, y , i.e. there are no c10sed 
isolines of PV. If a fluid perturbation of PV is st rong enough, an area with 
c10sed isolines of PV exists. This area is considered to be a vortex core where 
Rossby waves propagating along the PV isolines are trapped. 

To describe an interaction between the vortex and the Rossby waves we 
decompose the velocity into the vortex flow, V = k x VIP, corresponding to PV 
inside the vortex core, Q, and the wave flow field , w = k x V4J , induced by the PV 
perturbation outside the core, ç. Thus, inside the core the wave streamfunction, 
4J , obeys V24J - 4J = 0, while the evolution of Q is described as follows 

aQ _ 
- + V· VQ= -w* · VQ at ' 

v2 'P - 'P = Q - Yo - r sin B. 

( 1 ) 

(2) 

Here polar coordinates (r, B) moving with the vortex center are used, w* = w - ë 
is the wave velocity relative to the vortex center, defined as an extremum of PV, 
ë = Vo + Wo is the drift velocity and Yo = S c)' dt is the meridional displacement of 
the vortex center. In the nondimensional Eqs. (1 )-(2), the radius of deformation 
and the Rossby wave speed are used as spatial and velocity scales, respectively. 

Outside the core V 2 'P - 'P = 0, whereas the wave perturbation of PV obeys 

~; + w* . Vç + w· V (r sin B) = - V . V (ç + r sin B) , 

V24J - 4J = ç. 

(3) 

(4) 

This decomposition c1early shows th at outside the core Rossby waves are for
ced by the vortex circulation, whereas inside the core the advection of PV by the 
vortex flow is accompanied by the feedback due to the wave field. 
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Evolution of the symmetrie cireulation 

Now we separate the vortex flow into symmetric and asymmetric parts, denoting 
by < ) the azimuthally averaged values 

lP = < lP) + !/J, Q= <Q) +q. 

Thus, the evolution of the symmetric vortex inside the core obeys 

a< Q) ~ ~ at = - < (v + w * ) . V q) = < J( q, !/J + fjJ * ) ), (5) 

where fjJ* = fjJ + e,r sin f) - cyr cos () describes the flow relative to the vortex cen
ter and J denotes the Jacobian. 

The evolution of the asymmetric vortex circulation inside the core is described 
by 

aq a 
at=-af)[Qq-F(!/J+fjJ*)]+J(q,!/J+fjJ*)-<J(q,!/J+fjJ*), (6) 

a< lP) 
Q=-

rar ' 
a<Q) 

r=-
rar 

Here D is the angular rotational velocity and r is defined from the radial PV 
gradient. 

For astrong vortex with a characteristic rotational frequency Qo ~ 1 there are 
th ree different time scales: the turnaround time ~ Q 0 I ~ I, the typical wave 
time ~ 1 and the vortex evolution time ~ Do. Fast fluid rotation prevents 
growth in the amplitude of the vortex asymmetry and wave flow which remain 
at the order of unity (q, ç ~ I). Unlike a Iinear wave packet, astrong vortex is 
long-Iived since it changes its intensity on the order of unity at the wave time 
scale, which is much smaller than the vortex intensity, Qo (Sutyrin, 1987). 

In order to describe the long-time vortex evolution we introduce the slow 
time, r = tQ 0 I, assuming that the flow does not depend on the fa st turnaround 
time, tDo. Thus, considering the leading order terms, denoted by the capitallet
ters in Eqs. (5 H 6), we conclude that < Q) = < Q) inil and Dq = r(!/J + fjJ*), such 
that using Eq. (2), we obtain 

(V 2 _1) < lP) = <Q)inil- Yo(r) (7) 

(V 2 -I - ~) !/J = ~ fjJ* - r sin f) (8) 

Eqs. (7 )-( 8) allow for an explicit expression of the vortex flow through the 
meridional displacement Yo and fjJ* in the core by taking into account the 
assumption of no PV perturbation outside the core and provided the core 
boundary is known. 

According to Eq. (7), the radial profile of the symmetric PV inside the core 
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changes independentlyon the radius due to the appears meridional displace
ment. As aresuit, the jump in the symmetric PV appears at the co re boundary. 
Such an annulus with opposite radial PV gradient may lead to instability and 
to the appearance of a tripolar structure as shown in recent numerical simula
tions by Hesthaven et al. (1993). Rotating and oscillating satellites produce 
increased mixing and smoothing of PV near the core boundary. 

In the leading order expansion we neglect this effect on the symmetric circula
tion and write the solution of Eq. (7) inside the core , < 'e 

(9) 

Outside the core < '1' ) = F( Yo, ' e ) Ko(') ' where 

(10) 

Thus, the symmetric circulation depends only on the meridional position, Yo, 
and the core radius, " 

VII = - Y 0 ' eK I (, e) I I (,) + Kl (,) ( 10 (,' ) < Q ) init" d,' 

-Id') ( Ko(") <Q ) init,'dr' 
r 

, <'e (11 ) 

To satisfy Eq. (3) outside the core, the azimuthal velocity of the vortex must be 
zero in the leading order. This approximation has been used by Korotaev (1988) 
to describe the near stationary wave field outside the core and the associated 
vortex translation in the next order. Here we use the assumption VOc = 0 at the 
core boundary for estimating the core radius by setting F = 0 in Eq. ( 10). Such 
an approach allows for a description of the long-time evolution of the symmetric 
vortex structure during its meridional displacement, Yo. 

Calculations of the core radius, ' t"' the radius of maximum azimuthal velocity, 
'111 ' and the corresponding value of VIIlIl for an initially Gaussian vortex with 
Qinit = (6 - 2,2) exp( _,2/2) are presented in the table below (the initial core 
radius is defined by r{'e) =0) : 

Yo r ,. r", VOm 

0.0 2.21 1.00 1.20 
1.8 1.68 0.77 0.83 
3.0 1.25 0.64 0.56 
4.0 0.97 0.51 0.35 
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It shows that this simple model for the slow evolution of the symmetric cir
culation in the leading order displays such essential features as shrinking of the 
core, weakening of the vortex and decreasing of its size while the meridional dis
placement increases. 

Semi-spectra I model 

To compare the results with the two-dimensional solution of the initial value 
problem we use a semi-spectral numerical model based on a decomposition of 
the flow field into azimuthal modes (Sutyrin, 1989), 

M M 

ç = L çll/(r, Ij e - lI
l/

lI
, <IJ = L <lJ1I/(r, I) e - tmll

. 

- M - M 

Generally the translation of the vortex center, defined as the extremum of PV, 
is caused only by the flow with m = I : 

r2 re x.. 
c,+lc,=;K2 (r .. )-I-l! K1(r)q1rdr-1f Kdr)ç,rdr. (\2) 

_ U ~ 

Here the first two terms describe the westward drift produced by the PV pertur
bation (the last term on the left-hand side of Eq. (8)) resulting from axisym
metrization of PV inside the vortex core. The next term arises due to the distor
ti on of the vortex shape inside the core as it was considered by Sutyrin & Flierl 
( 1994) for a vortex with piece-wise constant PV. The last term describes the 
translational feedback from the wave flow outside the vortex core. 

The generation of the wave field outside the core is described by Eq. (3), 

a- a 
a~ = -Q ae (ç + r sin e) + J(ç, 1/1 + <IJ * ) + J(r sin e, 1/1 + <IJ j. (13) 

By considering the dominant terms in Eq. ( 13 j, the initial development of an 
asymmetric spiral structure outside the core was described by Sutyrin (1987); 

ç = r sin (e - Q I) - r sin B, ç I = lr( et
!}( - I). (14 ) 

This solution allows for explaining the meridional and zonal acceleration of a 
strong vortex during many turnaround times (Qol ~ I). 

The initial value problem was solved numerically for the same example of an 
initially Gaussian vortex as considered above. This vortex is not strong 
( VOm = 1.2) and its trajectory deviates significantly from the theory of azimuthal 
mode m = I perturbation af ter t ~ 2n due to the development of higher 
azimuthal modes and the change in the symmetric circulation. Nevertheless, 
calculations show that results of the semi-spectral model for M = 8 agree well 
with the high resolution (512x256) pseudo-spectral solution obtained by Sutyrin 
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et al. (1994) until t;::::: 40. At this time the vortex decays and becomes essentially 
weaker than the generated wave flow field . 

In this case of a rather weak monopole, a tripolar structure does not appear 
in spite of the initial presence of the annulus with the opposite radial gradient 
of PV. The vortex core gradually shrinks due to leaking of fluid near the 
separatrix in the PV distribution. However, the difference between the maximal 
azimuthal velocity, VII"" as weil as r"" calculated from the semi-spectral model 
and from the simple model , presented in the tab Ie above, does not exceed 10%. 

Conclusion 

Decomposition into vortex and wave flows improves the understanding of their 
interaction. Planetary waves are generated by the vortex flow outside the core 
of c10sed isolines of potential vorticity. They produce a feedback resulting in the 
modification the vortex motion and as weil as its structure. 

For the long-time evolution of astrong vortex the dependence of the sym
metric circulation on the meridional dis placement is described by assuming zero 
azimuthal velocity at the core boundary. The model displays such characteristic 
features as shrinking of the vortex core, weakening of the vortex, decreasing size 
and developing of an annulus with opposite radial gradient of potential vorticity 
at the core boundary. 

Numerical solutions using a semi-spectral model with only a few azimuthal 
modes agree weil with the results of pseudo-spectral calculations with high 
resolution in two dimensions. Even for a rather weak initial vortex, the simple 
model of symmetric circulation is capable of reproducing weil the vortex decay 
depending on the meridional displacement. 
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W.T.M. Verkley 

A Contour Dynamics Approach to Large-Scale Atmospheric Flow I 

Abstract 

A simple model of the large-scale atmospheric circulation is studied. The model 
is based on the observation that the potential vorticity changes rapidly at the 
tropopause. We idealize the potential vorticity distribution on an isentropic sur
face (cutting through the tropopause) by taking it to be piecewise uniform with 
a discontinuity at the tropopause. If it is assumed th at the time evolution of the 
atmosphere can be described by the equivalent barotropic vorticity equation, a 
dynamical system is obtained which can be formulated entirely in terms of the 
discontinuity. We first discuss a zonally symmetric flow to demonstrate th at the 
model leads to quite realistic zonal velocity profiles. We then consider 
infinitesimal-amplitude (Iinear) waves superimposed on the basic zonal flow. ft 
is found that these waves are neutral and move westward with respect to the 
basic zonal flow like Rossby-Haurwitz waves on a solid-body background flow. 
Using a numerical iteration procedure we also construct families of finite
amplitude (nonlinear) waves. The possible use of stationary waves of th is kind 
as models for atmospheric blocking is discussed. 

Introduction 

The tropopause, the boundary between troposphere and stratosphere. is tradi
tionally defined as the surface where the vertical gradient of potential tem
perature undergoes a large, discontinuous, change. ft has been stressed by 
Shapiro (1980) that also the potential vorticity undergoes a large change at the 
tropopause. In fact he proposes to replace the traditional thermodynamic defini
tion of the tropopause by Reed's ( 1955) dynamic definition in which the 
tropopause is identified with a surface of constant potential vorticity with a 
value in the range of rapid change. The fact that stratospheric va lues of potential 
vorticity are indeed much larger than tropospheric ones is iIIustrated by Fig. Ia. 
This figure shows a meridional cross-section through the atmosphere at the 45° 
east meridian. The dashed lines are isolines of potential temperature, the solid 

I This contribution is an extended summary or the author's paper 'Tropopause dynamics and 
planetary waves', which will be published in the Journalor the Atmospheric Sciences. 
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Fig. 1. (a) Meridional cross-section of the atmosphere at the 45° east meridian at January 27 
1987,12.00 GMT. Solid curves are isolines ofpotential vorticity in units of 1O-6 m2 s- 1 Kkg- I 

(pvv), dashed curves are isolines of potential temperature in K. The contour interval for potential 
vorticity is 1 PVV, the contour interval for potential temperature is 10 K. The region where poten
tial vorticity is negative is shaded. (b) The same meridional cross-section but now with zonal 
velocity (in ms -I) and potential temperature (in K). The contour interval for the zonal velocity 
is 10 ms - I, the contour interval for potential temperature is 10K. Regions with negative zonal 
velocity are shaded. (c) Isolines of potential vorticlty on the 310 K isentropic surf ace for the same 
date and time as the cross-sections of (a) and (b). The contour interval for the potential vorticity 
is 1 pvv. Figs. la and lb were prepared by dr. P. Berrisford, Fig. Ic by dr. T. Davies, both using 
archived meteorological fields from the European Centre for Medium Range Weather Forecasts 
(ECMWF). 
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lines are isolines of potential vorticity. The tropopause could, in Reed's defini
tion, be placed at the + 2 pvv level in the Northern Hemisphere and at the 
-2 pvv level in the Southern Hemisphere. (For the definition of one unit of 
potential vorticity (pvv) see the caption of Fig. Ia.) The potential vorticity 
involves both the vertical temperature gradient and the absolute vorticity, and 
usually both are involved in any change of its value. As a consequence one also 
finds the maximum velocities (the center of the jet stream) in the neighbourhood 
of the tropopause. This is illustrated by Fig. I b, which shows the same 
meridional cross-section with isolines of potential temperature and zonal 
velocity. 

Due to the large change in potential vorticity at the tropopause, its position 
deternlines, to a large extent, the structure of the potential vorticity distribution 
in the atmosphere. lts position therefore largely determines the state of the 
atmosphere as a consequence of the invertibility principle (assuming balanced 
flow and given the distribution of potential temperature at the ground, see 
Hoskins et al., 1985). In this paper we wish to explore this fact to devise and 
study a simple model of the atmospheric large-scale circulation. Our first 
assumption is that we can limit ourselves to a single surface of constant potential 
temperature (isentropic surface ) at a representative height in the atmosphere 
and such that it intersects the tropopause. Viewed from this perspective the 
tropopause emerges as a small band of closely packed isolines of potential vor
ticity, as illustrated by Fig. Ic. Our next assumption is that the large change at 
the tropopause is indeed the dominant feature of the potential vorticity distribu
tion and that, on the isentropic surface, it can be assumed to be piecewise 
uniform. We then assume that large-scale atmospheric flow is adiabatic and fric
tionless, which means that both potential vorticity and potential temperature are 
conserved following the motion of fluid particles. This implies that the dynamics 
of potential vorticity is given by advection within each isentropic surface. To 
close the system we finally assume that the dynamics of potential vorticity is 
governed by the equivalent barotropic vorticity equation on a rotating sphere. 
Because potential vorticity only changes by advection, the dynamics reduces to 
the dynamics of a single line or contour. For this type of system a new theoreti
cal and numerical technique has been developed recently which is called contour 
dynamics (see the review by Dritschel, 1989). 

The model 

As announced in the Introduction, we will consider the evolution of potential 
vorticity on a single isentropic surface, say the 310 K surface in Fig. 1. It is 
assumed that th is surface does not intersect the earth and that the surface can 
be approximated by a sphere with radius a = 6.371 x 106 m, rotating with the 
earth's angular velocity Q = 7.292 x 10 -5 S -I. Distances will be expressed in 
units a, time in units Q -I, and points r on the sphere will be denoted by their 
geographical coordinates (À, t/J). 
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We assume that the potential vorticity on an isentropic surface can be 
approximated by 

q = , + 1 - Ft/!. (1) 

Here ' is the relative vorticity, given by the vertical component of the curl of v, 
where v is the velocity field. The velocity field has components u and v along the 
unit vectors i and j and is assumed to be nondivergent. Therefore, v can be writ
ten in terms of the stream function t/! , 

v=k x Vt/! , 

where k is a unit vector pointing vertically upwards. This implies that the 
relative vorticity can be written as 

(2 ) 

(3) 

The second contribution to the potential vorticity is the planetary vorticity 1 
which, in the unit Q , can be expressed as 

1=2 sin cp. (4) 

The last contribution to q is the 'stretching term' - Ft/!. This term is an 
approximate way of taking into account the effects of vertical stratification. For 
the factor F in the stretching term we write 

(5) 

where LR is the Rossby radius in units of a. We will take LR = 1/ 10 which 
amounts to a Rossby radius of 637.1 km. (For a discussion of this particular 
choice we refer to the next section.) The fact th at potential vorticity is conserved 
following the fluid motion thus leads to a single c\osed system in terms of the 
potential vorticity q 

aq 
- +v·Vq=O at ' 

This equation is the equivalent barotropic vorticity equation. 

(6) 

Matters are simplified further by assuming that the q-field is piecewise 
uniform. We will thus assume that q has the constant value ql in a region RI 
(around the north pole) and another constant value qo in the rest of the sphere, 
denoted by Ro. The boundary between RI and Ro is assumed to be a single 
c\osed curve B, see Fig. 2. 
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Fig. 2. Schema tic picture (inspired by Fig. Ic) of the idealized potential vorticity distribution on 
an isentropic surface: The potential vorticity q has the constant value ql in the region RI and con
stant value qo in the region Ro . The region RI is to be associated with the stratosphere. the region 
Ro with the troposphere and the boundary B with the tropopause. 

So the potential vorticity q is assumed to be of the form 

It can th en be demonstrated th at the gradient of the stream function (from 
which the velocity follows according to (2)) is given by 

Vf(r) f Vt/I(r) = --2 + (ql - qo) dl'[ D' . T(r; r')] G(r; r') . 
F+ B 

(7) 

(8) 

where dl' is a line element along the boundary Band D' is a unit vector locally 
perpendicular to the boundary and to k and pointing away from RI ' In this 
expression T is a tensor defined by 

T(r; r') == - cos t/J' j'j + sin t/J' sin(À - À') j'j - cos(À - À') j'j. (9) 
cos t/J 

and G is the Green's function of the Helmholtz operator for a sphere, 

G(r; r') = - [4 cosh(rrK)] - I x P~ 1/2 + iK( -cos (}"), ( 10) 

where p~J(x) is a Legendre function with integer order m, realor complex degree 
v and real argument x. The order m of the Legendre function is 0 whereas the 
degree v is given by -1 /2 + iK. The parameter K is related to F by 

(11 ) 

The argument x is -cos ()" where ()" is the angular distance between the points 
rand r' for which we have 

cos ()" = sin t/J sin t/J' + cos t/J cos t/J' cos( À - À'). (12) 

W.T.M. Verkley 105 



It is also possible to derive an analogous expression for the stream function. We 
have 

where V is a scalar defined by 

with 

V(r; r') == G(r; r') - H(r; r'), 

H(r; r') ==~ In sin 2(8" j2). 
4n 

(14 ) 

(15) 

By A I we mean the area of Rl' These expressions give the stream function and 
its gradient (and therefore the velocity ) in terms of the boundary B. The expres
sion for the velocity allows us to determine the evolution of B in terms of B 
itself. Each point of Bis advected by the velocity field at the corresponding point 
and this velocity is determined by the gradient of the planetary vorticity (the 
first term on the right-hand si de of (8)) and a line integral over B (the second 
term on the right-hand side of (8)). This is the essence of what is called contour 
dynamics. 

The material presented in this section is a straightforward application of 
known techniques in contour dynamics to the equivalent barotropic vorticity 
equation on a rotating sphere. Expression (8) was derived by Kimura and 
Okamoto (1987) for the barotropic vorticity equation on a sphere. A new ele
ment, according to the author's knowiedge, is expression (13) for the stream 
function in terms of a line integral. Details of the derivations can be found in 
Verkley (1993). 

Zonal flow 

In order to check whether our model is capable of reproducing flows that resem
bie the global atmospheric circulation, we first discuss the flow resulting from a 
discontinuity in the q-field that coincides with a latitude circle. In other words, 
we first consider the case in which the region R I is separated from the rest of 
the sphere Ro by a boundary B which is given by 

(16 ) 

We note th at although this is a highly idealized case, the corresponding velocity 
profile will serve as a first approximation of the velocity field associated with a 
contour of arbitrary shape. 
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Fig. 3. An example of zonal flow profile, resulting fr om a piecewise uniform potential vorticity 
distribution. The value of rP B is 50° and the value of q 1 - qo is 2.99. The value of qo is O. The 
cusped line is the zonal velocity ij (in ms - I, values below the horizontal axis), the smooth line is 
the nondimensional stream function t/J (multiplied by 1000, values above the horizontal axis). 
Note the sharp maximum of u at the tropopause rP(}.· ) = rPB . 

The velocity and stream function corresponding with a zonal contour can be 
calculated using (8) and (13). We used an alternative (simpIer) way and the 
result of an example is given in Fig. 3. The value of ifJ B is 50° and the value of 
qo is O. For the difTerence in potential vorticity, ql - qo, we have taken the value 
2.99. This value is chosen such that a linear wave with zonal wavenumber 3 is 
stationary for this zonal flow, as will be seen in the next section. The figure shows 
the zonal velocity u (the cusped lines) and the zonal stream function '" (the 
smooth lines) as a function of the latitude ifJ. The numbers bel ow the horizontal 
axes are velocity in ms -I, the numbers above the horizontal axis are nondimen
sional stream function values muItiplied by 1000. The figure shows that the zonal 
velocity u has a sharp maximum at the tropopause. Around its maximum the 
wind is westerly and further away it is weakly easterly. The value of the velocity 
at the tropopause is in this case 63.09 ms - I. It can be shown that the velocity 
at the tropopause depends mainly on the difTerence in potential vorticity 
between troposphere and stratosphere. The velocity at the tropopause is nearly 
independent of the latitude of the tropopause except when the tropopause lies 
close to the north pole. We remark that, in choosing the value of F, we were 
guided by the corresponding zonal velocity profiles. As can be se en from expres
sion (8), the contribution of the Coriolis parameter to the velocity field is inver
sely proportional to F + 2. This means th at if F becomes sm all this contribution 
becomes large. For F = 0, this contribution is so large that it is impossible to 
obtain a zonal flow profile th at behaves realistically at all points on the sphere. 
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The barotropic vorticity equation, i.e., equation (6) without the 'stretching term' 
- Ft/! in the expression for q, would therefore be quite unacceptable as a basis 
for our contour dynamics model of the atmosphere. 

Linear waves 

In this section we consider linear waves, i.e., waves with infinitesimal amplitude 
on the basic zonal flows discussed in the previous boundary B. In the case of 
linear waves on a zonal background the contour B is written as 

4>(2) = 4> B + <54>(2) (17) 

with 

<54>(À) = Re[c exp im(À -cot)] , (18) 

where Re denotes the real part, c is a number with infinitesimally sm all absolute 
value, m is a nonnegative integer and co is the angular velocity of the wave 
propagating along the basic zonal flow. Note that c as weil as co can be complex. 

It can be shown th at wave solutions of the form above can indeed be found. 
It follows th at for positive ql - qo the waves move westward with respect to the 
basic zonal flow. This can be understood qualitatively as follows. Fig. 4 shows, 
in addition to the perturbed contour, the corresponding stream function for 
ql - qo and c equal to 1. eells with positive values are marked with H, cells with 
negative values are marked with L. The arrows give the direction of maximum 
meridional velocity associated with the perturbation stream function. These 
arrows show that the perturbation stream function is such as to induce a 

oo~--------------------------------, 
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90 180 

Fig. 4_ The stream function associated with a linear wave. Both q\ - qo and e are given the value 
1. eells with positive values are marked by H, cells with negative va lues by L. The outer isoline 
of each eell has value ± 0.01, the next isoline denotes a value of ± 0.02 and the third isoline has 
value ± 0.03. The arrows denote the direction of the largest meridional velocity. The figure 
illustrates that the perturbed contour induces a westward phase velocity of the perturbation pat
tem. 
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westward motion of the wave pattern. In fact, the wave propagation mechanism 
encountered here is a specific example of the more general case discussed by 
Hoskins et al. (1985, p. 919). 

Nonlinear waves 

In this section we will investigate whether a system consisting of a single discon
tinuity in potential vorticity supports finite amplitude waves around an average 
zonal flow. We will restrict ourselves to stationary waves, i.e., waves of which the 
contours coincide with an isoline of the corresponding stream function. The 
approach of this issue is numerical and we therefore introduce a discrete label 
i, ranging from I to N, which labels the different points r; by which we represent 
any contour B. We then define the following functional K, 

(19 ) 

where 1/1 av denotes the ave rage value of 1/1 over B, which is defined as 

(20) 

The functional K is nonnegative, and zero if and only if 1/1 is constant along the 
contour, i.e. , if and only if the contour is stationary. If con tours exist for which 
K is indeed zero we might expect to find them from appropriate first guesses by 
an adjustment process in which Kis minimized. This is the basic idea of the 
method. For the minimization we used the routine E04KAF from the NAG For
tran Library, Mark 13, in double precision implementation, which is based on 
a quasi-Newton algorithm. We applied the numerical procedure to obtain 
families of stationary nonlinear waves on the basic zonal contour of which the 
velocity and stream function profiles are given in Fig. 3. We recall that the 
latitude of this basic zonal contour is if> B = 50° and that the value of q 1 - qo is 
chosen such that this contour supports a stationary linear wave with zonal 
wavenumber m = 3. 

We will denote the positions of the k-th member of a family of stationary con
tours by (À.7, if>7), where i runs from 1 to N and the first guess from which each 
member is obtained by (1'7, fIJn. Then the O-th member of the family is the basic 
zonal contour represented by 
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À.?= -7r+ (i-I) (~). 
if>? = if>B' 

(2Ia) 

(2Ib) 
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The first guess for contour (À.:, q,:) is of the form of a linear wave with a small 
but fmite amplitude, i.e., 

1: = -1t+ (i-I) (~). (22a) 

~: = q, B + e cos(m1:), (22b) 
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Fig. 5. (a) Families of stationary nonlinear waves on the basic zonal contour of which the stream 
function and velocity profiles are given in Fig. 3. In (a) we show the con tours with k = 0, 2, 4, ... , 22 
resulting from the numerical procedure described in the text. In (b) a representative member 
(k = 14) is shown. In (c) we show the stream function corresponding with the contour of (b). The 
nondimensional values of the stream function are multiplied by 1000 and the contour interval is 
5. The stream function is calculated on a regular grid of 144 x 72 points using a numerical dis
cretization of expression (13). 
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where e = 2°. We build up a family of contours by using as a first guess for any 
new contour a linear extrapolation of the two previous con tours. For the 
stationary contour (À-;, cP;) the first guess is thus taken to be 

,{k=À-k - 1 + [À- k - I _À- k - 2 ] , 
I I I I 

QJ; = cP; - I + [cP; - I - cP; - 2 ]. 

For the number of points N we take N = m x 30, i.e. , 30 points for each 
wavelength. 

(23a) 

(23b) 

For the basic zonal flow of Fig. 3 and m = 3 we could continue the process of 
finding stationary con tours until k = 22. After this the obtained contours did not 
change appreciably but feil back to their predecessors. The ave rage of the intial 
value of K for these 22 cases was 2.91 x 10 - 10, the ave rage of the fin al value of 
K was 8.63 x 10 - 13. In Fig. Sa we show the con tours for k = 0, 2, 4, ... , 22. In Fig. 
Sb we show the contour for k = 14 from the family in Fig. Sa in isolation. The 
corresponding stream function , calculated by using a numerical discretization of 
(13), is shown in Fig. Sc. We observe th at the isolines of the stream function are 
closely packed around the contour which signifies, of course, that the velocity 
field is sharply peaked at the tropopause. We also note that in the ridges of the 
waves closed cells of the stream function have formed. 
We note that, although the procedure has brought us quite far into the realm 
of nonlinear stationary waves, it is quite likely that one can go much further. In 
the con tours shown in Fig. Sa there is a tendency for the con tours to touch upon 
themselves in the vicinity of the throughs, in much the same way as in the study 
of Pratt (1988). This suggests that, if the process were to be continued, a trans
ition might occur in which the solution changes from a single contour into a 
combination of several isolated contours. 

Summary and discussion 

Our main finding is that the contour dynamics approach to large-scale 
atmospheric flow leads to a simple and concise picture of the atmosphere. First 
of all, the assumption of a single line of discontinuity representing the 
tropopause leads to areasonabie zonal flow profile. The velocity field is westerly 
and sharply peaked at the tropopause and falls ofT rapidly and becomes easterly 
away from the tropopause. Zonal flows of this form support linear neutral waves 
which, like Rossby-Haurwitz waves on a solid-body rotation, propagate 
westward with respect to the basic zonal flow. Also in analogy with Rossby
Haurwitz waves there exist families of nonlinear waves, aIthough the form of the 
waves changes if the amplitudes increase. The nonlinear waves are obtained 
numerically using an iterative technique. 

The resuIts reported in the present paper only constitute a first step in the 
analysis of large-scale atmospheric phenomena from the viewpoint of the 
tropopause. In particular, the fini te-amplitude waves we obtain can probably be 
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extended much further into the nonlinear domain. It should also be possible, we 
believe, to construct finite amplitude waves with a localized character in much 
the same way as modon solutions can be found. These waves, if they exist, 
would be an appropriate model of atmospheric blocking. The advantage of such 
a model would be that it quite naturally incorporates the basic finding of Illari 
( 1984) and Crum and Stevens (1988), namely th at in the blocking region the 
potential vorticity is relatively low and uniform. 
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E.C. Neven 

Determination of the Linear Stability of Modons on a Sphere by 
High-Truncation Time Integrations I 

Abstract 

The linear stability of modons on a sphere is determined from the growth of per
turbations on an initial modon basic state. Numerical spectral time-integrations 
are performed for truncations TIO-T43 and a few truncations up to T85. Three 
basic states are studied: a modon with an oscillatory exterior stationary in an 
eastward zonal flow, a modon with a decaying exterior stationary in a westward 
flow, and a Rossby wave. From the behaviour of the globally averaged energy 
and the relative vorticity at a particular point, the real and imaginary part of the 
eigenvalue of the fastest growing normal mode are obtained. Then from two 
stream function plots at different times, the real and imaginary part of this nor
mal mode can be found. The modons and the Rossby wave are unstable: the 
decay time for the Rossby wave is 9 days, for the modons typically 5 days. The 
truncation runs confirm the results by Verkley (1987) who obtained the linear 
normal modes by sol ving the eigenvector problem up to T30. High-truncation 
runs show that the decay time slowly converges with truncation. 

Introduction 

The inviscid, unforced quasi-geostrophic equations possess a class of solutions 
known as modons. Modons are characterized by a multivalued relationship 
between potential vorticity and stream function in a comoving reference frame. 
Modons on the beta plane were introduced by Stem (1975) to describe Gulf 
Stream eddies and modons were put forward as models of atmospheric blocking 
by McWilliams (1980). The solutions have been extended to spherical geometry 
for several systems: dipole modon solutions for the barotropic vorticity equation 
by Verkley (1984, 1987, 1990), for the equivalent barotropic vorticity equation 
by Tribbia (1984), and for the two-layer quasi-geostrophic equations by Neven 
(1993). Quadrupole modon solutions are discussed in Neven (1992). 

The decay of modons is an issue under discussion. On the beta plane, numeri
cal stability analyses using time integrations were performed by Makino et al. 

I This is a summary of the author's paper 'Stability of Modons on a Sphere,' submitted for publi
cation to the Journalof the Atmospheric Sciences. 
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(1981) and McWilliams et al. (1981). On a sphere, the normal modes of the 
linearized barotropic vorticity equation were determined by solving the eigen
value problem for truncations up to T30 (Verkley 1987, 1990). The analytical 
proofs of stability and instability known in literature are still inconclusive 
(Nycander, 1992). 

The aim of this paper is to provide areliabie and accurate determination of 
the stability properties of modons. The linear stability of modons on a sphere is 
determined from the growth of perturbations on an initial modon basic state. 
For three basic state fields , numerical spectral time integrations are performed 
for truncations TlO-T43 and a few truncations up to T85. The results from the 
time-integration method of this paper confirm the results of the eigenvector 
method. The advantage of the time-integration method is that for aspectral 
model on a sphere with truncation TN the memory space required is propor
tional to N 3

, whereas the eigenvector requires N4
. This enables us to investigate 

higher truncations and to determine more accurately the stability properties of 
modons. Investigation of the convergence of eigenvalues in dependence of trun
cation provides an estimate of the accuracy of the results. 

Dynamical equations 

For an inviscid, incompressible , unforced, homogeneneous fluid on a rotating 
sphere the conservation of potential vorticity q is expressed by the barotropic 
vorticity equation 

(I) 

where I/! is the stream function. The velocity is v = k x VI/! with k the unit normal 
vector. With the radius of the earth a = 6.371 x 106 m as the length scale, and the 
inverse of the angular velocity of the rota ting earth Q = 7.292 x 10 - 5 S - I as the 
time scale, in spherical coordinates with longitude ), and latitude 4J, the 
planetary vorticity 1=2 sin 4J and the potential vorticity q = V21/! + f 

A decomposition of the field into a basic state field and a perturbation field 

with 

I/! = f + I/!' 

ij=v 2f +1 
q' = ç = V21/!' 

leads to the linearized barotropic vorticity equation 

a ' 
a~ + J( f , q' ) + J( I/! , , ij) = 0 

(2) 

(3) 

(4) 
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The nonnal mode solutions of (4) can be written as 

with complex fields 

and complex eigenvalue 

1jI'(À, l/J, t) = Re[ç(À, l/J) e"I
] 

Ç(À, l/J, t) = Re[p(À, l/J) e l'l] 

p(À, l/J) = V2ç(À, l/J) 

ç(À, l/J) = çAÀ, l/J) + iç;(À, l/J) 

p( À, l/J) = p, (À, l/J) + ip; (À, l/J) 

Substitution of the fields (5) in the linearized equation (4) gives 

vp + J(IiI, p) + J(ç, ti) = 0 

(5) 

(6) 

(7) 

(8) 

which is an eigenvalue problem with eigenvalue v and the hannonic coefficients 
of the field p(À, l/J) as the components of the eigenvector. The definition of the 
real and imaginary part of the complex fields contains an arbitrary global ph ase 
factor due to the choice of origin of time. The nonnal mode of which the eigen
values have the largest real part determines the stability properties of the 
modon. F or the eigenvalue corresponding to this fastest growing nonnal mode, 
the real part is related to the e-folding time of the mode 

v =, 
T 

and the imaginary part is related to the oscillation time of the mode 

2n 
v ·=

I T 

(9) 

( 10) 

There are three cases. If v, is negative all modes decrease exponentially and the 
stationary modon basic state solution is asymptotically stabie. If v, = 0 the 
modon is neutrally stabie. If v, is positive there is at least one exponentially 
growing mode and the modon is unstable. 

Basic states 

We have investigated three stationary basic states centred at midlatitude 
(Je, l/J) = (270°, 45 °). The Rossby wave is characterized by a single linear q(IjI)
relationship with negative slope in the q( Ijl )-diagram. The wavenumber n = 8 and 
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Fig. 1. The stream function for the stationary basic states (a) A Rossby ~vave with wavenumber 
n = 8 in an eastward zonal flow. The contour interval is 0.006 (b) A wavelike modon with 
wavenumbers K o = 7.78 and K i = 12.28 in an eastward zonal flow. The contour interval is 0.006 
(c) A localized modon with wavenumbers K o = 10 and Ki = 10 in a westward zonal flow. The con
tour interval is 0.004. 
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there is a closed circular streamline at radius 15° from the centre. The modons 
have two regions separated by a boundary circle, and a piecewise linear q( 1/1)
relationship. For the wavelike modon (oscillatory behaviour in both regions ) 
there is a negative slope in the q( 1/1 )-diagram for both regions. We have 
investigated a wavelike modon with wavenumber in the outer region K" = 7.78 
and wavenumber in the inner region Ki = 12.28. For the localized modon 
(exponential decaying behaviour in the outer region ) there is a positive slope in 
the q( 1/1 )-diagram in the outer region, and a negative slope in the inner region. 
We have investigated a localized modon with wavenumber in the outer region 
K o = 10 and wavenumber in the inner region Ki = 10. For both modons the 
radius is approximately 15°. The three basic states are shown in Fig. l. 

Evolution 

The initial basic states were provided on a Gaussian grid. Extended time integra
tions of the linearized barotropic vorticity equation on a sphere using the spec
tral method were performed on the newly installed CRAY-C90 at the ECMWF. 
During the numerical integration, the global perturbation energy tff and the local 
perturbation relative vorticity Cp at a point in the inner region were observed. 
Two series of spectral runs were made: first, for each triangular truncation from 
TlO to T43 the time integration was performed over 256 days with timesteps of 
15 minutes. Second, for the Rossby wave and wavelike modon a T85 run was 
made, whereas for the localized modon a truncation run for every other run 
from T75 to T85 was made. The time integration was performed over 128 days 
with timesteps of 5 minutes. The initial perturbation consisted of noise with 
energy 10 -3 of the basic state. The perturbation field was rescaled to unity when 
its energy exceeded 100 times its initial energy. 

The solution of the eigenvalue problem for a given spectral truncation yields 
a discrete set of eigenvalues. If the existence of a single eigenvalue with largest 
real part is assumed, then there is a single fastest growing normal mode. The 
behaviour of the system af ter some time in a time integration is dominated by 
this fastest growing normal mode. From substitution of (6) and (7) in (5) the 
stream function and relative vorticity are obtained in complex notation 

I/I'( À, 4>, t) = ev,t. (çr(À, 4» cos v;f - Çi(À, 4» sin V;f) 

Ç( À, 4>, t) = e,·,t . (Pr {.À, 4» cos v;l- Pi( À, 4» sin v;f) 

(11 ) 

(12) 

The real part of the eigenvalue of the fastest growing mode v r is determined from 
the evolution of the globally averaged perturbation energy 

(13 ) 
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Fig. 2. The lifetime vs. truncation for (a) the Rossby wave (b) the wavelike modon (c) the 
localized modon. 

After substitution of (11) and (12) in (13) we obtain 

tf(t) = Ae2v
,t (1 + e cos(2v jt + 11)) (14) 

with A, e and 11 constants depending on the initial condition. The contribution 
to the time evolution of tf due to e usually turns out to be small, and the global 
energy follows a nearly exponential curve. Then from an exponential fit over a 
long time series that inc1udes several oscillations the real part of the eigenvalue 
V r and therefore the e-folding time r can be obtained. The lifetime vs. truncation 
of the three basic states is shown in Fig. 2. 

The imaginary part of the eigenvalue of the fastest growing mode Vj is deter
mined from the evolution of the perturbation relative vorticity at a particular 
point p on the sphere from (12) 

(15) 

118 Determination of the Iinear stability of modons 



! 
<P 

270· 360° 

Fig. 3. For the Rossby wave the T38 perturbation stream function . 

If the real part of the eigenvalue v r obtained above is used, the exponential 
growth can be divided out from (15) and the result almost follows a sinusoidal 
curve. From a nonlinear fit over a long time series that includes several oscilla
tions, the imaginary part of the eigenvalue Vi and the oscillation time of the 
mode T can be obtained. 

For the Rossby wave the T38 results are T = 8.89 days and T = 36.8 days, and 
the T85 results are T = 8.62 days and T = 24.6 days. For the wavelike modon the 
T30 results are T = 3.59 days and T = 34.3 days, and the T85 results are 
T = 4.48 days and T = 37.3 days. For the localized modon the T30 results are 
T = 5.86 days and T= 2.12 days, and the T85 results are T = 4.01 days and 
T=4.19 days. 

Normal mode fields 

The normal mode fields ç r (À, 4J) and ç i (À , 4J) are obtained from the stream func
tion fields at two different times ti and t 2 • For each point from the fields 
1/1'1 = 1/1' (À , 4J , ti) and I/I~ = 1/1' (À, 4J, t 2) the real part and the imaginary part can be 
obtained from (11) 

1 - 1',(1 . '-l'r l ' . 1 ç r ()c, 4J) = . . (e sm V J 2 • 1/11 - e - sm V J I • 1/12) 
sm V i (t 2 - tIl 

1 
Çi(À, 4J) = . . (e-'·,IJ cos VJ2 ·1/1'1 -e - .. ,I~ cos VJI .I/I~) 

sm V i (t 2 - tIl 
(16) 

where the real part of the eigenvalue V r and the imaginary part of the eigenvalue 
Vi are obtained as indicated above. This definition is not unique, since there is 
an arbitrary global phase factor related to the choice of origin of time. The 
stream function of the perturbation field at a particular instant in time for the 
Rossby wave is shown in Fig. 3. 

A detail of the stream function for the fastest growing normal mode for the 
wavelike modon is given in Fig. 4, and for the localized modon in Fig. 5. 
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Fig. 4. For the wavelike modon the T30 perturbation stream function (a) the real part with con
tour interval 0.005 (b) the imaginary part with contour interval 0.01. The modulus ofthe perturba
tion re1ative vorticity field integrated over the sphere is normalized to unity. 

The contour plots show that the fastest growing nonnal mode for the modons 
are localized in the inner region of the modon basic state, whereas for the 
Rossby wave the perturbation field is not localized in a particular region. These 
results agree with the comparison of modons with Rossby waves (Verkley, 
1987). They also agree with barotropic instability being generated on gradients 
of potential vorticity. For a Rossby wave there is no concentrated potential vor
ticity in a particular region of the sphere, and nonnal modes in different regions 
of the sphere compete. A modon is characterized by concentrated potential vor
ticity in the inner region, so nonnal modes are likely to develop over the modon: 
a modon attracts a nonnal mode. 

Since for a localized modon the total field is the sum of the dipole basic state 
field and the perturbation field, this suggests that in a nonlinear evolution the 
dipole shifts and tilts. This oscillation is observed if a nonnal mode field, with 
its energy nonnalized to a given fraction of the energy of the basic state field, 
is added to the basic state field. The behaviour of modons in an equivalent 
barotropic model on a beta plane can be modelled by a pair of point vortices 

120 Determination of the linear stability of modons 



t 
lP 

90·-,----- - - ---------------, 

0· +---- ------ -,--- - - ------1 
270· 

À-
360· 

90·-,-------------- - - - -----, 

360" 

Fig. 5. For the localized modon the T38 perturbation stream function (a) the real part with con
tour interval om (b) the imaginary part with contour interval 0.01 . The modulus of the perturba
tion relative vorticity field integrated over the sphere is normalized to unity. 

(Aref, 1980; Hobson, 1991; Matsuoka and Nozaki, 1992). From a feedback 
argument the wobbling of a westward moving localized modon and the tumbl
ing of the eastward wavelike modon in the absence of zonal flow was shown. We 
have shown that the localized modon is a much more rigid oscillator than the 
wavelike modon. During the lifetime of the localized modon the dipole wobbles, 
whereas the wavelike modon develops a tilt and disappears. 

Conclusions 

By performing numerical time integrations in a spectral model with high 
truncation, we have shown that both stationary wavelike and localized modon 
solutions of the barotropic vorticity equation on a sphere are linearly 
unstable. 
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Benoit Cushman-Roisin and M. Tamay Özgökmen 

A New Look at the Role of Eddies in the General Circulation 

Abstract 

It has been thought (at least since Holland, 1978) th at the wind-driven circula
tion creates a reservoir of available potential energy (sloping thermocIine) 
which, via barocIinic instabilities, generates eddies and that these, via a tur
bulent cascade, lead to mechanical dissipation. In other words, the eddy field is 
the unique link between the forced circulation and dissipation. 

Although this paradigm has stimulated abundant numerical simulations and 
yielded countIess publications, it nonetheless suffers from two important 
shortcomings. First, it provides no explanation whatsoever for the amounts and 
properties of the observed water masses (particularly the 18-degree Sargasso Sea 
water or its analogue in other ocean basins called the Subtropical Mode Water). 
Second, it leads to models in which the western boundary current (Gulf Stream) 
separates too far north. The obviously missing ingredient is the thermodynamics, 
alias the buoyancy effects. Indeed, with heat exchanges across the surface and 
within the water, water masses can change their characteristics, new kinds be 
formed, and amounts be adjusted. Further, as Huang (1987) an Chassignet 
( 1991) showed, the amount of water in the upper thermocIine establishes the 
latitude of separation of the western boundary current; less water brings this 
latitude southward. 

As we all know (and engineers are most keenly aware of), heat fluxes 
anywhere are set by temperature differences; they are in response to a state of 
non-equilibrium. And so it is with the ocean. Therefore, theories in which heat 
fluxes are prescribed (Olson, 1985; Luyten & Stommel, 1986) are contrived and 
suspect. They, too, fail to explain the origins and amounts of water masses. As 
a remedy, the P.1. proposed a theory (Cushman-Roisin, 1987) in which the 
magnitude of the heat flux is not specified but instead controlled by the 
inhomogeneities produced by the circulation itself. (We shall call this type of flux 
a self-regulated heat flux.) And, the theory naturally leads to several important 
results. Without incIusion of any eddy dynamics, it allows for a purely inertial 
(i.e., non-dissipative) western boundary current, accounts for surf ace Ekman
pumping input by an equal ra te of formation of deeper waters, explains the 
restoration of wind-modified potential vorticity, and provides a mechanism for 
a recirculation southeast of the western boundary current. 

Obviously, eddies do play a role in circulation dynamics; they are observed, 
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they spontaneously emerge in numerical simulations, and they are ultimately 
necessary for mechanical dissipation. But, the above theory strongly suggests 
that eddying is not the excIusive mechanism that lies bet ween the large-scale 
wind-driven currents and small-scale dissipation. Investigations th at combine 
eddy dynamics and a self-regulated heat flux are cIearly necessary. 

Questions 

The combination of eddy dynamics with heat exchanges immediately brings the 
following questions: What is the energy pathway? And, of what consists the 
recirculation? Indeed, being down the temperature gradient (or, equivalently, 
being of a relaxing type, Cushman-Roisin, 1987), the heat flux is dissipative in 
nature, affecting the amount of potential energy in the stratification; also, by its 
vertical mass flux , cooling generates motions at greater depths, thus affecting the 
distribution of kinetic energy in the vertical. Further, larger near-bottom 
velocities imply greater energy loss to bottom-drag dissipation and a corres
pondingly reduced need for lateral dissipation. Interestingly enough, Weatherly 
(1984) estimated from observations in the western North Atlantic that bottom 
friction can account for the entire dissipation of the wind-energy input and th at 
this dissipation occurs in only about 20% of the areal extent of the subtropical 
gyre. It is therefore cIear that, in the presence of heat fluxes , eddies have a much 
different job to accomplish than in purely wind-driven circulation modeis. 
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Xavier Carton and Catherine Bertrand 

The Influence of Environmental Parameters on Two-Dimensional 
Vortex Merger 

Abstract 

We numerically investigate the influence of several antagonist ic efTects on the 
merger of two identical piecewise-constant 20 vortices. First, on the f-plane, 
barotropic instability opposes vortex decay by breaking to their growth by 
merger. Secondly, on the p-plane, Rossby waves induce vortex dispersion and 
partial interactions. Finally, ageostrophic efTects break the parity between 
cyclones and anticyclones. 

Introduction 

Vortices are central features of transient flows in the ocean where they play a 
key role in heat and momentum transfer, as weil as in 20 free-decay turbulence 
for which they govern the dynamics of the flow (McWilliams, 1984). Merger of 
like-signed vortices can essentially account for their observed growth. It has 
been shown th at a symmetric pair of Rankine vortices undergoes merger if the 
intercentroid di stance d is initia~ less than 3.3 radii R (Melander et al., 1988). 
The result is a vortex of size .j 2R approximately (by conservation of vorticity 
and circulation), surrounded by orbiting filaments (by conservation of angular 
momentum). Vortex growth corresponds to the inverse energy cascade while the 
formation of filaments materializes the direct enstrophy cascade towards the 
small scales, where it is dissipated. 

Some physical efTects are known to influence two-dimensional vortex merger: 
it can be accelerated by difTusion, by the addition of random noise (Caperan and 
Verron, 1988) or by the presence of a free-surface in a rotating-tank experiment 
(Carnevale et al. , 1991). Asymmetry in the initial conditions results in a more 
complex phenomenology than pure merger or rotation (Melander et al. , 1987; 
Yasuda, 1991; Oritschel and Waugh, 1992). 

In the framework of two-dimensional incompressible flows, we present the 
efTects of barotropic instability (section 3), of Rossby wave dispersion (section 4) 
and of ageostrophy (section 5) on the merger of symmetric vortices with 
piecewise-constant potential vorticity. These cases are paradigms of ocean vortex 
dynamics. 
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Physical and numerical mode Is 

Incompressible two-dimensional flows obey the equation of vorticity conserva
tion: 

dq 
dl = 8,q + J(t/t , q) = 0 (I) 

where q is the potential vorticity, t/t the stream function and J a Jacobian. For 
two-dimensional flows on the f-plane (section 3) 

and t/t = p (2) 

where p is the pressure (in a first-order Rossby-number Ro truncation of the 
Navier-Stokes equations). On the p-plane (section 4), the vorticity also contains 
a contribution from the planetary vorticity gradient: 

and t/t=p (3) 

Finally, in section 5, we investigate flows with a larger Rossby number than 0.05 
(as in quasi-geostrophy). The vorticity is then 

q = V 2t/t + Ro(V 2t/t) 2 - 4RoJ(8x t/t, art/t) 

Ro 
t/t = p + 2 (u

2 + v2 
) (4 ) 

This system (I & 4), which we call the generalized vorticity equation, is derived 
from the Navier-Stokes equation by a truncation at second order in Ro (Filatoff, 
1993), and the stream function t/t is similar to a Bernoulli function. In all cases, 
the model conserves energy and potential enstrophy (the area integral of q2). 

Different numerical schemes are used here to solve these equations: 

- for f-plane geostrophic flows, contour surgery is used, discretizing the vorticity 
con tours into nodes which move with the Lagrangian velocity. The flow is 
inviscid and there is formally no dissipation operator; yet af ter topological 
modifications of the large-scale vortices, the surgery procedure discards small
scale debris. 

- Secondly, for f- or p-plane geostrophic flows , a pseudo-spectral method dis
cretizes vorticity (and stream function) on a square grid (of 128 or 256 side 
nodes) and advects it with the Eulerian velocity. A dissipation operator 
D( () = vV4

( th en exists on the right-hand side of equation (1); as v is smalI, 
this pseudo-viscosity dissipates enstrophy only weakly. 

- Finally, the generalized vorticity equation on the f-plane (1 & 4) is discretized 
by finite differences and the nonlinear vorticity-stream function relation (4a) 
is solved by iteration. The resolution is 181 *181 points. Enstrophy accumula
ti on at small scales is also removed by biharmonic viscosity. 
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Initially the vorticity field is composed of two circular patches of piecewise 
constant q amplitude, at a distance d. 

The merger of barotropically unstable vortices 

Firstly, we investigate the effect of barotropic instability on two-dimensional 
vortex merger. The initial conditions are a pair of identical circular vortices with 
non-uniform radial profiles. For each vortex, the vorticity is unity from the cen
ter to radius a (0 < a < 1), and is equal to -q (q > 0) from radius a to unity (the 
vortex shield). The total circulation is: 

When q = q c (a) = a2/( I - a2), the velocity is null out of the vortex and the vor
tex is dubbed "exactly shielded." Most vortices we consider here have a shield 
amplitude q < qc(a). As such vortices may be unstable, we determine the ph ase 
speed Re((J) and the growth rate Im((J) of a normal-mode perturbation with an 
azimuthal wavenumber m from the equation (Poivani, 1988): 

(J2+(J(2mA +m-l)+q(q - l)a2m - (q+ l-m )(2mA +q)=O (5) 

where A = T/2rr. 
On Fig. 1, we plot the curve r = 0 and the boundaries of the unstable regimes 

for m = 2 and m = 3. Note that the unstable region lies inside the boundary for 
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Fig. I. Linear stability curves and nonlinear regime diagram for the merger of barotropically 
unstable vortices. 
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Fig. 2. F our typical regimes observed in shielded vortex merger: a ) merger; b) tripole formation; 
c) dipolar breaking; d) transient quadrupoles. 
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each m. Higher modes are unstable for increasing values of a for a given q. We 
superimpose on this plot a nonlinear regime diagram obtained from a large 
number of numerical experiments (roughly 200) with the pseudo-spectral and 
contour surgery codes. In region A, the narrow and shallow shields only weakly 
influence the merger of shielded vortices. As for unshielded vortices there is a 
critical merger distance de which is observed to increase with a and 1 - q. Vor
tices only marginally interact for d> de' while they merge for d < de. In region 
8, each vortex with a shallow and wide shield transforms into a tripole, under 
the influence of its companion at large distance, and rotates. For smaller initial 
separations, the two vortices assume the well-known figure-eight shape, charac
teristic of a rotating steady state. In region C, the narrow and deep shields ren
der the vortices more sensitive to barotropic instability than in region A. Two 
vortices initially not in contact usually break into dipoles before they can merge, 
or sometimes form a pair of tripoles or quadrupoles. Close vortices merge and 
form a tripole with the coalesced cores and the orbiting remnants of the former 
shields. Finally, in region 0 (which has been less studied), each vortex shield is 
stronger than the core. An inverted merger process results where the peripheries 
merge and the cores are left to rotate around the final vortex. 

On Fig. 2, we present a few evolutions of vorticity with time. Fig. 2a 
corresponds to region A with a = 0.8 , q = 0.2, d = 2.4. A rapid merger ensues 
from the initial proximity of the two vortices. In region A, merger is weil 
correlated with the non-existence of corotating steady-states (Carton, 1992). 
Also, the critical merger distance de is modified by the presence of the shield (we 
recall that de = 3.3R for q = 0 and a = 1.0, with here R = 1). This new distance 
de can here be assessed as follows : if merger is determined initially only be the 
long-range influence of the companion vortex, it thus depends on r. A vortex 
with a narrow and shallow shield can be "seen" at some di stance as an 
unshielded core with unit vorticity, but with a smaller equivalent radius given by 
r = nReq 2. lt can be shown th at the estimate d, = 3.3Req is in good agreement 
with the merger distance found experimentally (the difTerence varies between 2 
and 5, see Carton 1992). Fig. 2b shows the formation of corotating tripoles for 
a = 0.5, q = 0.15 , d = 2.6, as stated for region B. Fig. 2c presents a typical dipolar 
breaking event in region C (a = 0.6, q = 0.8, d = 2.8) under the influence of 
barotropic instability, while on Fig.2d quadrupoles originate in the mode-3 
component of the weak shear exerted by the other vortex (a = 0.6, q = 0.6, 
d = 3.0); here the final state is a pair of dipoles. In fact, stationary quadrupoles 
can form from unstable circular vortices; they possess a nonlinear (q, l/I) relation 
and are long-Iasting multipolar vortices (Carton, 1992; Carnevale and Klooster
ziel, 1994; Morel and Carton, 1994). 

Vortex merger on the JJ-plane 

In this second part, we investigate the conflict between energy concentration by 
geostrophic vortex merger and its dispersion into Rossby waves under the p-efTect. 
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On the p-plane, an isolated cyclone (anticyclone ) drifts to the north-west (south
west) and transfers its energy into a Rossby wave field. In the ocean as in 
numerical experiments, this is a slow rocess as vortex radii are usually much 
smaller than the Rhines scale Lp = 0.5 UIP. For two equal cyclones, we can 
anticipate the effect of p: the western most vortex should drift to the NW but it 
is countered by the velocity induced by its companion; as aresuIt, only the east
ernmost vortex for which the two effects cooperate should be rapidly displaced 
and elongated (Bertrand and Carton, 1993). Two anticyclones would evolve 
similarly. 

Here we numerically study the merger of two cyclones initially at a distance 
d along the x-axis; each one has unit potential vorticity on a disk of radius unity. 
On Fig. 3 we sketch the various nonlinear regimes observed when varying diR 
(R = I) and a scaled P ( = P* L 21 u = 0.05 to 0.1 for usual oceanic values). F or 
low P ( < 0.05), corotation and then merger are observed when increasing diR. 
For larger p, more complex interactions occur: 

- partial merger, where the westernmost vortex tears out and absorbs part of its 
companion, is observed for initially close vortices di R < 3.6 and intense P
effect (P ~ 0.05) . 

- Partial straining-out corresponds to a partial merger without vorticity absorp
tion; it occurs for more distant vortices (dl R ~ 3.6) and a rather strong p-effect 
(P ~ 0.1 ) keeping the vorticity patches distant. 

- An intermediate regime, dubbed differential drift , is located between corotation 
and partial straining-out (diR < 3.6 and 0.05 ~ P ~ 0.1). There, the intensity of 
Pis sufficient to prevent merger, but its effect and the shear induced by the vor
tex partner are too weak to create straining-out, and the vortices drift away. 
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Fig. 3. Nonlinear regime diagram for two-dimensional vortex merger on the j1-plane. 
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Note that the first two behaviors are similar to those encountered in the 
merger of asymmetrie vortices on the f-plane (Dritschel and Waugh, 1992). 

These regimes are quantified by the time evolution of the area integral of 
potential vorticity for each structure. In the absence of nonlinear interaction, this 
integral is conserved. For complete merger, the integral will double for one vor
tex and vanish for the other. F or complete (or partial) straining-out, one 
integral will vanish (or decrease) while the other will not vary. Charts of vor
ticity are presented on Fig. 4: partial straining-out is observed for P = 0.14 and 
diR = 3.7 on Fig.4a, while partial merger occurs for P = 0.06 and diR = 3.3 on 
Fig. 4b. On Fig. 4c, two vortices undergo differential drift for P = 0.08 and 
diR = 3.6 (though the domain periodicity gives a biased representation of the 
phenomenon ). 
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Fig. 4. Three typical regimes of p-merger; a) partial straining-out; b) partial merger; c) differen
tial drift. 
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Finally, the regime boundaries are little modified when the two vortices are 
initially located along the y-axis if they have constant relative vorticity (RVI 

case), while they change noticeably for constant potential vorticity initialization 
(PVI case). The two vortices aligned along the x-axis correspond to a nearly 
mixed PVI-RVI case (as the planetary vorticity gradient across each vortex is 
weak). As the velocity created by one vortex on the other is proportional to its 
circulation, the initial motion is identical in the RVI and in the mixed RVI-PVI 

cases. In the PVI case, the difTerence in circulation between the two vortices is 
proportional to pd. 

Ageostrophic vortex merger 

In this last part, we consider vortex merger when the non-geostrophic terms 
become of finite-amplitude (i.e. for a gradient-wind balance rather than a 
geostrophic balance). The flow is then governed by equations (I & 4) and the 
ageostrophic components create a difTerence between cyclones and anticyclones. 
For a given vorticity (j , anticyclones cannot be found beyond a critical value of 
Ra (here Ra = 0.25 for (j = I ), as the numerical inversion of (4a) fails . 

The two vortices initially have unit radius and potential vorticity. No new 
fini te-amplitude regime is observed when increasing Ra from zero: merger occurs 
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Fig. 5. Regime diagram in the (Ro , di R) plane; the black dots (rectangles ) delimit cyclone merger 
rrom pulsation (pulsation rrom rotation); the open marks correspond to anticyclones. 
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for close enough vortices and increasing the initial distance results in elastic 
interactions. We thus do not present vorticity charts, but a regime diagram in 
the Ro, dj R space (Fig. 5). I t shows the boundaries of the merger, pulsation and 
rotation regimes for cyclones and anticyclones. This map is derived from more 
than 100 numerical experiments. The frontier between corotation and pulsation 
is not easy to determine by sheer visual inspection. In a flow with finite Ro, 
anticyclones merge more easily than cyclones and thus grow more rapidly. This 
result, contrary to the usual expectation that cyclones get stronger at larger Ro, 
is also observed in numerical simulations of two-dimensional turbulence in 
generalized geostrophy (Cushman-Roisin and Tang, 1990). 

Conclusions 

We have investigated here the influence of three antagonistic efTects on two
dimensional vortex merger: barotropic instability, Rossby wave dispersion and 
ageostrophic efTects. The novelty of this study is the richness of the interactions 
and end-products compared to geostrophic vortex merger on the f-plane. Here 
vortex sizes can decrease by dipolar breaking or wave dispersion, many 
fragments or complex vortex aggregates can be formed (such as tripoles or 
quadrupoles); partial interactions stem from conflicting influences; vortices pos
sess intricate trajectories or finally cyclones be have difTerently from anticyclones. 
The efficiency of merger for vortex growth is degraded and a balance between 
vortex coalescence and decay appears which seems closer to geophysical reality. 
To attain complete realism, all these efTects, as weil as baroclinicity (Griffiths 
and Hopfinger, 1987; Verron and Valcke, 1994) and forcing, should be 
evaluated concurrently. 
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J. Verron and S. Valcke 

Scale-Dependent Merging of Baroclinic Vortices 

Abstract 

The influence of stratification on the merging of geostrophic vortices in a two
layer stratified flow is investigated by numerical simulations. The vortices are 
initialized in relative vorticity (RVI) or potential vorticity (PVI) in the upper 
layer. The strong influence of the stratification observed in the RVI case is inter
preted in terms of competitive effects between repulsing hetonÏc interaction and 
attracting barotropic vortex shape influence. 

Introduction 

Vortex merger is seen as a prototype mechanism for the evolution of two-dimen
sional turbulence which gives ri se to long-lived, intense coherent vortices 
(Basdevant et al., 1981; McWilliams, 1984). The barotropic merging process has 
received considerable attention through experimental, theoretical and numerical 
investigations (Brown and Roshko, 1974; Overman and Zabusky, 1982; MeIan
der et al. , 1988). 

The case of rotating stratified fluid is even more complicated and, as yet, little 
is known and a forteriori understood. For the two-Iayer case, Griffiths and Hop
finger (1987) (hereafter GH) observed, in laboratory experiments, that the merg
ing conditions were strongly dependent on the stratification. For the same con
figuration, however, Polvani, Zabusky and Flierl (1989) (hereafter PZF), using 
contour dynamics numerical simulations, found no dependency of the merging 
on the stratification. Verron et al. (1990) showed the importance of initial condi
tions in the merging process and introduced the concepts of "Relative Vorticity 
Initialization" (RVI) and "Potential Vorticity Initialization" (PVI) (see also 
Verron and Va1cke, 1994). 

In this paper, after an introduction to the quasigeostrophic model to be used, 
we present our results in the PVI case and in the RVI case. Then we show how 
the enhanced merging tendency for a selective range of vortex scales can be 
interpreted as a competition between an attracting barotropic shape effect and 
a repulsing "hetonic" interaction. Finally, on the base of observations of real 
eddies, we speculate on the applicability of each initialization scheme. 
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Quasigeostrophic model 

A standard model for the two-Iayer vortex dynamics is provided by the follow
ing quasi-geostrophic set of equations for the potential vorticity Q i (Pedlosky, 
1979): 

( la) 

(lh) 

The subscript I indicates the upper layer, 2 the bottom layer. W i is the relative 
vorticity and t/t i the stream function . The internal Rossby radius À. represents the 
stratification and writes À. = RHj(j2j~) when the two layers are of equal 
depth H. The Coriolis parameter is supposed to be a constant /0' g' measures the 
density jump, iJp, between the two layers such that g' = giJpj p where p is the 
reference mean density. The dissipative terms Vi are needed, in our finite-dif
ference numerical code, to dissipate the enstrophy which tends to accumulate at 
the small scales not resolved by the model. They take the form of a high-order 
viscosity term Vi = - A4 V4Wi· 

Potential Vorticity Initializa tion 

If one considers the upper vortices as equal circular patches of uniform potential 
vorticity Q, i.e. having a profile of the Rankine type (designated Ra), the initial 
conditions for the set of equations (I) may be written as follows: 

(2a) 
k = I. 2 

(2h) 

The summation k = I, 2 on R~ indicates a pair of Rankine vortices. Their radius 
is denoted Rand their initial di stance centre to centre is d. This provides us with 
the so-called Potential Vorticity Initialization (pvi) . 

In this case, PZF found that the critical merging distance, de> which is the 
greater di stance between the vortex centres below which the vortices merge, was 
insensitive to stratification. In our study, however, further consideration of 
viscous effects led us to conclude that the concept of the critical merging dis
tance is sometimes misleading andjor inapplicable. Because of the small numeri
cal viscosity A4 introduced in the model, it was observed that vortices eventually 
merge for all initial separations d. 

Additional simulations with different values of A4 showed that for djR ~ 3.3 
the value of A 4 has little influence on tJ T, the time of merging non-dimen-
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sionalized by the vortex turnover period, T = 2n/Q, which is always Ie ss than 5. 
These mergings are rea I "convective" mergings. For di R ~ 3.6, telT increases 
drastically and is strongly dependent on the value of A4 . On a convective times
cale, the vortices are stabIe and the merging is induced by the viscosity on a 
longer viscous timescale. In these cases, we classified the interaction as non
merging from an inviscid point of view. 

Taking into account the temporal dimension of merging evolution, the critical 
distance of merging can therefore be understood as the boundary between merg
ing and no merging on a convective timescale. However, we have found that in 
practice this distinction is difficult to make. For this reason, we have decided to 
consider the time required for merging, telT , as the relevant vortex interaction 
factor. 

Concerning the influence of the stratification, our simulations showed that, in 
the PVI case, t ,,/T is independent of the stratification. This result is analogous to 
PZF'S conclusion about an independent critical distance of merging. 

Relative Vorticity Initialization 

If we now as su me th at the bottom layer is at rest and th at the initial vortices 
are defined in relative vorticity as two Rankine profiles of radius R in the upper 
layer, the initial flow fields will be 1/1 20 = ° and 1/1\0 given by 

v 21/1 10 = L R~ 
k = \ .2 

Consequently, the initial potential vorticity in the two layers is 

(3a) 

(3b) 

This is the Relative Vorticity Initialization (RVI) as introduced by Verron et al. 
(1990 ). 

Figure 1 shows the Q 10 profiles. These profiles are dependent on the back
ground stratification expressed by À/ R. In particular, we see that as À/ R 
diminishes, the vortex acquires an increasingly pronounced "skirt" shape 
because of the vorticity stretching term, 1/2· À -21/110 ' coupling the two layers. 

In the RVI case, merging was found to be strongly dependent on background 
stratification, as can be seen in Figure 2. It shows the isocurves for the time of 
merging t e/T = 5, 15, 30, 45 and 00 as a function of the initial di stance d/ Rand 
of the stratification parameter À/ R. 
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Three regimes of vortex interaction may be roughly identified. Region 1 
corresponds to where merging occurs on a convective timescale. The interesting 
point is that a marked peak subregion can be identified where merging occurs 
in a much shorter time than is the case for other values of À./R. For example, for 
an initial distance d/R as large as 5.5, and when À./R ~ 1.7, merging can be 
obtained af ter a time telT of around only 15, while it is 3 times longer when 
stratification parameter is À./ R = 3.2. Merging is therefore very much favoured 
for a restricted range of À.j R, between around 1.5 and 3. In Region 2, on the 
other hand, the vortices do not merge and the distance separating them 
increases with time. The merging time, telT, was therefore set at 00 . In Region 
3, the vortices are stabie on a convective timescale. 

The appearance of a peak in Region 1 and of inhibited merging in Region 2 
is an important feature of vortex interaction in the RVI case. Unlike the PVI situa
tion, stratification appears to have a marked influence on merging here. In the 
next sections, we propose an explanation to this phenomenon as a competitive 
process between attracting barotropic shape effect and repulsing hetonic effect. 

Barotropic shape effect 

Let us first assume, in the case of strong stratification, that the dynamica I effect 
of the stretching term is negligible, 

Equations (1) will reduce to 

DQ Dw __ '= _ _ '=0 
Dl Dt 

still assuming the same initial conditions (3). 
Note that the term 1/2· À. - 21/110 ' corresponding to the initial interface defor

mation, is kept in the initial definition of the potential vorticity profile in the two 
layers, but it is assumed to play no further role on the dynamics. The merging 
problem for the upper layer reduces to a purely barotropic problem in which the 
initial profile of vorticity is subject to the above initial conditions (3a). The dis
tinction between relative and potent ia I vorticity has no further significance. Since 
stratification is no longer dynamically present, À./ R is no longer a measure of the 
Rossby radius but it becomes simply an initial vortex shape factor. 

We studied the barotropic merging problem for the upper layer as the initial 
vortex shape varies as in (3a) . The results are presented in Figure 3. In Region 
1, the vortices merge rapidly on a convective timescale and in Region 3, they do 
not, as before. F or each particular value of d/ R, t r/T decreases as À./ R decreases. 
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We may therefore conclude that the more pronounced the "skirt" shape is, the 
greater is the tendency for vortices to merge. This is not really surprising if one 
considers that the influence of the vortices on each other increases as the vor
ticity profile extends from their core. 

The interesting point is th at the isocurves for tj R = 5, 15, 30, 45 in Figures 
2 and 3 coincide with one another almost perfectly for 3.2 < À/ R < 00 and, in 
both cases, the tendency to merge continues to increase strongly. This means 
that, in the RVI case, the pure effect of the shape of the upper-Iayer vortices is 
likely to be the principal reason for the increased tendency to merge when À/ R 
decreases from 00 to about 3, but no significant baroclinic dynamics is subse
quently required. 

Heton interaction 

Let us now consider the two-l<iyer system in the RVI case for small values of À/R. 
In the expression of the RVI initial potential vorticity (3), the stretching term 
À - 21/1 10 is now relatively large. For each vortex initialized in the upper layer, 
there is a corresponding one of opposite sign in the lower layer associated with 
this stretching term. The dynamical effect of these lower-Iayer vortices can no 
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3 

_-------- 45 - -
tcrr=5 -

Ä./R 

o 2 3 4 5 6 7 00 

Fig. 4. Isocurves for t c/T = 5, 45 and 00 as a function of d/ Rand )./ R for tinite-core hetons with 
A 4/QR4 = 2 . 10 - 5 

longer be neglected. The RVI situation becomes equivalent to the initialization of 
two vortices in the upper layer and two vortices of opposite sign in the lower layer. 

This is analogous to an initial configuration of two hetons as described by 
Hogg and Stommel (1985) (hereafter HS). HS originally defined a heton as a pair 
of opposite-sign point vortices in opposite layers. In the present case, the major 
difference is that the vortices have a finite core with specific shape defined by 
equations (3) instead of being point vortices. 

To understand better the concept of hetons, we investigated the interactions 
between two equal finite-core hetons in which all vortices (positive or negative) 
are of the Rankine type and have same intensity. The results of th is particular 
study, shown on Figure 4, are presented with more details in Valcke and Verron 
(1993). 

In Region 1, the vortices merge on a convective timescale, while in Region 3 
they do not. In Region 2, the behaviour of the vortices is typical of a hetonic 
configuration. Initially, each heton is split by the other, but, once the two vor
tices of each heton are horizontally separated, the main coupling occurs across 
the interface between these two vortices of opposite-sign. The hetons begin to 
self-propel in opposite directions. 

The most interesting conc1usion concerns this Region 2: for À.I R < 2 
approximately, the divergence motion of the hetons is strong enough to increase 
the distance between the same-Iayer vortices even wh en diR is such that they 
would normally undergo convective merging. Their tendency to merge is there
fore very much countered. 
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These results lead us to conclude that the divergence behaviour typical of 
Region 2 in the RVI case can be explained by the heton effect. For a weak 
stratification, the dynamical effect of the lower-Iayer vortices inhibits merging of 
the upper-Iayer vortices. 

These considerations lead to the general conclusion that, as far as merging is 
concerned, the RVI behaviour, and in particular the increased tendency to merge 
for 1.5 < 2/ R < 3, is the result of two competing effects, one of attraction and one 
of repu/sion. The attracting effect results from a pure barotropic shape influence 
and tends to promote merging as 2/ R decreases because of the growth of the 
vorticity "skirt". The repulsing effect is caused by a heton-specific type of 
baroclinic interaction which, in a weakly stratified regime, tends to make the 
same-Iayer vortices diverge from each other. The peak area in the curves is the 
result of these competing effects. 

Real vortices 

Relatively little is known about the detailed structure of eddies in the ocean 
which, undoubtedly, have horizontal and vertical structures much more com
plicated than the simple representations discussed above. 

A relevant question is now whether the "reai" eddies have a signature in 
potential vorticity all along the vertical, as in the RVI case, or only at the surface 
(for example only above the thermocline), as in the PVI case. 

It is first almost certain that the laboratories eddies created by GH are not 
totally PVI. In fact, their merging showed astrong dependency on the stratifica
ti on which contradicts PVI results. However, it is not possible to assert that they 
are totally RVI even if their merging behaviour is qualitatively similar to our RVI 

results. 
Observations by Olsen (1980) of Gulf Stream rings show th at the ring can be 

clearly identified by an anomaly in potential density and potential vorticity in 
the area between the surface and about 1500 m. The interesting point here is 
that the velocity field, also clearly stronger above 1500 m, shows a reversal in 
sign bel ow 1000 db. The author suggests that this feature, reminding one of the 
hetonic configuration associated with the RVI, could be common in the Gulf 
Stream cyclonic rings. 

Arhan and Colin de Verdière (1985) presented a detailed analysis of field 
measurements taken during the Tourbillon Experiment in a region of the North 
East Atlantic. The relative vorticity of the eddy observed was of the same sign 
throughout the whole water column but was clearly intensified above the main 
pycnocline (850 m). The eddy potential vorticity seemed to be confined to the 
upper 1000 meters. Based on their findings , one is tempted to suggest th at the 
eddy observed corresponds more to a PVI situation. 

It is difficult, from the above examples, to reach a conclusion on the relevant 
"initialization" for real eddies, especially on their deep structure because of the 
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lack of observations. However, it is likely that the physical mechanisms of eddy 
generation act , not only to induce potential vorticity anomalies above the ther
mocline, but also to alter the deep potential vorticity. Complex interactions may 
therefore results, from which PvI behaviour with regard to merging might be an 
illustrating prototype. 
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O.G. Dritschel*, J . Nycander + and G.G.Sutyrin ° 

A Hamiltonian Approach to the Dynamics of Long, 
Nonlinear Frontal Waves 

Abstract 

A mathematical method is described which can be used to construct dynamical 
equations for the motion of fronts in fluids. It is applied to the I ~-layer rotating 
shallow-water equations to obtain the first order in a long-wave (or narrow
front) expansion for the motion of a front (here, a discontinuity of potential vor
ticity, i.e. of the ratio of the vorticity and the upper-layer fluid depth). 

Introduction 

In a previous paper (Nycander et al. 1993, hereafter 'NDS'), we found that the 
modified Korteweg-deVries (mKdV) equation, 

KI = Y ( K ,ss + ~ K 2
K , ) ( I ) 

with the curvature K(S, t) , a function of arc-length S and time t serving as the 
dependent variabIe, governs the dynamics of a narrow-front in the I ~-layer 
rotating shallow-water system (the " SWE") : 

ul+u . Vu+!exu= -gVh 

hl + V . (hu) = 0 

(2a) 

(2b) 

(u is velocity in the upper layer (the lower layer is infinitely deep and stagnant), 
h is the upper-layer depth, ! is the Coriolis parameter (taken to be a constant), 
and g is the reduced gravity). The constant Y in Eq. ( I) depends essentiallyon 
the value of the uniform potential vorticity ('PV' ) 

W+! 
q=--' - h ' W= V \. -U,. (3) 

on each side of the front. The front is narrow in the sense that variations along 
the front are much weaker than variations across it. 
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In NOS, we determined the constant y in (I) from simple considerations, using 
only the Iinear dispersion relation for long waves on a straight front, as opposed 
to a laborious direct expansion of (I) (Cushman-Roisin et al. 1993; Yoshimori 
1993). It seemed remarkable that one could obtain a fully-nonlinear equation 
just from the linear dispersion relation. 

We now understand why, after coming across some mathematical results for 
the dynamics of 20 curves (Goldstein & Petrich 1991 , 1992, hereafter 'GP'). Star
ting from the two-dimensional Euler equations (the "20EE") 

u,+u.Vu= _p - 1vp 

V·u=O 

(4a) 

(4b) 

(p is the constant density and p is the pressure ) for the special case of piecewise
constant vorticity w, they showed that the mKdV equation is the leading-order, 
nonlinear equation for the dynamics of long waves on vortex patches. More 
significantly, they obtained the mKdV coefficient y from the energy of a straight 
front , that is no explicit consideration of disturbance behaviour was necessary. 

The appearance of the mKdV equation for the SWE suggested a connection. 
We demonstrate this connection below. This is nontrivial since the two equation 
systems, the SWE and the 20EE, are fundamentally different: in the 20EE, the 
instantaneous distribution of vorticity w determines all the dynamical fields , but 
in the SWE there is no such principle, owing to the possibility of gravitational 
oscillations of the fluid depth h. 

Working by analogy 

We next derive (I) by mathematical analogy with the 20EE. For the 20EE, the 
vorticity determines everything, and since the 20EE is a Hamiltonian system (see 
GP) , the dynamics is formally obtained from a functional derivative of the 
Hamiltonian with respect to vorticity. 

(5 ) 

which is in fact equal to - t/J , where t/J( x , y, t) is the stream function (as usual , 
the velocity components are u = - 8t/JNr and v = 8t/J/8x). The Hamiltonian Jt 
is the "excess" energy (the energy minus an infinite constant proportional to the 
total conserved circulation), and it is given by 

(6) 

For a vortex patch. the vorticity is uniform within a region i~, and for definite
ness, we take the bounding contour ce (on which x = (s, t)) to be right-handed 
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and denote Aw as the inward jump in vorticity (Aw = W i - wJ. For the patch 
(see GP), the variational derivative with respect to w goes over to a variational 
derivative with respect to the coordinate locally normal to t:{f: 

c5 I A c5 
- -+ - 0·-
c5w Aw c5r ' 

(7) 

i.e. 0 points inwards (into [JA ). The dynamics of CC-"the front"--is then com
pletely determined by the velocity normal to the front , viz 

vds, t) = _~ (c5:if) = __ 1 ~ (0. c5:if) 
as c5w Aw as c5r 

(8) 

From v 1-, one chooses the as yet arbitrary along-frontal velocity component V II 

to ensure that tand s derivatives commute (this is possible because only V 1-

changes the shape of the front ; see NOS) , 

(9) 

and then from geomelrical considerations (see GP or NOS), the intrinsic dynamics 
is obtained from 

(10) 

The remaining task is to find the dependence of v 1- on K and its arc-Iength 
derivatives. Here, a perturbation procedure is introduced based on the assumed 
smallness of the ratio e of the across-frontal scale and the along-frontal scale; we 
make a long-wave expansion in which K and a/as are O(e). This permits the 
excess energy or Hamiltonian Yf to be expanded as follows : 

Yf =1. ds(a + CK2 + eK 4 + IK ; + ... ). J,t (11 ) 

The leading-order coefficient a can thus be obtained from the excess energy of 
a straight front (K = 0), while the next-order coefficient C can be obtained from 
the excess energy of a large circular front (K,=O). Once this is done (we do it 
for the SWE below), one uses the following results for functional derivatives 

o· ~ 1. ds = K 
c5r 16 

A c5 f 2d 3 o . ~ K S = K + 2Ku 
ur '6 
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to obtain (from (8)) 

1 a 
v 1- = Aw as (aK + C(K

J + 2Ku ) + ... ) 

= A1w (aK., + 2c (K.", + ~ K 2K., ) + ... ) (13 ) 

from which one can show (via (9) and (10)) th at the constant y in (1) is simply 
- ajAw. 

Now we work by analogy to get the corresponding resuIt for the SWE. We take 
the premise that the PV q, like w in the 2DEE, determines everything. Our 
premise, in mathematical terms, is that the frontal dynamics (to some order) can 
be deduced from óff jÓq. Again we consider a vortex patch with interior PV q i 
and exterior PV q,,, and so just as before (cf. (7)) , 

ó I Ó 
- -> - 0· -
Óq Aq Ór ' 

where Aq = q i - q" . The Hamiltonian is the tota l energy, 

(14 ) 

(15 ) 

minus infinite constants proportional to the total mass M on either side of the 
front , i.e. 

(16 ) 

with 

( 17 ) 

(here C ~u =gh i.u ' and hi." =j/qi. ,, are the layer depths far from the front ). 
We need next an expression like (8) for the velocity normal to the front. In 

the SWE there is an additional field , h, which is not directly linked (like the 
pressure p in the 2DEE) to the velocity field . Hence, the analogous form of (8) 
must involve not only v 1- but also il. From (3) and (15), dimensional considera
tions and the requirement that mass be conserved (i.e. dMi.jdt =f ds(llv1-) =0) 
lead to 

/IV 1- = __ I ~ (~o. ÓYf). 
Aq as h Ór 

(18 ) 

Equations (9) & (10) are unchanged for they hold for any 20 curve. 
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Now we consider the long-wave expansion explicitly. The external length 
scales Li. u = ei. j! provide a natural across-frontal scale. The largest of these two 
scales Lu is associated with the deeper fluid , and we assume that KLu and L u8/8s 
are small and of the same order of smallness. The Hamiltonian expands as 

:Yf = l ds(a+hK+eK 2 +dK, + ... ) 
lt 

(19) 

and includes new terms, K and K" not present in the case of the 2DEE (cf. (11)). 
These new terms arise because of the difference in depth h on either side of the 
front. However, neither term contributes to the frontal dynamics because their 
variational derivatives vanish. The leading-order coefficient a can again be 
obtained from the excess energy of a straight front (K = 0), while e can likewise 
be obtained from the excess energy of a large circular front (K" = 0). 

To see how to do this, we take note of the velocity and depth fields associated 
with a straight front. Let y be the coordinate perpendicular to the front (point
ing into ~;) , and u be the velocity component along the front (in the direction 
of increasing s; the across-frontal velocity is of course zero). From (3) (see NDS), 

we have 

ti = ( e - e ) e -IYI ILi." . h = h . + (/1- h ) e- l.r IIL i." v I ' I , U 1, 0 (20) 

where /1 = (h/luJI /2 is the depth of the front. Now, to obtain a, all one has to do 
is insert these fields into (16) (using (15) and (17)), performing only the integra
tion over y . The result is 

(21 ) 

Since to leading-order /1 is a constant, from (18) we have 

V.L = yK, with (22) 

y is the same coefficient that appears in (1) (and, of course, agrees with previous 
analyses). 

Conclusions 

Including more terms in the long-wave expansion is a simple task; results will 
be reported in a paper in preparation. The surprise in this case is that the 
apparently more complicated dynamical equations at higher order re duce again 
to the mKdV equation if one re-positions the front on the curve of maximum 
velocity (this corresponds with the jump in PV only at lowest order). 
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P. Ripa 

Hamiltonian Dynamics, Conservation Laws and 
the Vortex Stability-Instability Problem 

Abstract 

The concept of a Hamiltonian system is described and illustrated with three dif
ferent types of modeIs: shallow water equations with or without horizontal 
inhomogeneities and frontal geostrophic dynamics. Noether's Theorem relates 
symmetries and integrals of motion, and the latter are then used to obtain suf
ficient stability conditions -or necessary instability ones- suitable for the study of 
vortex dynamics. 

Hamiltonian dynamies 

This subject provides a geometrie description of certain dynamical systems, 
thereby rendering some results (Iike the link between symmetries and conserva
tion laws or the existence of extremal integrals of motion) Ie ss mysterious (see 
for in stance Salmon, 1988, and Shepherd, 1990). 

We start by imagining the state of the system at time t as a point ({J in the 
state space E. In practice one has a particular set of fields ({Ja( x, t) X E ~ c IRn 
(e.g. depth and velocity components, for the shallow water equations), but an 
advantage of the Hamiltonian formalism is its manifest covariance under change 
of variables. An important object are the functionals ff: E ~ IR, e.g. 
~ [({J, t] = J F( ({Ja, V ({Ja, .. ; x, 1), where "J" represents an integration over the 
whole domain çz and V is the nabla operator in W. Given any functional ~, the 
co vector D~ [({J] represents its gradient at ({J (in practice, an array of functional 
derivatives), defined such that the first variation of ~ from ({J to ({J + ó({J is given 
by the linear expression óff = D~ . ó({J, where the dot implies an integration in 
f!/ and, probably, its boundary a~ . More precisely 

~ [({J + ó({J, t] = ~ [({J, t] + Dff [({J, t] . ó({J + D2ff [({J, t] . (ó({J, ó({J) + O(Ó({J )3. (1) 

A key ingredient of a Hamiltonian system is the Poisson tensor JJ [({J], used to 
construct the vector JJ . Dff from the the covector Dff. The Poisson bracket of 
two functionals ff & C5 is then defined by 

{ff, C5} := Dff . JJ . DC5. (2) 
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(I will discuss the properties of Jl below. ) The other key ingredient is a particular 
functional : the Hamiltonian ff [ cp, IJ , su eh that the evolution equations take the 
form 

a, cp = Jl [ cp J . D ./{ [ cp, I]. (3) 

The total time derivative of an arbitrary functional of state ff' [cp , t J is then 
given by a,:F + {§ , ff}, i.e. the sum of the local one (keeping cp fixed) plus the 
contribution due to the flow through state space. 

Time is a parameter external to state space. Therefore, the functionals of state 
:F [cp , IJ mayalso be functions of time but the Poisson tensor Jl cannot have an 
explicit dependenee in I (although x and V may appear in its definition) ; { , } 
gives the structure of state space. 

Let us see a few examples, using in all of them polar coordinates x = (r, s), 
more suitable for vortex dynamics, and a uniform Co rio lis parameter f Consider 
first the classical shallow water equations, but allowing for horizontal 
inhomogeneities (Ripa, 1993b). The dynamical fields are the buoyancy 9, the 
layer depth 11, and the radial u and azimuthal u velocity components. The evolu
ti on equations are 

a ,9= - u · V9,aJl= -V·(/zu), 

9,u= -U+X)z x u-Vh+ 1 /zV9, 
(a-d) 

where b := 9/z + u2/2 + u2/2 is the Bernoulli head, X := (a r(ru) - a sU )/ r the relative 
vorticity and z the vertical unit vector. These equations can be derived from the 
following Hamiltonian and Poisson bracket: 

ff [ 9, h, u, u J := 1 f h( u 2 + u2 + 9/z) (4e) 

and 

[
I ó!7 Órl ó!7 Órl Óff ÓrlJ 

{ff,rI}:=f iz V9 . óu ó9- óh V 'óu+q óu ÓU -(ff ~ rI ). ( 4f) 

Indeed, the first variation of (4e) gives D ff [ 9, /z , u, uJ = (h 2/2, b, hu, hu), which 
in (4f) and (3) yields the system (4a - d).' 0 

This Hamiltonian corresponds with the total energy and it is conserved 
because a,ff = O. The potential vorticity q := U + X) /h, satisfies 

a ,q+u·Vq=J(/z, 9) /2h, 

where J(A , B) is the Jacobian r - J(ar A8, B - ar B8, A). 

(5) 

The standard shallow water model belongs to the submanifold of E represen
ted by 9 = constant ( =: g, say), which is consistent with (4a). This equation is 
then no longer needed and the last term on the right hand side of (4c, d) disap
pears. The evolution equations in the reduced state space can be obtained from 
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the same Hamiltonian (4e) and the Poisson bracket (4f) but without the first 
term. Notice that in this case, the right hand side of (5) vanishes, i.e., potential 
vorticity is conserved. The two systems considered so far are the simplest ex am
pies of inhomogeneous and homogeneous layers primitive equations modeis; ILPEM 

& HLPEM for short (Ripa, 1993b). 
Finally consider the frontal geostrophic dynamics (FGD) proposed by 

Cushman-Roisin (1986). For this model it is assumed that the local accelerations 
may be neglected in the slow manifold, i.e. (4c, d) may be approximated by 
(f + X) u = i x Vb. This balance means that u & vare no longer independent 
variables but, rather, functionals of h. To second order in Vh it is indeed found 
th at 

( 

~2 ) ~2 
u=ixV ~h+2fVIz.Vh - f V 2hixVh, (6) 

where ~ :=g/f Finally, upon substitution in (4b), and using V . (Bi x VA) = 
J(A, B) , it is obtained 

t i2 

8/1 = f J(hV 2h + ~ Vh· VIz, hl· (7a) 

This evolution equation may be obtained from the following Hamiltonian and 
Poisson bracket: 

(7b) 

and 

{§,~} := - f (Izlfl J(<5§/<5h, <5~/<5h). (7c) 

In fact, (7b) gives D.Yf[ h] = - ~2( VIz . Vh/2 + hV 2h); using this in (7c) and (3), 
the system (7a) is easily obtained. 0 

Notice that .Yf equals the kinetic energy due to the geostrophic velocity field, 
first term in the right hand side of (6), but that h is changed by the advection 
and divergence of the ageostrophic part. 

So far I have shown that the evolution equations for the three different 
systems can be written in the Hamiltonian form (3), with suitable chosen .Yf and 
JJ, providing a common geometric description of them. (The form (3) is not 
enough to guarantee th at a dynamical system is Hamiltonian: the Poisson tensor 
must a\so have certain genera I properties which I will point out in a short 
while.) 

Of course there is more to Hamiltonian dynamics than equation (3). For 
in stance, any functiona\ JI [ cp, t] may be used to define an infinitesima\ transfor
mation with parameter s, by 

a,cp = -JJ[cp]. DAI[cp, t]. (8) 
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It is more illustrative to work with the effect of the transformation on an 
arbitrary functional ff[<p, t], rather than <po Let R(L1s) denote the operator th at 
performs a jlnite transformation; from (8) it follows (5,.F = - {ff, J/ } L1s and 
therefore Rff = ff - {:F, .H} Lls + { {:F, .it}, .. H} Lls 2 j 2 + O(Lls)J. (If s is the 
azimuth, Iike in the modeIs above, then .11 is the angular momentum and R a 
finite rotation.) 

The operator T( L1 t) for a finite time evolution is similarly found to give 
Tff = ff + (a,# + {ff , #} ) Lll + .. Llt 2 + O(Llt)J. 
Now~ let us combine both operations and ask wh at is the difference between 

making the s-transformation and then letting the time run and vice versa. The 
answer IS 

(RT- TR) ff = - ( { .~, al'4f} + {{#" .H} ,.1f} - {{Y;, ff}, JlI }) 

x Lls Llt + O(L1s, Llt)J. (9) 

This is an appropriate place to point out the properties that the Poisson ten
sor must have in order for (3) to be a Hamiltonian system: antisymmetry and 
Jacobi identity, i.e. 

{ {.F,~} = - {~, .~} 

JI {ff, {~, J'}} + {~, {f,.F}} + {.J', {.F,~}} =0 
( 10) 

for any pair or triad of admissihle functionals of state (sufficiently smooth and 
satisfying appropriate boundary conditions ). All the Poisson tensors mentioned 
above satisfy these conditions (see Ripa, 1993b). 

By using the antisymmetry in the right hand side of (9) we get 
{{#', .II}, ff} - {{.F, ff}, . II} = {.II, {5, j(}} + {ff, {.It,.F}}, which by 
the Jacobi identity is then equal to -{.F, {ff, . I/}}. Using this in (9) it is then 
found 

( R T - T R ) .F = - { ff, a,.If + {. 11. ff} } Ll s Ll t + O( Ll s, L1 t ) 3. (11 ) 

A symmetry is a statement in the sense that it is equivalent to let the time run 
and then make the transformation R(Lls) than vice versa, (RT - TR) .F == 0 
VL1s, L1t, #, i.e. the dynamics is invariant under the transformation R. In such a 
case, does (11) imply a,.I1 + {<H, ff} = 0 (i.e. th at .If is an integral of motion)? 

In order to answer this question we need to solve ({.F, 2"} = 0 V.F) for fr, 
i.e. to investigate the general solution of J . D2" = O. For a canonical system J is 
represented by a constant non-singular matrix and therefore J . Dfr = 0 implies 
th at 2" does not depend on <p , i.e., it is but a number (or a function of time). 
However, for the three examples discussed above, the operator J is sin gul ar, in 
the sen se th at there are non-trivial solutions of J . D:!L = O. 

Recall th at J does not depend explicitlyon time, so we define a Casimir as a 
non-trivial solution of 
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in which t does not appear explicitly. (Notice that the Casimirs are a property 
of the Poisson bracket, i.e. of the geometrical structure of E, independent of the 
Hamiltonian.) The general solution of j . D:!l' = 0, called a distinguished func
tional, is but a function of the Casimirs and time. 

If R represents a symmetry, RT= TR, then (11) implies that a/ A + {A,.#' } 
is, at most, equal to a distinguished functional. However redefining A by sub
tracting from it the time integral of this functional , the infinitesimal transforma
tion (8) is not altered and the redefined functional is conserved. In sum 

(13 ) 

where . #' = .1'1 up to the addition of an appropriate distinguished functional. 
This is Noether's Theorem for singular Hamiltonian systems. Notice that for its 
derivation one needs to assume neither a,. 1/1 = 0 nor a,f = 0 (i.e . the 
Hamiltonian may not be conserved) . 

F or the shallow water equations represented by (4) the angular momentum 
and the Casimirs are given by 

.11 = f hrv + hfr2/2, CC = f h(A(S) + qB( S)), (14) 

where A( ) & B( ) are arbitrary. At the hypersurface S = g the latter is essentially 
Jh or Jhq ; however, if the state is restricted to this submanifold (S = g & JS = 0) 
then there are more Casimirs, namely «j = JhF(q) with arbitrary F( ). 

For the FGD model, on the other hand, the angular momentum and the 
Casimirs are given by 

.11 = f lifr 2/2, (6 = f C(h) , (15 ) 

where C( ) is arbitrary. The leading term of Jhrv in (14) vanishes here (because 
ofgeostrophy) and JhF(q) becomes JC(h) because in the region ofvalidity of FGD 

the potential vorticity is lf/h. 
Notice that the potential energy Jgh 2/2 is but a Casimir, which could be added 

to the Hamiltonian (7b), without any change in the evolution equations. Indeed, 
any Casimir -with the appropriate units- can be added to :Yf or .I/ without any 
change in equations (3) and (8). 

Lyapunov stability 

Let the basic state cp be some exact solution of (3) and let us study the free 
evolution of a perturbation from it, J<p = <p - CP. Stability of cP represents some 
statement on the inability of J<p to grow. The weakest definition is that of nor
mal modes stability, in which it is assumed that the linearized perturbation has 
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a coherent evolution ror all x E @. The strongest concept corresponds to nonlinear 
stability, for which some measure IIJ<p11 is always bounded by a multiple of its 
initial value (this stability depends on the definition of the metric 11 11). 

Somewhere in between is Lyapunov stability, based upon the existence of a 
functional Jl" [<p, t] which (i) is an integral of motion, G,Jl" + {Jl",.Yf'} =0, and 
(ii) has a vanishing first variation from the basic state, DJl"[ <1>, t] = O. This con
dition implies, with (I ), aquadratic restriction on the evolution of the linearized 
perturbation, namely 

( 16) 

Furthermore, (iii) if this second variation is sign definite, th en the basic state is 
Lyapunov (or formally) stabie. This concept is stronger than normal modes 
stability because the perturbation may have arbitrary shape and a time 
dependence not necessarily exponential. However, unlike the finite dimensional 
cases, formal stability does not necessarily imply normed stability. 

It may seem a formidable task to find integrals of motion that satisfy (ii) at 
some basic state. However, here is where the Hamiltonian formalism comes to 
our rescue: If the basic state is steady, ° 1<1> = 0, andjor s-symmetric, al' <1> = 0, 
then equations (3) and (8) imply that JJ[<1>] · D.Yf'[<1>, t] =0 andjor 
JJ[ <1>] . D.II[ <1>, t] = O. Except for some pathological cases, (12) then shows that 
the desired functional J will be Yf andjor , f;/ plus some distinguished func
tional. In the examples above Y( & . /t are not explicit functions of t, and there
fore 

{
.Yf + ((j E: pseudoenergy, 

..J-
. /1 + cr; M: pseudomomentum, 

ifo,<1>=O, 

if 0.,<1> = O . 

This is Arnol'd's method to find the extremal functional Jl"[ <p]. 

( 17) 

Let me now illustrate the construction of these extremal integrals of motion, 
in the case of the FGD, i.e. for h = H + JIJ. If the basic state H is a steady solu
tion of (7a), then it must satisfy 

( 18) 

Let Jl" = Y( + ct E (pseudoenergy): DJl" [ H] = 0 Vx requires de dh)jdh = J1 2 'P(IJ). 
The second variation is then found to be 

Clearly if 'P(H)' > V 2H Vx then the basic state is formally stable. 
Now assume that the basic state is also axial-symmetric, H = H(r); we may 

use Jl" = Yf + ((} E - a( , fl + ((} M) , where a is arbitrary. A positive definite second 
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varia ti on is now guaranteed if 3r:x.1J.1 2'P(H)' > J.1 2V 2H - r:x.fr jH(r)' Vx. Using (18) 
the stability condition can be written in terms of H(r) and its derivatives: 

If 3r:x.1 V ~r) - r:x.r < 0 Vr 
H(r)' 

(20) 

then the basic state is formally sta bie, where 
Vo(r) := (J.1 2jf}(HV 2H)' - (J.1 2jfr)(H' )2. A necessary instability condition is that 
inequality (20) must be violated Vr:x.. [For a parallel basic state H = H(y) , the 
stability condition is (Uo( y ) - r:x.) jfH( y )' > 0 Vy and some r:x., where 
Uo( y ) :=(J.1 2jf}(HH")'.] 

If one uses the second variation of the pseudomomentum alone, then only the 
term proportional to r:x. is obtained: a sufficient stability condition is th at H(r) be 
monotonous. [The same is true for H( y ) in the parallel case.] 

The stability conditions for the shallow water equations with a homogeneous 
layer are two (Ripa, 1991): (V(r) - r:x.r) jQ(r)' > 0 & (V(r) - r:x.r) 2 <gH(r), whereas 
the quasi-geostrophic model (Ripa, 1992a, 1993a) and the FGD one (for which 
Q' '" fH' j H 2

) have only the first one. This is not surprising, because violation 
of the second condition, by some unstable flow , results in growing perturba
tions which are Poincaré-like, and these modes are absent in models of the 
slow manifold. Notice, however, that Vo in (20) is not equal to the azimuthal 
velocity V. 

Conclusions 

Hamiltonian dynamics provides a unified description of diverse modeIs of inter
est in geo-hydrodynamics, represented by evolution equations in the form (3) 
and infinitesimal transformations of the form (8); equations (10) & (12) describe 
the geometry of state space. This representation is manifestly covariant under a 
change of state variables, in the same sense that equation (4), written in vec
torial notation, is coordinate independent. 

Given a steady basic state, it is possible to construct a conserved 
pseudoenergy, f E = Yf + ~ E' quadratic to lowest order in the deviation o({J from 
this state. A conserved pseudomomenturn, f M = vit + ~ M ' is similarly construc
ted given a symmetric basic state. This might seem rather "miraculous": 
Df E = 0 for the ILPEM represents the annihilation of four fields (at every point) 
by means of the choice of two functions of one variabIe. However, this is na 
mirac1e but aresuit from Hamiltonian dynamics. 

Consider the problem linearized in o({J : The original Hamiltonian is not 
appropriate for this problem, in the sense that the first varia ti on of (3) gives 
8(o({J = Jl . oDYf + oJl . DYf and the last term is non-Hamiltonian. However, 
because of (12) f E may be used instead of Yf in (3), and then it is 8 (o({J = 
Jl[ (/J] . oDf E because Df E = 0 by construction. Furthermore oDf E = D.Yt c, 
where Yf c := D 2 f E [ (/J] . (o({J , o({J) is an appropriate Hamiltonian for the 
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linearized problem. Similarly, .1( c:= D2f M [CP] . (Orp, orp) is a momentum. 
Finally .Yf c - oc. ti c is the Hamiltonian in a frame rotating with speed oc relative 
to the j~plane . 

The link bet ween symmetries and conservation laws given by Noether's 
Theorem was found useful in the search for extremal integrals of motion of, but 
th at relationship also represents a formidable limitation on the c1ass of Arnol'd 
stabie states: D 2.f [ CP] . (orp , orp) > 0 Vorp implies that the basic state cP must 
have the same symmetries of whole system (Andrew's Theorem). 

Moreover, this method for the derivation of suflicient stability conditions has 
not had much success in models with more physical breadth, e.g. the ILPEM have 
no stability conditions at all (Ripa, 1993b). However, the condition 
D 2 of [CP] . (orp , orp) = 0 for the unstable manifold may be used to characterize the 
types of instability modes (Ripa, 1992b). On the other hand, the limitations of 
Arnol'd's method may be overcomed by restricting the c1ass of orp in 
D 2of [CP] . (orp, orp) (e.g. see Kloosterziel & Carnevale 1992). 

The most important limitation in using the Hamiltonian formalism is the lack 
of dissipative processes, although some progress has been made in th at sen se 
(e .g. Kaufman 1984 or Morrison 1986). 
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R.C. Kloosterziel + and G.F. Carnevaleo 

Stability of 2-0 Circular Vortices 

Abstract 

The second variation of a linear combination of energy and angular momentum 
is used to investigate the stability of circular vortices. For the simplest model of 
an isolated vortex the linear stability regime is found to coincide with the formal 
stability regime. The method uses Lagrangian displacements of vorticity con
tours and can be applied to vortices consisting of several nested rings of 
piecewise constant vorticity. 

Introduction 

With regard to the stability of planar circular vortices in an ideal, incom
pressible and unbounded fluid, Rayleigh's inflection-point theorem (Drazin & 
Reid, 1981) states that a sufficient condition for Iinear stability is th at the vor
ticity gradient does not change sign anywhere, i.e. no inflection-point in the 
azimuthal velocity profile. Rayleigh's theorem is of little use when one considers 
isolated vortices, i.e. vortices with zero circulation and finite energy. Such vor
tices always have at least one inflection-point, but this does not guarantee 
instability, and the question arises whether in some cases they are actually 
stabie. Linear stability, i.e. stability with respect to vanishingly sm all perturba
tions, can be established with normal-modes analysis, but here, however, a 
method is discussed to establish a stronger form of stability, i.e. formal stability. 
A stationary flow is called formally sta bie if there is a conserved quantity such 
that the first variation of this quantity (i.e. the lowest order change due to 
arbitrary infinitesimal perturbations) is zero while the second variation is sign
definite. In finite dimensional systems formal stability implies nonlinear stability 
whereas in infinite dimensions it is a necessary prerequisite for nonlinear 
stability. 

The present method was developed after it was noted th at Arnol'd's (1966) 
method cannot be applied to isolated vortices. ft is applied here to the simplest 
possible model of an isolated vortex and the single, circular vortex patch 
(Rankine vortex) . Details can be found in Kloosterziel & Carnevale (1992). 
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Variations of conserved quantities 

For an ideal incompressible fluid, the area enclosed by a material curve r is a 
constant of the motion, as weil as the kinetic energy E and angular momentum 
L. The dependence of E and L on the vorticity distribution q(x,y) is 

E = ~ f f qljl dx dy, 
2 ~ 

(I) 

(2) 

where the stream function Ijl is 

IjI(r) = --2
1 f f q(r') loglr - r'l dx' dy'. 
11: ~ 

(3) 

Consider the case of a circular vortex, which is a steady state. In particular, 
the models to which our analysis are most easily applied are circular vortices 
with piecewise constant vorticity, i.e. vortices with (in polar coordinates (r, 0)) 

(O<r<dd, 

(d2<r<d2), 

(dj < r < dj + 1 ), etc. 

At each radial position r = d; the vorticity jumps by 6q; = q;+ 1- q;. The vortex 
is perturbed by slightly deforming the circular vorticity con tours without break
ing or folding them. Energy, angular momentum and area enclosed byeach con
tour are conserved during the subsequent evolution. It appears plausible there
fore that the flow cannot develop towards a radically different state if it can be 
shown that a further growth of the perturbation amplitude would violate a con
servation law. Such is the case if at O(e), with e some measure for the perturba
tion amplitude, energy and angular momentum are unchanged while the second 
order varia ti on of some combination of them is sign-definite, in other words, in 
the case that the particular functional has a maximum/minimum at the station
ary state with respect to area preserving perturbations. 

In order to apply c1assical calculus of variations, one expands all functionals 
involved in a power series in e. First, however, one has to prescribe the perturba
tion. For instance, in polar coordinates a perturbed circular contour could be 
written as d;+eJr;(O), with d; the radius ofthe circle and eJr; the perturbation 
(with IJr;1 at most 0(1)). The index i labels the particular contour under con
sideration here. The change in area is e g71 d;Jr;( 0) dO + ~ e2 g71 Jr;( 0)2 dO, and 
although at 0 ( e) area conservation can be satisfied, it cannot at 0( e2

). A more 
general perturbation is introduced 

r;(O)=d;+eJr;. dO)+~e2Jri.2(O)+ .. " 
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and for given Jr i, I area can now be conserved at orders higher than one also by 
an appropriate choice of the Jr i, m (m = 2,3, ... ). The area enclosed by the 
perturbed circle is 

A(T + JT) = A · 0 + eA · I + -21 e2 A · 2 + 1 1 I, I, I, 

where A i , 0 = nd7 and 

f
2" f2" A 1 = d .Jr . I dO= dA 1(0) 

" I I , I , ' o 0 

f
2" f2" 

Ai,2= (Jr7.l+ diJr i,2)dO= dA i,2(O). 
o 0 

Area conservation means A i, I = A i, 2 = . . . = O. In a similar vein changes in 
st re am function, energy and angular momentum are expanded 

lirst variations 

l/I = l/Io + el/l l + 4 e2
l/12 + 

E=Eo+eEI +!e2E2+ 

L = Lo + eLI + ! e2L2 + 

(4) 

Af ter some calculations (see Kloosterziel & Carnevale, 1992) the following first 
variations are found: 

The unperturbed vortex is a steady flow and therefore the stream function l/I 0 is 
constant on each contour rio It is thus seen that under area preserving perturba
tions, i.e. J dA i, I = 0, the first variations of energy and angular momentum are 
zero. It can be shown more gene rally that the first variation of energy is zero for 
any stationary flow, while for angular momentum it is zero only when the flow 
is circularly symmetric. 

second variations 

For the second variations it is convenient to introduce the variabIe ifJi defined as 
ifJi( 0) = diJri, 1(0). First order area conservation is then equal to J ifJidO = O. Also 
the real inner product on L 2[ 0, 2n] is introduced < /, g> = n" Ig dO, and the 
norm 11 .. . 11 in L 2, i.e. 11I11 = </,1> 1/ 2. If one imposes second order area con-

R.C. Kloosterziel and G.F. Carnevale 163 



servation, one finds , using the notation introduced above, the following expres
sions for the second varia ti ons 

L 2 = -2 L 6q;II4J ;112
, 

" 2vo(d;) 2" " A. E 2 = ~ d 6q; 114J;11 - ~ ~ 6q;6q/ !l' ;.j'P;' 4Jj ) . 
I I I J 

Here Vo is the azimuthal velocity of the unperturbed vortex at the indicated 
radial position and !l' ;.j is an integral operator 

!l' ;. j4J( 0) =! f 21< logldjeill 
- d;e iO'j 4J( O') dO'. 

. rr 0 

It can be shown that the eigenvalues of !l';.j are 

(n = 1, 2, . . ' ), 

with 

and eigenfunctions cos nO and sin nO. 

Rankine vortex 

(5) 

(6) 

(7) 

(8) 

(9) 

The Rankine vortex is a single circular 'patch' of constant vorticity q I' For this 
case the second variation of angular momentum is according to (5) simply 
(there is only one contour r = dd 

f
21< 

L 2 =2ql 0 4J~dO. (10) 

This expression is sign-definite for any perturbation 4J1 (0) = dl ór l . 1(0), and it is 
seen th at the Rankine vortex minimizes angular momentum when q I is positive, 
and is therefore formally stabie. 

Moreover, equation (5) shows that a vortex with, say, maximum positive vor
ticity at the centre, which decays monotonically with increasing radius (all 
6 q; < 0), is also formally stabie. Nonlinear stability for this case has been 
proven by Dritschel (1988), also by essentially using the angular momentum 
invariant and the area constraint. Similar vortices with smooth, monotonically 
decreasing vorticity can be shown to be nonlinearly sta bie with Arnol'd's 
method (Carnevale & Shepherd, 1990). 
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For vorticity distributions that have both positive and negative 6.q; (this 
corresponds to vortices with inflection points), it appears necessary to use 
energy in addition to angular momentum. Before turning to this more com
plicated case, it is first shown here that formal stability of the Rankine vortex 
can also be inferred from a consideration of the energy. For this the perturbation 
is expanded in the eigenfunctions of the operator fe 

00 

6rdB) = L ak cos kB + bk sin kB, 
k = I 

where no k = 0 component has been allowed so th at area conservation at (D (e) 
is not violated. After substitution in (6) one gets 

z z ~ (k - 1) {z z } Ez=-nqldlk-:-I -k- ak+b k , ( 11 ) 

where we have used vo(dd = ~ql dl . It is seen that Ez is sign-definite except for 
the case of a pure wavenumber 1 perturbation (in polar coordinates the pertur
bations are proportional to exp(ikB), where k is the wavenumber). Such a per
turbation corresponds to a displacement of the vortex, and as expected this does 
not change the energy. This proves that the Rankine vortex with, say, positive 
vorticity, is a local maximum in energy with respect to all area preserving per
turbations (modulo translations ). 

An isolated vortex 

A simple example of an isolated vortex is one for which the azimuthal velocity 
increases monotonically from the centre until it reaches a maximum at some 
finite radius, and then falls ofT to zero monotonically. A velocity profile is then 
called 'steeper' than another, similar one, when the velocity falls ofT to zero faster 
in this outer region. Laboratory observations (Kloosterziel & van Heijst, 1991), 
numerical analysis (Gent & McWilliams, 1986; Carton & McWilliams, 1989) 
and analytical studies (Flierl, 1988) indicate th at an isolated vortex of this type 
is unstable if steep enough. The simplest model for such vortices consists of a 
core of constant vorticity q I = 1 within the non-dimensional radius r = 1 plus an 
annulus of oppositely-signed vorticity qz = - q < 0 between r = 1 and r = d. 
These vortices all have vanishing circulation at r = d if one takes q = 1 /(~ - 1). 
A steeper vortex corresponds here to larger q and correspondingly smaller d. 

Normal-modes analysis shows (Flierl, 1988) th at for large enough d (small q) 
they are linearly sta bie to all wavenumber perturbations. In the notation intro
duced above one has dl = 1, dz = d, 6.QI = -( 1+ Q) and 6.q2 = q. Substitution 
in (5) and (6) yields 

( 12) 
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E2 = -(1 +q)II4>.11 2-(1 +q)2(21,14>., 4>.) 
-q2(22,24>2' 4>2) -2q(1 +q)(21,24>., 4>2) ' (13 ) 

It is clear from (12) that angular momentum is not sign-definite, and stability 
can no longer be inferred from it alone. 

As an aside it may be noted here that the structure of unstable normal-modes 
can be uncovered using these expressions. The reason for this is the following. 
It tums out that the linearized equations of motion, from which the normal
modes equations follow, conserve both L 2 and E 2 • This implies that unstable 
modes can only correspond to those cases for which L 2 = E 2 = 0, because a 
growing normal-mode would otherwise violate the conservation law (E2 and L 2 

are proportional to the square of the amplitude of the mode). So, by putting 
(12) and (13) equal to zero, one has two equations in two unknowns: the ratio 
of the perturbation amplitudes on the inner and outer boundary, and the phase 
difTerence between the two (see Kloosterziel & Camevaie, 1992). For a normal
mode one has 

4>.(0)=d.6r • .(O)=r.cosmO 

4>2(0) = d26r2 • (0) = r2cos(mO + mOo), 

where 00 is the phase difTerence between the perturbation on the inner and outer 
circle. 

F or instance, for m = 2 one has, af ter using (12) to eliminate the occurrence 
of 114>.11 in E2' 

E 2, m = 2 = q 114> 211 2 { - ~ + q-q J 1 ! q cos 200 } . 

Depending on the choice of 00 , E2. m = 2 varies between 

It follows that if the upper and lower bound are of the same sign, the vortex is 
linearly stabie to wavenumber 2 perturbations. This happens only for q 
q < qcrit = 1/3, and then E2 is negative definite. The situation can be interpreted 
as that all small m = 2 perturbations lead to an increase in energy. This critical 
value was previously found by Flierl (1988) by means of a normal-modes 
analysis of the linearized equations of motion. With q above the critical value 
the phase difTerence for a possible unstable, wavenumber-2 mode is determined 
by the relation 

20 
(q-4) Jl+Q 

cos 0= q Jq , 
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while (12) determines the ratio of the amplitudes of the normal mode on the 
inner and outer boundary, i.e. 

q 

1 +q' 

Formal stability is proven if one can show that along the manifold defined by 
L 2 = 0, E2 is sign definite, or vice versa. The same is accomplished in an elegant 
fashion if one can find a Lagrange multiplier J1 such that the quadratic form 
E2 + ~ J1L2 is sign definite. The calculations are rather involved, and the reader 
is referred to Kloosterziel & Carnevale (1992) where it is shown that such a J1 
exists whenever 0 ~ q ~ 1/3. This is exactly the linear stability range as found 
with normal-modes analysis, but with wavenumber 1 perturbations excluded. 
Such perturbations correspond to imparting linear impulse to the system and 
lead to a translating vortex (see Stern, 1987). Modulo translations, it is th us 
concluded that the isolated vortex with 0 ~ q ~ 1/3 is formally stabie. 

Final remarks 

In this paper only two cases have been discussed, i.e. the Rankine vortex and the 
simplest possible model of an isolated vortex, but clearly with (5) and (6) formal 
stability of other cases can also be investigated. Furthermore, by taking the limit 
of ever smaller vorticity jumps and closer and closer jump positions, one can 
derive the equivalent expressions for continuous vorticity distributions too. 

A major question to be answered in the future is whether if formal stability 
is found for an isolated vortex, one can also find a proof of normed, nonlinear 
stability. For this the remainder of the Taylor series expansion has to be 
estimated and many technical complications surface. But, in view of many obser
vations of long-lived, stabie isolated vortices such a pro of appears not 
impossible. It has been found th at the above analysis proceeds along exactly the 
same lines when, instead of the variabie r(O), the variabie y(O) = r(0)2/2 is intro
duced. Angular momentum is then exactly quadratic in this variabie, and the 
remainder of the functional E + ~ J1L beyond second order sterns from just the 
energy functional. Unlike in Arnol'd stability, th is remainder can be of both 
signs, depending on the amplitude of the perturbation, for instance, and the type 
of stability to be expected can only be conditional, i.e. stability with respect to 
perturbations that are 'small enough' initially. Arnol'd stability is unconditional, 
i.e. applies to perturbations of any size. It is similar to the finite-dimensional case 
of a marbie in an infinitely-deep weil. The case of conditional stability, however, 
is similar to that of a marbie in a weil of finite depth, surrounded by more 'holes' 
or planes. In this case a large-enough perturbation may take the marbie far from 
its original location. 
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P. Orlandi*, R. Verzicco* and G.J.F. van Heijst + 

Stability of Shielded Vortex Dipoles 

Abstract 

In this study we consider a Lamb dipole and a shielded dipole with the same 
linear relationship between the vorticity wand the stream function 'P. In the 
second case the vorticity distribution is that of a Lamb dipole surrounded by an 
oppositely-signed vorticity layer. Direct simulations for moderate values of the 
Reynolds number have shown th at the Lamb dipole maintains its structure 
while the shielded dipole breaks down. A numerical study of the evolution of 
small vorticity perturbations has shown that in the Lamb dipole the disturbance 
is convected far from the main structure, whereas in the shielded dipole the dis
turbance remains trapped within the vortical structure and grows in time. 

Introduction 

Vortex dipoles are common features of geophysical flows, and they are believed 
to play an important role in the general large-scale circulation, since they 
provide an important mechanism in the transport of various physical properties. 
In the ocean, dipolar vortices may be generated as a result of shedding from 
unstable coastal currents or due to localized wind forcing. In the atmosphere, 
dipolar flow structures may occur in the form of blocking systems which tend to 
have a stabilizing influence on the local weather. Within the context of the 
stability of such flow structures it is of importance to know whether the struc
ture, once perturbed, relaxes towards its initia I (stable ) state. It is easy to show 
that any functional relationship w = f( 'P) between the vorticity wand the stream 
function 'P satisfies J( w, 'P) = 0 and thus represents a stationary solution of the 
Euler equations. An interesting query is whether this functional relationship 
indicates stability or not. 

In a previous study (Cavazza et al., 1992) we considered the behaviour of a 
Lamb dipole (with w = k 2 'P, see Lamb 1932) when subjected to different types 
of small perturbations (here we refer to the vortex structure as 'Lamb dipole', 
although the name 'Chaplygin-Lamb dipole' might be more appropriate, see 
Meleshko & van Heijst, 1994). In the numerical simulations it was observed that 
during the first stages of the flow evolution the dipole generally ejects patches of 
vorticity, while the finally remaining dipole attained a structure with the same 
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linear relationship but with a slope k' = k /a' , with a' the radius of the new 
dipole. 

In the present study we address the question whether the linear relationship 
is the only condition necessary to show that the dipole has reached a stabie 
state. To this purpose we have considered both the Lamb dipole and the 
shielded dipole, i.e. a Lamb dipole surrounded by an oppositely-signed vorticity 
layer. The stream functions IJl and IJls of the Lamb dipole and the shielded 
dipole, respectively, are given by 

J ,(kr) . 
IJl = - 2U k k sm (J, 

Jo( a) 

J .(kr) . 
IJIs = -2U k kb sm (J, 

Jo( ) 

(1) 

(2) 

with U the translation velocity of the Lamb dipole, Jo and J, the zeroth and first 
order Bessel functions of the first kind, respectively, and ka = 3.832 and 
kb = 7.016 the first and second zeros of J" respectively. The 'shield' of the 
shielded dipole lies in the ring a ~ r ~ b, and contains a dipolar vorticity dis
tribution of polarity opposite to th at of the dipole core 0 ~ r ~ a. Although th is 
shielded dipole is a solution of the stationary Euler equation, the numerical 
simulations to be described below indicate that this structure is unstable. 

Numerical simulation 

The stability of these vortex structures has been studied numerically by sol ving 
the vorticity equation 

aw I -a + J(w, IJl) = - V 2w 
t Re 

(3) 

where J is the Jacobian operator and Re is the Reynolds number based on the 
dipole radius a and translation speed U. The numerical finite differences scheme 
has been described in Orlandi (1990) and Orlandi & van Heijst (1992), and its 
performance has been tested both by grid-refinement checks and by changing 
the location of the symmetry boundary conditions. Here it suffices to briefly 
describe the main characteristics of the numerical method. The system of equa
tions is second order accurate in time and space, and the convective terms have 
been discretized by the Arakawa scheme (Arakawa, 1966) that conserves, in the 
inviscid limit, total energy and enstrophy, and maintains the skew symmetry of 
the Jacobian. This conservation property ensures not only the stability of the 
calculation but also the correct energy transfer. The advancement in time of the 
solution has been obtained by a third-order Runge-Kutta scheme calculating the 
nonlinear terms explicitly and the viscous terms implicitly. The large stability 
limit CFL ~ j3 allows a large At. Periodic boundary conditions in one direction 
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permit the use of wr's and thus the stream function is obtained by a direct 
solver. 

The calculations presented here were performed on a uniform 193 x 193 grid 
on the half-plane - 4.6 < x < 4.6, 0 < y < 7 (in view of the flow symmetry about 
y = 0), with periodic boundary conditions in the x-direction. 

Apart from the numerical simulations of the regular and shielded Lamb 
dipoles given by (1) and (2), respectively, additional simulations were performed 
in which the dipolar vortex structures were locally perturbed in the area of maxi
mum vorticity gradients, i.e. in a narrow band along the radius r = a. This vor
ticity perturbation, that is superimposed on the basic vorticity distribution, was 
taken as 

{ 
(l-r/a)2} . 

(O'(r, 0) = e exp - a 2 sm 40, (4) 

with e the perturbation amplitude and a a parameter that controls the width of 
the perturbation band around r = a. The amplitude e was set at a nondimen
sional value e = 0.05, which is small compared to the peak value 11.08 of the 
unperturbed Lamb dipole, whereas the width parameter was set at a = 0.15. The 
structure of the vorticity perturbations of the unshielded and shie1ded dipoles 
are shown in Figure 1. 

Results 

The numerical solution of (3) for the Lamb dipole with the initial stream func
tion (1) revealed that the dipole maintains its shape for a long time and that, 

Fig. 1. Graphs showing the distribution of the initial perturbation vorticity (-- positive, 
....... negative) for (a) the regular and (b) the shielded Lamb dipole (only the upper halves 0 ~ (J ~ 1t 

are shown). The structure of the dipoles is shown by the unperturbed separatrices and a few 
neighbouring streamlines. 
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t=O t=5 

Fig. 2. The evolution of the unperturbed Lamb dipole for Re = !OOO from t = 0 to t = 5 (in non
dimensional time units) shown by vorticity contours AO) = 0.5; only the upper half-plane is shown. 

depending on the Reynolds number, the peak vorticity decreases in time. Some 
results for Re = 1000 are shown in Figure 2: at t = 5 (the time is scaled with U 
and 2a) has travelled approximately 5 dipole diameters and the cusp-shaped 
vorticity contour indicates a distortion of the initial dipole structure in the wake, 
i.e. near the rear stagnation point. In contrast, the shielded vortex loses its 
original shape very quickly, see Figure 3. In comparison with the unshielded 
dipole, the structure shows an initial tendency to move in opposite direction. 
This may be surprising at first glance, but in fact it is explicitly given by the 
solutions (1) and (2) which have different signs since Jo (ka) = -0.4027 ... and 
Jo(kb) = +0.3001... 

The other vorticity patch is seen to be split into two parts, one being left 
behind near the symmetry axis, while the other pairs with the original positive 
core patch in order to form an asymmetrie dipole that slowly moves away from 
the symmetry axis. This behaviour may be understood from the fact that the net 
negative vorticity contained in the shell is larger than that in the positive core. 
Besides, the position of extreme negative vorticity in the shell lies closer to the 
vorticity maximum in the positive core half than that of the negative core half. 
Apparently, the combination of these effects leads to a redistribution of the vor
ticity in the outer band and a separation of both inner core halves. From these 
simulations it thus appears that the outer band of oppositely-signed vorticity is 

t=O t = 1 t=2 

t=3 t = 4 t=5 

Fig. 3. The evolution of the unperturbed shielded dipole for Re = !OOO from t = 0 to t = 5 shown 
by vorticity con tours AO) = ± 0.5 (- positive, .. ..... negative); only the upper half-plane is shown. 
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not just a passive shield around the dipolar core: the outer vorticity shell is 
dynamically important and affects the behaviour of the dipole core to a high 
degree. 

In order to gain some insight in the behaviour of the shielded dipole in com
parison with that of the regular dipole, we studied the evolution of the vorticity 
perturbation (4) by numerically solving the 'linearized' vorticity equation 

ow' (' ITI) ( '1") 1 V2 , ---at + J w , :r 0 + J wo, = Re w (5) 

in which the prime denotes perturbation quantities, whereas the subscript 0 
refers to the nonperturbed dipole solutions (1) and (2). The calculations have 
been performed for Re = 5000, so for the case of slight viscosity. The distribu
tions of the perturbation vorticity after 15 time units for both the regular and 
the shielded dipole are shown in Figure 4. For the Lamb dipole, a considerable 
portion of the perturbation vorticity is expelled, and thus dissipated in the wake, 
while only some weak effects of the perturbation remain in the dipole's interior. 
In contrast, in the case of the shielded dipole most of the perturbation vorticity 
remains trapped within the structure, see Figure 4b, while only a negligible 
amount is left behind in the wake. Moreover, one observes the formation of 
larger regions of positive and negative w' within the two recirculation regions of 
the shielded dipole half, thus resulting in an increased distorting effect. This 
remarkable difference in the evolution of the perturbation vorticity may give a 
clue to the observed instability of the shielded dipole, see Figure 3. 

Fig. 4. The distribution of the perturbation vorticity at t = 15 for (a) the regular dipole and (b) 
the shielded dipole. The structure of the unperturbed dipole is shown by the unperturbed 
streamlines as in Figure 1. 
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Discussion 

The numerical simulations of the regular and shielded dipo1es have shown 
remarkable differences in their evolution. In order to gain insight in the flow 
evolution it is useful to consider the topological flow structure of both dipoles. 
As schematically shown in Figure 5, the topological structure of the Lamb 
dipole is characterized by a circular separatrix 'Pa and two stagnation points (i.e. 
hyperbolic points) at the intersections of the separatrix and the symmetry 
streamline 'Po. TC' The shielded dipole has an outer separatrix 'Pb with two 
stagnation points Sbl and Sb2' and an inner separatrix 'Pa with stagnation points 
Sal and S a2' It is known from previous studies on a perturbed point-vortex 
dipole, which has the same topology, that small perturbations introduced inside 
or at the separatrix generally result in the 'opening' of the dipole atmosphere at 
the rear stagnation point, here Sa, (cf Rom-Kedar et al. 1990 and Velasco Fuen
tes & van Heijst 1994). In generäl this results in fluid exchange between the 
dipole interior and the exterior, i.e. in detrainment and entrainment at the 
dipole's rear. Most likely this mechanism is responsible for the effective 'Ieaking' 
of the perturbation vorticity w' from the Lamb dipole interior, as observed in 
the numerical simulation (see Figure 4a). As indicated in Figure 5b, the 
topological structure of the shielded dipole is essentially different: any small per
turbations introduced near the inner separatrix 'Pa will quickly leak into the 
outer shell (near the inner stagnation point Sal) according to the same 
mechanism as described above. The recirculation in the outer shell results in a 
quick spreading of the perturbation vorticity over the entire vortex domain (see 
Figure 4b), while initially hardly any mass exchange between the dipole and its 
exterior occurs. Obviously, internal perturbations remain trapped within the 
shielded dipole, thus leading to changes in the internal vorticity structure. This 
internal redistribution mechanism is most likely the reason for the break-up of 
the shielded dipole as observed in the simulations (Figure 3). Although these 
simulations were carried out for an unperturbed shielded dipole, it may be 
expected that diffusion of vorticity (being most effective at locations of maxi
mum vorticity gradients, i.e. at both separatrices) results in a similar perturba
tion vorticity field as described artificially by (4). 

s 

+ 

la ) (h) ~ u 

Fig. 5. Schema tic drawing of the topological inviscid flow structure of (a) the Lamb dipole and 
(b) the shielded dipole, seen in a frame co-moving with velocity U. 
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In view of their different evolutions, the question arises whether the regular 
Lamb dipole and the shielded dipole possibly contain different amounts of 
enstrophy. The enstrophy is here 

(6) 

with R the dipole radius and 'P the stream function given by (l) or (2). The 
integrals are easily evaluated, and one derives (with the index S referring to the 
shielded dipole): 

(7) 

Although the total enstrophy of the shielded dipole is larger than the total 
enstrophy of the Lamb dipole by a factor of (b ja)2 ~ 3.37, the enstrophy per unit 
area is the same for both vortex structures: 

G' = Gs =k2 U2 
s nb2 . (7) 

Apparently, this does not provide any further clues. Figure 6 shows the evolu
tion of G' and G~ as calculated numerically for Re = 1000 (the corresponding 
evolutions of the spatial vorticity distribution are presented in Figures 2 and 3). 
Both G' and G~ show a gradual decrease, although G~ decreases at a higher 
rate. The dec rea se of the enstrophy is entirely due to the removal of weak, small
scale low-amplitude vorticity (less than 10 - 6) in the exterior flow field during 
the numerical simulations. The different decay rates indicate that the slightly 
viscous Lamb dipole shows only little 'leaking' of vorticity in comparison with 
the shielded dipole, which by breaking up soon loses its coherent character. 

1.0 

O.50~-~---=-2---:3---4':---~5 

Fig. 6. Evolution of the enstrophies G' and G~ calculated numerically for Re = 1000. The dotted 
curve represents the Lamb dipole (G'), while the solid curve represents the shielded dipole (G~). 
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Conclusions 

In this numerical study we have provided evidence that the shielded Lamb 
dipole, although governed by the same linear relationship between the vorticity 
and the stream function as the regular Lamb dipole, is unstable for moderate 
values of the Reynolds number. It is believed that the explanation for this 
instability lies in the flow topology of the vortex structure: small internal vor
ticity perturbations (either artificially generated or arising from diffusion of vor
ticity) are seen to remain trapped within the shielded dipole, whereas they are 
quickly detrained in the case of a regular Lamb dipole. 
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J. Nycander 

Dynamics of Dipole Vortices 

Abstract 

Simulations of unsteady dipole vortices on the p-plane are compared with the 
predictions of an ideal model equation. The most striking discrepancy is the 
relaxation to eastward propagation in the simulations. This effect can be under
stood theoretically and incorporated into the model, which results in a 
qualitative agreement with the simulations. 

Introduction 

Although dipole vortices are observed more seldom than mono po Ie vortices in 
natural flows, there are reasons to believe that they are important. They consist 
of two close counter-rotating vortices that push each other forward. This self
propeIling mechanism gives the dipole vortex an arbitrary intrinsic velocity. 
(The drift of monopole vortices, on the other hand, is mainly determined by 
gradients in the background parameters, such as topography or the p-effect). 
Combined with the fact that they always carry trapped fluid, this means that 
dipole vortices are probably more important for transport than their sheer num
ber would indicate. Also, their intrinsic velocity and nonzero linear impulse give 
them a very different (and richer) dynamic behaviour than monopole vortices. 

Ideal theory 

The discussion will here be confined to flows described by the equivalent 
barotropic vorticity equation, which is called the Hasegawa-Mima equation in 
plasma physics (Hasegawa et al. 1979): 

a 2 af/J 2 at (f/J - v f/J) - P ax - J( f/J, v f/J) = 0 (I) 

where the stream function f/J represents the perturbation of the fluid depth, J(,) 
the Jacobian, and P the gradient of the Coriolis parameter. We denote the 
relative potential vorticity V 2 f/J - f/J by q. The absolute potential vorticity, q = Py, 
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is a Langrangian invariant, i.e. it is conserved in each fluid element moving with 
the velocity v = Z x V <p. 

Exact dipole vortex solutions of eq. (I) travelling with the velocity U = xU 
were found by Larichev and Reznik (1976): 

p2 [ J (Kr) (K
2 

)] <p = U 2. a I -r 2. + I sin 8, 
K JI(Ka) p 

r<a 

<p =- Ua K.(pr) sin 8 
KI (pa) , 

r>a (2) 

where p2 = ( U + P)j U, a is the radius of the separatrix, and K is found as the first 
root of the equation 

For the solution to be localized, U must be outside of the interval of possible 
phase velocities for the linear Rossby waves. (This is a general condition for 
localized and steadily propagating structures: their velocity should not coincide 
with the phase velocity of linear waves. Otherwise they radiate linear waves and 
gradually lose energy). Thus, there are two kinds of steady dipole vortices: those 
propagating eastward, i.e. U> 0 (ETD'S), and those propagating westward and 
faster than the Rossby waves, i.e. U < - P (WTD'S). 

Similar solutions exist for a large number of two-dimensional fluid modeIs, 
both in fluid dynamics and in plasma physics, while localized monopole vortices 
exist in fewer cases. The underlying physical reason for this difference is that 
dipole vortices have an intrinsic velocity. Since th is velocity is arbitrary, it can 
always be outside the region of linear phase velocities. 

In (2) the separatrix is circular, and the absolute potential vorticity depends 
linearly on the stream function , both inside and outside the separatrix (but with 
different coefficients). However, it is clear that there also exist steady solutions 
with a noncircular separatrix, and a nonlinear functional dependence in the 
inner region. Such solutions have been found numerically (McWilliams and 
Zabusky 1982, Boyd and Ma 1990), and by perturbation analysis, using (2) as 
the zeroth order solution (Nycander 1988). Rigorous existence proofs for non
linear dipole vortex solutions of the Euler equation have also been given by 
Norbury (1975) and Burton (1988). In the theory below, nothing will be 
assumed about the functional relationship or the shape of the separatrix. 

If the direction of propagation of a dipole vortex is not exactly eastward or 
westward, it is not steady. In order to describe the dynamics in this case, we first 
define M = J q dx dy , which will be referred to as "mass" or "total charge", and 

I f 2 Q="2 q dx dy, 

which is called "enstrophy", or "pseudo-momentum" (since it is the difference 
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between the linear impulse and the quadratic Casimir integral). Both Mand Q 
are conserved integrals. Another important relation is 

~c = -px, 

which determines the velocity of the "centre of mass", defined by 
Re = (1 IM) J qr dx dy. 

(3) 

The derivation of the approximate equation of motion for dipole vortices by 
Nycander and Isichenko (1990) will now be briefly repeated. The basic assump
tion is that p is small. If p = 0 a dipole vortex with M # 0 moves on a circle 
around the fixed centre of the mass, cf. (3), as has been observed both in simula
tions and laboratory experiments (Flierl el al. 1983, Couder and Basdevant 
1986). To find the radius of this circle we define the dipole moment 
P = f qr dx dy = MR c. The value of P generally depends on the choice of the 
origin. Defining the "intrinsic dipole moment" P d as the value obtained with the 
origin at its centre, the radius of the circle is given by R e = P diM . Using the 
usual expression for the .centripetal acceleration of circular motion, th is result 
can formally be written as an equation of motion: 

dV A MU 
- = zx U--. 
dl Pd 

(4) 

Here U is the velocity of the vortex, and U = I UI is defined to be always positive, 
unlike in (2). Mis the "mass" or "total charge" associated with the vortex itself, 
excluding the contribution from the far field. 

The main modification of (4) on the p-plane is th at M is no longer constant. 
The conservation of absolute potential vorticity in the trapped fluid inside the 
separatrix implies th at M = - SPy, where y is the position of the vortex, S the 
area inside the separatrix, and we have chosen the coordinate system so that 
M = 0 at y = O. Inserting this into (4) we obtain: 

dV A P S -=U xzy U-, 
dr Pd 

(5) 

which is the ideal equation of motion for dipole vortices in an inhomogeneous 
medium. Both S and P d are assumed to be constant parameters. 

Steady solutions of (5) are given by y = U)' = O. If U~ > 0 the trajectory is 
stabIe. The frequency of small oscillations around it is given by w 2 = U 2PSIPd • 

The steady solutions with U~ < 0 are unstable. 
Eq.( 5) can be solved completely in terms of elliptic integrals, noting that U 

and 

(6 ) 
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are both constants of motion. The frequency of oscillations with arbitrary 
amplitude can th en easily be calculated: 

(7) 

where K is a complete elliptic integral of the first kind, k = Isin ((X/2)1 , and (X is 
the maximum angle between the trajectory and the positive x-axis. 

Simulations 

A series of simulations we re performed by Hesthaven et al. (1993) in order to 
test the theory described above. They we re do ne with a pseudospectral code with 
128 by 128 Fourier modes. A simple cutting technique was applied to remove 
the wake field behind the vortex before it collided with it because of the periodic 
boundary condition. This was seen to be crucial for the long-term behaviour of 
the vortices. 

One would not expect the theory to work well when the radius of curvature 
of the trajectory is of the same order as the size of the vortex. In this case the 
cyclonic and anticyclonic parts have very unequal strength, and the separatrix 
is not well defined. Thus, we only expect a good agreement when P« U, and 
when the vortex is propagating at a small angle to the x-axis, close to the steady 
eastward case. 

For a short time the agreement between the simulations and eq. (7) is sur
prisingly good, even outside the expected region of validity. Fig. 1 shows the fre
quency of initially symmetric dipole vortices th at started at different angles to 
the x-axis, and with different values of p. (The initial condition was the exact 
solution (2) with U> 0, but rotated by (X degrees). The frequency was estimated 
at the first maximum of the oscillation - af ter a quarter of a period. If p was 
larger than U and the angle too large, the vortex soon disintegrated, but before 
that happened the deviation from the ideal theory was not large even in this 
case. The agreement was good also for other quantities, such as the maximum 
displacement of the dipole vortex in the y-direction. 

There was, however, a significant discrepancy in the region where the best 
agreement was expected P« U and small (x. In this case the first period was 
anomalously long. The frequency then increased and stabilized, and after one or 
two periods ag reed well with the predicted value. Scatter plots showed that the 
functional relationship between the stream function and the absolute potential 
vorticity changed during the first period, and then settled down to a nonlinear 
profile. This effect was stronger when (X was smal!. Apparently, the initial dis
crepancy is caused by some internal transient process. 

The long-term development of a dipole vortex, however, is not well described 
by the ideal theory above. Instead, either of two things happens. Either it dis-
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Fig. I. Oscillation frequency (I) as a fu nct ion of the initial propatation angle oc. The theoretical 
curves we re ca lclilated from eq. (7) lIsing the soilition (21. Disintegrating dipole vortices are encir
c1ed. Here and in all sllbseqllent ligures a = 1.0 and U = O. I . (Reproduced from Hesthaven et al. 
1993) 

integrates (this usually happens rather quickly) , or it relaxes to an eastward 
propagating, almost steady dipole, as seen in Figs. 2 and 3. (In Fig. 3 the vor
tex is initia lly propagating close to westward, but swings a round and starts 
propagating eastward) . The general rule is th at it disintegrates if fJ is too large 
(i.e. if the amplitude of the vortex is too smalI) and the initial angle is too 
large. 

2,------------------------------, 
a = 

-1 

-2~----_.--r__.----_.----_r----~ 

o 20 40 60 80 100 

x 

Fig. 2. Trajectories of tilted ETIJ·S. i.e. U in eq. (2) is positive; fJ = 0.05. (Reproduced from 
Hesthaven et al. 1993) 
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Fig. 3. Trajectories of tilted WTD'S, i.e. U in eq . (2) is negative. v is the angle bet ween the initial 
propagation direction and the negative x-axis; fJ = 0.05 . (Reproduced from Hesthaven et al. 1993) 

Relaxation mechanism 

The relaxation of dipole vortices to eastward propagation is associated with 
inviscid loss of enstrophy from the vortex to the surrounding fluid. It is possible 
to identify two loss mechanisms. The first one is displacement of outer fluid. If 
the vortex propagates northward, it displaces the fluid outside the separatrix 
southward as it passes by. Because of the conservation of absolute potential vor
ticity, the displaced fluid acquires some relative vorticity of the order 
ql\' ~ p À sin f) , where f) is the propagation angle of the vortex and À its diameter. 
Thus a wake field appears behind the vortex, and the enstrophy lost to th is wake 
field can be estimated as 

dQ I J I 2 3 . 2 
- ~ - - q-À U~ -- p k Usm f) 
dl 2 " 2 . (8) 

It should be possible to calculate this loss more exactly for a linear dipole vortex 
with a circular separatrix , since the velocity field outside the separatrix is then 
known. One would then assume that f) changes little during the time it takes for 
a typical fluid parcel to be displaced by the vortex. 

The other mechanism is "breathing", i.e. regular trapping and untrapping of 
fluid as the cyclonic and anticyclonic parts of the vortex shrink and grow during 
the oscillations. Since the fluid elements are not released at the same value of y 
as where they were trapped, they acquire some relative vorticity. This 
mechanism is generally weaker than the displacement of outer /luid, since the 
amount of displaced outer fluid is much larger than the amount of trapped and 
untrapped fluid , while the magnitude of the displacement is comparable in both 
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cases. (Contrary to what was stated by Nycander and Isichenko, this is true 
even when 8 is small. They assumed that the fluid is released at a random point 
on the periphery, but in fact the trapping and untrapping always takes place 
near the stagnation points). 

To understand why the enstrophy loss leads to a decreasing propagation 
angle (i.e. the observed relaxation) we again invoke the conservation of absolute 
potential vorticity. For the amplitude q in the vortex to decrease in magnitude, 
the cyc10nic part must move a little northward, and the anticyc10nic one a little 
southward. If the internal structure is unchanged so that the distance between 
them is constant (this appears to be approximately the case), the propagation 
angle then decreases. 

To express this effect qualitatively, we calculate the increase in enstrophy of 
the dipole vortex as it is artificially rotated away from exactly eastward, which 
is the position of minimum enstrophy. Assuming that the relative change of q is 
small (this is always true if p;.. is much smaller than the characteristic amplitude 
qo), we obtain 

AD = t q Aq dx dy = - p t q Ay dx dy, (9) 

where Ay is the displacement of each fluid element due to the rotation, and the 
integral is taken over the surface inside the separatrix. The integral on the right
hand side of eq. (9) is just the change of the y-component of the dipole moment. 
Thus, the vortex enstrophy D d may be written as a function of the propagation 
angle 8: 

(10) 

where Do is a constant, and P~ the dipole moment inside the separatrix. 
The second term in (10) is analogous to the potential energy - p.E of an elec

tric dipole in an external electric field E. Just like the dipole vortex, the oscilla
tions of an electric dipole are damped if there is some loss mechanism (for 
instance radiation), until it is aligned with the external field. 

From eqs. (8) and (10) it is possible to estimate the rate of rotation caused by 
the loss: 

(
d8) }..3P. - ~ ---. Usm 8. 
dt loss 2P':! 

Using the relation dUidt = z x U d81dt this can be expressed as an acceleration. 
Adding this term to eq. (5) we obtain the modified equation of motion 

dU A ( S }..3p ) -=Uxz PU-y+-. U . 
dt Pd 2P':] y 

(11 ) 
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It is easy to see that the new term in (11) indeed represents damping. The ideal 
constant of motion Px' defined in (6), now increases monotonously, and it ean 
be seen that it is maximum for eastward propagation. The linearized equation 
for small perturbations around this steady solution is the usual equation for a 
damped oscillator, and the ratio between the damping coefficient and the fre
quency can be estimated as (PÀ/qo) 1/2 . This indicates that the damping during 
one period is insignificant in the limit of small p, which supports the consistency 
of the theory. (Notice that one should not compare the enstrophy loss with the 
total enstrophy of the vortex, as was done by Nycander and Isichenko (1990). 
The loss has a significant effect if it is comparable to the second term in (10), 
which is smaller than the total enstrophy). 

In Fig. 4 the solution of eq. (11) is shown, using the same parameter values as 
in Fig. 2, with ex = 45°. The coefficient of the damping term in (11) was divided 
by four in order to improve the agreement with the simulation in Fig. 2. Such 
an adjustment is possible, since the derivation above only determined this term 
up to a factor of order unity. 

However, regardless of the value of this coefficient, the solution of eq. (11) dif
fers from the observed trajectory in two ways. The first is that eq. (11) is 
obviously incapable of describing the irregular behaviour during the first few 
periods which is particularly apparent for ex = 15° and 30° in Fig. 2. Secondly, 
the damping of the observed trajectory is relatively stronger when the amplitude 
is large, and weaker when the amplitude is smalI, as compared with solutions of 
eq. (11). This is particularly clear from Fig. 3. To model this a nonlinear damp
ing term would have to be added to the right hand side of eq. (11), for instance 
a term proportional to U;. However, no motivation for th is or any other par
ticular form of a nonlinear damping term has been found. 

20 40 60 80 100 
x 

Fig. 4. Theoretical trajectory of dipole vortex calculated from eq. (11). It should be compared 
with the dotted curve in Fig. 2. 
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The cutting technique made it possible to measure the loss of enstrophy from 
the vortex to the surrounding fluid directly in the simulations. It was found that 
the enstrophy decrease is smaller than indicated by eq. (10), except wh en 0 is 
smalI. Probably some of the "free enstrophy" made available by the decrease of 
o is absorbed by internal oscillations, instead of being lost to the surrounding 
fluid. There were also direct numerical indications of such internal oscillations in 
the dipole vortex when the initial launch angle was large, with a frequency a few 
times larger than the oscillation frequency of the trajectory. 

lt is tempting to guess that what appears as nonlinear dam ping of the trajec
tory is caused by excitation of such intern al oscillations, and that the rather 
irregular trajectories during the first two periods in Fig. 2 are the result of an 
interplay between the internal dynamics and the macroscopic motion of the 
dipole vortex. 

Conclusion 

The simple ideal model equation (5), which is conservative and can be written 
in Hamiltonian form, was compared with numerical simulations of dipole vor
tices. For a short time the agreement was good, but in the long run the motion 
is strongly atTected by etTects not inc\uded in the ideal model, such as inviscid 
loss of enstrophy to the surrounding fluid, and excitation of internal oscillations 
in the vortex. The result is that all dipole vortices either quickly disintegrate, or 
relax to steadily propagating ETD'S. 

The enstrophy loss can rat her easily be incorporated into the model. The main 
mechanism is displacement of surrounding fluid by the dipole vortex. Estimating 
this etTect up to a factor of order unity (as mentioned above, it should be possible 
to sharpen this estimate), the modified equation of motion (11) was obtained. 
Solutions of this equation qualitatively resem bie the relaxing trajectories in the 
simulations, cf. Fig. 4, but a good quantitative agreement is still lacking. This is 
true regardless of the value of the coefficient of the damping term. 

Thus, we are reaching the limits of what can be do ne without taking the inter
nal dynamics into account. lts etTects on the vortex trajectories can be seen in 
several places in the simulations: in the irregularities during the first few periods 
in Fig. 2, in the anomalous behaviour during the first period when both a: and 
pare small in Fig. I, and, probably, in what appears as nonlinear damping in 
Figs. 2 and 3, in contrast to the Iinear damping in the theoretical Fig. 4. 

One way of approaching the problem of the internal dynamics might be to use 
the linear eigenmodes of the dipole vortex, if, indeed, any localized eigen modes 
exist. However, virtually nothing is known about the linearized problem for 
small perturbations of a dipole vortex. There has been a number of attempts to 
prove Iinear (and nonlinear) stability, but they have all been shown to be invalid 
(Nycander 1992). The anomalous behaviour in Fig. 1 wh en a: and pare small 
indicates that the regular oscillations of perturbed ETD'S do not correspond to 
linear eigenmodes. 
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Another approach might be to use the point vortex model. One should then 
use at least two point vortices for the cyclonic part and two for the anticyclonic 
part of the dipole vortex, as was done by Zabusky and McWilliams (1992). 
However, it is uncertain whether this kind of model is at all suited for describing 
the intemal dynamics of a dipole vortex. 

Acknowledgement 

The main part of this work was done in collaboration with Jan Hesthaven and 
Jens-Peter Lynov while I was visiting Ris0 National Laboratory. 

References 

Boyd, J.P. and H. Ma, 1990 - Numerical study of elliptical modons using a spec
tral method. J. F/uid Mech . 221 , 597-611. 

Burton, G.R., 1988 - Steady symmetrie vortex pairs and rearrangements. Proc. 
Roy. Soc. Edinburgh 108A, 269- 290. 

Couder, Y. and C Basdevant, 1986 - Experimental and numerical study of vor
tex couples in two-dimensional flows, J. F/uid Mech. 173, 225-25l. 

Flier!, G.R., M.E. Stem, and l .A. Whitehead, 1983 - The physical significance of 
modons: laboratory experiments and general integral constraints. Dyn. Atmos. 
Oceans 7, 223-263. 

Hasegawa, A., CG. Maclennan, and Y. Kodama, 1979 - Nonlinear behavior and 
turbulence spectra of drift waves and Rossby waves. Phys. Fluids 22, 
2122-2129. 

Hesthaven, l.S. , 1.P. Lynov, and 1. Nycander, 1993 - Dynamics of nonstationary 
dipole vortices. Phys. Fluids A 5, 622-629. 

Larichev, V.D. and G.M. Reznik, 1976 - Two-dimensional solitary Rossby 
waves. Dokl. Akad. Nauk SSSR 231, 1077-1079. 

McWilliams, J.C and N.l . Zabusky, 1982 - Interactions of isolated modons. I. 
Modons colliding with modons. Geophys. Astrophys. F/uid Dyn. 19, 207-227. 

Norbury, 1., 1975 - Steady vortex pairs in an ideal fluid. Comm. Pure Appl. 
Math. 28, 679-700. 

Nycander, 1., 1988 - New stationary solutions of the Hasegawa-Mima equation. 
J. Plasma Phys. 39, 413-430. 

Nycander, J., 1992 - Refutation of stability proofs for dipole vortices. Phys. 
Fluids A 4, 467-476. 

Nycander, 1. and M.B. Isichenko, 1990 - Motion of dipole vortices in a weakly 
inhomogeneous medium and related convective transport. Phys. Fluids B 2, 
2042-2047. 

Zabusky, N.l. and l.C McWilliams, 1982 - A modulated point vortex model for 
geostrophic, p-plane dynamics. Phys. Fluids 25, 2175-2182. 

Department of Technology, Uppsala University 
Box 534, 751 21 Uppsala, Sweden 

186 Dynamics of dipole vortices 



a.u. Velasco Fuentes and G.J.F. van Heijst 

Laboratory Experiments on Dipolar Vortices in a Rotating Fluid 

Abstract 

The behaviour of dipolar vortices on a p-plane is investigated in the laboratory 
using a rotating fluid with a varying depth. Dipoles initially directed under a cer
tain angle relative to the west-east axis showed meandering or cycloid-like tra
jectories. For East-travelling dipoles (ETO' S) a small deviation from zonal motion 
results in small oscillations around the equilibrium latitude. For West-tra velling 
dipoles (WTO'S) small deviations result in large displacements in meridional 
direction. ETO'S increase in size and eventually split into two independent 
monopoles. 

Introduction 

Large scale motions in the oceans and in the atmosphere, being two-dimensional 
in a first approximation, are characterized by the emergence of coherent vortices. 
After the monopolar vortex the dipole is the most commonly occurring vortex 
structure. The dipolar vortex has two remarkable properties: it possesses a 
separatrix and it has a non-zero linear momenturn. Therefore this vortex struc
ture provides an efficient mechanism for the transport of ma ss and moment urn 
over large distances. In particular, oceanic dipolar vortices are believed to play 
an important role in the transport of scalar properties such as heat, salt, 
nutrients and other biochemica I components. 

The dynamics of geophysical flows is further influenced by the gradient of the 
Coriolis parameter in the latitudinal direction, usually referred to as the p-effect. 
A similar gradient of the ambient vorticity can be caused by variations of the 
depth of the fluid. Wh en these varia ti ons are linear and small, the result is equiv
alent to a gradient of the Coriolis parameter (with the direction of steepest bot
tom slope corresponding with the northern direction ). This effect is sometimes 
called "topographic p-effect". 

There are several dipolar solutions, also called modons, which can exist in 
such inhomogeneous media (see Flierl, 1987). One common characteristic of 
these modons is that they are either stationary or they translate steadily along 
lines of equal ambient vorticity. An important question concerns the existence of 
similar structures th at propagate transversally to these isolines. 
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One approach to this problem has been the representation of the dipole by a 
couple of point vortices. During the evolution the relative circulation changes to 
preserve potential vorticity. Kawano and Yamagata (1977) first found three 
"regimes" in the motion of the couples: i) eastward meandering, ii) westward 
cydoid-Iike trajectories, and iii) the "non-propagating" mode, in which the 
couple moves along an 8-shaped curve fixed in space. Zabusky and McWilliams 
( 1982) presented calculations of a point-vortex couple and a dipole represented 
by two pairs of point vortices. These point-vortex calculations showed good 
agreement with numerical simulations of a modon solution for the first oscilIa
tion. 

Makino et al. ( 1981 ) used "tilted" modons as initial conditions for numerical 
sim uIa ti ons. They found that the modons survive as coherent structures, moving 
along meandering trajectories in eastward direction or along cydoid-Iike paths 
in westward direction, depending on the tilting angle. Using a perturbation 
technique, Nycander and Isichenko ( 1990) also found these two regimes as weIl 
as the "non-propagating" mode. They also showed that the decay due to genera
tion of relative vorticity was negligible during one oscillation of the dipole. 

The results reported here concern flow measurements and visualizations of the 
evolution of dipoIes propagating transversally to the lines of equal ambient vor
ticity. 

Point-vortex model 

On a p-plane every column of fluid is assumed to conserve potential vorticity 
during the evolution, i.e. q = w + py is constant, where w is the relative vorticity 
and P is the gradient of ambient vorticity in the northern direction y. On a rotat
ing sphere P = 2Q cos cP o/R. with Q the angular velocity, cPo a reference latitude 
and R the sphere's radius. On a "topographic p-plane" P = 2Qs/ho, with s the 
gradient of the fluid depth and ho the reference depth. 

This principle can be implemented in the point-vortex model under the 
assumption that a point vortex represents a small patch (with area nL2) of 
uniform vorticity w. Using conservation of potential vorticity, the point-vortex's 
circulation (Jo; = wnL 2) can be expressed as a function of the position: 

h' =h' +nL 2p(v -v) o _ o . 

where Yo represents the initial latitude, at which the vortex has strength Ko. 
The motion of a point-vortex dipole on the p-plane can be described by a 

couple of ordinary differential equations (see e.g. Velasco Fuentes and 
van Heijst, 1994). In the case of a weak p (more precisely pde/Ko ~ I, with d 
the distance between the point-vortices) the evolution is described by: 
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where !X is the angle of the dipole's velocity vector with respect to the lines of 
equal ambient vorticity and U = Ko /2nd is the initial translation velocity of the 
dipole. Initial conditions are !x' (0) = 0 and !X( 0) = !Xo . 

This equaton is identical to the simple pendulum equation and can be solved 
in terms of elliptical integrals. The condition !X'(O) = 0 ensures th at all the solu
tions represent oscillations in the dipole's direction of propagation. The stability 
properties of the dipole trajectory can be immediately established: an ETD 

(!X o = 0) performs sm all oscillations when its trajectory is perturbed, whereas any 
sm all perturbation causes the WTD (!X" = n) to make a big loop. 

Experimental arrangement 

The experiments were carried out in a rectangular tank of horizontal dimensions 
100 x 150 cm 2 and 30 cm depth mounted on a rotating tabie. In most 
experiments the angular speed of the system was Q = 0.56 s - I, so that the 
Coriolis parameter f = 1.12 ç I . The working depth of the Iluid was varied from 
15 to 20 cm, and a false bottom was raised 4 to 8 cm along one of the long sides 
to provide the topographic p-efTect. With these parameter settings the equivalent 
value of p measured approximately 0.25 m - 1 S - I. 

Once the Iluid was in solid body rotation a columnar dipole vortex was 
generated by slowly moving a smalI, bottomless cylinder of 8 cm diameter 
horizontally along a straight line relative to the rotating tank, while slowly lift
ing it out of the Iluid. The vorticity generated by the motion of the cylinder 
accumulates in a dipolar structure in the wake of the cylinder. Af ter typically 1- 2 
rotation periods the organization of the vortex Ilow is completed. The Rossby 
number for the resultant dipolar structure, defined as Ra = U/2Qr with U as the 
maximal velocity and r as the radius of the dipole, is of order 0.1 to 0.2. 

In a first series of experiments dye was added to the Iluid within the small 
cylinder before generating the dipole. Photographs of the evolving dipole were 
taken at intervals of typically 5 to IS sec by a camera mounted in the rotating 
frame about ISO cm above the free surface of the Iluid. 

Flow measurements were made from photographic streaks of small (I mm 
diameter) paper particles Iloating on the free surface. The velocity field is 
measured from the lengths and orientations of particle streaks. Then the velocity 
field is interpolated onto a regular grid using cu bic splines. The relative vorticity 
(w = V y - uy) is ca1culated analytically from the interpolating polynomials and 
the stream function is obtained by numerically inverting the Poisson equation 
V 2 tjJ = -wo 

Meandering dipoles 

A typical trajectory of a dipole initially moving towards shallower parts of the 
tank ("north" ) is shown in Figure la. In this case the dipole was initially direc
ted 
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at some angle to the topography gradient, approximately to the "north-east". 
Due to the background rota ti on the two dipole halves experienee asymmetrie 
efTects: the cyclonic vortex becomes weaker while the anticyclonic one becomes 
stronger, resulting in a trajeetory curved in clockwise sense. The clockwise rota
ti on brings the dipole southwards, and the asymmetry gradually diminishes. The 
dipole recovers its zero net circulation when it crosses the equilibrium line 
(where the height of the fluid column is equal to its initial value). Because of its 
own momentum the dipole moves further into deeper regions ("south"), so that 
the column of fluid is stretched further. Owing to this stretching, the cyclonic 
half becomes stronger and as aresuIt the dipole's trajeetory curves in anti-clock
wise sen se. After reaching its southemmost position the dipole moves back to its 
equilibrium latitude. At this stage the dipole has decayed and its propagation 
speed is reduced to almost zero. 
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Fig. 1. Observed dipole trajectories for different initial direction of propagation: (A) northeast, 
(B) north, (C) northwest, and (D) west. The arrows indicate initial and fmal directions of the 
observed dipole translation. Since the medium depth ho of the fluid in the dipole evolution varies 
from one experiment to another (in the range 15 to 18 cm) the p-effect changes accordingly in the 
range 0.25--0.3 m - 1 s -I , 
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This squeezing and stretching mechanism is active for every initial orientation 
of the dipole axis. However, its effect is very different on dipoles moving initially 
at angles greater than 1t/2 (i.e. dipoles with a westward component in their 
motion) and on dipoles moving at angles smaller than 1t/2 (dipoles with an 
eastward component). When the initial angle is less than 1t/2 the dipole acquires 
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Fig. 2. Measured flow characteristics of a dipolar vortex on a p-plane at t = I.77T, with 

40 

T = 11.3 s the rotation period of the turntabIe. The dipole moved initially to the south and sub se
quently described a meandering path. The graphs represent (a) vorticity con tours (contour inter
val Cl = 0.1 s - 1), (b) stream function contours (Cl = 2 cm2 s - I) corrected for the observed motion 
of the dipole, (c) distribution of vorticity along a line crossing the points of extremal vorticity 
values and (d) w~'" re~ati<?n, obt!iine~ by plottin~ the vortic~ty value against the stream function 
value of every gnd pomt 10 the 1Otenor of the dlpole. Expenmental parameters: f = 1.11 S - I, 
ho = 0.17 m, S = 0.23, P = 0.26 m - I S-I. 
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an asymmetry of the proper sign to pull it back to its equilibrium latitude. The 
smooth oscillation of a dipole with initial north-east motion appears in 
Figure la, and a similar trajectory can be seen in Figure I b for a dipole released 
in northward direction. Dipoles with tilting angles greater than n/2 move 
initially away from the equilibrium latitude along a big loop before finally retur
ning to it (see Figure Ic tor an example of a dipole initially moving north
westward). Figure Id shows an example of the trajectory instability of a West
travelling dipole (WTD). In this case the dipole moves northward and breaks up 
before being able to return to its initial latitude. 

Flow measurements were do ne in the case of a dipole initially directed 
southward. When it reaches a mature state at time t = 1.77 (in units of the rota
tion period T = 11 .3 s), the dipole moves in an approximate south-east direction. 
The cyclonic half is stronger, resulting in an anti-c1ockwise deflection of the 
dipole's trajectory. The density of the vorticity and stream function con tours in 
Figures 2a,b shows a c1ear asymmetry between the two dipole halves. The centre 
of the dipole's rotational motion at this stage is also visible in the upper right 
corner of Figure 2b (note that both vorticity and stream function have been 
corrected lor the motion of the dipole). 

A remarkable feature in the cross-section of vorticity is the presence of a small 
ring of oppositely-signed vorticity around the dipole (see e.g. the small humps 
in the vorticity cross-section, Figure 2c). The shielding ring is caused by the 
advection of ambient fluid in meridional direction and leads to a widening of the 
dipole. At the earl ier stages of the dipole motion the vortex structure was found 
to be characterized by a linear relation between wand 1/1, see Figure 2d. As a 
result of entrainment of passive fluid, at later stages a weak nonlinearity in the 
w-I/I relation is developed. 

Break-up of an HD 

Besides the asymmetry of stability properties a few more differences were obser
ved between eastward and westward travelling dipoles. The ETD'S were always 
larger and slower than the WTD'S, which were compact and travelled relatively 
fast. These different types of behaviour can be explained by the secondary vor
ticity field generated in the t1uid exterior to the vortex dipole (Velasco Fuentes 
and van Heijst, 1994). The magnitude of the secondary vorticity is of order pr, 
where r is the radius of the dipole. As p is increased the value of the generated 
vorticity gets c10ser to the values of the dipole's vorticity itself, thus producing 
a faster growth and eventually a break-up of the ETD. In the WTD the tendency 
to become compact and fast vanishes rapidly due to the instability of the 
westward trajectory. 

In order to investigate the splitting of an ETD in more detail, an experiment 
was carried out using a st rong p-effect (P = 0.52 m - J S - J). The formation of the 
dipolar structure was completed approximately 4- 5 revolution periods after the 
lifting of the generating cylinder. In comparison with the previously shown 
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dipole (Figure 2), the size of the dipolar vortex was relatively large in this case, 
and the two halves were not compactly attached as before. At a later stage 
(t = 14.5) the separation between the two halves had increased significantly 
(Figures 3a,b) and a weak westward drift of the two halves was observed. 

The vorticity distribution along the line joining the vortex centres (Figure 3c) 
shows an almost complete break-up of the dipole and it resembles that of two 
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Fig. 3. Measured flow characteristics of the ETD after the splitting has been completed (at time 
t = 14.5 T): (a) vorticity contours (Cl = 0.06 s - 1), (b) stream function contours (Cl = 1 cm2 s - 1) 
corrected for the observed westward motion of the monopolar vortices, (c) vorticity distribution 
along a line intersecting the points of extremal vorticity, and (d) the w-t/! plot obtained from the 
grid points in the rectangular area indicated by the broken line in (a). Experimental parameters: 
Jo = 1.1 S - 1, ho = 0.l6 m, S = 0.42, P = 0.52 m - 1 s - 1. 
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(oppositely signed) isolated monopolar vortices placed close together (see e.g. 
Kloosterziel and van Heijst, 1992). The w-t/J relation shows two antisymmetric 
branches which are reasonably approximated by a cu bic polynomial (Figure 
3d). Comparison with the w-t/J relationship of an isolated monopolar vortex (e.g. 
van Heijst et al., 1991), confirms th at the w-t/J plot in Figure 3d indeed 
represents a combination of a cyclonic and an anticyclonic shielded monopolar 
vortex. The considerable scatter can be attributed to the different meridional 
drift components of the vortices (which can not be simultaneously corrected 
for), and also to the non-steadiness of the individual vortices: as shown by e.g. 
Carnevale et al. ( 1991 ), the shielded monopolar vortex on a p-plane is not quasi
stationary, and loses vorticity while drifting. 

ConcIusions 

In a series of dye experiments dipoles were initiated at different angles with 
respect of the isobaths. The trajectories of dipoles with an eastward component 
in their motion are in good agreement with theoretical predictions (Kawano and 
Yamagata, 1977; Makino et al., 1981). Dipoles with a westward component 
agree only in the perturbation enhancement mechanism but do not show the 8-
shaped pa th or the cycloid-like mode. 

Flow measurements show variations of the relative vorticity that are in 
qualitative agreement with the predictions of the point-vortex model and numeri
cai calculations. A functional relation is observed between vorticity and stream 
function, being linear at the first stages and becoming nonlinear at later stages. 

Generation of relative vorticity by advection of ambient fluid in meridional 
direction causes ETD'S to grow and to translate slower, while WTD'S become com
pact and fast-moving during the first stages (before the development of the tra
jectory instability). The rate of growth of the ETD is determined by the gradient 
of ambient vorticity (P). Astrong p-effect leads to the break-up of the ETD. Af ter 
the separation of the dipole into two monopolar vortices, each vortex drifts 
independently under the p-plane dynamics, namely: the cyclonic half moves in 
northwestern direction and the anticyclonic vortex travels to the southwest. 
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B.E. eremers and O.U. Velasco Fuentes 

Chaotic Advection by Dipolar Vortices on a Topographic p-Plane 

Abstract 

Dipolar vortices on a topographic p-plane meander around lines of equal 
ambient vorticity (i.e. equal fluid depth) . During th is motion exchange of mass 
takes place between the interior and the exterior fluid of the dipole as weIl as 
between the two dipole halves. This exchange is caused by a variation of the dis
tance between the vortices due to stretching and squeezing of the dipole as weil 
as by a variation of the strength of the vortices due to conservation of potential 
vorticity. The exchange process is simulated using a point-vortex model. The 
amount of mass exchange and the residence time of fluid particles is evaluated 
using recent techniques for transport in dynamical systems. 

Introduction 

The basic dynamics of dipolar vortices on the p-plane can be understood using 
a point-vortex model, with the vortices' circulations changing in order to 
preserve potential vorticity (see e.g. Velasco Fuentes and van Heijst, 1994a, 
hereafter called VFvH). Using this approach , it is found that the mot ion of the 
couple displays three regimes: (i) eastward meandering, (ii) westward cycloid
like trajectories, and (iii) non-propagating, 8-shaped trajectory. 

The gradient of the Coriolis parameter on the Earth can be mimicked in the 
laboratory by variations in the depth of a rotating fluid , when these variations 
are linear and small. This effect is usually referred to as the "topographic P
effect". On a topographic p-plane the direction of decreasing depth of the fluid 
corresponds to 'north'. VFvH studied analytically and experimentally the 
dynamics of dipolar vortices on a topographic p-plane. They found that the 
dipolar vortex meanders around isolines of ambient vorticity (i.e. lines of equal 
depth of the fluid), when the angle between the initial direction of the dipole and 
the 'east' direction is not zero. It is also observed th at during this meandering 
motion fluid is exchanged between the dipole and the surroundings as well as 
between the two dipole halves. 

In this particular case transport of fluid is dominated by a convective process 
so that the relative motions of fluid parcels is important. The study of particle 
mot ion ('Lagrangian' view) can be started if the velocity field of the flow 
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('Eulerian' view) is known for all times. Using the point-vortex approach, and 
given a particular set of initial conditions, the positions and strengths of the 
point vortices are known for all times. Therefore, the motion of individual par
ticles, which is far more complex than the motion of the couple itself, can be 
extensively analysed using recent developments in the theory of transport in 
nonlinear dynamical systems (Wiggins, 1992). In particular, some of these 
methods can be used to calculale physically measurable quantities such as the 
amount of exchange across certain boundaries and the residence times of par
ticles in chaotic regions of the flow. Rom-Kedar el al. (1990) used the latter 
approach to study chaotic particle motion due to a point-vortex dipole embed
ded in an an oscillating strain-rate field. This work should be consulted by 
readers interested in a detailed discussion of the techniques used in following 
sections. 

Theory 

The equations describing the trajectory of a fluid particle in an incompressible 
two-dimensional flow are 

dx 8'P 
- --
dI 8y 

dy 8 'P 
-=-
dl 8x 

( 1 ) 

where 'P is the stream function of the flow. This is a Hamiltonian system with 
'P playing the role of the Hamiltonian. If the flow is steady ('P time independ
ent) particle motions are integrable, the trajectories being simply the streamlines. 
Time dependent flows, however, can produce chaotic particle trajectories, at 
least in some regions of the flow. 

A dipolar vortex can be modelled, in a first approximation , by a coup Ie of 
point vortices of (initially) equal but opposite strengths KI = 1 and K 2 = - 1, 
separated by a constant distance d = 1. With dimensionless time defined as 
1* = 112n, the point vortices move along a straight line with a constant velocity 
Vo = 1. The stream function of the flow induced by this unperturbed dipole (with 
the vortices in y = ± d12) in a frame moving with the structure is 

where the correction term C = - y. 
With the models introduced in the following section, it will be necessary to 

write 'P=t/tu(x,y )+et/tp(x,y, I) and to change C accordingly to obtain a 
stationary frame; here, t/t urepresents the unperturbed , steady state and t/t p the 
time-periodic perturbation. 

For time-periodic flows a significant simplification of the description of par
ticle motion is achieved by using the Poincaré map - the map of the particle 
location (x (to), y (l o)) to the location one period later (x (to + T), y (l o + T)). For 
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e = 0, a point and its mapping lie on the same streamline. There exist two fIxed 
points p + and p _ corresponding to the front and rear stagnation points of the 
dipole, respectively. Both are of hyperbolic type so that there is a collection of 
orbits forming a line that approaches p _ as t ---+ + 00, called the stabie manifold, 
and a collection of orbits that emanates from p + (i.e. approaches p + as 
t ---+ - 00), called the unstable manifold. In the unperturbed case the unstable 
manifold of p + and the stabie manifold of p _ coincide and correspond to the 
separatrix (fIgure la). 

For e =1= 0 the fIXed points persist and the unstable manifold of p + smoothly 
emanates from p + as before, but in this case undergoes strong oscillations as it 
approaches p _. A fluid mechanical analogy illustrates the numerical computa
tion of the unstable manifold: a circle of tracers is placed around the stagnation 
point and as times progresses the small circle will be stretched in the direction 
of the unstable manifold. The stabie manifold is constructed in a similar way, 
but the integration now backwards in time. 

The structure which results from the intersection of the manifolds of the two 
hyperbolic points is called a heteroclinic tangle (fIgure 1 b). The intersecting 
manifolds create a mechanism for transport of fluid between the interior and the 
exterior of the vortex dipole in the following way. Note that the area ABCD in 
fIgure Ic maps to the area A'B'C'D'. This is because (i) the points A,B,C,D lie 
on (at least) one manifold and therefore they map to points on the same 
manifold; and (ii) the Poincaré map preserves orientation (see Wiggins, 1992). 
If the upper half of the trapped fluid is redefIned as that enclosed by p + C on the 

(A) (8) 

P P. 

Fig. 1. (a) Streamlines of an unperturbed point-vortex dipole. (b) The heteroclinic tangle in the 
perturbed case. The thick line is the unstable manifold (the observabIe structure in flow visualiza
tion) and the thin line is the stabIe manifold. (c) The transport mechanism in the heteroclinic 
tangIe. Region ABCD is mapped to A'B'C'D' (see text). 
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unstable manifold of p +, and Cp _ on the stabie manifold of p _ and p + p _ on 
the x-axis, then the area ABCD represents the fluid th at will be entrained in the 
next cycle. Similarly, the dotted area near Arepresents the fluid that will be 
detrained in the next cycle. Since the flow is incompressible, the area entrained 
is equal to the area detrained in every cycle. 

The exchange of ma ss can be evaluated directly from the discrete set of points 
defining the manifolds. Once a single lobe is identified the area follows from 
f1 = f x dy along AB-BA. This method is valid for every amplitude of perturba
ti on e. 

For small e, one can obtain an O(e) approximation for the area of a lobe by 
using the Melnikov function (Rom-Kedar et al. 1990). The area of a lobe is 
given by 

(3) 

where tOl and t 02 are two adjacent zeros of the Melnikov function M(to) (i.e. 
they correspond to adjacent intersections of the unstable and stabie manifolds). 
M(to) is defined as 

M(to) = rx 

II U(x,}t)) x ü(xu(t), t + to)11 dt 
• - cc 

(4) 

Here U=(8Ij1u /8y, -8Ij1u /8x) is the unperturbed flow; ü=(8Ij1p /8y, -8Ij1p /8x ) is 
the time-periodic perturbation; and 11· 11 denotes the magnitude of a vector. The 
coordinates of points belonging to the unperturbed manifold Xu = (xu(t), yu(t)) 
are expressed as a function of the parameter t. 

Analytical and numerical results 

Strengths perturbations 

As described by e.g. VFvH, the evolution of a symmetric point-vortex dipole on 
the p-plane is governed by a second order ordinary ditTerential equation for the 
dipole's direction of propagation. In the limit of sm all p-etTect with respect to the 
vortex circulation (Pr L 2 /K 0 ~ I) and small initial deviation from eastward 
propagation (Clo --+ 0), the following equations can be used for the vortex circula
tion (K), the meridional position of the dipole's centre (ç) and the direction of 
propagation (Cl) 

(5) 
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dç 
-=<X 
dt 

d<x = -2pç 
dt 

(6) 

(7) 

Initial conditions are ç(O) = 0, and <x(O) = <Xo. Therefore, the perturbation of the 
vortices' strengths is approximately given by: 

"I (t) = 1 - 8 I sin cot 

"2(t) = -1-81 sincot 

where 8 I = <Xo ftji, and co = ,j2ïJ. 

(8) 

(9) 

Because of the varying asymmetry of the vortices, the vortex pair neither 
moves along a straight line nor rotates around a fixed point. The motion of the 
vortex can be described as a rotation with varying angular speed 
a(t) = -281 sin cot around a point lying on the line defined by the two point 
vortices and located at a varying distance R(t) = (8 I sin cot) -1/2 from the dipole's 
centre. A steady stream function results from substitution of" I' "2 and the 
correction term c=a(t)[x2 +(y-R(t)f]/2 in (2). 

Because of the asymmetries present in the dipolar flow structure not only the 
outer manifolds, but also the middle manifold will break up. As a consequence, 
besides entrainment and detrainment of fluid, exchange of mass between the two 
dipole halves will occur. 

Two dimensionless parameters characterize the perturbation: the perturbation 
amplitude 8 land the ratio between the (dimensionless) perturbation period 

5 ~----------------~ 6 ~-----------------, 
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Fig. 2. Transport in the perturbed point-vortex dipole: (a) lobe area p (normalized by the pertur
bation amplitude e), and (b) exchange rate p. = F(y)/y as a function of y. The lines indicate the . 
Melnikov function calculations, and the markers denote results from direct numerical integration 
of the advection equations. 
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T = W -I and a timescale associated with the dipole's translation dl V. The latter 
parameter is defined to be y = (2P) -1 / 2 . 

The lobe area according to the Melnikov function is f.1 = el F( y) + O( ei), where 
F( y) is the numerically computed function shown in figure 2a. The dotted line 
represents the exchange of mass between interior and exterior and the broken 
line exchange bet ween the dipole's halves. In the same figure the markers show 
the lobe areas evaluated by direct numerical integration for el = 0.01 , 0.05 and 
0.1. 

Size perturbations 

The meandering trajectory of a dipolar vortex on a topographic p-plane causes 
the water column to be alternatingly stretched and squeezed. As aresuIt the dis
tance between the vortex centres will decrease as the dipole moves into deep 
water and increase as the dipole moves towards shallower water. This effect is 
modelled using the same point-vortex dipole but imposing on it a sine-like varia
tion of the distance between the vortices: d = do ( I + e 2 cos wt) . The point vor
tices have constant circulation Ko and -Ko , respectively. Because of symmetry 
about the x-axis the middle manifold remains unaffected and no exchange of 
fluid can occur between the two halves of the vortex dipole. 

In figure 2a the solid line represents the absolute value of the function F( y) 
obtained with the Melnikov function and the markers show the lobe areas 
(divided by the perturbation amplitude) obtained from direct numerical integra
tion of the advection equations for e2 = 0.01 , 0.05 and 0.1. 

Perturbation of the dipole's size produces stronger entrainment/detrainment 
than perturbation of the strengths. For strength perturbation, the exchange of 
fluid between the two halves of the vortex pair is more than the exchange of 
fluid between the interior and the exterior of the vortex pair up to y = 0.3. For 
greater values of y, the relation is reversed. For all three ways of exchange of 
fluid , the function F( y) increases with y. This can be understood because a larger 
period allows for more fluid to be exchanged. However, this behaviour changes 
for the exchange rate (mass exchanged per unit of time). As can be seen in figure 
2b, the exchange rate is maximal where F( y)ly is maximal. In the case of size 
perturbation, we found this to occur for y = 0.528 ± 0.001. For strength pertur
bation, the exchange rate between interior and exterior fluid is maximal for 
y = 0.386 ± 0.001 and the exchange ra te between the two halves of the vortex 
pair is maxima I for y = 0.189 ± 0.00 I. 

ParticIe transport 

All fluid detrained during the first cycIe is originally "interior fluid"; this is, 
however, not necessarily the case for later cycIes. Some of the detrained fluid will 
be "exterior fluid": fluid parcels originally located outside the dipole, later being 
entrained and finally, after a few cycIes are returned to the surroundings. 
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Fig. 3. (a) lntersection of detrainment (D 3 ) and entrainment lobes (E _3 ) provides information 
about residence times and transport of species (see text) (b) Fraction a of the detrainment lobe 
formed by "interior fluid", as a function of the number of perturbation cycles k. 

The determination of the amount of interior fluid that is detrained in cycle k 
is highly simplified by the knowledge of the lobe geometry. In particular by the 
intersections of the entrainment (E) and detrainment (D) lobes, as shown in 
figure 3a. A positive sub index indicates in which cycle, forward in time, the lobe 
will change the region; a negative subindex indicates the cycle, backwards in 
time, in which the lobe changed of region. The intersection of E - 3 and D3 th at 
will be detrained during the third cycle represents fluid that was located outside 
the dipole three cycles before. Thus in general Di - D i n E _ j gives the area of 
interior fluid that escapes the dipole in the k = i + j period of the perturbation. 
In figure 3b the fraction of interior fluid that is detrained after k cycles is shown 
for the case B2 = 0.1 and K = 0.15. 

Experiment 

For comparison, laboratory observations and a numerical simulation that 
matches the parameters used in the experiment are shown. For details on the 
experimental technique see VFvH. The experimental parameters are: period of 
the rotating table T = 11 s; fluid depth ho = 18 cm; and gradient of the sloping 
bottom is 0.04. With these parameters the topographic p-effect measured 
p=0.247 m - I 

S - I (see VFvH). In this experiment the dipole was started at an 
angle OCo = n/4. The angular frequency of the perturbations and the amplitude of 
strength perturbation can be computed directly from the experimental 
parameters: BI = OC o -Jïiji, Y = (2P) - 1/2; and the amplitude of the size perturba
tion is measured directly from the experiment, yielding 8 2 = 0.1. 

Three stages in the dipole's evolution are shown in figure 4. One lobe has been 
formed when the dipole reaches its northermost position (figure 4a) by de train
ment of fluid from the negative half (upper side in the picture). A second lobe 
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Fig. 4. The formation of lobe-like structures in the fluid transported by a dipolar vortex on a 
topographic p-plane. Experimental images (a)-(c) and numerical calculations (d)-(f) are shown at 
T/4, T/2 and 3T/4 , with T the period of the dipole's oscillatory motion. 

is formed on the negative half when the dipole returns to its equilibrium position 
(figure 4b). Both lobes are stretched along the tail (figure 4c). 

The deformation of the patch of dye is simulated numerically by following the 
evolution of the initial separatrix. In figure 4d-4f we can see the deformation of 
the separatrix in a frame moving with the vortex pair at stages corresponding 
with the experimental figures. While the distance between the two vortices 
increases and the negative vortex becomes stronger, fluid is entrained into the 
dipole and begins to circle around the negative vortex (figure 4d). Detrained 
fluid is left behind from the positive half of the vortex dipole and forms a long 
tail. After this stage fluid is also entrained into the positive vortex (figure 4e) and 
fluid is detrained from the negative half, forming a second lobe (figure 4f). 

Qualitatively, similar features can be recognized such as entraÏnment and 
detrainment of fluid and the associated formation of lobes. Note that the long 
tail in the experiment is formed during the generation of the dipolar vortex and 
is not primarily a result of fluid detrainment. In general, not all the dye lies 
initially within the vortex (see VFvH). In the numerical simulation, however, the 
advected line corresponds with the original separatrix. 

Conclusions 

The exchange of fluid induced by a dipolar vortex on a topographic p-plane is 
investigated. The dipole meanders around lines of equal ambient vorticity if 
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it initially travels transversally to those lines. During the meandering, the dipole 
shows a variation in size (due to squeezing and stretching as the dipole moves 
between the shallow and deep sides of the tank) and a variation in the intensity 
of the individual vortices (due to conservation of potential vorticity). Con se
quently there is a continuous exchange of mass between the interior and the 
exterior fluid of the dipolar vortex, and between the two dipole halves. 

The two exchange mechanisms have been studied independently using a 
point-vortex model. which has been shown to describe reasonably weil the 
meandering of the dipole (see VFvH). The exchange of fluid due to the strengths 
perturbation is studied in the linear limit (a.o smalI) of the modulated point-vor
tex dipole and the effect of size perturbation is studied by prescribing a periodic 
variation of the distance between the point vortices. 

Recent developments in the theory of transport in dynamical systems (lobe 
dynamics, see Rom-Kedar et al. 1990) have been applied to these particular 
problems. For small amplitudes of perturbation the area of a lobe evaluated 
using direct numerical integration corresponds weil with the results obtained 
using the Melnikov function. 

For equal amplitudes of perturbation (i.e. the same percentual variation with 
respect to the unperturbed value), the size variation causes more exchange of 
fluid than the variation of strength. 

Although the total exchange of fluid increases with increasing perturbation 
period, the exchange rate shows a maximum for aspecific value of the period of 
perturbation. This value is different for each mass exchange mechanism. 

The analysis of the transport of species (particJes with a particular origin, e.g. 
interior or exterior regions of the dipole) is simplified by the knowledge of the 
lobe geometry. For a specific set of parameters, this is illustrated by the com
putation of the fraction of detrained fluid that was originally within the dipole. 

Numerical simulations of the deformation of the separatrix using size and 
strength perturbation is compared with laboratory observations of dye patterns 
produced by a dipolar vortex on a topographic p-plane. Good qualitative agree
ment exists. The observed differences are likely due to: (i) the discrete represen
ta ti on of the original vorticity distribution (ii) the absence in the model of 
relative vorticity generated by advection of ambient fluid . 
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Gordon E. Swaters 

The February 1989 Pacific 810ck as a Coherent Structure 

Abstract 

Throughout the latter part of January and most of February 1989 a large-scale 
intense blocking event occurred over the Northeast Pacific Ocean. During its 
lifetime the block exhibited two distinct spatial configurations corresponding to 
Omega and dipole shapes, respectively. A time series of scatter diagrams of 5-
day-averaged 500 mb geostrophic stream function versus potential vorticity is 
computed. It is suggested th at both the Omega and dipole forms may 
correspond to free modes. It is shown that as the block develops the contribu
ti on of the gravest. quasi-barotropic mode dramatically increases and forms the 
dominant mode. 

Introduction 

Over the past decade, attempts have been made to model atmospheric blocking 
using idealized solutions of the quasi-geostrophic equations that can persist for 
times comparable to blocking durations. Because the timescale associated with 
a block (on the order of about 10 days; see Rex (1950)) and the horizontal 
amplitudes are larger than that typically associated with transient barocJinic dis
turbances, areasonabie conjecture is that blocking may correspond to the 
atmospheric attempting to configure itself into a localized, fini te-amplitude free
mode that is rather stabie to smaller eddy disturbances. In quasi-geostrophic 
dynamics, a free-mode is characterized formally by a functional relation 
q = q( ljJ) , where q is the potential vorticity and ljJ the stream function. 

One way of testing wh ether or not a particular observed flow pattern is 
developing into a free-mode is to examine the geostroplzic scatter diagrams for 
the flow (see Read et al. , 1986). Scatter diagrams are simply two-dimensional 
scatter plots of the observed stream function versus the observed potential vor
ticity from many points within a given geographical region at a given height. 

Read et al. (1986) presented a technique for computing the area associated 
with a given scatter diagram. For a free mode, the scatter plot collapses onto a 
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Fig. I. Mean 500 mb geopotential height [dam.] ror February; (a) climatological average; 
(b) February 1989. Adapted rrom Canadian Meteorological Centre, MOllthly Reviell', May 1989. 
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curve, and the area must be identically zero because the integrated or net flux 
of vorticity is zero. The observed scatter diagram area can therefore be viewed 
as a measure of the degree of departure of the observed flow from a quasi
geostrophic free-mode state. 

Butchart et al. (1989) presented a theoretical and diagnostic study of an 
atmospheric block over central Europe. One of the most important conclusions 
of their study was the c1ear indication of the development of a simple non
analytic pattern in the scatter diagrams which had a striking resemblance to the 
scatter diagram for a geostationary modon solution. The principle purposes of 
this extend abstract is to very briefly present the results of a similar study for a 
blocking episode over the Northeast Pacific Ocean (see Figure I). The reader is 
referred to Ek and Swaters (1993) for a complete description of our methods, 
analysis and conclusions. 

The time series of 5-day-averaged scatter diagrams that we present shows a 
tendency for the scatter diagram area to decrease as the block develops; strongly 
suggesting that the blocking configuration observed is more free-mode like than 
either the pre- or post-block configurations. The baroclinic evolution of the 
block is also examined. Our results show a tendency toward a quasi-barotropic 
configuration as the block develops. This barotropic configuration is maintained 
throughout the life of the block. However, immediately prior to the formation 
of the dipole block we can identify a brief period with a slight increase in 
baroclinic activity associated with a transient cyclone. ft is interesting to 
speculate that this baroclinic activity is associated with the eddy-straining pro
cess proposed by Shutts (1983, 1986) as a mechanism for driving atmospheric 
blocks into a dipole configuration. 

The data set 

The data (supplied by the Canadian Meteorological Centre) consist of objec
tively-analyzed archived data on a latitude-longitude grid, at a two-degree spac
ing. The full grid extends from 300N to 800N and westward from 200W to l200E 
(see Figure 2). Five levels were used: 850, 700, 500, 400, and 250 mb. At each 
level, 3 data fields were used: The geopotential height of the pressure surface 
denoted as Z ; the temperature denoted as T; and the dew-point depression given 
by T - Td' There are norrnally four data-sets for each day (one for every 
6 hours), running for 39 days from 21 January through to 28 February, 1989. 
The initial preparation consisted of time-averaging (at each grid point) each 
data field, over the four synoptic periods per day. This smoothed out the 
smallest-scale disturbances. 

The geostrophic stream function was ca\culated at each grid point (i,j) as 
ljIi.j =/Ü' gZi,j' where/o is the Coriolis parameter at 60oN, g is the gravitational 
acceleration, and Zi,j is the geopotential height of the isobaric surface. The verti
caI component of absolute vorticity was ca\culated as V 2 Ijl i,j + J, using a centred 
tinite difTerence scheme for the Laplacian term. We used a P - plane approxima-
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block's interior. 

tion throughout our work . The baroclinic stretching term in the potential vor
ticity was computed using a finite-difTerence approximation. 

We applied first a spatial and then a temporal smoother to the vorticity and 
stream function fields. The spatial smoother is a simple 5-point smoother, 
weighted to take into account the variabIe zonal grid spacing. The fields were 
then time-averaged over 5 days, with equal weights. All calculations in this 
paper begin with the 5-day mean fields, each centred on the date listed. 

Throughout this study, the region occupied by the block was approximated 
by a horizontal box-shaped area, bounded by the latitudes 46°N and 70o N, and 
longitudes 114°W and 166°W. This box-shape was subjectively chosen to sur
round, as c10sely as possible, the portion of the block having c10sed stream func
tion and vorticity con tours , on as many days as possible. 

Scatter diagrams and free modes 

A means of testing the applicability of free modes to blocking originates with an 
interesting result of Read et al. ( 1986). Suppose that we pick an arbitrary, simple 
horizontal curve enclosing a region ·~ ( x . rl ' in physical (x, y) space. The net flux 
of vorticity across the curve, 8.IJf(x. y)' due to the geostrophic wind, can be writ
ten as 

( 1 ) 

where Dg == Î< x V'" is the geostrophic wind, 1Î is the o~utward unit normal vector 
to the curve 8.IJf(x. I" di is the difTerential arc-Iength , k is the unit vector pointing 
vertically upward, and "1= (8/8x, 8/8y ). 

A positive flux entails a net export of cyclonic vorticity. We can apply the 
two-dimensional divergence theorem to (1 ) to get 

F" = f f V· [q(Î< x V"')] dx dy 
.-1II .\' • .1'1 

= f f J("" q) dx dy. 
.)flx . .1' 1 

(2) 
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The second integral in (2) may be directly transformed into an integral over the 
corresponding region :i(,/J,tf)' in (tjJ, q) space as follows: 

Fq=fJ sign[J(tjJ,q)]IJ(tjJ,q)ldxdy, 
,'*1.-.: . .1'1 

= f f sign[J(tjJ,q)] dtjJdq. 
.RI~.ql 

(3a) 

The sign of the Jacobian is positive if the curve in (tjJ, q) space is cIosed ofT in 
the same sense as the corresponding (x, y) space curve, which we take to be 
counter-cIockwise. The sign is negative for (tjJ , q) curves that are cIosed ofT in the 
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clockwise sense. Altematively, we can relate the area of the qN - scatter 
diagram, denoted by A (0/1, q)' to the Jacobian as follows: 

A (0/1, q) == f f dt/t dq 
91(1/1. q) 

= f f IJ(t/t, q)1 dx dy. 
9l(x.y) 

(3b) 

In the case of a free mode formally defined by q = q( t/t), we have J( t/t, q) = 0, and 
both the area of the (t/t, q) region, and Fq, must vanish. It is evident that either 
ofthe two quantities, Fq or A(o/I,q), may be thought ofas a measure ofthe depar
ture of the system from any free mode of the form q = q( t/t). 

__ 70 
Z 
Q) 60 
"0 
::::l 
.E 50 
co 

.....J 40 

<\11500>5' <q 500>5 

30 L=~~~~~~~~~~L-~~~ 

120E 

<\11500>5' <Q500>5 
80 

-- 70 
Z 
Q) 60 j 
"0 
::::l 
+-' 
+-' 

50 
co 

.....J 40 

30 
120E 160E 160W 120W 80W 

Longitude 
Fig. 4. Five-day mean 500 mb geostrophic stream function, '" (solid contours), and potential vor
ticity, q (light dashed contours ). Contour intervals are 6 x \06 m2 s - 2 for '" and 2 x \0 -s S - 1 for 
q. a) Feb. 5, b) Feb. 20, 1989. 

212 The February 1989 Pacific block as a coherent structure 



In Figure 3 we present time-series of the computed net vorticity flux using the 
cartesian representation (1) and the qN - scatter diagram area representation 
(3a), respectively. The two quantities are in quite good agreement, as they 
should be, from which we conclude th at it is possible to calculate the net vor
ticity flux using either representation as suggested by Read et al. ( 1986), and that 
our data are reasonably consistent. Repeating the calculations using a slightly 
larger box (Ek, 1992) produces nearly identical results, suggesting that the sen
sitivity to our choice of boundary, in this case, is not too severe. 

The time series of the net flux c1early shows that it remains near zero va lues 
for the lifetime of the block. This suggests that the block is very near to an iner
tial free mode of the quasi-geostrophic equations, in the geostationary reference 
frame. The vorticity flux time series does not seem to distinguish between the 
dipole and Omega blocking configurations. 

Based on the complete series of 5-day mean 500 mb charts, we may subjec
tively consider the block to have evolved between two states. From about 
February I to 14, the flow pattern had the familar 'Omega' (Q) shape (see 
Figure 4a). During the second, shorter period, February 18 to 21, shortly before 
it broke down, the block developed a discernible dipole-like form (see 
Figure 4b). The full series of 500 mb charts is given in Ek (1992). 

8aroclinic structure 

In order to study the baroclinic evolution of the block we computed a time
series of spectra I coefficients for the blocking stream function (defined to be the 
total dynamic stream function minus the stream function associated with the 
background zonal flow) associated with the orthonormalized vertical modes 
given in terms of pressure coordinates by (see Ek and Swaters (1993) for details 
of the derivation) 

d (I dIP,,) ._ > -d --d +jo -( )'n-AO)'P,,=O, 
P ar P 

(4a) 

d'P" dU(p)/dp 
-- 'P =0 
dp U(p) " , 

(4h) 

onp=PI (250mb) andp=Ph (850mb), respectively, and where 

Ao(p) == [J~ ~ (~ dU) - pJlu, 
dp ar dp 

(4c) 

where U = U( P ) > 0 is the eastward background zonal flow, and where ar, j~, 
and pare the stat ic stability, and constant Coriolis and beta parameters, respec
tively. 

In order to be able to compare the average contribution of each mode to the 
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vertical structure of the blocking eddy, we computed the root-mean-square 
(RMS) value of each coefficient, defined as 

[
~( N POinI S ) [a (x- y)] 2J1 /2 

<an ) RMS= L..
x

. )' N n
- , , 

where the sum is understood to be over each horizontal grid point and an(x, y) 
is the spectral coefficient associated with the nih vertical mode. 

Figure 5 presents a time-series for the first four root-mean-square coefficients. 
We can see that as the block develops, there is a significant increase in the 
relative contribution of < ao) RMS suggesting a quasi-barotropic configuration. 
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G.F. Carnevale + and R.C. Kloosterziel o 

Stability of Isolated Compound Vortices 

Abstract 

The stability of the members of a dass of isolated vortices is discussed. Two 
well-known examples of sta bie isolated flows are the dipole and tripole. The 
existence of an even more complicated stabie isolated flow is demonstrated here. 
Like the dipole and tripole, it is also a compound vortex and consists of a core 
vortex surrounded by three satellite vortices of opposite sign. The core of this 
'quadrupole' is triangular in shape and the satellites are semicircular. The 
stability of th is flow is inferred from high-resolution numerical simulations and 
analysis of point-vortex modeis. Further consideration suggests th at all higher 
order n-poles will be unstable to merger of the satellite vortices. 

Introduction 

Isolated two-dimensional vortices are models for the localized flow structures 
that are prevalent in geophysical flows. By isolated we mean a vortex whose net 
circulation is zero so that the velocity field induced by the vortex falls ofT faster 
than l lr in the far field , where r is the di stance measured from the center of the 
vortex. Such vortices are created, for example, by topographic forcing of islands 
or mountains, instabilities of major current systems such as the Gulf Stream, 
and strong localized wind forcing on the ocean surface. Two-dimensional models 
provide a first approximation to such vortices and have been extensively studied. 

A simp Ie model for circularly symmetric isolated flows consists of a core of 
single-signed vorticity surrounded by an annulus of vorticity of opposite sign, 
with amplitudes such that the total circulation vanishes. There have been 
numerous studies of the stability and evolution of such vortices. If the annulus 
is sufficiently narrow, so th at the fall ofT of vorticity from its maximum to mini
mum value is sufficiently steep, then the flow is unstable. Numerical simulations 
and laboratory experiments (cf., Carton & McWilliams 1989, Kloosterziel & van 
Heijst 1991 , Carnevale & Kloosterziel 1994) show that under these conditions 
the vorticity regions can break up and reassemble into more complex, yet more 
stabie, structures. One common scenario is the formation of a tripole. In that 
case the core becomes elliptical in shape while the annulus dumps and separates 
into two distinct vortices th at remain as satellites of the core. The entire com-
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pound vortex simply rotates, as in solid-body rotation, at a constant angular rate 
about the centre of the core. Another common scenario, called dipole splitting, 
results if the initial profile is even steeper than for the case which produces the tri
pole. The instability then proceeds initially as in the case of tripole formation, but 
eventually the satellites shear apart the core, which then rolls up into two new vor
tices. This results in two dipoles that propagate away from each other. 

The dipole consists of two oppositely-signed vortices that adv eet each other, 
and it appears to be a very stabie structure. The well-known analytic model for 
this flow was given by Lamb (1932), and many writers, therefore, refer to it as 
the Lamb dipole. Recently, reference to an earlier publication (Chaplygin, 1903) 
of this analytic model has been made, but we have not yet seen a copy of this 
work. t This dipole model has been of considerable interest since it can be used 
to represent various geophysical phenomena such as mushroom vortices (cf., 
Federov 1989 j . Furthermore, this dipole has a generalization to a similar 
isolated flow on the p-plane, called the modon, and as such has generated con
siderable interest due to its possible relevanee in the phenomenon of 
atmospheric blocking (cf. , Stern 1975, McWilliams 1980). In numerical simula
tions and laboratory experiments, the dipole appears to be very stabie. 
Diagrams summarizing the stability of the modon to various types of perturba
tions have been published by Me Williams et al. (1981) and Carnevale et al. 
( 1988a). It is hard to give a precise stability range because much depends on the 
exact form of the perturbation, but it seems th at modons are most sensitive to 
forcing on length-scales comparable to their own diameter and th at perturba
tions of greater than 10%, relative to its unperturbed strength , are necessary for 
destruction. The usual instability by which the modon is destroyed involves a 
separation of the two regions of oppositely-signed vorticity (Carnevale et al. 
1988b). Similar studies of the Lamb dipole show essentially the same results as 
in the modon case (unpublished). Although there have been many attempts at 
proving the stability of dipoles, an uncontested proof remains elusive (cf., Car
nevale et al. 1988c, Nycander 1992). 

An even more complicated isolated flow is the tripole. It consists of a central 
core of vorticity of one sign and two satellites of opposite sign, all co-linear and 
all rotating at constant rate about the center. Although this compound vortex 
appeared in a published numerical simulation of turbulence (Sadourny, 1985), it 
was not noted in th at paper or any other, to our knowiedge, until the work of 
Legras et al. (1988), in which the tripole was c\early pointed out as being a very 
stabie element in an otherwise turbulent flow. Publications of laboratory work 
which also showed this tripole quickly followed (van Heijst & Kloosterziel, 
1989). In that work, the tripole was produced as a result of the breakdown of 
a circularly symmetrie flow as discussed above. Oceanic observations of a tripole 
were reported by Pingree & LeCann (1992). Laboratory studies (van Heijst et 
al. 1991) and numerical simulations (Polvani & Carton 1990) attest to the 

t Note added in proof: Chaplygin's work is described in a recent paper by Meleshko & van Heijst 
(1994), J. Fluid Mech . 272,157- 182. 
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stability of these structures. Unfortunately, there is no analytic model of tripoles 
with continuous vorticity. Models using three point vortices have been successful 
at simulating many of the properties of the tripole under external perturbations, 
and nonlinear stability of this three point model with respect to displacements 
of the satellites can be proven (Kloosterziel, 1990). 

At this point, it is natural to consider whether there may be a hierarchy of 
more complicated sta bie n-poles consisting of a core vortex surrounded by 
ns = n - 1 satellites of opposite sign. In fact , laboratory experiments on the 
instabilities of circularly symmetric vortices in a rotating tank (Kloosterziel & 
van Heijst 1991) have shown the natural evolution of a quadrupole consisting 
of a triangular core vortex surrounded by three semi-circular satellites of vor
ticity of opposite sign. Although never observed in other than a transitory state 
in the laboratory, subsequent numerical simulations and point vortex mode Is led 
us to believe that this kind of structure can also be stabie if prepared in a suf
ficiently symmetric way. This is further discussed in the next section. 

As for the existence of compound vortices even more complicated than the 
quadrupole, our investigations indicate th at there are none. The instability of the 
higher-order structures is discussed in a separate section below. 

The quadrupole or triangle vortex 

In rotating-tank experiments, the quadrupole is observed to break apart rather 
rapidly af ter it has formed (see Kloosterziel & van Heijst 1991 , Carnevale & 
Kloosterziel 1994). The instability begins with two of the satellites moving closer 
together. One of these satellites moves in between the other satellite and the 
core. The two satellites are then close enough together to merge into a single 
vortex in the same way that two like-signed vortices merge in isolation (cf. 
Melander et al. 1988). This results in a transitory tripole stage, which then 
proceeds to double-dipole splitting as described above. Orlandi & Van Heijst 
(1992) we re able to capture this formation and transitory existence of the quad
rupole in numerical simulations. This encouraged us to explore more fully the 
mechanisms involved in this evolution, using spectral simulations and point-vor
tex modeIs. 

Orlandi & van Heijst (1992) used the following vorticity profile as their 
unperturbed basic state: 

(1) 

where r is the radial di stance from the centre of the vortex. Distances have been 
non-dimensionalized by L , the horizontal length-scale of the vortex, and 
velocities by V. This is the same profile as used in several earlier studies (e.g., 
Carton & McWilliams, 1989). Note th at increasing iX. makes the vorticity in the 
core more uniform, the width of the annulus smaller, and the slope of the vor-
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Fig. 1. Vorticity contour plot of a quadrupole vortex. Thick (thin) contours indicate positive 
(negative) relative vorticity. The contour level values are chosen to have increments of 
AC = 0.2 S - I. The dimensional velocity and length scales used in the initialization were U = 20 cm/s 
and L = 11 cm, and the length of a side of the computational domain was 90 cm (although here 
we have only plotted the field over an inner square of 54 cm on a side). 

ticity as a function of r steeper between the core and annulus. We will refer to 
ex as the steepness parameter. This family of profiles is a reasonable model for the 
types of isolated vortices created in the tank. Orlandi & van Heijst (1992) used 
an initial condition in which the basic state in equation (1), with ex = 5, is pertur
bed with a randomly generated vorticity field defined by 

, (-(exr" -2)2) 
, = 'I exp 2a2 - c. (2) 

Here '1( x , y) is a random number unifonnly generated on the range ( -'10,110) 
for each grid-point, and c isa constant chosen to ensure that the spatially 
integrated value of ç (i.e. the circulation of the perturbation) vanishes. This per
turbation is concentrated at the radius where the unperturbed vorticity field 
changes sign, and a can be adjusted to make the perturbation penetrate the core 
and annulus to any desired degree. 

In Camevale & Kloosterziel (1994), we examined the stability of the vorticity 
distribution (1) for a range of ex-values, subject to perturbations of single 
azimuthal modes given by 

( 
-(exr" - 2)2) 

ç = p cos(mO) exp 2a2 ' (3) 

where p is a constant amplitude and m is the mode number. The results of a 
linear stability analysis showed that the behaviour observed in the laboratory 
experiments and the random initial condition simulations could be understood 
as a combination of the simultaneous growth of both azimuthal modes m = 2 
and m = 3. Furthennore, setting ex = 6, we found that if modes other than mode 
3 are sufficiently weak initially, a symmetric quadrupole can fonn and persist. 

In a simulation with an initially pure mode-3 perturbation and with viscosity 
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appropriate to the rotating-tank conditions used in the laboratory experiments, 
we found that a fairly symmetric triangular core forms by the end of the first 
rotation. It also takes about one rotation for the triangle to form in the purely 
inviscid case but the rotation period is about 15% shorter. Figure I shows the 
triangle structure in the viscous simulation after about two full rotations. The 
fact that it is not perfectly three-fold symmetric is due to asymmetries associated 
with the finite resolution of the grid which have amplified during the evolution. 
This quadrupole persisted unchanged in form although becoming somewhat 
broader in scale due to the ellect of the Laplacian diffusion. During the course 
of the simulation the amplitude of the vorticity field decayed by three orders of 
magnitude under the influence of Ekman drag and molecular diffusion. This 
indicates that it should be possible to create a triangle vortex in the laboratory 
which would simply decay in amplitude. 

To test the inviscid stability of the quadrupole, we began with the quadrupole 
shown in figure I as an initial condition and simulated forward in time with no 
viscosity. In figure 2, we show the initial stream function in the reference frame 
co-rotating with the quadrupole. If the state were perfectly stationary, then these 
streamlines would be aligned with those of the vorticity. Since there is some dif
ference, this quadrupole deviates from an ideally symmetric one that would be 
steadily rotating; nevertheless, we followed the inviscid evolution of this vortex 
for over twenty of its rotations without observing any evidence th at it would 
break down. This was verified at both resolutions 64 x 64 and 128 x 128. 
Although there was some variation of its form over that long period, the basic 
structure did not change significantly. Thus it appears possible that, for inviscid 
flow, the symmetric quadrupole is a stabIe structure. The difficulty in finding a 
stabIe triangle vortex experimentally or in the corresponding random-perturba
tion simulations must be due to the fact th at it is only sta bIe for perturbations 
with amplitude below some small threshold value. 

To examine how large the tolerance for perturbations is, we performed two 
different kinds of stability tests. In the first , we perturbed the strength of the 

Fig. 2. Stream function contour plot of quadrupole vortex. The stream function is evaluated in 
the co-rotating frame with rotation period 81 s. The contour increment was taken as A tp = k 2 A( , 
where k = j: /a with j: = 3.83 and where a = 12 cm is approximately the radius of the semicircular 
satellites. 
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satellite vortices while leaving the inner triangular core unperturbed. This type 
of perturbation was suggested by an analysis of point-vortex models and by 
experience from the experiments and simulations. It seemed that the triangle is 
sensitive to variations in the strengths of the outer satellites. Such asymmetries 
would lead to variations in the rate of revolution of the satellites about the core 
and thus permit a collision of a pair of satellites. The perturbation was prepared 
by taking the state shown in figure 1 and multiplying the vorticity field of the 
satellites by the factors 1 + b, 1 - b, I, respectively, in one set of experiments, 
and by factors 1 + b, 1 - b/2, 1 - b/2, in a second series. All of the stability 
simulations were run with no bottom drag and no Laplacian viscosity; however, 
in order to avoid the build up of enstrophy in the smalle st scales during the long 
runs, hyperviscosity was used. 

In figure 3, we plot the time it takes until a merger occurs between two of the 
satellites in each of these series of experiments. The time is given in units of the 
rotation period of the unperturbed vortex and the simulations were terminated 
after 20 rotation periods even if no breakdown had occurred. For perturbations 
less than 2 percent, the triangle remains intact for more than 20 rotation periods. 
There is a steep fall off of the time to merger or breakdown between perturba
tions of 2 and 4 percent. Defining a stability boundary based on simulations 
requires some arbitrary choice of how to define the sta bie regime since numerical 
noise will eventually contaminate the results. For practical purposes, we can 
take our stability boundary to be approximately where the lifetime, as a function 
of the perturbation amplitude, becomes very large. Thus the stability boundary 
is around 3 percent. This is much smaller than the rough estimate of about 10% 
for dipoles as mentioned above. 
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Fig. 3. Stability plot for the quadrupole. We show the time to merger of two of the satelIites for 
the perturbed triangle vortex as a function of the strength of the perturbation. The data points 
marked by asterisks (circles) correspond to the case in which the initial satellite vortex strengths 
are multiplied by 1+15, 1-15, I (1 +15 ,1-15/2, 1-15/2). The merger time is expressed in units of 
the unperturbed vortex rotation period (81 s). 
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In the second kind of stability study, we added a randomly generated 
homogeneous isotropic vorticity field to the vortex shown in figure 1. This per
turbation field was created by adding contributions from all wavevectors with 
wavenumbers between two fixed limits, ko ~ k l , in such a way that the energy 
spectrum of the perturbation was independent of wavenumber in that band. The 
real and imaginary parts of the complex amplitude for each wave number were 
generated from a Gaussian distribution. The perturbation amplitude is measured 
as the ratio of the rms velocity of the perturbation to the rms velocity of the tri
angular vortex. The rms averages are taken only over the area within an 
imaginary boundary of an idealized structure consisting of the triangle surroun
ded by three semicircles. The length scale of the perturbation is defined as 
À. == LB!(L,iZ), where L B is the size of the periodic computational box, L,j = 2a 
is the length of one side of the triangle vortex, and f = (k I + ko)!2. Thus the 
value À. = 1 corresponds approximately to the scale of the triangular vortex. The 
circles on the plot in figure 4 indicate the simulations in which the triangle vor
tex survives for more than ten rota ti on periods, and the asterisks indicate the 
simulations in which the triangle breaks up before that time limit is reached. 
Again the definition of a stability boundary is somewhat fuzzy. But we may con
clude that the triangle vortex is most unstable to perturbations of length scale 
close to its own, and the minimum strength of the perturbation needed to 
destabilize it is about 3 percent measured in rms velocity. The structure appears 
very stabIe to large-scale perturbations, which for the most part simply advect 
it, and also to small-scale perturbations, which are quickly sheared out to even 
smaller scales to be eventually dissipated by hyperviscosity. 
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Fig. 4. Stability plot for the quadrupole. The graph shows the results from a stability study in 
which a random velocity field of length scale À. and amplitude V rms was added to the triangle vor
tex. Asterisks mark the experiments in which merger occurred between two of the three satellites 
before ten rotations periods of the unperturbed structure had elapsed. Circles mark those simula
tions in which the vortex system was still intact after ten rotation periods. The perturbation 
amplitude V rms is given in multiples of the rms velocity of the triangle vortex, and À. is defined so 
that À. = I corresponds to the size of one side of the triangle vortex (see text). 
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Higher order n-poles 

Since the mode 3 instability of the initially circularly symmetric vortex leads 
through nonlinear saturation to the triangular vortex, we went on to test 
whether the mode 4 instability would lead to a square vortex. We performed a 
series of experiments with values of ex running from 3 to 8, both with and 
without viscosity. To the unperturbed state we added a perturbation as defined 
by equation (3) with azimuthal wavenumber 4 only, with amplitudes varying 
from Ji = 0.1 to 0.5 and with a length-scale (J = 1 in the initial condition. A 
further exploration of the parameter space was not performed since we found 
that these somewhat arbitrary choices did lead to the formation of square vor
tices for ex> 5. For example, in figures 5 and 6, we show the vorticity and stream 
function plots of a square vortex which formed for a steepness parameter ex = 8. 
The simulation which produced this vortex was run with Ekman decay time and 
molecular viscosity set to the values that agreed with our laboratory experiment 
that produced quadrupoles ( i.e., TE = 132 s and v = .01 cm 2/ S). The basic struc
ture developed by time t = lOs and by time 72 s, the structure reached the state 
shown in the figure. The vorticity distribution is shown in figure 5 and the 
stream function, in the co-rotating frame of the vortex system, is given in 
figure 6. 

In all the simulations in which the square vortex formed, the structure broke 
down before at most 3.5 rotations were completed. The longest-lived square vor
tex was achieved for ex = 8, starting with a perturbation amplitude of Ji = 0.5, 
with only hyperviscosity dissipation acting. In all cases, these square vortices, 
which have satellites of equal strength, broke down through the simultaneous 
merger of their satellites in two pairs on opposite sides of the square core. 

In figure 7, we show the instability that destroys the square vortex. The condi
tions for the simulation were again set to match those in our rotating tank 
experiments. The initial vortex in this simulation was created with ex = 8, and a 

Fig. 5. Vorticity contour plot of a square vortex. Thick (thin) contours indicate positive 
(negative) relative vorticity. The contour level values are chosen to have increments of A' = 0.3 S - I (other parameters are as in figure I). 
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Fig. 6. Stream function contour plots of a square vortex. The stream function is evaluated in the 
co-rotating frame with rotation period 44.8 s. Beyond a certain value, the high level con tours were 
not drawn because of 'bleeding' between the Iines. The contour increment was taken as 
.1 lP = k 2 .1(. where ka = J: and u = 8.3 cm is approximately the radius of the semicircular satellites 
(other parameters are as in figure I). 

o 

Fig. 7. Vorticity contour plot showing the evolution of the square vortex. For this simulation we 
used a kinematic viscosity and bottom drag with an Ekman decay time typical of the values 
corresponding to our rotating tank experiments. Thus this simulation demonstrates the possibility 
of producing a transitory square vortex in the rotating-tank under conditions similar to those in 
which the triangle was produced. The dimensional velocity and length scales and box size are as 
in figure I. Thick (thin) Iines represent positive (negative) contour levels. Panels are ordered from 
left to right, top to bottom, corresponding to times t = 0,80,130, and 140 s, and they have contour 
value increments of .1( = 0.8, 0.4, 0.12, and 0.11 s - 1, respectively. 
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wavenumber 4 perturbation of amplitude J.1 = 0.125. The square vortex formed 
after about 10 seconds. Unlike the triangle vortex which lasted indefinitely under 
the same conditions, th is square vortex broke down after about two and a half 
rotations. The double satellite merger begins in the lower left panel. This led to 
an intermediate tripole state (lower right panel) which then broke down through 
the familiar double dipole instability. We also performed simulations in which 
the square vortex shown in figure 5 was perturbed by strengthening one satellite 
while correspondingly weakening another to preserve the total circulation. In 
those cases, only two satellites merged at first , leading to a temporary triangle 
vortex. Then another merger took pi ace leading to the tripole state, and then 
finally the double-dipo1e instability took over. From these results , we conclude 
that it should be possible to observe a square vortex emerge from a nearly cir
cularly symmetric vortex in rotating-tank experiments if the initial perturbation 
is made sufficiently close to a pure mode-4 perturbation. However, it is also 
clear that it would only appear as a transitory state. 

We have also been able to create a pentagon vortex in a numerical simulation 
by a wavenumber-5 perturbation on an ex = 8 profile. Although strong satellites 
do form rapidly, the structure breaks down af ter executing only about half a 
rotation. The breakdown began with the nearly simultaneous merger of two 
pairs of satellites which produced a roughly triangular system. Another merger 
followed , producing a tripo1e state. The tripole finally broke up into a dipole 
and monopole. 

Point - vortex models 

Finally, we turn to the stability of the higher-order geometrical vortices, the 
square, the pentagon, etc., from the point of view of point-vortex modeis. 
Specifically, we consider here only the zero-circulation , steadily-rotating con
figurations , consisting of n , = n - 1 equal strength point vortices symmetrically 
placed on a circle centred on a point vortex of opposite sign. It can be shown 
that the case n = 3, a model for the tripole, is nonlinearly stabie to displacements 
(Kloosterziel 1990), and in Eckhardt (1988) it is shown th at the case n = 4, the 
model of the triangular vortex, is also nonlinearly stabie. Morikawa & Swenson 
(1971) performed a linear stability analysis on these models for all n. The pertur
bations they considered were sm all displacements in the initial positions. Consis
tent with the later nonlinear stability results, they found that the cases n = 3 and 
n = 4 are linearly stabie, but more importantly, they proved that for all cases 
n ~ 5 the configurations are linearly unstable. For the cases n = 5 and n = 6, the 
models of the pentapole and hexapole, we have performed simulations that show 
th at a I % or less perturbation in the radial position of the satellites away from 
symmetry will result in the close approach of two of the satellites within one 
rotation period. This is the same form of instability th at led to the close 
approach and merger of satellites in our simulations of the continuo us pentapale 
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and hexapole vortices. This should be contrasted with the case of the point-vor
tex model of the triangle, where perturbations of even 20% in the positions of 
the satellites can still be sta bie (Carnevale & Kloosterziel , 1994). In view of the 
results of Morikawa & Swenson (1971), we anticipate that all higher-order 
coherent continuous vortices are also unstable. 

Conclusion 

We have considered a hierarchy of isolated compound vortices in which the 
Lamb dipole and the tripole are the first two elements. The stability of these two 
structures is well known from experiments and simulations. Here we have 
reviewed evidence that the next element in this hierarchy, the quadrupole, is also 
stabie, but with a much smaller instability threshold than the two lower-order 
structures. It seems that these three elements, dipole, tripole and quadrupole, are 
the only sta bIe ones in the whole hierarchy. All of the higher-order compound 
vortices are expected to show the close approach and merger of two of the 
satellites, and subsequent break up of the whole structure. 

All of our simulations we re performed with continuous vorticity profiles on a 
doubly periodic domain using a spectral code. Morel & Carton (1994) have per
formed a similar study based on contour dynamics, that is, simulations involving 
regions of piecewise constant vorticity. They also have found that the quad
rupole is stabIe while higher order n-poles are not, thus adding to the weight of 
evidence for our conclusion. 
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B.W. van de Fliert 

Characterization and Numerical Calculation 
of Plane Vortex Structures 

Abstract 

A variational characterization is given for coherent vortices in plane fluid flows. 
We characterize isolated vortices, such as mono-, di- and tripolar vortices, as 
(relative) equilibrium states of the dynamical equation. To calculate the vortices 
numerically, an iteration scheme is constructed to solve the variational 
problems. The Lagrange multipliers and the free boundary are solved implicitly 
in the iteration process, which makes it possible to calculate the complex vor
ticity configurations with distributed vorticity. 

Confined vortices in two-dimensional fluid flow 

The Euler equations which give the evolution equations for incompressible, 
homogeneous and inviscid fluid flow, are a dynamical system with a special 
structure, called a Poisson structure. In vorticity formulation the Euler equa
tions for purely two-dimensional flow are given by: 

{
81W + Vw · .lVI/! = 0. 
w = -AI/! 

( 1 ) 

which are the vorticity equation and the Poisson equation; here w denotes the 
scalar vorticity, I/! the stream function and J the skew-symmetric matrix 
J=( ~ l 6)· 

For this dynamical system there exists a natural invariant functional, the 
Hamiltonian H , which is the kinetic energy of the system: 

H( w) = ~ f I/!w dx dy (2) 

Together with other invariant functionals the Hamiltonian determines special 
solutions of the evolution equation. Critical points of the Hamiltonian on level 
sets of the invariant integrals are ca lied relative equilibria. They are equilibrium 
solutions of the equation (I). 
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For an arbitrary function f of w, the invariant functional: 

C(w) = f f(w) dx dy (3) 

is a Casimir integral, ca lied the generalized enstrophy. A special case is given by 
the circulation or total vorticity: 

r( w) = f w dx dy (4) 

which is indeed a constant of the motion , as was shown by Kelvin. Besides the 
invariants given by the Casimirs C, the system admits constants of the motion 
given by the momentum integrals (linear and angular momentum), if the flow 
domain is translationally or rotationally symmetric. 

We can find time-independent solutions by looking for relative equilibria, 
solving variational problems of the following type: 

extr {H(w) I C(w) = y} 
WE L z 

The Lagrange multiplier rule supplies a constant À. such th at an extremizing 
solution w (depending on y ) satisfies: 

JH(w) = MC(w) 

or similarly: 

tf;=À.f'(w) 

(5) 

(6) 

(7) 

This yields an explicit functional relationship between stream function and vor
ticity, which is directly related to the choice of integral constraints C( w ) in the 
variational principle. 

Denoting by M a momentum integral (either Iinear or angular momentum), 
steadily translating or rotating solutions can be found from the variational prin
ciples: 

extr {H(w) I C(w) = y; M(w) =m } 
WE L z 

(8) 

We are interested in finding confined vortices, i.e. vorticity distributions with 
compact support, surrounded by irrotational flow. To find confined solutions, 
the functionf'(w) in (7) must be multivalued in w=O. To achieve this multi
valuedness, we use non-difTerentiable constraints given by the positive and 
negative circulations: 

r + (w ) = f (w) + and r - ( w ) = f (w )_ 

where (w) + =max(w, 0), (wL. =min (w, 0). 

(9) 

232 Characterization and numerical calculation of plane vortex structures 



Related to the confinement of the vorticity distributions is the free boundary 
of the vortex support. The vorticity distribution and consequently the domain of 
non-zero vorticity have to be found from the variational inequalities for the vor
ticity. 

We look at an algorithm th at solves the variational inequality for the vor
ticity. The algorithm is able to find the multipliers and to adapt the free bound
ary within the process. First it is observed that the Lagrange multipliers satisfy 
a variational characterization (see also Eydeland and Van Groesen, 1989). 
Secondly the method by Eydeland et al. (1988, 1990) for non-convex optimiza
tion is applied, by linearizing the non-convex part of the functionals around the 
previous iteration step. 

Instead of the variational inequality that has to be satisfied outside the vortex 
support, we use the Laplace equation for the stream function, with AI/! = 0 and 
I/! sufficiently smooth over the boundary of the vortex domain. 

The iteration scheme and some calculations are shown for mono-, di-, tri- and 
quadrupolar vortices. 

Varia/ional principle for Lagrange multipliers 

Suppose a family of equilibrium solutions is parametrized by the value of y in 
the following variational problem for the energy: 

extr {H(w) I C(w) = y} (lO) 
w 

If Hand Care sufficiently smooth, there exists a constant À E IR such that: 

JH(w) -ÀJC(w) =0 (11 ) 

The value of À depends on the specified value of the constraint, À = À( y), and the 
variational problem can be written as: extr w H( w) - ÀC( w). The multiplier À can 
be found from the following variational principle: 

extr extr H( w ) - À( C( w ) - y) 
). w 

( 12) 

The extremum for w, denoted by w( À), satisfies (11) and the remaining critical 
value problem for À yields the value for À for which C(w(À)) = y. In this way the 
constrained variational problem is transformed to an unconstrained problem. 
Without any restriction this can be generalized to variational problems with a 
family of constraints. After substitution of the extremizer w( À) into (12), the 
finite dimensional optimization problem for the multiplier( s) can be solved by a 
steepest descent method. The optimization for w in (12) is infinite dimensional 
and the functional H(w)-À(C(w)-y) might be non-convex in w. We impIe
ment a numerical optimization method for non-convex functionals by Eydeland 
et al. (1988, 1990). 
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The iteration process 

An iteration scheme is constructed, combining the non-convex optimization and 
the optimization for the Lagrange multipliers. Consider the variational principle 
(10). Choose a starting value for the vorticity Wo with corresponding stream 
function t/J o· At iteration step k, with stream function t/J k, the Iinearization of the 
energy functional is given by: lJH( wd w = 11/1 kW. If we define for each iteration 
step the functional: 

fI! d w, À) = f t/J kW - À( C( W ) - y) (13 ) 

the iteration process is given by: 

{

Wk + J (À) = arg extr fI! dw, À) 
w 

Àk + J = argeyr fI! dWk + J (À), À) 
(14) 

From Wk + J one finds t/J k + J by application of a Laplace sol ver for the Poisson 
equation: 

(15) 

with suitable boundary conditions for t/J k + J' At each iteration step the multi
pliers are found such th at the constraints are satisfied. This means th at no dis
traction takes place from the level sets of the integrals. 

The method is applied to steadily rotating vortices in the plane and to dipolar 
vortices in a bounded domain with periodic boundary conditions. 

Calculation of confined vortices 

Rotating vortices in the plane, with continuous and distributed vorticity, can be 
found from the following variational problem: 

extr {H( W ) - exP( W ) } 
WES 

(16) 

with the constrained set S given by: 

(17) 

The fixed value of ex corresponds to the rotation ra te of the vortices. Here 
H = H t/Jw denotes the kinetic energy, P = H r 2w the angular momentum, 
W = H w 2 the enstrophy or squared vorticity and r + and r _ the positive and 
negative circulations (9). 
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We simulate the vortices in the plane by considering a numerical spatial 
domain D, with boundary condition imposed upon the stream function given by 
either t/J( x) = 0 or: 

r(w) 
t/J(x) = - -- logJxJ , 

2n 
xE8D 

The variational inequality for a maximizer of ( 16) reads: 

f" if w>o - ï ocr = I1W + (J + , 

t/J - locr 2 = I1W + (J if w<o , - , 

(J _ ~ t/J - 4ocr2 ~ (J +, if w=o 

(18 ) 

(19) 

Here 11 , (J +, (J _ are the multipliers associated to W, r + , r _ respectively. We 
linearize the energy (with the correction for the rotation), and define the func
tional Y k at iteration step k by: 

Y d w, 11 , (J + , (J _ ) = f ( t/J k - ~ocr2 ) w - 11 Gf w 2 
- w) 

- (J + (f (w) + - Y + ) - (J - (f (w) _ - y _ ) (20 ) 

Given t/J k at step k , the next iteration step reads with 11 > 0: 

(21 ) 

Substitution of Wk + I into Y k Y!.elds 11 k+ 1= arg extrp Y dWk + 1, 11, (J +, (J _ ) and 
af ter substitution of 11k + I into Y k the problem reduces to a convex minimiza
tion, of a function .!l k ((J + , (J _ ) . 

Numerical results 

We chose the numerical domain D = [ -1 , 1] x [ -1 , 1]. The calculations are 
performed on a 64x64 equidistant grid. 

Monopolar vortices: 

By taking y _ = 0 in the variational principle (16), the extrema are positive 
monopolar vortices surrounded by irrotational flow. Figures 1 and 2 show typi
cal vorticity distributions for maximization and minimization , respectively. The 
parameter values are: w = 20, y + = 4, y _ = 0 for the calculations on the 
monopolar vortices. 
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Fig. I. Spatial plot of the vorticity soIution of (16) for w = 20, )' + = 4, )' _ = 0, a. = 7. 

Fig. 2. Spatial plot of the vorticity soIution of (16) for w = 20, )' + = 4, )' _ = 0, a. = -7. 

Ct 
0 

'" " " .0 " .. 
Fig. 3. Contour plot of the vorticity solution of (16) with w = 3.2, )' + = 1.6, )' _ = -1.6, a. = O.O. 

o 
.. ~ 

Fig. 4. Contour and spatial plots of the vorticity solution of (16) with w = 3.2, )' + = 1.6, 
)' _ = -1.3, a. = O.O. 
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Fig. 5. Contour plot of the vorticity solution of (16) with w = 3.2, Y + = 1.6, Y _ = -1.15, ex = O.O. 

Non-symmetrie dipolar vortiees: 

By taking oc = 0 in the variational principle (16) and '" = 0 on aD we find a 
eharaeterization of dipolar vortices on aperiodie domaiil. We chose parameter 
values w = 3.2 and y + = 1.6 and different values for y _ in the neighbourhood of 
y _ = -1.6. Figure 3 shows the vortieity in a contour plot for y _ = -1.6. For 
this ehoice of parameter values there exists a solution whieh is a eonfined and 
symmetrie dipolar vortex. The multipliers a + and a _ satisfy a + = - a _ . 

There exists a branch of eonfined dipolar solutions, parametrized by the value 
of y _. In a neighbourhood of y _ = - y + non-symmetrie, eonfmed solutions of 
(16) are found. In figure 4 a non-symmetrie dipole is shown for y _ = -1.3. In 
figure 5 we show the result of the ealculations with y _ = -1.15. For this value 
of y _ the value of the multiplier a _ has beeome positive, sueh that the vortieity 
solution is not confined. 

Tripolar and quadrupolar vortices: 

For special choices of the parameter values we find tripolar and even quad
ropolar vortical structures. The structures rotate as a whole around the center 
of vorticity (the origin). We chose parameter values w = 10, y + = 1, y _ in the 
neighbourhood of y _ = - 1 and oc in IR. 

We show the vorticity at different stages in the iteration process in figures 6 
and 7. It is observed that the symmetries of the initial vortex eonfiguration are 
not necessarily conserved. The succeeding iterates form no approximation of any 
real dynamics. 

In the experiments by Van Heijst and Kloosterziel (1989, 1990) only tripolar 
vortices have been observed with positive core and negative satellites rotating 
eounter-clockwise (corresponding to oc negative). The sign of rota ti on 
corresponds with the sign of vorticity of the vortex eore. For most confined tri
poles that are found by our numerical calculations, the rotation corresponds to 
the vorticity in the core. However, also tripoles are found that rotate in the 
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Fig. 6. Contour plots or the vorticity at different stages in the iteration. The calculation is perfor
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other direction. In fact, tripolar and quadrupolar vortices are found with rota
tion rates positive, negative or even zero. Also in numerical simulations by 
Polvani and Carton (1990) tripolar vortices have been found with positive, 
negative or no rotational velocity. 

With the chosen parameter values, the regions of vorticity are not far from the 
boundary of the numerical domain. This means that the imposed boundary con
dition on the square domain has a large influence on the solutions. It might be 
possible to find vorticity distributions that are confined to a small 
neighbourhood of the origin , by changing the parameter values for \1.', y +, Y _ , 
pand ex. This however needs further investigation. 
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G.J.F. van Heijst and O.U. Velasco Fuentes 

Topography-Induced Modulation of a Tripolar Vortex 
in a Rotating Fluid 

Abstract 

Laboratory experiments on the tripolar vortex generated at some distance ofT 
the rotation axis of a rotating free-surface fluid have revealed a remarkable 
unsteady behaviour: the tripole becomes asymmetric, and its evolution follows 
a repetitive dipole-monopole interaction scenario. This unsteady behaviour is 
caused by a modulation of the core and satellite vortices due to the parabolic 
topography of the free fluid surface. lt is shown that the main characteristics of 
the tripole evolution are quite weil described by a simple modulated point-vor
tex model. In addition to describing the trajectories of the individual vortices, 
this model is also capable of describing the advection of fluid elements. 

1. Introduction 

A tripolar vortex can be concisely defined as a compact, symmetric linear 
arrangement of three patches of distributed vorticity, with the elongated central 
vortex being adjoined at its longer sides by two weaker satellite vortices of 
oppositely signed vorticity. The symmetric tripolar vortex performs a steady 
rotation as a whole in the direction defined by the circulation of the central vor
tex. Initially, the tripole was observed in numerical studies of 2D flows (Legras 
et al. 1988; Carton et al. 1989; Orlandi & van Heijst 1992) and in laboratory 
experiments on vortices in rotating and stratified fluids (van Heijst & Klooster
ziel 1989; van Heijst et al. 1991 ; Flór et al. 1993). Recent satellite observations 
have yielded evidence th at the tripolar vortex mayalso exist in the ocean 
(Pingree & Le Cann 1992a,b). 

In the present study the attention is focussed on the behaviour of the asym
metrie tripole. In particular, we will consider the efTect of perturbations 
associated with a gradient in the ambient vorticity. 
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2. Laboratory experiments 

As described by van Heijst et al. (1991), a tripolar vortex can be generated in 
a rotating fluid by stirring the fluid in a thin-walled bottomless cylinder of small 
diameter, placed in the tank, and then lifting the cylinder quickly: one thus 
produces an isolated monopolar vortex in the uniformly-rotating ambient fluid. 
Under certain conditions this vortex becomes unstable, resulting - when cyclonic 
- in the gradual formation of a tripolar vortex. In previous experiments the vor
tex was released at the rotation axis, and the evolving tripole performed a quasi
steady rotation, while remaining symmetric. When the tripole is created at some 
distance from the rotation axis, however, it soon looses its initial symmetry, and 
a somewhat more complicated evolution is observed, see Figure 1. In the first 
stage of this evolution, one ob serves a 'kink' in the tripole axis (between Figs. la 
and 1 b), up on which the characteristic monopole-dipole interaction scenario 
follows: one of the satellite vortices pairs with the core vortex and this newly 
formed asymmetric dipole (the core vortex is stronger than each of the satel
lites) moves along a curved trajectory, leaving behind the other satellite (see 

(a) 

( b) 

(d) 

Fig. I. Laboratory observations of a tripolar vortex in a rotating fluid generated at some distance 
from the rotation axis. The tripole has lost its symmetry and shows repeated partner exchange 
between the core vortex and the two satellite vortices. The sequence of pictures shows the tripole 
in the stages of aligned vortices (b,d) and maximum kink of the axis (c,e). 
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Fig. 1 b). Somewhat later, after performing its looped excursion, the dipole 
returns and momentarily the tripole structure is re-established, although again 
with a kinked axis (see Fig. Ic). The core vortex now pairs with the other 
satellite vortex (i.e. partner exchange occurs), thus forming an asymmetric dipole 
that moves away along a curved path (see Fig. ld). This process is repeated 
many times, although the amplitude of the looping dipole excursions gradually 
increases (cf Figs. 1 band ld). Also the kink in the tripole axis at the stage of 
re-unification becomes more pronounced during the course of the experiments 
(cf Figs. Ic and ld). 

Another feature of the experiment worth noting is the complicated distribu
tion of the dye. Each time a dipolar structure is formed, it leaves behind a tail 
of dye, which is wrapped around the remaining satellite (Fig. 1 b), somewhat 
later around the newly formed dipole (Fig. Ic), and so on (Figs. ld and Ie). 
Close inspection of the dye tails reveals the occurrence of alternating dyed and 
undyed filaments, indicating th at some distance from the individual vortex cen
tres originally 'interior' and 'exterior' fluid are stirred. The evolution of the dye 
filaments also shows signs of repeated stretching and folding, thus suggesting 
chaotic advection of the passive tracers in some parts of the flow domain. 

3. The asymmetrie point-vortex tripole 

The simp lest description of the tripolar vortex is obtained by representing each 
of the three vorticity patches by a point vortex of appropriate strength. As was 
shown by van Heijst et al. (1991), the gross features of the symmetric tripole are 
captured by a point-vortex model consisting of two satellite vortices with 
strength - y at the same distance a from the central vortex, whose strength is 2y 
(see Fig. 2a). This configuration performs a steady rotation with angular velocity 
W o = 3y/( 4na 2

), which corresponds with the observed rotation speed, provided 
that the quantities y and a are correctly estimated. AIso, the shape of the 
separatrix (in which ma ss is trapped) corresponds very weIl with the laboratory 
observations. 

-y 

V. /. 
- "I' 

lal 

2y 

~_~VII 
/ (,O'~ 
-y -y 

Ih) 

~ ,?-o 
-y 

(c) 

Fig. 2. Unmodulated tripolar point-vortex eonfigurations with net zero eireulation: (al the 
steadily rotating symmetrie tripole, (b) the steadily translating equilateral tripole, and (e) the 
general asymmetrie eonfiguration with au ol hu and Bu ol TC. 
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When the point vortices are placed at the corners of an equilateral triangle 
(Fig. 2b), the structure performs a steady translation at speed Vo = Y .j3/(2na) in 
a direction parallel to the line through the satellite vortices. 

In the general case, schematically shown in Fig.2c, however, the three-vortex 
configuration performs a complicated non-steady motion: the tripole geometry 
changes continuously in time, and the separation di stances and the kink angle 
are essentially time-dependent, i.e. a = a(t), b = b(t) and 0 = O(t). The motion of 
this asymmetric point-vortex tripole has been analysed by taking a linear initial 
arrangement with O(t=O)=Oo=n, a(t=O)=ao and b(t=O)=bo ' This (initial) 
configuration is similar to that visible in Fig. Ia. It was found that, depending 
on the ratio c = bo/ao, different scenarios of vortex motion are possible. In all 
cases, however, the motion is periodic, i.e. the vortices take their initial relative 
positions af ter some period T. The frequency f = I/T of the motion was 
ca1culated as a function of the initial distance ratio c by measuring the time T 
that it takes to the vortices to return to their initial (relative) configuration. The 
results are represented by the thick line in Fig. 3. In this graph one easily 
recognizes two régimes of motion. Régime I (0 < c ~ 0.3) corresponds with the 
case of one of the satellites rotating around the core, while the far satellite per
forms a small-amplitude 'wobbling' motion. In régime 11 (0.3 ~ c < I) the three 
point vortices move according to the same monopole-dipole interaction scenario 
as observed in the laboratory experiment (Fig. I), in which the central vortex 
alternately pairs with one of the satellite vortices. It thus appears that a weak 
initial asymmetry is sufficient to bring the tripole in this mode of repeated 
partner exchange. In the limiting case c = I the tripole is symmetric and rotates 
steadily with frequency OJ o /(2n) = 3y/(8n2a2

) ~ 0.038y/a2
; this value is indicated 

by the horizontal line in Fig. 3. 

10° 

ro/2n 

10-1 
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Fig. 3. Graphieal representation of the frequeney w/2n in the motion of the asymmetrie tripole 
as a funetion of the initial distanee ratio c = b 0/0 0. The initial distanees are normalized as 
0

0 
+ bo = 2 and the frequeney has been sealed by r/a2

. The solid line represents ealeulated values, 
the horizontal line denotes the limiting frequeney w o /2n of the symmetrie tripole (c = l), whereas 
the eurved broken line represents the frequeney (l) for the limiting ease c -+ o. 
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In the limiting case c -+ 0 the frequency should correspond with the rotation 
frequency of the rotating dipole, which is equal to weli!,,,le = y/(2TCh ;' ). The initial 
distances are here normalized as au + hu = 2, so that hu = 2e/ ( 1+ c). One thus 
obtains 

. W (1 +C)2 j - - - y -
/-? - 4 ' _TC TCC 

( 1 ) 

which is shown graphically by the broken curve in Fig. 3. Apparently, this 
predicted limiting frequency corresponds very weil with the actual frequency of 
the point-vortex system in régime I for 0 < e ~ 0.2. Although this model captures 
some characteristic features of the observed asymmetric tripole evolution (i.e. the 
repeated partner exchange in régime 11), the mot ion is purely periodic and does 
not show the increasing dipole excursions and the increasing maximum kink 
angle as observed in the experiment. 

4. The modulated point-vortex tripole 

The tripole evolution as shown in Fig. 1 is only observed when the tripolar vor
tex is generated at some distance from the rotation axis. Apparently, the curved 
free surface is responsible for this remarkable behaviour, even though the height 
difTerences across the tripole diameter are small compared to the total fluid 
depth (in the experiment shown in Fig. I this height difTerence is typically 2 mm, 
while the average fluid depth was 17 cm. When a vortex is moved in radial direc
tion the topography of the free surface causes stretching or squeezing of the vor
tex tube, and therewith leads to changes in its strength: the vortex strength is 
modulated by the topography. This topography efTect not only breaks the sym
metry of the initial tripole, but also afTects its dynamics during the subsequent 
evolution. 

The topography-induced modulation can be incorporated in the point-vortex 
model in a similar way as was done by Kono & Yamagata (1977) and Zabusky 
& McWilliams (1982) for the p-efTect. For this purpose the "point" vortex is 
replaced by a columnar Rankine-type vortex with a circulation y given by 

i =wA , (2) 

with w the relative vorticity averaged over the cross-sectional area A. Changes 
in the local fluid depth H( x), with x the horizontal position vector, results in 
squeezing or stretching of the vortex tube, which must be compensated by 
changes in A in order to satisfy conservation of volume: 

A(x) H(x) = A" H v = constant, (3) 
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where the subscript 0 refers to a reference state. Conservation of potential vor
ticity implies 

2.0 + w(x) 2.0 + Wo 

H(x) Ho 
(4) 

with .0 the rotation speed of the fluid system. Combination of (3)-(5) yields the 
following expression for the topography-modulated point-vortex strength 

y(x) = Yo + 2.QA o [1-;;)} 
In the present experiments the undisturbed fluid depth is given by 

.Q2r2 

H(r) = H(O) +Tg 

(5) 

(6) 

where r is the radial coordinate measured from the rotation axis and g is the 
magnitude of the gravitational acceleration. Because .Q2r2 /2g ~ 1 we can use a 
Taylor expansion of Ho/H(r) to obtain the following relation for the modulated 
strength: 

(7) 

(b) 

Q 00 0 

Fig. 4. Trajectories of the centres of the core vortex and one of its satellites (a) as measured in 
a laboratory experiment in a rotating free-surface fluid and (b) as predicted by the modulated 
point-vortex tripole model initialized with the experimental data. 
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where second order terrns have been neglected. This equation is equivalent to 
th at describing the strength modulation of a vortex on the gamma plane, which 
approximates the variation of the Coriolis parameter close to the poles of a 
rotating planet. 

Numerical simulations have been perforrned for a point-vortex tripole with 
strength modulation according to (7), the fluid depth being given by (6). Such 
a set of three modulated point vortices forrns a parametrically excited dynamical 
system that is no longer integrable, so that complicated (chaotic) behaviour is 
to be expected. An example of the trajectories of the centres of the core vortex 
and one of its satellites as measured in a typical laboratory experiment is shown 
in Fig. 4a. It is seen that the core vortex moves along a spiral-shaped path, while 
the satellite orbits around it. The corresponding trajectories according to the 
modulated point-vortex model (initialized with the experimental data) are 
shown in Fig. 4b, and the agreement with the observed tracks is striking. 
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Fig. 5. Graphical representation of the distances a(t) and b(t) and the kink angle O(t) as a func
tion of time (a,b) as measured in the laboratory experiment and (c,d) as predicted by the 
modulated point-vortex tripole. The experiment corresponds with that shown in Figs. land 4. 
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For the same experiment the measured distances a(t) and b(t) of the satellite 
centres to the centre of the core vortex as weil as the kink angle O(t) are presen
ted as a function of time t in Fig.5a,b. It is seen that the curves of a(t) and b(t) 
are exactly out of phase: a relative maximum of a(t) corresponds with a relative 
minimum of b(t) and vice versa. At such a local extreme value of a(t) or b(t), 
the angle O(t) is equal to :n:, which corresponds to a linear arrangement of the 
vortex centres as visible in Figs. I band Id, when the core-satellite dipole is at 
a maximum distance from the other satellite before the re-establishment of the 
tripole takes place. This is the case when a(t) = b(t), for which the kink angle 
O(t) apparently reaches an extreme value. During the course of the experiment 
the relative extremal values of the di stances a and band the angle show a signifi
cant increase, which was not predicted by the unmodulated model discussed in 
section 3. The modulated point-vortex tripole, initialized with the experimental 
values, however, predicts this behaviour quite weil, see Fig.5c,d. 

An important question concerns the advection of passive scalars induced by 
the perturbed tripoIe. Seen in the co-rotating frame, the unperturbed symmetric 
tripole has a separatrix that does not change shape, and fluid remains trapped 
within it. Laboratory experiments on a perturbed tripolar vortex, however, show 
increasingly complicated filamentary distributions of dye that was initially con
tained within the compact tripole structure, see Fig. 1. 

(a) 

+ § 
(b) (c) 

~ .. (Q) 
(d) (e) 

+ 

Fig. 6. Sequence of plots showing the evolution of passive tracers originally placed on the 
separatrix (a) of the initial (modulated) point-vortex tripole. The plots are drawn for the stages 
of aligned vortices (b,d) and maximum kink angie (e,e), eorresponding with those shown in Fig. I. 
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In order to investigate the advection properties of the modulated point-vortex 
tripole, the evolution of passive markers located on the separatrix of the initial , 
symmetric tripole was computed numerically , and the results are shown in 
Fig. 6. A total of 100 markers were evenly distributed over the initial separatrix, 
which dearly shows the separate core and satellite regions (Fig. 6a). The new 
marker positions, connected by straight line elements, are shown in Figs. 6b-e 
for four subsequent stages of the tripole evolution that correspond with aligned 
vortices (b,d) and maximum kink angle (c,e), similar to those shown in Fig. I. 

A comparison with the dye distributions in the laboratory experiment reveals 
a striking agreement between the model and the laboratory observations. This 
result stresses the power of the (modulated) point-vortex model : not only the 
motion of the vortex positions is accurately described, the model is also capable 
of describing into remarkable detail the advection of passive scalars induced by 
the vortex motions. 

A more extensive description of this work will be published elsewhere 
(Velasco Fuentes, van Heijst and van Lipzig 1994). 
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J.-R. Bidlot and M.E. Stern 

Maintenance of Continental Boundary Layer Shear through 
Counter Gradient Vorticity Flux in a Barotropic Model 

Abstract 

The use of a classical eddy parametrization in the analysis of continental bound
ary currents leads to the diffusion of momentum and vorticity and fails to 
recognize that the relevant eddies are dominated by the conservation of poten
tial vorticity, which in turn may produce an increase in the mean relative vor
ticity. To illustrate this effect, we ex amine a non-inflected barotropic shear flow 
destabilized by the cross-stream variation in the bottom topography of a con
tinental slope. The increase in maximum mean vorticity is computed for various 
values of the Rossby number and the topographic elevation. 

Introduction 

Continental boundary currents often exhibit a region of relatively strong 
cyclonic shear on their inshore side as is the case for the Gulf Stream (Brooks 
and Niiler 1977) where mean shear of the order of the Coriolis parameter can 
be observed over the continental slope. The shelf break region is also the site of 
strong eddy activities leading to the exchange of water with different properties 
between the deep and the shelf regions. Stern (1991, 1993) proposed that the 
inshore shear of a boundary current could be maintained by counter-gradient 
vorticity fluxes at the steep continental slope, rather than by a classical eddy dif
fusive parametrization, and the particular mechanism investigated involved a net 
cross-slope mass flux produced by down-stream topographic variations. 

A different kind of topographic mechanism is discussed here, viz. that which 
is due to the instability of a laminar shear flow along a continental slope. 
Collings and Grimshaw (1984) have shown th at cross-stream topography can 
destabilize non-inflected barotropic currents which are otherwise stabie. 

An iIlustration is provided by the flow in figure 1 which extends across the 
continental slope and onto a limited part of the shelf, with the relative vorticity 
decreasing monotonically to zero. Suppose that the corresponding cross-stream 
decrease in bottom depth is strong enough at the shelf break to produce the 
necessary potential vorticity maximum for a barotropic instability. If the condi
tion is also sufficient, there will be a net eddy transport of water with maximum 
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Fig. I. A laminar shear flow ü()') with monotonie vortieity (( y) at the edge of a eontinental slope 
of depth h( y) which changes rapidly at the shelf break such that the potential vorticity of this 
current has an extremum. Top diagram is a perspective view. 

potential vorticity into the deep water, thereby increasing the maximum mean 
vorticity in the shear flow by stretching of fluid columns displaced across the 
steep topography. Therefore any small tendency for lateral eddy diffusion of 
relative vorticity can be compensated by these topographically dominated effects 
at the continental slope. 

F or simplicity, we will consider a piecewise constant shear flow ü( y) and a 
step-Iike topography (11 = Ho. Y > 0; 11 = Hv + AH, y < 0). In this model, a layer 
of width Is of high potential vorticity on the shelf separates lower potential vor
ticity fluids on the semi-infinite shelf from the semi-infinite deep region (having 
the same relative vorticity on the other side of the escarpment (y = 0). The 
evolution of the disturbance is quantitatively similar to the roll up of cores in 
the classica I inflected shear flow problem (Pozrikidis and Higdon 1985), but 
now a qualitatively different effect on the mean vorticity occurs, viz. vorticity can 
be transported up the mean gradient. 

The presence of cross-stream topography in continental boundary currents 
has a profound effect on the eddies and the velocity profile. In fact, as we will 
show, the restoring topographic force prevents the current from diffusing to the 
beach, and the conservation of potential vorticity increases or maintains the 
maximum mean vorticity. The nonlinear stability calculation uses the weil 
known contour dynamical method with a novel feature presented by the 
topography which requires the computation of the appropriate Green's function. 
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Topographic Green's function 

It can be shown (Bidlot and Stern 1994) that in the case of a step-like 
topography (at y = 0) the appropriate Green's function is made of the contribu
tion of the classical two-dimensional barotropic point vortex (ç, '7) with strength 
r, and an image given by 

where E=LJHj H n and 

{
+I y>O 

sgn(y) = 
-I y<O 

Note that the field G I is equivalent to the field produced in a uniform depth 
fluid by a point vortex of strength rEj (2 + E) sgn(y}, located at a point 
(ç, -'7 sgn('7) sgn(y)). 

Using this Green's function, a contour dynamical code was constructed to 
fo11ow the evolution of the two potential vorticity interfaces in our simplified 
shelf break model (Fig. I). Special attention was given to the discontinuity in the 
normal velocity of a parcel crossing y = O. 

Numerical results 

The initial perturbation is the most unstable normal mode of the linear theory 
for given Rossby number Ra = [jf and cross-stream topographic change E. In 
that which fo11ows, either Is or the wavelength À. may be taken as the unit of 
nondimensional distance, and the other is prescribed by the maximum growth 
ra te of the linear analysis. The initial amplitude of the disturbance was sma11 
enough to a110w a comparison of the numerics with the linear theory, but no 
significant differences we re noticed if somewhat different values are chosen; this 
wi11 only alter the time required for the nonlinearities to be noticeable. 

When Ra = E, the potential vorticity of the irrotational (y> Is) and deep 
region (y < 0) are equal (Fig. 2), and the early evolution (Fig. 2a) is as predicted 
by the linear theory with the crest and trough of each interface growing 
exponentia11y with time. Consistent with this growth is the phase shift between 
L land L 2 , which ensures that the positive vorticity anomalies in the L I-crest 
induce a net 'upward' (amplifying) motion on the nearest L 2-crest and vice versa. 
As the disturbance gets larger (Fig. 2b), straining by the mean shear causes 
interfacial steepening ahead of the L, trough and behind the L 2 ridge, leading 
to the ro11 up and core formation (t> 30), as in the classical Kelvin-Helmholtz 
problem (Pozrikidis and Higdon, 1985). Figure 2c clearly shows the accumula
tion of high potential vorticity into we11 defined cores along the escarpment, 
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Fig. 2. Nonlinear evolution of the fastest growing mode for E =.5 and Ra = .5 with À. = I as the 
length unit (corresponding to Is=.l4). I/fis the time scale. The light shaded strip contains the 
maximum potential vorticity and separates the deep water (dark shaded area) from the irrota
tional shelf water (white area). The dashed Iines represent the undisturbed frontal positions. The 
cross-stream vorticity as weil as the along-escarpment velocity averaged over one wave1ength are 
also shown. 
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whereas the maximum penetration of the disturbance in adjacent regions is 
limited. The emerging state, even though not strictly steady, seems to consist of 
cores of maximum potential vorticity, around which tongues of les ser potential 
vorticity fluid from the deep as weil as from the irrotational shallow region wind 
(Fig. 2d-e) . Also shown in figure 2 is the x-averaged relative vorticity distribu
tion ((y), and the corresponding mean velocity distribution. The amount of dif
ferent water "types" (fluid with different shading and potential vorticity) trans
ported across the escarpment was also computed. Note that the pinching-off of 
the interfaces tends to transport 'deep' water on the shelf (y > 0). This water is 
partially replaced by high potential vorticity core water whose stretching 
accounts for the region of maximum mean vorticity at y < O. This iIIustrates how 
a countergradient vorticity flux can maintain a maximum shear and oppose any 
type of diffusive action tending to reduce the peak value. The topographic 
instability in figure 2 strongly suggests a new statistically steady state with maxi
mum mean vorticity increased by 70%, and the small positive ((y) at y> Is 
implies that deep water will always (t > 0) occupy the upper shelf region. 
Likewise filamen ts from this region are en trained near 0 < y < Is, wound around 
the core and advected with the mean field far downstream from its place of 
origin on the upper shelf. 

Many other cases we re investigated for different values of Ro and E as 
indicated in figures 3a,b which show the entrained volume of irrotational water 
per eddy into the shear layer as weil as the volume transport of deep water 
across the shelf break as a function of those two parameters with Is = 1 and 
Hu = I as horizontal and vertical length unit. The entrained volume was defined 
and computed as follows (Bidlot and Stern 1994). The branch of L 1 in the ridge 
of the amplifying wave winds counterclockwise around the core, and approaches 
the trailing branch of Ll in the trough of the wave. When close contact of the 
Ll-branches occurs, a "cut" is made to form a multiconnected Ll. One portion 
of th is constitutes a "new" shear flow interface, outside of which is purely irrota
tional fluid and inside of which are the cores plus the entrained irrotational fluid 
(Fig.3a). 

(a) 
8 

Volume 
6 

-a- E=.25 __ E=.5 -->{- E=1 

4 

2 

0.5 1.5 2 2.5 

Ro 
Fig. 3a. Nondimensional entrained volume per wavelength of irrotational shelf water into the 
shear flow as a function of Ra and E for the fastest growing mode with Is and Ho as length unit. 
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(b) 
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Fig. 3b. Nondimensional volume transport per wavelength of deep water across the shelf break 
as a function of Ru and E l'or the faslt:st growing mode when Is and Ho as length unit. 

Similarly, each ridge of the amplifying L2-wave is squeezed at its base (y = 0) 
between two consecutive wedges of shelf water winding around the cores. This 
leads to the pinching-ofT of a finite volume of deep water on the shelf. A cut was 
made in a manner similar to L I when the neck was fully formed above y = 0 and 
the entrained volume defines the transport of deep water across the shelf break 
(Fig.3b). 

Figure 3a shows that lor any given geometry, an increasing shear increases the 
amount of originally irrotational !luid that is trapped inside the shear layer until 
a maximum is reached, lollowed by slower decrease. On the other hand 
(Fig. 3b), the exchange between the deep and the shelf region increases 
monotonically with the back-ground shear. 

A useful measure of the nonlinear finite amplitude is the width of the high vor
ticity region 6, defined as the distance from y = 0 to the point y < 0 where the 
x-average total vorticity returns to its background value. A longtime average (f 
was computed and figure 4 summarizes its dependence on the parameters. 

Conclusions and suggestions 

We have computed the linite amplitude evolution of a non-in!lected shear flow 
destabilized by a cross-stream variation of topography, in order to illustrate an 
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Fig. 4. Average value of á/Is as a function of Ro and E. The curve is the best power fit. 
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apparently ubiquitous effect in continental boundary currents, viz. the coun
tergradient vorticity flux which increases the maximum mean vorticity. This 
effect is to be contrasted with the rapid diffusion of mean vorticity which would 
occur in any c1assical (difTusive) parametrization of the effect of the eddies on 
the mean flow. 

The applicability of our model to real continental boundary currents is Iimited 
by the absence of stratification and other kinds of topographic effects. However, 
the oceanic isopycnals (in the Florida Current, for example) tend to have a 
similar cross-stream variation as the isobaths. It is therefore conceivable that 
cross-stream motion along these isopycnals will genera te vorticity in a similar 
manner as illustrated above, so that the countergradient vorticity flux mayalso 
occur in the baroclinic case. It is suggested that those potential vorticity conserv
ing effects maintain such strong inshore lateral shear as is observed in the Gulf 
Stream. 

The simple escarpment model has also been used to iIIustrate the cross-slope 
transfer of conservative water mass properties Iike potential vorticity, tem
perature, salinity and nutrient in the more realistic oceanic case. Figure 2 shows 
how an instability leads to the formation of a "new" potential vorticity interface 
across which there has been an entrainment of the "inshore water mass", and 
figure 3 documents some of the volumetric transfers. 
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B.L. Lipphardt, Jr., R.P. Mied, A.D. Kirwan, Jr. and G.J. Lindemann 

Evolution of a Rotating Barotropic Modon in a Primitive Equation 
Model 

Abstract 

An analytic solution for a rotating barotropic modon, which is an exact solution 
to the quasigeostrophic potent ia I vorticity equation, is used as an initial condi
tion for a series of numerical experiments describing two-layer primitive equa
tion flow over an isolated seamount in a periodic channel. For the case with no 
topography, the upper and lower layers evolve in exactiy the same way, resulting 
in a rectilinear dipole translating to the west. For cases with finite topography, 
the upper layer dipole drifts away from the seamount, while the lower layer 
dipole expands to cover the entire seamount, and undergoes a change in rota
tion direction. These results indicate that modons may be robust in a primitive 
equation environment. 

Introduction 

Coherent vortex motions are observed quite commonly in the open and coastal 
oceans, as is evident from many remote sensing images. These flows arise 
naturallyon a rotating earth, because the Coriolis force is horizontal but also 
perpendicular to the velocity vector. Their ability to transport mass, momentum, 
and energy makes a knowledge of their dynamics crucial to an understanding of 
the balances of these quantities in the ocean. For this reason, and because their 
dynamics are intrinsically interesting, research into single eddies and multiple 
vortex systems has flourished within the past two decades. Of particular interest 
is the study of dipoles, two oppositely-signed vortices linked together to form a 
single entity. Dipoles have been observed with increasing frequency through 
remote sensing, laboratory experiments, and numerical simulation. 

In a remote sensing context, vortex pairs have been observed in a broad range 
of scenarios. For example, Johannessen et al. (1989) have noted the presence of 
dipoles in A VHRR imagery of the Norwegian Coastal Current system, and 
attributed their genesis to an instability in the flow. Fedorov and Ginzburg 
(1986) have showed extensive evidence of dipole eddies in ice imagery and state 
th at these paired vortices appear to be the ocean's universal long-term response 
to a momentum impulse which injects vorticity of both signs into the near-
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surface ocean. In an apparently related vein, Sheres and Kenyon (1989) obser
ved a dipole emerging from the Santa Barbara Channel, and attributed its exist
ence to an abrupt changes in wind stress. But perhaps the richest population of 
remotely-sensed dipoles was shown by Ahlnas et al. (1987) who discovered weil 
over a dozen such structures in the Alaska Coastal current, although the precise 
cause for their origin is uncertain. 

The occurrence of dipole vortices is not limited to observations of their 
remote imagery, however. Laboratory simulations have provided another oppor
tunity to study their behaviour. Flierl et al. (1983) have used an impulsive injec
tion of fluid at the boundary of a tank of homogeneous fluid to generate a stabie 
vortex pair that traveled along a curved trajectory, while van Heijst and Flor 
( 1989) used a similar technique to generate dipoles. Their study also gave an 
indication of the robustness of these forms as they emerged essentially intact 
af ter enduring collisions with other dipoles. Using an equivalent impulsive
generation mechanism in a rotating tank , Kloosterziel et al. (1993) studied tra
jectories generated by vortex pairs which were allowed to propagate onto a 
slope. 

While the analysis of laboratory and remote-sensing data is a useful tooi for 
understanding the behavior of dipolar vortices, the scope of the phenomena 
available is necessarily limited to either what is observable in nature or feasible 
in the laboratory. Numerical simulation atTords us the opportunity to examine 
a potentially far richer ensemble of generation and propagation conditions. For 
example, McWilliams and Flierl (1979) used a two-Iayer quasigeostrophic (QG) 
model to demonstrate that an axisymmetric, pure-baroc1inic monopole will 
evolve to produce a rectilinear dipole modon. Mied and Lindemann (1979) 
showed that a qualitatively similar result could be obtained using a primitive 
equation (PE) model as weIl. Furthermore, at least one other mechanism exists 
for the creation of dipoles from monopoles. McWilliams (1983) found that two 
propagating, oppositely-signed beta-plane monopoles could collide, merge, and 
propagate as a stabie dipole modon. 

Numerical simulations have also allowed a more extensive investigation of 
Fedorov and Ginzburg's (1986) suggestion that dipole eddies are a common 
response to short-term momentum inputs to the near-surface ocean. Mied et al. 
(1991) have investigated the fate of a variety of momentum patches used as 
initial conditions in a reduced gravity PE calculation. They found that dipoles 
can result from patches having many Rossby numbers and length scales. 
Similarly, Ikeda (1991) reported that a uniform wind stress field , acting over 
anomalies in ice cover thickness in a coupled ice-ocean system, can produce dif
ferential Ekman transport that results in paired eddies with the vortices having 
opposite sign. And finally , Haidvogel et al. (1991) and Hofmann et al. (1991) 
have shown deflection of the near-shore flow by a cape on the coast of Califor
nia can produce a large-scale dipole. Signell and Geyer (1991) showed that the 
separation of a flow oscillating with tidal frequency past a cape could result in 
an injection of high vorticity lateral boundary layer fluid into the interior of the 
flow, which can sometimes as su me a dipole form. 
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Of interest in the context of the present work are the observations of dipoles 
over isolated topographic features. Johnson (1978) showed that steady flow over 
an isolated topographic feature produced a dipole at fini te Rossby number. Nof 
(1990) used a circular gamma plane model (reminiscent of paraboloid bottom 
topography) to show that an asymmetrie, steady modon-like solution could 
result, while Reznik (1985) showed that a similar dipolar modon could stably 
orbit on infinite parabolic relief along a line of constant topographic height. And 
finally, Mied et al. (1992) exhibited solutions to the QG equations of motion 
which can rota te steadily over isolated paraboloid topography. 

Although the work of Mied et al. (1992) documents the existence of an infinity 
of radial and azimuthal modes, we shall focus on the dipoles to understand the 
viability of these barotropic, QG solutions in a more realistic oceanic environ
ment. Accordingly, we describe the results of numerical experiments which use 
these exact solutions as initial conditions in a PE model. Their stability is 
investigated over a flat bottom topography, and modifications to their behavior 
are observed as the topographic height is increased to finite amplitude. 

Experiment description 

These experiments examined the evolution of an exact, QG rotating modon 
solution in a PE periodic zonal channel over an isolated seamount of varying 
height. The initial condition for each sim uIa ti on was the analytic barotropic 
rotating modon solution described by Mied et al. (1992). For a modon of radius 
ra and a seamount with base radius rh , the nondimensional stream function for 
each of the th ree regions defined for the small modon case (ocl /2=ra /rb~ 1) is 
given by: 

'P' = Q + w(r2/2 - 2P) + AJo(P - I/2r ) + GT(r) + b~J,,(p-I /2r) sin nO, r ~ oc 1/ 2 

'Pil = I( r) + b~ocn/2 J n (a) r - n sin nO, oc 1(2 ~ r ~ 1 

'PIII = b' ocn
/
2J (a) r - "b' sin nO 1 ~ r n n n ' -..... ( 1 ) 

where rand 0 represent position in polar coordinates, with the origin located at 
the seamount centre. J" is the order n Bessel function of the first kind, w 
represents the modon rotation rate, and b~ is an arbitrarily specified amplitude 
for the azimuthal solution part. Also, P is the separation parameter associated 
with the separation of variables solution, and, for azimuthal mode n and radial 
mode p, a is the pth root of the eigenvalue relation given by: 

Jn _ da)=O 

In equations ( 1), GT(r), I(r), Q, and A are defined in Mied et al. (1992) in terms 
of the above quantities, an arbitrary axisymmetric rider amplitude 'Po, and y, 
the ratio of seamount centre height hm to undisturbed ocean depth H: 
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Equations (I) are applicable only to cases where the seamount is a paraboloid, 
with the bottom topography given by: 

(2) 

where S(x - a) is the Heaviside step function such that S = I for x < a and S = 0 
for x> a. 

Note that equations (I) are an exact solution of the QG potential vorticity 
equation in which both stream function and radial velocity are required to be 
continuous throughout the domain, while relative vorticity may be discon
tinuous at the modon boundary. 

The initial condition modon geometry and amplitudes were the same for all 
experiments. Our intent was to focus on the dynamics of rotating dipoles, so the 
first radial and azimuthal modes were chosen (n = P = 1). The modon radius ra 
was 20 km, and the azimuthal amplitude b~ was set to 0.1. The arbitrary rider 
amplitude 'Po was chosen to be zero. 

The shallow water equations for a two-Iayer Boussinesq fluid on an f-plane 
are: 

8uJ 8t + u;8uJ8x + v;8uJ8y - Jv; = -8pJ 8x + A HV 2
U; 

8vJ8t + u;8vJ8x + v;8v;/8y + Ju; = -8p;/8y + A HV 2
V; 

8hJ8t + 8h;uJ 8x + 8h;vJ 8y = 0 

Vp2 = VPI - g'VIJ I (3) 

where subscripts i = 1, 2 represent upper and lower layer variables, respectively. 
The x and y veloeities are represented by u; and V;, while h; and p; represent the 
layer thicknesses and Boussinesq pressure. A H is the horizontal viscosity coef
ficient and g' is the reduced gravity. If the undisturbed layer thicknesses are Hl 
and H 2' the interface dis placement is described as h = Hl - h I = IJ 2 - H 2' 

To describe the modon's evolution, equations (3) were solved numerically on 
a rectangular grid, with periodic boundary conditions at the boundaries oriented 
north-south, and free slip boundary conditions at the east-west oriented boun
daries. The fluid surface was prescribed to be a rigid lid, and the kinematic 
viscosity was chosen to simulate nearly inviscid flow conditions while maintain
ing numerical stability. 

For all experiments, the channel width was 240 km, with an upper layer 
undisturbed depth of 1000 m, and a lower layer undisturbed depth of 4000 m. 
The bottom topography consisted of a single isolated seamount with a circular 
base 80 km in diameter, located at the center of the computational grid. 

To initialize the PE caculation, the layer veJocities and the interface displace
ment must be specified. Since the analytic solution was barotropic, the velocities 
in each layer were initially specified to be equal and were set to the modon 
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velocities. Modon velocities were obtained by calculating the stream function 
value at each grid point from the analytic solution, and then calculating 
velocities numerically using a second order finite difference scheme. The initial 
interface displacement was specified to be zero at each grid point. 

These experiments examined the effects of increasing seamount height on the 
evolution of the initial modon. Four different seamount heights we re examined. 
In each experiment, y for the analytic solution initial condition was matched 
with the actual seamount centre height in the PE model. Note th at the analytic 
modon rotation ra te depends on y, so th at the expected initial rotation ra te was 
different for each experiment. 

Results 

Flat bottom case (y = 0) 

For the first experiment, an analytic modon solution with y = 0 is used as an 
initial condition for a PE calculation with model topography set to zero. The 
calculation represents a time interval of 40 inertial periods. 

Figure 1 shows a time series of lower layer relative vorticity from inertial 
period (lP) 0 to lP 40. Each panel shows only part of the computational 
domain, from -100 km to 100 km along the X axis, and from -70 km to 70 km 
along the Y axis. The dipole appears to undergo an initial adjustment process 
between lP 0 and lP 2, during which the vorticity becomes more uniformly dis
tributed, with smaller vorticity gradients near the dipole boundary. 

For this experiment, the anticipated dipole rotation rate is zero, based on the 
rotation rate for the analytic modon initial condition. From Figure 1 it is c1ear 
that, although no rotation develops in either layer, the dipole seems to evolve 
rapidly to a rectilinear form translating to the west. Estimates of the movement 
of the dipole centre indicate an approach to a steady translation rate. 

Note that although the strength of the vorticity maxima within the dipole 
decreases steadily, the relative vorticity field continues to show a c1ear dipolar 
structure up to lP 40. 

The time series of upper layer relative vorticity is not shown, since it is identi
cal to the lower layer for this experiment. 

Finite topography experiments (y> 0) 

For the remaining three experiments, analytic modon solutions with fini te 
topography (y = 0.1, 0.2, 0.3) we re used as the initial conditions for calculations 
with model topography described by equation (2) and h", = 400, 800, and 
1200 m, respectively. For each experiment, the calculation was performed for a 
time interval of 40 inertial periods. 

Figure 2 shows a time series of upper layer relative vorticity from lP 0 to lP 
40 for the y = 0.2 (h", = 800 m) case. The circle in each panel represents the 
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Fig.1. Lower layer relative vorticity for the flat bottom case. Time (in inertial periods) is shown 
at lower right in each panel. Solid contours show positive vorticity, and dotted contours show 
negative vorticity. Contour intervals (in rad/sec) for each row are shown at left margin. 
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Fig, 3, Lower layer relative vorticity for the hm = 800 m case, Time (in inertial periods) is shown 
at lower right in each panel. Solid contours show positive vorticity, and dotted contours show 
negative vorticity, Contour intervals (in rad/sec) for each row are shown at left margin, 
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seamount base, and the horizontal scales associated with each panel are the 
same as in Figure 1. 

With y = 0.2, there is an initial mutual westward advection while the shape of 
the vorticity patches changes. By lP 2 the vorticity gradients at the modon 
boundary are noticeably reduced. For this case, the anticipated dipole rotation 
ra te is 6.63x 10 - 6 rad/sec, based on the initial condition analytic solution. Figure 
2 shows that, from lP ° to about lP 20, the dipole does rotate in a positive 
sense, but this rotation is accompanied by translation along a curved trajectory. 

Figure 3 shows a time series of lower layer relative vorticity from lP ° to lP 
40 for the y = 0.2 case. The lower layer dipole undergoes an initial mutual advec
ti on and vorticity adjustment similar to the upper layer. Again, the anticipated 
dipole rotation rate is 6.63x 1 0 - 6 rad/sec. From lP 0 to lP 5, the dipole does 
indeed rotate in a positive sen se. After lP 5, however, the negative vorticity lobe 
is redistributed , and the dipole that emerges begins to rotate in a negative sense, 
opposite from the anticipated rotation rate. Between lP 10 and lP 40, the dipole 
maintains a relatively constant negative rotation rate. 

Figure 3 also reveals some interesting changes in the size of the lower layer 
dipole. Although the changes in contour interval between rows of panels in 
Figure 3 makes precise estimates of the dipole's size difficult , it is c1ear th at the 
modon boundary, initially located 20 km from the seamount centre, gradually 
moves outward until , at lP 40, the dipole extends over the entire seamount. 

The results for the y = 0.2 case in each layer are qualitative\y similar to those 
for y = 0.1 and 0.3, so th at results from these two experiments will not be shown. 
In both of these experiments, the upper layer dipole moves ofT of the seamount, 
and exhibits unsteady rotation, while the lower layer dipole gradually grows in 
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Fig. 4. Comparison of lower layer dipole rotation rate after inertial period 30 (solid line) with 
modon rotation rale anticipated from the analytic solution (dotted line). Rotation rates are scaled 
by f a. 
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size to cover the entire seamount and undergoes a vorticity adjustment process, 
emerging as a dipole rotating in a sense opposite to that anticipated from the 
analytic solution. Figure 4 compares lower layer dipole rotation rate (af ter 30 
inertial periods ) with the anticipated rota ti on rate from the analytic initial con
dition as a function of topographic height. It is c1ear th at the lower layer dipole 
undergoes a significant adjustment process, and in all cases with non-zero 
topography, emerges with a rotation rate th at is drastically different from th at 
predicted by the initial condition. 

Conclusions 

In this work, we have examined the viability of rotating barotropic dipolar 
modons. The analytic model of Mied et al. (1992) indicates that exact solutions 
to the QG equation of motion can exist as steadily rotating vortex pairs over 
paraboloid topography of limited horizontal extent. Since the real ocean 
inc1udes non-QG effects, it seems important to test the behaviour of the analytic 
QG solution in a more realistic environment. Accordingly, we use these 
barotropic dipoles to initialize a PE two-layer numerical model, thus allowing 
for non-QG effects (e.g., interfacial Poinare waves) and possible modal coupling 
between the initial barotropic mode and the baroc1inic mode available in a two
layer system. In addition, these calculations allow for an assessment of the effects 
of finite amplitude topography. 

With these objectives in mind, we have used a single, representative 
barotropic modon with zero axisymmetric rider ('Po = 0) and a non-zero 
azimuthal strength (b~ = 0.1); topographic height lies in the interval 0.0::::;; y::::;; 0.3 . 
Although both similarities and differences were noted between the experimental 
and analytic results, none of the experimental results could be anticipated from 
the analytic solution. 

The flat bottom case ( y = 0) is perhaps the most surprising. With no axisym
metric rider, the expected rotation ra te is zero, but the numerical results differ 
from the anticipated behaviour in several significant ways. Specifically, we find 
that: 

• Viscosity acts to redistribute the vorticity, diminishing the sharp vorticity 
gradient at the edge of the modon. 

• The modon evolves to a rectilinear, translating form which propagates stably 
away from its initial position. 

• The dipole approaches a steady translation ra te after thirty inertial periods. 

The results for the finite topography cases are qualitatively different from 
those for the flat bottom case. Specifically, we find that: 

• Mutual advection of the vortices occurs while vorticity is redistributed. 
• In the upper layer, the dipole moves off the seamount. 
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• In the lower layer, the vorticity patches expand, but are confined to the 
region over the seamount. 

• Although the initial analytic modon rotates in a positive (anticlockwise) 
sen se, the lower layer dipole changes rotation direction before lP 10, and 
develops an approximately steady negative rotation ra te (c1ockwise). 

We conclude by noting that the analytic modon forms of Mied et al. (1992) 
may be weakly unstable in a more realistic baroclinic ocean possessing fini te
amplitude topography. In the presence of viscosity, the dipoles evolve to a new 
morphology. In the upper layer, the dipole moves away from the seamount. 
However, in the lower layer, these unanticipated forms remain modon-like, pos
sessing at least two characteristics of rotating modons: a spatially compact vor
ticity distribution (with zero vorticity just outside the seamount) and steady 
rotation. These results suggest that there may be many rotating modon con
figurations and argues strongly for a tractable analytical fonnulation that 
mirrors the resulting, steady-state numerical results. 
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v.v. Meleshko and A.A. Gurzhi 

Stirring of an Inviscid Fluid by Interacting Point Vortices 

Abstract 

The purpose of this paper is to discuss quantitatively some stirring properties of 
a two-dimensional, ideal fluid induced by two and three point vortices. Special 
attention is given to the mixing process associated with the periodic interaction 
between a vortex pair and a monopole. 

Introduction 

Interest in the advection of two-dimensional (20) motion of Lagrangian par
ticles in an inviscid incompressible fluid with a prescribed Eulerian velocity field 
dates from quite a long time ago. The Hamiltonian structure of the equations of 
motion of an individual fluid particIe led Gibbs ( 1902) to the idea of considering 
the 20 motion of some coloured area of liquid as an analogue for an ensemble 
of points in an abstract ph ase space. In particular, he introduced the term 
"stirring of incompressible liquid" for a pure mechanical displacement of the 
coloured regions. This idea was further developed by Welander (1955), who 
presented some pictures showing the deformation of a tracer pattern in a 20 
atmosphere due to astrong monopolar vortex. In recent times the analysis of 
20 coherent vortex structures is increasingly attracting the attention of many 
fluid dynamicists. The emergence of these structures is a characteristic feature of 
quasi-geostrophic or two-dimensional flows, and coherent vortices have indeed 
been observed abundantly in the oceans (Robinson , 1983) and the planetary 
atmospheres (Scorer, 1978). 

An important question in the study of vortex structures concerns their stirring 
and mixing properties, in particular when smaller or larger perturbations are 
introduced by, for example, instability or interaction with other vortices. 
Experiments on interacting vortex dipoles by van Heijst and Flór (1989), have 
revealed the complicated nature of the advection of passive tracers during the 
interaction process, in which some fluid initially trapped in the atmospheres of 
the original dipoles may be left behind via detrainment, while some surrounding 
fluid may be caught in the newly formed structures (entrainment). 

Some essential features of the dynamics and the associated advection of these 
coherent vortices can be modelled by a simplified model in which the coherent 
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vortex structures are represented by point vortices. Comparison of numerical 
simulation results of this point-vortex approach (see Meleshko et al., 1992) with 
available experimental observations (van Heijst and Flór, 1989) shows 
reasonably good quantitative agreement. The main aim of present paper is to 
use this model to a quantitative analysis of stirring processes in some typical 
cases of periodic interactions of two and three point vortices. 

The two-dimensional problem of the interaction of three point vortices of 
strength Koc and position (x oc ' Yoc ) in the unbounded (x, y )-plane of an inviscid 
fluid consists in solving the following nonlinear system of first order difTerential 
equations 

I ~ _Kil 
i := 2 .... /. 1-. I _ 

,. II ~ I - CL ~fl 

tX= I, 2, 3, ( 1 ) 

with initial conditions Z IX = z ~O J at 1 = O. Here ZIX = X IX + iy" , the dot, asterisk and 
accent indicate time derivative, complex conjugation, and the omission of the 
term corresponding with P = tX, respectively. The system (I) has four first 
integrals, these being: 

3 

Q+iP= I K IY- Z IX ' 
,,~ I 

3 

1= I K lX lzlY- 12
, 

,,~ I 

I 3 

H = - - I I K IY- Kp Inl zlY- - zpl . (2) 
4n " . p~ I 

It is known due to Gröbli (1877) (see also Aref, 1979 and Aref et al., 1992) that 
th is problem is integrable. Therefore, using the invariants (2) the solutions zoc(t) 
to equation (1 ) can be obtained in an analytical form containing, in general, 
some quadratures. 

The equation of the passive advection of an individual Lagrangian fluid par
ticle induced by the point vortices may be obtained by considering a marker at 
Z = X + i Y as a point vortex of zero strength , namely 

with Z = ZI O) at t = o. 

1 3 K Z*=- I --p-
2ni II ~ I Z - Z / 

(3) 

Hence, the advection by two interacting point vortices forms an integrable 
problem because a fluid particle may be considered as point vortex of zero 
strength. Rom-Kedar el al. (1990) have found that in the presence of a peri
odical strain-rate velocity field at infinity the whole picture is radically changed, 
namely depending on initial conditions fluid particles can appear either in 
regular or in chaotic regions. Then the following question arises: what will the 
behaviour of a cloud of fluid particles look like for the case of periodic interac
tions of two and three vortices? 
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Results 

We will consider two typical examples of point vortex motion. For both of them 
the strengths of vortices and their initial positions are choosen in such a way 
that P = 0, Q = 0 in (2). For the first example with two vortices we put (Ki' x~O), 
y~O») as (2K, 0, (1- b)j2) and (-K, 0,/- b) for i = 1, 2, respectively. For the 
second example with three vortices we put (Ki' x~O), y~O») as (K, 0,/- b), 
(-K, O,/+b) and (K,O, -2b) for i= I, 2,3, respectively. In other words, we will 
consider the changes in the stirring process due to splitting of the "big" vortex 
of intensity 2K into two vortices of equal intensity K, located at a distance 
d = 3b - III from each other, see Fig. 1. 

It is well known that for the case of two point vortices of strength Kl and K2' 

the distance d between them remains constant and the two vortices move in cÏr
cular paths (Fig. Ia) around the centre of vorticity with the same angular 
velocity Q=(K I +K2 )j2nJl and period T I2 =4nJlj(K I +K2 ). 

For the case of three vortices Gröbli's (1877) solution provides the positions 
of the vortices in a po lar coordinate system as following 

IX = 1,2,3, (4) 

where rot (t) represents periodic functions of period 

(5) 

4 4 

2 2 

0 >. 0 0 >. 0 

-2 -2 

-4 -4 

-4 -2 0 2 4 -4 -2 0 2 4 

X X 

Fig.!. Periodic trajectories oftwo and three point vortices ofstrengths KI =2K, K2= -K (a) and 
KI = K, K2 = - K, K 3 = K (b), respectively. The dots show the positions of the vortices at intervals 
of 0.1 T, with T being the full period (T12 and T 123 , respectively). 
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with E and K the complete elliptical integrals of the first and the second kind 
with modulus k 2 = (, 1 -, 2)/( I -(2)' Here' 1, ' 2 are the roots of the polynomial 
,2 _ 40.2 - À. K + 4..1. 2 and the goveming parameter À. = (f + 3b ) 2 14b(1 + b ). 

For -0.25 < À. < 0 the motion of the vortices appears to be bounded: neither 
vortex I nor vortex 3 can form a vortex pair with vortex 2 and escape to infinity. 
During the period T the radial distances of the vortices from the origin change 
between the limits 

J 2 ' )'3 J 2 À. - 2..1. + À. ~ - - ~ À. - 2..1. - À. "' B ' B '" , 

2 J À. 
2 

- 2..1. ~~ ~ j 2 - 4..1. - 2~ 

with B = 2bll + bl/II+ 3bl and the angles {}/1 increase with the same value 

{}= g {(l-2À.) K - ;..1. n} 
1-'2 '>2 

(6) 

where n is the complete elliptical integral of the third kind with the moduli k 2 

and Jl = , 1 g 2 - 1. 
The case when 2nl{} is a rational number mln is of special interest. For such 

a case the motion of the three vortices are exactly periodical: af ter time mT all 
vortices is exactly at their initial positions af ter n tums around the origin. The 
trajectories of the vortices for À. = -0.0856, 1= -2.326Ib, {} = n15, 
T= 1.7578b21K with m = 10, n = I are presented in Fig. lb. Vortices land 3 form 
alocal interacting pair while vortex 2 moves at almost constant speed around 
the origin. At the time intervals Ik = kT the relative positions of the vortices, 
marked by circles, are the same as in the initial configuration. As a first 
approximation one may consider the motion of the three vortices as a motion 
of two vortices, viz. by replacing vortices land 3 into one "big" vortex I + 3 
with intensity 2K at distance (111 + b )/2 from the origin on the negative y-axis. 
Such a "pair" will also rotate uniformly with dimensionless period 
T(l + 3) 2 = n(l + 1/11b)2 12. The whole picture of motion can be considered as a 
superposition of two rotations with different time scales: a "rapid " rotation of 
two identical vortices land 3 and "slow" rotation of the asymmetric dipolar 
vortex (I + 3) and 2 around the origin (see Fig. I b). The calculated period 
T( 1 + 3 ) 2 of this slow rotation agrees reasonably weIl with the period T 123 = lOT. 

These apparently similar motions of the vortices result, however, in different 
stirring of the surrounding fluid. In order to gain some insight in the mixing 
behaviour of the fluid, we considered the particles in 3 different regions, i.e. areas 
enclosed by closed contours. Two of these regions are circles of radii '0 = band 
'0 = O.lb located far from and quite near to the initial positions of the vortices, 
respectively (Figs. 2a and 3a). The third area is enclosed by a kidney-shaped 
contour that is constructed by Poincaré mapping of a single marker initially 
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Fig. 2. The evolution of three regions of passive tracers (indicated by the black dot and the two 
c10sed curves) from time t = 0 to time t = T I2 for the nonsymmetric dipole (2K, -K). The relative 
length l(t) = L(t)/L(O) of the boundary of the dark blob is: t = 0, I = I, (a); t = 0.1 T 12 , 1= 12, (b); 
t = 0.2TI2 , 1=29, (c); t = OJTI2 , 1=48, (d); t = 0.5TI2 , 1=88, (e); t = T 12 , 1= 187, (f). 
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Fig. 3. The evolution of three regions of passive tracers (indicated by the black dot and the two 
closed curves) from time t = 0 to time t = T123 for the three vortices /C I = /C, /C2 = - /C, /C 3 = /C. The 
re1ative length l(t) = L( t) f L(O) of the boundary of the dark blob is: t = 0, 1 = I, (a); t = 0.1 T 123 , 

1= 12, (b); t=O.2T123 , 1=44, (c); t=O.3T123 , 1=232, (d); t=0.5T123 , 1~5 .103, (e); t= T 123 , 

1~7 · 105,(f) . 
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located at the origin. This region corresponds to a large elliptic island connected 
with a periodic point (0, l.44h). It is important to note that the ph ase plane used 
in the Poincaré section method for the case of 2D periodical fluid motion is the 
actual physical plane. So, if a regular sequence of Poincaré mappings tends to 
create some sufficiently simple c10sed curve, it is c1ear that during one period of 
motion th is curve must exactly return to its initial position. 

Results of the numerical simulations (for a detailed discussion of the numeri
cal procedure see Meleshko et al., 1992) for the same moments of dimensionless 
time in terms of the whole periods of rotation T '2 and Tm, respectively, are 
presented in Figs. 2 and 3. The process of deformation of tracer lines in the 
regular domain is very similar in both cases. Moreover, lines formed by Poin
caré mappings return exactly into their initial positions af ter one full period. At 
the same time Figs. 2 and 3 c1early show the difTerence that is induced by split
ting one vortex into two vortices. At the initial stages (Figs. 2b and 3b) the blob 
is only stretched and the process of stirring is the same in both cases of vortex 
interaction. For two vortices this line continues to stretch (Figs. 2c-e) and af ter 
one period it forms the boundary of the "atmosphere" of the nonsymmetric 
dipole (2K, -Kj, see Fig.2f. 

For three vortices, however, folding occurs (Fig. 3c) and af ter the full period 
(Fig. 3f) the line is stretched and folded to such a degree that it is impossible to 
follow the whole line as a continuo us curve without any self-intersections. For 
this reason Figs. 3d-e only show the positions of 4000 markers which were 
initially located on the circumference of the black circ1e. After one full rotation 
of three-vortex system the points of the initial blob are located mainly inside 
some bounded domain and produce a few lobes in the wake, but again, none of 
them appear in the circular regions around the vortices. Not intending to enter 
all the details of chaotic stirring by three vortices, we would like to explain only 
the appearence of two additional elliptical islands inside the domain which are 
connected with positions of the vortices. This explanation naturally leads to the 
important notion of the "atmosphere" of the two point vortices. 

Discussion 

In order to gain insight in the stirring process let us consider the topological 
structure of the flow generated by two point vortices. W. Thomson (1867) was 
the first to show that a vortex pair (two point vortices of equal but opposite\y
signed intensities) in its steady motion in an unbounded plane is also accom
panied by an "atmosphere", i.e. a fixed c10sed volume of fluid partic1es. This 
motion can be generalized to the case of any set of two point vortices of 
strengths KI and K 2' If their initial positions are Z\OI = X

I
I
OI + ii,o l and 

ziO ' = xiO' + iyiO ', each of the vortices rotates uniformly around the point 
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(7) 

are the solutions to equations (1). 
The advection of fluid partic\es surrounding such a uniformly rotating pair 

can be analyzed by searching for a solution to equation (3) of the form 

Z( t) = Ze + ((( t) - Ze) ex p(i.Q t ). (8) 

It is easy to verify th at the new function ((1) = ~(1) + il]( t) satisfies the difTerential 
equation 

.*_ 1 (KI K2). * * ( - -2 . ( 101 + ( 101 + IQ(( - Ze ) 
1Cl -Z, - Z2 

(9) 

where the right hand side does not depend implicitly on time. Equation (9) can 
be transformed into the autonomous Hamiltonian form 

. 8t/1 
~ = 81]' 

. 8t/1 
1]= --

8~ 
(l0) 

where 

K 
t/I(~ , 1]) = - 4~ In[ (~ - xio 1)2 + (I] - yiOI) 2] 

K .Q 
- 4~ In[ (~- XiOI)2 + (I] - yiOI)2] +"2 [(~ - X(")2 + (I] - Yc)2]. (11) 

Thus in the (~, I] )-system rotating uniformly around the point Ze> the partic\e 
motion is steady and the streamlines t/I(~, 1]) = C coincide with pathlines of fluid 
partic\es. 

Choosing the initial positions of the vortices on the y-axis, with ZI,OI = ib and 
ziO I = - ib, let us consider some typical vortex atmospheres. When KIK 2 < 0 the 
best known is the vortex pair atmosphere, with K, = -K2 = K and Ze = 00 , .Q = O. 
Two types of streamlines are formed, viz. a system of c\osed lines and a system 
of non-c\osed lines, see Fig. 4a. The streamline C = 0 defines a fixed, c\osed 
region of fluid, and its shape is approximately an ellipse with axes 1.73b and 
2.09b and area S = 3.61nb 2

; this is the "atmosphere", which moves permanently 
with the vortex pair. The equation of the atmosphere boundary (the lines 'Pu, 
'P,) was already obtained by W. Thomson (1867) as 

(12 ) 
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Fig. 4. Streamlines, separatrices ('P" 'P", 'Po and bold Iines), elliptical points (E +, E _, E) and 
hyperbolic points (P + , P _, P) of flow, seen in a co-moving (co-rotating) frame for : the symmetri
cal vortex pair, KI = K , K 2 = -K, (a); the nonsymmetrie dipole, KI = 2K, K 2 = -K, (b) ; and two 
identical vortices, KI =K, K2=K, (c). 

The atmosphere does not change essentially for the case of nonequal strengths 
(in absolute sense) of the vortices. The atmosphere for KI = 2K, K 2 = - K, 
(Z e = 3ib, Q = K/8nb 2

) is shown in Fig.4b. It can be shown that the coordinates 
of the hyperbolic points P + and P _, where the velocity accordi~ to (9) is 
equal to zero do not depend on KI and K 2. They are ç p + = b .j 3, "p + = ° and 
ç p _ = - b -:)3, "p _ = 0. At the same time, the line 'Po transforms now into the 
c10sed separatrix, which enc10ses an elliptic point E at ç E = 0, "E = 4.54b. 
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Fig. 5. Schematic picture of the superposition of separatrices of the flow due to the nonsymmetric 
dipole and that due to two identical vortices. 

When KIK 2 > 0 the pattern of streamlines is somewhat more complicated. A 
typical picture for KI = K2 = K, (ze = 0, Q = K/4nb 2

) is presented in Fig.4c. It is 
seen that there are now three systems of closed streamlines surrounding one, two 
or none of the vortices, and which are divided by separatrices. Besides the hyper
bolic point P at (0,0) for this case there exist also two elliptic points E + and 
E _ at (± )3, 0). 

Thus, in all the cases two steadily translating or rotating point vortices catch 
with them some fluid within separatrices, i.e. within the atmosphere, while these 
large coherent structures move without any changes. 

If we now put together the separatrices of Fig. 4b and Fig. 4c on a proper 
scale for our case of the three-vortex system, we obtain a schematical picture as 
shown in Fig. 5. Therefore, the appearance of two additional large elliptical 
islands is connected with the topological structure of the flow near the two equal 
vortices. This explanation, of course, is only approximate because the "ideal" 
pattern of separatrices is destroyed during the periodic interaction of three vor
tices. It does provide, however, some insight into the qualitative and, in some 
respects, quantitative nature of the stirring by three point vortices. 

Conclusions 

In the present analytical and numerical study we have provided evidence that 
two and three point vortices, although having in some cases similar trajectories 
under periodical interaction, induce stirring of surrounding fluid that is in some 
respects similar, while in other respects different. In spite of the nonintegrability 
of the Hamiltonian system for advection of fluid by three point vortices there are 
large regions of nonstirred fluid particles which conserve their identity af ter a 
whole period of vortex interaction. These regions are formed by Poincaré 
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mapping of a single marker located initially within a regular domain. The 
stirring of a dyed bi ob initially placed in the region between the vortices results 
in a redistribution of fluid inside the atmosphere of the vortex system. For the 
case of three vortices such a region contains two additional islands. The 
appearance of these islands is connected with the topological properties of the 
flow structure associated with two point vortices of the same strengths. 
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O.C. Montgomery 1, X. Shan 1 and W.H. Matthaeus 2 

Entropies tor 20 Viscous Flows 

Abstract 

Previously, two-dimensional Navier-Stokes (20 NS) flow was represented as the 
evolution of two non-negative vorticity fields whose difTerence is the physical 20 
vorticity, and whose overlap corresponds to the viscous dissipation of vorticity. 
Any physical state in 20 periodic geometry can be achieved as some rearrange
ment of the (conserved) fluxes of these two fields. Oefining an entropy for the 
system is equivalent to assigning statistical weights to the possible 
rearrangements. Maximizing this "two fluid" entropy leads to satisfactory 
predictions for the turbulent decay of the embedded 20 NS flow, as indicated 
by numerical solutions of the two-fluid equations. The entropy defined is inde
pendent of the absolute values of the fluxes. 

1. Introduction 

Recent spectral-method computations (Matthaeus et al., 1991 a; Matthaeus et 
al., 1991 b; Montgomery et al., 1992) of freely-decaying, two-dimensional, 
Navier-Stokes (20 NS) turbulence at high Reynolds numbers have been carried 
out for periodic boundary conditions. In a few hundred large-scale eddy turn
over times, a two vortex final state has been achieved, and appears to decay 
stably thereafter. The decay is on the much slower energy decay time scale, typi
cally more than 10,000 eddy turnover times. The dominant dynamical 
mechanism that achieves the two vortex state is like-sign vortex merger, 
repeated over and over again at increasingly larger spatial scales. 

A respectable fit (Montgomery et al., 1992) of the computed data to a much 
earl ier (Joyce and Montgomery, 1973; Montgomery and Joyce, 1974) statistical 
mechanical theory of many ideal parallel line vortices has been noted. In par
ticular, there is an apparent hyperbolic-sinusoidal dependence of the vorticity w 
upon the stream function 1/1 (where V 2 1/1 = - w) that characterizes the two vortex 
final state and which requires a justification going beyond the mean-field theory 
for the discrete-particle Hamiltonian mechanics (Onsager, 1949; Kraichnan and 
Montgomery, 1980) that underlie the ideal line vortex model. 

Seeking a most-probable state for any system to evolve toward requires some 
kind of an entropy to maximize. Entropy for continua is still a controversial 
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topic. Here, we propose a two-fluid description, involving positive and negative 
vorticity fields, which contains embedded in it the 20 NS dynamics. The non
negative fluxes associated with the two vorticities are conserved , and their inter
penetration is equivalent to a decay of the physical vorticity. As conserved quan
tities, the two non-negative fluxes adapt themselves to an information-theoretic 
(Jaynes, 1957) definition of entropy. 

The two-fluid model is summarized in Section 2, and some supporting 
numerical evidence is described in Section 3, along with some closing remarks. 

2. Two-tluid model 

The two vorticity fields, w ± , both non-negative, are taken to obey 

( la,b) 

where the physical vorticity field is the difTerence, w == w + - W - . The fluid 
velocity is v = Vt/J x ê=, where the stream function t/J = t/J (x, y, t) obeys the 
Poisson equation , V2 t/J = -wo The kinematic viscosity is v ~ l. For al1 fields, 
8/8::. == 0, and for simplicity we assume periodic boundary conditions in the (x, y) 
plane over a square box of edge 2n:. Subtracting Eq. (l b) from Eq. (Ia) gives the 
20 NS equation in the wel1 known vorticity representation. 

For reasons which are familiar (Kraichnan and Montgomery, 1980), the 
energy E = (1 /2) J (w + - W - ) t/Jd2x decays slowly, according to Eqs. (Ia,b), but 
the enstrophy Q = ( 1/2) J (w + - W - )2 d2x decays much more rapidly. The 
essence of the maximum entropy argument is to define an entropy, or measure 
of the likelihood of a particular state, then maximize that measure subject to the 
constancy of the conserved or nearly-conserved quantities th at may exist. If the 
system exhibits ordinary statistical-mechanical behaviour, or something close to 
it, its time evolution should typical1y lead it toward that maximum-entropy 
state. Previously (Montgomery et al .. 1992), the entropy proposed was 

the maximization of which leads to the "sinh-Poisson" equation , if only energy 
and fluxes are conserved , and positive-negative symmetry is assumed: 

where ),2 ( > 0) and p ( < 0) are real constants. 
An unfortunate feature of this definition of entropy is that it is dependent 
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upon the absolute value of the (conserved) fluxes, equal for periodic boundary 
conditions: 

f w ±d 2x = V( w ±) . 

where V is (2nf, the area of the periodic box. However, both Eqs. (I) and all 
the other dynamics are invariant to the addition of the same positive constant 
to w + and w - . 

There is a more subtIe way of counting states and assigning entropies that is 
invariant to the addition of constants to the two vorticity fields. For any pair of 
initial vorticities. w + and w - , we may define four auxiliary fields by the follow
ing relations ( < > means a spatial average ): 

w ++ =w + -( w +) , if w + > ( w +), zero otherwise; 

w +- = -w + + ( w +), if w +«w +), zero otherwise; 

w - + = -w - + ( w - ) , if w - «w - ), zero otherwise; 

w -- =w - - ( w - ), if w - > ( w - ) , zero otherwise. 

Then any other spatial redistribution of these four non-negative fluxes associated 
with w + +, W + - , W - + , and w - - can account for all possible states into which 
the system might evolve, and do it in a way th at is invariant to the addition of 
constants to w + and w - . An entropy which measures the likelihood of any such 
redistribution may be taken to be 

s= -f (w ++ lnw ++ +w + - lnw + - +w - + lnw - + +w -- lnw -- )d2x.(2) 

Given the four auxiliary fields, w + may for example be written as 
w + = W + + - w + - + ( w + ) and similarly, w - = - w - + + w - - + ( w - ). 

Maximization of this S, subject to constant values of the fluxes of the four 
auxiliary fields and the nearly constant value of E yields, as most probable 
values, w ++ =exp[ -ex ++ -Pijl] , w +- =exp[ - ex +- + Pijl] , 
w - + = exp[ -ex - + - Pijl] , and w - - = exp[ -ex - - + pijl]. Here, the ex's and P 
are five Lagrange multipliers, to be determined from the conservation laws. If an 
assumption of complete symmetry is made among the four auxiliary fields, the 
four ex's may be taken to be equal, and a hyperbolic-sinusoidal connection 
between w = w + - W - = w + + - W + - + w - + - W - - and Ijl results. As will be 
seen in Section 3, this symmetry is not quite fulfilled by the computations, for 
reasons that are apparently rather specific to the system. 

3. Numerical results 

A 2D spectral-method periodic code has been written by Shan (Montgomery et 
al. , 1993 j to solve Eqs. (l a,b j. In the process, of course, a solution for the 
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2D NS equation is generated, but extra infonnation on the two-fluid system is 
provided. Interpreted in tenns of the 2D NS variables (w, v, t/I), the evolution 
is familiar (Matthaeus et al., 1991a, Matthaeus, 1991b; Montgomery et al., 
1992). For Reynolds numbers greater than about 1000, like-sign vortex mergers 
occur until only one vortex of either sign remains. Here R is the large scale 
Reynolds number defined from the initial nns velocity < v2 > 1/ 2 (typically = 1), 
unit length scale, and V - I which has ranged from 1000 to about 14,000 in recent 
runs. With these conventions, the Reynolds number is in effect v -I, and the 
characteristic energy decay time is also of the order of v -I. The vortex captures 
are typically completed in a time more than an order of magnitude less than the 
energy decay time. 

As illustrated in Fig. I, a scatter plot of the computed w + and w - vs. t/I at 
late times is typically weil fit by the maximum entropy predictions, which are the 
curves drawn through the scatter plots. The oc's and p for the curves are deter
mined by a least squares fitting procedure. The symmetry requirements 
necessary to convert the exponentials into hyperbolic sines for ware typically 
not quite so weil fulfilled, for what seems to be the following rather specific 
reason. 
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Fig.la,b. Scatter plots ofthe computed (J) + vs. '" and (J) - vs. '" at t=390 initiallarge-scale eddy 
tumover times at R = 10, 000. The dashed lines are the least-squares fit of the maximum entropy 
predictions (from Montgomery et al. (1993» . 
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In the vortex merger process, there is a conservation law that guarantees that 
the two final-state vortices should have equal absolute values of integrated vor
ticity; but there is no corresponding reason why they should acquire equal 
energies. While a roughly equal distribution of energy might be expected, there 
is nothing in the dynamics of the sequence of like-sign vortex mergers leading to 
the final state that guarantees an equal sharing of energy. In the runs that have 
been done, it has been typical to have a ten percent difference in the kinetic 
energy associated with the half of the basic box containing the positive vortex, 
compared with the half containing the negative vortex, and this difference per
sists. 

A consequence of this difference is th at the structure of the positive and 
negative vorticity· parts of the final state can be better fit separately by the two 
values of the reciprocal temperature P that differ by perhaps 15% than by a 
single common value of p. There are comparable differences in the (l'S, since they 
are not independent of the p. The mergers seem to lead to vortices that are 
individually maximum entropy structures more accurately than the whole 
system is fit by the overall maximum entropy prediction, somewhat in the man
ner suggested by Smith (1991). However, the overall fit with a single maximum
entropy sinh-Poisson prediction is not a bad fit to the computed data 
(Matthaeus et al. , 1991a; Matthaeus et al., 1991b; Montgomery et al. , 1992). 

Considerable work remains, in defining entropies precisely for the three
dimensional case (Chorin, 1991). There has also been a suggestion that a maxi
mum-entropy analysis can be made to fit the solutions of the Euler equations 
(v = 0), which appears somewhat more problematical (Robert and Sommeria, 
1992 ). 
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Rubén A. Pasmanter 

On Long-lived Vortices in 20 Viscous Flows 
and Most Probable States of Inviscid 20 Flows 

Abstract 

We discuss, in contraposition to the most probable states of quasi-inviscid 
theories, the status of the vorticity- stream function relations satisfied by the 
long-lived vortices observed in some numerical simulations of decaying two
dimensional turbulence and in experiments in stratified fluids. 

The emergence of large-scale, long-lived vortices in 20, viscous, incompressible 
flows has been weIl established through numerical simulations [1 , 2, 3] and 
laboratory observations [4, 5]. The mechanisms that lead to their emergence 
have been studied, see, e.g., [6], as weIl as the important role they play in deter
mining the dynamics and the statistical characteristics of the flow, e.g., [7]. 
While viscosity is essential for the coalescence of smaller vortices into larger 
ones, the segregation of opposite-signed vorticity regions is a striking charac
teristic of the frictionless dynamics, as had been pointed out by Onsager [8], 
al ready decades before the above-mentioned investigations and was verified by 
Joyce and Montgomery [9]. State-of-the-art numerical calculations [10] seem 
to indicate that some quasi-stationary states of two-dimensional , viscous flows 
are characterized by a hyperbolic-sine relation between the vorticity field 
w(x, y, t) and the stream function ljI(x, y, 1), i.e., suppressing the weak time
dependence, 

w(x, y ) = Wo sinh( Ijl ( x, y )/I/I 0)' (1) 

Moreover, some quasi-stationary states observed in recent laboratory 
experiments in stratified fluids [11] are consistent with such an w-1jI rela
tionship. Taking into account the general relation between vorticity and the two
dimensional stream function of incompressible flows, i.e., w == -11Ij1, th is implies 
that, in these cases, the quasi-stationary stream function satisfies the following 
difTerential equation, 

(2) 
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with I/J = ° on the boundary of the domain. It should be noticed that such an 
w--I/J relation is not preserved by viscous dissipation , therefore, these states can 
be quasi-stationary only if the Reynolds number is still large enough so that the 
evolution is not dominated by viscous effects. 

The possibility raised by eq. (2) is interesting for a number of reasons. Firstly, 
as pointed out in [10] , because statistical mechanical studies of inviscid two
dimensional hydrodynamics predict th at the most probable equilibrium state is 
a stationary solution of Euler's equations, i.e., its stream function P(x, y ) 
satisfies A 'I' = F( '1'), with Feither the hyperbolic-sine function as in eq. (2) [9] 
or some other similar function [12, 13, 14] , see below. Secondly, because such 
arelation could make pos si bie the application of powerful mathematical 
methods related to soli ton equations. Before analysing this second aspect, some 
comments on the above-mentioned statistical mechanical studies are in place. 

Joyce and Montgomery [9] computed the most probable state of a 
Hamiltonian system consisting of identical positive and negative point vortices 
and obtained that, in the case of vanishing total vorticity, the stream function 
of the equilibrium state must satisfy eq. (2), see also [15]. Their calculations can 
be extended, e.g. , by discretizing the continuous vorticity distribution with non
identical point vortices; by doing so, one obtains most probable states th at are 
characterized by w--I/J relations reminiscent of but different from (2). The 
dependence of results upon the arbitrary discretization of the field , had already 
been noticed by Onsager [8]. 

This observation is in agreement with the more elaborate mean-field theories 
recently developed by two groups [12, 13, 14] , see also [16] , which take into 
account, besides the conservation of kinetic energy, momentum, etc, an infinite 
number of quantities conserved by the dynamics, i.e., 

:r J f( w) dx dy = 0, (3) 

where f( w) is an arbitrary function of the vorticity field. Due to these conserva
tion laws, initial conditions that have, e.g., equal energy, momentum and 
enstrophy, but different vorticity distributions, will lead to different stationary, 
most pro ba bie distributions; i.e. , (2) is only one possibility among many. These 
theories lead to partition functions Z([3, I/J( x, y) ) of the following form, 

Z([3, I/J( x, y )) = J exp([3Ii(a) - [3aI/J( x, y )) da, (4) 

where the parameters [3 (analogous to an inverse temperature) and the function 
Ii(a) (analogous to a chemical potential) are Lagrange multipliers chosen in 
such a way that the constraints on the conserved quantities are satisfied. More 
precisely, the value of the energy determines [3 and the area (density) on which 
the vorticity takes a value, call it a, determines the function Ii(a). The integrand 
in (4) is proportional to the probability of observing the vorticity value a at a 
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position (x, y) with stream-function value tjJ(x, y). Consequently, the ave rage 
vorticity is given by 

If 1 8 w(x, y) = Z - a exp(pp(a) - patjJ(x, y)) da = -p 8tjJlog Z(P, tjJ). (5) 

Identifying the tjJ(x, y) in this equation with the average stream function, i.e., 
using a mean-field approximation, this equation leads to a functional relation 
between the average vorticity w(x, y) and the ave rage stream function tjJ(x, y); 
therefore, these functions correspond to stationary solutions of Euler's equa
tions. Moreover, Robert [13] has shown that the probability distribution is 
sharply peaked around the most probable state. It should be noticed th at these 
theories do not conserve all the invariants of the inviscid dynamics, for example, 
the connectivity of isovortical lines is not conserved and, e.g., the enstrophy of 
the most probable state may be less than that of the initial state [12, 14 J. There
fore, I shall use the term 'quasi-inviscid' in order to characterize them. 

The following examples should iIIustrate the many possible most probable 
states allo wed by these quasi-inviscid theories of 2-0 flows. The chemical poten
tial p( a) is closely related to the initial probability distribution of vorticity 
[12, 14 J. If the initial state corresponds to a random 'turbulent' field, it makes 
sense to consider Poissonian and Gaussian distributions. It turns out th at if the 
chemica I potential tl( a) is given by exp(pp( a) ) = exp( - I a I1 q) where q is a 
positive constant, i.e. , a Poisson distribution of the initial vorticity values a, then 
one obtains 

V 2lf/=2Pq2 \!tjJ2 with lf/(x,y )=PqtjJ( x, y) and IPqtjJ(x,y)l<l. (6) 

This functional relation fits the experimental results as satisfactorily as the 
hyperbolic-sine relation (2) does [11,17], see Fig. 1; it should be noticed that 
a cubic polynomial does the job as well [11 J. Therefore, it would be interesting 
to check whether it is capable of fitting also the results of the numerical simula
tions. 

Besides regular solutions, eq. (6) allows also non-regular ones. Circular, non
regular solutions of eq. (6) be have like tjJ = 1 - rl.j2 + 0(r2), where r measures 
the distance from a cusplike singularity; such a singularity carries finite circula
tion and kinetic energy but has infinite enstrophy. 

On the other hand, if the chemical potential is taken to be quadratic in the 
vorticity, pp(a) = -(aI 2q)2, i.e., a Gaussian distribution of initia1 vorticity 
values, then one obtains a linear relation between vorticity and stream function 
[12 ], 

(7) 
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experimental results from [11 J, the line is the best fit obtained using eq. (6) with 
p = - 1.88 (slem f and q = 0.17 Is. Courtesy of Flór and van Heijst [17 J. 

The w-I/I relations obtained in the numerical simulations of Morel and Carton, 
fig. 5c of ref. [18], as weIl as the hyperbolic-sine relation in (2) can be obtained 
as follows: Con si der the case 

(8) 

with A2 + B2 + Cl = 1 and A 2q, + C2q2 = 0, i.e., the initial vorticity takes only 
the values q" q2 and 0 with probabilities A2, C2 and B2 respectively, such that 
the total vorticity is 0; this agrees with the initial conditions used in these 
simulations [18]. This leads to 

V2 - 2 2 exp(A 2t]ï/C2
) - exp( - t]ï) 

1/1 = - pA q) 1 + A 2( exp( -1/1) _ 1) + C2( exp( A 21/1/ C2) _ 1) (9) 

with t]ï(x, y) = Pq,l/I(x, y). Joyce and Montgomery's result, eq. (2) with 
pq)l/Io= 1 and wo=q) C2, follows if one takes identical point vortices, i.e., the 
limits of A 2 = C2 

-+ 0 and q) = - q 2 -+ 00 such that the circulation q, A 2 remains 
finite and p -+ 0 such that q) p remains finite. One sees then that it is possible to 
obtain w(l/I) functions that remain finite for all values of 1/1, as in eq. (9), or that 
diverge for 1/1 -+ ± 00, as in eqs. (2) and (7), or that diverge at a finite value of 
1/1, as in eq. (6). All the above examples illustrate a point which was already 
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realized by Onsager [8]: in a bounded domain, localized solutions exist with 
p < 0, i.e., there are 'negative temperature' states. 

The results briefly reviewed in the previous paragraphs, raise a number of 
interesting questions: What is the relation, if any, between quasi-stationary 
states generated by viscous flows and the most probable ones predicted by 
quasi-inviscid theories? Why should viscous dissipation lead into a quasi
stationary state before reaching the final stages of dissipation? Do some quasi
stationary states, out of infinitely many possibilities, actually satisfy the hyper
bolic-sine relation (2)? How universal is this relation, i.e., do other initial condi
tions or boundary conditions lead to different quasi-stationary states? If yes, 
then wh at are the other possibilities or 'universal classes'? Does eq. (6) provide 
a better or worse fit of the same observations or does it correspond to another 
universal class? These questions still remain open; only some partial answers 
and conjectures have been advanced: lt has been pointed out that the above
mentioned mean-field theories introduce, through coarse graining, some irrever
sibility and dissipation [12, 14] so th at the 'dressed' vorticity distribution which 
measures the long-time, coarse-grained vorticity field is, in general, different 
from the 'bare', initial one so that, for example, the enstrophy is effectively dis
sipated. In fact, Pomeau has argued that such an effective dissipative behaviour 
should be generic to nonlinear, non-integrable c1assical fields [19]. Even if this 
we re true, it remains to explain why the predictions of these quasi-inviscid 
theories should agree with the quasi-stationary states reached through standard 
viscous dissipation since other types of dissipation, like hyperviscosity or Ekman 
damping, could and in fact seem to lead to different quasi-stationary states [14]. 
Robert and Sommeria [20] have proposed a diffusive algorithm that conserves 
energy and all other constants of the motion and converges into the most prob
ab Ie stationary state; however, there is no reason why this algorithm should 
reproduce the actual inviscid dynamics, let alone the viscous one. Miller has 
shown that the most probable states predicted by the quasi-inviscid theories 
coincide with the maximum-energy states under the constraint of the dressed 
vorticity distribution [12]. Therefore, this approach can also be viewed as a 
generalization of the 'selective-decay' approach [27] in which only the second 
moment of the distribution, i.e., the enstrophy, is taken into account. This 
property may turn out to be the most relevant one for the possible application 
of this quasi-inviscid approach to viscous flows. 

With respect to universal classes and their relation to initial conditions, it is 
worthwhile noticing that while turbulent-jet injection leads to a nonlinear cv-Ijl 
relation similar to (2) or to (6), laminar-jet injection leads to a linear relation 
[ 11] while the initial conditions used in the numerical simulations of Morel and 
Carton [18] lead to a relation close to eq. (9). Also, it has been proposed by 
Farge and Holschneider th at the presence of quasi-singularities in the initial 
conditions of some numerical simulations leads to the appearance of cusplike 
axisymmetric vortices [21]. 

In spite of all these uncertainties, the hyperbolic-sine relation (2) may play a 
role in the characterization of large vortices in decaying 2D turbulence; there 

R.A. Pasmanter 293 



fore, it is worthwhiJe studying some mathematical aspects of this differential 
equation. This equation, known in the plasma-physics literature as the sinh
Poisson equation, is the elliptic version of the sinh-Gordon equation, i.e., in 
dimensionless form, 

(10) 

The sinh-Gordon equation, like the sine-Gordon equation , is known to be 
exactly sol va bie by the inverse scattering method, to have soliton solutions, etc 
[22]. Therefore, one may ask whether some of the known nice properties of this 
integrable equation also hold for its elliptic version, eq. (2). The desirabie 
properties one has in mind are, e.g., I) exact solutions expressible in terms of 
known functions and 2) relatively simple algorithms (Iike Bäcklund transforma
tions [23] or nonlinear superposition formulas) for the generation of new sol u
tions from known ones I . A positive answer to these questions was given by 
Ting, Chen and Lee [24] who showed that, in the case of periodic boundary 
conditions, the exact solutions can be expressed in terms of Riemann theta func
tions and presented superposition formulas. Since the numerical simulations of 
Matthaeus et al. [10] were done with periodic boundary conditions, it follows 
that the quasi-stationary structures found by them should be described by these 
exact solutions, if they satisfy eq. (2), as it is claimed. In a more extended version 
of this work [25], it is shown that in the case ofaxisymmetry, the sinh-Poisson 
eq. (2) reduces to a particular case of the IIIrd Painlevé transcendent [26] and 
examples of regular solutions that vanish at infinity are presented as weil as a 
Bäcklund transformation [23] from axisymmetric solutions into dipolar ones. 

Besides continuing with the theoretical analysis, there is a c1ear need for more 
and better results obtained through numerical simulations and experiments in 
order to determine, e.g., the relevance of the initial conditions in the selection of 
quasi-stationary states and the interplay between the inviscid part of the 
dynamics on one hand and dissipation (and forcing) on the other hand. 
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Evolution of Turbulence as a Function 
of Initial Flows on a Beta Plane 

Abstract 

The evolution of the wavenumber spectra and energy balances in turbulent 
channel flows on a beta plane is considered using a three-layer isopycnal model. 
The initial conditions for the experiments are selected from an analytical study 
of the stability of three-layer channel flows representative of various oceanic gyre 
regimes. Experiments are integrated for 400 days following initialization of the 
various flow states with superimposed white noise perturbations. In most of the 
states there is an initial adjustment period which follows the linear wave growth 
expected from the analytical computation. This is followed by a cascade to 
larger scales and a filling in of the wavenumber spectra. The onset of steady iner
ti al ranges in the model spectra occurs as an event-like shift that occurs earlier 
in westward flows than it does in eastward currents. For stabie or near neutral 
initial conditions the spectra only have a limited region th at might be termed 
inertial. These stochastically forced turbulent states without additional energy 
input from the mean flows exhibit low PE spectral slopes, k- 3 or less. The 
higher energy runs where the turbulence is dominated by energy input from 
baroclinic instability exhibit steeper PE spectra, '" k - 5. Energetics of these states 
are also discussed along with comparisons with observed oceanic energetics and 
energy spectra based on satellite altimeters. 

Introduction 

Spectral closure theories for turbulence following KolmogorofT (1941) have cen
tred attention on various inertial ranges which arise depending on the 
controlling factors in the flow (cf Vallis, 1992 for an up to date review of 2-D 
theories). Spectral theories for oceanic turbulence have made various predictions 
conceming the wavenumber structure expected (cf Chamey, 1971; Rhines, 1977; 
Salmon, 1982). Early attempts to verify these predictions we re thwarted by sam
pling of dynamical variables that was inadequate to span the range of spatial 
scales required to resolve these inertial ranges (Dantzler, 1976). Observations 
th at did resolve an adequate range of scales were made for "passive" variables 
such as sea surf ace colour or temperature (Denman and Platt, 1980; Gower et al., 
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1980). One might also consider using mooring data in combination with 
Taylor's advection hypothesis to reconstruct wave number spectra. Again, the 
results would at least be suspect. The availability of sea level height 
measurements from satellite altimeters has changed this state of affairs by 
providing abundant spatial data (Fu, 1983; Le Traon et al., 1990; Forbes et al. , 
1993). A representative set of spectra averaged in 100 squares in the South 
Atlantic from Forbes et al. (1993) is shown in Fig. 1. There is a broad range of 
spectral slopes from k - 2 in the quieter northeastem subtropical gyre to values 
with slopes near k - 4 in the Agulhas and BraziljMalvinas regions. Individual 
satellite tracklines in the Brazil and Agulhas have slopes of k - 5 (not shown). 
Similar results in the North Atlantic are given in Fu (1983) and Le Traon et al. 
(1990). In the present study the goal is to explore the dynamics behind this 
range of spectral fall-offs. This will involve both characterizing and understand
ing the relationship between wavenumber spectra of surface height and kinetic 
energy (KE) since most turbulence closure theories predict the slope of KE spec
tra while altimeters sample the surf ace height (1'/) variability. 

A starting place is Fu's (1983) analysis and its relationship to Chamey (1971, 
1973). Chamey's analysis explicitly suggests that both KE and PE have a k - 3 
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Fig. 1. Sea level height wavenumber spectra by ten degree square for the South Atlantic subtropi
cal gyre from Forbes et al. (1993). Data are based on individual satellite tracldine data spectra 
averaged over the squares shown. Altimeter sea surf ace height anomalies are from the GEOSAT 
mission. The dashed line through each spectrum indicates the 104 cm/( cycle km) energy level. 
Spectral slope lines are given for reference. 
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spectral dependence below the radius of deformation (R D ). This is concise within 
the bounds of quasi-geostrophic theory as demonstrated by Hua and Haidvogel 
(1986). In contrast, Fu's suggestion that the KE spectra should be k - 2 times the 
PE spectra, i.e. ,,2 ~ k - 5, is intuitively based on the geostrophic relation. More 
formally, if we assume that both PE and KE are locally transferred in wavenum
ber space in the inertial range and that the eddies are in near geostrophic 
balance, then PE ex: ,,2 and K E ex: k - 2,,2 or ,,2/ e at each eddy scale. Fu's scaling, 
PE ~ k - 2KE, is only consistent with Charney's assumption of equi-partition 
between KE and PE for L ~ R D near the radius of deformation. Charney's result 
is consistent with the quasi-geostrophic result that as L -+ R", KE -+ PE. For 
this problem the appropriate scaling parameter to consider is the Burger num
ber, B = R~/ L 2. Quasi-geostrophic theory predicts KE/ PE ex: B for baroclinic 
motions, exactly the relationship of Fu (1983 j. This relationship is borne out in 
observations of individual rings (Olson , 1991). This scaling requires extension 
theoretically into more nonlinear parameter domains as suggested by Cushman
Roisin el al. (1992) and Tang and Cushman-Roisin (1992) and observationally 
to a larger range of oceanic eddies. 

Theories for spectral slopes associated with different inertial ranges arise from 
assumptions made about the dynamical controls on turbulent cascades. The k - 3 

solution follows from the assumption th at it is enstrophy dissipation th at is the 
controlling factor (Kraichnan, 1967; Salmon, 1982 j. Charney's (1971) contribu
ti on is the extension of this to geophysical flows. An assumption that there is a 
separate range controlled by an energy flux to larger scales leads to a k - 5/ 3 spec
trum (Salmon, 1982) which is analogous to the th ree dimensional turbulence 
result of Kolmogoroff ( 1941). Various other inertial ranges have been 
hypothesized. Rhines (1975), for example, suggests k - 5 based on a similarity 
theory for turbulence on a p-plane. His treatment assumes the relevant similarity 
variables are the wave number and the short Rossby wave group velocity, 
E = E(k, Cg); Cg = P/2k 2

• Accepting the Rhines (1975) formulation for the 
kinetic energy spectra and applying the quasi-geostrophic scaling gives a k - 7 

spectra for PE. Of course, there is nothing in the Rhines case that distinguishes 
between PE and KE. One could assume that the similarity holds in PE and 
therefore PE '" k - 5 and KE '" k - 3

• A full range of Rossby waves in spectra I 
space would have variabie KE/ PE ratios under the arguments above and are 
expected to have dispersive dynamics. Note that an ambiguity in whether KE or 
PE scales to the similarity variables does not appear in the case of the k - 3 

arguments for two or quasi-two dimensional flows described in the previous 
paragraph. Those results are based on enstrophy arguments and therefore can 
be directly tied to the KE spectra. Another alternative, within the rules of the 
similarity arguments, would be to invoke P without any assumption of Rossby 
wave dynamics. Following the arguments of Nof (1981) concerning the 
planetary induced motion in coherent vortices, if E = E(k, P) then by similarity 
E ~ k -4. Finally as pointed out by Fu (1983), the existence of fronts must be 
considered. Andrews and Hoskin (1978) obtain k - 8/ 3 for inertial ranges in flows 
involving significant frontogenesis . A view of fronts as steps or "edges" in 
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property distributions will alternatively produce k - 2 spectral slopes through 
Gibb's phenomenon (Phillips, 1971). 

The wealth of different potential rationale for the spectral fall off and the 
altimeter observations of a range of spectral slopes in various porti ons of sub
tropical gyres (Fig. 1) suggest a division of the gyre into different dynamical 
regimes. These different regimes may reflect changes in the manner in which the 
turbulent field is forced (H ua and Haidvogel, 1986; Le Traon et al. , 1990). The 
changes across the gyre may reflect the difTerences between eddy fields which 
arise from instability of the mean flow versus areas where the eddy field is 
derived directly from wind forcing (Le Traon et al., 1990). Here a set of numeri
cal simulations exploring the linear stability space for various flow conditions 
found in ocean gyres will be explored to test the conjecture that flows forced to 
turbulence via local instability have higher spectral fall-off rates than flows for
ced either by random winds (Le Traon et al., 1990), or in the present case by 
random initial perturbation fields superimposed on a flow. 

Choice of mode Is 

The basic choice of models is meant to pro vide a fairly complete set of ocean
like flows while retaining some analytic capability. The analytic calculations 
allow the stability of various flow regimes to be addressed. These are then used 
to specify initial conditions for primitive equation simulations. Both computa
tions consider a three layer isopycnic, periodic channel model with unequal layer 
mean thicknesses and reduced gravities typical of subtropical gyre circulations. 
These give radii of deformation of 30 km for the upper layer and 46 km for the 
second layer. The analytic solutions are from a linearized, quasi-geostrophic case 
(HalliweIl et al. 1994) with the same model geometry. The linear formulation 
follows the development of Davey (1977, see also Pedlosky, 1979) except in the 
choice of unequal layer thickness. The model configuration is the minimum 
needed to capture the various shears across the upper interface representing the 
upper thermocline and the lower isopycnal surface representing the deep main 
thermocline. The stability space along with schematics of the isopycnal (inter
face) geometries for the four quadrants of the space are shown in Fig. 2. The 
various letters on the diagrams in Fig. 2 indicate the numerical simulations com
pleted using the isopycnal model of Bleck and Boudra (1986) and Boudra et al. 
( 1988). The numerical model is a primitive equation formulation with 
Lagrangian vertical coordinates. Here it is used in a zonally-periodic p-plane 
channel geometry, 20 km grid, and Laplacian viscosity (KH = 100 m2/s). 

The simulations are initialized with a given interface profile and th en pertur
bed with a deformation process which sharpens the flow in the central channel 
(Boudra et al., 1988; Halliwell et al., 1994). This is followed by the addition of 
white noise perturbations to the meridional velocity field. The points in the 
stability space (Fig. 2.) are based on zonal ave rage conditions following the 
deformation step. Following the initial deformation step and the addition of the 

300 Evolution of turbulence as a function of initial flows on a ,8-plane 



Yost Unstable "'ave 

-0.09 -0.06 -0.01 0.00 D.Ol 0.01 0 .09 

S, (T7\ ~-') 

Fig. 2. The linear stability space for the initial conditions used in the numerical simulations. The 
axes indicate the shear in zonal velocity across the upper (S I ) and lower (S2) interfaces. The 
geometry of the interface slopes for these cases are shown to the side of each quadrant in the upper 
diagram with con tours of Iinear unstable wave growth rate. The lower panel shows the wavelength 
of maximum growth rate. The letters on the diagrams show the shears relevant for the model runs. 
The basic geometry of the two pycnoclines in each quadrant of the diagrams is shown schema ti
cally with the upper figure (y positive northwards). Full discussion of the Iinear model and its 
application to conditions in subtropical frontal zones (case C) can be found in Halliwell et al. 
(1994). 

white noise perturbations, the simulations are no longer forced. In this sen se 
these are spin-down experiments and can never reach a formal equilibrium state. 
The model simulations are integrated out to 411 days in each case. Further 
elaboration of both the analytic and numerical models can be found in the dis
cussion of a set of experiments representing the subtropical convergence frontal 
zone in the Atlantic (Fig. 2, point C) which is the essential objective of the 
Halliwell et al. (1994) study. 

Spectra I evolution and energetics 

While each point in the stability regime evolves difTerently, overall the behaviour 
can be broken down into points that fall in the stable or near neutral domain 
(E,F) and those that are unstable (A,B,C,D). The final spectra of the sea surface 
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height as diagnosed in the model at 411 days for each of the six points in Fig. 2 
are shown in Fig. 3a. The neutral and stabie conditions produce spectral peaks 
associated with the resonance in the channel and an underlying slope of k - 2 in '7 
(Fig. 3a). This would suggest under Fu's (1983) hypothesis th at the kinetic energy 
spectrum is close to the initial perturbation spectrum and essentially white. The 
model , however, produces a very steep KE spectrum with slopes between - 5 and 
-6 (Fig. 3b). For the unstable cases all ofthe '7 spectra approach ",k - 5 in 
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Fig. 3. a) End state surface height spectra for the various model runs for the stability space 
shown in Fig. 2. Data are for the last portion of each of the runs when the spectra are nearly at 
equilibrium (200-400 days). Two spectra approximately 100 days apart are shown for each case. b) 
Kinetic energy spectra on day 411 for cases A and E. 
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a range of wavenumbers between k ~ 3 x 10 - J and 10 - 2 km - I (100 to 300 km j. 
The upper portion of this wavenumber range has a KE spectra I slope of - 3 in 
the simulations (Fig. 3b j. There is little indication of a - 5/3 range in any of the 
cases although the model geometry may not be adequately large to allow th is to 
develop. The spectra at smaller scales tend to fall ofT more rapidly as one reaches 
the dissipation scales in the model. The latter scale is estimated as the place in 
the kinetic energy spectra where the Reynolds number becomes one, i.e. 
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Fig. 4. Spectra evolution for sea surface height for case B as a function of time. The plot is con
structed from individual spectra calculated at 15 day time intervals. The base-IO logarithm of the 
spectral density is contoured. For a discussion of the major time periods in the evolution of the 
turbulent spectra see the text. 
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R E = UL 2/KH = 1. From the kinetic energy spectra in the simulations and K H = 
100 m2

/ s the dissipation range corresponds to wavenumbers k '" 2x 10 -1 km - I 
or L", 30 km. The overall Reynolds number in these simulations exceeds 3000. 

The evolution of the spectrum over time for case B is shown in Fig. 4. The less 
unstable case (D) has a more wave-like structure throughout the model run as 
compared to the more unstable cases (A,B). All of the unstable cases eventually 
evolve into similar near-equilibrium states although the transition to this state 
occurs at different times (Fig. 5). The near-neutral (E) and stabIe cases (F) also 
equilibrate but with very different final states as noted above. 

The initial hundred days of each run is dominated by slow energy transfers 
associated with the linear growth phase and the initialonset of nonlinear but 
inefficient wave-wave interaction processes (Figs. 4,5). The early periods as dis
played in Figs. 4 and 5 essentially follow the linear growth curves expected from 
theory. This is followed by a sharp transition period which is relatively short 
(Fig. 4) and involves peak energy transfers as shown for cases A, Band C in 
Fig. 5. These energy transformations involve large transfers of mean potential 
energy to the eddy field and the creation of significant new mean kinetic energy 
in the form of jets which will be discussed in more detail below. This transition 
period is followed by a long quasi-equilibrium period where the spectra are of 
nearly constant form (Fig. 4). The energetics in this final equilibrium period of 
cases A and C involve an end of the transition of eddy kinetic to mean flow 
energy and a more or less steady set of conversions of potential energy to both 
kinetic energy pools. Case B although it is fairly steady in spectral space is still 
very variabie in terms of energy transformations (Fig. 5). The potential vorticity 
fields for cases A and B for three periods spanning transition are shown in Fig. 6. 
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Fig. 5. Energy conversions for cases A, B, and C showing the energetics of the major periods of 
deve10pment as in Fig. 4. The energy conversions inc1ude conversion of potential to mean 
(P -+ dK M) and eddy (P -+ dK E) kinetic energy and the conversion of mean to eddy kinetic energy 
(KM -+ dKE ). Note the differences between the three cases. The influence of Pinstabilizing the 
energy conversions in time is evident for both case A and C (eastward shear across one interface) 
in contrast to the sharp oscillations in the P -+ dK E , K E -+ dKM conversions for case B (westward 
shear in across both interfaces). components in case B 
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Fig. 6. Potential vorticity (X 10 - R m - I s - I) for the upper layer in the channel at three different 
times spanning the transition to turbulence for cases A and B. Note the inhomogeneity along 
channel in both cases at the end of initial phase of flow evolution (day 135). The transition is also 
very different between the short wave dominated cases (A,C) and B as obvious fr om the selected 
scales at days 180 and 255. It is the zones of concentrated potential vorticity gradient, when 
averaged along-channel, that correspond to the surface intensified frontal jets. In this sense there 
are not continuous jets but net mean tlows made up of a series of jet streaks. The more 
homogeneous regions in the potential vorticity maps are the locations of the barotropic mean 
zonal flows. 

Transition to turbulence and the quasi-equilibrium states 

The transition period in Fig. 5 is associated with a strong transfer of energy back 
into zona I mean flows in the channel from the eddy field and peak transforma
tions between potential and eddy kinetic energy. Similar transitions are observed 
in all of the unstable cases. As noted above, the nature of these transfers varies 
with position in the stability space. While the different cases (A,B,C,D) all re ach 
similar spectral forms, the route to turbulence and the energy partition between 
potential and kinetic in the final eddy field differs substantially. In the cases 
dominated by short wavelengths (A, C, D; Fig. 2; Halliwell et al., 1994), 
coherent eddies that appear at the time of transition are near the radius of defor
mation. These features emerge from the flow in a localized region of the channel 
in case A and then slowly expand to fill the channel through interaction with a 
set of fronts that are produced along the channel front at the time of transition 
(Fig. 6). While these fronts are not continuous features they show up as velocity 
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jets in the along channel mean flow. The final eddy field in case A is very 
barotropic with a KE to PE ratio of five. Case B has slightly longer wavelengths 
in the initial eddy field (Fig. 2) and represents a westward flow in both of the 
upper layers th at is not stabilized by beta. Even though the linear growth ra te 
for B is less than either A or C, it enters the nonlinear equilibration stage 
(Fig. 5) at approximately the same time and the energetic conversions during 
this phase are considerably more intense. Case B does not settle down to a 
steady set of energy conversions even though the spectrum reaches a constant 
form suggesting a steady state cascade range that began weil before the dashed 
line in Fig. 5. Transition in case B is marked by the breaking of a train of waves 
as opposed to the coherent eddy formation process in case A (Fig. 6). Case B is 
even more barotropic (K E to PE ratio of 7) and again has along channel fronts 
which lead to channel average zonal jets (Fig. 6, day 255). The other cases (not 
shown) are less barotropic in the eddy field and have transitions which are a 
mixture between the case A and B extremes in the character of transition with 
respect to waves versus coherent features . 

The spectral character of the final states has al ready been shown in Fig. 3. 
There are several questions about these states and the manner in which they are 
reached that deserve further comment. First of all, how is the energy partitioned 
and does the sealing suggested by Fu (1983) actually work? Calculations of the 
kinetic energy spectra (Fig. 3b for cases A and E) as compared with the poten
tial energy spectra agree with that predicted by the k - 2 PE sealing hypothesized 
by Fu ( 1983) in the case A, B, C and 0 model runs. The neutral and stabIe cases 
(E, F) do not obey this sealing and have kinetic energy spectra that are steeper 
than their '7 spectra. The isolated peaks in these spectra suggest dominant wave 
numbers tied to a combination of initial conditions and the initial perturbation 
structure. The suggestion is that there is not a weil developed inertial range in 
these cases. The model spectra bound those observed in the altimeter data. In 
fact the full set of observed spectra along GEOSAT altimeter tracklines falls exactly 
between - 2 and - 5. The ten degree averaged spectra in Fig. 1 have a more 
truncated wavenumber range due to the band averaging perforrned. 

Conclusions 

This is a preliminary report on attempts to understand the nature of the ocean 
eddy field based on analytical stability space analysis and long spin-down mode 
simulations with a compatible primitive equation model. The results compared 
to the available observations of the ocean interior are promising in the sense 
that the resulting spectra bound those observed from satellite altimeters. The 
nature of turbulence in the locally stabIe domains which correspond to the low 
spectra fall-otTs in the observations demand more work to determine to what 
extent the eddy variability is wind-forced or is either advected or propagated 
into the mid-gyre from distant unstable regions. The fact th at unstable states, 
even in proximity to the stability boundaries in the linear problem, approach a 
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k - 5 PE cascade range and a k - 3 KE supports Fu's (1983) hypo thesis. In addi
tion all of the initial problem experiments approach Charney's (1973) case in 
terms of energy equi-partition and then exceed it in all unstable cases except 0 
with the KE dominating the PE by factors of up to seven in case 8. This 
suggests very barotropic final states for the eddy field in the very unstable cases 
(A, B, and C). All of the highly turbulent cases produce pronounced zonal mean 
flows in the channel. These intense zonal flows are marked with surface inten
sified jets embedded in more barotropic flows. The creation of rectified flows has 
long been appreciated in turbulence theory (Starr, 1968; Vallis and Maltrud, 
1993) although their role in governing the transition to turbulence and the 
dynamics of turbulent cascades is still an important area of investigation. 

The simulations presented here are preliminary and need to be followed up 
with a further exploration of parameter space. A set of simulations cutting across 
the linear stability space are currently underway. An even more relevant issue 
would be to consider the forced equilibrium states that can reach true equi
librium. While means of doing this without full ocean basin simulations is 
currently being considered, it is not simple to design such calculations. 
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Frank M. Selten and J.D. Opsteegh 

Toward an Optimal Description of Atmospheric Flow 

Abstract 

In mode Is of the global atmospheric circulation, the vorticity field is usually 
expanded into series of theoretical orthogonal functions, so-called spherical har
monics. However, the atmosphere continuously generates coherent structures, 
which perhaps are better represented by Empirical Orthogonal Functions (EOFS) 

than by spherical harmonics. EOFS are calculated from observations and describe 
optimally fast the most energetic structures in the circulation. Therefore, we 
propose to project the vorticity equation onto the dominant EOFS. This approach 
is evaluated in the context of a barotropic model of the atmosphere. 

Introduction 

An unsolved problem in atmospheric modelling is how to properly describe the 
evolution of the turbulent atmosphere with a finite number of 'modes' or 
variables. It is inevitable that by using a finite number of modes the accuray of 
this description is limited. The richness of circulation structures is too large to 
ever allow for an exact representation. A description that is not exact introduces 
errors in the predicted evolution of the circulation. In practice, models of the 
atmosphere always have some kind of parametrization to represent the interac
tion between the neglected scales of motion and the resolved scales. How to 
properly account for this effect is known as the closure problem. It is clear that 
a particular closure formulation will depend on which circulation structures are 
resolved and which are not. In this context the choice of a proper basis in ph ase 
space may be extremely important. 

The most widely used descriptions are the representation of the atmospheric 
fields on a particular grid or the expansion of the fields in spherical harmonics, 
the so-called spectral representation. All features smaller than the grid size or 
smaller than the smalle st wavelength in the spectral expansion are neglected. 
One could ask whether these descriptions are optimal choices. The evolution of 
the large scale circulation is far from random. Over and over again the same 
kind of structures emerge and disappear. Rather than decomposing the flow field 
in spherical harmonics, a description of the flow in terms of these 'coherent' 
structures, could have important advantages. A localized coherent structure like 
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a blocking ridge or a travelling cyclone projects onto many spherical harmonies, 
from the smallest to the very large wavenumbers. The more localized a structure, 
the flatter the corresponding Fourier spectrum and the more F ourier modes are 
involved. Since many modes are needed to describe one localized structure, the 
expansion is highly redundant. The spectral modes occur more or less in fixed 
combinations corresponding to the coherent structures of the flow. Also the 
interaction between two localized structures, say a blocking ridge and a 
travelling cyclone, is described by numerous interactions among the constituent 
spectral modes. Truncation of the expansion into spherical harmonies leads to 
a misrepresentation of this interaction. This error in the sm all scale details are 
of a large scale structure can not be described with the same parametrizations 
as the small scale coherent structures that play a role in cascading energy 
towards the viscous region. Finding a suitable closure formulation in spectral 
space is therefore far from trivia!. A description based on the coherent structures 
of the atmospheric circulation could be far more efficient with respect to the 
number of variables needed and also might be more attractive with respect to 
the closure problem, as the small scales that are tied to the evolution of a large 
scale pattern are explicitly resolved. 

How to construct such a description is far from c1ear. A suitable candidate is 
aspectral expansion in Empirical Orthogonal Functions (EOFS), since these func
tions optimally describe the most energetic structures in the circulation. In prob
ability theory one refers to th is expansion as the Proper Orthogonal Decomposi
tion or Karhunen- Loève expansion. Lumley (1967, 1987) proposed its applica
tion to turbulent flows to identify coherent structures. For a review on its 
applications in turbulence research, see Aubry (1991). Preisendorfer (1988) con
tains an extensive overview of the theory and use of the EOFS in meteorology and 
oceanography. Several studies have been published in which models of the 
atmosphere are formulated in terms of EOFS (Rinne and Karhilla 1975; Schubert 
1985, 1986). These studies are encouraging for the EOF modeling approach , but 
were restricted to the short-term behaviour of severely truncated EOF modeis. 
Furthermore, the EOFS were calculated from observations and subsequently 
inserted into a model of the atmosphere. The model tendencies differ from obser
ved tendencies not only because the equations are not exactly solved due to the 
truncation error but also because the model equations are not exact. To 
investigate the effect of the truncation error, Selten (1993) did the entire analysis 
in the context of a model atmosphere. A two-Ievel , quasi-geostrophic, 
hemispheric model was used, formulated in spherical harmonies and truncated 
at T5. The model consists of 30 coupled ordinary differential equations describ
ing the evolution of the expansion coefficients. EOFS were calculated from a long 
model integration and evolution equations for the EOF amplitudes were derived 
by a Galerkin projection of the model equations onto the EOF-basis. The short 
and long-term behaviour of several EOF models were examined for various trun
cation limits. In agreement with the study by Rinne and Karhilla, he found that 
good short term predictions are possible with only a small number of EOFS (5 in 
his case). For a correct long term behaviour, at least 26 EOFS needed to be 
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incIuded. An attempt was made to parametrize the effect of the neglected com
ponents, but the results were rather disappointing. The main shortcoming of the 
T5 model was an unrealistic spectral energy distribution. The shortest wave was 
dominant and the wave amplitudes were too large compared to the zonal flow. 
Furthermore, the stationary wave component was too small compared to the 
travelling component. Therefore we decided to evaluate the EOF model approach 
in the context of a more realistic model with much more degrees of freedom. 

We implement a hemispheric barotropic model with forcing and dissipation, 
formulated in spherical harmonics and truncated at T21. The number of degrees 
of freedom is 231. The model has arealistic cIimate and a variability comparable 
to the variability of observed lO-day running mean 500hPa height fields. The 
aim of the present study is to investigate whether a model based on the first few 
dominant EOFS can adequately describe the longterm dynamics of the T21 model. 
Further we want to study the potential for a proper cIosure of the reduced 
system in which small scale details of large scale structures are explicitly 
resolved. 

The experiment 

The barotropic model was integrated for 30 years and the statevector was 
archived once every day. This dataset can be depicted as a cIoud of points in the 
231-dimensional ph ase space. We refer to this set of points in phase space as the 
attractor of the model, since, starting from a random point in phase space, every 
trajectory af ter some finite time, traces this same set of points. The attractor is 
not an isotropic and homogeneous set of points. There are directions in phase 
space in which the model makes large excursions. These directions correspond 
to preferred circulation patterns. In some regions in phase space, the density of 
points has a local maximum. These regions correspond to regimes, quasi-station
ary circulation patterns which persist for some time. EOFS are designed to 
describe optimally fast the anisotropic and inhomogeneous structure of the 
attractor. Suppose we project the set of points onto a unit vector in phase space. 
The first EOF points into the direction in phase space which maximizes the pro
jection. The second EOF points into the direction in phase space which maximizes 
the projection under the restriction that it must be orthogonal to the first and 
so on. In this way, a new set of basis vectors is constructed which optimally fast 
describes the attractor. Note th at this set depends on the choice of an inner 
product in phase space. The calculation of EOFS can be written in the form of an 
eigen problem. The EOFS are the eigenvectors of the covariance matrix and the 
corresponding eigenvalues are the mean squared projections onto the EOFS. 

We calculated EOFS from the 30 year dataset. The EOFS are ordered with 
respect to their eigenvalues. The EOF with the largest eigenvalue comes first. The 
eigenvalue spectrum is steep, indicating the existence of preferred circulation 
patterns. The first eigenvalue is very large and the corresponding EOF is almost 
equal to the cIimate. The other EOFS have virtually zero mean amplitudes and 
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thus describe deviations from the mean flow, represented by the first EOF. As 
explained in Selten (1993), the climate is retained in the expansion to allow for 
dynamical interactions between the climate component and the anomalous EOFS. 
It tums out th at 992 of the dataset projects onto the first EOF. The fractional 
mean squared error in the representation of anomalies is less than 52 when the 
expansion includes the first 32 EOFS. Thus the state vector can efficiently be 
approximated by aspectral expansion into the first few dominant EOFS. A visual 
inspection of the EOF patterns reveals that as the eigenvalues become smaller, the 
scale of the structure tends to become smaller, more isotropic in the zonal direc
tion and the patterns tend to shift toward the equator in the meridional direc
tion. Having constructed a basis in phase space, evolution equations for the 
expansion coefficients are obtained by a Galerkin projection of the barotropic 
vorticity equation onto this basis. This procedure yields a coupled system of 
ordinary differential equations describing the evolution of the expansion coef
ficients. The general form of this system is given by 

da d/ = lt., + Pljaj + Yljkaiak, i= I, ... , T (1) 

Identical indices in a term imply asurnmation with the index running from 1 to 
the truncation limit T. The interaction coefficients are symmetric i.e. Yijk = Y'kj. In 
case of spherical harmonics, the majority of the interaction coefficients, Y ijk' are 
zero. For EOFS this is not the case. The derivation of the system (l) is unique and 
straightforward in case of spherical harmonics. When EOFS are used in the expan
sion, ambiguities arise in the derivation of ( 1). The reason is that spherical har
monics are eigenfunctions of the Laplace operator and EOFS are not. Choices 
have to be made in the derivation of the reduced system (1) which lead to dif
ferent interaction coefficients and affect the integral constraints obeyed by the 
reduced system. It is not possible to derive a reduced system which conserves 
both energy and enstrophy. In this study a formulation is used which conserves 
only energy in the absence of forcing and dissipation. The behaviour of the EOF 
model (1) is evaluated at a truncation limit of 20 EOFs. The choice of this limit 
is rather arbitrary at this point. A thorough investigation of the behaviour as a 
function of the truncation is left for a future study. Both the ability to predict 
the evolution of the circulation of the T21 model two weeks ahead in time and 
the ability of simulating the T21 climatology and variability is investigated. The 
performance of EOF[ 20] model is compared with the performance of a T20 ver
sion of the T21 model. The T20 version still has 210 variables. 

Results 

It tumed out that the mean prediction skill of the EOF[20] model of the 100 
two-weeks forecasts was much better than the skill of the T20 model, both 
measured by anomaly correlations and RMS errors. The mean anomaly correla-
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tion of the T20 forecasts dropped below 0.6 at day 7, whereas the EOF[20] 
model is skilful upto day 11. Apparently, a truncation in spectral space as 
opposed to a truncation in EOF space, seriously affects the evolution of the domi
nant circulation structures. 

To simulate the T21 cIimatology, the EOF[20] model and the T20 model were 
integrated for 3000 days. From the last 2000 days, the mean field, the variance 
pattem and the mean squared amplitudes (msa) of the EOFS were calculated. The 
EOF model showed a substantial cIimate drift and a too large variability with dis
tinctly different spatial characteristics. The msa spectrum showed an almost 
white distribution. The explanation for this effect is the blocked flow of energy 
through the EOF spectrum due to the truncation. In the mean, energy enters the 
model through the first EOF, which is virtually the cIimatological mean circula
tion. Energy is subsequently transported through the spectrum and is most 
efficiently dissipated near the end of the spectrum due to the scale selective dam
ping. By truncating the system, energy is accumulated near the truncation limit. 
Also the T20 model cIimate differed much from the T21 cIimate and although 
the variance had about the correct magnitude, the spatial distribution was quite 
different. Clearly, a cIosure assumption is needed to account for the systematic 
effect of the neglected interactions. 

The proposition was made, th at the mean effect of the neglected interactions 
is merely to damp the resolved modes and that it can be adequately described 
by a linear damping. An extra linear damping was introduced for each compo
nent to compensate for the accumulation of energy due to the neglected interac
tions. The extra dam ping balances exactly the mean error in the energy tendency 
of the reduced model. The strength of the extra damping was objectively 
calculated for each EOF and tumed out to be al most the same for each EOF. The 
same cIosure assumption applied to the T20 model did not resuIt in reasonable 
values for the extra damping. Both EOF models and the T20 model were 
integrated again with the incIusion of the extra damping. From the integration 
with the EOF[20] model the cIimatology, the variance pattem and the spectrum 
of msa of the EOFS were calculated. The correspondence with the T21 model was 
very good. The T20 model with the same cIosure assumption was not capable 
to simulate the T21 model cIimate and variance. 

Conclusion 

The main conclusion of this study is that by using EOFS as a Galerkin basis, a 
significant reduction in the number of variables is possible. The reason is th at 
EOFs efficiently describe the dominant circulation patterns and that a closure is 
possible for the systematic effect of the neglected interactions. In a subsequent 
study it is tried to model the instantaneous effect of the neglected scales as 
weil. 
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s. Peter Beerens 

Chaotic Mixing in Tidal Residual Vortices 

Abstract 

Chaotic advection is studied in a model of a tidal area. The model consists of 
a residual flow , parametrized by a lattice of vortices, perturbed by a tidal flow. 
For small perturbations analytical techniques, like Melnikov's method, provide 
mixing coefficients. For more realistic parameter values we must rely on other 
techniques, like e.g. stability analysis. Using finite time Liapunov exponents we 
can recognize chaotic areas and quantify mixing caused by chaotic advection. 

Introduction 

Mixing in tidal areas is often more intense than theories predict. This is 
probably due to the fact that the advection of water parcels is chaotic (Rid
derinkhof & Zimmerman, 1992). 

We studied the advection problem of passive tracers in the Lagrangian way. 
The velocity field in a tidal area is assumed to be the sum of a stationary part, 
the residual field , and an oscillatory part, the tide. The residual field is the con se
quence of tide-topography interactions (Zimmerman, 1981) and therefore often 
organized in eddy-like structures. It is parametrized as an alternating sequence 
of cyclonic and anti-cyclonic vortices (see Fig. 1). The tide is parametrized as a 
spatially uniform time-periodic flow. The advection problem can be described in 
terms of 2D time-dependent Hamiltonian systems 

x=f(x)+ g(t). 

In general these systems are chaotic and can be studied by means of Poincaré 
sections. In our case the Poincaré Map is constructed in a straightforward way. 
The position of the particIe af ter n tidal periods is the initial position for the 
calculation of the n + I-st position. We call this iterative process the Tidal Map 
(T) ; 

x" + I = T(x ll )· 

We did both analytical and numerical studies to determine the amount of 
chaotic mixing. Mixing is quantified in terms of a dispersion coefficient and 
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Fig. I . The streamlines of the unperturbed velocity field. The equations of the unperturbed 
velocity field a re given by 

.. {/' (x,y) = I'),n sin nx cos ny 

.(x)= . . 12 (x,y) = - I').n cos nx sm ny 

The tidal perturbation is an oscillating now uniform in the X-direction : 

{
g I (t) = ),n cos 2nl 

g(t) = . 
g2 (t)=O 

The following ra tios are the dimensionless (chaos ) pa rameters of the model 

) = tidal excursion 
. eddy diameter 

and 
velocity in residual eddies 

I' = --:-:--:-~---:----:-:---:--
tidal velocity amplitude . 

another coefficient, the area-fraction of the so-called mixing region. The latter is 
necessary because chaotic mixing is alocal phenomenon and therefore high dis
persion alone is not enough for good global mixing. 

Analytical description of the exchange between the cells 

The cells in the unperturbed system are separated by manifolds, connecting 
hyperbolic points of the flow. The manifold th at starts in a hyperbolic point is 
called the Unstable Manifold (UM) and the one that ends in a hyperbolic point 
is called the Sta bIe Manifold (SM) . Due to the perturbation by the periodic flow, 
the UM and SM of the hyperbolic points no longer coincide (see Fig. 2). The cell 
boundary now has a complex structure. UM and SM intersect infinitely many 
times, forming lobes, which get longer and thinner as they reach the hyperbolic 
points. The cells are exchanging material in the turnstile lobes. The amount of 
exchanged material can be ca\culated for small perturbations by Melnikov's 
function, which is a measure of the di stance between UM and SM. (Recent analyti
cal studies of th is system (Beerens et al. 1994) contain also the regime of strong 
perturbations.) The Melnikov function of the above model is given by (Bertozzi, 
1988) 

1 
M(t) = sech À, v cos 27[t. 
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Fig. 2. This is a typical form of the perturbed manifolds near a cell boundary. The Melnikov 
function ( -cos brt) has infinitely many zeros. so UM and SM have infinitely many intersection 
points. Because the area of the lobes enclosed by UM and SM is conserved under T. the lobes get 
longer and thinner as they reach the hyperbolic point. In the neighbourhood of the hyperbolic 
point stretching and folding of material occurs. which are the fingerprints of chaos (Ottino. 1989 j. 
The arrows indicate the action of T. The two lobes in the middle act as a "turnstile": they trans
port material over the boundary. The exchanged amount of material during each tidal period is 
exactly the area of one lobe. 

Quantification of mixing 

Mixing is often quantified in terms of (dimensionless) dispersion coefficients 
defined as 

I d".2 

I
. v 

D= lm - dl . 
t ~ x 2 

The increase of a 2 in a tidal period is equal to the material exchanged between 
a cen and its neighbours assuming that mixing in a cen is instantaneously 
(Ryrie, 1990). The exchanged material is contained in the area of one lobe, 
which can be found by contour integration of the Melnikov function between 
two zeros of M( l); 

1 
D = À. sech À. v . 

Mixing is localized near hyperbolic points in the corners of the cens. Particles 
in the middle of the cells are trapped. They move up and down with the tide, 
always returning in the same cello Therefore we want to know how much water 
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Fig. 3. D and )' versus the parameter Î, for \' = 0.2. The analytica I methods (smooth curves) only 
give reasonable approximations for relatively low ),-values (small perturbations). Note that the 
mixing (D and )' ) does not increase monotonically with I"~ but shows several maxima and minima. 
Typical values for the Dutch coastal waters are ), ~ 2 (North Sea) and ), ~ 3 (Wadden Sea). 

is participating in the mixing process. This quantity is contained in a second 
mixing coefficient ()' ), which is the area-fraction of the mixing region (Ryrie, 
1990 ). 

If we assume the separatrix between the mixing region and the region in 
which the particles are trapped to be a hyperbola, we get the following analytical 
expressIOn 

y = 1 d ( 1 + In 1-ln d) , 

where d is the Melnikov distance in the turnstile lobe, given by: 

I 1 
d= - sech-. 

v Àv 
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The local character of water movements in a 2D velocity field 

Consider motion of water parcels in a 20 velocity field (Pierrehumbert & Yang, 
1993). The equations of motion are 

.i = u (x, y) 

.Ij = v(x, y) . 

We are interested in the motion near a point (X, Y), so we transform the coor
dinates of the system into local coordinates 

x=X+x' 

y= Y+ y'. 

The local equations of motion are up to first order (dropping the primes) 

.i = u.(X, Y x + u)'(X, Y) y 

Y = vv(X, Y) x + V, (X, Y) y, 

which we can write in vector notation; 

x= Dux, 

where Du is the Jacobian Matrix given by 

Du = (U,. U,,) . 
V v v,, 
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Fig. 4. Depicted is TrL in the central tixed point versus k Comparison with Fig. 3 learns that the 
plots have the same periodicity. Good mixing occurs near TrL = O. At these parameter va lues the 
(rotation of the) tidally averaged displacement is maximal. If Tr L approaches the upper boundary 
(TrL = 2) of the stability interval mixing disappears completely, because the averaged tidal dis
placement is O. 
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The local character of the motion is determined by the eigenvalues (/1) of Du. 
The eigenvalues are given by: 

where we used Tr(Du) = u , + V" = 0 (mass conservation). The first term is the 
squared strain rate and the second is the squared vorticity. We distinguish three 
types of flows: 

• In vorticity dominated flows the eigenvalues will be complex conjugate and 
the local motion is elliptic (stable ). 

• If the vorticity and the strain cancel the eigenvalues are 1. In this degenerate 
case the local motion is parabolic. 

• If the stra in ra te dominates, the eigenvalues are real and one of them is larger 
than 1. The local motion is hyperbolic (unstable). 

The above arguments for continuous systems also hold for discrete systems 
like the Tidal Map. The physical quantities, i.e. the Lagrangian velocity and vor
ticity are now tidally averaged. The Jacobian Matrix (Du) is replaced by the 
Linearized Tidal Map (L) and the eigenvalues are now given by 

since mass conservation for discrete systems is given by det( L) = 1. 
Again one can distinguish between stabie and unstable areas. The quantity 

determining this stability is the 4 - Tr2 L , which can be interpreted as the 
squared rotation of the tidally averaged displacement (kind of discrete vorticity). 

• If IITr L il < 2 the motion in the area is stabie. The orbits are elliptic and the 
particles remain trapped. 

• If IITrL l1 = 2 the motion is marginally stabie. 
• If II Tr L il > 2 the motion in the area is unstable. The orbits are hyperbolic, 

resulting in stretching and folding (chaos). 

A plot of the TrL in the fixed point in the middle of the cell, which controls 
most of the dynamics of the system, versus the chaos parameter À is shown in 
Fig. 4. In this plot we see the importance of the stability of the central fixed 
point for the chaotic mixing process. 

Liapunov exponents 

Chaos in maps is characterized by positive Liapunov exponents 

I
· 1 I IITn(x + e)-P(x)11 

(J = lim lm og -------
n ~ oc C~ O ~ Iie ll 
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This is not a very practical definition. The Iimits are hard to be taken and there
fore often finite time (i.e. n = I ) Liapunov exponents are used (Pierrehumbert & 
Yang, 1993): 

(J = 10g ll L II 

Here II L II is the norm of the matrix L. We replaced this norm by II TrL II/2, 
inspired by the above analysis of local stability of lixed points. By releasing par
ticles distributed homogeneously over a cell we can determine the character of 
the water movements in the whole tidal area and determine where the chaotic 
and regular areas are. 
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J .B. Flór and G.J.F. van Heijst 

Decay of Monopolar Vortices in a Stratified Fluid 

Abstract 

This contribution describes some experimental observations of the decay of a 
monopolar vortex in a linearly stratified fluid. The vortex is generated by a 
rotating solid sphere, which is later removed. The observed decay of the planar 
flow in the disk-shaped vortical region is compared with three different theoreti
cal modeIs, and good agreement is obtained. 

1. Introduction 

Satellite observations have revealed the abundant occurrence of vortices in many 
parts of the world's oceans, see e.g. Robinson (1983 j . In addition to the surface 
vortices, which may be easily detected by satellite measurements of surface 
anomalies, oceanic vortex structures mayalso occur at some depth, and thus 
invisible for the eyes of satellites. Well-known examples of subsurface eddies are 
the 'Meddies' , vortex structures originating from the gravitational collapse of 
Mediterranean Sea water that spi lied over the sill in the Straits of Gibraltar. The 
existence of Meddies was first reported by McDowell and Rossby (1978) and 
later oceanographic measurements have yielded important information about 
the Meddies' dynamics (see e.g. Armi et al. 1989). In particular, it became c1ear 
th at the Meddies occupy a relatively thin, pancake-shaped region with horizon
tal and vertical scales of roughly 100 krn and 600 m, respectively. The relatively 
slow decay allows the Meddy to cross the Atlantic Ocean and reach the 
Bahamas af ter approximately one year. 

This paper reports on a laboratory study of a monopolar vortex in a non
rotating, linearly stratified fluid. The flow evolution has been measured by 
application of digital image analysis techniques, and a comparison is made with 
a few simple decay modeIs. 
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2. Generation and characteristics of monopolar vortices 

The laboratory experiments were performed in a square perspex tank of 
horizontal dimensions 100 cm x 100 cm and a working depth of 30 cm, which 
was filled with a linearly salt-stratified fluid. Monopolar vortices were generated 
by asolid sphere (diameter 2.5 CI1'/), placed in the fluid at mid-depth, rotating at 
constant speed Q about a vertical axis, as also described in Flór et al. ( 1993 ). 
In the experiments discussed here, the rotation speed measured 344 reu/min, and 
the forcing was applied during typically 30.1'. 

During the forcing, fluid is swept away from the sphere in radial direction , 
and shadowgraph visualizations have revealed that the motion in the vicinity of 
the sphere is definitely turbulent at th is stage. Then the rotation was stopped. 
and the sphere was removed by carefully Iifting it. During the subsequent 
gravitational collapse, the vertical motions are substantially suppressed and the 
flow soon becomes laminar: at this stage the flow takes on the appearance of a 
monopolar vortex confined to a thin horizontal pancake-shaped region. In most 
cases, this vortex was observed to be sta bIe, while gradually decaying owing to 
viscous efTects. 

The flow was visualized by seeding the fluid with small tracer particles. Special 
care was taken that their density exactly matched the fluid density at the mid
level of the vortex motion. The particIe motions were recorded by video, and 
quantitative information about the horizontal flow field was obtained by apply
ing a digital image analysis technique. After digitization the flow was charac
terized by a set of velocity vectors in the nodal points of a rectangular grid 
covering (part of) the flow domain. As a next step. the values of the vorticity 
w = ~ - ~, with v = (u , u ) the velocity components in (.\'. y )-directions, and the 
stream function Ijl (defined by v = V x kljl , with k the unit vector in vertical direc
tion ) are calculated in each grid point. Some typical results of this procedure are 
shown in Figure I for a monopolar vortex 180 s after the forcing was stopped. 
The graphs show (a) contours of w, (b) contours of Ijl, (c) the w, Ijl scatter plot 
and (d) cross-sectional distributions of wand the azimuthal velocity Uil ' respec
tively. Apparently, the core of the vortex is surrounded by a ring of very weak 
oppositely-signed vorticity. The scatter plot reveals a linear relationship between 
wand Ijl in the central part of the vortex, whereas w is almost zero for larger 
radii. These characteristic features of the w, ljI-relationship remain unchanged 
during the subsequent flow evolution, as can be seen in Figures 2a-c: although 
the maximum w-value decreases during the decay, the scatter plots indicate 
preservation of the linearity at least in the vortex core. For this reason it is 
assumed th at the monopolar vortex thus produced can in good approximation 
be characterized by alinear w, ljI-relationship. i.e. by 

(I) 

with k a proportionality constant. Because of the symmetry about the horizontal 
mid-depth level (z = 0), the flow can be considered as being 20, so that (I) 
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implies 

(2) 

The axisymmetric solution of this equation that is bounded in the origin r = 0 
is given by 

a) 10an 

0.3 -,---------------------, 

lis 

0.2 
W 

-2 -1 

, 
o~ 

o 

(3) 

b) 

"2" " " " " " "3 
d) r/R.,.,-.,. 

Fig. 1. ExperimentaJly determined features of a characteristic monopolar vortex: (a) w contours; 
(b) '" contours; (c) w, '" scatter plot; (d) cross-sectional distributions of w (symbol .) and VIJ 

(symbol 0). The profiles are scaled with their maximum values W max = 0.28 S -I, V max = 0.30 ms- 1 

and R = 3.2 cm. The drawn lines represent the vortex model (4). These quantities were determined 
at mid-depth of a monopolar vortex created by a rotating sphere in a linearly stratified fluid with 
N = 1.98 rad s -I, at t = 180 s after the forcing was stopped. 
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Fig. 2. Sequence of w, l/I-plots measured at t = 90 s (a), 120 s (b) and 240 s (c) after the forcing 
was stopped (same experiment as in Figure 1). The experimental kR-values are shown graphically 
for two different experimental runs as a function of time in (d), with the horizontalline represent
ing the value kR = 1.8. 

where Jo is the zeroth-order Bessel function of the first kind, and A is a constant. 
The corresponding solutions of 0) and Vu are 

O)(r) = Ak2 Jo (kr), vu(r) = AkJ1 (kr), (4) 

where J I is the first-order Bessel function of the first kind. 
In view of the fact that the azimuthal motion is unidirectional, the vu-solution 

should be truncated at a radius al for which kal ~ 3.83171, this being the first 
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zero of J 1 • However, a single-signed vorticity distribution (as is approximately 
the case in thc experiments, compare with Figure ld), is obtained by truncating 
the solutions at the first zero of J", i.e. at ka 2 = 2.40483. By defining a potential 
(outer) flow uo(r)= 1 kJ 1 (ka 2 ) for r > a 2 only an unphysical discontinuity 
occurs in w at the radius r = a 2 . It is shown in Figure ld that this model gives 
at least areasonabie description of the flow in the central part of the vortex. The 
experimental kR values, k being determined from the slope of the scatter plot 
and R being the radius at which Uil = V"w n are presented for a typical vortex as 
a function of time in Figure 2d. According to the model, kR = 1.84118. Although 
some scatter is present in the data, the measured kR-values agree well with the 
value 1.8, at least within the experimental error. 

During the decay, the vorticity magnitude shows a considerable decrease (see 
Figures 2a-c), while k and R only show a marginal change: after t = 120s 
k decreases slowly and R increases somewhat, but in such a way th at the com
bination kR is approximately constant (Figure 2d). 

3. Decay models 

In an attempt to describe some characteristic features of the decaying 
monopolar pancake-shaped vortex in a linearly stratified fluid , we will now con
sider th ree approximative theoretical modeis, in order of increasing sophistica
tion. 

(i) purely 2D decay 

In the approximation that the decay of the plan ar vortex flow can be considered 
as purely 20, the flow evolution is governed by the vorticity equation 

(5) 

where v is the kinematic fluid viscosity, V;' the horizontal Laplacian, and J the 
Jacobian. Any axisymmetric vortex satisfies J( w, tf;) = 0, so th at for the case of 
a Bessel vortex, as discussed in section 2, equation (5) takes the following form 
(see also Batchelor, 1967): 

aw 2 2 - =vV w= -vk w at (6) 
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Apparently, the decaying vortex solution is 

(7) 

with W (I (r) the vorticity according to the 8essel vortex, (4), and 

(8) 

the 2D decay time. 

(ii) fhe 'constant-thickness' model 

The purely 2D decay model can be somewhat refined by taking into account the 
vertical structure of the plan ar vortex. Experiments have revealed th at the verti
cai distribution of the horizontal velocity field is c10sely approximated by a 
Gaussian profile of the form exp( - z2/ 2(

2
), with a a vertical scale. It is now 

assumed that the thickness 2a of the vertical region is constant during (at least) 
the first stages of the decay, so that in the region = ~ a the vorticity distribution 
can be approximated by 

(9) 

with h(t) a time-dependent amplitude function . Near the mid-Ievel of the vortex 
region, the vorticity is close to vertical , and its evolution is described by 

Substition of (9) into (10) yields 

with e = z/a and },2 = e + l /a 2
. Under the restriction lel ~ ( 1 + a 2k 2

) 1/2 one 
obtains 

with 

( 10) 

( 11 ) 

(13 ) 

The last term in (12) is negligible as t ~ a2/ve 2
, which is easily met in most 

experiments as long as e is smalI. Apparently, the decay is again exponential. 
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(iii) Ihe verlical difJusion model 

A more accurate model is obtained when the vertical diffusion of the (vertical) 
vorticity is allowed to result in an increasing thickness of the vertical region . 
Again limiting the validity of the model to a thin region around the midplane 
level z = 0, we put 

w(r, z, l, )= w ,, (r) y(.: , I) , 

with W " (r) again the Bessel-vortex solution. By substitution into (10), one 
obtains for the amplitude function )': 

ay , a2 y 
al = - vk -y + v

a
.:2 · 

(14 ) 

( 15) 

By the transformation y = ct>(.: , I) exp( - vel) one obtains a diffusion equation 
for ct> : 

act> a 2 ct> 
-=v-
al az 2

' 
( 16) 

Under the assumption that initially the vorticity is confined to a thin region at 
midplane depth, according to ct>(t = 0) = ct>vJ( z), the solution of (16) is 

ct> (J 2 
ct>( z, I) = Ji exp( - z /4vI) . ( 17) 

The solution for the vorticity is th en 

I 2 
w(r, z, t) =wt) (r) JiexP( -t/rd if ) exp( -.: /4vt) , (18 ) 

with the timescale 

( 19) 

and the constant ct> t) being incorporated in the amplitude of w o(r) . Note that this 
timescale r dij is identical to r 2D' see (8), as derived for the purely 2D decay. 

4. Comparison between experimental observations and decay models 

(i ) the constant-thickness model 

A useful quantity to characterize the decay of the vortex is the maximum 
velocity VfII(/' , which is proportional to the amplitude A, see (4) . Figure 3a 
shows the behaviour of Vm ax as a function of time for two different experiments. 
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was stopped was taken as I = O. The graph c1early shows that the model 
describes a similar decay trend as the experiments. The obtained decay times
caIes are 

I 
11 

440 ± 26 s 
357 ± 17 s 

'dir(WlI/ilX a ) 

759±185s 
450 ± 56 s 

while the decay value ' w = live obtained from scatter plots for experiments ] 
and 11 are 322 ± 60 s, and 280 ± 100 s, respectively. The deviation from the 
experimental decay values is probably due to the assumption W = w()Ó( z ) at 1 = 0 
and the fact that I = 0 is chosen af ter the forcing was stopped; in reality a vortex 
with a certain thickness has already been formed at th at time. Besides, the vortex 
slightly expands horizontally , an effect which is not incorporated in the model. 
Nevertheless, the decay timescales are of the same order of magnitude. Also, the 
model describes a trend in the decay that is very similar to that in the measured 
quantities. 
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Yves Morel 

The Effect of Topography on the Motion of Coherent Structures 

Abstract 

An analytical model is derived to stlldy the effect of a topographic slope on the 
propagation of intermediate layer lenses. Thollgh the problem Call110t be solved 
entirely. dlle to its nonlinearity. bOllndary conditions are used to obtain useflll 
information . In particular. we find a formula tor the propagation speed of the 
strllcture which depends only on the surrollnding hydrological data . 

Introduction 

It has been conjectured that a significant part of the Mediterranean water th a t 
spreads in the Atlantic ocean forms huge bubbles of 20 to 50 km radius and 
1000 m thickness. These "meddies" wander in the Atlantic basin for about 
4 years and are able to tran sport Mediterranean water thollsands of kilometers 
southward. 

Many questions are still unanswered concerning these structures: Where and 
how are they generated? How can they have such a lifetime? How can we 
explain their southward trajectories? 

McWilliams and Flierl (1979) have shown that the nonlinearity inherent to 
their formation (see McWilliams 1988). keeps vortices from being scattered as 
Rossby waves. In meddy cores, vorticity reaches 0.3 to 0.5 f; thlls they are non
linear features and can resist dispersion. 

As far as trajectories are concerned. only three meddies have been tracked 
long enough to provide a good description of their path and time dependent 
characteristics (Armi et al. , 1989: Richardson et al .. 1989). Coverage of the 
region surrounding a Mediterranean lens with SOFAR tloats has shown that 
propagation is due to self-advection mechanisms (Richardson et al. , 1989). To 
our knowiedge. at least three explanations have been proposed to account for 
the Robserved trajectories (8eckmann and Käse, 1989; Hogg and Stommel. 
1989; Colin de Verdiere. 1992), but no-one has yet investigated the intlllence of 
bottom topography. 
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Fig. I. Map of the bathymetry (22 - 24° W, 25 - 33°N) and the path of a meddy observed by 
Armi et al. ( 1989) and Richardson et al. (1989). Note that the bathymetry has been smoothed 
down below 30° N. r ,: Probable position of the core of the meddy. A-B: Test zone. 
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As intermediate lenses are baroclinic features, and as baroclinity is known to 
attenuate the dynamics of lower layers, topography was not thought to play a 
significant role in the motion of these eddies wh en they were above abyssal 
zones. Vet numerous observations seem to prove that these structures propagate 
along lines of constant depth; for instance, meddies always cross the mid-Atlan
tic ridge through Kane's fracture , while their immersion is above the seamount 
tops (Kostianoy and Belkin, 1989). More recently, Arhan et al., 1994 have detec
ted three meddies that seem to have been generated in the Tagus abyssal plain 
and travelled southward crossing the Gorringe bank over a pass. In figure I we 
have superimposed a map of the bathymetry on the trajectory of the Meddy 
followed by Armi et al. (1989). The correlations between the path and the 4900-
5000 m isobaths are good, at least at the beginning. Vet, the lens propagated 
with deep waters on its right, whereas a barotropic model with a topographic 
beta predicts a translation with shallow waters on the right. In fact, this argu
ment does not hold any more when stratification is taken into account. 

We develop here an analytical model to evaluate the influence of bottom slope 
on the dynamics of an intermediate nonlinear eddy through dynamical coupling 
between the layers. The model is presented in section 2. The problem is solved 
and the results are analysed in section 3 and 4. Some complements are given in 
the last section. In particular the p-etTect is added and our results on the 
influence of a mean upper layer velocity is briefly exposed. 

The model 

As the intermediate layer can be nonlinear and as the variation of this layer's 
thickness is thought to be as high as the thickness at rest , the simpier model to 
be considered is a three layer-shallow-water model on an f-plane. We also 

r--__ ... evels at rest 
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Fig. 2. Si de view of the lens . . 1' = tanp. 
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assume a steadily translating axisymmetric basic state, with the second layer 
embedded between two quasi-geostrophic layers. For the latter, conservation of 
potential vorticity gives: 

with 
d __ 

dl = (ü- C).V 

For the basic state, using radial coordinates in a frame translating with the 
structure: 

1 (7r(rOrP) 

ç= PI' r 
and 

where iJl! is the basic axisymmetric perturbation of the thickness due to the 
meddy, H' = -ol' r sinO represents the bottom topography and is here an asym
metric term, and H is the thickness of the layer at the centre of the meddy. 

Keeping only the higher order asymmetric terms I, we get: 

(1) 

We can integrate this equation for each quasi-geostrophic layer (i = land 3). 
We get: 

C,=o C,=c 

(2) 

(3) 

We could also derive an equation for the intermediate layer, but we would only 
obtain a relationship between the basic state and higher order terms. That is 
why we are going to assume that iJh 2 (r) is known a-priori at first order. 

1 A more rigorous way to derive the equation is to use integral constraints to relate the order of 
magnitude of the asymmetrie part to the axisymmetrie one. We then get two smal! parameters that 
ean be used to perform an asymptotie expansion: the Rossby number and c = C/fL where C is the 
propagation speed and is found to have order of magnitude g's/! with g' the redueed gravity. 
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Mathematical development 

To solve the previous equations we have to distinguish two cases: 
C = 0: this is the case if and only if there is no motion in the bottom layer. 

Then, there exists exact axisymmetric solutions of the complete set of nonlinear 
equations. As meddies do translate, these exact solutions are not really of inter
est. However, this observation is profitable insofar as it also means th at if a lens 
is to propagate, the bottom layer can not be at rest, whatever the mechanism of 
propagation, and thus our structure "feels the bottom". 

C i= 0: This is the most interesting case of course, and we are going to solve 
the equation assuming the lens does translate. 

Boundary conditions 

As Swaters and Flierl (1991) did in studying a cold lens on a sloping bottom, 
we impose isolation constraints for our lens (see also Flierl 1984): 

v;=o for r ~ R, 

where R is a radius to be determined. That constraint also means that the Ah; 
are null beyond R. 

We believe it is a necessary condition to have a stationary translation if we 
consider a "realistic" bottom. Indeed, let us assume th at at y = y 0 the bottom 
becomes flat , then V H~ = sj is nul beyond Yu' In view of ( 1), it is necessary to 
impose V 3 (r) = 0 at y = y u ' As V3 only depends on r, this means th at V 3 (r) = 0 
beyond a certain radius R. It also seems natural to impose such a constraint on 
the other layer in order to have steady propagation. 

Eigenmode development 

Using the hydrostatic approximation to express P, and P3 in terms of Ah" Ah 2 

and the free surface level ' , (= Ah, + Ah 2 + Ah 3), (2) and (3) become: 

gH, 
- rA h, + f 2 ar [ ra r' , ] = 0 (4) 

- r [(l + n 'I -( 1 + A~" r) Ah, ] 

(5) 
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with 

and the boundary conditions: 

ar( dr=O)= ariJh, = ariJh 2 =O 

( ,(r~R)=iJh, =iJh 2 =0 

ar( , (r ~ R) = ariJh, = ariJh 2 = 0 

To solve th is system, we add (5) + a( 4) and determine a to get two uncoupled 
equations. This gives: 

gH, + agH, iJp"gH, 
J 2 r = p J 2( - a + 1 + ~ n =- K 

a is thus the root of a second-order equation: a 2 
- (1 + ~ r - <5) a - <5 = 0, with 

<5 = Z' . The discriminant is: A = (I + ~ r - <5) 2 + 4<5 > O. Th at ensures th at there 
are t~o different eigenmodes: Z j = ( , ~ :;);SIf; iJh" i = I, 2 and the initial system 
is equivalent to the following , where variables have been separated (i = 1, 2) : 

with the boundary conditions: 

Zj(r~R)=O 

arZj(r = 0) = 0 

arZj(r ~ R) = 0 

(6) 

As iJh 2 and the Zj are null beyond a certain radius R, we can decompose them 
using Bessel functions: 

Jor r ~ R 

Jor r ~ R 

Ju is the zeroth order Bessel function and À-" is the p-th root of Ju ' Two of the 
three boundary conditions are obviously satisfied, the last one can be written: 

+x 

I y,,=O with 
p ~ ' 
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Using (6), Z; can be written: 

+ c.c,. (r) 
Z;(r) = P~l P~xjJ() Àp R 

P' - 1 + - r + 3 À 2 
. R

2 
(L1P' L1p'gH ) 

p- r(R2+K;À~) P3 P3PR 2 
p 

The boundary condition for each mode can be written: 

+ CG 

with G(X) = L 
p = l 1 +XÀ~ 

G is a function th at only depends on the basic shape of the lens. Thus, if we 
assume that the first factor of the left hand side is not zero, our celerity and R 
will depend on the shape of the lens. We believe this cannot be the case because 
the formula we then obtain for C will not hold: C --.. 0 when J --.. + 00 . So, accor
ding to us, the right condition th at determines the propagation speed Cis: 

That relationship can only hold for IX ~ 0, this determines the K; to be chosen, 
and we get: 

C = L1_p_' g_s __ L1,-P_ 
pJ L1p'J - L1p 

This formula seems consistent because: 

C--..O when J --.. + 00 

L1p'gs 
C--.. CNof = ---

pJ 

(see Nof 1983 j. 

Analysis of the results 

Comments on t/ze celerity 

when J --.. 0 

The striking point in formula (7) is th at C can be negative (translation with 
shallow waters on the left) but also positive, depending on the surrounding 
hydrological data (in fact Cis positive if H J is large enough): 

(7) 
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Fig. 3. Propagation speed as a function of the lower layer height. 

Two constants are in fact rather difficult to estimate: the bottom slope s and 
the intermediate layer density P2' Indeed, Mediterranean lenses are located near 
the pycnocline, where density rapidly varies. 

Besides, we see th at even for weak slopes (s ~ 10 - 4) the translation speed is 
not negligible (C ~ 1 cm s - I ). That is why we believe bottom topography must 
be taken into account to study the dynamics of meddies. This study also under
lines the fact that reduced gravity models are not appropriate to study such len
ses. In fact Chassignet and Cushman-Roisin (1993) have shown that the condi
tions for neglecting lower layer dynamics are certainly never achieved in a 
realistic ocean. 

Let us apply our formula to the meddy observed by Armi et al. (1989). In 
figure 1 we have determined a test zone where the bottom slope seems smooth 
and the trajectory rectilinear (A-B on fig. 1 ). The hydrological data given by 
Armi et al. (1989) are: 

342 

Hl'" 800 m 

H J'" 3600 m 

LJp '" 0.5 kg m - J 

LJp' '" 0.5 kg m - 3 

f - 7.3 10 - 5 S - I 

s- 10 - 3 
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Our formula thus gives a propagation speed of 2 cm s - 1 southward in good 
agreement with the observations. 

Pressure anomaly 

Let us set: 

f Pf J" (À. p !.-) 
1' = 1 R 

P + :x:. (r) ~= " PI' J À.-L. 3" PR 
pg 1' = 1 

we get: 

A' pp_ P I' 

1 - 1 _ 4 + Ap" À. 2 r 2 X 2 
tJp,) I' 1 

• if J -+ 00 , C -+ 0 and there is no mot ion in the lower layer (P 3 -+ 0). 
• As Pf, Pj '" ~ and À. ~ ~ I, we see that the intermediate layer speed is in 

general higher than the speed in the upper and lower layers 2. 

Discussion 

We have shown th at bottom topography can be important for the propagation 
of an intermediate lens, even above abyssal depths. However, as a mean velocity 
field or the p-efTect are also thought to play a role in the dynamics of these 
eddies, one may wonder which of these three mechanisms is essential. 

It is easy to take into account the p-efTect in our model, it just adds another 
term in the potential vorticity equation and we can solve the problem following 
the same pattern. The reader can verify that if the bottom slope is oriented 
North-South, the propagation speed C does not change! p only modifies the 
basic shape of the lens. On the other hand, if the slope is oriented East-West, 
no steadily translating motion can be achieved. In th at case, we believe that for 
a certain range of slopes, the structure could propagate along lines of constant 
depths and p will just act to generate a weak loss of mass in the core of the 
meddy. Assuming a southward translation speed of 2 cm s - I and neglecting the 
relative vorticity, th is yields an e-folding time of 400 days (T = I/PC), which 
seems consistent. 

2 In fa ct xi can be chosen so that the speeds in the second layer are higher than those in the ot her 
layers. 
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It is also easy to take into account a mean upper layer current of the form 
U = Ui. If the mean interface slope can be neglected in front of the bottom 
slope, this current can also be neglected. Otherwise we get a new formula for C, 
depending now on the surrounding hydrological data and U. 

However, these are only qualitative results and the combined efTects of these 
th ree mechanisms is not clear. A thorough study to compare their respective 
influences seems necessary. 

Finally, let us mention that in our model, as the free surface is deforrned , there 
is an upper layer vortex. However this vortex is generated by the passage of the 
lens: a scaling analysis -not presented here- shows that in our model particles 
above the meddy do not follow it. Future measurements at sea should provide 
more clear-cut answers on the possible existence of such an upper layer 
signature in vorticity. 
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Merging of Cyclonic Vortices in a Rotating Fluid 

Abstract 

We study the interaction of two equal cyclonic vortices in a rotating fluid. A 
rigid lid placed on the free surface of the fluid eliminates topographic effects. 
Vortices initially located at a distance d < 4R (R being the radius of the vortex) 
were observed to merge, while for initial separations d> SR the two vortices 
rotated around a common centre without merging. For intermediate initial 
separations (4R < d < SR) the two vortices are strongly elongated but no single 
vortex is clearly formed. Two point vortices forced to approach one another 
simulate the main features of the early stages of the merging process. A vortex
in-cell model is used to study the interaction of vortices with more realistic vor
ticity distributions. 

Introduction 

The transfer of kinetic energy from the small scales to larger scales is a charac
teristic process of two-dimensional flows. It is be1ieved that this process occurs 
through the merging of regions of equally signed vorticity. Although the interac
tion of two equal vortices embedded in irrotational flow is astrong simplifica
tion of a 2D turbulent flow, the understanding of this e1ementary process can 
illuminate the more complex processes leading to the se1f-organization of a two
dimensional flow. 

One of the most important features in the interaction of two equal vortices is 
the existence of a critical distance for merging. If the vortices are initially closer 
than this distance they will merge into a single vortex. If the initial di stance is 
larger the vortices will orbit around one another without forming a single vor
tex, while probably interchanging some outer vorticity. This merging criterion 
has been established using numerical simulations for different vorticity distribu
tions in the initial vortices and simplified analytical models for patches of con
stant vorticity (see e.g. Melander et al. 1988). 

Griffiths and Hopfinger (1987) studied the merging of equal vortices in a 
rotating, barotropic fluid and verified the existence of a critical di stance for the 
merging of anticyclonic vortices. They observed, however, th at cyclonic vortices 
merged for all initial distances allowed by their experimental apparatus (up to 
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d = 4.5R). The cause of this anomalous behaviour must be a three-dimensional 
effect since the two-dimensional vortcity equations, on which the simulations 
and analytical results are based, show the same behaviour with both signs of the 
vorticity. The natural candidates are the effect of Ekman layers (see Griffiths and 
Hopfinger, 1987) and the parabolic free surface (see Carnevale et al. 1991). Due 
to the Ekman pumping the radius of cycIonic vortices increases while that of 
anticycIonic vortices decreases. The parabolic free surface produces an effect 
analogous to that of the gradient of ambient vorticity in the p-plane. CycIonic 
vortices move to the (Iocal) northwest, which implies that in the case of a 
parabolic upper surf ace they spiral inwards; anticycIonic vortices move 
southwest, which is here equivalent to spiralling outwards. Therefore the Ekman 
layers as weil as the free surface will enhance merging of cycIonic vortices and 
inhibit that of anticycIones. 

The experimental results discussed here were performed using a plane rigid 
lid, thus the topographic effect was removed but the Ekman effect was increased 
(there is an additional Ekman layer at the top). The existence of a critical dis
tance for cycIonic merger under these circumstances supports the hypothesis th at 
the topographic effect was the cause of anomalous merger in the experiments by 
Griffiths and Hopfinger (1987). 

Laboratory experiments 

Experimental arrangement 

The experiments were carried out in a rectangular tank of horizontal dimensions 
100 x 150 cm 2 and 30 cm depth mounted on a rotating tab Ie. The angular speed 
of the system was chosen to be Q = 0.57 s - I, so that the Coriolis parameter 
f = 1.14 S - I. The tank was filled up to a dep th of 22 cm, and a transparent rigid 
lid was placed on the free surface before the rotation of the tank was started. 

Vortices were generated by withdrawing some fluid during a short period of 
time (5 or 10 s in the experiments reported here). This was done using thin tubes 
( 1.5 cm in diameter) with small perforations. The di stance between the generat
ing tubes (i.e. the initial distance between the vortices) was va ried in the range 
11.7-22.5 cm (which is equivalent to 3.3R < d < 6.3R). 

Flow measurements of a single vortex were made in absence of a rigid lid. The 
velocity field is measured from streak photographs of sm all particIes floating at 
the free surface. Then the velocity field is interpolated onto a regular grid using 
cubic splines. The vorticity (w = v, - u I') is calculated analytically from the inter
polating polynomials and the stream (unction is obtained by numerically invert
ing the Poisson equation V 2 t/1 = - w. 

The merging experiments were all done with the use of a rigid lid and we re 
vizualized by adding dye af ter the generation of the vortices. 

346 Merging of cyclonic vortices in a rotating fluid 



Vortex structure 

Before investigating the interaction of two equal vortices, the vorticity distribu
tion of a single vortex generated with the sink method was measured. Figure I 
shows an example of the radial distribution of velocity (small dots) and vorticity 
(big dots) of a monopolar vortex. A good approximation of the vorticity dis
tributions encountered in sink vortices is provided by the Lamb vortex (see the 
solid lines in figure I) : 

(1) 

(2) 

where r is the radial coordinate, K is the total circulation of the vortex and R 
is the position of maximal velocity. (N.B. with R 2 = 4vt one recovers the Oseen 
vortex, which gives the decay of a potential point vortex with circulation K). 
Note that the velocity profile resembles the Rankine model, but the vorticity dis
tribution difTers strongly from that model. 

-~ I 

0.5 -
I 

-0.5 

-1 
-20 -10 o 10 20 

radius (cm) 

Fig. 1. Radial distribution of vorticity (thick lines and markers) and ve10city (thin lines and 
markers) for an experimental "sink" vortex (dots) and the Lamb-vortex model (solid lines). 
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Radius increase 

In a rotating fluid, the vortex evolution is affected by the Ekman layer. For 
cyclonic vortices, the motion in the bottom Ekman layer is directed radially 
inwards and leads to a 'pumping flow' into the vortex interior. To conserve 
mass, the axial motion will drive a weak motion in the vortex interior radially 
outwards. Anticyclones, on the other hand, are vertically stretched by the 
Ekman suction and will contract horizontally. 

F ollowing Carnevale et al. (1991) we derive a rough approximation for the 
vortex radius' rate of change produced by the Ekman effect: 

dr 1 
-~- R wE I / 2 

dt 4 0 
(3) 

with Ro the initial radius of the vortex ( ~ 4 cm), Wo the vorticity (~1 s - I) and 
E = v/DH2 the Ekman number ( ~ 4.4 x 10 - 5). 

The growth of the vortex radius due to molecular diffusion follows from the 
Oseen model dr/dt ~ 2v/Ro. For the vortices in the present study, the effect of 
Ekman pumping is two orders of magnitude smaller than that of horizontal dif
fusion . However, the diffusion term always leads to radius increase, whereas the 
effect of the Ekman layer depends on the vortex being cyclonic or anticyclonic. 

Topographic effect 

Because of rotation , the free surface of the fluid is parabolic. This causes a 
gradient of ambient vorticity analogous to the p-effect. During the flow evolu
ti on a fluid parcel must conserve potential vorticity, which in this case can be 
expressed as w - yp2 = const., where w is the relative vorticity, p is the di stance 
to the rotation axis and y = f3 /8gh, with f the Coriolis parameter, g the accelera
ti on due to gravity and h the depth of the fluid at the centre of the tank. 

As in the p-plane case, a circularly symmetric vortex is not steady on the y
plane (see e.g. Carnevale et al. 1991). A cyclonic vortex will tend to move to the 
local northwest, therefore making an inward spi ral. In contrast, an anticyclonic 
vortex will tend to move to the local southwest, making an outward spiral. 

Merging of cyclonic vortices 

We could identify three different regimes in the interaction of two equal cyclonic 
vortices: 

(i) when the initial distance between the vortex centres was large (d> SR), the 
two cyclonic vortices rotated around each other. The distance alternately 
increased and decreased but during the whole evolution it remained close to the 
initial value (see curves a and b figure 2). The two vortices were slightly defor
med but they conserved their almost circular shape. 
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(ii) for intermediate initial separations between the vortices (4R < d < 5R) the 
two vortices slowly formed a single, elongated structure. The distance between 
the vortices decreased almost linearly (curves c and d in figure 2). In the final 
stage it was still possible to recognize both vortices, which were surrounded by 
bands of fluid from the other vortex. 

(Ui) when the initial distace was small (d < 4R), the vortices rapidly merged 
into a single structure, as can be seen from the evolution of the di stance in figure 
2 (curves e and f). The merging process can be described as follows. Every vor
tex develops two cusps, one on the side of the neighbouring vortex and the other 
in the opposite side (figure 3a). The "exterior" cusps grow, forming the spiral 
arms that carry fluid out of the vortices, while the "interior" cusps also grow, 
thus transporting mass from one vortex to the other (figure 3b-c). The two vor
tices form a single, elongated structure and fmally this elliptical vortex sheds 
more vorticity and transforms into an almost circular vortex (figure 3d). 

diR 

7 

a 
6 
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~~ 

d 

3 
e 
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o ~~~-,~~~~~~~~~~ 

o 100 200 

time (s) 

300 400 

Fig. 2. Evolution of the distance between the vortices for several initial separations diR: (a) 6.3, 
(b) 4.7, (c) 4.6, (d) 4.5 (e) 4.2; and (f) 3.3. 

These regimes show the existence of a critical distance for merging of cyclonic 
vortices. In figure 2 the intersection of the curves with the line t = 0 gives the 
critical distance dj R = 4.5 ± 0.3. This value seems to agree with the prediction of 
Camevale et al. (1991), which is 4.35 ± 0.05. 
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Numerical simulations 

Point vortex model 

The simplest model of two equal vortices consists of two point vortices of equal 
strength Ko separated by a distance d. If the two vortices evolve freely d is a con
stant, and the two vortices will rotate around their common centre with a con
stant angular speed. The stream function tjI for th is rotating pair is formed by 
the sum of the stream functions of the initial vortices plus a correction term for 
the rotation of the system. For two vortices located at (dI2, 0) and ( -dI2, 0) the 
stream function tjI is given by 

To simulate the early stages of the merging process the vortices are forced 
to approach each other, i.e. d is a decreasing function of time. Experimentally 
the evolution of d was observed to be c10sely approximated by d = dmin + 
a jtmllx - t, with a = j(do - dmin)l tl//(/X and do is the initial di stance between the 
vortices and tl/ IiI X the time lapse up to the formation of a new single vortex, when 
d = dmi" . This approximation is valid for "rapid" merger, i.e. for vortices initially 
separated by a distance small compared to the critical distance (see figure 2). 

The equations of motion of a passive tracer in a point (x,y) in a corotating 
system are 

d.y 8tj1 

dt 8y 

dy 8tj1 

dt 8x 
(5) 

The advection due to the approaching vortices is studied by following the 
evolution of the con tours of two fluid parcels. The parcels are initially circular 
and the centre of each one corresponds with one point vortex. The number of 
points th at define the lines increases in time as the length of the advected line 
increases. The time integration is performed using a fourth order Runge-Kutta 
scheme. Figure 3e-g show that the early evolution of the patches resem bles the 
laboratory observations (figure 3a-c). This simple model, however, can not 
reproduce the transition to a single vortex as can be seen by comparing figures 
3d and 3h. 

Vortex-in-cell-method 

In previous studies the merging process has been investigated , numerically and 
analytically, for vortices with uniform vorticity, i.e. Rankine vortices (or some 
smoothed version of this vortex) . The vorticity distributions we encountered 
were strongly different from these vortices. Therefore, we simulated numerically 
the interaction of vortices with a more realistic vorticity distribution, viz. th at of 
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(a) (e) (i) 

(b) (f) ü) 

(c) (k) 

(d) (h) (I) 
Fig. 3. Several stages in the merging process: (a)-(d) experimental observations; (e)-(h) numeri
cai simulations of Lamb monopoles using a vortex-in-cell method; and (i)-(I) passive tracers in the 
velocity field of two approaching point-vortices. 
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the Lamb vortex, see ( I). For this purpose we use a vortex-in-cell method, intro
duced in fluid mechanical problems by Christiansen (1973). 

The initial continuous vorticity distribution is replaced by a finite set of point 
vortices each representing a small area, so that the uniform vorticity on th at 
parcel times the area equals the point-vortex circulation. The region is covered 
by a mesh consisting of N . x N, cells. In the simulations reported here 
N.=N, =64. . 

To obtain a circular vorticity region, the point vortices are distributed over m 
concentric circles. There are 8k point vortices in ring k plus 1 point vortex in the 
centre, yielding a total number of Np = 4m(m + I) + 1 vortices. This distribution 
ensures equal areas for all point vortices. The number of rings used was m = 25 
(i .e. Np = 2601). For smaller numbers, the resolution is not sufficient. For higher 
numbers, the computation time is larger whereas the resolution does not 
increase significantly. 

For the numerical simulations of Lamb vortices, the vorticity distribution was 
cut-ofT at a radius r = R (the position of maximum velocity, as in the Rankine 
vortex) and r = 2R. The results for r = R resembie those obtained for Rankine 
vortices: the critical distance is diR = 3.2, and some exchange of vorticity occurs 
for di R = 3.4. For re = 2R the critical distance is di R = 4.2. This difTerence is only 
due to the low-valued vorticity ring that was added. 

Conclusions 

Laboratory experiments have been carried out with cyclonic vortices. The vor
ticity distribution of this type of vortex is weil approximated by a Lamb vortex, 
with the vorticity decreasing exponentially with the square of the radial coor
dinate r. 

The efTect of molecular difTusion on the radius of a vortex is two orders of 
magnitude greater than the efTect of the Ekman layers. The growth influences the 
dimensionless parameter di R and is therefore essential for a correct interpreta
tion of the experimental results. Referring to the initial values the critical dis
tance is diR = 4.5 ± 0.3. This value agrees weil with the calculations of Carnevale 
et al. (1991), who found diR = 4.35 ± 0.05. 

In spite of its simplicity , a point vortex model reproduces remarkably weil 
some characteristic features of the merging process, namely the exchange of fluid 
bet ween the two vortices and the formation of spi ral arms. 

More realistic numerical simulations have been carried out using a Lamb-vor
tex profile. The same features observed in the experiments are reproduced by the 
model. The ring of low-valued vorticity strongly influences the merging process. 
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