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Preface 

Recently great progress has been made in the field of dynamical systems. In 
January 1995, the Royal Netherlands Academy of Arts and Sciences enabled us to 
organize a meeting aimed at a wide audience consisting of mathematicians, physicists, 
biologists and economists. This collection of articles comprises the contributions of 
most of the speakers. 

We feIt that several new developments in dynamical systems are important or 
will become so in the ne ar future . We decided to select some areas which are close 
to applications and related to noise, randomness and spatial structures. Broadly 
speaking our aim was to cent re the meeting around three topics. 

(i) the effect of noise on data generated by dynamical systems and testing whether 
these dynamical systems adequately model "reality"; 

(ii) spatial structures which can be generated by dynamical systems and which act 
on a network of coupled systems (coupled lattice maps); 

(iii) random differential equations and applications to biology. 

N oise and chaotic dynamics 

One effect of adding noise to a system with chaotic dynamics is that it can drastically 
change its attractor. One reason for this is that noise is amplified in a system which 
is not very hyperbolic: this becomes especially important when some components 
of the basin of an attractor are extremely small. Of course, one is often interested 
in the underlying deterministic system of a dynamical system f which has noise. To 
formalize this, one could define the deterministic approximation x f-t f*(x) of a "noisy 
system" f to be the conditional expected value EUlx). However, (j2)" need not be 
equal to U*)2 . As Takens shows in his paper, this implies that it is in some ways 
meaningless to ask whether a system with noise is really chaotic. (Because ( 2 )* can 
be chaotic even when f* is not.) 

One approach to systems with noise is estimating correlation integrals. Given some 
numerical data, one can try to estimate some of these numbers. In KeIler and Sporer's 
article linear regres sion estimators are discussed for the correlation dimension, entropy 
and detection of noise. These estimators are applied to data related to the Hénon 
map. 

In the article of Cheng and Tong, delay coordinates from Takens' embedding the­
orem are discussed in the context of stochastic dynamical systems. More specificaIly, 
assume that one has a stochastic dynamical system of the form 

where the condition expectation of Et (given X t - 1 , ... , X t - do ) is zero. Estimates for 
suitable choices of the lag do and the required sample si ze are discussed. 
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Coupled lattice maps 

Recently, many numerical studies and some theoretical results have been obtained on 
Coupled Lattice Maps abbreviated frequently as CLM's. These are systems which are 
meant to model spatial structures where the state of a site is determined dynamically 
by the previous state at that site and that of its neighbours. Such models have a 
wide range of applications to physics (crystals), biology (nervous systems, population 
dynamics), economics (interaction of different markets ), reaction-diffusion equations 
(see Section 2 of the paper of Losson and Mackey) and so on. Numerically, one can 
ob serve the formation of waves, patterns, synchronization in which coupling plays an 
important role. In one class of models the state Xn+l (i) at time n + 1 at site i is 
determined by the states at the neighbouring sites i-I, i, i + 1 E Z at time n . An 
example of such a one-dimensional nearest site model is 

where xn(i) is the state of the system at site i E Z at time n E N. If € = 0 then 
each site i has a time dynamics which is completely uncoupled from those at other 
sites. When € E (0,1) then the dynamics at distinct sites wil! interact. Of course, 
the non-linearity of the map f also plays an important role. Similar models can also 
be constructed when i E Z is replaced by (i, j) E Z x Z (the two-dimensional case) 
in which case the interaction at site (i,j) could be with its nearest neighbours . In 
many situations one ob serves random patterns which are "frozen", or "defects" which 
zigzag in space. Sometimes, also certain regular patterns suddenly break up and one 
obtains spatiotemporal chaos. 

In the paper of Losson and Mackey a survey is given on CLM's. In particular, the 
effect of adding stochastic perturbations onto a CLM system is discussed. In fact, 
even without stochastic perturbations a CLM can behave "ergodically" . One way of 
describing these ergodic properties is discussed in Keller's paper: it is shown that if 
the map f is sufficiently expanding (and itself has a good invariant probability mea­
sure) and the coupling is sufficiently small then one has a good invariant probability 
measure. In his paper, Mackay shows that for a rat her general class of CLM's (with 
coupling parameter f) solutions of the system for f = 0 persist when € > o. In fact, 
since the proof of this uses an implicit function theorem, Mackay is able to show that 
these results even apply for rather large f. This explains why one can have "spatially 
local" dynamics. 

Instead of coupled lattice maps, Mallet-Paret studies coup led lattice differential 
equations (LDE's). The class of systems Mallet-Paret discusses in his paper, are 
simplified ver si ons of systems which seem to be able to identify patterns in digitized 
images (Cellular Neural Networks, studied experimentally by Chua, Hasler and oth­
ers). Using methods from bifurcation theory, Mallet-Paret shows that - depending 
on parameters in the model - all kinds of stripe or check pattern solutions exist and 
discusses the stability of such solutions. In addition, he discusses travelling wave 
solutions and also defines and describes systems with spatial chaos. 
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Random differential equations and applications 

Many applications are modellE.d by the telegraph equation 

This equation is in some senses an interpolation between the wave equation Utt 

1'2 U xx (taking IIlI smalI) and a diffusion equation Ut = (')'2/21l) (taking Il large). 
Hadeler's article gives an overview of the many applications of the telegraph equation 
and its connections to random walks. For example, it is shown that the teiegraph 
equation is equivalent to the system 

Ui"" - 1'u; = Il(u+ - u-) 

where U± are the densities of a particIe performing a correlated random walk on the 
realline with speed ±1' (i .e., u±(t,x) ~ 0 and J~oo u+(t,x),u-(t,x))dx = 1). 

Instead of adding noise to a differential equation (as is do ne in stochastic differen­
tial equations), one can also add a term which comes from a chaotic flow. This point 
of view is considered in Johnson's article. He considers differential equations of the 
form 

X' = f(Tt(y), x), y E Y, xE IRn 

where Y is some topological space with probability measure Il which is ergodic w.r.t. 
the flow Tt: Y -+ Y and f: Y x IRn -+ IRn is Lipschitz continuo us in the second 
variabie. The notion of exponential dichotomy and its connection with the theorem 
of Oseledec is discussed. Furthermore, some examples of bifurcations of such systems 
are considered. 

Finally, in an article of Metz e.a. stochastic processes are suggested which model 
long-term biological evolution. 

Clearly, there are many new exciting developments in dynamical systems. Hope­
fully these proceedings give a good impression of some of these. 

Amsterdam, 16 February, 1996, 

Sebastian van Strien and Sjoerd Verduyn Lunel 





Part I: Statistical and Reconstruction Methods 





The effect of small noise on systems with chaotic 
dynamics 

Floris Takens 

1 Introd uction 

In this paper we are concerned with the effect of smal! noise in dynamical systems, 
in particular in nonlinear and chaotic dynamical systems - the noise we consider 
is , what is sometimes cal!ed system noise: at each time there is some uncertainty 
concerning the next state (for simplicity we only con si der systems with discrete time). 
There are several examples which motivate such a study: 

Firstly, we may think of (simple) mathematical models, like the Navier-Stokes 
equation describing the mot ion of a fluid, but ignoring the effects due to the molecular 
motion. This molecular mot i on (and other possible effects which are not taken into 
account by the Navier-Stokes equations) is then considered as noise. For this type of 
noise see e.g. [3]. 

Secondly, twisting the first example, we can consider a numerical scheme, "sol ving 
the Navier-Stokes equations", as a determinist ic system and the "real solution" , or 
maybe rat her the "real fluid mot ion" , as a more or less random perturbation of the 
numerical solution. These differences between numerical solutions and exact solutions 
can be made very smal! in the case of systems with a finite dimensional state space, 
but for systems described by partial differential equations, this "numerical noise" can 
be much bigger, since then one also has to approximate the infinite dimensional phase 
space by a finite dimensional one. 

Thirdly, one may think of a system, whose laws of mot ion are unknown to us and 
for which we derive in a phenomenological way a (simple) deterministic model as a 
first order approximation (this situation is quite close to the situation considered in 
the first example, but here the "deterministic approximation" is somewhat arbitrary 
due to the absence of "laws of nature"). The deviation between model and reality is 
then considered as noise. 

In al! these examples there is the important question: how wel! does the system 
with noise approximate the system without noise and vice versa. This question has 
at least two different aspects: 

Firstly, how wel! can the system with noise be used to predict the short term 
behaviour of the system without noise and vice versa. We talk here only about short 
term predictions because we know that in the case where the dynamics is chaotic, 
predictions over long time intervals are impossible, due to the sensitive dependence 
on initial conditions. 

Secondly, how wel! can the system with noise be used to predict the long term 
statistical properties of the system without noise and vice versa. For the moment we 
do not want to give a precise definition of the "long term statistical properties" , but 
in the numerical experiments which we shal! discuss, it will be clear what we mean, 
and in the final section we go into a somewhat more fundamental discussion. 
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Figure 1: The attractors for the logistic system for Jl in [3.5,3.75] . 

It is important to keep the difference between these two criteria in mind. This 
difference is also related with the point that the criteria for a good mathematical 
model dep end on what one wants: there are reasonable mode Is to predict the we at her 
for, say, the next day, but, iterating such a prediction procedure and then averaging 
over the time to get information about the climate, gives completely non-realistic 
results [9] . 

The purpose of this paper is to give a discussion of the above problems. We base 
this discussion mainly on some numerical experiments with the logistic system. We 
also provide an example (also related to the logistic system) showing that one can­
not make a sharp distinction between systems whose deterministic approximation is 
chaotic or not. This implies in my opinion that one has to be very careful wh en as­
signing numerical invariants, like dimension and entropy, to a system, the dynamics of 
which is not completely deterministic, via an estimate of an underlying deterministic 
dynamics. 

2 A numerical example 

We consider the Logistic system, defined by the map <Pil (x) = Jlx(l- x) for values of Jl 
between 3.5 and 3.75. First we represent the attractors of this system without noise . 
In figure 1 the horizontal axis is the Jl-axis (from 3.5 to 3.75) and the vertical is the 
x-axis (from 0 to 1). For each of the Jl values the following procedure was followed: 
from a more or less arbitrary initial value of x (here x = .5) we iterate the map <Pil 100 
times without plotting anything, then we calculate another 200 iterations for which we 
plot the corresponding points in the (Jl, x )-plane. The idea is that af ter the first 100 
iterations we are on the "attractor" in the sense that the consequences of the particular 
choice of the initial point are no longer visible. So what is represented graphically are 
those x-values which continue to occur. This same method of representing graphically 
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Figure 2: The attractor of the logistic system as in figure 1, but with uniform noise 
in the interval [-.005, .005J. 

the dynamics of the logistic system was used e.g. in [IJ and by many other authors. 
In figure 2 we follow the same procedure, only we add, each time we apply the map 
'fip., a noise term with average zero and which is uniformly distributed between -.005 
and +.005. We see that all fine structure is washed out, even fine structure on a scale 
much bigger than the amplitude of the noise. 80 here we have two systems which 
are very close, in the sen se that one can use one to predict what the other will do 
after one iteration (with an accuracy of .5%), but if we are interested in the question 
which x-values will continue to occur af ter many iteration for a given value of 1-', then 
it is very misleading to use one system as a model for the other. Even if we decrease 
the noise term by a factor 10, see figure 3, there is still fine structure lost on a scale 
bigger than .5% (the first noise level) . 

In the next section we want to give an explanation of this dramatic "noise ampli­
fication" . 

Comparing figure 1 with figure 2 we can see that at least in this case it does not 
make much sen se to try to find out whether a "deterministic approximation" of a 
given system with small noise is chaotic or has a periodic attractor. In a later section 
we shall substantiate this point with rigorous arguments. 

3 Mechanisms of noise amplification 

3.1 Linear attractor with noise 

We first consider the case of a point attractor of a linear system to which we add 
noise . This is well known in the theory of linear stochastic systems, e.g. see [7], but 
we present it here because it explains part of our numerical experiment in the previous 
section. 
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Figure 3: The attractor of the logistic system as in figure 2, but with uniform noise 
in the interval [-.0005, .0005]. 

Let <p : IR -+ IR be a linear contract ion by a factor À, so <p(x) = ÀX, with IÀI < 1. We 
consider <p as the generator of a dynamical system and we add uncorrelated noise with 
average zero, standard deviation sd, and maximum absolute value m . For an arbitrary 
initial point x(O) we then get an evolution of the form x(n) = <p(x(n - 1)) + E(n) , 
wh ere E(n) is the contribution of the noise at time n. For large values of n, x(n) 
will have average zero, standard deviation sdi Jil - À2 1, and absolute value at most 
m/(l -IÀI) . 

This follows from the fact that 

x(n) Àx(n - 1) + E(n) 

À2x(n - 2) + ÀE(n - 1) + E(n) 

À3 x(n - 3) + À2 E(n - 2) + ÀE(n - 1) + E(n) etc .. 

80 for large n and x(O) fixed, we have the following approximation: 

x(n) '" L ÀiE(n - i). 
i~O 

Due to the fact that IÀI < I, the error in this approximation goes to zero as n goes 
to 00. 

This simple calculation shows that a weak contraction (IÀI close to one) leads to a 
strong noise amplification. We have calculated the effect on both standard deviation 
and maximum absolute value: from the statistical point of view the standard deviation 
may be more relevant but for the graphical representations we gave, the maximum 
absolute value could be more important (at least if we take very many iterates). 

The above calculation applies to our numerical experiment in the fOllOwing way. 
For many values of the parameter I-l there are periodic attractors with contracting 
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factor (as such one can define the derivative of <P~ at a point of a periodic attractor 
with period n) going to 1 in absolute value. Near these parameter values one expects, 
on the basis of linear approximations, astrong noise approximation. These parameter 
values at which the contracting factor in absolute value reaches 1 occur in the following 
places: at the values of period doubling (e.g. see the left hand side of figure 1 where 
we see successive doublings from period four to eight, then to sixteen, etc.) and in 
general at the endpoints of the intervals in the p.-axis for which <PIL has a hyperbolic 
periodic attractor (also in the right half of figure 1). Where the absolute value of 
the contracting factor actually reaches 1, our calculation, based on a linear system, is 
clearly no longer valid. Below, we discuss, and illustrate with numerical experiments, 
the situation at the so-called Feigenbaum value (this is the p.-value which is the limit 
of the p.-values for which the successive period doublings, refered to above, occur) -
for this value of p., the logistic map has an attractor on which the logarithm of the 
absolute value of the first derivative is in average equal to zero. In agreement with the 
above arguments we see in a numerical experiment a very strong noise amplification. 

3.2 Small domains of attraction 

By the above arguments we have explained part of the noise amplification but not 
all: apart from parameter values at which the contracting factor is arbitrarily close 
to one in absolute value, there are also parameter values at which the contracting 
factor is even zero. Here our argument, based on linear approximation, gives no 
noise amplification. It turns out however that, due to nonlinearities, the connected 
components of the domains of attraction of periodic orbits, the period of which is 
not too low, can become extremely smalI, so that even small noise is capable to drive 
a point out of the domain of attraction of the periodic attractor. Below we shall 
illustrate this effect by a a numerical experiment. 

4 N oise amplification illustrated by numerical 
experiments 

4.1 Noise amplification for J1 at the Feigenbaum value 

As we have mentioned before, the Feigenbaum value F is the limiting value to which 
the p.-values converge for which we have transitions from periodic at tractors of period 
2n to period 2n+1. In the numerical experiments we use for F the value 3.5699457, 
based on [1] . The map <P F has a sealing property. To formulate this sealing property 
we define the renormalization transformation T for a mapping <P of the real line to 
itself as: first replace <P by <p2 and then apply a conjugacy, magnifying the "state 
space" IR by a factor À -1 with center in .5, where À = - .3995 . .. is one of the 
Feigenbaum constants. So 

(T<p)(x) = À-l((<p2((x - .5)À + .5)) - .5) + .5 . 
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Figure 4: The attractor of the logistic system at the Feigenbaum value. A magni­
fication has been applied by a factor which depends exponentially on the horizontal 
coordinate. 

According to the scaling property, the result of repeated application of the period 
doubling operator to CPF gives attractors which converge (and even converge very 
quickly). Assuming that the convergence is immediate, this means that if we magnify 
the "attractor" of CPF by a factor >.-1 from the cent re x = .5, and restricting to the 
interval [0 , IJ we get the same picture. We first illustrate this scaling with a numerical 
experiment, which we repeat later with noise added in a next experiment. The result 
of the first experiment is given in figure 4 which was obtained in the following way. In 
each verticalline we plot the attractor of cp F in the same way as we plotted attractors 
in figure 1. The value of f-L is now fixed (at F) ; on the horizontal axis we have the 
magnifying factor: if we count the pixels on the horizontal axis from 0 to 639, then 
for the oth pixel we have x ranging from 0 to 1; this range decreases in an exponential 
way: for each 100 pixels it decreases by a factor 1>'1 . So we expect to see a periodicity 
in the sense that shifting 100 pixels to the right and turning the picture up side down 
should give the same picture again (in the "limit"). This periodicity is indeed clearly 
visible. (In order to compensate for the fact that when making the x-range small 
most points will fall outside the picture, we also increased the number of iterations 
exponentially when moving to the right on the horizont al axis: a factor 2 for each 100 
pixels.) 

Now we repeat the same experiment but with noise added. One may ask how to 
decrease the maximal amplitude of the noise (which we always take to have average 
zero and uniform distribution between ± its maximum amplitude) as a function of 
the magnifying factor so that the visible effect remains the same. According to the 
computations in [2], one has to reduce the maximum amplitude by a factor .151 for 
each period corresponding to the renormalization (so in our case a factor .151 for each 
100 pixels on the horizontal axis) . The result is given as figure 5. 
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Figure 5: The attractor of the logistic system at the Feigenbaum value as in figure 4, 
but with noise added. 

We see that the relative effects of the noise remains the same (as far as one can 
conclude from the figure). Since the calculations in the above paper are based on the 
standard deviation, and not on the maximal absolute value of the effect of the noise, 
this indicates that it is the standard deviation which is important for this graphical 
representation. 

The factor .151 implies that the ratio between the variance of the effect and the 
variance of the noise goes to infinity for small noise: each reduction of the length scale 
with .3995, the absolute value of the scaling constant .x, corresponds to a reduction 
of the standard deviation of the noise by a factor .151. So for Jl at the Feigenbaum 
value we have a very strong noise amplification, at least for small noise. 

4.2 Small basins of (strict) attraction of the superstabIe 
period 5 orbit 

Here we show with a numerical experiment how the effect of "small basins of at­
traction" works. We investigate th is for the value of Jl for which th ere is a periodic 
attractor with period 5 and contract ion factor O. This value is obtained by sol ving 
the equation <p! (.5) = .5 - the periodic attractor of period 5 can be seen in figure 
1, see also figure 2 and 3, near the right border. We call this Jl value S (periodic 
points with contraction factor 0 are of ten called Super stabie); we use the numerical 
approximation S = 3.73891. It is known that for al most any initial point x E [0, 1], 
in the sen se of Lebesgue, the corresponding evolution <Ps (x) converges to the periodic 
attractor of period 5. This convergence can however go in 5 different ways dep en ding 
on the value of i (modulo 5) for which limn --+ oo <psn+i is equal to .5; we say that there 
are 5 different phases in which one can convergence to the period 5 attractor. The 
regions for which the different possibilities occur are strongly inter woven so that if 
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Figure 6: The regions in [0, 1] of initial points with different phase of convergence to 
the super stable attractor of period 5. 

one takes an initial point with not to great accuracy, it is unpredictable which of the 
five cases will occur (like in the case one throws a dice where also the outcome is 
unpredictable or at least hard to predict). These different regions are separated by 
a set which has Lebesgue measure zero, but still is uncountable and forms a Cantor 
set. These types of situations we re studied by Grebogy et al. [5] as fractal basin 
boundaries. 

In order to visualize this aspect we show in figure 6 the map which assigns to 
each point x E [0,1] the phase in which it converges to the periodic attractor in the 
following way. The horizont al axis represents the points of the unit interval [0, 1] for 
each of these points we calculated 2000 iterates of the map <.ps to arrive (practically) at 
one of the five points of the attractor (which of the five determines in which ph ase we 
approach the attractor ). In order to get a clearer visual representation we represent 
the result by a vertical line, above the x-value in question on the horizont al axis, 
connecting the point of the attractor with the point with height .5 (the vertical axes, 
like the horizontal axis, represents the interval [0,1]) . To this we add the diagonal so 
that we can find the domains of strict attraction: with this we mean the connected 
intervals around each of the 5 points of the periodic attractor , consisting of the points 
which remain forever (under iteration of <.ps) in phase with the corresponding point 
of the periodic orbit. These domains of strict attraction can be seen in figure 6 as 
the plateaus intersecting the diagonal (because the number of iterations (2000) is a 
multiple of the period (5)) . We see that this domain around .5 is rather big, but the 
others, especially for the highest and lowest value of x, are very small. This means 
that in these domains a small am ou nt of noise can "break" the periodicity. So here 
we have a form of noise amplification which is due to nonlinearity. 
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5 Ambiguity of the dynamical class of a 
determinist ic approximation 

11 

In this section we point out the difficulty in principle to decide the question whether 
a system (with only smalI) noise has an "underlying deterministic dynamics" which 
is chaotic or not. We shall discuss this in a context as simple as possible, but the 
implications also hold for more general systems. 

We consider dynamical systems with state space IR or a closed interval in IR and 
with discrete time (like in the case of the logistic system). We suppose that the 
dynamics of the system is given in terms of a probability measure on the state space 
(defined by the density of the points of a typical evolution of the system) and a 
probability measure on the Cartesian product of the state space with itself (defined 
by the density of the pairs (x(n), x(n + 1)) of successive states for a typical evolution 
of the system). These measures, which arp defined and discussed in more detail in 
the next section, are denoted by MI and M 2 respectively. From the measure M 2 one 
can obtain the conditional probability measures M z , for x in the support of MI: M z 

describes the probability distribution for x(n + 1), given that x(n) = x. 
Giving a deterministic approximation of such a stochastic system means to replace 

(or to approximate) the conditional probability distributions M z each by a single 
value cp(x) which is the image of x under the function defining the deterministic 
approximation. There are various ways of approximating a probability distribution 
on IR by a single number: one can take the average (or expectation value) or one can 
take the median (the value such that the probability of being smaller than this value 
is .5). In the present context, where we are thinking in terms of nonlinear systems, 
and where one usually considers systems equivalent if they can be transformed into 
one another by a nonlinear change of coordinates (or conjugacy), the only good choice 
seems to be to use the medium value since that is independent of the linear structure 
in IR and only depends on the order structure. This choice of the medium value 
to construct a determinist ic approximation is not very essential however: also if one 
uses expectation values the construction below remains valid (but the arguments need 
slight modifications) . 

For the formulation of our result we need one more definition. If we have a system 
with noise in the above sense, i.e. with a one dimensional state space and described 
in terms of the probability measures MI and M 2 , we define the square of the system 
as the system with the same state space, the same measure MI, but the measure M 2 

replaced by the measure Mt defined by the density of the pairs (x(n) , x(n + 2)) for 
a typical time series of the original system. If the original system were determinist ic 
and defined by the map cp, then the squared system would also be deterministic and 
would be defined by the map cp2 - this is why we call this construction "squaring the 
system". In other words, squaring a system means that we consider two time steps 
of the old system as one time step of the new system. 

Example There is a determinist ic system such that, with arbitrarily small perturba­
tions one obtains systems (with arbitrarily small noise) such that the deterministic 
approximation is not chaotic while the deterministic approximation of the square is 
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chaotic. This determinist ic system is defined by a map which has a saddle node whose 
(locally) unstable set returns, under iterated plication of the map, back to the (local) 
domain of attraction of the saddle node (with criticality in the sense of [6], see below). 

This is the sense in which the question whether a system with small noise is chaotic 
or not is meaningless (at least in some cases): the answer should not change when 
squaring the system. 

Remark: Before starting the actual construction, we observe that for hyperbolic sys­
tems, e.g. see [4], one does not expect such examples. This is due to the fact that 
such systems are structurally stabie, though structural stability only holds for C 1_ 

small perturbations while we may have here even CO-small perturbations. 

Construetion For the construction of this example we need a one parameter family 
1/1" of maps of the interval such that for 11 < 0 almost all points of the interval are 
attracted, when iterating 1/1", to an attracting orbit of period k, while for 11 > 0 
there is no orbit of period k j moreover we assume that for 11 = 0 the period korbit 
undergoes a saddle node bifurcation and that the (locally) unstable set of the saddle 
node orbit returns, under repeated iteration of 1/1" to the local basin of attraction of 
the saddle node with criticality (with this we mean that the iterate of 1/1" which maps 
the local unstable set of the saddle node back to its local domain of attraction has 
critical points whieh we assume to be non-degenerate). Due to this last property, 1/1" 
has chaotic dynamics for arbitrarily small positive values of 11, e.g. see [6] for the 
saddle node cycle with criticality. 

Examples of sueh one parameter families can be obtained from the Logistic family 
in the form 1/1" = 'PI'{") for some reparameterization J1.(II): if we consider e.g. the 
J1.-interval on which 'Pil has a periodic attractor with period 5, then, when J1. moves 
out of the interval to the left (i.e . towards lower values) then the period 5 orbits 
disappear through a saddle node bifurcation, which has all the required properties. 

From this one-parameter family of mappings we obtain a two-parameter family of 
systems with noise: for an evolution of such a perturbed system, denoted by 'lig,,,, 
given x(n) , the corresponding probability distribution for x(n+ 1) is a uniform distri­
bution on the interval with endpoints 1/1,,(x(n)) ±ê (in fact the construction is slightly 
more complicated: the distribution is uniform on such an interval, but with respect to 
a new coordinate which is adapted to the saddle node bifurcation in a way which we 
describe below). All these systems can be obtained from 1/10 by small perturbations 
(if ê and 11 are close to 0) . It is clear that the deterministic approximation, as dis­
cussed above, of the system 'lig,,, is again given by the map 1/1" (note that the not ion 
of determinist ie approximation is invariant under changes of coordinates). Next we 
square the system 'lig,,, and denote the map , defining its deterministic approximation, 
by 1/1:,,, . It is not hard to see that, for ê -+ 0, 1/1:,,, converges (with derivatives) to 1/1~. 
This implies that, for ê sufficiently smalI, also 1/1: " has a generically unfolding saddle 
node bifurcation, and has, for II-values arbitrarily close to the value for which there 
is a saddle node bifurcation, chaotic dynamics. The important point, which we shall 
prove below, is that for positive ê, the map 1/1: 0 has no orbit of period k, in other 
words, the saddle node bifurcation occurs for ~egative II-values. This implies that 
there are arbitrarily close to zero values ê > 0 and 11 < 0 such that the dynamics of 
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'l/;; 11 is chaotic. This means that for these values we obtain the announced systems 
with non-chaotic deterministic approximation while the square has a deterministic 
approximation with chaotic dynamics. This is because the mean of the second iterate 
of a stochastic system need not be the same as the second iterate of the mean of the 
same stochastic system. 

80 the only thing left is the proof that 'l/;;,o has no periodic point of period k near 
the period k periodic saddle node of Wo. We first consider the case that k = 1, where 
the saddle node bifurcation occurs at a fixed point, say at x. Then, for v near zero 
and x ne ar x we have 'l/;II(X) = x + a(x - X)2 + bv plus terms of higher order, where a 
and b are non-zero and have the same sign. This means that for v = 0, all points ne ar 
x, except x itself, move in the same direction. This implies that for 'l/;; 0 all points 
near x, including x itself, move in the same direction implying that we' are already 
beyond the saddle node. 

In the case k > 1 we denote the points of the bifurcating periodic orbit by 
{Pl, ' " ,pd so that 'l/;O(Pi) = Pi+l , where the indices are taken modulo k. Then, 
near each of the points of the periodic orbit , we define the "positive direction" to be 
the direction in which the points move under 'l/;~ for small v > O. Then we construct 
smooth maps Ai from neighbourhoods of Pi to neighbourhoods of Pi+l in such a way 
that Ai (Pi) = Pi+l, such that in Pi the derivative of 'l/;o is equal to the derivative of 
Ai (note that this implies that Ai maps positive directions to positive directions), 
such that Ak 0 Ak- l o· .. 0 Al is the identity on a neighbourhood of Pl, and such that 
for all points x near Pi, but different from Pi, 'l/;o(x) can be obtained from Ai(X) by 
shifting it in the positive direct ion (for this last requirement it is enough to adjust the 
second order derivatives of the maps Ai in the points Pi) ' Once we have these maps 
Ai we choose a new coordinate such that, with respect to this new coordinate, the 
maps Ai are, on small neighbourhoods of Pi, affine (this can be done by taking a Cl 
small perturbation of the standard coordinate on IR). If we use this new coordinate 
to define the systems with noise, then the arguments, used above for the case k = 1 
remain valid. 

6 General formulation for higher dimensional 
systems 

In this section we discuss how to formalize the different concepts which came up in 
connection with the numerical experiments discussed before. We want these con si der­
ations also to be applicable to systems of dimension bigger than one. Even for higher 
dimensional systems, the dynamic behaviour can often be described in terms of time 
series {x(n)}nEN with x(n) in lR. One can think of a determinist ie system defined by 
a rule 

x(n) = f(x(n - 1),···, f(n - k)), 

or one may think of a dynamical system with state space P, evolution map 'P : P --+ P 
(i.e. if the state at time n is pEP, then the state at time n + 1 is 'P(p)) and read out 
function Y (i.e. if the state at time n is P, then the corresponding value of the time 
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series is x(n) = Y(p)). By the reconstruction theorem, see [10] and [8], both these 
interpretations of time series from deterministic dynamical systems are essentially 
the same. We disregard here the possibility that different initial states (in the above 
interpretations the first kvalues of the time series, respectively, the first value pEP 
of the evolution in P) can lead to completely different time series due to the fact that 
they are in the domains of attraction of different attractors. 

7 Reconstruction measures and predictability 

The following considerations concerning time series are independent of the question 
whether they are generated by deterministic or stochastic dynamical systems. Our 
main concern is to give a correct description of the two aspects of mathematical 
models as mentioned in the introduction. They were good for either predicting one 
time step ahead, or good for predicting the long term statistical behaviour. For similar 
considerations see [11]. 

First we define the notion of stationarity. We call a time series stationary if for 
each continuous function g : ]Rk -+ ]R the average 

N 

E(g) = lim N-I L g(x(i),· ·· , x(n + k)) 
N .... HKJ 

i=l 

is weil defined and finite (for all k) . We note that this definition is somewhat different 
from the usual definition in the theory of stochastic processes. The present definition 
has the advantage that it can be applied to one single time series instead of an 
"ensemble". What follows below, however, also makes sense with the usual definitions. 

The above averages define a Borel probability measure J.Lk on ]Rk, for each k, such 
that for each g as above, E(g) = J gdJ.Lk - these measures have bounded support. The 
existence of these measures follows from the theorem of Riesz. The heuristic meaning 
of these measures is the following: if a region in ]Rk has a heigh density for the measure 
J.Lk then it of ten happens that one meets in the time series a segment of k successive 
values which define a vector which belonging to that region. So the measures J.Lk 
des cri be the asymptotic properties of the time series in the sense that they describe 
the statistics of the occurrence of finite segments. Since vectors, having as components 
k successive values of a time series, are called k-dimensional reconstruction vectors, 
we call J.Lk the k-dimensional reconstruction measure. 

From the k+ 1-dimensional reconstruction measure, one obtains the order k predic­
tion measures PZ1 ,''',Zk for (Xl, ... ,Xk) in the support of J.Lk: PZ1" " ,Zk is the probability 
distribution, according to J.Lk+I, of the last component of the vector x(n - k), ... ,x(n), 
given that the first k components are x( n - k) = Xl, . . . ,x(n - 1) = Xk. So the or­
der k prediction measures describe the optimal predictions based on the previous k 
elements in the time series. 

So the two aspects discussed in this paper: prediction of the next state and the 
asymptotic statistical properties correspond to the prediction measures respectively 
the reconstruction measures. 
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As we have seen, the order k-prediction measures can be obtained from the k + 
l-dimensional re construct ion measures. Also the k + l-dimensional re construct ion 
measure can be obtained from the order k prediction measures: one just constructs 
a time series {y(n)} such that y(I),·· · , y(k) are in the support of J.Lk and then one 
continues with values y(k + 1), y(k + 2) etc. which are obtain as random choices of 
the relevant prediction measures. Then, with probability 1, one obtains a time series 
having the same reconstruction measures of dimension up to dimension k + l. 

The findings in this paper indicate that the reconstruction measures may dep end 
sensitively on the corresponding prediction measures. 
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Remarks on the linear regression approach 
to dimension estimation 

Gerhard Keller and Ralph Sporer 

Abstract 
We discuss some statistical theory of the simultaneous estimation of corre­

lation integrals from dynamical data with varying radii and embedding dim en­
sions. Thereby we focus on the estimation of the covariance matrix of these 
estimators taking into account the finite sample size and the correlation time 
effects observed by Theiler [23]. As applications we discuss linear model statis­
tics like linear regression estimates of correlation dimension and entropy and the 
detection of noise. 

1 Introd uction 

Let Xl, X 2 , X 3 ,,,. be a real-valued stationary time series that is mixing in a sense 
to be made precise later. Typical examples would be a) independent identically 
distributed (ij.d.) random observations, b) observation on a "chaotic" dynamical 
system, c) observations on a noisy system. In particular there may be some interesting 
dep enden ce between consecutive observations that can be studied by looking at the 
distribution I1-l of blocks 

Y/ := (Xi, ... , XiH-d E lRi 
. 

The length l of the blocks is called the embedding dimension, and for fixed l the 
sequence Y/, y2

l , y3
l , • • • is again stationary and mixing. 

Some aspects of the geometry of the distribution I1-l can be described by means of 
the correlation integrals 

C(r, l) := J J l{IIY-Y'II<r} dl1-i(Y) dl1-l(Y/) 

where Ily - y'l! denotes the euclidean (or any other suitable) distance of y and y' . 
Grassberger and Procaccia [14] used the functional dep enden ce of log C(r, l) on rand 
l to describe quantitative features of deterministic chaotic systems. They observed 
that in many cases there are real numbers v > 0 and h > 0 such that 

I C( n) = { V ·logr + o(logr) 
og r,~ -l. h + o(l) 

as r ---t 0 when l is large, 
as l ---t 00 wh en r is smalI. 

(1) 

v is called the correlation dimension and h is an entropy like quantity. Cutler [10] 
gives a rather comprehensive review of much of the underlying theory. 

If, on the other hand, the Xi are ij.d. observations and if I!y - y'l! denotes the 
maximum norm of y - y' , then C (r, l) = (C (r, 1)) i such that the following model 
assumption makes sen se 

logC(r,l) = l · Vl' (logr + o(logr)) as r ---t 0, (2) 
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where Vl denotes the correlation dimension of the distribution J.ll of the Xi, see [6]. 
The two model assumptions (1) and (2) differ drastically in the sense that (1) describes 
a finite entropy situation whereas (2) reflects the in gener al infinite entropy of true 
random observations. 

The above considerations motivate the following decomposition of log C(r, f) into 
a linear part with constant term and a (hopefully small) nonlinear remainder 8(r, f) : 

log C (r, f) = v . log r - h . f + Vl . f . log r + C + 8 (r, f) . (3) 

This model , although appropriate if Ily - y'll denotes the maximum norm, can be 
improved if the euclidean distance is used by replacing log r with log Jt, i. e by using 

dimension scaled distances, see [13] . 
In practice the unknown coefficients v, h, Vl, C must be estimated from a finite 

number of observations Xl, . . . , X N . Therefore (3) (or any other linear or nonlinear 
model describing logC(r,f)) can be fitted only on finitely many parameter pairs 
(rl,fd, ... , (rp,fp) the appropriate choice of which depends on the sample size and 
the nature of the observed data. In particular we make no attempt to calculate limits 
as r -t 0 or f -t 00. Using the notation 

( rl f l ) ( logC(r"l,) ) ( 'hJ') ) 
(r,f) = Z(r,~) = : ' 8= 

rp fp log C(rp, fp) 8(rp,fp) 

we write our model (3) as 
Z(r, ~) = M(3 + 8 (4) 

where M is a matrix involving only the controlled parameters log r and ~ and where 
(3 = (v, h, VI, C)t is that coefficient vector that yields the best fit in (4) in the least 
squares sense, i.e. 

Our aim is to estimate this coefficient vector (3 from observed data. 
Suppose now that Z = Z(XI , . . . ,XN) E IRP is a "suitable" estimator for the 

p-vector Z(r, f) of logarithms of correlation integrals, suitable in the following sense: 

Z = Z(r, f) + ( = M (3 + 8 + ( 

where ( is approximately N(Q, V)-distributed (approximately in the sen se of a central 
limit theorem), and there is a reliable (i.e. "consistent" in statistical terms) estimate 

V = V (X I , .. . , X N) of V. Then ~ = B Z is the least squares estimator for (3 and 

Ê = Z - M ~ = (1 - M B)Z are the corresponding residues. The distributions of ~ 
and Ê are known, namely ~ ",N((3,BVB t ) and Ê ",N(8,SVS t ) where S = 1- MB. 
All this is well known, see e.g. [24]. Replacing V by the consistent estimate V we 
can e.g. calculate confidence bounds for f3, test the hypothesis "VI = 0" , i.e. the 
absence of true randomness on the scale of radii rl, ... , r p, or discriminate between 
the systematic error 8 of our linear model (3) and the statistical error (. In section 3 
we illustrate this by the results of some numerical simulations. Beforehand we turn 
to the problem of how to obtain good estimates Z of Z(r,f) and V of V. 
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2 Covariance estimates 

2.1 The covariance matrix of the correlation integrals 

Recall that C(r, I) = J J h(y,y') dJl-l(Y) dJl-l(y') where h(y, y') = 1{IIY-Y'II<r}' Quanti­
ties represented by integrals in this way are usually estimated by a so called U-statistic 

1 N N 

N(N -1) L L h(Y;, Yj) . 
1=1 ]=1 

Ni 

In the case of i.i.d. observations Y; the U-statistic is an asymptotically normal unbiased 
minimal variance estimator of C(r, I), see [15] . These properties essentially persist if 
the observations are mixing with exponentially decaying correlations. The concept 
of mixing which is most useful in this context is that of absolute regularity, see [25] 
for a purely probabilistic treatment and [12] for its applicability to chaotic dynamical 
systems. Although strong mixing properties like this one are difficult to verify on a 
theoretically level in the case of non-uniformly hyperbolic systems, one can expect 
that many chaotic systems show the same centrallimit behaviour. In the last section 
of this note we discuss this aspect in some more detail. 

For computational purposes we assume that the observations Y/ are t-dependent, 
i.e. Y/ and Y/ are independent, if li - il > t. For a given data set t should be carefully 
chosen. In our Hénon example in the next section t = 10 seems to be a good choice. 
We modify the U-statistic estimator of C(r, l) accordingly: 

1 N N 

UN(r, I) = 7r(N, t) L L h(Y;' , Y/) . 
.=1 ,~1 

(5) 

Ij-i l>2t 

Here 7r(N, t) = (N - 2t)(N - 2t - 1) is the nu mb er of pairs in the sumo The min­
imal index distance 2t (instead of t) will help to avoid some dependencies when we 
calculate the varianee of U N (r, I). As we are going to estimate C (rl, II ), ... , C (r p, lp) 
simultaneously, we have indeed to calculate the covariance matrix of the JRP -valued 
estimator 

( 

UN(~l,ld ) 
UN(r:A) = : . 

UN(rp, lp) 

A tedious, though elementary calculation yields the following expres sion for the co­
varianee matrix K of U N (r, ~): 

(6) 

where P, Q and Rare pxp-matrices, that can be described as follows: For u = 1, ... ,p 
let 
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h~u)(y) 

h~u) (y, y') 
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J J heu)(y,y')d/-Llu(y)d/-Llu(y') (= C(ru,lu)) 

J h(u)(y,y')d/-Llu(y') 

heul (y, y') _ h~u) (y) _ hiu
) (y') + h~u) 

Thenforu,v=l, ... ,p 

t 

Pu,v L (E[hiu)(1/;tU).hiv)(~~k) ] _h~u).h~V») (iarbitrary) 
k=-t 

t 

Qu,v = " " (E [h(U) (ylu ylu) . h(v) (ylu ylu)] _ heul . h(v») L... L... t , J t+p' J+q 0 0 
p=-t q=-t 

(where li - jl > 3t) 
t 

Ru,v L Ikl · (E [hiU)(~lu) . hiV)(~~k)] - h~u). h~V») (i arbitrary) 
k=-t 

Remarks: 

(i) In the case of a single radius and embedding dimension the formula for K 
reduces to that of Theiler [23] if t = 0, i. e. if the Y; are independent, namely 
K=4(N-lP+N-2(~Q-P)). 1 

(ii) As we assume Y; and Yi+k to be independent for Ikl > t, we have the following re­

lation between Pu,u and Theiler's correlation time T: Pu,u = T' E [(hiU
) (~lu))2] 

(iii) Asymptotically (as N -+ 00) the N-l - term in the decomposition of K domi­
nates. However, for small radii ru, Pu,u tends to be much smaller than Qu,u such 
that the N-2-term may be comparable in size to the N-1-term even for N = 

10000. In the case of independent observations the statistic UN(ru,lu) - h~u) 
can be decomposed into a sum of two random variables in analogy to the de­
composition of its variance into an N-l - and N-2-term. The first part is 
asymptotically normal, the second one is a weighted sum of squares of norm al 
random variables, see [11, Example 2.2 .7]. Therefore, if the N- 2-term is not 

neglectable, UN(ru,lu) - h~u) is not close to an exact normal but to a slightly 
skewed normal distribution. It seems impossible, however, to estimate the size 
of this effect from the data. 

As U N(~, !J - C(~,~) is approximately N(O, K)-distributed, standard results from 
probability theory guarantee that log U N(~,~) -log C(~,!J is approximately N(O, V)­
distributed where Vu,v = Ku,v/(C(ru,lu)C(rv,lv)), u,v = l , ... ,p. Higher order 
correct ion terms which occur also in this approximation are small compared to the 
leading term and can be neglected. 

1 Theiler gives (!Q + !P) instead of (!Q - P), but as P occurs also at the order of N- 1 , this is 
practically meaningless. 
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2.2 An estimator for the covarianee matrix 

An unbiased and consistent estimator for Pu,v is 

t N - k 

" _1_ " (h(U)(ylU). h(v) (ylv ) _ h(u) . h(V)) 
~ N _ k ~ 1 1 1 1+k 0 0 

k=-t i = 1 

As the h~u) and h~u\y/u) = J h(u) (y/u, y') dJ.Llu (y') are not explicitly known (they 
are defined in terms of the unknown distribution J.LlJ, we replace them through 
estimators 

and H(U).= 1 
1,1· N - 2t-1 

N 

L 
i=l 

Ij-il>t 

and denote 

min{N,N-k} 

1 " (H(U) . H(v) _ H(u) . H(v)) 
N _ k ~ 1 ,1 1 ,1+k 0 0 

k=-t i = max{I,I-k} 

t 

L 

Another tedious but elementary calculation shows that 

4 · (N- 1 P + N- 2 (Q - R - 5(1 + 2t)P) + O(N-3
)) 

K + 2N- 2Q - 16(1 + 2t)N-2 P + O(N-3
) , 

(7) 

(8) 

i.e . 4N- 1 P is not an unbiased estimator for P . As a matter of fact, the correct ion 
term can be both, negative or positive, depending on the particular situation . An 
unbiased estimator for Q is easily found: 

A 1 
Qu,v := ir(N, t) 

t 
" (h(U)(ylu ylu). h(v) (ylv ylv) _ H(u) . H(V)) 
~ 1 , J 1+P ' J+q 0 0 

i , j=l p ,q= -t 

N 

L (9) 

Ij-il >3t 

where ir(N, t) = (N - 3t)(N - 3t - 1). The importance of the "p = q" - terms in Qu,v 
for deterministic data is obvious: If ~lu is close to y/u (because the system returned 

close to a previously attained state), also ~l+p and y;~P are likely to be close to each 

other for smal! p. The "p i- q" - terms contribute to Qu,v if the system spends some 
time near a fix point or a periodic orbit of smal! period. 

To summarize: K := 4N- 1 (1 + 4(1 + 2t)N- 1)P - 2N-2Q is an estimator for the 
covariance matrix K of UN(r.,D which is unbiased up to terms of order O(N-3

). It 
is defined by (8) and (9) . 

As the computation of Q involves about p2(2t+1)2 N 2 terms, we determine only the 
diagonal terms Qu,u and use the fol!owing modified estimator K' for K: Decompose 
4N- 1 P = DI /2CDI /2 where D is the diagonal matrix made up from the diagonal 
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elements of 4N-l F. Thus C is the correlation matrix corresponding to 4N- l F. We 
modify D by subtracting the diagonal elements of 2N- 2Q: D~,u := Du,u -2N- 2Qu,u, 

and obtain the estimator K' := DI1/2CD,l/2 for K. The diagonal of K' coincides 
with that of K whereas its correlation structure is that of the leading term 4N- l F 
of K. This leads us finally to the following estimator V for the covariance matrix of 
log C (r., g): 

3 Simulations 

We tested the reliability of the statistical procedures described in the previous sec-
tions on Hénon time series. More exactly: Xl, ...... ,XN are the x-coordinates of N 
consecutive iterates of a Hénon system with parameters a = 1.4 and b = 0.3. (In some 

. cases noise was added, see below.) We always used a set of radii ro, ... , r20 ranging 
from ro = 0.01 to r20 = 0.41. Instead of working with the maximum-norm distance 
we used dimension scaled euclidean distances, see [13]. Based on the observed decay 

of correlations for the random variables Hi~) from (7) we assumed that Xi and X j 

are independent if li - jl > t = 10. 

(i) Fixed embedding dimension f = 4; no noise; N = 1000 and N = 10000: 
We performed 100 independent runs recording for the j-th run the estimated 
logarithms of the correlation integrals Zj(ri) = logCj(ri) and their estimated 
standard deviations 0' j (r i). The averages of these quantities over all runs are 
denoted Z(ri) and ä(ri), respectively. The sample standard deviation of the 
Zj(ri) is denoted by Si. The comparison of ä(r;) and Si in Figure 1, where we 
give both, the values of äi we obtained using the uncorrected variance estimator 
Fu ,u and those using the corrected estimator Qu,u, shows that, at least for 
small radii the corrected estimates for the standard deviation are on the average 
closer to the sample standard deviation than the uncorrected values. As to be 
expected, this effect is much stronger for N = 1000 than for N = 10000. We 
remark that for N = 1000 there were 4 runs where the corrected estimator for 
O'J(ri) took negative values for some radii . As this estimator is the difference of 
two values, it is not surprising that this happened a few times. For our further 
calculations we set these values to o. 
From the same data we calculated 100 estimates Vj for the correlation dimension 
and their estimated standard deviations O'j and denoted their 95%-confidence 
intervals by J j = [Vj - 1.960'j,vj + 1.960'j] . As the true value of v is not 
known we could not simply count the number of runs where the true value is 
inside the confidence interval. Instead we counted the number of runs where 
iJ = l~O L:~~Ol Vj is in this interval 2. As long as the distribution of the O'J is close 

2The average correlation dimension was iJ = 1.19330±O.00111 for TO-TIO and iJ = 1.20881±O.00078 
for TIO - T20 
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to normal one can approximately calculate the expected number of successes. 
The observed success probabilities with the expected ones in brackets are: 

N = 1000 

uncorrected 0.99 (0.934) 
corrected 0.93 

0.95 (0.930) 
0.93 

N = 10000 

0.98 (0.945) 
0.96 (0.941) 

0.98 (0.945) 
0.96 (0.945) 

(The corrected a; for N = 1000 were so non-normal that no useful expected 
value of the success probabilities could be calculated.) So, except for large radii 
and small numbers of observations, the uncorrected values seem to give too 
pessimistic confidence intervals whereas the corrected ones work very well for 
N = 10000 but tend to give slightly too small confidence intervals for N = 1000. 
Compared to other approaches that provide confidence intervals for correlation 
integrals or the correlation dimension (e.g. [21, 17]) we neither need parametric 
assumptions on the dynamical system producing the data nor very large sample 
sizes in order to produce reasonable estimates. 
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Figure 1: Comparison of the average estimated standard deviation a(ri) to the sample 
standard deviation Si for time series of length 1000 and 10000. Logarithmic plot. 
Lines: Si with 95%- confidence intervals. Crosses: uncorrected variance estimator. 
Circles: corrected variance estimator. 

(ii) Simultaneous estimation of v, h, and Vi; f = 4, ... ,7; N = 10000: 
We performed single runs on estimating v, h, and Vi from the linear model 
(3) using the radii ro = 0.01, ... ,rlO = 0.064. In all cases we calculated 95%­
confidence intervals: 
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(a) No noise: As VI was not significantly different from 0 (interpretation: 
no noise!) we excluded the variabie VI from the model and estimated V 

and h again: 

VI included 
VI excluded 

V 

[1.035,1.172] 
[1.077, 1.188] 

h 
[0.241,0.387] 
[0.277,0.313] 

[-0.013,0.025] 

(b) 1 % noise in the system: As V was not significantly different from 0 we 
excluded the variabie V from the model and estimated hand VI again: 

V h 
V included [-0.050,0.441] [2.471,2.992] 
V excluded [2.789,2.963] 

[0.445,0.560] 
[0.520,0.553] 

(c) 1 % measurement noise: As V was not significantly different from 0 we 
excluded the variabie V from the model and estimated hand VI again: 

V h 
V included [-0.216,0.224] [2.717,3.167] 
V excluded [2.868,3.022] 

[0.531,0.631] 
[0.567,0.596] 

(iii) Discrimination between systematic and statistical errorsi fixed embedding di­
mension f = 4i ro, . . . , rlOi N = 10000: 
Recall from the introduction that the residues € = Z - MiJ are normally dis­
tributed with mean 8 (= the systematic error) and a degenerate covariance 
matrix SV st (representing the statistical error) that can be estimated from the 
data. In particular, the euclidean length of the difference vector € - 8 has a 
distribution that can approximately be determined by simulations with norm al 
random numbers. This distribution can be compared to the actually observed 
length I€I of €. In our numerical example we found I€I = 0.0533. At the same 
time a 95%- confidence interval for I€ - 81 was [0,0.0129] . Indeed, the largest 
among 500 simulated values of I€ - 81 was 0.0210. So more than 2/3 of the 
length of the observed residue vector is due to the nonlinearity of the function 
log r f-t log C (r) and only a smaller part of it can be explained by statistical 
fiuctuations. 

4 Remarks on mixing in chaotic systems 

In [12,9, 22] the following framework for statistics on data from dynamical system was 
considered: Let T : M -t M describe a time-discrete, deterministic dynamical system 
on a metric space (M, d). Suppose there is an ergodic, T-invariant Bore! probability 
measure P on M, and fix a finite partition Z = (ZI, . .. , Zt) of M. Then 

.- Tn(w) and 

.- j if Xn(w) E Zj (w E M) 
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define ergodic stationary processes on the probability space (M, P). Here the index 
n ranges over I = Z if T is invertible and over I = N otherwise. 

Sometimes it is possible to recover the process (Xn)nEI from the label process 
(Çn)nEI via a functional <I> : {I, .. . ,f}I --t M for which there are real constants C > 0 
and Q E (0,1) such that for P-a.e. W 

(10) 

whenever ki = Çn+i(W) for all i E I with lil::; m. In particular, <I>((Çn+i(W))iEI) = 
Xn(w). 

In such a situation good mixing properties of the process (Çn)nEI guarantee the 
asymptotic normality of UN(r.,f). In particular it suffices that the process (Çn)nEI is 
absolutely regular with mixing coefficients f3n decreasing at a rate of n-(2+Ó) or faster . 
In the language of ergodic theory this means that Z is a weak Bernoulli partition for 
(T, P) with mixing rate f3n. 

The asymptotic normality of the IRP -valued process U N (r., D and the structure and 
estimability of its limiting covariance matrix are discussed in [12, 9] . Indeed, besides 
the absolute regularity and property (10) a mild regularity assumption on the measure 
Pis needed, see [12, Theorem 1] . For our particular U-statistic UN(r.,D it is not hard 
to show that condition (3.6) of [12] is satisfied if the functions r t-+ C(r, f) are Hölder 
continuous, a very reasonable assumption in the context of dimension estimation. 

Absolute regularity (with even exponentially decreasing f3n) and property (10) are 
known since long for many uniformly hyperbolic or uniformly expanding systems such 
as mixing torus automorphisms, Axiom-A-diffeomorphisms [5], piecewise expanding 
interval maps [16] and others. For non-uniformly hyperbolic dynamical systems the 
situation is much more complicated, but results for two prototype systems indicate 
that also for such systems the statistical approach to dimension estimation via U­
statistics is justified: For Collet-Eckmann maps (i.e . quadratic interval maps where 
the critical point has a positive Lyapunov exponent) it was essentially proved in [8] 
that there exists an absolutely continuous i-invariant probability measure J.L on [0,1] . 
Without essential loss of generality one mayassurne that (I, J.L) is mixing, cf. [4] . 
The exponential weak Bernoulli property of the partition ([0, ~], (~, 1]) for the system 
(I, J.L) is proved in [9] (building on results from [19]), and the approximation property 
(10) is an immediate consequence of [20]. In view of the work of Benedicks and 
Carleson [1] one might hope that the Collet-Eckmann property is in a sense typical 
for unimodal maps which have no stabie attractor. In the case of the Hénon family 
there is not yet a complete theoretical justification for the statistical approach, but the 
relevant results obtained during the last years are nevertheless impressive: For a set 
of parameters of positive Lebesgue measure in the Hénon family Benedicks and Young 
[3] proved (building on results from [2]) the existence of a SBR-measure (that is a 
physically observable invariant measure), and more recently they proved exponential 
decay of correlations and a Central Limit Theorem for Hölder continuous observables 
of these systems 3. Finally we mention the work of Chernov [7] who offers a kind of 
tooI-box to investigate mixing properties of a broad class of dynamical systems. 

3Reported at the Banach Center Symposium on Ergodic Theory and Dynamical Systems at 
Warsaw, June 1995 
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On delay co-ordinates in stochastic dynamical 
systems 

Bing Cheng and Howell Tong 

Abstract 

We study the asymptotic distribution of the cross-validatory estimate of the 
delay co-ordinates in a stochastic dynamical system. By studying the tail prob­
abilities of under-fitting and over-fitting, we obtain an estimate of the sample 
size requirement under realistic conditions. 

1 Introd uction 

For the analysis of deterministic dynamical systems, the delay co-ordinates approach 
due to Takens (1981) is now firmly established and is one of the most frequently 
employed techniques in the dynamical systems literature. Although the actual me­
chanics of delay co-ordinates construction was pre-dated by the statistical literature 
(notably Yule, 1927), it is only through the celebrated embedding theorem of Takens 
that we understand the full impact of such a construction. 

Nowadays, delay co-ordinates are so widely used in the dynamical systems litera­
ture that they are often applied even when the system noise (also called the intrinsic 
noise or the dynamic noise) is present. Strictly speaking, this situation is beyond 
the scope of Takens' theorem. The primary motivation of Takens' delay co-ordinates 
construction is the recruitment of a finite and minimally sufficient set of past ob­
servations with which we analyse the dynamical system (e.g. the attractors) and 
Takens' embedding theorem assures us of the existence of such sets which preserve 
all the essential features of the deterministic dynamical system under generic con di­
tions . The recruitment process can also be likened to an information condens at ion 
process: the recruitment of redundant past observations provides no additional infor­
mation. It is pertinent to discuss the purpose and the methodology of a similar delay 
co-ordinates construction within the wider context of stochastic dynamical systems, 
in which system noise (or noise for short) is present. 

2 Delay Co-ordinates 

Let {Xt} be a discrete-time stationary time series with EX; < 00. The conditional 
expectation of X t given (Xt- 1, .. . , X t- d) will be denoted by E[XtIXt- 1, .. . , Xt-dl. 
Define the prediction error variance by 

a2 (d) = E[Xt - E[XtIXt-1,,,,,Xt-dW, d ~ 1. (1) 

Define the generalized partial autocorrelation function (PACF) by 

(2) 



30 B. Cheng and H. Tong 

Definition 2.1 {Xt} is said to be generated by a stochast ic dynamical system with 
do delay co-ordinates, in short SDS(do), if:3 a non-negative integer do < 00 such that 
4>(do - 1) f 0 and 4>(d) = 0 for all d 2: do . If no such finite do exists, then {Xt} is 
said to be generated by a stochastic dynamical system with infinite nu mb er of delay 
co-ordinates, or S D S ( 00 ). 

The underlying idea is the recruitment of past observations for the purpose of 
one-step-ahead prediction by the least-square method. The function 4>2 (d) measures 
the percentage reduction in the prediction error variance in adding X t - d - l to the 
recruitment set consisting of Xt-I, ... ,Xt- d. Clearly, an SDS(do) may be modelled 
as 

(3) 

where 
(4) 

A more general idea is to identify do as the minimum integer such that the vector 
time series {X1 do )} is a Markov chain on IRdo. Here, x1do ) = (Xt- l , ... , Xt_do)T. We 
shall pursue this more general idea elsewhere. 

Example 2.1 Consider the stochast ic logistic map 

X t = AtX t- l (l- X t- l ) + 7]tg(Xt- I ), X o E (0,1), 

where {'fit} is a sequence of independent and identically distributed random variables, 
each with zero mean, finite variance and finite support, g(.) is any suitable function 
which ensures that X t E (0,1), Vt 2: 1, and 'fit is independent of X s , s < t. Moreover, 
At is a random variabie with mean a, (0 ::; a ::; 4), finite variance and compact 
support and is independent of X s , s < t. Clearly, 

4>(d) = 0, (d 2: 1). (5) 

Therefore, we have an SDS(l). Note that we have incorporated a non-additive system 
noise process as weil as parameter uncertainty in the above map. Further, we note 
that (FI (Xl), XI)T traces a parabola in IR2, whilst (Fd(Xd, .. . , xd, Xd, ... , xdT traces a 
parabolic cylinder in IRd+1 for each d 2: 2. It is clear that the cylindrical structure 
will prevail even if we consider general maps (of possibly higher dimensions and with 
more exotic "shape".) 0 

The fact that redundancy is characterized by a cylindrical structure suggests that 
cylinder hunters will reap great rewards in the face of noisy data. 

3 Distance Function 
(d) (d) . (d) 

Recall that X t = (Xt- l , ... , X t- d) and that E[XtlXt lIS denoted by Fd(Xt ). Let 
L2 (IRd

) denote the set of all square-integrable measurable functions on IRd . Obviously, 
L 2 (IRI

) c L2 (IR2
) C ... C L2 (IRd

) c .... 
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Denote 

(6) 

Then 

( (1)) ((2)) ( (d)) L2 X t C L2 X t C ... C L2 X t C ... (7) 

and Fd(Xid)) is the orthogonal projection of X t in L2(Xid)). For integers 0 < dl :::; d2, 
we have 

and 

Our objective is to define a suitable distance function on Nx N which enables us to 
determine do . Clearly, the Euclidean distance is not appropriate for many "discrete" 
problems such as ours. For example, Akaike (1974) has used instead the Kullback­
Leibier information to construct a suitable distance function for linear autoregressive 
order determination . For our purpose, it turns out that a feasible non-Euclidean 
distance emerges if we consider the Euclidean distance between two cylinder sets of 
dimensions say dl and d2 (dl:::; d2 ) in the space of square-integrable functions on 
]Rd2 • This motivates the following definition of the function Ll( ., .) on N x N, which 
will serve as our choice of a non-Euclidean (squared) distance on N x N. 

(8) 

where the expectation is taken with respect to the distribution of Xi d2
). Note that 

Fd is uniquely determined on ce d is defined. Thus, Ll(.,.) is weIl defined. 

Definition 3.1 The time series {Xt} is an SDS(do), (do ~ 1), if and only if 

(i) Ll(d,do)=FO 

(ii) t.(d, do) = 0 

Proposition 3.1 

for all d < do, and 

for all d ~ do. 

(i) t. 1
/

2 is a properly defined distance lunction on N x N, i.e. t. l / 2 (d l ,d2 ) = 
t. l /2(d2,dd, t. l /2(d,d) = 0, t. l / 2(d l ,d3 ) :::; Ll l / 2(dl , d2) + t. l /2(d2,d3 ) . 

(ii) 11 lor each d ~ 1, Fd has bounded first partial derivatives on ]Rd, then t. (d2, dl) :::; 
cld2 - dil, where c is a constant. 

(iii) For dl:::; d2 :::; d3 , t.(d2 ,d3 ) :::; t.(dl ,d3 ) . That is lor fixed d3 , t.(d,d3 ) ~s a 
decreasing lunction in d. 
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(iv) For any dl ~ d2, we have Ll(dl ,d2) = (T2(dd - (T2(d2). 

(v) L:~l Ll(d, d + 1) < 00. 

B. Cheng and H. Tong 

(vi) There are infinitely many d lor which Ll(d, d + 1) ~ "'Id, where '" is a constant. 

(vii) Vd ~ D < 00, 3"'D, 0 < "'D < 00, such that Ll(d, d + 1) ~ "'Dld. 

The proofs are given in Cheng and Tong (1994). 
Note that the bound in (vi) is almost sharp because, for example, 

00 00 

d=2 d=l 

where f > O. 
Note also that for continuous parameters such as the bandwidth parameters in 

kemel smoothing, we may use the Euclidean distance as an appropriate distance 
function for parameter (e.g. bandwidth) choice. However, as mentioned earlier, for 
many discrete cases, the Euclidean distance is found to be inappropriate. For our case, 
we have obtained an appropriate non-Euclidean distance function, namely Lll/2(.,.) 
on N x N, based on the projection of the skeleton from a low dimensional space to a 
high dimensional space as des cri bed earlier. Proposition 3.1 (ii) reveals the relation 
between Ll(.,.) and the Euclidean distance. 

4 Estimation 

Henceforth we suppose that {Xt} is a bounded time series (Cf. Chan and Tong, 
1994). Let B; (X) denote the sigma algebra generated by (X., ... , X t ) and suppose 
that the following conditions are satisfied: 

(a) E[ftlB~-c! (X)] = 0, almost surely. 

(b) E[f~IB~-c! (X)] = (T2, a strictly positive constant, almost surely. 

(c) For each d, E[XtlXt-l, ... ,Xt- d ] is Hölder continuous. 

(d) Let the probability density function of (Xt , . . . , X t - d ) be strictly positive and 
Lipschitz continuous on a compact set in IRd . 

(e) Let k denote a probability density function with compact support on IRl
, and 

Vx, y E IRl
, Ik(x) - k(y)1 ~ c31x - yl. 

(f) For every t, s, T, t', s', T' E N, thejoint probability density function of (Xt , X. , X T, 
Xtl, X.I, XTI) is bounded. 

(g) Let lip + 11q = 1. For some p > 2 and 8 > 0 such that 8 < 21q - 1, 
Elf.1 2p(1+c5) < 00 and E!F(XdI 2p(1+c5) < 00 . 

(h) For each d, Fd has bounded first partial derivative. 
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(i) 

sup(E[ sup {IP(AllRl (X)) - P(A) I})) = O(f3i), 0 < f3 < l. 
iEN AEB?';.j (X) 

Without loss of generality, let d2 ~ dl . Let M be a pre-specified maximum lag in 
the delay co-ordinate construction. Equation (9) suggests that a natural estimate of 
l:l(d1, d2) is 

(9) 

where 
N 

RSS(d) = (N - M + 1)-1 L {Xt - Fd,N(xid))}2, (10) 
t=M 

with Fd ,N being the N adaraya-Watson kemel estimate of Fd based on the observations 
X 1 , ... ,XN , namely 

Here, h == hd,N E [aN-(1/(2d+1))-{, bN-(1/(2d+1))Hj, with a and b being arbitrary 
real positive constants and ç any real positive constant strictly less than 
{2(d + 1)(2d + I)} -1 . Cheng and Tong (1992) have proved the following theorem. 

Theorem 4.1 Under the above conditions, 

where 
N 

a;"'(d) = (N - M + 1)-1 L {Xt - Fd(xid))}2, 
t=M 

Now, using this theorem, we may easily deduce that for each d ~ do and 
hd,N = N- 1/(2dH) 

(11) 

Ii(d, d + 1) = RSS(d) - RSS(d + 1) (12) 
a;'" (do){2o:(d + 1) - f3(d + I)}N-(d+2)/(2d+3) (13) 

+op(N-(d+2)/(2d+3)). (14) 

This analysis shows that if we use Ii(d, d + 1) to obtain an estimate of do, we have to 
decide where the former cuts off. Recall that l:l(d, d+ 1) = 0 for d ~ do . (Cf. equation 
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(9) .) Thus, we are facing a statistical problem of the same type as described in Akaike 
(1974) . A conventional statistical approach prior to Akaike's innovation would be 
along the line of testing a class of nul! hypotheses: L'1(d, d + 1) = 0, dE {I, 2, ... , M}. 
In the present setting of a nonparametric autoregression, Robinson (1989) has adopted 
the convent ion al approach by considering the problem of testing the nul! hypothesis 
that d takes a specified value say d versus the alternatives d > d. Presumably, one 
would then have to "scan" dover the set say {I, 2, ... , M} in a suitable manner, which 
has to be specified. Recently, Cheng and Tong (1992, 1994) have adopted an approach 
in the spirit of Akaike (1974). Specifical!y, they have proposed a cross-validatory 

method: replace Fd,N(X;d)) in equation (11) by an estimate which is obtained from 

the observed sample but with X t deleted. Let Fd,N,\t(Xt(d)) denote this delete-one 
estimate and 

N 

CV(d) = (N - M + 1)-1 L {Xt - Fd,N,\t(X;d))}2. (15) 
t=M 

Effectively the "delete-one" device penalizes model complexity and Cheng and Tong 
(1992) have shown that argminl5,d5,MCV(d), or dcv for short, yields a consistent 
estimate of do provided do ::; M , i.e. Pr{dcv = do} -+ 1 as N -+ 00. Briefl.y, from 
Cheng and Tong (op. cit.) we can easily deduce that for bounded time series, (i.e. 
X t is bounded.) 

CV(d) - CV(do) = a'Jv(d) - a'Jv(do) + a'Jv(d*)f3(d*)N-(d'+l) / (2d'+l) (16) 
+op(N-(d'+1)/(2d'+1)), (17) 

where d* = max{d,do}. Note that a'Jv(d) = a'Jv(do) for d 2: do and that for 
1 ::; d ::; M, a'Jv(d) -+ a2(d) almost surely as N -+ 00. Consistency then fol!ows. 

5 Tail Probabilities 

It would be pertinent to investigate the limiting distribution of dcv further. 
First we notice th at 

p({dcv = do}) = P({CV(do) ::; CV(d), 1::; d::; M}) 

= P( {CV(do) ::; CV(d), 1 ::; d < do}) + P( {CV(do) ::; CV(d), do ::; d::; M}) 

-P( {CV(do) ::; CV(d), 1 ::; d < do} n{CV(do) ::; CV(d), do ::; d::; M}). 

Now, let B(d) = (2d + l)j(d + 1). 

Case 1: (d < do) 
We have 

CV(d) - CV(do) 
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t::.(d, do) - f1(d, do) + f1(d, do) 

- RSS(do) x 2a.N-O- 1(dol + op(N-O-1(dOl ). 

Since 
e-1(d ) _ do + 1 _ 1 1 

o - 2do + 1 - 2 - 1/ (do + 1) > 2' 
the above is equal to 

This implies that 

vN(CV(d) - CV(do)) "'asym N(vN f1(d , do), E). 

So, for 1 :::; d < do, 

P({CV(do) :::; CV(d)}) = P( {vN(CV(do) - CV(d)) < O}) 

=asym P(Çd :::; 0), 
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where Çd "'asym N( -VN f1(d, do) , E) . Hence, we have the formula P(Çd :::; 0) 1 - tu 

for d < do , where tu is the tail probability of underfitting. 

Case 2: (d> do) 
We have f~dl = f~d), a.s., Using formula (16), we have for d> do 

CV(d) - CV(do) = aFv(do)(3N-O-1(dl + op(N-O-1(d)), 

h 2 (d ) - 1 ",N [(dl]2 w ere a N 0 - N ~i=l ft . 

By the standard Cent ral Limit Theorem, we have 

and by a high-order expansion, we may obtain 

where \} is a constant. Therefore, 

P({CV(do):::; CV(d)}) = P({vNNO-1(dl(CV(do) - CV(d)):::; Ol) "'aymp P(l1d:::; 0), 

where l1d "'asym N(-VNa2 (d)(3 + \}, t). 
Putting the two results together, we have th at 

p(dcv = do) < max{(l - tail prob of underfitting), 

(1 - tail prob of overfitting)} 

max{l - t u , 1 - tol, 
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where tu = P(Çd ~ 0) and ta = P(TJd ~ 0). Now, we show that by using the above tail 
probabilities, we obtain a similar formula for the sample requirement as that reported 
in Cheng and Tong (1994). First, we need a simple lemma. 

Lemma Let Z be a normal random variabie with mean -M (M > 0) and varianee 
(72. Then 

Now, for the tail probability of underfitting, tu, M = .JJii !1(d, do) and for the 
tail probability of overfitting, ta , M = .JJii (3,,/(72 (do). To control the tail probabilities 
at level f > 0, we need to have 

Me -! M
2 

:::; f asymptotically. 

Since (3 = (3(do) has a complicated form, the tail probability of overfitting is not so 
helpful. However, for the tail probability of underfitting, since M = .JJii !1(d, do), it 
is easy to see that 

1 
N ~ !1- 2 (d, do)log(-). 

f 

In particular, choosing d = do - 1, we readily have !1(do - 1, do) 
as in Cheng and Tong (1994). Therefore, we obtain 

6 Conclusion 

N = N(do) ~ ePolog(l/f) 
(74 (do) 

Using an argument based on controlling the tail probabilities, we have arrived at the 
same sample si ze requirement under realistic conditions as that obtained in Cheng 
and Tong (1994) for the construction of delay co-ordinates in a stochast ic dynamical 
system. 
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Thermodynamic properties of coupled map 
lattices 

Jérorne Losson and Michael C. Mackey 

Abstract 

This chapter presents an over view of the literature which deals with appli­
cations of models framed as coupled map lattices (CML's), and some recent 
results on the spectral properties of the transfer operators induced by various 
deterministic and stochastic CML's . These operators (one of which is the well­
known Perron-Frobenius operator) govern the temporal evolution of ensemble 
statistics. As such, they lie at the heart of any thermodynamic description of 
CML's, and they provide some interesting insight into the origins of nontrivial 
collective behavior in these modeis. 

1 Introd uction 

This chapter describes the statistical properties of networks of chaotic, interacting el­
ements, whose evolution in time is discrete. Such systems can be profitably modeled 
by networks of coupled iterative maps, usually referred to as coupled map lattices 
(CML's for short). The description of CML's has been the subject of intense scrutiny 
in the past decade, and most (though by no means all) investigations have been pri­
marily numerical rather than analytical. Investigators have often been concerned with 
the statistical properties of CML's, because a determinist ic description of the mot ion 
of all the individual elements of the lattice is either out of reach or uninteresting, un­
less the behavior can somehow be described with a few degrees of freedom. However 
there is still no consistent framework, analogous to equilibrium statistical mechanics, 
within which one can describe the probabilistic properties of CML's possessing a large 
but finite number of elements. The results presented in this chapter illustrate some 
recent attempts to partially fill this theoretical void. 

1.1 Coupled map lattices: Initial presentation 

Models framed as coupled discrete time maps are not a novelty. Caianiello [10] pro­
posed his "neuron ic equations", which are coupled iterative maps, as generalizations 
of the McCulloch and Pitts neural networks more than three decades ago. Similarly, 
the work of Denman [22], trying to characterize the dynamics of interacting pressure 
and electromagnetic waves in plasmas, made use of coupled discrete maps, and re­
lated models were used in the early theory of transmission lines [82]. However, the 
modern body of work dealing with coupled map lattices can be traced back to the 
beginning of the eighties (cf. work by Kaneko [39], Waller and Kapral [98, 99] and 
Deissler [20]) as phenomenological models to study the behavior of large collections 
of coupled chaotic elements (we will return to more precise descriptions of these and 
more recent investigations of CML dynamics). 
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1.1.1 Deterministic CML's 

In their most general form, determinist ic coupled map lattices are mappings <11 

IRN f---t IRN governing the evolution of a state vector Xt = (x},· · ·, x["), 

Xt+! = <1I(Xt) t = 0,1, .... (1) 

More specifically, the evolution of a component x~i) of the state vector Xt is governed 
by the difference equation 

(i) _ <1I(i) (i)) <1I(i) ( i-I i+l ) 
X t+1 - local X t + neighbo ure "', X t ,Xt , ... 

where <1I~~!.1 models the local dynamics at site i, and <1I~:~8hbOU" denotes the mechanisms 
acting on i from a specified neighbourhood. If those mechanisms are the same for all 
sites on the lattice, and if they are locally modeled by the map S : IR f---t IR, and in 
the neighbourhood by the map T : IR f---t IR one can write 

X(i) - S(x(i)) + " T(x j ) t+l - t ~ t . 
• ome 

neigh bou rhood 

In many situations of interest, it is possible to further simplify the formulation of the 
models by letting T == S, and using a linear coupling scheme between the elementsi . 
In these circumstances, we have 

X(i) - (1 - é)S(x(i)) + ~ 
t+l - t P 

p 
neighbourII 

(2) 

where é E [0,1] is the coupling term. Again, i denotes a discrete spatial index (of 
arbitrary finite dimension), and t denotes discrete time. 

In our description of CML 's, we view the sites of the lattice as being located on the 
nodes of a regular body centered cubic lattice, and in this chapter periodic boundary 
conditions are always enforced. There are investigations of coupled map lattices in 
which the underlying lattice is not as simple as the body-centered-cubic example 
chosen here, and possesses intrinsically "complex" (sometimes called hierarchical) 
structure. In these cases, it was demonstrated [18, 19] that the bifurcation structure 
of the CML can depend on the topology of the lattice, but we will not dweil on th is 
point, since most of the analytical tools discussed in this chapter do not dep end on 
the properties of the underlying lattice topology. 

We consider cases where the phase space X of <11 is a re strict ion of IRN to the 
N-dimensional hypercube: X = [0,1] x . .. x [0,1]. In two spatial dimensions, the 
evolution of each site of a deterministic coupled map lattice with linear interelement 
coupling is given by 

p neareat 
neighboura 

éE(O,l), (3) 

lThe eoupling seheme of equation (2) is eaUed linear beeause X~21 is linearly proportional to 

S(x~i) . Some authors [46] would eaU sueh arehiteetures nonlinear but we will ad here to this 
eonvention . 
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where S : [0,1] f----t [0,1] describes the local dynamics. Wh en p = 4, the coupling in 
(3) mimics a discrete version of the diffusion operator, and when the p-neighbourhood 
encompasses the entire lattice, the coupling is known as mean-field. 

To all ow for the possibility that stochastic perturbations influence the evolution 
of the CML, we now introduce a class of stochastic CML's which will be investigated 
numerically and analytically in Section 5. 

1.1.2 Stochastic CML's 

It is of interest to understand and clarify the influence of noisy perturbations on the 
evolution of these CML's. The perturbations considered here are random vectors 
of N numbers (for an N element CML), whose components are independent of one 
another, each being distributed according to a one dimensional probability density 
g. The density g of the vector random variabie e = ({(I), ... ,{(N)) will therefore be 
constructed as the product of independent (identical) components: 

N N 

g(e) = IIg(i)(ë i)) = IIg({(i)). (4) 
i=1 i=1 

There are various ways in which a stochastic perturbation can influence the evolution 
of a coupled map lattice: the perturbation can be additive or multiplicative, and it 
can be applied constantly or randomly. The influence of the noise on the dynamics 
depends on which of these is considered. 

When the stochast ic perturbations are applied at each iteration step, they can be 
either added to, or multiply, the original transformation <Il. In the former case, the 
evolution of a lattice site is given by a relation of the form 

(kl) _ ",(kl) ( ) + c(kI) = ",(kl) ( ) 
Xt+l - '*" Xt <"t - '*"add Xt (5) 

and e is then referred to as additive noise. In the latter , we have 

(kl) _ ",(kl) ( ) c(kI) = ",(kl) ( ) x t+1 - '*" Xt x <"t - '*"mul Xt (6) 

and e is then referred to as multiplicative or parametric noise. In general, the effects of 
additive and multiplicative noise on CML's can be different, since they model different 
perturbing mechanisms. The density (4) of the perturbations present in (5) and (6) 
is always defined so that the phase space of the perturbed transformations remains 
the N dimensional hypercube X defined above. In other words, <Iladd : X f----t X and 
<Il mul : X f----t X. 

The developments which followed the introduction of CML's have establisl,1ed the 
usefulness of these models to investigate the dynamics of a wide variety of systems 
in various areas of research ranging from population dynamics to solid state physics. 
Our own research was motivated in part by this activity, and we therefore give a fairly 
extensive though by no means exhaustive review of the literature before proceeding 
to a description of CML thermodynamics. 
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2 Overview of models framed as CML 's 

Two collections of papers on the subject, both edited by K. Kaneko [38, 24] are 
available, so the present section focuses primarily on some of the more recent published 
works on CML dynamics. 

2.1 Biological applications 

There are many biological systems which can be thought of as collections of interact­
ing elements with intrinsic nontrivial dynamics. Wh en this is case, and if the local 
dynamics can reasonably be modeled by discrete time maps, it is feasible to introduce 
models framed as CML's. 

This approach has been fruitful in population dynamics, in which the discrete 
time occurs naturally if generations do not overlap (insect populations constitute one 
possible example). The investigations of Solé et al. [87, 88] have led these authors 
to conclude that CML's provided the simplest models for discrete ecological models. 
Franke and Yakubu [26] have recently proposed a CML to investigate the inter-species 
competition oflarge bird populations. These CML's are cru de models for the evolution 
of species competing for shared resources, which are obtained by straightforward (al­
beit not very realistic) multidimensional generalizations of proposed one-dimensional 
maps [70, 96]. They open the way for more realistic population competition models 
which could be framed as CML's in which the underlying lattice is not regular, per­
haps taking into account some of the spatial features observed in the field. Ikegami 
and Kaneko [45] have also proposed a model for host-parasitoid networks, and their 
study of the corresponding CML have led them to introduce a generalization of the 
idea of homeostasis. The proposed alternative, "homeochaos" , describes an asymp­
totic state reached by networks of evolving and mutating host-parasite populations 
in which chaotic fiuctuations in the nu mb ers of hosts and parasites are observed at 
equilibrium. 

Beyond population dynamics, the mathematical description of neural behavior 
has also benefited from discrete time, discrete space models. The foundations of the 
modeling of cortical function we re laid in two seminal papers by Wilson and Cowan 
[102, 103]. However, the original mode Is presented by these authors are computa­
tionally costly, and are not easily amenable to analytic investigations. As aresuIt, 
there have been attempts to reduce the original networks of integro-differential equa­
tions to simpIer spatially extended models. Reduction to CML's are presently being 
considered by some of the same authors [68]. In its methodology, this work [ibid] is 
typical of investigations in which the CML is proposed as a discrete-time vers ion of 
previously considered continuous-time systems. For example, Molgedey et al. [71] 
made use of coup led map lattices to examine the effects of noise on spatiotemporal 
chaotic behavior in a neural network which was originally proposed (in its continuous­
time version) by Sompolinsky et al. [89]. Following a similar path, Nozawa [73] has 
presented a CML model, obtained by using the Euler approximation to the original 
Hopfield equations. 

One of the outstanding problems motivating this neural oriented research is the 
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identification of organizing principles to explain the synchronization of large popula­
tions of neurons possessing individually complex dynamics. Such synchronizations are 
thought to take place in pathological situations (e.g. epileptic seizures) as weIl as in 
the normal brain. For example, Andersen and Andersson [1], and later Steriade and 
Deschênes [90] have hypothesized that such a synchronized activity of the reticular 
thalamic nucleus (RTN) acted as a pacemaker for the so-called "spin die oscillation­
s" observed during various sleep stages. Models of the RTN framed as networks of 
coup led differential delay equations have been proposed by Destexhe [23], and these 
can be reduced, by a straight forward singular perturbation procedure [34], to CML's. 
Models of the RTN framed as coupled ODE's have also been considered recently, and 
provide a motivation for the theoretical description of giobally coupled arrays of oscil­
lators [27]. An interesting review of the mathematical description of cortical behavior 
in terms of coupled nonlinear units is given in [104]. A less recent, but somewhat 
broader view of the contemporary efforts to mathematically describe the behavior 
of neural networks using the conceptual tools of nonlinear dynamics is presented in 
[84]. For the sake of completeness, we also refer the reader to the review by Herz 
[30], which describes some of the earlier neural modeling attempts which made use of 
CML's, as weIl as some of the models based on delay differential equations. 

At the molecular level, Cocho et al. [15] proposed a CML model to describe 
the evolution of genet ic sequences. A comprehensive account of the development of 
this idea can be found in [16]. In this simplified formalism, each genetic sequence is 
made up of m nucleotides, which come in four fiavors. The latter is determined by 
which of four possible bases (guanine, cytosine, adenine, thymine) complements the 
phosphate and deoxyribose groups which make-up the nucleotide. The building block 
of a genetic sequence is then a triplet of nucleotides, called a codon (which codes 
for an amino acid) . Cocho et al. established that for certain viruses, it is relevant 
to restrict attent ion to sequences containing only two types of codons, denoted type 
land 11. Hence a sequence of length L = ml3 codons is uniquely characterized by 
the number iJ of type I codons it possesses. iJ can also be thought of as a position 
index in a configuration space, and in this case two sequences are "close" if they differ 
by a small number of codons. Vnder specified fitness constraints (whose meaningful 
definition impases the most important limits on this approach), sequences can mutate: 
a type I codon becomes type 11, or vice-versa. The CML model for genetic sequence 
evolution describes the evolution of the number of sequences at location iJ in the 
configuration space, and therefore, local interactions are due to mutations, whereas 
ecological constraints (i. e. coming from limited food supplies ) generate long range 
coupling. Recently [17], the same authors have extended this approach to study the 
mutations of the HIV1 virus, and their predictions concerning the regularity of the 
chemical compositions of this virus' RNA sequences agree with statistical analyses of 
gene data. 

The use of CML's, though interesting from the mathematical biologist's point of 
view, is not restricted to biological models. Contemporary developments in the theory 
of image processing have led to the introduction of various algorithms which are in 
fact coupled map lattices. 
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2.2 Image processing applications 

One of the basic challenges in image processing is the so-called "shape from shad­
ing" problem [8], which surfaces both in computer graphics, where shading is used to 
enhance realism, and computer vision, where the study of shading is crucial for the 
proper interpretation of a pattern's two dimensional projection (its picture). In com­
puter vision, a typical task is the classification of patterns into classes (e.g. faces vs. 
landscapes) , where the input patterns possess underlying "shapes" describing their 
essential features (nose, eyes, vs. trees or clouds) which are immersed in secondary 
information due to the shading of the image. 

Several approaches to this problem [8, 92, 97] make use of algorithms which are 
coupled map lattices, although there appears to be no explicit awareness in this 
literature of the link between the structure of the algorithms and their formulation as 
CML's. We illustrate this link with a frequently encountered model used to approach 
shape from shading, which was introduced by Brooks and Horn and is known as the 
B-H algorithm [7] . To derive the model, the shape of an object is thought of as a 
function which mini mi zes a given functional. Af ter minimization of the proper errors 
[97], the B-H algorithm is written 

2 
x(ij) = x(ij) + :..- (E(i j ) _ x(ij) . S) S 

t+1 t 4>. t 
(7) 

where E(ij) is the shading, x~ij) is the surface normal at site (i,j) of the image, >. 
and ê describe the role of a smoothness constraint, and S is the light source vector 
(the light source being responsible for the presence of shade) , and x~ ij) is the average 
of the normals in a neighbourhood of site (i , j). The local coupling co mes from this 
latter term, and as aresuit, the evolution of the initial image under the action of the 
B-H shade from shading algorithm is akin to the evolution of an initial vector under 
the action of a CML. There are more recent descriptions of this problem which do not 
make use of the variational techniques used to derive (7), and which lead to different 
CML's (one example is given in [97]) . 

The treatment of fuzzy images is not limited to the shape from shading problem. 
In fact, prior to this analysis, "dirty" images, possibly obtained with remote sensing 
equipment must be "cleaned". This procedure, known as the segmentation of an 
image, is an attempt to highlight edges while smoothing the noise in regions devoid 
of edges. A "physicist-friendly" present at ion of the segment at ion problem is given by 
Price et al. [78]. They intro duce a coupled map lattice designed as an alternative to 
the costlier and more unstable segmentation algorithms obtained by the minimization 
of a cost function. Their work is an additional illustration of the potential benefits to 
the image-processing community which could follow from an increased awareness of 
the wealth of dynamics displayed by high-dimensional nonlinear discrete time maps: 
the stability properties of the algorithms, and their possible pathological treatments 
of real images can sometimes be determined beforehand by an in-depth investigation 
of the corresponding CML. 
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2.3 Phenomenological models 

In spite of the obvious interest generated by CML's for their many potential appli­
cations, the main motivation for their investigation from a physicist's point of view 
undoubtedly lies in their use as phenomenological models for the study of more general 
spatially extended systems 

2.3.1 Spatiotemporal intermittency and weak turbulence 

An example of the fruitful application of CML's to study fluid dynamics is given by 
the work of Chaté and Manneville, concerning the transition to tu rb uien ce via spatio­
temporal intermittency [11, 12]. In this work, the CML's are constructed to reflect 
what are thought to be the essential features of a fluid undergoing the transition from 
laminar flow to turbulent flow via the so-called intermittency scenario, according to 
which a laminar flow gradually becomes turbulent by the growth of regions in the 
laminar regime in which the flow is turbulent. Hence, the essential features of the 
Chaté-Manneville models are the partition of the local phase space into two regimes: 
one laminar, and the other turbulent. Their analysis of the corresponding CML's lead 
to the identification of universality classes describing the "contamination process" of 
the laminar flows by turbulent "islands" [11, 13, 12]. The usefulness of the CML 
approach is that these models capture much of the phenomenology while remaining 
amenable to extensive numerical simulations. 

The destabilization of laminar flows does not always occur via spatiotemporal 
intermittency. Various convective instabilities can result in alternate destabilizing 
mechanisms, and some of the recent work on CML's focuses on the dynamics of these 
instabilities in so-called "open flow" models [21] . Convective instabilities grow as they 
are transported downstream, and they are localized in the sense that a laboratory 
observer sees them pass by from upstream to downstream as localized defects [66]. 
Such situations are encountered, for example, in the modeling of shear flows and 
boundary layers, and they provide situations in which spatial order can be co existent 
with temporal chaos. Given the complexity of the full equations of motion, it has 
been helpful to consider reduced models framed as CML's, In [4], Biferale et al. 
describe the convective instabilities of a unidirectionally coup led CML by focusing on 
the tangent vector associated with a trajectory of the CML. This analysis resulted in 
a relatively simple description of the localization of temporal chaos around the defects 
of the lattice. Other descriptions of asymmetrically coupled CML's include the works 
of Jensen [37, 36], Aranson et al. [2], and Willeboordse [101]. In all these, the 
coupling between the elements of the CML is not isotropic, and there is a preferred 
spatial direct ion in the lattice along which information is more easily transmitted. 
More recently, we have used CML's with uni direct ion al coupling to investigate the 
statistical properties of some differential delay equations [61]. 

2.3.2 Reaction diffusion models 

Reaction-diffusion models play an important role in the description of real spatially 
extended systems because the competition between these two general mechanisms is 
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ubiquitous in nature. In one dimension, they are modeled by the gener ie PDE 

du(x, t) 
dt = D'V2 u(x, t) + F(u(x, t)), (8) 

where F is the reaction term. In a seminal work, Turing [95] established that this 
eompetition was at the origin of many pattern-forming instabilities. Reaction diffu­
sion systems have been the subject of many descriptions in terms of CML's because 
diffusion is approximated by a nearest neighbour coupling in CML's of the form (2) 
(examples of this reduction are given by Puri et al. [81] for the one dimensional 
Cahn-Hilliard equation, and by some of the same authors for the Fischer equation 
[75]). We note that the reduction of models framed as PDE's to their CML coun­
terparts is usually not a rigorous procedure, although there are special circumstances 
(for some externally forced modeis) in which the CML provides a close approximation 
to the PDE [48]. As mentioned in [58], the benefits of using CML's in the majority 
of investigations stem from the fact that they repro duce most of the interesting phe­
nomenology, without requiring the prohibitively large computing resources associated 
with PDE simulations. In addition, it is likely that as those resources increase with 
technological breakthroughs, so will the complexity of the problems considered by the 
modeling community, so that there is some intrinsic virtue in trying to understand 
reduced systems, such as CML's, to help in the study of more complicated ones. 

Because of their computational efficiency, CML's are well-suited for the intro­
duction of new quantifiers of spatiotemporal dynamics, or for the multidimensional 
generalizations of one-dimensional concepts [93] (this was an important motivation for 
the early discussions [20,98,99]) . In this spirit, Kaneko has introduced such concepts 
as the "comoving mutual information flow" [40], and various "pattern entropies" and 
"pattern distribution functions" [41], to mention a few of the frequently encountered 
statistical descriptors of the motion. Reaction diffusion CML's are then usually of the 
form (2) with p = 2 in one spatial dimension, or p = 4 in two dimensions, and used 
to explore in great detail the behavior of the quantifiers of spatio-temporal motion 
more efficiently than if PDE's we re considered. 

Similar lattices have been used to simulate interfacial phenomena in reaction dif­
fusion systems [58]. In these investigations, the CML's usually arise from the phe­
nomenological simplification of PDE's of the form (8), and they provide the simplest 
models which retain the disparate length and time scales necessary for the appear­
ance of rich interfacial dynamics. Other typical ex am pies of this approach are given 
for crystal growth by Oono and Puri [74] and for chemical waves by Barkley [3]. A 
phenomenological description of interfacial phenomena was recently given by Kapral 
et al. [47], using a piecewise linear CML (with a branch with slope zero in the 10-
cal map) which displays some of the interfacial structures associated with continuous 
time, continuous space models. In a similar spirit, the behavior of liquids at the boil­
ing transition was studied by Yanagita [105] with another reaction-diffusion CML. To 
conclude, we refer the interested reader to the comprehensive review of the applica­
tions of CML's to capture the essential features of pattern formation in chemically 
reacting systems given by Kapral in [46] 
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2.3.3 Arrays of globally coupled oscillators 

The introduction of all-to-all (or mean-field, or global) coupling in theoretical physics 
to investigate the dynamics of spatially extended systems is not novel; it has always 
been one of the standard techniques used to describe the magnetic properties of spin 
systems. As experimentalists probe ever deeper into the behavior of systems with a 
large number of degrees of freedom, new models of globally coupled oscillator arrays 
are introduced, in which the individual oscillators are either continuous or discrete in 
time. Some of the experimental situations in which global coupling arises naturally 
are related to nonlinear optics, with examples ranging from solid-state laser arrays 
[107], to multimode lasers [35]. In electronics, a number of experiments on Josephson 
junction arrays coupled in series or in parallel have indicated the presence of very 
rich dynamics, of ten related to the multiplicity of attractors, or the linear stability 
properties offully synchronized states (cf. [72] and references therein). The majority 
of models proposed to describe these dynamics are framed as globally coupled sets 
of ordinary differential equations [29, 85, 91]. The ODE's are usually not rigorously 
reduced to CML's, and the introduction of the discrete-time map lattices is of ten 
motivated by the desire to improve the phenomenological insight into the evolution 
of the continuous-time oscillators. For example, Wiesenfeld and Hadley [100] found 
that CML's provided useful reduced systems to investigate the effects of low levels of 
noise on large globally coupled arrays which possess an even larger number of attrac­
tors. More recently, discrete maps were used to describe the dynamical properties of 
periodic attractors in arrays of p - n diode junctions [25], and the stability regions 
of various solution types for the CML's agreed qualitatively with the experimental 
data obtained from two coupled diode junctions. We close this admittedly incomplete 
presentation of some contemporary discussions of global coupling in the physical sci­
ences, by mentioning that CML's have recently been used to study theoretically the 
remarkable phenomenon of mutually destructive fluctuations in which the activity 
of the mean field is observed to have a much smaller variance than the individual 
trajectories [72]. This phenomenon is extremely interesting for researchers trying to 
understand the role of noise in the transmission of information in spatially extended 
processing systems. For example, it is well known that the behavior of individual neu­
rons can sometimes be more erratic than that of the average behavior of a population 
of neurons [69]. 

We now turn to the presentation of some of the conceptual tools which will be 
used throughout the remainder of this chapter to discuss the statistical properties of 
models framed as CML's. 

3 CML's and probability densities 

Suppose that the dynamics of a physical system are modeled by a (deterministic or 
stochastic) dynamical system denoted by T : X I---t X (many examples of such sit­
uations are described in Sections 2 and 2.3) . Suppose further that some observable 
O(xn ), which depends on the state X n of T, is being measured at time n (The ob­
servable 0 is arbitrary, though it must be a bounded measurable function). The 
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expectation value of this observable, denoted by E(On), is the mean value of O(xn ) 
when the measurement is repeated a large (ideally infinite) nu mb er of times. Mathe­
matically it is given by 

(9) 

where fn(x) is the density of the variabie x n , i.e. the probability p(x~) of finding X n 
between x~ and x~ + <5x~, is 

All extrinsic functions which characterize the thermodynamic proper ties of a system 
are observables whose expectation values are defined by (9) since 0 was arbitrary. 
Therefore, the thermodynamic state of the CML T at time n is completely character­
ized by the density function fn. Hence a complete description of the thermodynamics 
of T must focus on the behavior and properties of fn . To this end, we introduce the 
transfer operator associated with T, denoted by PT, which governs the time evolution 
of fn 

fn+l (x) = PTfn (x), n = 0,1, . . . . (10) 

To drawan analogy with more familiar physical systems, the transfer operators dis­
cussed here describe the arbitrary dynamical system T much as the Liouville equation 
describes the ensemble dynamics of ODE's, the Fokker Planck equation those of the 
Langevin equation (which is a stochastic ODE), or the Perron-Frobenius operator 
(defined in Section 3.1) those of deterministic maps (cf. Table 1.1). 

Description of the model 

Deterministic maps 
Stochastic maps 
Deterministic ODE's 

Description of ensemble dynamies 

The Perron-Frobenius operator 
The transfer (Markov) operator 
The generalized Liouville equation 
The Fokker Planck equation 
The Kramers- Moyal equation 

Stochastic ODE's (white noise) 
Stochastic ODE's (non-white noise) 
Differential delay equations The Hopf equation for the characteristic functional 

TABLE 1.1: 
Brief summary of the probabilistic descriptions associated with various types of discrete 
and continuous-time modeis. 

3.1 The Perron-Frobenius operator Pil> 

A discrete-time nonsingular transformation cp : X I---t X (X C IRN) induces an oper­
ator denoted Pil> which acts on probability densities, and which is defined implicitly 
by the relation 

[ PiI>f(x) dx = [ f(x) dx, for all A c X, 
JA JiI>-l(A) 

(11) 
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and all probability densities f. P<l> is called the Perron-Frobenius operator induced by 
<I>, and a study of its properties will be the cornerstone of our probabilistic description 
of determinist ic CML's. If the transformation <I> is piecewise diffeomorphic, it is 
possible to give a more explicit definition of P<l> by performing a change of variabie 
in the above definition. 

Define II to be a partition of the phase space X which contains s(II) elements 
denoted 11"1,11"2, ••• ,11" 8(n). Let <I>li be the monotone restriction of <I> to the set 1I"i C 

X, i = 1,···, s(II) (with u:l~) 1I"i = X). Let 7ri denote the image of the set 1I"i: 

7ri == <I>li(1I"i). The Perron-Frobenius operator induced by <I> can be written 

(12) 

where X;r, (x) == 1 iff x E 7ri, and 0 otherwise, and JT(Z) is the absolute value 
of the Jacobian of transformation T, evaluated at Z. It should be clear from our 
present at ion that the asymptotic properties of the sequence {fn } of the iterates of an 
initial density fo under the action of P<l> determine the thermodynamic behavior of the 
dynamical system <I>. These asymptotic properties of {fn} are themselves dependent 
on the spectral characteristics of the operator P<l>, and our investigations of CML 
thermodynamics will in fact focus on the spectral properties of P<l>. 

There have been several attempts to use the Perron-Frobenius operator to describe 
the dynamics of CML's [32, 33, 42, 77], but these have all concentrated on the prop­
erties of an operator acting on one-dimensional densities. The "proper", or complete 
description is given instead by the N-dimensional operator, and it will be the object 
of our attention. 

Remark 1 The invariant density f. is implicitly defined by the relation 

and it plays a special role in the thermodynamic description of any dynamical system, 
since it des cri bes the state(s) of thermodynamic equilibrium(ia) . Uniqueness of the 
invariant density implies uniqueness of the state of thermodynamic equilibrium for 
the system, and the approach of the sequence {fn } to f. describes the non-equilibrium 
behavior of the dynamical system. 

3.2 The transfer operators P<l>add and P<l>mul 

When considering stochastic CML's like the ones introduced in Section 1.1.2, an 
operator governing the evolution of ensemble densities can be defined in analogy with 
the definition of the Perron-Frobenius operator of the previous section. The main 
difference in the derivation of this operator is that (ll) does not hold since the system 
is no longer deterministic. This equality must be replaced by one which equates the 
expectation to be in a given preimage at a time t, with the expectation to be in the 
image at time t + 1. More precisely, we introduce an arbitrary bounded measurable 
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function h : X t---t IR which can be written 

N 

h(x) = rr h{il(èl) . 
i=l 

The expectation value of h(Xt+1) is given by 

(13) 

In the additive noise case, we also have 

E(h( 41.dd (Xt))) 
N 

= Ix Ix ft(Y) ;g h{il (41{il (y) + z{il)g(Z{i l ) dzdy , (14) 

while in the multiplicative case, 

E(h(41 m u , (xt))) 
N Ix Ix ft(y);g h(il (Z( il 4l(i)(y))g(z(i)) dzdy. (15) 

Using (14) and (15) in conjunction with the right hand side of (13), one can obtain the 
explicit expression for the transfer operators goveming the evolution of ensemble den­
sities in CML's perturbed by additive or multiplicative noise. For CML's perturbed 
as in (5) , the expres sion is [55] : 

P~.ddft(x) == ftH(x) = Ix ft(y)g(x - 41(y)) dy, n = 0,1,· · ·. (16) 

For CML's perturbed as in (6), we have [62] 

P~mu,ft(x) = ft+1 (x) 

= l~N·)· ·l~l/t(Y) g [g ( 41~~~Y)) 41(i~(y)"] dy (17) 

It is not difficult to show (cf. [55, 62]) that the operators defined in (16) and (17) 
are Markov, and defined implicitly by stochastic kemels. [recall that P is a Markov 
operator if it is linear, and if for all probability densities / it satisfies (1) P / ~ 0 for 
/ ~ 0, (2) IIP/IILI = II/IILI]. 

In Section 5.2 , these observations are used to gain insight into the thermodynamic 
properties of the corresponding CML's. It is useful at this point to recall some basic 
notions which will be needed as we proceed. 
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3.3 Ergodicity, mixing and asymptotic periodicity 

Here we discuss the behavior of the sequence of densities {fn} which is intimately 
linked to the equilibrium and nonequilibrium statistical properties of the CML. For 
example, T is ergodic if and only if the sequence is weak Cesàro convergent to the 
invariant density f. (x), 

n-I 

lim .! L [ fk (x)q(x) dx = [ f. (x)q(x) dx, for all q E L 00 (X), 
n-Hx) n k=O Jx Jx 

and all initial probability densities fo(x). A stronger (and more familiar) property, 
mixing, is equivalent to the weak convergence of the sequence to f. : 

lim [fn(x)q(x) dx = [ f.(x)q(x) dx, for all q E LOO(X) 
n-+oo Jx Jx 

and all initial probability densities fo(x) . An even stronger type of chaotic behavior, 
known as exactness (or asymptotic stability) is reflected by the strong convergence of 
the sequence {fn } to the invariant density f.: 

for all initial probability densities fo(x) . Exactness implies mixing and is interesting 
from a physical point of view because it is the only one of the properties discussed 
so far which guarantees the evolution of the thermodynamic entropy of T to agiobal 
maximum, irrespective of the initial con dit ion fo [65]. 

The hierarchy of chaotic behaviors 

Exactness =:::} Mixing =:::} Ergodicity 

is discussed here because it is shown in Sections 4 and 5.2 that some determinist ic 
and many stochastic CML's are either exact, or possess a another dynamical property, 
known as asymptotic periodicity, of which exactness is a special case. 

Asymptotic periodicity is a property of certain Markov operators which ensures 
that the density sequence {fn} converges strongly to a periodic cycle. 

Definition 1 (Asymptotic Periodicity) A Markov operator Pis asymptotically peri­
odic if there exist finitely many distinct probability density functions VI, . . . ,Vr with 
disjoint supports, a unique permutation 'Y of the set {I,··· , r} and positive linear 
continuous functionals r I , . . . , r r, on L I (X) such that , for almost all initial densities 
fo, 

(18) 

and 

PVi=V-Y(i)' i=I,···,r. 

Clearly, if P satisfies these conditions with r = 1, it is exact (or asymptotically 
stabie) . If r > 1 and the permutation 'Y is cyclical, asymptotic periodicity also implies 

http://H7Vfn-f.IL
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ergodicity [65]. The early papers discussing asymptotically periodic Markov operators 
are [52, 51, 56, 57, 53]. A somewhat more intuitive presentation is given in [54]. B 

Remark 2 The phase space density fn of an AP system at any (large) time n is a 
linear combination of "basis states" (denoted Vi above) with disjoint supports, and 
at every time step the coefficients (ri) of this linear combination are permuted by ,. 
Therefore, the density evolution in such systems is periodic, with a period bounded 
above by r!, but with the exact cycle depending on the initial preparation since 
the r;,s are functionals of the initial density (cf. (18)). A direct consequence of 
asymptotic periodicity is that the thermodynamic equilibrium of the system consists 
in a sequence of metastabie states which are visited periodically. It was shown in [54] 
that AP systems are ergodic if and only if the permutation 'Y is cyclical. 

4 Deterministic CML 's 

As mentioned in Section 2, there are numerous motivations for investigating the dy­
namics of coupled map lattices. When these dynamics are temporally and/or spatially 
chaotic, it is natural to turn to a probabilistic description in terms of the Perron­
Frobenius operator. For example, there is now ample evidence [67, 60] that CML's 
can possess different phases which correspond to qualitatively different behavior of 
statistical averages , and it is legitimate to try and understand the connection between 
the pres en ce of these different phases and the properties of the Perron-Frobenius op­
erator. Before proceeding with the analysis, it is instructive to numerically illustrate 
this multi-phase phenomenology in a relatively simple toy model. 

Consider a lattice of the form (2) with S : [0: 1] t---+ [0: 1] given by the tent map 
S(z) =min(az,a(l- z)), and with p = 4 (to mimick diffusive coupling in two spatial 
dimensions) . As the slope of the local transformation is varied in the interval (1,2], 
for fixed é E [0,1], one observes a sequence of "bifurcations" : on both sides of the 
bifurcation point, the lattice evolves chaotically in time, but the number of "bands" , 
or simply connected subsets of [0,1] on which the activity of a site is supported, 
changes abruptly. This behavior is observed in the single tent map, where it can 
be shown to reftect a change in the degeneracy of the Perron-Frobenius operator's 
eigenvalues of unit modulus (i.e. a change in r in (18); for a detailed discussion see 
[79, 106]). The extension of these results for one-dimensional maps to lattices with 
arbitrarily large numbers of elements has proven to be a major theoretical challenge, 
which has only been met in rather small regions of parameter space. 

4.1 Phenomenology of the tent CML 

Here we focus on the model (2) with local map defined by either the tent map, de­
fined in the previous paragraph. For the tent map lattice two qualitatively different 
types of statistical behavior are evidenced in Figure 2. The first is characterized by 
the evolution of large scale patterns from the random initial conditions; this is the 
clustered, or ordered state a = 1.1,···,1.5. The panel a = 1.3 presents an interesting 
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limiting case for which the "cluster" covers the entire area of the lattice; different ini­
tial conditions for such parameter values evolve to the more usuallarge scale patterns. 
Note that the lattices are not at equilibrium in the panels displayed in this figure. 
It is not possible to observe the true equilibrium because of the astronomically large 
transients typical of a lattice of 40000 elements. The point of our investigation is not 
to describe explicitly the presence, stability and asymptotic behavior of the patterns 
presented here, but to understand how the thermodynamics of these lattices should 
be investigated. Although the problem of pattern formation in CML's is fascinating, 
it is not the focus of our investigation, and we will therefore not spend more time 
discussing the pattern dynamics per se. The interesting observation from our point 
of view is that the pattern-forming behavior associated with small values of a is also 
accompanied by statistical cycling in the lattice. This is illustrated by the behavior 
of various statistical quantifiers of the motion discussed below, rather than by the 
snapshots of Figure 2. 

The second ph ase is described statistically by a unique invariant measure generated 
by al most all initial conditions. This corresponds to the spatiotemporally chaotic state 
described rigorously by Bunimovich and Sinai [9] in infinite lattices. 

Before proceeding, we should no te that this oscillatory behavior of macroscopic 
observable has also been observed in lattices of logistic maps, as well as in more 
complex, biologically motivated models [63]. In fact, in the recent literature [76, 14], 
this behavior has been referred to as periodic collective behavior, and understanding 
its origin in various spatially extended models is an on-going endeavour. 

We propose as a possible mechanism that the Perron-Frobenius operator induced 
by lattices such as the tent CML in the statistically periodic regime are in fact asymp­
totically periodic and possess the cyclical spectral decomposition (18). At present, 
proving this statement is only possible in very limited cases, namely, in lattices per­
turbed by noise (as in Section 5), and in lattices of piecewise linear, expanding maps 
(see the contribution of Keller in this issue for more on this topic) . Nevertheless, this 
working hypothesis is interesting because it provides some insight into the dynamics 
underlying periodic collective behavior (cf the last paragraph of the next section) . 
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FROM LEFT TO RIGHT: a = 1.1, a = 1.2, a = 1.3 

FROM LEFT TO RIGHT: a = IA, a = 1.5, a = 1.6 

FROM LEFT TO RIGHT: a = 1.7, a = 1.8, a = 1.9 

FIGURE 2: 
Snapshots of the activity at the surface of a 200 x 200 lattice of diffusively coupled 
tent maps when the coupling is constant (E: = 0045) but the local slope is increased 
from a = 1.1 to a = 1.9. For all panels, the transient discarded is of length 105

. The 
256 grey scales range from black when xi,j = Xmin to white when xi,j = Xmao: where 
Xmin and X maz are the lower and upper bounds of the attracting subinterval of [0,1] 
respectively. The initial values on the lattice were in all cases given by a random 
number generator yielding uniform distributions on the unit interval. The transition 
from statistical cycling to statistical equilibrium occurs between a = 1.5 and a = 1.6 
for this value of the coupling. This observation is not made from Figure 2 but with 
the help of other the statistical quantifiers (cf. Figure 3 for example). 
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FIGURE 3: 
The collapsed density f{ for a 200 x 200 lattice of diffusively coupled tent maps with 
ê = 0.45. The first 105 iterations were discarded as transients. In a) the cycle is of 
period 4, and a = 1.3. The initial density was uniformly distributed on [0.3 : 0.4]. In 
b) the cycle is of period 2, a = 1.4 and the initial density was uniformly distributed 
on [0 : 1] . In c), the parameters are as in b) but the initial density was supported on 
[0.39 : 0.43]. This illustrates the dependenee of the density cycle on the initial density. 
d) the slope of the map is a = 1.99 and the initial density is uniform on [0 : 1] . This 
density is numerically reached for all densities. 
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4.2 Discussion 

Until now, most attempts at constructing the statistical mechanics of high dimensional 
chaotic dynamical systems have followed two broad and intersecting paths. One is 
the extension of the so-called thermodynamic formalism of Ruelle [83], Bowen [5] 
and Sinai [86] to high dimensional hyperbolic dynamical systems, which has led to 
various proofs of existence of Gibbs measures describing spatio-temporal chaos in such 
models [9]. The other is an operator-theoretic approach which focuses on the Perron­
Frobenius operator (11) as an operator acting on some suitably defined function space 
[6, 50] . The kinds of results that are sought are again the existence and uniqueness 
of invariant measures which are associated with fixed points of the Perron-Frobenius 
equation, and the properties of the system's relaxation to equilibrium when it is 
started out of equilibrium. Given that the Perron-Frobenius operator is a Markov 
operator, this information is given by its spectral properties. Obviously, these depend 
on the function space on which Pel> operates. We always consider here Pel> acting 
either on L 1 (X) (X C IRn), or on a subspace of L 1 (X). So far most investigations have 
actually focused on Banach spaces "properly" embedded in L1 (X), where "properly" 
means here that one can then apply a now-famous theorem of Ionescu-Tulcea and 
Marinescu [94] to study the spectral properties of Pel> acting on the embedded space. 
Examples of such spaces are BV(X), the space of functions of bounded variation 
(discussed in some detail in Chapter 5 of [16]), and the related GH(X), the space of 
Generalized Hölder continuous functions (described in [64]) . 

If this second approach is followed, the objective is to place conditions on the 
parameters of the CML such that the conditions of the Ionescu-Tulcea and Marinescu 
theorem are satisfied. If one considers Pel> : BV(X) f---t BV(X), then it is possible 
to obtain conditions on the parameters of an expanding <I> such that Pel> satisfies (18) 
(see for example [28, 50, 61]). The weakness ofthis approach is that the conditions are 
usually extremely complicated, and they require very detailed geometrical knowledge 
of the transformat.ion <I> (for example one needs to know a lot about the geometry of 
sets on which <I> is strictly monotone). 

For a description of the operator-theoretic approach, and a discussion of its appli­
cations and limitations, the interested reader is referred to the contribution of Keller 
(this issue) . One important step in this theoretical analysis is that the CML's which 
can be studied effectively with this operator-theoretic approach are product dynamical 
systems, which are close, in some clearly defined sense, to a direct product of inde­
pendent low dimensional dynamical subsystems. This indicates that CML's which 
display periodic collective behavior, far from "synchronizing" in some loosely defined, 
and poorly understood manner, in fact desynchronize into a collection of statistically 
independent "clusters", each containing a few degrees of freedom. If this hypothesis 
holds, the statistical properties of a single CML's trajectory then approximate the 
ensemble properties of those low dimensional clusters. This in turn motivates the 
analysis of the cluster's Perron-Frobenius operator. The programme outlined in this 
paragraph, which is a direct consequence of the "cluster working hypothesis" is the 
subject of ongoing research [59]. 

We now turn our attention to the probabilistic description of CML's whose evo-
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lution is stochastically perturbed. 

5 The statistics of stochastic CML 's 

The transfer operators for the stochastic CML's (5) and (6) were introduced in Section 
3.2. The study of these operators is greatly simplified by the observation that they 
are Markov operators defined by stochastic kemels [54] . Before proceeding to their 
analysis, we will briefty describe some of the observed phenomenology in models 
like (5) and (6), since these are less frequently des cri bed than their determinist ic 
counterparts in the literature. 

5.1 Some numerical observations 

Here we focus on the effects of additive noise on a piecewise linear toy model originally 
introduced by Keener [49]. The purpose is not to give an overview of the effects of 
stochastic perturbations on the dynamics of CML's, but to illustrate with a simple 
example that sometimes the presence of a little noise can have dramatic consequences 
which can, at first glance, seem rather counterintuitive. 

80 .-----------, 4.5 .-----,---------, 

f(x) 

40 2.25 

1 0.2 
x x 

FIGURE 4: 
Left: Grey scale representation of the state of a 200 x 200 lattice of diffusively coupled 
Keener maps without noise, at time t = 103 with a = 0.5, b = 0.571 and é = 0.45 . 
The 256-level grey scale is such that if x~~~ = 0, it is represented by a black pixel, 

while if x~~~ = 1 it is represented by a white pixel. Center panel: 200-bin histogram 
of the state of the lattice displayed on the left panel. The fractal nature of the support 
of this distribution is suggested by the right panel, which was obtained from a larger 
lattice (106 sites) and a larger number of bins on [0,1] (103). 

The example considered here is a perturbation of a two-dimensional lattice of 
diffusively coupled "Keener maps" 

(1 - é)S(X~i,j») + ~ [S(X~i+l,j») + S(X~i-l,j») 

+ S(x~i,j+l») + S(x~i,j-l»)] , (19) 
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where the local map (a slight generalization of the r-adic map) was considered by 
Keener [49] 

S(z) = (az + b) mod 1, a,b E (0,1), xE [0,1] . (20) 

Before considering the dynamics of the lattice, it is useful to recall some basic proper­
ties of the single map. There exists a range of values for the parameters a and b such 
that the trajectories are chaotic in the sense that they attracted to a subset of [0,1] 
of zero measure (a Cantor set) [49]. Numerically, this is reftected by the fact that 
if the histogram along a trajectory is constructed, the number of histogram peaks 
will increase as the bin size decreases. In this case, the Perron Frobenius operator 
does not possess a fixed point in the space of probability densities. In fact, it asymp­
totically transforms almost all initial probability densities into generalized functions. 
A rigorous treatment of such operators is possible, and studying the nonequilibrium 
statistical properties of the corresponding CML's involves the reformulation of the 
problem in terms of the evolution of measures. Figure 4 shows that the fractal nature 
of the attractor of the single map survives diffusive coupling. 
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FIGURE 5: 
Noise induced statistical cycling in a lattice of 200 x 200 noisy "Keen er maps" (21), 
with a = 0.5, b = 0.571, ê = 0.1 and ç uniformly supported on [0,0.05]. The top panels 
display three successive iterations, and the bottom panels display the corresponding 
histograms (produced with 200 bins) . The grey scale for the top row is the same as 
in Figure 4. 

This picture is greatly simplified when the local transformation is replaced by 

Sdz) = (az + b + Ç) mod 1, a, bE (0, 1), xE [0,1] (21) 

1 
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where ç is a random variabie distributed with density g. Figure 5 displays the re­
markable behavior of the lattice (19) when the map S is replaced by S€ . Note that the 
noise present in (21) is multiplicative. The activity of the lattice no longer seems to 
be supported on a set of measure zero, and furthermore, it appears that the evolution 
of the histogram of activity on the lattice is periodic with period 3. To understand 
the origin of this simplification of the dynamics as a result of stochast ie perturbations, 
one must focus on the properties of the transfer operators defined in Section 3.2. 

5.2 Analytic results 

In this section it is shown that under rather general circumstances, the transfer op­
erators induced by stochastic coup led map lattices are asymptotically periodic. 

5.2.1 Additive noise 

Consider the CML (5), for which the density of the noisy perturbation satisfies 

N 

g(e) = II X[b,cj(çCi)), 0:::; b < c :::; 1, (22) 
i=1 

where the indicator function X is defined by X[b,cj(X) = (c - b)-1 if x E [b, c] and 
X[b ,cj (x) = 0 otherwise. This form for 9 is chosen here to simplify the statement of 
the proof of Theorem 1 below, but more general forms can be treated in exactly the 
same way. 

Theorem 1 If the CML <I>.dd is written in the form (5), where the density of the 
perturbation e is given by (22), and the local map S of (3) is bounded and nonsingular 
then P<t>.dd defined by (16) is asymptotically periodic. 

The proof consists in showing that P<t>.dd is a Markov operator defined by a stochas­
tic Kemel which satisfies the conditions of theorem 5.7.2 of [55]. It is discussed in 
[62]. This is a general result. The two main assumptions which are necessary for 
its derivation are that S be nonsingular and bounded. This gener ic nature of the 
result explains the ubiquitous presence of statistical cyeling which has been reported 
in stochastic CM L's elsewhere [62]. 

5.2.2 Multiplicative noise 

Here the transformation <I>mul is given by (6). In this section it is proved that mul­
tiplicative noise induces the spectral decomposition (18) in a large elass of CML's. 
Our presentation is inspired by the treatment of one-dimensional maps perturbed by 
parametrie noise given by Horbacz [31] . 

Theorem 2 Let K : X x X ~ lR be a stochastic kemel and P be the M arkov operator 
defined by 

Pf(x) = t ... fl K(x, y)f(y) dy. 
}z(N) }z(1) 

(23) 
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Assume that there is a nonnegative >. < 1 such that for every bounded lB C X there is 
a J = J(lB) > 0 for which 

[ K(x,y) dx ~ >. for J-L(A) < J, y E lB, A C lB. (24) 

Assume further there exists a Lyapunov function V : X f---t IR such that 

Ix V(x)Pf(x) dx ~ Cl' Ix V(x)f(x) dx + (3, Cl' E [0,1), (3 > 0 (25) 

for every density f. Then P is asymptotically periodic, and therefore admits the 
representation (18). [Recall that a nonnegative function V : X>---+ IR is known as a 
Lyapunov function if it satisfies limlxl--+oo V(x) = 00.] 

The proof of the theorem is based on demonstrating that the operator defined by 
(23) is contractive. This property, in turn, was shown by Komornlk [51] to imply 
asymptotic periodicity. The complete proof is given in [62]. 

The connection with stochastic CML's of the form (6) should now be clear: the 
operator P<f>mul can easily be shown to satisfy the conditions of Theorem 2 under 
rather general circumstances. More precisely, we have the following corollary: 

Corollary 1 A CML of the form (6), perturbed by the noise term et distributed with 
density (4) will induce a transfer operator P<f>mul defined by (17). If the deterministic 
part of the transformation (denoted lP) is bounded and nonsingular, then P<f>mul is 
asymptotically periodic. 

In light of this result, we can interpret the statistical cycling displayed in Figure 5 
as an illustration of the cyclical spectral decomposition (18) of the transfer operator 
P<f>mul' In addition, the presence of asymptotic periodicity in this model, and in 
the large class of models which satisfy the conditions of Theorem 1 or Corollary 
1, has some interesting applications for the construct ion of statistical mechanics for 
these models. Before exploring these, we briefty note that the results presented in 
this section do not allow us to predict the periodicity observed numerically in the 
evolution of histograms of activity (cf. Figure 5). The periodicity of these density 
cycles sterns from stable period 3 orbits of the isolated Keener maps for certain values 
of the parameters (cf [80] for details). 

6 Conclusion 

This chapter has described the statistical dynamics of CML's by focusing on the prop­
erties of the transfer operators induced by these models. For deterministic CML's, the 
spectral characteristics of the Perron-Frobenius operator are investigated using some 
well-known bounded-variation techniques. When the CML's are perturbed by noise, 
the transfer operators are Markov and defined by stochastic kemels . This allows us to 
treat them using some basic results of the theory of Markov operators, and we show 
that in many cases of interest they are asymptotically periodic. 
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Asymptotic periodicity is an intriguing dynamical property which has several im­
portant implications for the construct ion of statistical mechanics for these high di­
mensional dynamical systems. The first one is that when the period of the density 
cycle in (18) is greater than one, the asymptotic ensemble statistics of the CML de­
pend on the initial ensemble. This is due to the dependence of the functionals r i on fo 
in (18), and it generalizes the usual dependence of trajectory dynamics on the initial 
conditions, to the evolution of ensemble probability densities . Another consequence 
of the presence of AP is the possible presence of phase transitions in the system: If 
the period of a density cycle changes as a control parameter is tuned, then the model 
undergoes a qualitative change in the behavior of its statistical quantifiers . 

More importantly, some of the usual misconceptions concerning the true meaning 
of ergodicity are exacerbated when supposed consequences of ergo di city are violated 
by systems which turn out to be asymptotically periodic. Observations of the coherent 
behavior of globally coupled and some locally coupled CML's reported by Kaneko [43, 
44] and Perez et al. [76] have led to a controversy in the recent literature concerning 
an apparent violation of the law of large numbers in these models. In fact, since the 
law of large nu mb ers is a theorem, it cannot be violated, but its verification for CML's 
must performed with care. As explained by Pikovsky and Kurths [77], it is important 
when considering this law for ergodic systems which are non mixing, to compute the 
relevant averages with respect to ensemble densities, and not with respect to densities 
constructed from trajectories. Even if a system is ergodic, the two constructions will 
not in general be equivalent when it comes to verifying the law of large numbers . This 
is because the type of convergence to equilibrium guaranteed by ergodicity (cf. Section 
3.3) is not st rong enough to imply the equality of the two types of averages (trajectory 
vs. ensemble) wh en the system is started out of equilibrium. In most circumstances 
this would seem like a technical mathematical objection, not of great relevance to the 
practicing physicist, because one would nevertheless expect the system to relax to a 
state described by the invariant density. But if it is asymptotically periodic, a system 
will almost surely not converge to equilibrium, and in that case, the verification of 
the law of large numbers must necessarily be performed with ensemble densities. 
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Coupled map lattices via transfer operators 
on functions of bounded variation 

Gerhard KeIler 

Abstract 
We describe the transfer operator approach to coup led map lattices (CML) 

in cases where the local map is expanding but has no Markov partition (e.g. 
a general tent map). The coupling is allowed to be non-Iocal, but the total 
influence of all sites j # i on site i must be smalI. The main technical tooi 
are lattice-size independent estimates of Lasota-Yorke type which show that the 
transfer (Perron-Frobenius) operator of the coupled system is quasicompact as 
an operator on the space of functions of bounded variation. 

1 Introduction 

The purpose of this no te is to summarize results from [11) and from the unpublished 
thesis [12). Let L be a finite or countable index set, e.g. L = Z or L = Z \ dZ. We 
investigate time-discrete dynamics on the state space X = [0, I)L that are composed 
of independent chaotic actions on each component [0,1) of X followed by some weak 
interaction that does not destroy the chaotic character of the whole system. More 
specifically, let T : [0 , 1) -+ [0 , 1) be monotone and C 2 on each component of [0,1) \ 
{Co = O,(l, .. ·, (N-l , (N = I}. We assume that T"/(T')2 is bounded and that T 
satisfies the following combined expansion and regularity assumption: 

There are MEN and '" M > 2 such that 1 (TM)' 1 ~ '" Mand such that 

(1) 

for m = 0, .. . , M - l. 

Now a map So : X -+ X describing the uncoupled dynamics is defined by (SOX)i = 
T(Xi) (i E L) and coupled maps Se := ~e 0 So are introduced using appropriate con­
tinuous couplings ~e : X -+ X close to the identity on X. The regularity assumption 
in (1) is unavoidable if a weakly coupled system Se is to behave like a small per­
turbation of So , because weak couplings affect each individual map T like a small 
perturbation, and it is known that in the absence of the above assumption arbitrarily 
small perturbations can change the dynamics of T completely, see the examples in [9) 
and [1). 

In the sequel we consider C 2-couplings ~e(x) = X + Ae(x), and we call ~e an 
(al, a2)-coupling, if al, a2 are positive constants such that 

(2) 

Here D denotes the total derivative, Di the partial derivative with respect to Xi, 
1 . 100 the maximum-norm for vectors, and 11 . 1100 the corresponding operator norm 
for matrices (maximal row sum). The main result is: 

file:////DAeWeo
file:////DiDAtWn
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Theorem 1 [11, 12] Given a local map r satisfying (1) and al,a2 > 0 there exists 
f max > 0 such that for each f E [0, f max] the following holds: 

- If L is finite and if <1>. is an (al, a2)-coupling, then the coupled system S. has 
an invariant probability density h •. 

- If L = Z rand if <1>. is a shift-invariant (al, a2) -coupling, then the coupled system 
S. has an invariant probability measure whose finite-dimensional marginals are 
absolutely continuous with respect to Lebesgue measure. 

Remarks: a) The proof of this theorem relies on aspectral analysis of the transfer 
operator associated with S • . Details are provided in the next sections . 
b) <1>. is called shift-invariant if <1>.0 a = a 0 <1>. for each shift a on X = [0, l]zr. 
c) For the the tent map r(ç) = a· (I-12ç -11) with constant couplings <1>. (x) = x+fBx 
where B is a L xL-matrix with IIBlloo = 2 and 2:jE L bij = 0 for each row i, Künzle 
[12] estimates f max as follows: 

If a = 0.9, then M = 2, "'M = 3.24 and f max ~ 0.035. 
If a = 0.7, then M = 3, "'M = 2.744 and f max ~ 0.0029. 

d) In [U] two additional assumptions were made: The most important one was Ir'l > 2 
(i.e . M = 1 in assumption (1)), which excludes e.g. tent maps. The ot her one con­
cerned only infinite lattices L = zr: It was required that the couplings have finite 
range, i.e. that there is a constant w > 0 such that (DA.)ij = 0 if li - il > w. Both 
restrietions are removed in [12]. 

2 Functions of bounded variation 

2.1 Finite lattices 

The variation of a C1-function f : [0,1] -+ IR can be defined as 

var (/) = 11 
1J'(ç)1 dç . 

Approximating this integral by Riemann sums yields the more common expres sion 
var (/) = sUP{2:~=1 If(çi) - f(Çi-I)I} where the supremum extends over all finite 
partitions ço < Çl < ... < Çr of [0,1] . More important for our purposes is a third 
characterization which is a consequence of the integration by parts formula: Let 
T:= {cp E CI([O, 1]) : cp(O) = cp(I) = O,lcpl $ I} be the set of Cl-test functions 
bounded by 1. Then 

var (/) = sup (!' (ç)cp(ç) dç = sup {I f(ç)cp' (ç) dç . 
'PET Jo 'PET Jo 

J ust as the previous one th is characterization can be used for defining the variation of 
any measurable function (and not merely that of CI-functions) . Besides that it has 
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an immediate extension to functions of several variables: 
For U ç JRd open and f E Cl (U j JR) define 

11 1 d 1 varv(f):= d IDf(x)lldx= dL IDjf(x)ldx. 
v j=l V 

(3) 

(I . h denotes the sum-norm of the row vector D f .) Let 

T:= {ip E Cl(Uj JR) : iplav = 0, lipl ~ I} . 

As in the l-dimensional case var v(f) can be equivalently characterized as 

1 d 1 dL sup f(x)Djip(x) dx , 
j=l '{JET V 

and again this yields a definition of variation applicable to each measurable f : U -+ JR. 
An immediate consequence of (4) is that var v (f) = var v (g) if f = g Lebesgue 

a.e. Therefore (4) can be used as a definition of variation for equivalence classes of 
measurable functions , and we can define the space of functions of bounded variation 
on U 

BV(U) := {J E L l (U) : var v(f) < oo} . 

Let IIfllsv := var v(f) + IIfllL'. Then 

(BV(U), II . Ilsv) is a Banach space, and if U is bounded with "piecewise 
smooth" boundary, then the unit balI of (BV(U) , II . Ilsv) is a compact subset (5) 
of (Ll(U), 11. IIL'). (This is true in particular for open rectangles in JRd .) 

This and further properties of functions of bounded variation can be found in [7) and 
[16). 

Remarks: a) Our not ion of variation is not invariant under isometries IJl of JRd, i.e. 
var v(folJl) and var IJIv(f) do not necessarily coincide. This invariance can be achieved 
by using the euclidean 2-norm of the gradient instead of the I-norm in (3). Later we 
refer to this as "euclidean variation". lndeed, several basic results in [11) are derived 
for general p-norm variations. Of course, BV-norms based on different p-norms are 
equivalent, but constants appearing in various estimates are different, and they are 
crucial for the application we envisage. 
b) Usually the variation is not normalized by ~. This is unessential for fixed d but 
rather convenient for the asymptotics d -+ 00 we have in mind. 

If, in the context of coupled map lattices, X = [O,I)L with some finite index set 
L, we write varL(f) instead of var (O ,l)L(f). The importance of BV(X) is that it 
contains the invariant probability densities h, from Theorem 1. 
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2.2 Infinite lattices 

If the index set L is countable, it is not so obvious how to generalize the idea that an 
invariant probability measure for S. should have a "density" / of bounded variation. 
Indeed, each generalization that requires / to be a function in the strict sense is 
useless for our purposes: Suppose that L = Zand that T has a unique absolutely 
continuous invariant probability measure v that is mixing (this is the case e.g. for the 
tent map with a > 72). If 11 is an invariant probability measure for the uncoupled 

system So and if 11 has absolutely continuous finite-dimensional marginals, then 11 is 
necessarily the infinite product measure vL. Hence 11 is absolutely continuous with 
respect to the infinite product Lebesgue measure )...L on X if and only if 11 = )...L , i.e. 
if v itself is Lebesgue measure on [0, IJ . More generally, as )...L is ergodic under the 
shift transformation, there is no other shift-invariant probability measure absolutely 
continuous with respect to )... L on X. But for a shift-invariant coupling <I>. this is just 
the class of measures in which we hope to find S.-invariant ones. 

Therefore we look at those (signed) measures 11 on X whose finite-dimensional 
marginals IlJ are absolutely continuous with a density IJ of bounded variation. (Here 
J c Lis finite and IlJ is the projection of 11 to a measure on [0, IV.) Denote by 1111 (X) 
the total variation of 11, i.e. the sum of the masses of the positive and the negative 
part of 11. 1 It is proved in [11, Lemma 2.4J that 

J I/J(x)1 dx /' 11l1(X) for J /' X . (6) 

So it makes sense to think about a signed measure 11 on X with absolutely continuous 
marginals as a projective family / = (IJ )JE:F(L) of marginal densities where F(L) 
is the collection of all finite subsets of L. We denote the space of these families 
/ by L 1 (X) and rem ark that L 1 (X) is a closed linear subspace of the space of all 
signed Borel measures on X equipped with the total variation norm. The variation 
of / E L 1 (X) is now defined naturally as 

var(J) := sup{varJ(IJ) : JE F(L)} . 

Remark: If L = zr, if 11 is a shift-invariant measure on X and if J1 C J2 C . . . c L 
is an increasing sequence of cubes centered at 0, then var J1 (IJJ ~ var J2 (Jh) ~ . .. , 
see [12, Lemma 3.6J. 

Let BV(X) := {J E L 1(X) : var(J) < oo} and define 11/IIBv := var(J) + II/Ilu 
for / E BV(X) , where II/Ilu := sUPJE:F(L) IIIJllu is just the total variation of the 
measure represented by /, see (6) . It is not hard to prove that (BV(X), II . IIBV) 
is a Banach space, but in contrast to the finite-dimensional situation (5) the unit 
ball of (BV(X), II . IIBV) is not a compact subset of (L 1 (X), II . Ilu) . Therefore 
the spectral arguments developed in the next section for finite lattices do not carry 
over to infinite lattices. There is however a weaker type of compactness which still 
allows to find invariant measures in BV(X): Define a family of seminorms on V by 

1 I apologize for the two distinct meanings of the word "variation" which just reflect common 
usage. 
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lIJlil := IlfJllu (J E :F(L)). These seminorms define a locally convex topology on 
Ll(X), and using (5) one proves [11, Theorem 2.5]: 

The unit bali of (BV(X), II . IIBv) is compact in (L l (X), {II . lil} lE:F(L)) ' (7) 

3 Transfer operators 

3.1 Finite lattices 

The map S, : X --+ X induces a transformation S; on the set of all signed measures v 
on X by S; v = v 0 S,-l . If L is finite, S; transforms absolutely continuous measures 
into absolutely continuo us ones as long as f < all because S, is nonsingular, see (2) . 
Therefore we may interpret S; as an operator on L l (X) transforming densities to 
densities. This is just the well known transfer operator, defined explicitly by 

S;f = L (ldet~S I OS;ji) · ls,z 
ZE z l ' 

where Z; denotes for each n ? 1 the partition of X into pieces on which S; is C2. As 
S, = <1>, 0 So we have Z,l = ZJ is a rectangular partition, namely the ILI-fold direct 
product of the monotonicity partition of T. Observe however that this is not true for 
n>l. 

We want to argue that S; leaves actually the space BV(X) invariant. More pre­
cisely: Given Tand al, a2 as in Theorem 1, there are constants Cl, C2 > 0 and fo > 0 
such that for each f E [0, fO] and for each f E BV(X) holds 

(8) 

(Here as in the sequel we write var (I) instead of var L (I).) This type of inequality 
was first derived for piecewise expanding maps like T in [13]. Generalizations to 
higher dimensional maps are numerous, see e.g. [10, 2, 3]. As these approaches use 
euclidean variation or some variant of it, they do not yield dimension independent 
constants Cl, C2 if applied to coup led map lattices. (This will be explained later.) 
There is a slightly different not ion of variation introduced in [1] which leads to similar 
conclusions as the ones discussed here. 

If the constants 11:1 and Cl are such that a := (2. + Cl f) < 1, a simple inductive 
1<1 

argument shows that lim suPn ...... oo var ((s;)n f) ::; 1~2o. for each probability density f E 
BV(X), and because of the compact embedding property (5) the KakutanijYoshida 
theorem yields the Ll-convergence of the sequence (~L~':~ (S;)k f)n>O to an S,­
invariant probability density (cf. [13]) thus proving the first part of Theorem 1. But 
even more is true. The Ionescu-TulceajMarinescu theorem can be applied and results 
in the following 
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Theorem 2 There is f max > 0 independent of L such that for each f E [0, f max] holds: 
The transfer operator s;, canonically extended to the complexification of BV (X), has 
aspectral decomposition 

p 

(S;t = L ..\;'Pi + (s;)n 0 P 
i=l 

where ..\1 = 1, I..\d = 1 (i = 1, ... ,p) and where Pand the Pi are mutually orthogonal 
finite -dimensional projections commuting with S" and such that P + Li Pi = Id. 
Furthermore there are M > 0 and q E (0,1) such that 

Remarks: a) The nu mb ers p, rank(Pi ), Mand q may dep end heavily on the dimen­
sion d = ILI of the phase space X. 
b) The assumption a < 1 is rather restrictive, because it requires inf 17'1 = 11:1 > 2, 
which excludes e.g. the tent maps 7. It can be avoided by deriving inequality (8) 
directly for (S;)M, in which case 11:1 is replaced by II:M > 2. However, while this is 
easy for f = 0 because Zt: is a rectangular partition, it is much more delicate if f > O. 
We discuss the difficulties of th is case, which was treated in the thesis [12], below. 
c) For transfer operators of piecewise expanding maps such a theorem was first proved 
in [10]. 

Next we discuss the role expansion plays for the derivation of inequality (8). The 
following lemma from [11] is basic: 

Lemma 1 Let U, V C IRd be open and suppose T E C 2 (U; V) is such that DT has 
full rank. Let A := (DT)-l. Then 

varRd(T" f . Iv) ~ sup IIA(x)lloc . varRd(J . lu) + ~ . sup IV' . A(x)h ·jlf(x)1 dx 
"'EU d "'EU U 

for f E L 1 (U). (Here V' . A denotes formal matrix multiplication of the row vector V' 
with the matrix A.) ffT extends continuously to au with T(aU) = av then also 

var v(T" 1) ~ sup IIA(x)lloc . var u(J) + ~ . sup IV'· A(x)h ·jlf(x)1 dx . 
"'EU d "'EU U 

Remarks: a) The estimate of this lemma is sharp in the sense that it is a direct 
consequence of the identity 

div(1jJ) 0 T = div(A . (1jJ 0 T)) - (V' . A) . (1jJ 0 T) 

valid for any test function 1jJ E Cl (V; IRd
2 ). 

b) The factor sUP"'EU IIA(x)lIoc is less than 1 if DT increases the I . Ioc-norm of each 
vector in IRd

. Also ~. sUP"'EU IV'· A(x)II ~ SUP1<i<dsuP",EU IIDiA(X)lloc. 
c) If one works with euclidean variation, sUP"'EU lIA(x)lIoc in Lemma 1 is replaced by 
sUP"'EU IIA(x)112' which may lead to sharper estimates in some situations. 
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d) The lemma remains true, if U ç IRd " V ç IRd
2, dl > d2 , and if A denotes the 

Moore-Penrose inverse of DT. 

In order to derive (8) , Lemma 1 must be applied to each "branch" of S, separately. 
As DS,(x) = DiP,(Sox) . DSo(x), we have 

sup II(DS,)-ll1oo 1 
< sup IIDSo(x)lloo . sup IIDiP,(y) 1100 ~ - sup IIE + DA,(y)lloo 

z 

and 

z y 11:1 Y 

1 
< -(1 + const· f) 

11:1 

sup IV· (DS,)-l(X)h ~ const 
z 

with constants independent of the dimension, see (2). Summing over all branches 
S'lz yields 

var (S; f) ~ ~(1 + const· f) ' L varRd(f · lz) + con st . IlIliL' (9) 
11:1 ZEZ; 

The crucial step is now to pass from (9) to (8), i.e . to show that 

varRd(f· lz) ~ (2 + con st . f) . var z(f) + const ·ll/(x)1 dx (10) 

for each Z EZ;. In fact, any factor p replacing (2 + const· f) in front of var z(f) that 
neither depends on the dimension d = ILI of Z nor on f ~ f max would be useful. We 
discuss some classical cases of this inequality: 

- If d = 1 and Z = [u, vJ one simply has (see [13)) 

varR(f · lz) = I/(u)1 + I/(v)1 + var z(f) ~ 2 · var z(f) + -I _2 -I r I/(x)1 dx . 
v -u Jz 

- If Z = [u1,vd x ... x [Ud,VdJ is rectangular (our situation!), then the trivial 
estimate ·for d = 1 extends easily to the general case, if one uses the variation 
based on the I . h - norm as introduced above. Namely: 

dIr 
varRd(f· lz) ~ 2· var z(f) + 2 ~ lVi _ uil Jz I/(x)1 dx (11) 

- If az is piecewise smooth and satisfies a co ne condition (our situation!) and 
if one works with euclidean variation, then there are p > 1 and C > 0 such 
that fez I/(s)1 ds ~ p . var z(f) + C . fz I/(x)1 dx. Here p depends essentially 
on the angle w of the widest cone that can be attached to az at any of its 
points , namely p :::::: (sin ~ )-1. However, even for rectangular Z the value of 

(sin ~)-1 = .jd depends heavily on the dimension d of Z . This is the main 
reason why we do not use euclidean variation. 
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What remains is the case where Z is not rectangular but only close to that. This 
situation is encountered if 11:1 ::; 2 such that var ((S;)M I) with M > 1 as in (1) must 
be estimated directly. The partition Z<M, although not rectangular, is very close to a 
rectangular one in the following sense: 

Lemma 2 [12, Satz 2.26] Suppose II:M > 2. Then there is lOl > 0 such that lor 
all 10 E (0, lOl) holds: The partitions zf:I and Z~ have the same cardinality and their 
elements ZO,i and Z< ,i, respectively, can be labeled such that ZO ,i is diffeomorphic to 
Z<,i with a diffeomorphism IJl <,i: Z<,i -t ZO ,i which is Cl-close to the identity in the 
lollowing sense: 

lor all iEL and x E Z<,i with constants which are independent ol the size ol L. The 
same is true lor IJl-i 1 . <, 

Let IJ! = 1JI<,i ' With the aid of of Lemma 2, Lemma 1 and Remark b) thereafter we 
prove (10) for Z = Z<,i as in [12, Lemma 1.40]: 

var RAl · lz •. t ) var RA(IJI-1)" IJl * I · lz •. t) 

< (1 + const · 10) • var Rd(lJI* I· 1zo.t) + con st . f' r I IJl * l(x)1 dx 
JZo.t 

< (2+const·f).varzo.t (IJI*I)+const. r I/(x)ldx 
Jz .. t 

< (2 + const· 10)' var z •. tU) + const· r I/(x)1 dx . 
JZ •. t 

As the other steps of the estimate are essentially the same for S~ as for S<, we obtain 
the basic inequality (8) for (S;)M with 11:1 replaced by II:M, and Theorem 2 follows as 
before. 

3.2 Infinite lattices 

The way var U) is defined in case L = Z rallows an immediate extension of the basic 
inequality (8) from the finite to the infinite case. In [11] the estimate is obtained 
directly from the "dl> d2" version of Lemma 1 (see Remark d) thereafter). Alter­
natively, in [12] the dynamics on X = [O,I]L are approximated by those on finite 
periodic lattice systems. For the easy details we refer to the original sources. 

Unfortunately I do not see how classical ergodic theorems couid be applied to S; in 
the infinite lattice case just on the basis of the compactness property (7) and inequality 
(8). For S; acting on (U (X), II . liL!) property (7) does not guarantee the weak com­
pactness of sequences (~ L;;:~ (S;)k I)n>O which is needed for the Kakutani/Yoshida 
theorem. On the other hand, I am not ab Ie to appIy a topological vector space ver­
sion of this theorem that one might try for S; acting on (L1 (X), {II . liJ} JE:F(L)) or 
on Ll(X) equipped with a similar topology (see the end of section 2.2), because I 
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cannot prove uniform continuity of the iterates (S;) n. However, properties (7) and 
(8) are of course sufficient for the existence of weak accumulation points of sequences 

(~L~':~(S:)k J)n>O and thus for S.-invariant measures in BV(X). 

4 Relations to other approaches 

There are a few other mathematical approaches to chaotic coupled map lattices in 
the literature of which I know. 

- Bunimovich and Sinai [6] consider piecewise onto maps T : [a, 1] ~ [0,1] and 
particular interaction operators cp. which allow them to construct Markov par­
titions, to represent a CML as a 2-dimensional shift system and to identify the 
invariant measures with absolutely continuous marginals as Gibbs measures for 
a suitable family of conditional probabilities. Referring to results from statisti­
cal mechanics they prove this way existence, uniqueness and exponential mixing 
properties of these measures. 2 Volevich [15] extends this approach from a pure 
equilibrium theory to a more kinematic theory by characterizing the class of 
measures that is attracted under the dynamics to the unique invariant one. 3 

(The corresponding class in our approach is BV([O, l]zr)). Analogous results for 
coupled axiom-A-systems are proved in [30]. 

- In a series of papers Gundlach and Rand [8] study CMLs with piecewise onto T : 

[a, 1] ~ [0,1] but with much more general couplings than Bunimovich and Sinai. 
Using a "bundIe system approach" they construct suitable Markov partitions 
also for these more general couplings. In this way they obtain results similar 
to those of Bunimovich and Sinai. 4 In addition they describe the dynamics of 
the CML by means of a "bundIe transfer operator" which gives further insight 
into the mixing properties. 

- Bricmont and Kupiainen [4] study systems where both the map T : SI ~ SI and 
the interaction operator cp. are real analytic. Using a so called cluster expansion 
for S; when L is fini te they obtain aspectral decomposition of S; acting on a 
suitable space of smooth functions where the involved constants are estimated 
directly. (Technically they use that the transfer operator T* of T has 1 as a 
simple eigenvalue and the rest of its spectrum is contained in a disc of radius 
less than 1.) This is in sharp contrast to our Theorem 2 where the constants 
result from more abstract spectral theory and no explicit dep enden ce on the 
size of L is known, even under the same spectral assumptions on T* as in [4]. It 
is not clear whether cluster expansion is applicable in our context. 

2The result of Dobrushin referred to in [6, 30) does not exactly apply to the setting of these papers. 
Bricmont and Kupiainen [5J, however, provided recently a result of this type which is exactly tailored 
to the needs of the statistical mechanics approach . 

3 Also this result is rederived in [5). 
4Instead of their reference to aresult by Campbell and Rand, which is not correct, one has to use 

Theorem 1 of [5). In the same paper this point is discussed in some more detail. 
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Dynamics of networks: Features which persist from 
the uncoupled limit 

R.S. MacKay 

Abstract 

The theme of these notes is to look for aspects of the dynamics of a network 
of units which can be continued from the uncoupled case, uniformly in the si ze 
of the system. Same answers are given , and particularly interesting answers are 
found in the case of conservative systems. 

1 Introd uction 

Many systems are weIl described as a network of dynamicaIly interacting units. As 
examples, consider: 

• electricity production, dis tri but ion and consumption networks 

• Josephson junction arrays 

• optical computer memory 

• crystals and quasicrystals 

• multiceIlular organisms 

• nervous systems 

• economies 

The issue I wish to address is how much can be learned from the uncoupled case. One 
might think the answer is "very little", and in deed there are many phenomena, like 
waves, pattern formation, and synchronisation, which dep end heavily on the coupling. 
Nonetheless, a lot can be learned from the uncoupled limit. Inparticular, many results 
can be obtained which are uniform in the si ze of the network. In fact they also apply 
to infinite networksj from the physical point of view, infinite networks do not exist , 
but they are convenient mathematical idealisations. 

By a network let us understand for present purposes a system of ordinary differ­
ential equations (ODEs) of the form 

x. = F.(x.) + K.(x , f), (1) 

where s belongs to a countable index set S labeIling units of the network, X B belongs 
to some finite-dimensional manifold MB, x denotes the whole configuration (XB).ES, 
and f belongs to a finite-dimensional manifold P (parameter space). We might as weIl 
think of P as !RP , some pEN, because my analysis will be local to a neighbourhood 
of a point 0 of P, where 

KB(x,O) = 0, 'Is E S . (2) 
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Thus x is a point of M = x.EsM., and the equations can be written as 

x = F(x) + K(x, E). (3) 

Let us call Fa the local dynamics of unit s and K the coupling. Suppose that each M. 
and Pare endowed with Finsier metrics, meaning a metric induced by a norm 1.1 on 
tangent vectors, and for the norm of a tangent vector to M we take the supremum 
over s E S of the norms of its components on the M •. Furthermore, I suppose that 
F is Cl (with respect to the sup norm) and K is jointly Cl in (x, E) . 

A prime example of coupling is diffusive coupling on a graph. Here S is the set of 
no des of a graph, M. = IRN for some N, P = IR, and 

K.(x, E) =: L (x r - x.), 
a rEN. 

(4) 

where N. is the set of nodes neighbouring to s in the graph, and ka is the number of 
neighbours. Note that our definition of a network does not require the coupling to be 
local in any sense, though we will in due course examine the effects of locality of the 
coupling if it exists. 

Extensions of the definition of network, and variations on the theme, are possible. 
For ex~ mple, there is the much studied discrete-time analogue, coupled map lattices. 
Many of our considerations can be translated directly to that context, but I pre­
fer to concentrate on the continuous-time case as being closer to most applications, 
using coupled map lattices only as a simplifying pedagogical tooI in Section 6. An 
extension which deserves serious attention is to couplings that are not described as 
perturbations to the vector field on the product manifold, for example time-delayed 
coupling, or coupling via a convolution in time, or via a capacitor or inductor or a 
bistable system (as in some cell membranes ), or even via a partial differential equation 
(PDE) representing a transmission line. I have not yet addressed these generalisa­
tions, though I learnt recently that Jack Hale has looked at the transmission line case. 
Indeed, I learnt from Hale that in addition to the references that I cite here there are 
some other precursors to several of the issues I will address. I have not yet had the 
time to study them, however, and I apologise to both the authors and the readers for 
this incompleteness. 

The lectures were given in two parts. In the first lecture, persistence of equilibria, 
stability, the effects of locality of the coupling, periodic orbits, uniformly hyperbolic 
sets, normally hyperbolic manifolds, and structural stability for networks were dis­
cussed. In the second lecture, I specialised to the Hamiltonian and time-reversible 
cases, which I refer to collectively as conservative. The notes follow the same outline. 
I will not touch on the important area of ergodic theory of networks (interested read­
ers are referred to [30], for example), though recently I think I have found a beautiful 
approach to understanding the statistical behaviour of networks of chaotic units. Nei­
ther will I touch on the interesting and I believe potentially very useful concept of the 
rotation set for the chain-recurrent set; for information about that see [22] . I would 
like the notes to be seen as partly a survey of established results, and partly as an 
invitation to join an interesting ongoing research programme. 
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2 Equilibria 

Let us begin by studying to what extent equilibria of the uncoupled network persist 
to the coupled case. This section is based on [27]. From Eq. (1), it is a question of 
solving 

G(x, t:) := P(x) + K(x, t:) = O. (5) 

Suppose xo is an equilibrium for f = 0, i.e. for all s E S 

(6) 

and suppose it is uniformly non-degenerate l , meaning that there exists B E IR such 
that for all s E S 

(7) 

Theorem 1 There exists t:o > 0, depending only on the suprema ofiIDPII, IIDP-111, 
11 aa~ 11 and IIDKII/1t:1 in a neighbourhood U of (xO, 0) E M x P, such that XO has a 
unique continuation X(t:) for 1t:1 < t:o (with X(O) = xO J. 

Here and elsewhere, when applied to functions on M x P, D den ot es derivative with 
respect to x E Mand t. denotes derivative with respect to t: E P . 

Theorem 1 is proved by application of the implicit function theorem (e.g. [12]) to 
Eq. (5) . Furthermore, it follows from the proofthat the function X is Cl and satisfies 

BX -I BK 
& = -DG(X(t:),t:)) &(X(t:),t:), (8) 

as long as DG remains invertible. 
We can use this to estimate an explicit t:o for Theorem 1. For example, taking 

norms of both sides of Eq. (8) and using Eq. (5), 

Suppose 

BX 11 aa~ (X(f), t:)11 
1&1 ~ IIDP-I(X(t:))II-1 -IIDK(X(t:),t:)11 

IIDP(x)-lll > a - bT, 

IIDK(x , t:)11 < C'T/, 

BK 
11&(x,t:)11 < d+eT+fTJ, 

in some neighbourhood U of (xO, 0), where 

T 

(9) 

(10) 

(ll) 

(12) 

(13) 

(14) 

1 Actually it is not necessary to insist on uniformity as this is automatic under the Cl hypothesis 
on F: if DF is bounded and invertible then the inverse is bounded. See [13), for example. 
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Then 
I aT I < d + eT + ITJ 
af. - a - bT - CTJ ' 

R.S. MacKay 

(15) 

as long as x remains in U and the denominator remains positive. It follows that the 
continuation can be performed at least up to f.o given by the value of TJ at the first 
time that the solution of 

dT d + eT + jTJ 
= 

dTJ a - bT - CTJ 
(16) 

reaches either the boundary of U or the line a - bT - CTJ = o. 
Here is a concrete example, which we call coupled bistability. Suppose all the 

Fa = I, a Cl "bistabie" function of one variabie, possessing attracting zero es at 
x = 0 and 1 with 1'(0),1'(1) < 0, and I' is monotone on intervals [0, Co) and [Cl, 1), 
with I'(Co) = I'h) = O. Suppose K is diffusive coupling on a graph as in Eq. (4), 
and f. E 114 . Then we can estimate IIDG-lll as in Eq. (9), or better by 

1 1 
IIDG- II ~ IIA-lll-l _II~II' (17) 

where A is the diagonal part of DG and ~ its off-diagonal part. Hence 

(18) 

as long as the denominator remains positive. But the I'(xa) all start negative and 
f. ~ 0, so it follows that 

1 
IIDG-lll ~ . f (-f'( ))' 

In sES X s 
(19) 

as long as the denominator remains positive. 
We could estimate I ~~ I by a formula like Eq. (12) but we can do better. All 

solutions of Eq. (5) which are continuations of X O E {O, I}S have xE [0 , I)S for f. ~ O. 
This is because if Xs is the leftmost value then Ks ~ 0, so to solve Eq. (5) we require 
I(x s ) ~ O. Since 1(0) = 0 and 1'(0) < 0, the solution can not cross O. Similarly, it 
can not cross Xs = 1. In the case of an infinite network the above argument needs 
modifying by taking the limit of Xs near infsEs(xs ), but the same conclusion holds . 
Hence 

aK 1 
lal ~ sup -I L (X r - xs)1 = 1. 

f. zE[O,lJS ,sES ks rEN. 
(20) 

Putting Eqs (8), (19) and (20) together, 

dT 1 1 
- < < ---:---;---:--:-;--;----:-~---;-;-
df. - infsES ( - f'(x a )) - min( - f'(T), - 1'(1 - T))' 

(21) 

by the monotonicity of 1' . Hence, the equilibria continue at least up to 

l
min(co,l-Cl) 

f.o= 0 min(-I'(T),-I'(I-T))dT. (22) 
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Note that if the minimum in the integrand is always attained by the first term then 
this gives simply - i(eo). If it is always attained by the second term then it gives 
i(cd. Consequently, if either one or the ot her is true, as for cubic i, then we obtain 
the very simple explicit bound 

(23) 

In conclusion, for 0 ::; E < EO there is an injection from {O, I}S into the set of 
equilibria. We can say that "computer memory survives weak coupling" . 

By the same method, we can continue unstable equilibria of the uncoupled system, 
using for one or more s E S, x~ = u, an unstable zero of i, provided f'(u) > O. By 
continuity of i at least one unstable zero must exist between 0 and 1, and generically 
it satisfies i'(u) > O. But note that we will not be able to obtain quite as good 
a bound EO for these unstable equilibria because the neat cancellation of E in the 
denominator of Eq. (18) will no longer occur. Nonetheless the resulting differential 
inequality is easily solved explicitly, and gives an explicit EO. 

The method can even be applied to problems where the uncoupled system pos­
sesses only one equilibrium, but on sufficient coupling gains many equilibria. An 
example is the type of system with negative diffusion discussed by Mallet-Paret in 
this Colloquium. The way the method can be applied is to start from a different 
uncoupled limit, which includes the diagonal part of the negative diffusion and hen ce 
exhibits bistability at each site on ce the diffusion parameter exceeds a certain value, 
and then show that in suitable parameter regimes one can continue the resulting sta­
bie equilibria with respect to the off-diagonal part of the diffusion. I will write up the 
details separately. 

The coup led bistability example raises two questions. Firstly, do the equilibria 
keep the same stability-type as E grows? Secondly, how do we know that no new 
equilibria are created as E grows? We will address the first question immediately, and 
the second question later. 

3 Stability 

In this section it is proved (following [27] again, but improving on it) that subject to 
a strengthening of the condition of uniform non-degeneracy to uniform hyperbolicity, 
the equilibria obtained in Theorem 1 preserve their stability-type for at least IEl < 
El, for some El > 0 but not necessarily as large as EO . By preserve their stability­
type I mean that there is a continuous (with respect to E) splitting of the tangent 
space into contracting and expanding subspaces for the linearised dynamics about the 
equilibrium X (E) j in particular their dimensions do not change. Here, "expanding" 
means "contracting in negative time". Let us say that an equilibrium x O of the 
uncoupled system Eq. (1) is uniiormly hyperbolic? if there exists B E IR such that for 

2 As in Section 2, one does not need to insist on the uniformity: uniformity with respect to s E S 
follows from F E Cl, and uniformity with respect to >. is automatic because for 1>'1 > IIDFII we have 
II(>.I - DF)-lll :::: P>I-liDFII' and it is continuous with respect to >. ~ spec DF. 
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all s E S and À on the imaginary axis, 

(24) 

where I denotes the identity matrix. 

Theorem 2 There exists f1 > 0, depending only on the suprema of sUP!R,x=o II(ÀI -
DF)-111, IIDFII, 11 ~~ 11 and IIDKII/lfl in a neighbourhood U of (XO, 0) E M x P, such 
that the continuation X(f) of (xO,O) keeps the same stability type for Ifl < f1 · 

To prove this, the linearised dynamics is given by 

(25) 

For À ~ spec M, define the resolvent operator 

(26) 

Then if there is no spectrum on the imaginary axis, the desired splitting is given by 
the complementary projections 

IIc = ~ 1 R,xdÀ, (27) 
1n r e 

IIe = ~ 1 R,xdÀ, (28) 
1n r. 

where re and re are closed anticlockwise contours in the complex À-plane enclosing 
respectively all the spectrum in the left half-plane and all the spectrum in the right 
half-plane. 

To prove that no spectrum reaches the imaginary axis for f small enough and that 
the projections are continuous with respect to f, we note firstly that if 

(29) 

then R,x (M') exists, so À ~ spec M'. Let 

T = sup IIR,x(M(O))II, (30) 
!R,x=o 

which is finite, by the hypothesis Eq. (24). Then there is no spectrum on the imaginary 
axis as long as 

1 
IIM(f) - M(O)II < - , 

T 
(31) 

and by continuity of M on f (in fact uniformly in the system size) , we deduce that there 
is f1 > ° such that no spectrum reaches the imaginary axis for Ifl < f1 . Secondly, we 
note that R,x(M) is continuous with respect to M, for À ~ spec M. Indeed, if Eq.(29) 
holds then 

(32) 
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So in particular we have 

, IIR>.(M)1121IM' - Mil 
IIR>.(M ) - R>.(M)II ~ 1 _ IIR>.(M)IIIIM' - Mil (33) 

The continuity of the projections with respect to f (as long as no spectrum re ach es 
the imaginary axis) follows from this . 

As an illustration, for the equilibria of the example of the previous section, ob­
tained by continuation from {O,l}S, 

1 
r = -m-in-:7( I ,-:-,-:-( 0"""') 1,-:-1 ,-:-:-, (:-:-1 ):-:-:-1) , 

(34) 

and 
IIM(f) - M(O)II ~ sup II'(x.) - I'(x~) - fl + f . (35) 

.ES 

So we deduce that X(f) is stable as long as 

max(2f, 11'(0) - 1'(7) + fl + f, 11'(1) - 1'(1- 7) + fl + f) < min(II'(O)I, 11'(1)1) . (36) 

This can be translated into a bound on f by using Eq. (21) . 
In fact, for this example if every unit has the same number of neighbours then 

we can do better, because it becomes a gradient flow . Gradient flows are dynamical 
systems of the form: 

:i; = -\7W(x) (37) 

for some "energy function" W, where the gradient is taken with respect to some inner 
product . For gradient flows, the stability type of an equilibrium is preserved as long as 
it continues to be non-degenerate, meaning DG (in this case D 2 W) remains invertible. 
Thus in this case, the bounds for continuation and preservation of stability-type can 
be taken identical. This is because the spectrum is purely real, so the only point of the 
imaginary axis it can approach is 0, and that corresponds to losing non-degeneracy, 
whereas in the general case, Poincaré-Andronov-Hopf bifurcation can also occur. So 
the equilibria of the coupled bistability example remain stable as long as they remain 
non-degenerate, in particular at least up to fO. 

In the case of attracting stability type (i.e. hyperbolic with trivial expanding 
subspace) one could ask the question whether the equilibrium is attracting for the 
full (nonlinear) system (with respect to sup-norm). This is almost certainly true, 
but I did not yet check it. If so, one could further ask whether uniform stability 
estimates can be found with respect to the size of the system. For example, are there 
K- < 1,00 > 0, J1- > 0 independent of system size, such that for all 0 < óo, the orbits 
of all initial conditions within K-O of the equilibrium lie within óe - /-l t for all positive 
time t? Again, this is almost certainly true, but I have not yet done the estimates. 

4 Spatial structure 

Next, we address the question of what additional statements we can deduce about the 
equilibria we have continued, if the coupling is local in some sense. Let us suppose 

http://fAf.ll
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ametrie don S. For example, for a eonneeted graph, d(r, s) eould be the shortest 
number of edges joining the nodes rand s, and this is our default metrie if we refer 
to the network as a graph. 

There are several interesting types of loeal eoupling. The conditions all apply to 
the combination 

L 
_ ~ aKs 

rs - E aX
r 

. 
(38) 

The simplest is nearest neighbour coupling in a graph: 

ILr.1 = 0 for d(r, s) > 1. (39) 

Another is exponentially decaying coupling, though this needs careful formulation in 
cases where the number of units at distance p grows exponentially with p. 

If the coupling is loeal we expect the resulting solutions X(E) to have some special 
spatial features . For instanee, in the example of Section 2, if x~ = 1 for one unit, 
say s = 0, and 0 elsewhere, then does Xs(E) decay exponentially with d(s, o)? More 
generally in this example, if two equilibria xO and iO at E = 0 differ only at one site, 
0, then does the difference X.(E) - X.(E) decay exponentially with d(s, o)? 

We have proved this for the example of Section 2 and in a number of other sit­
uations. The key step is to derive exponential deeay estimates for the norms of the 
matrix elements of DG-I . We call this property finite coherence length. First we de­
scribe some finite coherence length results and then we will return to how to deduce 
exponential deeay results of the type of the previous paragraph. These results were 
derived in a different context but apply here nonetheless. Note that cases 1 and 3 do 
not require any smallness assumption on the off-diagonal part of DG. 

Case 1: One-dimensional chains with nearest neighbour coupling only, though not 
necessarily symmetrie nor translation invariant . This was done in [24]. Write 

(40) 

where A is the (block- )diagonal part of DG, and L± are the super- and sub- (bloek-) 
diagonals. Supposing DG is invertible, let 

( 41) 

and 

"'=~+J 1 +1>1. 2TJ 4TJ2 
(42) 

Then for all À E (",-1,1) there exists K E IR (see [24] for an explicit way to obtain 
K) such that 

(43) 

Case 2: One-dimensional chains with not too large exponentially decaying coupling, 
again not necessarily symmetrie nor translation invariant . This was done in [25]. 
Write 

DG = A+~, (44) 
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with A being the (block-)diagonal part and ~ the rest . Supposing A is invertible, put 

J = _A-1~, (45) 

so 
DG = A(1 - J). (46) 

Suppose that ~ decays exponentially in such a way that 

(47) 

for some sequence Ck with 
(48) 

and 
(49) 

Then the action of 1 - C decomposes into Bloch spaces BIJ, () E IR/27rZ, where the 
dep enden ce on site nu mb er s E Z is proportional to eisIJ. Let 

A((}) = (1 - C)IB(IJ), (50) 

which is analytic in the strip I~(}I < log'\ -1 and invertible on the real axis. So A((})-l 
is analytic in the strip 

I~(}I < Jl:= min(log,\-l, ~ê), 

where ê is the nearest degeneracy of A to the real axis. Thus 

Using the formula 

1
. log 1((1 - C)-1 )rsl 
1m sup ::; -Jl. 

Ir-sl-too Ir - si 

((1 - J)-l)rs = LIl JS,,8,+1' 

-yEr i 

(51) 

(52) 

(53) 

where r is the set of paths 'Y = (Si) from r to s, and Eq. (47), we deduce that Eq. (52) 
also applies to (1 - J) -1 . 

This case has a generalisation (though with less explicit decay rate) to exponen­
tially decaying coupling on all "non-exponential" graphs under hypotheses Eq. (47) 
and Eq. (49); see section IV-3 of [5] . 

Case 3: Graphs for which DG is symmetric. This is satisfied for gradient ftows, or 
if the coupling is symmetric and the on-site dynamics is locally a gradient flow (in 
particular, one-dimensional on-site dynamics suffices) . We suppose DG is invertible, 
but we will use the f 2 norm, denoted by subscript 2, in order to establish exponential 
decay estimates. By the hypothesis of symmetry, 

(54) 
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Choose a site 0 E S, and for n ~ 1, let 

Pn = L I(DC- 1 )osI2. (55) 
s:d(o ,s)~n 

Let 

L DC;sDCsq for d(p,o) = d(q,o) = n, (56) 
s:d(s,o)=n-l 

L DC;sDCsq for d(p,o) = d(q, 0) = n - 1, (57) 
s:d(s,o)=n 

and 
T = sup(IIA(n)112, IIB(n)112) ::; IIDKII~ ::; liDKW· 

n~1 

Then it is proved in [8], using aresuit from [6], that 

where 

c 
.x 

IIDC- 1WT, 
2K 

<1. 
1 + vI + 4K2 

(58) 

(59) 

(60) 

(61) 

I expect that there is a general result which would encompass all three of these 
cases and many more. It would have the form "Ars exponentially decaying and A 
invertible implies (A -1 )rs exponentially decaying", but I have not yet found it. Note 
that many people (e.g. [30, 11]) consider weighted spaces which force exponential 
decay, and then prove that the solution lies in these spaces. I prefer not to do this . 

Finally, I discuss some of the consequences of finite coherence length results. 
Firstly, the reason for the name is that the matrix DC- 1 governs the response to 
a small external force distribution h = (hs)sES, The problem 

x = C(x, €) + 1/h (62) 

has a unique equilibrium solution near each non-degenerate equilibrium X(f) of the 
undisturbed system, given by integrating 

(63) 

from 1/ = 0 to 1 starting at x = X(€) . So if the matrix elements of DC- 1 decay 
exponentially with distance between units then the response to a localised external 
force h decays exponentially from that location. 

Secondly, if two equilibria at the uncoupled limit differ only at one site, say 0 E S, 
then the difference between their continuations X(f) and X(f) decays exponentially 
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from that site, at least for € small enough. To prove this let us adapt an idea of [5] . 
Replace the equation Go(x) = 0 for the unit 0 by the equation 

(64) 

where >. wil! range from 0 to 1. Denote the corresponding system of equations by 

ë(x, >') = o. (65) 

Now for >. = 0 we have a solution X(f) and for >. = 1 we have a solution X(€). For € 

small these are continuations of each other with respect to >. via a solution X(f, >') of 
Eq. (65), because this is true at € = O. As long as they remain continuations of each 
other with respect to >., we have 

ax = -Dë-1 aë 
a>. a>. ' (66) 

and exponential decay of the elements of Dë- 1 . By integrating this equation from 
>. = 0 to 1, we deduce exponential decay for Xs (€) - X s (€) with respect to d(s,o). 
The argument can be extended to initial equilibria differing at more than one site. 

5 Periodic Orbits 

So far we have addressed only the simplest type of dynamics: equilibria. What can 
be said about persistenee of periodic orbits of the uncoupled network? 

Aubry and I tackled this problem in the conservative context [24], and I will discuss 
that case in Section 10, but it can also be studied in the general context, as I will now 
outline. The details are being written up in a paper with Sepulchre. 

Periodic orbits of a dynamical system 

x = G(x,€) (67) 

on a manifold M can be seen as zeroes of the following map: 

clI : (x, T) t-+ T~ - G(x, €), (68) 

where x belongs to a space of periodic functions of period 1, and T E lR..t- represents 
the period. The object on the right is then also a periodic function of period 1. The 
aim is to make it be the zero function, because then x(t) = x(t/T) is a periodic orbit 
of Eq. (67). There are many choices for the spaces of periodic functions, which we 
caB loop spaces. Perhaps the simplest is that x E Cl (SI, M) and the righthand side 
belongs to CO(Sl, TM), where SI denotes the circle of length 1 and TM the tangent 
bundie to M. If G is Cl then so is clI. 

Then, with a view to applying the implicit function theorem again, we can ask for 
which periodic orbits of the uncoupled system is DclI invertible? Unfortunately, the 
answer is "none" . The problem is that (for an autonomous system) the infinitesimal 
ph ase shift (~,O) is always in the kemel of DclI . But clI is covariant with respect to 
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phase shifts, so this is not a real problem. It can be tackled by using Fredholm theory, 
which is the extension of the implicit function theorem when some non-invertibility 
is inevitable. 

Now let us apply the above to a network system. Suppose the local dynamics on 
one site 0 E S has a non-degenerate periodic orbit (i.e. no normal Floquet multiplier 
+1), and a hyperbolic equilibrium at all the other sites. Then the resulting periodic 
orbit for the network is non-degenerate in the above sense and hence persists for 
some range of E, uniformly in the size of the network. Again one can address the 
questions of stability and finite coherence length. We find analogous results to those 
for equilibria. 

What happens if we start from periodic orbits on two or more sites, with equilibria 
at the others? If the periods are in rational ratio, i.e. integer multiples of some 
common super-period T, then the full system has periodic orbits of period T, and 
one might hope to continue them to non-zero f. But this is false, because in addition 
to (overall) phase-shift degeneracy there are relative phase shift degeneracies in th is 
case. In fact, the product of N periodic orbits and arbitrarily many equilibria is an N­
torus. If the periods are in rational ratio, the N-torus is foliated into an (N -l)-torus 
of periodic orbits of the same period. Hence there are automatically N - 1 relative 
phase-shift degeneracies. It is easy to create couplings which destroy all these periodic 
orbits, for example by making the frequency ratio incommensurate. Nonetheless, we 
do expect persistence of the invariant N -torus, though the dynamics on the torus may 
become more complicated than periodic. This will be addressed in Section 8. 

6 Uniformly Hyperbolic Sets 

The persistence results for equilibria and periodic orbits have a powerful generalisation 
to aperiodic orbits, under an analogous condition of uniform hyperbolicity. It is 
simplest here to make an excursion into discrete-time, which avoids technical problems 
due to the continuous time-translation symmetry of autonomous ODEs. Thus we 
consider coupled map lattices3 of the general form: 

(69) 

which we condense to the general farm for a parametrised family of discrete-time 
dynamical systems: 

(70) 

It is clear that the problem of persistence of fixed points of Eq. (70) is virtually 
identical to the problem of persistence of equilibria of networks, with the only change 
being from a zero-finding problem to a fixed point problem. Thus the key condition 
of invertibility of DG should be replaced by invertibility of I - DG. The problem of 
persistence of periodic orbits, of period q say, of a coupled map lattice also reduces to 

3Note that the word "lat ti ce" is used in a we aker sense than the pure mathematicians' sense: 
there is no need for S to be closed under an operation of subtraction . 
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the same sort of problem, either by eonsidering the qth iterate of G or more simply 
by writing a system of q equations for xo, ... , x q - 1 

• 

The standard definition of uniform hyperbolicity for dynamical systems involves 
a splitting of the tangent spaee into the direct sum of invariant ex panding and con­
tracting bundies, with uniform exponential estimates. I prefer to give a functional­
analytic definition of uniform hyperbolicity, which ean be proved to be equivalent to 
the usual one (see bel ow) , but is much more useful and allows generalisation to non­
dynamical problems like elliptie PDEs4, for example [1) . To lead into the definition, 
note that orbits of Eq. (70) (fixing f for the moment) are fixed points of the operator 
H : M Z -+ M Z defined by 

(71) 

In the case of a coupled map lattice, M is already a product of manifolds, one for each 
unit of the lattiee, so M Z is a product of manifolds, one for each point in space-time. 
For norm on M Z , use the supremum over the Z-direction of the norms on M. 

An orbit x E M Z of Eq. (70) is said to be uniformly hyperbolic if I - DH is 
invertible. An invariant set ~ is uniformly hyperbolic if its orbits are uniformly 
hyperbolic with a common bound on 11(/ - DH) - lll (and if ~ is non-compact, a 
common module of continuity for DH is required). This definition is not so new, 
in fact, as it is essentially Mather's characterisation of Anosov systems, presented to 
the Dutch Academy of Sciences in 1968, perhaps in this very room. Furthermore, 
its eontinuous-time analogue, named exponential dichotomy, goes back to 1958 or so 
(see [28))! For an introductory article which explains many aspects of the equivalence 
between this definition and the usualone, see [20), and for more see [32). For the 
particular case of sympleetic twist maps, see [6). 

With this definition, persistence of uniformly hyperbolic orbits, uniformly in the 
si ze of the lattice, becomes immediate. It is just the same as for non-degenerate fixed 
points of a eoupled map lattice, but with the lattiee replaced by the grand lattice, and 
G replaced by H . The mapping between the perturbed and the unperturbed orbits of 
uniformly hyperbolic sets is easily shown to be a homeomorphism. Alternative, but 
closely related, proofs were given for one-dimensional chains by [30) and [11). 

The way the persistence results are applied to coupled map lattices differ from 
that in Section 2, however, as one would not usually start from a grand lattice with 
no coupling in time. Mind you, this lat ter concept, named the "anti-integrable limit" 
by Aubry [4), has proved extremely fruitful , and I will say a few words about it in 
Seetion 9. Instead one would start from the limit with no coupling in "space" . If 
the dynamics of the individual units is uniformly hyperbolic, and uniformly so over 
the whole lattice, then the resulting orbits are uniformly hyperbolic and hence persist 
uniformly with respect to the coupling. For example, one eould take a coupled map 
lattice with a Plykin attractor at one site and attracting fixed points at the othersj 
this would result in an attractor with spatially localised chaos for weak eoupling. 

The continuous-time case is analogous, but complicated slightly by the fact that 
there is always time-translation degeneraey. This means that the definition of uniform 

4Note the unfortunate clash of terrninology which renders I'nany elliptic PDE problerns uniforrnly 
hyperbolic! 
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hyperbolicity needs to be adapted and to establish a persistence result we have to allow 
the time-parametrisation of the orbits to change with €. 

One aspect of uniform hyperbolicity which is important for applications is the 
robustness of uniformly hyperbolic orbits to small time-dependent perturbations. In 
fact, the not ion of uniform hyperbolicity (using the above definition) is not at all 
limited to autonomous dynamical systems. In particular, if a system with a uniformly 
hyperbolic orbit is subjected to small forcing then the orbit has a unique continuation 
to a solution of the forced problem. In the most interesting case for applications, 
namely where the orbit is attracting, this solution represents the response for all initial 
conditions close to the original orbit. The solution can be found by continuation, as 
throughout these notes, and bounds can be deduced on the size of forcing for which 
one can be sure that the response remains within desired safety limits. Bishnani 
and I are in the process of developing such estimates, in continuous-time. We are 
particularly interested in adapting the measures of size of the forcing to the system 
in hand in order not to unnecessarily restrict the si ze of the forcing function. This 
technique should have a uniform extension to network problems. 

Next I give the promised construction of the stable-unstable splitting for the tan­
gent bun dIe on uniformly hyperbolic sets (in the discrete-time case). The construction 
of the splitting is the same for networks as for single dynamical systems; the only dif­
ference is that to deduce exponential decay estimates in time for a network we need 
to suppose suitable spatial structure for the coupling. Under this condition, we also 
obtain a finite coherence length property for the splitting. 

If 1 - DH is invertible then given a tangent vector ~ at a point x E M, define the 
tangent vector :=; E T M Z along the orbit of x by 

and all ot her components zero. Define the tangent vectors 

C -DGG -l:z;7r(-I)(I - DH)-l:=; 

ç+ = 7r0 (I - DH)-l:=;, 

(72) 

(73) 

(74) 

at x E M, where 7r
t 

: M Z ~ M is the component at time t EZ. Then ~- has bounded 
backwards orbit, ç+ has bounded forward orbit, and 

ç+ +C =~. (75) 

This is the desired splitting of ç. 
To show that the forwards, respectively backwards, orbits of ~± decay exponen­

tially, note that for a single dynamical system or finite network we can use Case 1 of 
Section 4, where the one dimension is taken to be time. Thus (I - DH)-l:=; decays 
exponentially in both directions of time, and its forward and backward parts are in 
fact the forward and backward orbits of ~± respectively. For an infinite network, or 
to obtain uniform results with respect to the si ze of the network, one has to impose 
hypotheses on the coupling which guarantee exponential decay of the matrix elements 
of (I - DH)-l in space-time. For example, the hypotheses Eq. (47) and (49) suffice 
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for an arbitrary graph, as explained at the end of Case 2. Then summing over the 
t = constant sets in the space-time graph gives the desired exponential decay in time. 

To complete the treatment of the splitting, we must show that the union Et of 
the ç+ over all tangent vectors ç at a given point xE M, and the union E; of the ç- , 
are linear spaces forming a direct sum decomposition of T M x • They are linear spaces 
because if çi and (i E Et and al, a2 E lR, then let Ça = al çi + a2çt and apply 
Eq. (74), to deduce that Ça EEt. Similarly E; is a linear subspace. We already 
proved that every ç E T Mx can be split into a sum of vectors in E: . It is clear 
that Et n E; = 0, because the orbit :=: of any tangent vector ç in the intersection 
is bounded in both directions of time and hen ce is a solution of (I - DH):=: = 0, so 
:=: = 0 by the invertibility of I - DH. 

Continuity of the splitting follows from the exponential decay. In particular, the 
dimensions (in the finite dimensional case) of E: are constant over chain-transitive 
components of uniformly hyperbolic sets. 

The spaces E± are traditionally called "stabie" and "unstable" subspaces, re­
spectively, but this is confusing terminology, as the stabie subspace is unstable with 
respect to the dynamics and the unstable one is stabie. I prefer to call E: the for­
ward and backward contracting subspaces, respectively. Note again that some people 
use "expanding" for E;, but the forward orbits of all vectors of T Mx \Et are also 
eventually expanding. 

For coupling with suitable spatial structure, the splitting can be shown to have a 
finite coherence length property, i.e . the matrix elements of the induced projections 
depends exponentially weakly on the distance between sites. 

Forward and backward contracting manifolds can also be constructed from this 
point of view. They are the sets of points in M whose forward, respectively back­
wards, orbits converge together, and the content of the "stabie manifold theorem" is 
that they are the images of injective differentiable immersions from the forward and 
backward contracting subspaces, respectively into M . Note again that I avoid the 
terms "stabie" , "unstable" and "expanding" . "Expanding" is additionally danger­
ous here because it can happen (e.g. the separatrix for a frictionless pendulum, and 
in general any homoclinic tangency) that tangent vectors toa backward contracting 
manifold also contract in forwards time! It would be interesting to obtain uniform 
estimates on the sizes of the contracting manifolds, especially in the case of attractors, 
where the union of the stabie manifolds is the basin of attraction. 

7 Structural Stability 

The persistence results of the previous Sections are very nice, but leave open an 
important question: how do we know that new equilibria, or periodic orbits, or ot her 
forms of recurrent mot ion are not created on ad ding small coupling? More strongly, 
is the uncoupled system structurally stabie, uniformly in the size of the network? 

A cr -dynamical system (r ~ 1 throughout this section) is said to be cr -struct­
urally stabie if all cr -small enough perturbations are topologically equivalent to it. 
Two flows 4Ji : Mi x IR -4 Mi, i = 1, 2 are topologically equivalent if there is a home-
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omorphism 8 : MI -+ M 2 and a time-reparametrisation map r : MI x lR -+ lR which 
is an orientation-preserving homeomorphism of lR for each x E MI, such that 

r(4)1 (x, t), t') 

4>2(8(x), r(x, t)) 

r(x, t + t') - r(x, t), 

8(4)1 (x, t)) . 

(76) 

(77) 

The broadest not ion of recurrence is "chain recurrence". The chain-recurrent set 
R for a dynamical system x = G(x) is the set of points x which, for all "I > 0, !ie on 
a periodic solution of the differential inclusion 

x E B(G(x), "I), (78) 

the bali of radius "I around G(x). 
The basic result of finite-dimensional structural stability theory is that the chain­

recurrent set is cr -structurally stabie if it is uniformly hyperbolic (and the converse 
is proved for r = 1). So under this condition, no new chain recurrent behaviour is 
generated under perturbation. 

IC one wants structural stability of transient behaviour too, it is necessary to 
strengthen the hypotheses. An AS system5 is one for which the chain recurrent set 
R is uniformly hyperbo!ic and for all x, y E R, the stabie manifold of x is transverse 
to the unstable manifold of y. Every AS system is cr -structurally stabie, and this is 
also proved to go both ways for r = 1. For an up-to-date introduction, see [31]. 

The question to ask here is whether structural stabi!ity can be proved with uniform 
estimates on the si ze of the network. This is almost certainly true. Hence we would 
deduce that in the example of Section 2, for instance, no new equilibria are created 
for Ifl < f2, some f2 > 0, and in this range the dynamics is topologically equivalent 
to the uncoupled case. In particular, for this range of f, no travelling front solutions 
would exist, i.e . solutions with a region of units essentially in the O-state and a region 
of units essentially in the I-state, separated by a front which moves . This is known 
as "propagation failure" [16]. 

8 Normally Hyperbolic Sets 

Let us now return to the question of what happens if several (say N) units, each with 
an attracting periodic orbit are coup led together weakly, the remaining units having 
attracting equilibria. The product system then has an attracting invariant torus of 
dimension N. I believe that this N-torus persists for small coupling, uniformly in 
the system size, subject to some uniformity in the attraction rates and periods of the 
periodic orbits. The dynamics on the N-torus, however, can and indeed typically will, 
become more complicated than the uncoupled case (for which the flow is conjugate 
to a uniform translation). 

To justify this, con si der the more general problem of persistence of normally hy­
perbolic sets . Roughly speaking, these are invariant subsets with a tangent bundie T 
(e .g. a submanifold, but solenoids are also allowed, for instance), such that expansion 

5Following [32), "AS" stands for "Axiom A and Strong Transversality Condition" . 
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Figure 1: The attracting invariant cylinder for an uncoupled neuron. 

and contract ion in T is weaker than expansion and contract ion in the normal bundie 
N (i .e. the total tangent space modulo T). There is a weIl established theory of 
persistence of normally hyperbolic sets for finite dimensional systems (e.g. [36]). The 
issue I wish to address is wh ether for a network the persistence results can be made 
uniform in its size. 

The discrete-time case of this question was investigated by [U] . It would be 
interesting to check that everything works for the continuous-time case also. This 
would, for example, justify the reduction of a system of weakly coupled oscillators 
with attracting periodic orbits to a system of phase equations 

(79) 

In the case that the mot ion is close to a rational rotation, averaging could then be used 
to reduce to phase-difference equations as proposed by [19], up to a small remainder 
term. 

Another very interesting problem to study, which would be greatly helped by 
such a result on persistence of normally hyperbolic sets for networks, is a model 
that I wish to propose for (physiological) neural networks. Think of a neuron as a 
dynamical system given by the unfolding of a saddle-node on a cycle together with 
slow evolution in the "parameter", depending on the inputs (and its own state, but I 
will re gard that as a coupling effect too). Thus the uncoupled neuron has a normally 
hyperbolic attracting invariant cylinder in its ph ase space, as sketched in Figure l. 

An uncoupled network of N such units has a normally hyperbolic N-cylinder (i.e. 
product of N cylinders). Assume that the effect of neuron s going round the cylinder 
is to cause a slight parameter increase or decrease (depending whether the coupling is 
excitatory or inhibitory) on all neurons to which it outputs, including possibly itself. 
Then, provided the coupling is integrable in some sense, we expect the product system 
to continue to have a normally hyperbolic N -cylinder on which the mot ion is close to 
the uncoupled case, but with more interesting dynamics. The question is what sort 
of dynamics can it exhibit? In particular, can it exhibit "intelligence"? 
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9 Conservative case: equilibria 

For Sections 9 and 10, 1 specialise to the case of Hamiltonian systems and their close 
relatives: time-reversible systems. A system is Hamiltonian if it can be written in the 
form 

i = JDH(z), (80) 

where J is the isomorphism from l-forms to tangent vectors induced by a symplectic 
form w, by 

W(Jl1,Ç) = l1(Ç) , Vç. (81) 

It is time-reversible if 
i = F(z) = -DR-1 F 0 R(z), (82) 

for some involution R, which shall be required to reverse precisely half the dimensions. 
The intersection of the two categories is especially relevant, in particular with the 
added condition that R be anti-symplectic, i.e. 

A basic example which we shall treat is 

x. + V'(x.) = f. L gr.(xr - x.), 
rEN. 

(83) 

(84) 

where N. is the set of neighbours of site s in a graph S, gr. is symmetric, and x. E IR. 
This is Hamiltonian with 

H(x,p) = L(~p; + V(x.)) + ~ L gr.(xr - x.)2, 
BES d(r,.)=l 

(85) 

where the second sum is over unordered pairs (r, s), and time-reversible with (anti­
symplectic) involution 

R(x,p) = (x, -p). (86) 

Pers is ten ce of equilibria for such systems is a special case of persistence of equi­
libria for general networks, so does not require special treatment. Nonetheless, there 
is a slight improvement which can be made using the Hamiltonian structure. In­
stead of sol ving JDH(z) = ° one can solve G(z) := DH(z) = 0, and so DG is 
symmetric, which can improve estimates, particularly on the exponential decay. This 
approach has been powerful in deducing interesting results for symplectic twist maps, 
because their orbits are equivalent to the equilibria of an associated one-dimensional 
translation-invariant nearest neighbour chain. The uncoupled case is a singular limit 
from the symplectic map point of view, christened the "anti-integrable limit" by 
Aubry. The ideas were first developed by [4] and [35], and subsequently used to 
construct many interesting types of orbit for symplectic twist maps, e.g. cantori of 
various types [7, 26], and bifurcations [3, 17]. 

Note that one special feature of the Hamiltonian case is that the signature of the 
second variation D 2 H of the Hamiltonian can not change as long as D 2 H remains 
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non-degenerate. This does not prevent stability change, but limits the possibilities. 
In particular, if it starts definite it must remain definite and the equilibrium remains 
stabIe as long as it can be continued (in fact, fully so with respect to l2-norm, not just 
linearly, though in general not with respect to sup-norm) . If D 2 Hstarts indefinite 
then we can nonetheless deduce a range of f. for which the stability type of the equi­
librium remains unchanged, as in Section 3, provided some additional hypotheses are 
satisfied (separation of spectrum with opposite signatures) . The not ion of stability 
type has to be refined in the conservative case to allow a central component in the 
splitting and to take account of the Krein signature of pure imaginary spectrum (e.g. 
[21]). 

10 Conservative case: periodic orbits 

In contrast to the case of equilibria, continuation of periodic orbits of conservative 
systems requires special treatment. This is because for an autonomous Hamiltonian 
system every periodic orbit is degenerate, owing to energy conservation. Of course, 
this is easily dealt with by restricting the vector field to an energy surface, giving a 
family of systems with one extra parameter, namely the energy. But it can be dealt 
with in other ways and I shall discuss one. 

Similarly, symmetrie periodic orbits of time-reversible systems, that is orbits which 
are sent to their time-reverse by the involution R, are automatically degenerate, be­
cause denoting the total dimension by 2N, symmetrie periodic orbits correspond to 
intersections of the orbit ((N + l)-dimensional) of a reftection surface with the reftec­
tion surface (N-dimensional), which is 1-dimensional if transverse. This problem is 
not as easily dealt with as the autonomous Hamiltonian case, and thus the method I 
will sketch is particularly useful. 

The method that Aubry and I proposed for these two classes of problems is to 
assume anharmonicity and to continue at constant period [24]. Anharmonicity means 
that the period of the orbit varies non-trivially with respect to energy (or appropriate 
parameter) along the family of periodic orbits. Of course, anharmonicity is not always 
present, and then other approaches are required, but it is a common case. 

This method allows us to construct "self-Iocalised vibrations" [24, 23], discovered 
numerically by [33], and named "discrete breathers" by [10] and "nonlinear localised 
excitations" by [15]. 

As I ran out of time to write up these notes, my treatment of this problem will be 
regrettably brief. The reader is referred to [24] for more details and to [23] for some 
suggestions for directions for future work. 

I begin with the simplest case, namely "I-site breathers". Each unit of the uncou­
pled network is assumed to be a Hamiltonian or time-reversible system and to possess 
a one-parameter family of periodic orbits. We parametrise the family by the action 
I = J p .dq in the Hamiltonian case, and some analogous measure of its size in the 
time-reversible case (if not also Hamiltonian) . Denote its period by T(I). For f. = 0, 
choose a periodic orbit of the local system on one unit 0 E S and put all other units 
on equilibrium points. This gives a periodic orbit ï of the product system. 



100 R.S. MacKay 

Hypotheses 1. A nharmonicity: dT / dl i- 0 for the chosen periodic orbit of unit o. 
2. Non-resonance: d({ws : s E S\{a}},wZ) > 0, where w = 27r/T and w. is the 
frequency of infinitesimal vibrations about the equilibrium on site s. 
3. Uniformity: The vector field is Cl with respect to sup norm over sites, with uniform 
bounds with respect to the size of the network. 

Theorem 3 Under hypotheses 1, 2 and 3, "( has a unique (up to phase shift) con­
tinuation "(f) as a periodic orbit of the same period T for iEl < fO, for some fO > 0, 
uniformly in the size of the network. 

Our proof is by the implicit function theorem for a Cl function q, from a space of 
Cl loops to a space of CO loops, as in Section 5, but here we work with fixed period T 
and impose some restrietions related to the Hamiltonian or time-reversible structure. 
The point of the above hypotheses is to make Dq, invertiblej physically, they all ow the 
breather to detune from the phonons and avoid harmonies of the frequency falling in 

. the phonon band. It should be pos si bIe to do a proof in a space of Fourier coefficients 
tOOj in deed this was our original approach but we ran into technical problems making 
sure that q, was Cl . I have subsequently found out how to prove this and intend to 
write up the pro of soon. 

In [24] we also prove fini te coherence length for breathers in one-dimensional near­
est neighbour chains. This can easily be generalised to other forms of network with 
suitable spatial structure, e.g. any which fit cases 1,2 or 3 of Section 4. 

One question is what estimates on the continuation we can obtain. We did not 
yet obtain any explicit estimates, as one step in our proof was to transform to act ion­
angle variables at the excited site, and the continuation estimates will dep end on 
the size of the derivative of this transformation and its inverse, which in general 
are not explicitly calculable. However , they are calculable for certain potentials and 
estimable for many others, and it would be very interesting to do this and work out 
some explicit estimates for the continuation of breathers. Once the Fourier coefficient 
proof is available , I believe that it would be the best one to use, as I think it is bet ter 
adapted to the problem. 

Another question is ab out stability of the resulting breathers. One can not expect 
them to be linearly stabIe uniformly in the system size, because of the possibility 
of constructive interference of phonons. I believe, however, that the I-site breathers 
obtained above are linearly stabIe in 1.2 for f < fl, for some fl > 0 uniform in 
the system size, provided that the non-resonance condition is strengthened to the 
following: 

Stability condition There exists T > 0 such that d( {eiw• T : s i- a}, {e- iw• T : s i­
a} ;::: T, where w. is the frequency of infinitesimal vibrations about the equilibrium 
for site s , with sign chosen according to the signature of the second variation of the 
Hamiltonian there (positive for the minima of V in the example of Eq. (84)). 

In particular, w must avoid 2Iw.l/n for all n E N, s E S. The reason for the 
stability condition is that it ensures that no collisions of Floquet multipliers of opposite 
Krein signature can occur, which implies spectral stability is preserved (e.g. [2]). As 
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before, it should be true that the spectrum moves controllably with respect to € and 
hence the existence of €1 will follow . 

It is unlikely that the breathers would be fully stabIe, as the usual arguments 
ab out the set of KAM tori not dividing ph ase space apply as soon as the number of 
sites exceeds two. However , they are Nekhoroshev stabIe, meaning that if you start 
close (in t'2-norm) then you stay close for an exponentially long time [9]. 

The next issue is existence of multi-site hreathers. Here again, the interested reader 
is referred to [24], wh ere we construct them for time-reversible systems subject to two 
conditions on the solution in the uncoupled case: firstly, there must be a common 
period, satisfying the non-resonance condition, and secondly, there must be an origin 
of time with respect to which the solution is time-symmetric. In that paper, we also 
suggested a method for proving existence of multisite breathers without using time­
reversal invariance. I have subsequently come up with what I believe will be a better 
approach, a Melnikov-type method, which I hope to write up soon. N-site breathers 
will correspond to critical points of a function on an (N - l)-torus. There should 
be relations between the spectral stability type of the breather and the index of the 
critical point. The (N - l)-torus should give a non-invariant but Nekhoroshev-stable 
N -torus in the ph ase space. 

It should not be necessary to have an "uncoupled" case from which to continue 
breathers. Any starting point possessing non-degenerate breathers would sufficej this 
is probably the case for Flach's breathers in homogeneous Fermi-Pasta-Ulam chains 
[14], for example. Furthermore, the anharmonicity condition is probably not really 
required: one could continue at constant energy rather than constant period. This 
would allow one to prove existence of impurity modes for nonlinear systems, by con­
tinuation from the linear case. 

Another question is about existence of quasiperiodic breathers. There are works 
(e .g.[18]) which prove existence of invariant N-tori of quasiperiodic motions for N = 
2,3, . .. in large and infinite-dimensional Hamiltonian systems, but it is not clear 
whether they can be applied here. AIso, in some numeri cs (e .g. [34]) travelling 
breathers are observed, and it is achallenge to try to prove or disprove their existence. 

The real issue with discrete breathers is to explain why typical initial conditions 
seem to he "attracted" to a distrihution of breathers. My guess [23] is that it is a 
similar phenomenon to the stickiness of elliptic islands for area-preserving maps, but 
this merits much investigation. Then it would be very interesting to develop their 
physical significance and investigate their role for statistical mechanics. 

11 Limits to continuation 

I conclude by raising two questions which I am not yet in a position to answer: what 
are the limits to continuation, and what happens beyond? 

Firstly, how are equilibria or periodic orbits or uniformly hyperbolic sets or nor­
mally hyperbolic sets of a network lost (if at all) as coupling increases? It is clear 
that they can undergo bifurcations just as for finite-dimensional systems, but are 
there new possibilities for infinite networks? Aubry and Marin are investigating this 
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numerically for the case of discrete breathers. 
A simpler setting in which quite a lot can be understood is the bifurcations of 

the set of equilibria for lD nearest neighbour chains of particles in a cubic poten­
tial, because this reduces to studying orbits of the area-preserving Hénon map. The 
analogues of the breathers are the orbits whose symbol sequence has all but finitely 
many Os in the uncoupled case (0 labelling the potential weil and llabelling the local 
maximum). In particular, the first bifurcation is known to be the annihilation of 
the symbol sequences 000 101000 and 000 111000 (Smillie), which occurs without loss of 
finite coherence length, but the symbol sequences 000 1000 and 000 11000 almost cer­
tainly are lost by annihilation together with 000 and 100, and the coherence length 
goes to infinity there . 

Secondly, what new phenomena lie beyond the regime of continuation from the 
uncoupled limit? This is a particularly interesting question in the case of loss of a 
uniformly hyperbolic attractor. 
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Spatial patterns, spatial chaos, and traveling 
waves in lattice differential equations 

John Mallet-Paret 

Abstract 

We survey recent results in the theory of lattice differential equations. Such 
equations yield continuous-time, usually infinite-dimensional, dynamical sys­
tems, which possess a discrete spatial structure modeled on a lattice. The sys­
tems we consider, generally over a higher-dimensional lattice such as Z D ç IRD , 

are the simp lest nontrivial ones which incorporate both local nonlinear dynamics 
and short range interactions. Of particular interest are stabie equilibria, and the 
regular patterns, or lack thereof, that are displayed. Traveling wave solutions in 
such systems are also discussed. 

1 Introd uction 

By a lattiee differential equation or LDE we mean a system of ordinary differential 
equations, of ten of infinite order, in whieh the state vector u = {U'l}'IEA is coordi­
natized by a set A, the lattiee, whieh possesses some underlying spatial structure. 
Typical ehoices of A ç IRD are the D-dimensional integer lattices ZD, the hexagonal 
lattice in the plane, and the crystallographic lattices in three dimensions. When nu­
merieal simulations of sueh systems are performed, one takes a finite, usually large, 
subset of the infinite lattiee. 

A general autonomous LDE on a lattiee A ean be written as 

TJ E A, (1.1) 

where eaeh U'l E IRN is a finite-dimensional variabIe, and u = {U'I}'IEA is the state 
vector. Of course, the nonlinearities 9'1 should reflect the geometry of the lattiee. 
For example, for a so-called short range interaetion eaeh 9'1 depends only on those 
eoordinates u{ with d(ç, TJ) ~ v for some v, where d(·,·) denotes the metric on A. It 
is also typical to impose some growth or boundedness condition on u'I (as a function 
of TJ) in order that the initial value problem for Eq. (1.1) be well-posed. This restricts 
u to some Banach spaee X, for example u E X = lP(A), where 

lP(A) = {u: A -+ IRN Illuilp < oo}, 

Iluil oo = sup IU'lI, 
'IEA 

(see, for example, [1]), and so 9'1 : X -+ IRN for eaeh TJ E A . We shall generally 
take X = [OO(A), meaning that TJ E A -+ u'l is bounded in TJ for eaeh state vector 
u = {U'l}'IEA. 
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If the gTJ are such that 9 : X ~ X is locally Lipschitz with respect to the norm in 
X, and where we denote 9 = {gTJ}TJEA, then for any UO EX the initial value problem 

uTJ(O) = u~ 
is well-posed for Eq. (1.1), and yields a unique solution u(t) for tEl, that is, u : I ~ 
X, on some open interval I containing t = o. The proof of this fact is essentially the 
same as the proof of the corresponding result for ODE's. 

Lattice differential equations are of particular interest in modeling a wide variety 
of applications in which spatial structure plays a role, particularly when the spatial 
structure has a discrete character. Many models are to be found in chemical reaction 
theory [32, 44], image processing and pattern recognition [22, 23, 24, 34, 59], material 
science [10, 25, 38], and biology [7, 8, 29, 30, 39, 40, 42, 64]. Much has been done 
on chains of coup led oscillators, usually arising in biology or electronics (Josephson 
junctions) ; see for example [4, 5, 29, 30, 32, 41, 42, 43, 52, 54, 56, 57], and the 
references therein. See also the papers [46, 49, 50, 51]. Coupled-map lattices, namely 
lattice systems with discrete time, is a closely related subject; see, for example, [2, 3], 
and [21]. 

The numerical and experimental work of Leon Chua and his collaborators, and 
Martin Hasler and his collaborators, are strong motivations for our work. They 
consider equations (the so-called CNN, or Cellular Neural Network systems) very 
similar to (2.1) below, and are developing algorithms based on these equations which 
identify various prescribed patterns, for example edges, or corners, in a digitized 
image. The CNN equations are more complicated than Eq. (2.1), as they contain 
a separate coupling coefficient for each of the eight neighbors in the 3 x 3 square 
in Z 2 centered at (i, j), instead of our two coefficients a + and a x. In part, our 
motivation in studying Eq. (2.1) is to attempt to provide a theoretical framework 
for understanding these more complicated systems . Besides numerical investigations, 
Chua has constructed an electrical circuit on a chip which simulates the CNN system. 
See, for example, [22], [23], [24], [59], [63], and the references therein. 

Of course partial differential equations are extensively used to model spatial struc­
tures in systems, and one naturally obtains an LDE upon making a spatial discretiza­
tion of the PDE. For example, let f : IR ~ IR and a E IR, and consider the system 

Ui = a(Ui+l + Ui-l - 2Ui) - f(Ui), iE Z, (1.2) 

on the integer lattice A = Z. For large a, the system (1.2) arises as a discretization 
of the so-called Allen-Cahn, or Chafee-Infante, or Nagumo equation, 

au a2u 
at = ax2 - f(u), x E IR, (1.3) 

where a = h-2
, with 0 < h « 1 the grid size. On the ot her hand, much theoreti­

cal work in lattice differential equations concerns one-dimensional lattices with weak 
coupling 0 < a « 1, between lattice sites. In [45], for example, an uncountable set of 
stabie equilibria we re obtained for (1.2), via a perturbation from a = o. Our inter­
est here, by contrast, is with lattice systems in arbitrary dimensions, with coupling 
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coefficients varying throughout a broad range which includes both weak and st rong 
couplings. This is certainly the case in the pattern recognition and material science 
models above, and as weil in the cardiac model [64) . In many modeis, LDE's do not 
necessarily arise from PDE's, but rather occur as systems in their own right, and 
as such need not be "near" a continuum limit PDE. We no te that the initial value 
problem for Eq. (1.2) is mathematically well-posed (in [oo(Z)) for any choice of a , 
including a < 0, as long as f is locally Lipschitz. Equation (1.2) can be considered, 
and indeed does arise in the above modeis , for essentially any value of a. Some of 
the most interesting phenomena are to be found for ranges of a, including a < 0, far 
away from the PDE limit. 

Some phenomena of particular interest which we shall discuss in this article are 
pattern formation, spatial chaos, and traveling waves. The first two, pattern formation 
and spatial chaos, pertain to equilibrium solutions, specifically to stabie equilibrium 
solutions, of Eq. (1.1). An equilibrium ti E X of Eq. (1.1) is a time-independent 
solution, that is, a solution to g(u) = O. By a stabie equilibrium we mean stability 
in the usual Lyapunov sense in the phase space X. Traveling waves, on the other 
hand, are solutions which vary in time, assuming a fixed spatial profile which moves 
at constant speed in a given direction. Such solutions have been much studied for 
PDE's, but their theory for LDE's is considerably more complicated, and still in its 
infancy. 

Much of the work we describe herein is given more fully in [11), [18), and [19), for 
pattern formation and spatial chaos, and in (13), [17], and [47], for traveling waves. 
The numerical results (12) provided a st rong initial stimulus for our theoretical studies. 
We finally ment ion the survey articles [16], (48), and the tutorial article [20) which 
discuss various aspects of this subject. 

2 Pattern format ion via bifurcations 

In Section 4 we shall give precise definitions of pattern formation and spatial chaos, 
at least for a particular class of LDE's. To understand one mechanism which can 
generate patterns, let us consider a two-dimensional version 

(i,j) E Z2, (2.1) 

of (1.2) on the lattice A = Z2. Here il + and ~ x correspond to discrete Laplace 
operators based on +- and x-shaped stencils, given by 

(il+U)i'i=( L ua'b)- 4Ui'i' 
la-il+lb-il=1 
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respectively. The parameters a+, a X E IR are the so-called coupling coefficients, and 
they can be of either sign or of any magnitude. Typical choices of f have the form 

-1 < a < 1, 

,E IR, c> 0, (2.2) 

h(z) = b - 2)z + 10g((1 + z)/(l - z)), ,EIR, -l<z<l. 

For such f the ODE i = - f(z) has either a globally stabie equilibrium, or ex­
hibits bistable behavior. We may think of Eq. (2.1) as one of the simplest nontrivial 
lattice differential equation which combines both short range interaction in a higher­
dimensional lattice, with nonlinear dynamics. 

For the bifurcation analysis of this section, we shall assume (for simplicity) that 
f is odd and sufficiently smooth. We seek two types of equilibrium solutions: stripes 
(horizontal or vertical), and checks. We are in part motivated by the numerical 
simulations of [12], in which a system very similar to (2 .1), namely the discrete Cahn­
Hilliard equation 

with f = h, was studied. In these numerical simulations, a wide variety of patterns, 
including stripes and checks, were observed. Beginning with a random choice of values 
u?,j E (-1,1) for the initial condition, on a large rectangular sublattice of 1;2 with 
standard (periodic or Neumann) boundary conditions, Eq. (2.3) was solved nu mer­
ically. It was observed that an initial rapid coarsening (as with the corresponding 
PDE) first occurred, in which spatial patterns sometimes emerged. Often different 
patterns, separated by interfaces, appeared in different regions of the lattice. Figure 1 
depicts several such solutions at this stage. Then, in many cases, the interfaces slowly 
moved as the solution u(t) tended toward an equilibrium state. 

Let us return to Eq. (2.1). A pattern ofvertical stripes takes the form Ui ,j = (-l)ik 
for some k E IR, and for such u we have (~+U)i ,j = -4(-1)ik and (~ X U)i,j = 
-8( -l)ik by a simple calculation. One sees that such u is an equilibrium of Eq. (2.1) 
if and only if 

(2.4) 

(note the oddness of f is used here). The same con dit ion (2.4) holds for horizontal 
stripes Ui,j = (-l)j k. A checkerboard, on the other hand, is given by Ui ,j = (_l)i+ j k 
for some k . For this we have (~+U)i,j = -8( -l)i+j k and (~X U)i,j = 0, so u is an 
equilibrium of (2.1) if and only if 

0= -8a+k - f(k) . (2.5) 

We see that both Eqs. (2.4) and (2.5) take the form 

0= >'k - f(k), (2.6) 
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(a) (13+, f3X) = (0.25 , -0.5) , "y = 1.0 

UU~I'~'~~II~I ~~5IÜU lil'" 11' ___ n. 

(c) (f3+ ,f3X) = (-0.5,2.0) , "y = 10.0 

::.:111 IIII:':~~IIIIIIIII:-_. . .... -. ... 1-··· ..... -_. ····1 ._. .... ... ._. 1.·-
11·· .!I.::.: ··11· ··!!!::'::~i: : .. 111 ·11:-:il •. _II:::-::":":.· - ... I .. _ ......•. .. - .. . ..... _ .. _ .. . 

-I··::··· "'··"1· ... : •• • ••••••••••••••• __ .1 .. ····1·_····· ·1· .. - ._. -_.. ... . ... -:!._. 1·_······ I -11 ' .-... _. . ..... _... .-
__ ••• 1 ••• ·_· •••••••• ... - - ····1 ._ . •••• -: •••• 1 ••••• _ ••• _.... ,._ .. _-
•• _:: ••• ' 1.'1 .. - . ..:=-•••• 8 •• _- ._. _ •• ···1- · .•.... · ••• • • •• _. .-. . ...• -:=-: .. 
:::: 1 h::-:-:::: I 1::-:::::11: ·.11 
(b) (f3+ , f3 X) = (-1.0, 2.0) , "y = 6.0 

(d) (f3+, f3X) = (0.25, -0.5) , "y = -0.1 

Figure 1: Some Numerical Simulations of Equation (2 .3) 
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where À = -(40+ +80 X
), respectively, À = -80+, in (2.4) and (2.5). Equation (2.6) 

can be analyzed by elementary methods, and one sees that this equation undergoes a 
simple bifurcation (generically a pitchfork) at À = 1'(0). 

To be specific, let us suppose that 1'(0) = , > 0 and 1'''(0) = 6c > 0, such as 
for f = h or IJ with , > 0, for example. Then Eq. (2.6) possesses the nontrivial 
solutions k '" ±((À - ,)c- l )1 / 2 for À > , and À near " arising from the origin as a 
supercritical pitchfork bifurcation. For convenience let us also write 

(3+=-0+, (2 .7) 

(we shall use the notation (2.7) throughout this article), so that Eq. (2.1) becomes 

ü · . = -(3+(~ +u) · . - (3 x (~ X u) · . - f(u · .) t ,J t ,l t,1 1,1 , (2.8) 

Then with our assumptions on f, the local bifurcation of stripes, respectively, checks, 
occurs on and to the right of the lines 

(2.9) 

respectively, in the ((3+, (3 x )-plane. 
To study the interaction of the above stripe and check solutions, one needs to 

consider a higher dimensional bifurcation problem. Consider states u which are of 
(spatial) period 2 in both the horizont al and vertical directions, so Ui+2,j = ui,H2 = 
Ui,j for all (i, j) E Z 2. The sét of all such u forms a four-dimensional vector space 
which is invariant under the dynamics of Eq. (2.8), and any such u can be written 
uniquelyas 

(2.10) 

for (v,w,x,y) E JR4. One sees that the coordinates v,w,x,y represent, respectively, 
vertical stripes, horizontal stripes, checks, and asolid pattern. With respect to the 
coordinate system (2.10), one sees af ter a calculation that Eq. (2.8) becomes 

V (4(3+ + 8(3 x - ,)v - gl (v, w, x, y), 

tiJ (4(3+ + 8(3 x - ,)w - g2(V, w, x, y) , 
(2 .11) 

:i; (8(3+ - ,)x - g3(V, w, x, y), 

iJ = -,y + g4(V, w, x, y) . 

Here we have separated the linear part of the vector field from the higher order terms 
gi : JR4 -t JR. Each gi depends only on f, and satisfies 

near the origin. A nu mb er of symmetries, which in fact form a group of order 16, are 
also present in the system (2.11); for example, the vector field in (2.11) commutes with 
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9 

"//16 

1 
3 

----~--------------~-------------+~+ 

Figure 2: The Bifurcation Diagram for Equation (2.11) 

the transformations (v, w, x, y) -+ (w, v, x, y) which exchange vertical and horizont al 
stripes. 

The two bifurcation lines (2.9) intersect at the point (~+, ~ X ) = b /8, ,,//16) in 
parameter space, and one sees at that point that the linearization of (2.11) at the 
origin has a three-dimensional kemel, with one negative eigenvalue -"/ < ° in the y 
direction. Therefore, there exists a center manifold 

(2.12) 

for (~+, ~ X ) near b /8, ,,//16), which passes through the origin (v, w, x, y) = (0,0, 0, 0) 
and is tangent to the (v,w,x)-subspace at that point. Substitution of (2.12) into the 
system (2 .11) yields a reduced three-dimensional system. With the techniques of 
bifurcation theory, all the (local) equilibria of (2.11), along with their stability, can 
be determined. This analysis yields the bifurcation diagram in Fig. 2, which depicts 
the number of such equilibria in terms of the parameters (~+, ~ X ) near b /8, ,,//16) 
(we continue here to assume that 1'(0) = "/ > ° and 11//(0) > 0, with 1 odd). In 
addition to the stripe and check solutions noted above, various other equilibria which 
are hybrids of stripes and checks also occur, however, none of these hybrids are stable 
for the system (2.11) . In fact , the stripe and check solutions are only stable over a 
portion of the parameter space, and are unstable for other parameter values , even 
same of those near the bifurcation point. 

In addition to the equilibria, the dynamics of (2.11) can be studied. Equation 
(2.11) possesses a global Lyapunov function; in fact, the system (2.8) on the finite 
m x n lattice 

Fm ,n = {O, 1, 2, . . . , m - I} x {O, 1,2, . . . , n - I} (2.13) 
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with periodic boundary conditions possesses the Lyapunov function 

F' (z) = f(z), 

If F(z) -+ 00 at a rate faster than quadratic as z -+ ±oo, then V(u) -+ 00 as 
lul -+ 00. In this case the system (2.8) on Fm,n is dissipative, and so possesses a 
maximal compact attractor A ç IRmn . The set A contains all equilibria of (2.8), and 
every solution u(t) of (2.8) tends to an equilibrium (or a connected set of equilibria) 
as t -+ 00. Solutions Iying on the attractor A are precisely those for which u(t) is 
bounded as t -+ ±oo. Equivalently, A consists of the set of all equilibria together with 
their center-unstable manifolds. Various topological tools, such as the Conley index 
and the Conley connection matrix, can be used to study the structure of A in terms 
of solutions connecting various equilibria. If in particular m = n = 2, we obtain the 
system (2.11), and even here we obtain a very intricate picture of connecting orbits 
and their bifurcations. 

3 Mosaic solutions: existence and stability 

In contrast to the above bifurcation analysis, which is local and is restricted to the 
2 x 2-periodic problem, one seeks a more global picture of the equilibria of the full 
system (2.8). One approach, taken in [27] and [55], is to con si der (2.8) with the 
so-called "double-obstacle" nonlinearity given by a set-valued function 

{ 

"(z if Izl < 1, 
f(z) = 

o if Izl > 1, 

f(l) 

f( -1) 

["(,00), 

(-00, -"(] . 
(3.1) 

Here one interprets the system (2.8) with th is set-valued f as a differential inclusion. 
Observe that the graph of f consists of a linear piece in Izl < 1, together with vertical 
lines at z = ±1, and in a sense is a cartoon of the logarithmic function IJ in (2.2), or 
even of the cubic function h . It is the case, proved in [18], that for any (f3+, j3 X) and 
"(, any initial value problem 

(i,j) E ;[;2, 

for (2.8) possesses a unique solution u(t) in the forward direct ion t ~ 0, provided 
that IU?,jl ~ 1 for each (i,j). (By definition, one requires for any such solution that 
IUi,j(t)1 ~ 1 for all (i,j) and t, as f(z) = 4J for Izl > 1.) The system (2.8), with (3.1), 
in fact generates a semiflow in the phase space [-1, 1 JZ2 ç [00 (Z 2), consisting of all 
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u = {ui,jhi,j)EZ2 with IUi,jl ~ 1 for all (i,j), with the [00 topology. (In general, if Y 
and Z are any two sets, we let Y Z denote the set of all functions u : Z ----+ Y.) AIso, in 
light of the above existence and uniqueness result, it makes sense to talk about stabie 
(in the usual Lyapunov sense) equilibria. 

An equilibrium of (2.8), (3.1), is an element u E [-1 , I]Z2 for which the inclusion 

o E -(3+(~+u) ' . - (3X(~Xu)' . - f(u· .) liJ t,) t,J , (3.2) 

holds . In many cases, one has that Ui,j E {-I, 0,1} for all (i, j), for such equilibria; for 
example, the search for strip es Ui,j = (-I)ik or (-I)jk, and checks Ui,j = (-l)i+ j k, 
leads to the problem 0 E >"k - f(k), which is analogous to (2.6). If >.. < , then the 
only solution to this is k = 0, while if >.. > , we have k = 0 and k = ±1 as solutions. 
Motivated by this, we make the following definitions. 

Definition 1 A mosaic is a function u : Z2 ----+ { -1,0,1}, that is, a doubly-indexed se­

quence {Ui,j }(i,j)EZ2 with Ui,j E {-I, 0,1} for all (i, j) E Z2. We let M = { -1,0, l}Z2 

denote the set of all mosaics. 

Definition 2 A mosaic solution of (2.8), with (3.1), is a mosaic u E M which is an 
equilibrium solution, that is, which satisfies (3.2). 

It is not hard to rewrite the condition (3.2), for mosaics, as follows. For any 
u E M, define the quantities 

L Ua,b, 

la-il+lb- jl=1 

Then (3.2), for any u E M, is equivalent to 

L Ua,b, 

la- i l=lb-jl=l 

(3+a+ . + (3x a x. = 0 whenever Ui,)' = O. 
t,J t,) 

(3.3) 

Observe that the quantities ai,j and Ti~j (with • denoting either + or x, here and 
elsewhere) are integers in the range 

-4 ~ ai,j ~ 4, (3.4) 

and so there is only a finite number of possibilities for the equations in (3.3). Thus 
the space of parameters ((3+, (3x ,,) E ]R3 is divided into only finitely many regions, 
corresponding to the finite number of cases that must be considered. 

It is possible to give sufficient conditions for a mosaic sol ut ion to be stabie. Specif­
ically, we have [18] the following theorem. 
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Theorem 1 Suppose u is a mosaic solution oj Eq. (2.8) with (3.1), that is, a mosaic 
satisjying (3.3) . Then ij the inequality in (3.3) is strict, 

and ij it also holds that 

Z where 

ztj = card{(a,b) E Z21 Ua,b = 0 and la - il + Ib - jl = I}, 

<j = card{(a,b) E Z21 Ua ,b = 0 and la - il = Ib - jl = I}, 

then u is asymptotically stabie. 

(3.5) 

The proof of Theorem 1, which is not obvious, involves construction of a neigh­
borhood 

N(u,8,8) { V E [-1 I]Z2 1Iv ' . - U · ·1 < 8 whenever , I , ) 1,)_ 

Ui ,j = ±I , and IVi ,jl ~ 8 whenever Ui,j = O} 

of u in the phase space [-1, I]Z2, such that N (u, 8,8) is positively invariant, and such 
that all solutions of N(u, 8, 8) are attracted to u as t -t 00 . In fact, the pro of of the 
invariance of N (u, 8,8) yields explicit lower bounds on the quantities 8 and 8, so the 
size of the basin of attraction of u can be estimated. Moreover , Theorem 1 is robust 
with respect to f, in the sen se that the same techniques in the proof yield analogous 
stability results for smooth nonlinearities j, such as those in (2 .2) . 

We may consider the set 

S(,8+,,8 X,1') = {u E M Iconditions (3.3), (3.5), and (3.6) all hold} (3.7) 

of all mosaics satisfying the con di ti ons of Theorem 1. We formalize this with the 
following definition. 

Definition 3 An S-solution of (2.8), (3.1), is an element u E S(,8+,,8 x ,1'). 

Let us rem ark that the conditions of Theorem 1 are sufficient , but not in general 
necessary, for a mosaic solution to be stabie, as was noted in [18]. We also note 
that in general there can exist ot her equilibria which are not mosaics; see [63] . Nev­
ertheless, the S-solutions provide a rich supply of stabie equilibria, some of which 
exhibit regular, or almost regular spatial patterns, while ot hers display a disordered 
appearance. 

A nu mb er of S-solutions were presented in [18] . In the case of stripes, say Ui ,j = 
(-I)i for all (i,j), one has that (Ti;j'<j) = (4,8) for all (i,j), and so such u is a 
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(a) Checkerboard with 
Horizontal Interfaces 

(c) Checkerboard with Thin 
Horizontal Interface 

(e) Vertical and Horizontal Stripes 
with Vertical Interface 

(b) An Impossible S-Solution 

(d) Checkerboard with 
Diagonal Interface 

(f) Quad Junction 

Figure 3: Some Stabie Mosaic Solutions 
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stabIe equilibrium provided that 4,8+ + 8,8x > "(. For checks Ui,j = (_1)i+ j one has 
(ri;j' <j) = (8,0) for all (i,j) and so this is a stabIe equilibrium provided 8,8+ > "(. In 
contrast to the bifurcation results of the previous section, which are only local, here 
we have solutions existing for a large range of the (,8+,,8x )-plane. Figure 3 depicts 
portions of several mosaics composed of stripes or checks separated by interfaces, 
where we denote 

EE§=O D= -1. 

With the exception of Figure 3(b), each of these mosaics occurs as an S-solution for a 
nonempty open set of parameters (,8+,,8x, "() which can be determined by Theorem 1. 
Consider, for example, Figure 3(a), the checkerboard with interfaces of zeros. We 
assume here that the rows of ze ros (the interfaces) are separated by at least two rows 
of checkerboard. In addition to the values (rt,r.x

. ) = (8,0) which occur at those 
,] t,) 

checkerboard points Ui,j = ±1 which are not adjacent to a zero-row, one sees that 
(ri;j' ri~j) = (7,2) when Ui ,j = ± 1 is adjacent to a zero-row. Also, when Ui,j = 0 then 

atj = ai~j = 0 (so the second condition of (3.3) is satisfied), and we also see that 

(zti' Zrj) = (2,0) . It follows from Theorem 1 that such a mosaic is an S-solution, 
and therefore is a stabIe equilibrium of (2.8), (3.1), if 

8,8+ > "(, (3.8) 

all hold. If "( :j:. 0, there is a nonempty open set of (,8+,,8X) satisfying (3.8). 
Observe th at in Figure 3(b) the checkerboard "changes its phase" across the in­

terface in a manner different from that in Figure 3(a) . In particular, we have either 
(ati' <j) = (2, -4) or (-2,4) whenever Ui,j = 0 in Figure 3(b), and it can be shown 
that this mosaic can never be an S-solution. 

For a given choice of parameters (,8+,,8X) and "(, the conditions (3.3), (3.5), (3.6), 
for an S-solution can be thought of as combinatorial conditions on the mosaic u. Also, 
as above, as these parameters vary one en counters only a finite number of possibilities, 
or cases, for the sets S(,8+,,8X, "(). More precisely, let "(:j:. 0 be fixed and let L(a,b) 
and Lo(a,b) denote the lines in the (,8+,,8X)-plane 

L(a,b) 

Lo(a, b) 

{ (,8+ , ,8 X) I a,8+ + b,8 x = "(}, 

{(,8+,,8X) I a,8+ + b,8x = Ol, 

for (a, b) E IR2
• In particular, consider the sets 

12 = U L(a,b), 
O<a,b<S 

(a,b);t(O,O) 

120 = U Lo(a, b), 
-4<a,b<4 
(a,b);t(O-;-O) 

which are unions of 92 
- 1 = 80 lines, and 25 lines, respectively. Let us restrict 

(,8+,,8X) to lie in the complement IR2 \ 12 of the set 12, noting that this complement 
is an open dense subset of the plane. Then, the set of those pairs (rtj' rrj) and 

(ztj' <j) for which the inequalities in (3.5) and (3.6) hold depends only on which 
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Figure 4: A Spatially Disordered Mosaic in SI 

connected component of the set IR2 \ L that (13+, f3X) belongs to. If we further rest ri ct 
(13+ ,13 X) to !ie in the open dense set IR2 \ LO, then the equality on the second line of 
(3.3) forces aL = atj = 0, in light of the range (3.4) of ai,j' Thus, we may think of 
each connected component 0 ç IR \ L as yielding as particular case, in the sense that 
the set S(f3+, f3x,,) remains unchanged for (13+, f3X) E 0 \ LO. The nu mb er of such 
cases, that is, the number of connected components of IR \ L, is finite but large, as 
the following result shows. 

Theorem 2 The set IR2 
\ L has precisely 2,041 connected components. 

Given any connected component 0 of IR \ L, and fixing " one might hope to 
characterize or describe the set S(f3+, f3x,,) of all S-solutions for (13+, f3X) E 0 \ LO' 
This can be done in some cases, but is in general quite difficult. For example, let, = 1, 
and let Ok, for 1 ~ k ~ 9, denote the component of IR \ L which contains the point 
(f3+,f3X) = ((k-0.5)-1,0). In [18] the set Sk = S(f3+,f3x,,), for (f3+,f3X) E Ok \LO, 
was studied. It was determined there that S9 contains only the trivial (zero) solution 
Ui ,j = 0, that Ss contains only the checkerboard mosaic Ui,j = (_l)i+ j and its 
negative Ui,j = (_l)i+j+l, and that S7 contains only those mosaics of Figure 3(a), 
comprised of checkerboards with horizont al interfaces, as weil as analogous interfaces 
with vertical interfaces. The set S6 is comprised only of checkerboards with thin 
horizontal interfaces (as in Figure 3(c)), checkerboards with diagonal interfaces (as in 
Figure 3(d)), and rotations and refiections of these. Thus, for k ~ 6 we have that the 
mosaics of Sk exhibit a fairly regular pattern. 

By contrast, this is not the case for the elements of Sk for 1 ~ k ~ 5. It was 
shown in [18] that the mosaics u in these Sk typically possess a chaotic display. 
Mathematically, it was shown that the spatial entropy h(Sk) (discussed in the next 
section) is zero h(Sk) = 0 for 6 ~ k ~ 9, and positive h(Sk) > 0 for 1 ~ k ~ 5. 

Consider in particular the set SI. With (13+, f3X) = (2,0) E Ol, we have (recall 
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that 'Y = 1) that (3.5) is equivalent to 

Ti;j # 0 whenever Ui ,j = ± 1. 

The inequality in condition (3.6) can never hold, as 4,8+ = 8 > 'Y = 1, and so Ui,j # 0 
for all u E SI' Thus SI consists precisely of those mosaics u E M such that Ui ,j = ±I 
for all (i,j) E Z2, and such that Ttj # 0 for all (i,j) E Z2, equivalently, such that the 
arrays • ••• • 

and 

D 
DDD 

D 
occur nowhere in u . Figure 4 depicts a portion of such a mosaic u E SI, and one sees 
that this u exhibits no regular pattern. 

4 Pattern formation and spatial chaos 

The mathematical not ion which distinguishes pattern formation from spatial chaos is 
the concept of spatial entropy. In the context of S-solutions above, the spatial entropy 
is a nonnegative quantity h = h(S(,8+,,8x, 'Y)) ~ 0 which measures the complexity 
of the set of S-solutions, the larger values of h corresponding to more disordered, or 
chaotic, spatial presentations. 

Before specifically considering S-solutions, let us define the spatial entropy in a 
more general setting. We work here with the D-dimensional lattice ZD. Let A be 
a fini te set of delements (an alphabet), let D ~ 1, and consider the set AZD 

of 

all functions u : ZD -+ A. Note that in the previous section M = AZ2
, where 

A = {-I,O,I}. We say that a subset B ç A ZD is translation invariant in case 

SkU E B whenever u E B, for 1 :::; k :::; D, where Sk : A ZD -+ AZD denotes the 
translation operator 

in the direction ek E ZD, with {edf=l denoting the standard basis in JRD. 
Consider now any nonempty translation invariant set B ç AZD

. For simplicity 
of notation, we shall take D = 2, although the following construct ion extends to 
arbitrary D in an obvious fashion. Recall, for any m ~ 1 and n ~ 1, the finite lattice 
Fm ,n ç Z2 given by Eq. (2.13). Any u E AZ2

, that is, u : Z2 -+ A, can be restricted 
to u : Fm,n -+ A, thereby yielding an element of AF~ . n . Thus we have a map 

given by this restriction. As Fm n and A are finite sets with mn and delements 
respectively, the set AF~ . n is als~ finite and has dmn elements. For a nonempty, 
translation invariant set B ç AZD

, consider the image 7rm,n(B) ç AF~ . n, and let 

(4.1) 
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the cardinality of this set. 

Definition 4 The spatial entropy of the translation invariant set B ç A
z2 

is the 
quantity 

1 
h(B) = lim - log bm,n. 

m,n~oo mn 
( 4.2) 

It is a consequence of the translation invariance of B that the limit (4.2) always 
exists. In fact, each of the terms in the right-hand side of Eq." (4.2) is an upper bound 
for the spatial entropy, so 

h(B) = inf _I_log bm,n 
m,n;::O:l mn 

(4.3) 

also holds . Clearly 1 :5 bm,n :5 dmn , and so 0 :5 h(B) :5 log d. Roughly, the quantities 
bm,n count the number of different patterns one ob serves among the elements of B 
through a window of size m x n in the lattice z,2. The translation invariance of B 
implies that without loss we may take this window to be Fm,n, with the lower left 
point at the origin. Thus, larger values of h(B) correspond to a richer variety of 
patterns observable among the elements of B. 

One easily sees that the set S((3+, (3x,.,,) ç M is translation invariant, and so one 
can calculate its spatial entropy h(S((3+, (3x, .,,)). With this, we make a fundament al 
definition. 

Definition 5 We say that Eq. (2.8), with (3.1), exhibits pattern formation in case 
h(S((3+, (3x, .,,)) = o. We say this system exhibits spatial chaos if h(S((3+, (3x, .,,)) > O. 

In general, there is no method for calculating the entropy of a set B, or even for 
determining whether the entropy is zero or positive, at least for higher-dimensional 
D 2: 2 lattices. While Eq. (4.3) supplies explicit upper bounds, these bounds are 
generally positive even wh en h(B) = O. Suflicient conditions on B for h(B) = 0 to 
hold, or positive lower bounds for h(B) when h(B) > 0, generally are difficult to 
obtain. We note that in the case of the one-dimensional lattice Z, it is possible to 
calculate h(B) in case B is a Markov shift, or a subshift of finite type. Taking the 
alphabet A = {I, 2, 3, ... , dl, one defines a Markov shift by means of a d x d Boolean 
matrix M, the so-called transfer matrix. Here u E B ç AZ if and only if we have 
mU;,U;+l = 1 for the (Ui, Ui+d entry of M. For such B, there is the well-known formula 
(see, for example, [58)) 

h(B) = log"\, .,\ = the largest eigenvalue of M. ( 4.4) 

It is possible to define higher-dimensional Markov shifts, that is, analogs of the above 
on the lattice ZD. However, there is no analog of the formula (4.4) in this case [62]. 
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Indeed, it has been shown [9] that there is no universal algorithm for determining 
whether B is empty or not . 

In [18], we are nevertheless able to obtain conditions under which h(B) = 0, and 
also obtain positive lower bounds for h(B) when h(B) > 0, for the set B = S(f3+, I]X,,) 
of S-solutions, over a wide range of the (13+,13 x )-plane. We have already noted such 
results for the sets Sk, for 1 ::; k ::; 9, in Section 3. The conclusion h(Sk) = 0, 
obtained for 6 ::; k ::; 9, is essentially a matter of providing a precise description of 
the elements u E Sk (for example, as checkerboards with certain types of interfaces), 
and then obtaining upper bounds on bm,n in a more or less straightforward fashion. 
Positive lower bounds on h(S(f3+, f3x, ,)), on the other hand, can be obtained by 
explicitly constructing subsets B ç S(f3+, f3 x ,,) of mosaics for which the limit (4.2), 
with Bin place of Bin (4.1), is positive. 

To illustrate the lat ter approach, let B denote the set of all mosaics u E M such 
that ui,i = ±1 for all (i,j) E Z2, and such that u2a,i = -u2a+l,i for all integers a 
and j. Roughly, elements of Bare obtained by "paving" the lattice Z2 with 2 x 1 
"bricks," each of the form either 

or (4.5) 

selecting these bricks arbitrarily to cover the sites (2a, j), (2a + 1, j) E Z2. (This set B 
is not translation invariant, however, that property is not needed for our argument.) 

Denote bm,n card(1l'm,n(B)), and let bm,n be as in (4.1) with B = S(f3+, f3x, ,). 
Then if 

(4.6) 

it follows that bm.n ::; bm,n, and so 

1 -
lim sup - log bm,n < 
m,n-too mn 

1 
lim -logbm,n = h(S(f3+,f3x,,)). 

m,n----too mn 

However, we see that bm,n 2: 2mn/2, since the sublattice Fm ,n intersects at least mn/2 
(in fact exactly this many if m is even) of the 2 x 1 sites on which the bricks covering 
Z2 are placed, and we have a choice of the two possible bricks (4.5). Thus, 

h(S(f3+,f3X,,)) 2: limsup_l_log2mn/2 
m,n-+oo mn 

whenever the inclusion (4.6) holds . 

10g2 
-2-' (4.7) 

We must next determine those (13+, f3X) and , for which (4.6) holds. To do this, 
we determine all possible pairs (r+.,rx .) which can occur among the mosaics in B. 

l,J l ,J 

It can be seen that without loss we may take (i,j) = (0,0), with uo,o = 1. Then the 
3 x 3 block in such u, centered at (0,0), has the form 

UO,I 

uo,o 
UO,-l 

UI,I 

UI,O 

Ul ,-l ) ( c a 
d 1 
e b 

-a) -1 , 
-b 
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where a, b, c, d, e E {-I, I}, but are otherwise arbitrary. Thus O't,o = a + b + d -1 and 

0';,0 = -a - b + c + e, and so 

By considering all possible values of a, b, c, d, and e, one can enumerate the possible 
pairs (Td:o' TO~O) (or in fact (Ttj' <j) for any (i, j)) as 

(2,4) (2,6) (2,8) 

(4,2) (4,4) (4,6) (4,8) 
(4.8) 

(6,0) (6,2) (6,4) (6,6) 

(8,0) (8,2) (8,4) 

It follows immediately from the definition (3.7) of S(f3+,f3 x ,,), in particular using 
(3.5), that the inclusion (4.6) holds if and only if af3+ + bf3x > , for all pairs (a, b) in 
(4.8). In fact, one only need take the extreme points (2,4), (2,8), (4,8), (6,0), (8,0), 
and (8,4), in the set of pairs (4.8), so this condition is in fact equivalent to 

2f3+ + 4f3x > " 
(4.9) 

all holding. 
We conclude, therefore, that when (f3+, f3 X) and , satisfy (4.9), then the lower 

bound (4.7) on the spatial entropy holds, and we have spatial chaos. Observe in 
particular that this is the case for the regions SI and S2 discussed in Section 3. A 
similar argument, with different sets 8, yields positive lower bounds for the entropy 
of Sk, for k = 3,4, and 5. 

Numerical calculations of h(S(f3+, f3x, ,)) were given in [19]. Equation (2.8), but 
on the lattice {O, 1,2, .. . , m - I} x Z of finite width m, was considered by imposing 
"m-corkscrew" boundary conditions Ui+""j = Ui,j+! on the fulllattice Z2. With this, 
the stability conditions of Theorem 1 were interpreted as a one-dimensional Markov 
shift with the alphabet A = {-I , 0,1 pm+2 of all sequences 

of length 2m + 2. A transfer matrix M ex pressing the transition from Ui to Ui+! was 
constructed and its largest eigenvalue ..\ = ..\'" numerically found. Following (4.4), the 
quantity log..\", was taken as an approximation to h(S(f3+, f3x, ,)). As A has 32"'+2 
elements, the matrix M is enormous even for moderate m, having s,ize 32"'+2 x 32"'+2. 
Nevertheless, M is very sparse, and calculation of ..\'" was accomplished efficiently. 
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5 Traveling waves 

While there is a vast literature on traveling wave solutions of PDE's, very little is 
known for LDE's. For the PDE (1.3) , a traveling wave solution takes the form u(t , x) = 
cp(x - ct) for some function cp : IR --t IR and quantity c E IR (the wave speed) , where 
substitution into (1.3) yields the equation 

- ccp'(ç) = cp"(Ç) - f(cp(ç)), (5.1) 

One typically imposes boundary conditions for cp, of the form 

(5.2) 

where f(q±) = 0, generally with z = q± as stabie equilibria for the associated ODE 
i = - f(z) . Both cp as weil as care unknown, and must be sought as part of the 
solution, that is, a solution to (5.1) , (5.2), is a pair (cp, c) as above. 

One of ten views the boundary conditions (5.2) as prescribing a hetero clinic orbit 
joining the equilibria ç = Q± of Eq. (5.1) . As such, many of the tools of dynamical 
systems, for example the Mel 'nikov function, find use in this problem. 

We take a class of nonlinearities f of which the cubic h in (2.2) is representative 
(note that q± = ±1 here). The so-called de tuning parameter a, as in h, plays a 
prominent role in what follows . Then with such f there is [33] a unique solution 
(cp, c) = (cp(ç, a), c(a)), which depends smoothly on a, and moreover , the monotonicity 
properties 

8cp(ç, a) 
8ç > 0, c'(a) > 0, (5.3) 

both hold. 
For an LDE, say (1.2) on the one-dimensionallattice Z, a traveling wave solution 

takes the form 
iE Z, (5.4) 

for some c E IR. If c i- 0 then cp : IR --t IR, while if c = 0 we have cp : Z --t IR. In either 
case, substitution of (5.4) into Eq. (1.2) yields the equation 

ç E IR or Z, (5.5) 

which is a differential-difference equation if c i- 0, and is a difference equation if c = o. 
As in the case of a PDE, the wave speed c is unknown, being determined as part of 
the solution, and the boundary conditions (5.2) are typically imposed. 

Equation (5.5) is a much more difficult system to analyze than the ODE (5.1), 
particularly if c i- o. In this case (5 .5) does not generate a dynamical system, as does 
(5.1), and it is inherently infinite dimensional. While there is a very large literature 
for functional differential equations (see [36]) , with the exception of [60], [61], this 
almost exclusively concerns time-delay (retarded) problems, as opposed to Eq. (5 .5) 
where both forward and backward shifts in the argument ç appear. 
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The first results on Eq. (5 .5), with (5.2), were given in [37] (see also [65], [66], and 
[67]) for a class of nonlinearities including ft in (2.2), where existence of a solution 
(cp , c) when a > 0 was established. This existence proof was based on degree the­
ory arguments , so unfortunately gave no indication of the global structure (such as 
uniqueness, or smooth dependence on parameters) of the set of all solutions. More 
recently [47], we have been able to establish uniqueness of the wave speed c, and if 
c i= 0 then we also have uniqueness of the solution cp, smooth dependence of cp and c 
on parameters (such as a and a), as weIl as the monotonicity conditions (5.3), at least 
for a class of f which includes ft in (2 .2). The proof of these results relies on agIobal 
continuation method (in the spirit of proofs in [6], [14], [15], and [31]) via a Mel'nikov 
function, together with comparison arguments. A key feature is the development of 
a Fredholm alternative, and adjoint theory, in the spirit of [35], for asymptotically 
autonomous linear equations of the form 

m 

'!f; '(ç) = L Ak(Ç)'!f;(Ç + rk), ç E IR, (5 .6) 
k=l 

with hyperbolic spectrum for the limiting equations at ç = ±oo (the quantities rk 
in (5.6) are given constants). Such equations (5 .6) occur as the linearization of (5 .5) 
about solutions cp, when c i= 0, and one needs the Fredholm theory in order to use 
Lyapunov-Schmidt techniques to construct the Mel'nikov function for Eq. (5.5). 

If c = 0, on the ot her hand, then typically cp is not unique. In addition, the 
phenomenon of propagation failure generally occurs, wherein the wave speed vanishes 
identically c == 0 as the parameters a and a vary throughout an open set. Propagation 
failure is a hallmark of spatially discrete systems and does not generally occur for 
PDE's such as (1.3). In the above example it is perhaps most easily seen upon 
observing that when c = 0, then Eq. (5.5) takes the form of a planar map (u, v) -t 
(2u - v + 0'-1 f(u), u) for which the two equilibria (u,v) = (1,1) and (-1, -1) are 
saddles. TypicaIly, hetero clinic orbits of such a map are transverse intersections of 
stabIe and unstable manifolds, and so persist throughout a range of parameters. One 
now concludes from (5.3) when c(a) i= 0, and with propagation failure on an interval 
(a-, a+) ç (-1,1), that 

1 
> 0 for a E (a + , 1), 

c(a) = 0 for a E [a-, a+], 

< 0 for a E (-1, a - ), 

where generally a- < a+ . Early work on propagation failure was given in [39], [40] . 
See also [44] for its significance in other applications. 

For the PDE (1.3), stability issues can be addressed by introducing the moving 
coordinate ç = x - ct into the time-dependent problem. For the LDE (1.2), it is 
possible [17], with some effort, to construct a continuously moving coordinate system 
in an analogous fashion. While the details are too lengthy to present here, we mention 
that a key point involves passing from the identity operator I on [OO(Z) to other linear 
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isomorphisms (for example, the shift operator) on this space, moving continuously 
through the space of linear isomorphisms. That th is can be done is a consequence of 
the connectedness of the space GL(lOO(Z», proved in [26]. 

The results of [47] are in fact quite general, and extend to higher dimensional 
lattices . In such cases one must also prescribe the direct ion of motion, in the lattice, 
in which the wave travels. Consider, for example, Eq. (2.1), with Q X = O. We write 

Ui ,j = Q(~ +U)i ,j - f(Ui ,j), (5 .7) 

denoting Q = Q+. Given any (J E IR, then by a traveling wave solution of (5.7) in the 
direction (J we mean a solution of the form 

Ui ,j(t) = cp(i cos (J + j sin B - ct). 

We see that cp must satisfy 
-ccp'(~) = Q(cp(~ + a) + cp(~ - a) + cp(~ + 11:) + cp(~ - 11:) - 4cp(~») - f(cp(~», 

(5 .8) 
a = sin (J, 11: = cos(J , 

for ~ E IR if c i- 0, or for ~ E!Dl if c = 0, where we denote!Dl = {ia + jll: I (i,j) E Z2}. 
o bserve that !Dl is a discrete set if tan (J is rational (regarding 00 here as rational), 
and is a dense set if tan (J is irrational. 

In order bet ter to understand the dep enden ce of c on the parameter a, as weIl as 
on the direction (J, the traveling wave equation (5.8) was studied [13] with the choice 
of a piecewise linear nonlinearity 

z + 1 if z < a, 
(5.9) 

z - 1 if z > a, 

where -1 < a < 1. This f is a cartoon ofthe smooth function!I in (2.2), and was used 
previously by McKean [53] for the associated PDE. The advantage of the nonlinearity 
(5.9) is that with it one can explicitly solve Eq. (5.8) by Fourier transform methods. 
Perhaps the most striking outcome of this study was the discovery of the pathological 
behavior of the critical value a+ = a+((J) on the direction parameter (J (here one 
has a- = -a+). The function (J -ta+((J) was shown to be continuous precisely at 
those (J E IR for which tan B is irrational, with points of discontinuity, specifically with 
a + ((J ± 0) > a + ((J), w hen tan (J is rational. Roughly, this means that propagation 
failure is more likely to occur for wavefronts with rational slopes, than with irrational 
slopes. Moreover , preliminary evidence indicates that this phenomenon holds quite 
generally for smooth f, and is not an artifact of the discontinuity in (5 .9). See [28] 
for numeri cal simulations of this problem with (5.9). 

More generally, one would like to understand traveling waves which join more 
complex patterns. For example, again with f = !I in (2.2), consider such a solution 
of Eq. (1.2) which joins an asymmetric one-dimensional checkerboard 
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as i --+ -00, with the homogeneous sol ut ion Ui = 1 as i --+ 00. Setting 

U2i = cp(i - ct), U2i+l = t/J(i - ct), 

yields the system 

-ccp'(~) = a( t/J(O + t/J(~ - 1) - 2CPW) - f(cp(~)), 

-ct/J'(~) = a (cp(~ + 1) + cp(~) - 2t/J(~)) - f(t/J(O), 

with the boundary conditions 

(cp(oo) , t/J(oo)) = (1,1), 

where the quantities ke and ka satisfy 2a(ke - ka) = f(ka ) = -f(ke ). 
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Reaction telegraph equations and random walk 
systems 

K.P. Hadeler 

Abstract 

In reaction diffusion equations spatial spread is modeled by Brownian ma­
tion. If Brownian mot ion is replaced by a correlated random walk or related 
processes then semilinear random walk systems and reaction telegraph equa­
tions are obtained. We investigate these systems and discuss their relevanee for 
modeling and applications in comparison with reaction diffusion equations. 

1 Introduction 

In all fields of science, economics and engineering, the interactions between several 
types or species have to be modeled. If the number of particles is large then one will 
describe the different types by their population sizes or densities and the reactions be­
tween them by (systems of) ordinary differential equations iJ, = f(u). The right hand 
sides of these equations of ten assume the form of polynomials or rational functions 
(e.g. derived from stoichiometrie laws) but in principle any type of nonlinearity can 
occur. It should be underlined that the description by differential equations is a most 
natural one since these equations describe nothing else than the law that connects the 
change of the system "in the immediate future" to the present state. Thus the con­
cept of differential equation arises naturally from the proper choice of the state and 
the assumption of causality. The usefulness of the differential equations approach is 
thus limited only by the assumption of large numbers . Of course it is tacitly assumed 
that the nonlinearity of the equation describes the underlying process correctly. That 
may not always be taken for granted if one thinks of complicated chemical molecules 
that react only in specified geometrie configurations. 

Modelling spatial spread seems less straightforward. In general one will either 
start from determinist ie balance considerations or from stochast ie processes such as 
Brownian motion. Both approaches lead, with certain assumptions that are both 
intuitively plausible and supported by experiment, to the diffusion equation or, in 
another physical context, to the heat equation. 

Assuming that reaction and diffusion act together one arrives at a type of system 
that has become known as reaction diffusion equation ([17, 38, 62, 68]). These systems 
have the form 

aUi 
8t=Di~Ui+fi(Ul, . . . ,Um), i=l, ... ,m, xEnCJRn

, 

or, in condensed notation, 

Ut = D~u + f(u) . (1) 
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The fact that the Laplacian and the reaction term appear as a sum is worth noticing. 
The most important example is the scalar re act ion diffusion equation, m = n = 1, 

Ut = Duzz + f(u). (2) 

The diffusion equation can be justified a posteriori since many stochast ic processes 
can be approximated by diffusion processes. Nevertheless, the diffusion equation has 
several deficiencies. The Laplace operator is strictly local, i.e . long distance effects 
are not taken into account . The diffusion equation shows the phenomenon of infinite 
propagation, i.e. particles can move with arbitrarily high speed, quite in contrast to 
common laws of physics. 

The question arises what type of equation is obtained if the underlying stochastic 
process is not Brownian motion and if a diffusion approximation is not made. There 
is a wide variety of stochastic processes which can be used to model spatial spread 
and that lead to other types of evolution equations. 

It turns out that these equations are quite interesting and sometimes show features 
different from those of reaction diffusion equations. On the ot her hand they appear 
mathematically more difficult. Probably they are not difficult per se but only in 
comparison with the large body of analytical tools that are available for the diffusion 
equation. 

A first candidate for a stochastic process different from Brownian motion is a 
correlated random walk. Whereas in Brownian mot ion the directions of mot ion in 
successive time intervals are uncorrelated, in the correlated random walk the particles 
have some inertia. The simplest case is a walk in one space dimension with constant 
speed. This process leads to a hyperbolic system on the line. Other processes lead to 
integral equations or again to hyperbolic systems in higher dimensions. 

Even in the scalar case the reaction diffusion equation (2) can be and has been 
interpreted in various ways. In a probabilistic setting, solutions to the linear diffusion 
equation are seen as probability densities (u(t, x) ~ 0, f~oo u(t, x) = 1), or probability 
distributions (lim",--+_oo u(t, x) = 0, lim",--+oo u(t, x) --+ 1, u(t, x) nondecreasing in x). 
In the lat ter case u(t, x) is the probability th at the position Xl (t) of the moving 
particle satisfies xt(t) < x. 

Fisher [18], in what is probably the first paper on areaction diffusion equation, 
considered the spread of a genetic trait. In his interpretation u(t, x) is the proportion 
of individuals that carry the trait at the point x at time t, in other words, the value 
u(t, x) is a probability and thus u(t, x) E [0,1]. Fisher studied the propagation of 
the trait in the form of a travelling wave sol ut ion of Eq. (2) which develops from an 
initial datum u(O, x) = 1 for x < 0, u(O, x) = ° for x > 0. Shortly later, Kolmogorov, 
Petrovskij, Piskunov [48] see u(t, x) as the density of matter at the position x at time 
t. Hence u(t,x) ~ ° but no upper bound for U is required. In McKean's [51] model 
for particles that undergo a branching process and perform Brownian motion, the 
function u(t, x) is again a probability distribution. We shall see that these distinctions 
carry over to random walk systems and reaction telegraph equations. The theory of 
vector valued reaction diffusion equations has been stimulated by biological modeIs, 
e.g. for pattern formation (Turing modeIs), nerve axon models (Hodgkin-Huxley 
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equations) and various problems in ecology. We shall discuss whether it is meaningful 
to consider extensions of these problems. 

The organization of the paper is as follows . In Section 2 we introduce a general 
transport equation and derive as special cases or approximations the equations of 
a correlated random walk in one dimension and general random walk systems. We 
relate these equations to the telegraph equation for electromagnetic signals and to 
generalized heat equations. In Section 3 we couple these equations to reaction pro­
cesses and thus derive semilinear hyperbolic systems that replace reaction diffusion 
equations. In Section 4 we study these systems on bounded domains, we find the ap­
propriate boundary conditions and we study the corresponding eigenvalue problems, 
in particular the connection between domain size and stability. In Section 5 we recall 
the connection between one-dimensional problems and branching random walks and 
the travelling front problem. In Section 6 we quote results on pattern format ion , 
space dependent diffusion, free boundary value problems, and nerve axon equations. 

2 Models for spatial spread 

In Brownian mot ion the state of the particle is given by its position in space. The 
particle does not have an assigned speed. Brownian mot ion is well suited to describe 
processes where the position of the particle is determined by many independent ef­
fects. When the particle has some memory or, in particular, if it has a well-defined 
velocity, then Brownian motion may not be an appropriate model. Of course these 
considerations are subject to choice of scale, and Brownian motion will usually ap­
pear as a limit case. Selecting velocity, in addition to location, as the most important 
variable, is motivated by various applications from physics , chemistry, and biology. 

The state of the particle is given by its position x E IRn and its velo city s E IRn. 
Let u(t, x, s) be the density of particles at time t . If particles just move and do not 
change velo city then the evolution of this density is described by the equation 

8u 
8t + V", . su = o. 

Here V", = (8/ 8Xl , ... ,8/ 8x n ), the . denotes the formal inner product. In coordinate 
notation the equation reads 

This equation says that each particle moves with "its" velocity along a straight line. 
N ow assume that particles stop their mot ion at random times determined by a Poisson 
process with parameter [.L, and then select a new velocity. Let K(·, s) be the density 
of the new velo city, given the previous velo city is s. Then K must have the properties 
K(s, s) ;::: 0, fIRn K(s, s)ds = 1, and the equation of motion is 

8u 1 -8 + v'" . su = -[.Lu + [.L K(s, s)u(t, x, s)ds. 
t Rn 

(3) 
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This equation describes pure motion. No particle is produced or deleted. The total 
number of particles fIRn fIRn u(t, x, s)dsdx (in case it is bounded) is an invariant of 
motion . With respect to the space variable x the system is fuUy symmetrie. So far no 
symmetry with respect to the variable s has been assumed. Eq. (3) and some nonlinear 
versions have been introduced by Othmer, Dunbar and Alt [58] as the "velocity jump 
process" (as opposed to a "position jump process"). The equation is formaUy close 
to a Boltzmann equation [9] or a BroadweU system [5], [66] with the difference that 
here particles tum spontaneously and not in response to collisions. 

There are various special cases that are perhaps easier to study than the fuU 
problem. In those cases where the velocity ranges over a manifold of lower dimension 
it is practical to formulate these problems ab initia rather than as special cases or as 
limit cases of Eq. (3). If the speed is constant then u(t, x, s) is defined on lRx lRn x sn-l 

where sn-l is the unit sphere in lRn . 

One can specialize to a symmetrie convolution kemel K on sn-I . With the 
convolution kemel one can apply a Taylor expansion and replace the integral operator 
by the second moment term. Then one obtains the equation 

(4) 

where ~s is the Laplace-Beltrami-Operator on sn-I. If the velo city assumes only 
finitely many values Si, i = 1, . .. , m, then Eq. (3) is conveniently written as a system 
of equations for the variables ui(t, x) = u(t, x, Si) (as in [60]), 

a i n ai rn 

U '"' U . '"' I at + ~SW~ = -jiu' + ji ~KiIU, 
j=l J 1=1 

i = 1, . .. ,m, (5) 

where the kemel in Eq. (3) is replaced by a matrix with Kil ~ 0, E::1 Kil = 1, I = 
1, . .. , m. We shaU further discuss the general case at the end of this section. The 
simplest case arises for one space dimension, n = 1, and only two veloeities, m = 2. If 
the veloeities and the matrix K are chosen in a symmetrie way, SI = , > 0, S2 = -" 
Kll = K 22 = 1 - T, K 12 = K 21 = r, and if the dependent variables are denoted by 
uI = u+, u 2 = u-, then the system assumes the form 

ut + ,u; -jiu+ + ji((1 - r)u+ + ru-), 

u~ - ,u; = -jiu- + ji,(ru+ + (1 - r)u- ). 

Redefining jir as Jl we arrive at the normalized problem 

ut + ,u; 

u~ - ,u; 
Jl(u- - u+), 

Jl(u+ - u- ). 
(6) 

This problem has a probabilistic interpretation: The function (u+, u-) is the proba­
bility density of a particle performing a correlated random walk on the realline with 
speed, > 0 and tuming rate Jl > o. Notice that the parameter Jl in Eq. (6) is the 
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rate at which the particle changes direction whereas in Eq. (3) the parameter jj is the 
rate at which the particle chooses a new direction. 

In Eq. (6) introduce the total particle nu mb er and the flow 

(7) 

In terms of these variables the system (6) can be written 

Ut + -YVx = 0, 

Vt + -YU x = -2Jlv. 
(8) 

Of course u+, u- can be recovered as u+ = (u + v)/2, u- = (u - v)/2. 
For later use we introduce one further reformulation. Define -yv = v. Then Eq. (8) 

becomes 

Ut +vx 0, 
1 _ -y2 _ 
-Vt + -Ux +V 
2Jl 2Jl 

o. (9) 

The system (6) or (8) is the starting point of the present paper. As we shall see in 
the sequel, this random walk system assumes the role of the one-dimensional diffusion 
equation when finite speed of propagation is required. 

It seems that Taylor [69] and Fürth [20] were the first who considered a correlated 
random walk, and S.Goldstein [25] performed a detailed analysis of such systems in 
the discrete and in the continuous case, see also [47], [12] and the exposition in [74]. 
A particle moves on the real line with constant speed -y > o. The direction of mot ion 
is governed by a Poisson process with parameter Jl. Thus at any time (except when 
direction is changed) the state of the particle is given by its location x E IR and 
its direction of motion. The state space is IR U {±}. The probability density for 
the state of the particle at time t is a function on the state space which we write 
(u+(t , .), u-ct, .)). The evolution of this density is governed by the hyperbolic system 
(6). For smooth initial data the functions (u+, u-) form a classical solution. For 
non-smooth data Eq. (6) must be seen as shorthand notation for a related integral 
equation. For the stochastic interpretation of Eq. (6) or Eq. (8) the density satisfies 
u+(t,x) ~ 0, u-(t,x) ~ 0, r~Ooo(u+(t,x) +u-(t,x))dx = 1. If (u+,u-) is interpreted 
as particle density then it makes sense to consider non-integrable solutions. 

The systems (6) and (8) are equivalent. If (u, v) is a C 2 solution of the system (8) 
then 

and thus 

(10) 

This transition has been found by Kac [45]: For any smooth solution of Eq. (8) the 
particle density u satisfies the telegraph equation (10). However, in this transition a 
constant is lost. If (u, v) is a solution of (8) then (u, v + ce-2/Lt), c any constant, is 
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a one-parameter family of solutions of (8), and all these are mapped into the same 
solution of Eq. (10) . Assume two solutions (u, v) and (u, îi) of (8) differ only in the 
second component. Then, by the first equation of (8), the difference îi -v is a function 
of t only, and by the second equation, this function is ce-2I-'t. 

On the other hand, assume u is a C 2 solution of (10). Then define, with some 
constant c, 

vo(x) = -')'J~Ut(O,y)dy+c, 

v( t , x) = vo (x )e-2I-'t - ')' J~ e-21-'(t-Bl u., (s, x )ds . 

(11) 

(12) 

Then the second equation of (8) is satisfied, and with assistance of Eq. (10) it follows 
that 

Thus 

')'v.,(O, x) _')'2 J~ e2I-' Bu:z:x(s, x)ds 

')'v.,(O, x) - J~ e2I-'B[utt(s, x) + 2J.Lut(s, x)]ds 

')'v., (0, x) - e21-'tut (t, x) + Ut(O, x). 

[Ut + ')'v.,](t, x) = e-2I-'t[ut + ')'v.,] (0, x) = o. 
Hence every C 2 solution u of (10) is part of a C 2 solution (u, v) of (8). Thus there 
is a one-to-one correspondence between the solutions of Eq. (10) and one-parameter 
families of solutions of Eq. (8) . The true nature of the constant c will show up in the 
case of several space dimensions. 

If the telegraph equation (10) is written in the form 

1 ')'2 

2J.L Utt + Ut = 2J.L U:z:x (13) 

then one sees immediately its connection to the diffusion equation. For ')' -+ 00, 

J.L -+ 00 such that ')'2/(2J.L) -+ D > 0, Eq. (13) becomes formally the diffusion equation 
(2). Thus Brownian motion is obtained as the limit of a correlated random walk if 
the speed becomes large and the turning rate becomes large (the free path length 
becomes short) in such a way that the limit ')'2/(2J.L) exists. 

Here the telegraph equation has been compared to the extreme situation where 
the free path length becomes very small. One can also compare to the other extreme 
of very large free path length, i.e. to the wave equation 

(14) 

Kac [45] has found a principle to produce solutions of the telegraph equation from 
those of the wave equation. Kaplan [46] has given an elegant proof and he has 
outlined the scope of this principle. A Poisson process with intensity J.L > 0 is a 
random variable N(t) that counts events. Let N(O) = o. The probability that an 
event occurs in (t , t + ~t) is J.L~t + o(~t). Then Prob{N(t) = k} = (J.Lt)ke-l-'t/k!. 
Introduce the random variable T(t) by 

T(t) = fot (_l)N(slds . (15) 
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Then -t ::; T(t) ::; t. Kaplan shows the following. Let U E C2 (IR), U = U(t). Define 

u(t) = Exp{U(T(t))}. (16) 

Then 
ü(t) + 2/-Lü(t) = Exp{Ü(T(t))}, (17) 

in particular, for U(t) = t, Exp{T(t)} = (1 - e-2
/l
t )/(2/-L). 

Introduce a space variable x. Let U = U(t,x) be in C2 (IR2 ) and satisfy Eq. (14). 
Then, since 8~ and Exp commute, the function 

u(t , x) = Exp{U(T(t), x)} (18) 

satisfies Eq. (10) and limHO u(t, x) = U(a, x), limHO Ut(t , x) = Ut(a, x). Eq. (18) 
says that, for any fixed x , the valuè u(t, x) is an average of the values U(t, x) where 
the weight is independent of the solution. Furthermore Kaplan shows that A(t, x) = 
Prob{T( t) ::; x fT} is a distribution function, and 

u(t, x) = i: U(s, x)dsA(t, s). (19) 

The function A = A(t, x) is itself a solution of Eq. (10), with A(a, x) = H(x) , 
At(a, x) = -ó(x), Hand Ó being the Heaviside and delta function, respectively. 
These ideas have been generalized to operator equations in (43), [42]. 

The telegraph equation appears in the work of Kirchhoff (1857) (according to [49]) , 
it has been derived from Maxwell's equations by Lord Kelvin and O.Heaviside (1876), 
it has been studied by Heaviside, Du Bois-Reymond (13), Poincaré (61), Picard (59), 
and many others. The book by Lieberstein [49] gives an excellent historical account 
of the physical applications, in particular on the idea to balance large leakage in long 
cab les by introducing additional self-induction. Many insights into the mathematical 
developments can be gained from Riemann-Weber [72], § 125. Consider a transmission 
line of two parallel wires of length l. Let R be the Ohm resistance, L the self-induction, 
C the capacity, and A the loss of isolation (leakage), each per unit of length. Let v 
be the voltage and i the cross current. These variables satisfy the equations 

8v 8i 
8x + L 8t + Ri = a, 

8i 8v 
- + C -8 + Av = a. 
8x t 

Differentiate the first equation with respect to x and the second with respect to t, 
then eliminate the mixed derivatives and obtain the second order equation 

LCvtt + (AL + RC)vt = Vzz - RAv. (2a) 

This equation is the telegraph equation or, as it is called in the earlier literature, the 
telegrapher's equation or telegraphist's equation. The function i satisfies the same 
equation. 

As has been indicated above, the telegraph equation is in some sense between the 
wave equation and the diffusion equation. Assume R, C, A are given. If L is small 
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then the equation is essentially a heat equation with a decay term. Signals become 
flattened out . If L is large then (although AL + Re also increases) the equation is 
truly hyperbolic, sharp signals can be transmitted. For the corresponding initial value 
problems on the real axis, there is d'Alembert's formula for the wave equation and 
Poisson's formula for the diffusion equation. There is a similar well known formula for 
the telegraph equation where the kemel is a Bessel function with variable argument, 
see [67] for a detailed discussion. 

Poincaré [61] derived this formula and considered it for initial data with compact 
support. He writes: "... These results lead to various observations. First one 
sees that the head of the perturbation moves with a certain speed in such a way 
that the perturbation is zero in front of the head, in contrast to what happens in 
Fourier's theory and in agreement with the laws of propagation of light and sound 
by plane waves, derived fr om the equation of the vibrating string. But, with respect 
to the latter case, there is an important difference, because the perturbation, while 
propagating, leaves a non zero remainder ... " 

Poincaré's comments are interesting for several reasons. First he finds it remark­
able that a model for the propagation of electric signals where no wave speed or par­
ticle speed has been introduced a priori, nevertheless produces a well-defined wave 
speed. This observation is trivial from what we presently know about hyperbolic 
systems, but it is not trivial looking at the physical problem. The second remarkable 
fact is that Poincaré relates the telegraph equation to Fourier's theory of heat. We 
shall follow th is line of thought later in this section. 

In the appropriate initial value problem for the system (6) the values of the func­
tions u+, u- are prescribed for t = 0, 

(21) 

Then the initial data for Eq. (8) are 

u(O,x) = uo(x) = uci(x) + uo(x), v(O,x) = vo(x) = uci(x) - uo(x) . (22) 

The usual initial data for the telegraph equation (10) are 

u(O, x) = </>(x), Ut(O, x) = 1/J(x). (23) 

We follow the initial conditions in the transition from the random walk system (8) to 
the telegraph equation (10). Let (u, v) be a solution of Eq. (8) with initial data (22). 
Then u satisfies Eqs. (10) and (23) with 

</>(x) = uo(x), 1/J(x) = -,v~(x). (24) 

Let u be a solution of Eq. (10) with initial data (23). Then define v by Eqs. (11)-(12) 
and (u, v) satisfies Eqs. (8), (22) with v(O, x) = -, Io'" 1/J(y)dy + c. 

The classical formula (see, e.g. [67]) for the solution to the initial value problem 
(10) and (23) in terms of the Riemann function can be used to find a "Poisson formula" 
for the random walk problem (6) and (21). 
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Let Iv(x) = evrriJv(ix) be the Bessel function of purely imaginary argument, in 
particular 

Ib(x) = 11 (x). The functions Io(x), ft(x) are positive for x > 0, and Il(X)/X IS 

analytic. Define the kemels, for x - ,t :::; Y :::; x + ,t, 

J-Le-/Jt J-L 
K(t, x, y) = --Io( -V,2t2 - (y - x)2), (25) 

2, , 

J-Le-/Jt ft(~V,2t2 - (y - x)2) 
K±(t, x, y) = ~ J,2t2 _ (y _ x)2 (Tt =f (y - x)). (26) 

The sol ut ion to the initial value problem (6)and (21) reads 

l
,,+r t 

uci(x - ,t)e-/Jt + K+(t,x,y)uci(y)dy 
"--rt 

l
,,+-rt 

+ K(t,x,y)uC;(y)dy, 
"--r t 

l
,,+-rt 

uC;(x + ,t)e-/Jt + K_(t, x, y)uC; (y)dy 
"--rt 

(27) 

l
",+-rt 

+ "'--r
t 

K(t,x,y)uci(y)dy. 

One sees immediately that the solution depends in a monotone way on the initial 
data and that u(t, x) depends only on data in [x - ,t, x + ,tl. Furthermore one 
sees how discontinuities of the initial data decay. In each equation the first term 
contains the discontinuity whereas the integral terms represent continuous functions. 
This formula is more symmetrie than the corresponding formula for the telegraph 
equation. Of course it makes sense for any locally bounded and measurable initial 
data, thus extending the differential equation to an evolutionary system. 

It is not evident how the concept of a random walk system (9) should be generalized 
to several space dimensions. One possible approach is guided by the theory of heat. 
The heat equation or Fourier's law (Fourier 1822) is the classieal model for heat 
conduction. It is equivalent to the following two assumptions: A conservation law for 
the temperature u and the heat flow v, 

"'P Ut + div v = ° (28) 

where p is the density and '" is the heat capacity. The heat flow v is prop ort ion al to 
the negative gradient of the temperature, 

v=-kgradu (29) 
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where k is the heat conductivity. If Eq. (29) is introduced into Eq. (28) then the heat 
equation 

results . 

k 
Ut = -~U 

KP 
(30) 

The heat equation has the property that, contradicting other established physical 
laws, small amounts of heat are propagated with arbitrarily high speed. In their 
account of the history of the problem, Joseph and Preziosi [44) describe how, from 
the times of Maxwell, it was weIl understood, at least by some scientists in each 
generation, that the problem of infinite propagation is intimately connected with the 
fact that in Fourier's model the flow adapts instantaneously to the gradient whereas 
in real physical systems as weIl as in an appropriate microscopic description some 
time would be needed to ob serve the gradient and to adapt to it. The simp lest model 
for an adaptation process is a linear feedback loop. Then Fourier's law is replaced by 
the equation 

TVt = -kgradu - v. (31) 

Then Eqs. (28)and (31), i.e. 

1 d' Ut + - lVV 
KP 

0, 
(32) 

T Vt + kgrad U + V o. 

becomes a hyperbolic system of n + 1 equations that replaces the heat equation. There 
is a weIl defined finite propagation speed. In a physical context the time constant T 

is so small that it can be neglected in most practical situations. 
According to [44), the first formulation of the law (32) appears in a paper by 

Cattaneo [8) . Already the title of that paper indicates that the real problem is in­
stantaneous propagation whereas infinite speed is only a consequence of Fourier's law. 
In [57) the system (32) appears as the linearization of some reaction equation. 

As in Eq. (10) one can eliminate the function V and arrive at a damped wave 
equation or telegraph equation 

k 
TUtt + Ut = -~U. (33) 

KP 

In the formal limit T -+ 0 we obtain the heat equation. 
In the theory of diffusion we have an almost identical situation. The conservation 

law Ut + div V = 0 for the concentration and the flow of some substance, and the 
first Fickian law (Fick 1855, see [10)) V = -Dgrad U, with D being the diffusion 
coefficient, lead to the diffusion equation (the second Fickian law) Ut = D~u. The 
same arguments as before lead to the system 

Ut + divv 

TVt + Dgradu + V 

0, 

o. 
(34) 
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Replacing the diffusion equation by the linear system (34) is one way to avoid the 
difficulties of infinite propagation. Quite another way leads to the so-called porous 
medium equation, i.e . a diffusion equation Ut = div (D(u)gradu) where the diffusion 
coefficient depends on density and vanishes for U = 0, see e.g. [1]. 

Again the concentration u satisfies a telegraph equation 

(35) 

If w is any vector field with div w = 0 then (u, v) = (0, w exp{ -t/T}) is a solution of 
(34). These solutions are mapped into the zero solution of (35) . The system (34) is a 
generalization of Eq. (9) . The constant c in Eq. (11) is a vector field with divergence 
o. For T -+ 0 we formally obtain Eq. (1). When comparing the system (34) to a 
one-dimensional random walk (9) or to Brownian motion we shall identify 

"(2 
D=- . 

2J.L 

Plane wave solutions of Eq. (34) satisfy a system of the form (9). 

(36) 

The work of S.Goldstein [25] has been extended to motions on multidimensional 
grids by Gillis [23], see also [37]. However there are difficulties to design random walks 
in the plane (and in IRn for any n ~ 2) for which the probability density would satisfy 
a telegraph equation of the form (35) (see [56]). 

We establish a connection between the velo city jump process (3) and the system 
(34). In Eq. (3) assume space dimension 2 and constant speed. Then, with cp being 
the coordinate on Sl, the equation is 

Ut(t, x , cp) + "( cos cp UZI (t , X, cp) + "( sin cp uz, (t, x, cp) 

1
211" 

= -ji.u(t, x, cp) +ji. 0 K(cp,'IjJ)u(t,x , 'IjJ)d'IjJ. (37) 

The total population size 

1
211" 

U(t,x) = 0 u(t,x,cp)dcp (38) 

satisfies the conservation law 

Ut(t, x) + div W(t, x) = 0 (39) 

1
211" 

W 1 (t,x) = 0 "(coscpu(t,x , cp)dcp, 
r2

11" 
W2 (t,x) = Jo "(sincpu(t,x,cp)dcp. (40) 

Assume K == 1/27r. A simple calculation shows that 

1
211" 

Wt + "(2 0 P(cp) gradzu(t, x, cp)dcp + ji.W = 0 ( 41) 
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where 

p = ( COS
2 

<p sin <p cos <p ) 
(<p) sin <p cos <p sin2 <p , 

( 42) 

for any given <p, is a projection that maps any given vector onto the span of e", = 
(cos<p,sin<p)T. Eqs. (39)and (41) should be compared to Eq. (34) with T = l/P and 
D = ,2/ p. We see that formally the transit ion from the velocity jump process (37) to 
the system (34) is accomplished by replaeing the projection by the identity. Thus the 
transition from Eq. (37), for functions II~? x SI -t JR, to Eq. (34) for functions from 
JR2 -t JRn+l, relies on the assumption that, on the average, grad z u(t, x, <p) is parallel 
to e",. Thus a smoothness property of the flow is assumed that should approximately 
be satisfied at least af ter long times. Notiee, however, that in the heuristic argument 
no assumptions on , or p have been made. 

3 Reaction random walk systems 

The random walk system (8) replaces the diffusion equation in the case of a correlated 
random walk. The problem of defining meaningful generalizations of the scalar reae­
tion diffusion equation can be approached in several ways. If we assume symmetry 
then the system should have the form 

p,(u- - u+) + F(u+,u-), 

p,(u+ - u-) + F(u-, u+). 
(43) 

If total production does not dep end on the direct ion of motion then F(u+, u-) + 
F(u-, u+) should be a function f(u) of u = u+ + u-. This requirement leaves still 
many possibilities for the form of the function F. In order to define specific problems 
we assume again the particle view. If the net production f(u) is distributed among 
the two directions then one has the simple system 

ut + ,u; 
Ut - ,u;; 

p,(u- - u+) + H(u), 

p,(u+ - u-) + H(u). 
(44) 

In many situations this assumption appears unrealistic: If particles disappear then 
they are removed from the appropriate class. Thus we introduce a birth rate mand 
a death rate g, both depending on the total population number u, and we assume 
that newly produced particles choose both directions with equal probability. Then 
we arrive at the following system, 

ut + ,u; = p,(u- - u+) + !m(u)u - g(u)u+, 

Ut - ,u;; = p,(u+ - u-) + !m(u)u - g(u)u-. 
(45) 

Finally we ean assume that the velo city of a "daughter" is correlated with that of the 
"mot her" . If the parameter T E [0,1] determines the distribution of directions then 
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ut + ,ut 
u;'- - ,u;; 

J-t(u- - é) + (Té + (1 - T)u-)m(u) - g(u)u+, 

J-t(u+ - u-) + ((1 - T)U+ + Tu-)m(u) - g(u)u-. 
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(46) 

The system (45) (the "uncorrelated case") is obtained for T = 1/2, and Eq. (44) is 
obtained with 9 = 0, f = m. 

As in Eq. (8) we introduce the variables u and v . Then these three systems assume 
the form 

where 

and 

h(u) 

h(u) 

h(u) 

f(u), 

-h(u)v, 

f(u) = m(u)u - g(u)u 

2J-t, 

2J-t + g(u) , 

2J-t + (1 - 2T)m(u) + g(u) 

for Eqs. (44) , (45), (46), respectively. 

(47) 

(48) 

(49a) 

(49b) 

(49c) 

We caU a system of the form (47) a reaction random walk system or simply a 
random walk system. 

Since we do not have a microscopic description of the system (34), it is not obvious 
how to design specific models that would replace Eqs. (44-46) in the case of several 
space dimensions. We propose the system 

Ut + divv = f(u), 

T Vt + Dgrad u + v = 0 
(50) 

as the appropriate generalization of Eq. (44) or Eq. (47) and (49a), as a random 
walk system where the reaction is independent of the direction of mot ion or, more 
appropriate in the present context , where the feedback loop is independent of density. 
A generalization of Eqs. (4 7)and (49b,c) is 

ut+divv f(u), 

TVt + Dgradu + h(u)v = O. 
(51) 

Holmes [41J has observed that, similar to Eqs. (8) and (10), some reaction random 
walk systems can be transformed into (nonlinear) telegraph equations. In Eq. (47) 
form second derivatives , eliminate mixed derivatives, and obtain 

Utt - J'(u)Ut = ,2uxz + h(u)[J(u) - UtJ + h'(u)uz'v. 



146 K.P. Hadeler 

There is no way to get rid of the term containing v unless h is constant. In the latter 
case we arrive at the nonlinear telegraph equation 

Utt + (h - J'(u))Ut = "'?u;u; + hf(u). (52) 

Thus Eq. (44) and also Eq. (45), with g constant, can be carried into telegraph 
equations, but not the general system (47). The standard example is g = 0 which 
gives 

(53) 

This equation we call areaction telegraph equation. As in the linear case, one can 
take the limit to Brownian motion. In Eq. (53) divide by 2p" let p, -t 00, 'Y -t 00 such 
that 'Y2 /(2p,) -t D. Then formally one obtains the reaction diffusion equation (2). 

The same idea can be applied to the system (50). From the initial value problem 

Ut + divv 

rVt + Dgradu + v 

u(O, x) = uo(x), 

f(u), 

0, 

v(O,x) = vo(x). 

(54a) 

(54b) 

(54c) 

one proceeds to the initial value problem of areaction telegraph equation for the 
function U 

rUtt + (1 - r J'(u))Ut = Dtl.u + f(u), 

u(O , x) = uo(x), Ut(O,x) = -divvo(x) + f(uo(x)), 

and for the flow v 

(55a) 

(55b) 

rVtt + Vt = Dgraddivv - Dgradf(u), (56a) 

v(O, x) = vo(x), r Vt(O, x) = -D grad uo(x) - vo(x). (56b) 

Eq. (56a) can also be written in a form that is similar to Eq. (55a) 

rVtt + (1- r J'(u))Vt = Dgraddivv - J'(u)v. (57) 

Now we see what really happens in Kac's transition Eqs. (8)and (10). The density 
u and the flow v both satisfy telegraph equations. The equation for u is nonlinear 
and independent of v, but the equation for v is linear with coefficients depending on 
u. Thus the equation for u separates. However the initial conditions do not separate, 
the condition for Ut depends also on vo o If a solution (O,wexp(-t/r)), divw = 0, is 
added in Eq. (54) then this solution drops out in Eq. (55), it appears only in Eq. (56). 

For r -t 0 the telegraph equation (55a) becomes the diffusion equation (1). Since 
r is small in many (but not all) applications, one can consider (55a) as a singular 
perturbation of (1). The distance between the solutions has been discussed for the 
linear random walk case Eq. (10) by Griego and Hersh [28] (see also [26]) in a stochastic 
setting, and by Hale [36], Milani [53). 
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4 Bounded domains 

If any of the reaction random walk systems are considered on compact domains then 
one has to specify boundary conditions that refiect the properties of the (supposed) 
underlying stochastic process similar to the Dirichlet, Neumann, and Robin bound­
ary conditions for the reaction diffusion equation. The boundary conditions must 
respect the hyperbolic structure of the problem; data can only be prescribed along 
characteristics that are directed inwards. 

We first consider the case n = 1. Then the domain is an interval [0, i]. We consider 
the standard system (44) or (47) and (49a) and the telegraph equation (53). 

The homogeneous Dirichlet condition requires that any particles arriving at the 
boundary are absorbed. At x = 0 only particles of type u- arrive, no particles of 
type u+ emerge; similarly at x = l. Hence the homogeneous Dirichlet condition is 

(58) 

In terms of the variables u and v this boundary condition reads 

v(t,O) = -u(t,O), v(t,i) = u(t,i). (59) 

In the transition to the telegraph equation the boundary condition (59) for (u , v) 
becomes a time-dependent boundary condition for u alone 

Ut(t,O) = ,u,,(t,O) - 2j.tu(t,0), ut(t,i) = -,u,,(t,i) - 2j.tu(t, i). (60) 

As an intermediate problem one can study Eq. (53) with the stationary Robin con di­
tion , 

u(t,O) = -u,,(t, 0), 
2j.t 

, 
u(t,i) = --u,,(t,i). 

2j.t 
(61) 

Again we can consider the limit to Brownian motion. Then ,/(2j.t) goes to zero, 
and formally we arrive at the usual homogeneous Dirichlet condition for the reaction 
diffusion equation. However, this limit is purely formal, the solutions behave rather 
differently, see (82) and (85). 

The homogeneous Neumann condition describes refiection of particles at the bound­
ary, hence 

(62) 

In terms of the variables u and v the Neumann boundary condition is 

v(t,O) = 0, v(t, i) = O. (63) 

Again, for the telegraph equation we obtain formally 

u,,(t,O) = 0, u,,(t,i) = O. (64) 

Similarly one can formulate inhomogeneous boundary conditions. 
Existence and uniqueness results for the Cauchy problems of the system (44) 

with boundary conditions (58), (62) are shown in [3], [40] . Of course there is a 
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vast literature on Cauchy problems for nonlinear wave equations (e.g. [52, 53, 55, 
26]). It is an interesting question to what extent the solutions of the hyperbolic 
initial boundary value problems have properties similar to those of the corresponding 
reaction diffusion equations. Although there are maximum and comparison principles 
for hyperbolic equations (e.g. [73], [40]) such principles are not valid as generally 
as in the parabolic case. The system (6) preserves positivity, also with Dirichlet or 
Neumann conditions, and also (44) with f(O) = 0,1'(0) > O. However, a comparison 
principle holds only under rat her st rong conditions on 1'. 

Next consider the case of several space dimensions, i.e. Eq. (50) on a bounded 
domain n c IRn . The boundary condition for the homogeneous Dirichlet problem 
requires that there should be no particles entering the domain along a characteristic 
direction which leads to 

u(t, x) = ~ vT v(t, x) for xE an (65) 

where v is the outward normal at x E an. The absorption boundary condition for 
the telegraph equation (55a) becomes a time dependent Robin condition, 

~au 
TUt = - Y T D av - U for x E an. 

Again, one can study the intermediate problem Eq. (55a) with 

~au 
u(t , x) = -YTD av for xE an. 

The homogeneous Neumann condition for Eq. (50) is 

and 

for Eq. (55a). 

vTv(t,x) = 0 for xE an 

aU = 0 for x E an av 

(66) 

(67) 

(68) 

(69) 

The U components of stationary solutions of class C2 of the Dirichlet or Neumann 
problems satisfy the differential equation 

-Dtl.u = f(u) (70) 

and the appropriate boundary conditions Eq. (67) or (69), respectively. Hence known 
results on the existence of stationary solutions to boundary value problems of reaction 
diffusion equations (e.g. [63) for Robin boundary conditions) can be used in the 
hyperbolic case. 

We discuss the case n = 1 in greater detail. We assume that the nonlinearity 
f E Cl (IR) has the properties f(O) = f(l) = 0, 1'(0) > 0, 1'(1) < 0, f(u) > 0 for 
0< U < 1. We are mainly interested in solutions (u+,u-) with u+ 2: 0, u- 2: 0 or 
o ~ U ~ 1. Stationary solutions of the Dirichlet problem (47) and (59) satisfy 

"(U' = -h(u)v, "(v' = f(u), (71) 
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v(O) = -u(O), v(l) = u(l). (72) 

For the moment we assume that h(u) > 0 for u E [0, I]. Then we can rescale the 
independent variabie (changing the length of the interval) and arrive at 

u = -v, V = j(u) where j(u) = f(u)/h(u) . (73) 

Eq. (73) is a Hamiltonian system with Hamiltonian 

H(u, v) = ~V2 + F(u), F(u) = J~ j(s)ds . (74) 

The stationary points are a center at (0,0) and a saddle point at (1,0). Solutions 
of Eqs. (71)-(72) correspond to (pieces of) trajectories that connect the line v = -u 
to the line v = u. There is a one-parameter family of such arcs parametrized by the 
value u(Z/2) ranging from 0 to 1. To each value il E (0,1) there is a unique solution to 
the boundary value problem for some Z with u(I/2) = il. For il -+ 1 we have Z -+ 00, 

for il -+ 0 the length Z converges to some well-defined positive nu mb er Zo that can be 
obtained from the linearization. However, Z need not be a monotone function of il . 

The Hamiltonian system (73) describes also the stationary solutions of the Dirich­
let problem of the reaction diffusion equation Ut = u""" + j(u), u(t,O) = u(t, I) = o. 
Again, there is a branch of nonnegative solutions parametrized by il = u(I/2), with 
Z -+ 00 for il -+ 1 and Z -+ la for il -+ 0, with some la > o. But there is a marked 
difference in the two problems. In the parabolic case we look for an orbit that runs 
from u = 0 to u = 0, thus Zo is one half of the period near (0,0), whereas Zo is 
usually considerably smaller. Thus the minimal length of an interval that supports 
a nontrivial stationary solution is considerably shorter in the hyperbolic case. This 
phenomenon has been discussed in detail in [58] . The difference will be quantitatively 
explored in terms of the eigenvalues of the linearization. The stationary solutions 
of the hyperbolic Dirichlet problem look quite different from those of the reaction 
diffusion equation. Even though particles are absorbed at the boundary, the function 
u does not vanish at the boundary. 

For the stationary solutions of the homogeneous Neumann problem we have again 
the system (71) . In the stationary situation the boundary conditions Uz = 0 and 
v = 0 are equivalent. Thus the situation is the same as in the parabolic case. In 
particular, (0,0) and (1,0) are the only nonnegative stationary solutions. 

In the homogeneous Dirichlet problem of the scalar reaction diffusion equation 
(2) with f'(O) > 0 the stability of the zero solution is lost when the length I of 
the interval exceeds a certain threshold. This threshold can be obtained either by 
studying the period of the Hamiltonian system near the origin or by a discussion 
of the corresponding eigenvalue problem. In the hyperbolic case it is difficult to 
determine the criticallength from the Hamiltonian system. The systematic approach 
to the spectral problem is simpier. 

One can show ([55], [40]) that in standard function spaces (Lp(O, 1))2 the generators 
of the solution semigroups of the linearized problems (47), (59) or (63) have pure point 
spectrum and that the eigenvalues are the zeros of an analytic characteristic function. 
Here we derive this function explicitly and we extract some important quantities. 
Later we return to the case of several space dimensions. 
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We start from the Dirichlet problem (47) and (59). We linearize at the zero 
solution and we put a = 1'(0), b = h(O). The linearized system is 

au, 

-bv 
(75) 

with the same boundary condition. If (u, v) exp{)..t} is an exponential solution then 
u, v,).. satisfy 

Put 

"(v' = (a - )..)u, "(u' = -(b + )..)v, 

u(O) + v(O) = 0, u(l) - v(l) = O. 

8 = (b + )..)h, ",2 = (b + )..)().. - a)h2
. 

(76) 

(77) 

(78) 

Then Uil = ",2u. We are looking for solutions of the form u(x) = cle/"I: + C2e-l<x . 

Then u'(x) = cI",el<x - c2",e-l<x, and the boundary conditions yield a linear system 
"'(Cl - C2) = 8(CI + C2), ",(eI<ICI - e-I<IC2) = -8(el<lcl + e-I<IC2). The determinant 
vanishes if and only if ('" - 8)2/(", + 8)2 = e21<1 . Replacing", and 8 we find one form 
of the characteristic equation 

( 
b + ).. - J(b + )..)().. - a)) 2 = e2J(b+À}(À-a)IJ-y . 
b + ).. + J(b + )..)().. - a) 

This equation can also be written 

b - a + 2)" - 2J(b + )")(,X - a) _ 2J(b+À}(À-a)lJ-y 
:-b ---a-+--:2:-:)"-+-2=-.j-'-;~( b=+=)"~)~( )..:=-~a) - e , 

or, showing the analytlcity, 

2(b - a + 2),,) _ sinh(2.j(b + )..)().. - a)lh) i 
(b + a)2 2J(b + )..)().. - a)lh "( 

(79) 

(80) 

(81) 

Consider Eq. (47) and (49a). Then b = 2J.L. From (80) one finds that the critical 
length I of the interval and the parameter a = l' (0) are connected by the equation 

J2J.Lal 2J2J.La 
tan--=---. 

"( 2J.L- a 
(82) 

For a qualitative discussion of Eq. (82) we keep J.L fixed . The quotient l/"( is a decreas­
ing function of the parameter a . For a -+ 2J.L the right hand side goes to infinity, thus 
the argument of the tangent is 1r/2, and a = 2J.L corresponds to lh = 1r/(4J.L). For 
a -+ 00 the right hand side goes to zero like 2V2ii/.jä. Since tan x ~ x near x = 0, 
we find 

2 

"( a 
for a -+ 00 . (83) 
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For a -t 0 the argument of the tangent goes to 7r, hence 

for a -t O. (84) 

In the parabolic case we have, using Eq. (36) for a comparison, 

(85) 

Thus the behavior for small 1 is markedly different. 
The linear system (6) and (58) preserves positivity and the spectral bound (the 

eigenvalue with maximal real part) is real. The spectral bound can be obtained from 
the characteristic equation with a = O. We put .À = Jl// and we write the characteristic 
equation in the form 

1 + // - ../(2 + //)// _ e2V(2+vlv(/-tlhl = O. 
1 + // + ../(2 + //)// 

(86) 

Let >'0 be the spectral bound. Then.Ào / Jl depends only on the parameter Jll /,. N otice 
that this nu mb er is different from the parameter Jll/,2 that appears in the parabolic 
case. .Ào is always negative. With some effort one can show [65] that the quotient 
.Ào / J1. is an increasing function of J1.1 /, and assumes the following special values, 

.Ào/ J1. -t -00, 

.Ào/ J1. = -1, 
.Ào/J1.= -2, 
.Ào/ J1. -t O . 

The Neumann problem is somewhat simpler. The eigenvalues are .Ào = a, with 
eigenvector (1,0), and 

(87) 

Now we return to the case of several space dimensions. With f(O) = 0,1'(0) = a> 0, 
the linearized system to (54) is 

Ut + divv 

TVt + Dgradu + v 

au, 

0, 
(88) 

with boundary condition (65) or (68), respectively. The corresponding telegraph 
equation is 

TUtt + (1 - Ta)Ut = D~u + au. 

The eigenvalue problem to Eq. (88) is 

>.u + divv 

T.ÀV + Dgrad u + v 

au, 

0, 

(89) 

(90) 
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with boundary condition (65) or (68), respectively. In Eq. (90) one can eliminate v 
and find 

~u=Au (91) 

with 
(À - a)(l + rÀ) = DA (92) 

and boundary conditions 

~8u 
(1 + rÀ)u(x) = -yrD 8IJ (x), xE 8n, (93) 

or 
8u 
8)x) = 0, xE 8n, (94) 

respectively. Eqs. (91), (92) and (94) could also be obtained from Eqs. (89)and (69). 
Let Ab Uk, k = 0,1,2, ... be the sequence of eigenvalues and eigenvectors of 

Eqs. (91) and (94), normalized in L2 (n), with Aa = O. Then the eigenvalues of 
problem (90) and (94) are Àa = a and 

± 1 - ra 1 r.--~--=---
Àk = -~ ± 2r V(l + ra)2 + 4rDAk, k = 1,2,.... (95) 

The eigenvalues À with large absolute values are complex and their asymptotic be­
havior is ~À = -(1 - ar)/(2r), ~À ....., JDIAI/r. Thus, for small r, the eigenvalues 
approach a line parallel to the imaginary axis at about ~À ::::: -1/ (2r). 

As in the one-dimensional case [67], [6] one can find solutions to the linear initial 
boundary value problem (88) and (69) by separation of variables. The ansatz 

u(t, x) = LTdt)Udx) (96) 
k 

for (89) leads to the ordinary differential equation 

(97) 

The characteristic exponents are X; as given by Eq. (95). If u(O, x) = :Ek ckUdx), 
Ut(O, x) = :Ek C~Uk(X), then Tk(O) = Cb Tk(O) = C~. Hence we find the representation 

u(t,x) = eoeatUa(x) + f + 1 [(eÀtt - eÀ;;-t)c~ + (eÀ;;-tÀt - eÀttÀ;;)Ck] Uk(x). 
k=l Àk - Àk 

(98) 
As in the reaction diffusion case the ultimate goal is the description of the qualita­

tive behavior of the solutions of the semilinear equations with appropriate boundary 
conditions. A useful tooi are invariants and Lyapunov functions which have been 
found by Brayton and Miranker [4] for n = 1 and can be generalized to several space 
dimensions and also to some vector-valued problems (see also [40]). Let 

1 {r ( 1 
V(u, v) = 2 Jo. (u~ + D v;)dx - M Jo. (2D v2 + F(u) - uV'v)dx. (99) 
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Then along trajectories 

d
d V(u, v) = - r [(M - j'(u))u; + ~(1- M7)V;]dx - r (Ut + Mu)vT VtdS. (100) 
t Jn D Jan 

If the damping condition supu J'(u) < 1/7 is satisfied then one can find M such 
that sUPu J'(u) < M < 1/70 Then the term containing the space integral becomes 
nonpositive. The boundary integral vanishes in the case of the Neumann condition. 

Several authors have shown that specific damped wave equations have compact 
attractors (Webb [71], Lopes [50], Fereisl [16], Hale [36]). 

The arguments for the scalar case can be easily carried over to the case of several 
dependent variables. Then one arrives at hyperbolic systems that mimics reaction 
diffusion systems. For one space dimension, let U = (Ul, . . . , urn) be a vector of 
species, M = (/-LiÓij), r = (riÓij) and let f : IRrn -t IRrn be the vector field that 
describes the interaction of species. Then the generalization of (44) is 

ut + ru~ 
u; - ru; 

This system is equivalent to 

M(u- - u+) + tf(u), 

M(u+ - u-) + H(u) . 

f(u), 

-2Mv, 

and the function u is a solution to the vector telegraph equation 

Utt + (I - 2M j'(u))Ut = r 2u"" + 2M f(u). 

5 Branching processes, random walks and 
travelling fronts 

(101) 

(102) 

(103) 

In the standard inter pret at ion of the reaction diffusion equation (2), with f(u) = u(l­
u), say, either the function u(t, ·) represents a particIe density at time t or the nu mb er 
u(t,x) is a probability describing an event at time t at the point x . McKean [51] has 
given a totally different interpretation of the same equation in terms of branching 
processes. He designs a stochastic process of the following form . At any time t ~ 0 
there are v(t) particles. These have positions on the real axis Xl (t), ... , X,,(t)(t) . 
Thus there are v(t) + 1 random variables. The process is constructed in such a 
way that these are independent. Each of the particles performs a Brownian mot ion 
independent of all the ot her particles. At the same time the particles are subject to 
a branching process. Any existing particIe has exponential holdipg time. When it 
splits it gives ri se to finitely many daughters (two in the special case). The daughters 
start their motion at the position of the mother. Brownian motion and branching act 
independently of each other. 
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Thus the process is characterized by the following parameters: The diffusion rate 
D , the Poisson parameter band the distribution of the number of daughters given by 
its generating function 

00 00 

k=2 k=2 

In the simplest case, branching into two daughters, we have g(z) = z2. 
McKean defines a function u(t, x) as a probability for the position of the most 

advanced particIe, 

u(t, x) = Prob{Xi(t) < x, i = 1, . . . , v(t)} . (104) 

Clearly, u(t, x) is a nondecreasing function of x with u(t, x) -+ 0 for x -+ -00, and 
u(t, x) -+ 1 for x -+ +00. He proves that the function u satisfies areaction diffusion 
equation 

Ut = !u""" + f(u), f(u) = b(g(u) - u). (105) 

Consider the process that starts with a single particIe at x = O. Then the initial 
datum is 

(0 ) = {O, x < 0, 
u ,x 1, x 2: 1. (106) 

Then the solution to the initial value problem will develop into a travelling front 
solution . Thus we have the same situation as in Fisher's model. 

McKean's idea of connecting a branching process to a process for spatial spread 
has been carried over to correlated random walks by Dunbar and Othmer [14], [15]. 
They consider a stochastic process with the following properties. At time t there are 
v(t) particles at positions XI(t), .. . ,Xv(t)(t). These particles multiply according to 
a branching process and move according to a correlated random walk. It is assumed 
that the branching of particles and the motion of particles act independently. Again 
they consider the function (104) and they show that it satisfies areaction telegraph 
equation 

Utt + (2J.L + 2f'(u))Ut = -lu",,,, - (2J.L + b)f(u) (107) 

Here J.L and , are the parameters of the correlated random walk, and b defines the 
holding time of the branching process. For J.L -+ 00, , -+ 00, ,2/ J.L -+ 1, Eq. (107) 
becomes Eq. (105). 

As indicated in the introduction, reaction diffusion equations started with a trav­
elling front problem. In the parabolic case consider the scalar equation (2) with 
f E GI[O, 1], f(O) = f(l) = 0, 1'(0) > 0, 1'(1) < 0, f(u) > 0 for 0 < u < 1. A 
travelling front is a solution u(t,x) = tjJ(x - ct) where the shape function tjJ satisfies 
o < tjJ(x) < 1 and lim"' ..... _oo = 1 and the speed c is positive. There is a minimal 
speed Cp (depending on f) and for every c 2: Cp there is, up to translation, exactly 
one travelling front (see [48], [2], [35], the literature in [31], and [21] for more recent 
developments in a stochastic setting). 
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The wave speeds for the scalar reaction diffusion equations have two different 
interpretations. In the Fisher-KPP interpretation the speed is the velocity of prop­
agation of the wave front, i.e. the point m(t) with u(t, m(t)) = 1/2, in McKean's 
interpretation it des cri bes how the position of the most advanced particle moves. 

For the hyperbolic problem (44), with the same hypothesis on f, a travelling front 
is a solution u+(x - ct), u-(x - ct) with u+(x) > 0, u-(x) > 0, u+(x) + u-(x) < 1, 
US(-oo) = 1/2, US(+oo) = ° for s = ±. Under suitable conditions on f and J1. there 
is a positive minimal speed CH E (0,,), and for every c E [CH,,) there is, up to 
translation, a unique travelling front. A sufficient condition for this statement is the 
inequality f'(u) < 2J1. for all u E [0,1). For the proof and extensions see [30), [31). 

Travelling front solutions can be found in other reaction random walk systems, 
where such solutions exist in the corresponding reaction diffusion equations. As an ex­
ample one can consider a set of equations that describe epidemic spread by migrating 
infectives 

Ut 

vt +,v-:­
v~ - ,v; 

-(3u(v+ + v-) , 

J1.(v- - v+) - QV+ + {3u(rv+ + (1 - r)v-) , 

J1.(v+ - v-) - QV - + (3u((l - r)v+ + rv-) . 

(108) 

Here one can ask for travelling front solutions that connect two stationary points of 
the underlying reaction system [32). 

6 Pattern format ion and other problems from 
biology 

From the view point of Biology one of the main applications of reaction diffusion 
equations are models for pattern formation. Although there are several schools which 
have developed such models (mostly with rather specific nonlinearities, not so much 
supported by experimental evidence but rather by tradition, to name some of the 
earliest , [22), [24)), the underlying idea is that of Turing [70): A stable spatially con­
stant equilibrium of the underlying reaction scheme can be destabilized by diffusion, 
if different species have rather distinct diffusion rates. The simplest case occurs for 
two variables. Consider 

Ut = Duxx + Au (109) 

with 

(110) 

Assume that the zero solution is stable with respect to the reaction, all + a;!2 < 0, 
alla22 - al2a21 > 0, and that UI acts as an "activator" , U2 as an "inhibitor", i.e. 
all > 0, a22 < 0, al2 < 0, a21 > 0. Let [0, i) be a bounded interval. Consider the 
system (109) with homogeneous Neumann conditions. If dl is small and d2 is large (a 
short range activator with a long range inhibitor) then there are modes k and lengths 
i such that these modes grow exponentially. Hillen [39) has studied systems of the 
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form (109) that show the same behavior and he has determined the exact stability 
conditions. 

Several authors, e.g. Hadeler [30], Sánchez-Gardufio and Maini [69] have consid­
ered density-dependent diffusion, i.e. diffusion equations where the diffusion coeffi­
cient itself depends on density, 

Ut = (D(u)u",)", + f(u). (111) 

Systems of this form have been extensively studied ("cross diffusion") by Mimura, 
e.g. in [54]. In the case where D is uniformly positive, many results carry over from 
the case D == const. Particular attent ion has been paid to the porous medium version 
[69]. A similar dependenee on density can be incorporated in Eq. (44), 

or Eq. (46) 

ut + (r(u)u+)", 

ui - (r(u)u-)", 

p,(u)(u- - u+) + H(u), 

p,(u)(u+ - u-) + !f(u) . 

Ut + (r(u)v)", = f(u), 

Vt + (r(u)u)", -2p,v. 

(112) 

(113) 

The boundary conditions remain (58-63) . The travelling front problem can be solved 
if "(' h is not too large [33] . 

Greenberg [27] has studied the classical Stefan problem for a generalized heat 
equation. As we have observed earlier, the boundary value problem for the random 
walk system does not approximate to that of the diffusion equation if the appropriate 
limit in the coefficients is taken. Using an energy balanee argument, Greenberg spec­
ifies a nonlinear Stefan condition for the hyperbolic problem that in the limit yields 
the Stefan boundary. Here we propose to stay in the class of linear problems (i.e . the 
only nonlinearity is the dependenee on the boundary itself). Thus we consider the 
standard problem (44) in a domain 

n = {(t , x) : 0 ~ t ~ T, 0 ~ x ~ s(t)} . 

The boundary condition at x = 0 is of Dirichlet type u+(t, 0) = <p(t). The boundary 
condition at x = s(t) is of Stefan type. We assume that a prop ort ion K, E (0,1) of 
particles is reflected, u-(t, s(t)) = K,(u+(t, s(t)) and the boundary is pushed forward 
by the unreflected particles, s(t) = T(U+(t , s(t)) - u-(t,s(t)). Equivalently, we can 
assume s(t) = T(1 - K,)u+(t, s(t)). Initial conditions are u+(O, x) = uo(x) , u-(O, x) = 
uil" ( x) for 0 < x < s (0) . 

Reaction diffusion equations play a prominent role in neurobiology (see [49],[11). 
The Hodgkin-Huxley model and its simplified version, the Fitzhugh-Nagumo model, 
are actually three models each. The basic model is an ordinary differential equa­
tions system that describes the excitation of a (short) piece of nerve membrane (the 
so-called space clamp situation). The same equations with an additional parameter 
modeling the dendritic input describe, via a Hopf bifurcation, the onset of oscillatory 
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behavior at the axon hillock ([34], [29)) . Finally, one can model the axon as a one 
dimensional domain, the ordinary differential equation is acting at each space point, 
and the transmission between adjacent areas is modeled by the cable equation (which 
corresponds to nearest neighbor coupling in a discrete setting) . Then a (degenerate) 
reaction diffusion system results. There is a vast literature on these problems [11). 
The first proof of existence for a travelling pulse solution was given by Carpenter [7) . 
Fitzgibbon and Parrot [19] reconsidered the original papers and found, that origi­
nally the system was designed as a hyperbolic system and later has been "simplified" 
to a parabolic system by putting a presumably small parameter equal to zero. Al­
ready Lieberstein [49] pointed out that this parameter (self-induction) should not be 
neglected. In the Fitzhugh-Nagumo case the hyperbolic system has the form 

Wtt + (1 + fg(U))Ut = U""" + f(u) - 8v, 
(114) 

Vt = u - ZIV 

with f(u) = u(1 - u)(u - a), a E (0,1). One of the most interesting features of these 
equations is the existence of travelling pulses and travelling wave trains. A travelling 
wave ansatz u(x - ct), v(x - ct) leads to 

fC
2 Ü - c(1 + fg(U))iJ. = Ü + f(u) - 8v, 

V (ZIV - u)/c. 

We put w = iJ, to obtain a three-dimensional first order system, 

-c(1 + fg(U))W - f(u) + 8v, 

(ZIV - u)/c, 

iJ, w. 

For this system, for small 10, one can again use the arguments of [7]. 
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Random differential equations and applications 

Russell Johnson 

Abstract 

We introduce some basic methods and results in the field of random differen­
tial equations. These methods and results center on the concepts of exponential 
dichotomy, Lyapounov type number, and rotation number . They are applied to 
two problems in random bifurcation theory. 

1 Introd uction 

The purpose of this paper is to discuss some basic methods and results in the field 
of "random differential equations" and to delineate in some detail an application of 
those methods to bifurcation theory. Despite the use of the word "random", and 
despite a certain formal similarity to the theory of stochastic differential equations, 
the techniques we introduce are only partly probabilistic in nature, and in fact we will 
not consider stochastic differential equations. This being the case, it seems natural 
to begin the paper by delimiting in broad outline the problems one does discuss in 
the field of random differential equations and the basic techniques used to deal with 
them. We will indicate several are as in which the methods of this field have found 
application. Then we will turn to the particular case of bifurcation theory and consider 
a bifurcation scenario intermediate between those considered in the well-developed 
fields of smooth quasi-periodic and stochastic bifurcation theory. 

This paper is a revised version of a talk given at the Colloquium entitled "Dynam­
ical Systems and their Applications in Science", sponsored by the Royal Netherlands 
Academy of Arts and Sciences and held in Amsterdam from 26- 28 January 1995. The 
author wishes to thank the Academy and the organizers, Prof. S. Verduyn-Lunel and 
Prof. S. van Strien for their invitation to speak and for their hospitality during the 
Colloquium. 

As promised, we begin by discussing what we mean by the term "random differen­
tial equation". These are non-autonomous linear or non-linear differential equations, 
viewed from a direction which permits the use of ideas of topological dynamics and 
ergodic theory in their study. As we will see, our point of view encompasses a very 
wide variety of time-dependent equations. The time dependence may be periodic, or 
"deterministically" chaotic, or "indeterministically" chaotic so long as it is bounded. 
Though we do not consider stochastic differential equations as these are usually de­
fined , the methods we discuss apply to all non-autonomous equations satisfying a 
boundedness condition with respect to the time variabie. 

Our starting point is, then, the non-autonomous differential equation 

X' = f(t, x) xE IRn
, tE IR (1.1) 

where the t-dependence is defined by a flow {Tt I t E IR} on a compact metric space Y. 
That is , {Tt} is a one-parameter group of homeomorphisms of Y [52) . This amounts 
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to viewing (1.1) as just one of a family of equations 

X' = f(Tt(y), x) y E Y, xE IRn (1.1)y 

where now f : Y x IRn -+ IRn is a jointly continuous function which is at least 
Lipschitz continuous in x, so that standard theorems about existence, uniqueness, 
and continuity of solutions with respect to y are valid. Frequently (but not always), 
Y will support a probability measure J.l which is ergodie with respect to the flow 
{Tt I tE IR}. That is to say 

(i) J.l is invariant: J.l(Tt(B)) = J.l(B) for each t E IR and each Borel set BeY; 

(ii) J.l is indecomposable: if BeY is a Bore! set such that Tt(B) = B for all t E IR, 
then J.l(B) = 0 or 1. 

The presence of a topological structure on Y tends to distinguish our approach 
to "random" differential equations from that of the Bremen school (see, e.g. [1] for 
a review) . Here the emphasis is on the measurable structure corresponding to an 
ergodic measure J.l . Stochastic differential equations can be studied in this framework 
and indeed these have been considered in detail by L. Arnold, F. Colonius, H. Crauel, 
W . Kliemann, and co-workers. In this art iele we will make considerable use of the 
compact metric structure on Y. It is this structure that will allow us to apply tools 
of topological dynamics. 

It is easiest to give examples of random ordinary differential equations when f is 
linear in x, and this is what we now do 

Example 1 Let 
x' = a(t)x (1.2) 

be a linear differential equation with bounded measurable coefficient matrix a( ·). 
We "randomize" equation (1.2) in the following way. Let LOO(IR, M n ) be the set of 
bounded measurable functions in the algebra M n of n x n real matrices. We introduce 
the weak-* topology in this space: an -+ a if and only if 

for every function <p E L1(IR). Then elosed norm-bounded subsets of LOO(IR, M n ) are 
compact. We define a flow in LOO(IR, M n ) by translation: 

This is the so-called Bebutov flow [38]; see also [36]. Returning to equation (1.2), 
define 

Y = els {Tt (a) I tE IR} c LOO(IR, Mn ). 

Then Y is compact, the set {Tt I t E IR} defines a flow on Y, and equation (1.2) is 
one of the family of equations 

x' = y(t)x Y E Y. (1.2)y 
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We have randomized equation (1.2). When convenient, we can fix an ergodic 
measure J1 on Y and discuss properties of equations (1.2)y which are valid for J1-
a.a. y (but not necessarily for the original equation (1.2)). This not infrequently 
leads to important insights which are not at all obvious if attention is restricted to 
equation (1.2) . A basic example is the Oseledec theory [39] which will be discussed 
later. On the other hand the existence of an ergodic measure on Y (th ere is always at 
least one; see [38]) is quite irrelevant for the discussion of some questions which are 
posed naturally in terms of random differential equations. For example, stability and 
smoothness problems arising in the theory of exponential dichotomy are often solved 
without use of ergodic theory. 

When convenient, one can write equation (1.2)y in the form 

X' = A(Tt(y))x (1.2)~ 

where A : Y -+ M n is a bounded Borel function. For example, define 

l
l /n 

A(y) = lim n y(s) ds 
n-tOO 0 

(y E Y); 

then for each y E Y, A(Tt(y)) is defined and equals y(t) Lebesgue-a.e. Sometimes it 
is useful to have a continuous function A : Y -+ M n in (1.2)~; this is possible if (and 
only if) the original function a(·) is uniformly continuous on IR. 

As a special case, suppose a is periodic with period 1: a(t + 1) = a(t). Then 
the above construction produces a circle Y c LOO(IR, Mn ). The flow {Tt I tE IR} is 
equivalent to translation on the standard unit circle: Tt (e27ri /l) = e27ri (lI+t) (0:::; 0 < 1). 
There is exactly one ergodic measure on Y, which corresponds to normalized Lebesgue 
measure on the circle {O :::; 0 < I}. 

Example 2 Suppose a : IR -+ Mn is quasi-periodic with k frequencies 'YI, ... ,'Yk . 
That is, a(t) is a uniform limit of trigonometric polynomials 

In th is case the construction of Example 1 produces a k- torus Y (assuming the 
frequencies 'YI, .. . ,'Yk are rationally independent), and the translation flow on Y is 
equivalent to a Kronecker twist flow: 

There is a unique invariant measure J1 on Y, which corresponds to the normalized 
Lebesgue measure dOl 1\ ... 1\ dOk on T k. 

Example 3 We refer to the book of Doob [15] for the definitions of the terms from 
probability theory used below. Let (0,1/) be a probability space, and let {Zt I t. E IR} 
be a stationary ergodic, stochastically continuous family of differential equations 

(w EO). 
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Let X be the uncountable product X = rr n, and let Voo be the probability mea-
tER 

sure defined on the a-algebra B generated by finite products A = {(Wt)tER I Wt, E 
Btl , .. . , Wtk E Btk} C X (where Btl , . .. , Btk c nare v-measurable) by the formula 
voo(A) = v(Btl) ... v(Btk ). Define 

where Wo means the zero-th "coordinate" of (Wt) EX. Let Y = clsi(X) in the weak-* 
topology. Then it can be shown that i is a Borel map and that the image measure 
i(voo ) = IJ is an ergodic measure on Y . 

We take the point of view that the family of differential equation (1.3)w is equiv­
alent to the random differential equation 

X' = y(t)x (y E Y) 

with Y = cis i(X). Thus all methods we develop for random differential equations 
can be applied to equations (1.3)w. 

At this point it is instructive to observe that there is natural progression in the 
collection of all random ODEs as regards the "degree of randomness" of the triple 
(Y, {Te}, IJ). A periodic differential equation exhibits no randomness. It is rather 
surprising that, even though a quasi-periodic flow (Example 2) exhibits very strong 
recurrence properties, solutions of a random ODE with quasi-periodic flow (Y, {Te}) 
can exhibit quite irregular behavior. This is evidenced by results concerning the 
Lyapounov exponents of such equations; see especially the examples of Mil!ionsCikov 
[37] and Vinograd [51]. More recently, it has been shown that the quasi-periodic 
Schrödinger operator can exhibit a "substantial amount" of point spectrum; see [18] . 

In any case, one can imagine that the ergodic flow on Y may satisfy mixing 
conditions, have positive entropy, etc. In particular the entire range of possibilities of 
"deterministic chaos" may be present in the flow on Y . It is to be expected that the 
randomness of the flow on Y wil! make itself feit in the behaviour of the solutions of 
equations (l.l)y. 

At this point one may object that the concept of random differential equation is 
too genera!. One of the lessons of the last twenty-five years is that potent tools are 
available for the study of all such equations, the application of which leads not infre­
quently to useful insights. These tools are (1) the concept of exponential dichotomy; 
(2) Lyapounov type numbers adapted to the random frameworks; (3) rotation number. 
We wil! il!ustrate all three of these concepts in our treatment of random bifurcation. 

Some fields in which one or more of these concepts have been fruitfully applied in 
recent years are the following. 

(1) The random Schrödinger operator. Textbooks are now available on this subject 
[9, 16]. It is interesting to compare their contents with the discussion in the 
early "reviews" ([26, 50]). It is clear that many interesting problems in this field 
need further study, for example the Cantor spectrum problem for quasi-periodic 
operators and the Schrödinger inverse problem together with its rel at ion to the 
Korteweg-de Vries equation. 
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(2) The study of transversal homo clinic orbits and the numerical study of chaotic 
systems. These fields have benefited from the use of exponential dichotomy 
as a tooI. Palmer [40, 41] first related exponential dichotomy to the existence 
of transversal homoclinic orbits. For further developments see, e.g., [2, 3, 42]. 
The Contemporary Mathematics volume [33] is devoted to chaotic numeri cs and 
contains several papers which use Palmer's exponential dichotomy approach to 
orbit shadowing. 

(3) Control theory of non-autonomous systems. The present author and M. Nerurkar 
have discussed the relation between local and global controllability for linear sys­
tems using Lyapounov exponents [31]. Exponential dichotomy is very useful in 
studying the random linear stabilization problem [29] . We also wish to men­
tion the papers of Bougerol [4, 5] who discusses the random Kalman filter using 
Lyapounov exponents. 

(4) Random orthogonal polynomials have been studied systematically by J. Geron­
imo and his co-authors [20, 21]. In particular, an inverse problem for such poly­
nomials has been formulated and solved by extending a basic result of Kotani 
from the theory of the random Schrödinger operator [34] and using ideas of 
algebraic curve theory [22]. 

(5) Random bifurcation theory. In Section 3 below we will discuss the random 
saddle node bifurcation (see also [1, 12]). In Section 4 a bifurcation scenario 
worked out by the author and Y.F. Yi [32] will be discussed. 

2 Basic concepts 

In this section we consider some basic definitions and facts having to do with expo­
nential dichotomies, Lyapounov exponents, and rotation numbers. 

Let 

X' = A(Tt(y))x xE lRn (2.1)y 

be a random family of linear equations where {Tt I t E lR} is a flow on a compact 
metric space Y . We will assume for convenience that A : Y ~ M n is continuous 
though, as discussed in § 1, it would suffice to assume that Y is a weak-* compact, 
translation invariant subset of LOO(lR, Mn ) (or more generally of Lfoc(lR, Mn ) for p 2: 
1) . 

Definition 2.2 Equations (2 .1)y are said to have an exponential dichotomy (ED) if 
there are constants C > 0, 'Y > 0 and a continuous family {Py I y E Y} of projections 
Py : lRn ~ lRn such that 

lI<J>y(t)Py<J>y(S)-lll ::; K e-"({t-8) 

II <J>y (t)(I - Py)<J>y(s)-lll ::; Ke+"({t-8) 

(t 2: s) 

(t ::; s). 
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Here <I>y(t) is the fundamental matrix solution of (2.1)y (i.e. it is an n x n matrix 
function which satisfies the differential equation and the initial condition <I>y(O) = 1). 

A basic fact concerning the existence of an exponential dichotomy is due to Sacker­
Sell [45, 46J and Selgrade [48J. First recall that the flow on Y is called chain recurrent 
if given y E Y, T > 0, and t > 0, there is a finite sequence y = Yl, Y2, .. . ,YN = Y of 
points in Y and a corresponding sequence tI > T, ... , tN-l > T such that 

distance (Yi+ 1 , Tt. (Yi)) < t 1 ~ i < N . 

Theorem 2.3 Suppose that the flow on Y is chain recurrent. Then equations (2.1)y 
have an ED iJ and only iJ, Jor each Y E Y the only solution x(t) oJ (2.1)y which is 
bounded on all oJ]R is the zero solution. 

The ED property is extremely useful because of the remarkable stability properties 
and smoothness properties of the projections Py. Basic stability results are due to 
Coppel [14J and Sacker-Sell [46], while Palmer [40], Yi [53] and ot hers have proved 
smoothness results. 

We next give a brief discussion of Lyapounov exponents. Fix Y E Y ; the Lyapounov 
exponent of a non-zero solution x( t) of equation (2.1)y is 

. 1 
(3(x) = hm - In IIx(t)lI . 

t-too t 
(2.4) 

(If the limit does not exists, one replaces lim by limsup in (2.4)). Also the maximal 
Lyapounov exponent of equation (2 .1)y is 

(3y = lim ~ In II<I>y(t)ll· 
t-too t 

(2.5) 

The limits in (2.4) and (2 .5) need not exist; however in the random context one 
has the fundamental theorem of Oseledec [39] which has been reproved several times 
(e.g. [1]) and which has a non-linear vers ion developed by Ruelle [43J . To state the 
linear version, we introduce the skew-product flow defined by equations (2 .1)y. This 

is the flow {1\ I t E ]R} defined on the product space Y x ]Rn in the following way : 

The reason for the term "skew-product" is that the y-part of the flow does not depend 
on x. 

Theorem 2.6 Let j.L be an ergodic measure on Y . There is a set Yo c Y oJ Juli 
j.L-measure such that, iJ y E Yo, then there are k ~ n Lyapounov exponents (31, . .. ,(3k 
oJ equation (2.1)y. That is, Jor each non-zero solution x( ·) oJ equation (2.1)y, the 
limit in (2.4) exists and is among {(31, .. . ,(3k} . The set {(31' ... ,(3k} is independent oJ 
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Y E Yo· Furthermore, there are measurabie subbundies W l , ... ,Wk C Yo x IRn which 
are invariant with respect to the flow {Tt I t E IR} and which satisfy 

the bun dIe Wi has the following description: 

W i = {(y, x) E Yo x IRn I lim ~ In lI~y(t)xll = {3;}. 
t-+±oo t 

Finally, {3y = max {{31 , . . . , {3k} for J.L-a.a. y E Y. 

This theorem states that there is a "measurable decomposition" of Y x IRn into in­
variant measurable subbundies, where the subbundies are defined by the J.L-Lyapounov 
exponents of the random differential equation (2 .1)y . Of course the measurable de­
composition can be viewed as a random analogue of the decomposition of IRn into the 
generalized eigenspaces of a constant matrix A, because the generalized eigenspaces 
of A are invariant under the act ion of the fundamental matrix sol ut ion ~(t) = e At of 
the constant-coefficient system x' = Ax. 

Next, we discuss the relation between the Sacker-Sell theory of exponential di­
chotomy and the Oseledec theory. Define the dynamical spectrum I: of the ran­
dom differential equation (2.1)y as follows: I: = P E IR I the translated equations 
x' = [->.1 + A(Tt(y))]x do not admit an exponential dichotomy}. Then it is proved 
in [46] that I: is a union of finitely many closed intervals [al, bl ] U .. . U [ar, br ] where 
al < bI < a2 < b2 < .. . < ar < br and r < k . There are continuous subbundies 
W I ~ .. , Wr C Y x IR~ such that - -

(i) WI EB · . . EB Wr = Y x IRn; 

(ii) if (y,x) E W i , then lim, lim ~lnll~y(t)xll E [ai,bi]. 
t-+±oo t-+±oo t 

Furthermore, each continuous bundie W i is a direct (measurable) sum of Oseledec 

bundies: W i = Wh EB . . . EB W ji . The endpoints e E {al, bI , ... , ar, br} of the spectral 
intervals are distinguished in the sense that, for each such number e, th ere is an ergodic 
measure J.L = J.Le on Y with respect to which e is an almost everywhere Lyapounov 
exponent in the sense of the Oselcdec theory. 

Suppose now that the linear random differential equation (2.1)y is 2-dimensional, 
i.e., x E IR2. Let x(t) be a non-zero solution of (2 .1)y, and let 8(t) be the polar angle 
of x(t) in the x = (Xl, x2)-plane. Of course we suppose that 8(t) is determined in a 
continuous way. We define the rotation number 

Ct = lim 8(t) . 
t-+oo t 

(2.6) 

The right hand side of (2.6) is clearly independent of the initial value 8(0) . The 
limit need not exist for every y E Y (though it does if (Y, {Tt}) admits exactly one 
ergodic measure). As in the case of the Lyapounov exponent, if J.L is an ergodic 
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measure on Y, then the limit in (2.6) exists for J.L-a.a. y and is constant, independent 
of y and of the initial value 0(0) . Proofs af these statements are mastly in [28], though 
the results stated there are given for the almost periodic Schrödinger operator. The 
proofs in [28] are generalized to the case we are considering in [23] . 

The rotation nu mb er is of fundamental importance in the theory of the one­
dimensional random Schrödinger operator, and the paper [28] marks the foundation 
of the systematic development of that theory in the 1980s. The utility of the rotation 
number derives from its strong continuity properties with respect to parameters. This 
feature will be illustrated in our discussion of bifurcation theory. There is a higher­
dimensional version of the rotation number, defined for example if the function A(·) 
takes values in the Lie algebra sp(n, IR) of infinitesimally symplectic matrices, or more 
generally in u(p, q) . This quantity is discussed in [27, 30] and an application to the 
random feedback stabilization problem of contral theory is given in [29]. We will not 
discuss the higher-dimensianal rotation number here because its definition would take 
us too far afield and because we will not use it in the sequel. 

3 Random bifurcation theory: the random 
saddle node 

We consider one of the simplest random bifurcation problems which, however, still 
has instructive features . See [6, 12]. The random saddle node is modelled by the 
random differential equation 

(3 .1)y 

where (Y, {Tt}) is a compact metric flow and q : Y -+ IR is a continuous function . If 
q = 0, then one checks directly that x± = ±H determines, for each À < 0, a pair 
of fixed points, one of which is attracting and one of which is repelling. On the other 
hand, if À > 0, then all solutions x(t) of x' + x2 = -À tend to -00 in finite time. 

If q is non-zero, the situation is similar but there are some interesting possibilities 
x' 

that merit mention. Let us begin by changing variables, writing cp = -. Then the 
x 

equation for cp is simply the random one-dimensional Schrödinger equation where À 

plays the role of an eigenvalue parameter: 

(3.2)y 

Since q is bounded, the operator Ly = - d
2

2 
+ q(Tt (y» is self-adjoint and bounded 

dt 
from below in L 2 (IR) for each y E Y . 

We now make use of some of the most basic facts from the theory of the random 
Schrödinger operator (see [28, 50, 9,16]). Fix an ergodic measure J.L on Y and suppose 
for convenience that the "topological support" of J.L is all of Y (that is, J.L(V) > 0 for 
every open subset V c Y). Then the spectrum ~ C IR of the operator Ly is constant 
(as a closed subset of IR) for J.L-a.a y E Y . Let Ao be the left endpoint of~ . Then, for 
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À < Ào, the associated differential equation 

(;,)' ( ~ ) (;) (3.3)y 

has an exponential dichotomy. Using the fact that the coefficient matrix in (3.3)y has 
trace zero, this implies that, in the <p - <p' space, there is an expanding direction and a 
contracting direction , and these directions vary continuously with y. More precisely, 
one has 

Y X IR2 = W+ EB W-

where W± are the continuous invariant subbundies discussed in § 2: each is one­
dimensional. 

Define now 
+ _ <p',..(0) 

Xy - <p+(0)' 
_ <p'- (0) 

Xy = <p_(0) 

where <p+(t) (<p-(t)) is a sol ut ion of (3.3)y in the expanding (contracting) direction. 
It can be shown that x; are finite for all y E Y, or equivalently that <p±(t) :j; 0 for 
all t E IR, for each y E Y. 

Amoment's reflection shows that the sections {(y, x;) I y E Y} C Y x IR are 
analogues of the attracting-repelling fixed points arising for À < 0 when q = O. These 
sections support ergodic measures J.L± (the natural lifts of J.L under the projection 
7r : Y x IR -t Y). Thus one can also speak of attracting and repelling invariant 
measures in Y x IR. 

On the other hand, if À > Ào, then the rotation number a = a(À) of equations 
(3 .3)y is strictly positive ([28, 23]). This imp lies (see § 2) that, for J.L-a.a y, all non-zero 

solutions (;~;)) of (3.3)y rotate around the origin in <p - <p' space infinitely of ten 

as t -t 00. This means that all solutions of the x-equation (3 .1)y blow up in finite 
time for J.L-a.a. y. 

These features have of course direct analogues when q = O. When À = Ào, however, 
an interesting possibility arises which has no analogue in the case q = 0 (nor in the 
case when q is periodic). Namely, at À = Ào, the two ergodic measures J.L+ and 
J.L- need not collapse together to form one measure (this is what does happen if 
q = 0 or if q is periodic), but rather they may remain distinct. It so happens that 
they remain distinct if and only if the maximal Lyapounov exponent f3(À o) with 
respect to J.L of equations (3 .3)y when À = Ào is strictly positive. This phenomenon 
in turn is common when the flow (Y, {Td) admits non-trivial recurrence properties. 
lts discovery for al most periodic flows is due to Millionscikov ([37]; see also Vinograd 
[51]). For "highly random" flows it is due to Furstenberg and Kesten [19]. 

In any case, consider now the linearization of (3.1)y around a given solutian x(t): 
one obtains 

(8x)' + 2x(t)8x = O. (3.4)y 

We may linearize equations (3.1)y "around J.L+", where J.L+ is the limit as À increases 
to Ào of the measures J.L+(À). It is easy to make sen se of this idea; intuitively speaking 
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one substitutes in (3.4}y solutions x(t) of (3 .1)y which are in the support of 11+. Since 
I 

x = ~, we see that the Lyapounov exponent of equations (3.4)y which corresponds 
t.p 

to the measure 11+ is -2,8(Ào). 
The moral of these remarks is that the stability of an invariant measure (in the 

sense that the corresponding Lyapounov exponent of equations (3.4)y is strictly neg­
ative) does not guarantee the continuability of the invariant measure. Indeed Y x IR 
carries no measures invariant for equations (3.1)y (which project to 11) if À > Ào . 
If the continuability is given, however, then negativity of the Lyapounov exponent 
does indeed guarantee the stability of the continued invariant measure for nearby 
parameter values [6] . 

4 Random bifurcation theory 11: a two-dimensional 
problem 

We begin by formulating a quite general one-parameter bifurcation problem with two 
degrees of freedom . Let Y be a compact metric space with flow {Tt I t E IR}, and 
let I C IR be an open interval containing the origin À = O. Con si der the random 
differential equations 

xE IR2 (4.1)y 

where nÀ(Y'x) is jointly continuous in (À,y,x), is C2-smooth in x, and satisfies 
nÀ(Y'x) = O(lIxI1 2

) as x -+ O. The flow {Td is allowed to vary with À j we assume 
that Tt = T/ is jointly continuous. 

Suppose now that x = 0 is an asymptotically stabie solution of (4.1)y for each 
À < 0, but that asymptotic stability is lost as À passes through zero. A natural 
and important question arises: is there a new asymptotically stabie invariant set 
(attractor) if À > O? If so, what does it look like? 

In a moment we will con si der two situations in which variants of this general 
problem arise. First let us rephrase the problem slightly. Note that, for fixed À, the 
solutions of (4 .1)y define a skew-product flow {iÜ on Y x IR2 in the following way: 

Tt(y, xo) = (Tt(y), x(t» 

where x(t) is the solution of (4.1)y satisfying x(O) = xo. It is easy to see that {Td 
defines a flow on Y x IR2 , at least if solutions of (4.1)y exist on -00 < t < 00 . But this 
latter condition can be assured by multiplying nÀ(Y") by a suitable bump function 
of x centered at x = O. 

Note now that the set Y x {Ol c Y X IR2 is compact and invariant with respect 
to the flow {Tt = T/'} for each À E J. By hypothesis this set is asymptotically stabie 
for À < 0 but ceases to be so at À = O. We will search for compact, invariant, 
asymptotically stabie subsets Z of Y x IR2 which are near Y x {Ol when À > O. 

Let us now consider two problems which motivate the study of (4 .1)y. The first is 
that of the breakdown of stability of an invariant two-torus in a non-linear dynamical 
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system. Consider a one-parameter family of equations 

Z' = f>.(z) zE IRN (4.2h 

where as before À lies in an open interval I C IR containing zero. Suppose that 
{Y>. I À E I} is a continuous family of invariant 2-tori, which is stable for À < 0 but 
loses stability at À = O. One asks if (4. 7)y admits an invariant attractor for À > O. 

There is a well-known way, indicated by Ruelle and Takens [44], by which a family 
of invariant 2-tori can arise in parametrized family of nonlinear dynamical systems. 
Thus this problem is of significant interest . Two approaches to studying the problem 
were developed in the late 1970s by Sell and Flockerzi ([49, 17]) and by Chenciner­
Iooss ([10, 11]) . In both approaches, strong smoothness conditions together with a 
diophantine assumption on the flow on the 2-torus at the critical value À = 0 are of 
crucial importance. 

It should be emphasized that Chenciner and Iooss wrote down a (strong) condition 
guaranteeing the existence of a smooth family of invariant 2-tori for À > 0, i.e., after 
the breakdown of asymptotic stability. Our theory presupposes the persistence of the 
family of 2-tori for À > O. In situations where this persistence does not hold, our 
theory is not applicable. 

If persistence does hold, however, then (4.2)>. can be reduced to (4.1)y by the device 
of linearizing (4.2) >. around the compact invariant set Y>. and making appropriate 
assumptions concerning the existence of a center manifold. See [32] for details. 

A second type of problem, to which our methods apply directly, is illustrated by 
the noisy Duffing van der Pol oscillator 

(4.3) 

Here y(.) E Y, and Y is a weak-* compact, translation invariant subset of LOO(IR, M n ) . 

Thus one has a "parameter-disturbed" bifurcation problem. Note that v = v' = 0 
is a sol ut ion of (4.3); one studies the stability of this sol ut ion as a and f3 vary. The 
problem (4.3) was studied by Holmes and Rand [24] when y = O. They divided the a­
f3 parameter space into eight regions, with various bifurcation scenarios as one crosses 
the boundary between one region and another. 

When y(t) = ç(t) = white noise, this problem has been studied numerically by 
K.R. Schenk of Bremen [47]. Motivated by the work of Holmes-Rand, he also divides 
the a-f3 parameter space into eight regions. He describes the "attracting invariant 
measures" in Y x IR2 in each region (here Y is the path space of white noise) . He 
ob serves that the attracting invariant measure has a "two-peak" structure in certain 
regions, and a "crater" structure in others. The two-peak structure is produced 
by what he calls a stochastic pitchfork bifurcation, and the crater structure by a 
stochastic Hopf bifurcation. 

Schenk does not give an analytical discus sion of these very interesting bifurcation 
patterns. The bifurcation scenario we now discuss resembles in a general way Schenk's 
stochastic pitchfork bifurcation (and not the stochastic Hopf bifurcation, despite the 
title of [32]). It must be quickly noted that the randomness y(.) which we study is 
defined by a flow on a 2-torus, very far indeed (one might think) from white noise. Yet 
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we have the impression that our scenario has more in common with that described by 
Schenk than with those discussed in quasi-periodic bifurcation theories ([10, 11,49, 17] 
and more recently [25, 35, 7, 8]) . 

Let us now return to equations (4.1)y. Recall that the parameter À takes values 
in an open interval I containing À = O. We suppose that Y E Y, a fixed 2-torus, and 
write 

Y = (Yl, Y2) 

where Yl, Y2 E [0,1) ~ 'R./Z are angular coordinates on Y . The flow {Tt'\ I t E 'R.} is 
assumed to be generated by a vector field VÀ on Y. We take for granted that standard 
existence and uniqueness results are satisfied by the solutions of the equations y' = 
VÀ (y). We shall assume throughout that the vector fields VÀ (À E 1) are jointly 
continuo us in (À, y) and that they are all transversal to a fixed simple closed curve 
K C Y which is not homotopic to a point. Changing coordinates on Y, we can and 
will assume that K is given by {(Yl' Y2) I Yl = Ol · 

As an example of the flows on Y which we have in mind, consider 

(the quasi-periodic case). The frequencies are 1 and p(À). The quantity p(À) is 
obviously the classical rotation number [13] of the first return map mÀ : K ~ K : 
Y2 ~ Y2 + p(À) , which in th is case coincides with the time-one map. 

In general we will write p(À) for the classical rotation number of the first return 
map mÀ : K ~ K (À E 1), which need not coincide with any time-to map of {T/} . 
Since mÀ is a homeomorphism ofthe circle K to itself, p(À) has all the usual properties, 
which we will use below with limited further comment. 

We next introduce a useful decomposition. Write 

[,(y) = ( aÀ(T.ot(Y)) 0 ) b ( ) 
" aÀ(Tt(y)) + À Y where tr bÀ (-) == 0, 

and let (3b(À) be the maximal Lyapounov exponent of the "traceless" equation 

Then the maximal Lyapounov exponent (3(À) of the linearization of (4 .1)y : 

is the sum: 
(4.5) 

It is necessary to add a caveat to this discussion. If the rotation number p(À) 
is irrational, then there is exactly one measure on Y which is ergodic with respect 
to the flow {Tn. In this case (3a, (3b and (3 are all well-defined and (4.5) is true. 
On the other hand, if p(À) is rational, then there may be several ergodic measures 
on Y . One must make a choice of ergodic measure in order to define the maximal 
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Lyapounovexponents. This will not always be convenient, so in what follows we will 
tacitly assume that p(A) is irrational whenever we apply the formula (4.5). 

We now suppose that f3(A) < 0 for A < 0 but that f3(A) > 0 for at least some 
A in every interval (0, Al) with Al > O. We pose the question: do equations (4.l)y 
possess an attractor in Y x IR2 for at least some A > O? We shall see that, subject 
to some more or less reasonable assumptions, the answer is yes. In the scenario we 
study, there will be an attractor for some but not all A in each interval (0, Al) with 
Al > O. In fact there will be an attractor for a "large" set of positive A, but these 
attractors definitely do not form a continuous family on (0, Al)' 

It is convenient to divide the possible relations between f3b and f3 into three cases: 

(Rl) f3b(A) » f3(A) for A > 0, A near zero; 

(R2) f3b(A) ~ f3(A) for A > 0, A near zero; 

(R3) f3b(A) « f3(A) for A > 0, A near zero. 

In what follows we will assume that the first relation holds. It holds in particular if 
f3b(O) > 0 and if f3b is continuous at A = O. There are grounds for believing that these 
conditions are verified rather of ten for the random linear equations (4.4)y . However 
satisfactory rigorous results are not yet available which would bolster this belief, so we 
omit further discussion of the matter. Moreover, for technical reasons we shall have 
to assume that f3b(O) = 0 in order to prove our main result. We feel, however, that our 
main theorem is true if f3b(O) > 0, and that proving our results under this hypothesis 
would contribute substantially to understanding the breakdown of stability of the zero 
solution of equations (4.l)y. 

An important hypothesis of our main theorem will be that lA(') is not too smooth 
as a function of y. In fact we will require that IA be no more than Cl-Ó-smooth for 
some r5 > O. This is because the conclusion of our Theorem 4.6 is al most certainly 
false if IA is cr -smooth for T > 1. Thus our bifurcation scenario should be viewed as 
complementary to theories in which a high degree of smoothness is required. 

Before turning to a discussion of our results, we remark that con dit ion (R3) is 
satisfied in theories where a stable 3-torus bifurcates cleanly from the family of 2-tori 
at A = 0 ([10, 11,49, 17)). Roughly speaking, the "hyperbolic" part of the linearized 
system (4.4)y is dominated by the "elliptic" part. The relation (R2) seems rather 
unpleasant from a theoretical point of view. An example which displays transversal 
homo clinic behaviour in (4.l)y when (R2) holds is given in (32). 

We now begin the analysis of equations (4.l)y when x = 0 loses asymptotic stabil­
ity at A = 0 and when condition (Rl) above holds. We will impose further assump­
tions of a "generic" nature, meant to hold for as large a class of problems as possible. 
We begin with the family of vector fields {VA}' If the rotation number p(A) of the 
first-return map mA : K -+ K is rational, then (generically) the circle K supports q 
attractor-repeller pairs, i.e., there is frequency locking. While it is certainly reason­
able that frequency locking should occur for an open dense set of A EI, we assume 
that it does not occur at A = O. If it did, then our loss-of-stability problem would 
reduce to a (non-smooth!) version of the bifurcation problem studied in (44). Further 
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investigation of this matter would be interesting. Here, however, we will assume that, 
at À = 0, the rotation nu mb er p(O) is irrational. In fact the important set of À-values 
will be those for which p(À) is irrational. With this in mind, we define 

A. = cls{.x E I I p(À) ct Q}, 

and no te that 0 E A •. 
Next we consider the linear equations 

( 4.4)y 

The solutions of this equation exhibit a rich range of behaviourj its theory is far from 
completely developed. On the other hand one has sufficient knowledge to permit our 
analysis of equations (4.1)y. The basic result which we will need states that, roughly 
speaking, a generic one-parameter family x' = b).(Tt(y))x of trace-zero linear systems 
has an exponential dichotomy for an open dense set of parameter values in A •. 

To state this result more precisely, let sl(2, IR) be the Lie algebra of 2 x 2 real 
matrices with trace zero. Let B be the set of all C1-ó-mappings from the 2-torus Y 
into sl(2, IR) where 0 < 8 ::; 1. Further let s be any non-negative number (s = 00 is 
allowed). Define C6(/, B) to be the collection of all C6-mappings from the interval I 
to the Banach space B. The number s is not important in our theory, but the nu mb er 
8 is. The re sult we now enunciate is very likely false if 1 - 8 is replaced by r for r > 1. 

Theorem 4.6 Let {V). I À E I} be a family of vector fields on Y satisfying the con­
ditions enunciated earlier. There is a residual subset E C CS(/, B) with the following 
property: if b = b). (-) E E, then the equations 

(4.7)y 

have an exponential dichotomy for all À in an open dense subset of A •. 

The idea in what follows is quite simpIe. Since ED is an extremely robust property, 
it is natural to study the non-linear equations (4.1)y for parameter values À E A. for 
which an exponential dichotomy is present in equations (4.7)y. One expects that the 
presence of ED in the linear equations will make itself feIt in the behavior of solutions 
of the nonlinear equations. 

We return to equations (4.1)y. The fact is that these are too general for us to 
handle, even with the relation (Rl) and Theorem 4.6 at our disposal. However, we 
can deal with the problem 

(4.8)y 

by using a gene rali zat ion of the method of averaging, as described in [32]. 
To analyze equations (4.8)y, we write 

-1 ) ( 1 o +8). 0 
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Let (r,O) be polar coordinates in the x-plane. Then equations (4.8)y take the form 

2 ~ 

r ' = >.{[aÀ + UÀ]r + dÀr + fÀ} 

O' = >'{LÀ + GÀr + gÀ} 

where aÀ is a function of Tt(y); UÀ, dÀ,LÀ and G À are functions of (Tt(y), r(t), O(t)). 
One has explicitly: 

UÀ(y,O) = ÖÀ(Y) cos 20 + EÀ(Y) sin 20 

LÀ(y,O) = IÀ(Y) + EÀ(Y) cos 20 - öÀ(Y) sin 20. 

The function dÀ(y,O) depends on the nonlinearity nÀ. In addition Î>. = O(r3
) and 

gÀ = O(r2
) as r -+ 0, uniformly in (y,O). 

Define another function 

PÀ(Y'O) = 8~À = 2EÀ(Y) cos 20 - 2ÖÀ(Y) sin 20. 

Introduce the following hypotheses. 

(Hl) (3b(>') » (3(>.) for small positive >., and (3b(O) = O. 

(H2) 

(H3) 

(H4) 

When >. = 0, there is a unique measure on the "projective bundle" Y x pi (IR) 
which is invariant under the natural flow-of lines on Y x pi (IR) defined by 
x' = 10(Tt(y))x . See [32] . This hypothesis can be viewed as a very weak vers ion 
of the diophantine condition in the smooth quasi-periodic theory. It allows our 
averaging procedure to work. 

The average do = lim .!.. fT do(Ts(Y), O(s)) ds is less than zero. The average is 
T-too T Jo 

well-defined by (H2). This is a generalized weak-attractor condition. 

The mean values PÀ = lim .!..lT 

pÀ(Ts(Y), O(s)) ds satisfy Po = 0 and PÀ < 
T-too T 0 

c(3b (>') for a certain constant c. This may be viewed as a weak norm al form 

condition; it is satisfied if, at >. = 0, 10 = (~o -rio) . 
(H5) Four quantities which we do not write explicitly do not deviate too much from 

their mean values. 

We can now state our main theorem. 

Theorem 4.9 Let Ab be the set of points 0 < >. E A. such that x' = bÀ(Tt(y))x has 
an ED. Assume that hypotheses (Hl)-(H5) hold. 

(a) If>. E A n (0,>'1) for sufficiently sm all >'1, then equations (4.1)y admit an 
attractor-repeller pair Z- (>'), Z+ (>') in Y x IR2. These sets tend to Y x {O} C 
Y X IR2 as >. -+ O. 
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(b) The sets Z- (.X) vary discontinuously as ,X -+ 0 in a precise sense as ,X -+ 0+; sa 
do the sets Z+(,x) . 

We finish this paper with a brief discussion of point (b) of Theorem 4.9. It is here 
that the rotation number a('x) of equation (4.7)y plays a role . Here we speak of the 
rotation number defined in § 2 and not of the classical quantity p(,x). 

The main point is that there is a "time-changed" version éi('x) of the rotation 
number such that, if equations (4. 7)y have an ED at ,x, then 

where n,\,m,\ are integers. Now, by removing a set of first category from the set E 
of Theorem 4.6, one can assume that éi(O) is not of the form n + mp(O) for integers 
n, m. Since éi(·) is continuous, the integers n,\, m,\ must vary wildly as ,x -+ O. 

Now, the integers n,\, m,\ are winding numbers, and it turns out that they reflect 
the way in which Z- (,x) is embedded in Y x IR2 • It is in this sense that the sets Z- (,x) 
vary discontinuously as ,x -+ O. 
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Adaptive dynamies, a geometrical study of the 

eonsequenees of nearly faithful repro duet ion 

J.A.J. Metz, S.A.H. Geritz, G. Meszéna, F.J .A. Jacobs, 
J .S. van Heerwaarden 

Abstract 

We set out to explore a class of stochastic processeSj caUed "adaptive dy­
namics" , which supposedly capture some of the essentials of long term biological 
evolution. These processes have a st rong determinist ic component . This aUows 
a classification of their qualitative features which in many aspects is similar to 
classifications fr om the theory of determinist ic dynamical systems. But they 
also display a good number of clear-cut novel dynamical phenomena. 

The sample functions of an adaptive dynamics are piecewise constant func­
tions from 114 to the finite subsets of some "trait" space X C ]Rk. Those subsets 
we caU "adaptive conditions" . Both the range and the jumps of a sample func­
tion are governed by a function s, called "fitness", mapping the present adaptive 
con dit ion and the trait value of a potential "mutant" to IR. Sign(s) teUs which 
subsets of X qualify as adaptive conditions, which mutants can potentiaUy "in­
vade", leading to a jump in the sample function, and which adaptive condition(s) 
can result fr om such an invasion. 

Fitnesses supposedly satisfy certain constraints derived from their popula­
tionjcommunity dynamicalorigin, such as the fact that aU mutants which are 
equal to some "resident", i.e., element of the present adaptive condition, have 
zero fitness . Apart from that we suppose that s is as smooth as can possibly 
be condoned by its community dynamicalorigin . Moreover we assume that a 
mutant can differ but little from its resident "progenitor". 

In sections 1 and 2 we describe the biological background of our mathemati­
cal framework. In section 1 we deal with the position of our framework relative 
to present and past evolutionary research. In section 2 we discuss the commu­
nity dynamicalorigins of s, and the reasons for making a number of specific 
simplifications relative to the full complexity seen in nature. 

In sections 3 and 4 we con si der some general, mathematical as weU as bio­
logical, conclusions that can be drawn from our framework in its simplest guise, 
that is, wh en we assume that X is l-dimensional, and that the cardinality of the 
adaptive conditions stays low. The main result is a classification of the adap­
tively singular points. These points comprise both the adaptive point attractors, 
as weil as the points where the adaptive trajectory can branch, thus attaining 
its characteristic treelike shape. 

In section 5 we discuss how adaptive dynamics relate through a limiting ar­
gument to stochastic models in which individual organisms are represented as 
separate entities . It is only through such a limiting procedure that any class 
of population or evolutionary models can eventually be justified. Our basic as­
sumptions are (i) clonal reproduction, i.e., the resident individuals repro duce 
faithfully without any of the complications of sex or Mendelian genetics, except 
for the occasional occunence of a mutant, (ii) a large system size and an even 
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rarer occurrence of mutations per birth event, (iii) uniqueness and global at­
tractiveness of any interior attractor of the community dynamics in the limit of 
infinite system size. 

In section 6 we try to delineate, by a tentative listing of "axioms" , the largest 
possible class of processes that can result from the kind of Jimiting considerations 
spelled out in section 5. And in section 7 we heuristically derive some very 
general predictions about macro-evolutionary patterns, based on those weak 
assumptions only. 

In the final section 8 we discuss (i) how the results from the preceding sections 
may fit into a more encompassing view of biological evolution, and (ii) some 
directions for further research . 

1 The larger context 

1.1 Evolutionary basics 

The most conspicuous, if not the defining, properties of life are that living objects 
(1) reproduce almost faithfully, and (2) die. It is a mathematical necessity that the 
independent reproduction of particles leads to exponential population growth (or to 
rapid extinction, but such populations habitually escape our attention) (Jagers , 1975, 
1991, 1995) . Therefore in any finite world organisms will (3) interact, both directly 
through jostling or fighting, and indirectly through the consumption of resources and 
the sharing of predators. The consequence of (1) to (3) is that life evolves: Those 
types that do a better job in contributing to future generations will inherit the earth. 
Until a copying error during the reproductive act creates a still "better adapted" type. 
Evolution will grind to a halt only when it has reached a combi nat ion of types which 
cannot be bettered under the current con dit ion of the environment. 

Simple though it may seem, this scenario becomes interestingly complicated due 
to the fact that those same types are (co-)instrumental in creating the current envi­
ronmental condition. 

Remark: That there is no sign yet that evolution on this earth is going to freeze 
has two causes. The easy one is that the physical configuration of the world keeps 
changing. But it usually does so relatively slowly. Much to the biologist's luck, since 
it allows him/her (sometimes) to predict organismal properties from evolutionary 
considerations. The second cause is more involved: (a) There is no need that ecology 
drives evolution to a point attractor, even in mode Is which only consider simple 
extern al (phenotypic) representations of organisms. But if we assume that too extreme 
phenotypes are weak survivors, as is generally the case in the real world, we may 
expect at least convergence to some nice attractor. However, there is a snag. (b) Since 
the internal (genotypic) representation of organisms is almost infinitely complicated, 
the map from genotype to any simple phenotypic representation is very many to 
one. Dolphins, Ichthyosaurs, tuna, and sharks may look similar , but underneath they 
are very different creatures. Consequently the mutational supply (due to copying 
errors of the genetic material) of new phenotypic variation shows considerable history 
dependence. (a) and (b) together make that when the evolutionary process is looked at 
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in somewhat greater detail, it appears that non-point attractors with some recurrency 
property just don't exist. Evolution either halts, or progresses indefinitely, though 
not necessarily progressively. Luckily, here again, proper modes of abstraction as weIl 
as time scale differences come to the rescue of those who nevertheless want to make 
predictions. 

1.2 History: the changes in attention paid to ecological 
and genetic complexity 

The mechanistic theory of evolution started public life with the publication of Charles 
Darwin's "On the Origin of Species" in 1859. The one ftaw in the reasoning of the 
early Darwinists was their, lukewarm, ad heren ce to the concept of blending in her­
itance (the blending of the properties of the parents in their offspring), since by 
mathematical necessity evolution can only occur among particles which repro duce 
sufficiently faithfuIly. But they clearly saw evolution as driven by the interaction 
between individuals, as is proved by Darwin's statement that he owed his idea of the 
"struggle for existence" to the writings of Thomas Malthus. 

At the turn of the century the inheritance problem was solved by the rediscovery 
of a piece of contract research by a Moravian monk with physicist leanings, Gregor 
Mendel. It aren't the organisms which repro duce almost faithfuIly, but their genes. 
This considerably complexifies the logic, since the genes inhabiting one organism affect 
each other's reproductive potential. In the twenties a reconciliation of the Mendelian 
and Darwinian paradigms was effected by the three great mathematical population 
geneticists, Sir RonaId Fisher, J.B.S Haldane, and Sewall Wright. The handwaving 
linking up in the forties and fifties of the resulting circle of ideas with those of the 
paleontologists and taxonomists of the day is now referred to as the Modern Synthesis. 
The strength of that link is still among the biologists' articles of faith. 

Ironically the mathematical framework underlying the Modern Synthesis dealt 
almost exclusively with the genetics of populations of non-interacting individuals. 
For this was one of the main simplifications made by the early theoretical population 
geneticists in order to cope with the complexities of realistic inheritance laws. It is 
even more ironical that this assumption of non-interaction makes it particularly hard 
on model populations to split into lines going their separate ways. The origin of species 
was, and is, still one of the less weIl understood problems of population genetics. The 
second point on which the population genetics of the time feIl short as a cornerstone 
for the theory of adaptive evolution is that it almost exclusively concentrated on the 
changes in the relative frequencies of types from a fixed genetic repertoire. For this is 
the scale where contact could be made between theory and genetic observations on real 
populations. Yet, the overall features of long term adaptive evolution crucially depend 
on the existence of a continual trickle of new mutants. The stream of novel adaptive 
variation is that small and fickle, that it is essentially beyond direct observation. But 
its effects can be seen in overwhelming profusion. We are but one jnstance 

Around 1970 both conceptual omissions were rectified by W.D. Hamilton (1967), 
G.R. Price and John Maynard Smith (Maynard Smith & Price, 1973; Maynard Smith, 
1982), who put to the fore the concept of Evolutionarily Unbeatable Strategy. An 
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EUS is a strategy which wh en played by everybody prevents all comparable strategies 
from increasing in numbers. Such strategies are the natural longer term evolutionary 
traps. (By now EUSes are more of ten called Evolutionarily Stabie Strategies. Un­
fortunately this is a misnomer as EUSes need not be stabie in the dynamic sense. ) 
Of course there was a price. Only the statics of adaptive evolution was considered. 
Moreover, it became common usage to assume clonal reproduction (i.e., the almost 
faithful reproduction of individuals), in order to concentrate on behavioural interac­
tions . Luckily later research has shown that a good number of the general results kept 
their ground for more realistic types of inheritance. But exceptions that are neither 
trivial nor contrived have been found as well. 

1.3 About this paper 

In this paper we set out to construct in a general manner the simplest possible dynam­
ical counterpart to the EUS concept. Since we primarily want to cope with general 
types of ecological complexities we stick to the by now time-honoured assumption of 
clonal reproduction. Moreover we assume that the ecological and evolutionary time 
sc ales are clearly separated. Finally we shall assume that the types can be character­
ized by a finite numher of numerical traits, that the ecology satisfies some continuity 
conditions (to he expounded below) and that mutation only produces small steps in 
trait space. 

1.4 Relation to present day views of the evolutionary 
process 

No doubt red-blooded biologists will find our assumptions artificial. To them we have 
the following three remarks to make in our defense. (i) It is always better to start 
hunting for patterns in some well chosen caricature of reality, and to leave it for a 
second stage to see to how those patterns modify when additional realism is added, 
than not to see any wood for the trees . (However, till we reach that second stage 
our conclusions about long term evolution should be taken with a pinch of salt.) (ii) 
The least we do is develop an internally consistent picture of a class of evolutionary 
processes, well worth of study in their own right. It is only by studying various 
classes of evolutionary processes that one may ever hope to bring out their essence. 
(iii) Our picture is the simplest one allowing the eventual development of a bifurcation 
theory of EUSes. Anyone who knows what hifurcation theory has done for differential 
equations will appreciate the usefulness of such a development . 

For mathematicians we may add that there is a wholy new, and rather unusual , 
class of dynamical systems waiting to be explored. 

As a final point we should make clear that we are by no means the first to venture 
on the present path. Some notabie forerunners are Ilan Eshel (1983, 1991,1995; -
& Feldman, 1982, 1984), Jonathan Roughgarden (1976, 1979, 1983), Freddy Bugge 
Christiansen (1984, 1988, 1991 ; - & Loeschcke, 1980, 1987, Loeschcke & - , 1984a,b), 
Peter Taylor (1989) , Karl Sigmund (Hofbauer & - , 1990; Nowak & -, 1990), Simon 
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Levin ( Cohen & - , 1987; Ludwig & -, 1992), Peter Hammerstein (1995, - & Sel­
ten, 1994), and CarJo Matessi (- & Di Pascuale, 1995). The main difference of our 
effort from theirs is that we strive to construct a clear mathematical framework that 
should abstractly encompass a greater deal of ecological complexity (but at the cost 
of highly oversimplifying the genetical end). Tom Vincent and co-workers (1990; -
& Brown, 1984, 1987, 1988, 1989; Brown & - , 1987a,b, 1992; - & Fisher, 1988; - et 
al., 1993) followed a line of thought that superficially is rather similar to ours. Our 
approach differs from theirs both in its greater formal abstraction and in that we try 
to stick to formalisms that consistently allowan interpretation in individual-based 
terms concordant with the basic philosophy with which we started this discourse (see 
also Metz & De Roos, 1992) . 

2 Reconciling the population dynamical and 
taxonomical viewpoints 

2.1 Fitness 

The catch phrase of the theory of evolution by natural selection is "fitness". Defi­
nitions abound, most of them rather special or not very clear. Here we shall stick 
to the definition expounded in Metz et al. (1992), as this is the only one coping 
with a range of ecological scenario's which is sufficient for our purpose: Fitness is 
the asymptotic average rate of exponential growth p which results from a thought 
experiment in which we let a clone of the type under consideration grow in an ergodic 
environment. This definition immediately makes clear that the fitness of a type, say 
X, also depends on the environment in which it lives, E . We shall bring this out in 
our notation by writing pe(X). 
Remark: The underlying mathematical idea is: 
(i) The dynamics of a sufficiently large (spatially and/or physiologically structured) 
population can, for a given time dependence of the environment al conditions, be 
described by a positivity-preserving linear evolutionary (in the mathematical sen se) 
system. For ergodic environmental conditions, and subject to some biologically inno­
cent regularity conditions, there exists a unique number p such that 

log IN(t)1 
t -+p, a.s., 

IN(t)1 the total population mass. (This has not been proven yet in as much generallity 
as we would wish. But the special model classes that so far have yielded to analysis 
all show the same pattern; see Tuljapurkar 1990; Inaba 1989; Ferrière & Gatto, 1995). 
In mathematics p is bet ter known as the dominant Lyapunov exponent. 
(ii) What results there are for special classes of branching processes (Jagers, 1975, 
1991, 1995; Athreya & Karlin, 1971a,b) all teil that (a) a branching process starting 
with a single individual either goes extinct, or starts growing exponentially with a 
growth rate p equal to that of its mean process, (b) the probability of non-extinction 
is zero when p ~ 0, and positive when p > O. 
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In a non-virgin world the current environment is necessarily (co- )determined by 
those types that are already in residence. Let those types be denoted by Xl, ... , X n 

(we confine the discussion to situations where that number of types is finite), let C := 

(Xl, .. . ,Xn ) denote the combination of those types, and let a unique environment 
E( C) be created by the resulting interactions. If we interpret "being resident" as 
"staying bounded away from zero population size (on the population dynamical time 
scale!)" we expect E(C) to be ergodic with PE(C)(Xi ) = 0, i = 1, ... ,n. For (i) by 
assumption the masses of none of the types goes to zero, (ii) in a finite world none of 
those masses can go to infinity either. 

Remark: We always think of the world as intrinsically noisy. This not only does away 
with some considerable mathematical complications (see e.g. Ruelle 1989 and Rand 
et al., 1994), but it also has the advantage of being realistic. 

Let Y generically denote a mutant type. In our discussion of the determination of 
the environmental condition by the resident population we implicitly assumed that 
population to be numerically large. (Populations which stay numerically small quickly 
go extinct by chance fluctuations.) Mutants arrive as single individuals. Therefore 
the effect of the mutant population on the environment is that diluted that its initial 
growth is the same as that of a Y population in the ergodic environment E(C) . 

We shall denote the fitness of Y in a C population dynamical background as 

SC(Y) := PE(C)(Y). (2.1) 

We assume that (i) mutants for which sc(Y) < 0 are unable to invade a C community, 
(ii) mutants with sc(Y) > 0 can invade (but will not necessarily always do so as a 
result of random fluctuations due to the small initial size of the mutant population; 
see sections 4 and 5.4). 

Mutants that do indeed invade are traditionall:v referred to as successful. 

2.2 Traits 

We shall assume that the types co me parameterized by some compact and simply 
connected subset X of JR.k . Moreover we shall assume that a mutant Y differs but 
slightly from the type Xi from which it derives. The components of Xi, Y stand 
for the values of some numeri cal traits, like leg length, metabolic rate, duration of 
juvenile period, etc .. 

Communities with only one evolving type are called monomorphic, with two evolv­
ing types dimorphic, etc.. (To keep the arguments simple we assume that the re­
maining species of the community don't evolve. We surmize that the theory can be 
extended to multi-species co-evolution by making appropriate notational changes; see 
also Dieckmann & Law, 1995.) 

The trait values determine the population dynamical characteristics of a type. 
Simple trait evolution in an n-morphic community, in which every successful mu­
tant just oust its progenitor, can therefore be visualized as a movement through the 
parameter space of a community dynamical model. 
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It also can occur that the new mutant and all the old resident types can coexist, 
or that replacement of one of the former resident types by a mutant drives some 
other resident type(s) to extinction. In the first case evolution leads to an enriched, 
(n + l)-morphic, community, in the second case to an impoverished, (n - m)-morphic, 
1 ~ m < n, community. See also figure 8. 

2.3 The "taxonomie" perspeetive 

Many traits are easy observables, even on fossils (think of leg length) . This in direct 
opposition to the population dynamical characteristics which they engender (think 
of the issue of determining in the field the probability of out running a predator). 
Therefore much biological research focusses on trait evolution per se, with little at­
tention for the population dynamical ge ars of the evolutionary machinery. One of our 
goals is to accommodate this viewpoint to the greatest possible extent. This was the 
overriding reason for the assumptions that (i) there is a separation between the pop­
ulation dynamical and the evolutionary time scales, (ii) any combination of residents 
C engenders a unique E. For these two assumptions justify the introduction of the 
function 

s: (C, Y) f-+ sc(Y), 

thereby making it possible to talk about the relation of trait values and fitness per 
se. 

The theoretical framework that we shall develop below is based on the Ansatz 
that such a function s (i) exists, (ii) provides an evolutionarily sufficient summary of 
the underlying community dynamics, and (iii) satisfies some appropriate smoothness 
properties. 

The who Ie of section 6, setting out a tentative axiom system for a theory of 
Adaptive Dynamics, is devoted to staking out the land concealed behind (ii) and (iii) 
of the Ansatz. In sections 3 and 4 we explore some of its more immediate landmarks. 

2.4 More about the eommunity dynamieal justification 

The recent spate of attention for the non-linear phenomena occurring already in sim­
ple population dynamical models may have given the impression that multiple attrac­
tors are almost the rule in community dynamics. We believe that this impression is 
wrong, at least when it comes to evolutionary considerations. Deterministic commu­
nity models are idealisations made with a purpose, the charting of particular types of 
community phenomena. More realistic models incorporating environment al noise usu­
ally have unique attractors, here to be interpreted as stationary probability measures 
on the set of functions mapping time to environment al conditions. 

The following example may illustrate our point. A famous model for the outbreaks 
of the Canadian spruce budworm (Ludwig, Jones & Holling, 1978) gives rise to two 
stabie equilibria. Yet the very reason that the model was built, was to explain the 
observed occurrences of shifts between two rather extreme defoliation regimes. On a 
slightly longer time scale we also have to account for the factors bringing about these 
shifts. 
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The introduction of noise also tends to smoothen the deterministic bifurcation 
of an attractor into a more gradual change of the probability measure on the set of 
functions mapping time to environmental conditions. 

2.5 Aside: a helpful special class of community 
dynamical models 

If one wants to develop a general theory it helps to have some simple examples to guide 
one's way. Unfortunately it is rarely possible to calculate s for a specific community 
dynamical modelother than by doing a direct simulation to determine E(C). To 
compound our misfortune those cases where we can find an explicit expression for s 
almost invariably give ri se to relatively trivial types of adaptive dynamics. However, 
there is an outstanding exception, which goes by the name of generalized Lotka­
Volterra models (Hofbauer et al., 1987; Rand et al., 1994). These are models with 
community equations which can be written as either 

(2.2) 

or 

m 

ni(t + 1) = exp[r(Xi , Eo(t)) - L a(Xi , Xj)g(Xj, nj(t), Eo(t))]ni(t) (2.3) 
j=l 

where ni is the population density of the individuals of type Xi, and Eo some ergodic 
driver (think of the weather). For such a model let C = (Xl, ... , X m ) be a trait 
combination such that all m types can coexist, i.e., for any initial condition with all 
nj(O) > 0, liminfni(t) > €i > 0, i = 1, ... ,m, then 

m 

sc(Y) = [p(Y) - L a(Y, Xj)-yj(XI , ... , X m )] (2.4) 
j=l 

with p(Y) the time average of r(Y,Eo(t)), and rj(XI , ... ,Xm ) the time average of 
g(Xj,nj(t),Eo(t)). The latter can be calculated from the equations 

m 

La(Xi,Xj)-yj(XI, ... ,Xk ) = p(Xi) (2.5) 
j=l 

derived by setting sc(Xi ) = O. 
Note that for the Lotka-Volterra models sc(Y) is weIl defined even when the 

dynamics of the C community has multiple attractors. 

2.6 About this paper 

Below you find the prolegomena to a formal theory of Adaptive Dynamics. In section 
3 we treat the only weIl established part: evolution close to monomorphism for one 
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Figure 1: 

dimensional trait spaces. This is the one area where the barest possible of assump­
tions already give strong results. In section 4 we discuss, with the help of an example, 
the natural extension of the theory from section 3 to higher degrees of polymorphism. 
Near the end of that section it is found that a number of imminently relevant points 
have to remain undecided unless further assumptions are introduced. Luckily pop­
ulation dynamical considerations of a very general kind can guide us when we pick 
these assumptions. However, the maximal set of assumptions that can be derived 
in th is manner is just a little less than is needed to get into some really interesting 
arguments . Therefore we in one place also introduce an assumption pertaining to the 
production of mutations by individual organisms, which, though fair, is less firmly 
supported by basic biological laws. 

In section 5 we consider, with the help of the same example as in section 4, the 
relation of our taxonomically abstracted schemes to the fully individual-based point 
of view . This section should provide a background for judging the tentative "axiom 
system" for Adaptive Dynamics that we present in section 6. There we aim at listing 
a set of assumptions that are mathematically sufficiently weak to have a certain 
minimum amount of biological firmness and yet are mathematically sufficiently strong, 
and sufficiently many, to erect an interesting theory on, leading to novel biological 
insights. In section 7 we list some provisional conclusions from that theory. In the 
final section we discuss some pro's and con's of our approach in a wider biological 
perspective, and indicate some directions for future research. 

3 Adaptive Dynamics in one dimension: I 
evolution close to monomorphism 

3.1 Graphical constructions 

In this section we shall heuristically treat Adaptive Dynamics for one dimensional 
trait spaces. To keep things simple we shall moreover assume that the trait space X 
coincides with the set lP l := {x E X I s(x) > Ol, where s(x) denotes the fitness of x 
in a (relatively) virgin world. 
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3.1.1 Monomorphic populations 

We begin with a consideration of the monomorphic situation. Figure 1 shows two po­
tential sign structures for sx(y) . (Notice that sx(x) = 0, so that generically s changes 
sign on the diagonal of the (x, y)-plane.) We start with discussing two situations 
where successful mutants oust their progenitors without arguing as yet why they may 
be supposed to do this. 

We first consider figure la. For any x to the left of x· only smaller mutants 
can invade, for any x to the right of x· only larger mutants can do so. Therefore 
each subsequent successful mutation moves x further away from x·. The situation 
is analogous to the cobwebbing (or rather staircasing!) construction used to analyse 
recurrence relations in one variabie. Only th is time the steps come at random times 
and have stochastic sizes. 

In figure 1b the opposite happens. For all x to the left of x· only larger, and 
for all x to the right of x· only smaller mutants can invade. If the mutational step 
size is bounded by f, and if the process does not run out of successful mutations, 
evolution will eventually bring x within an f-distance of x·. And here the analogy 
with recurrence relations ends. 

3.1.2 Dimorphisms 

As a next step we consider the conditions which make a mutant ou st or not ou st its 
progenitor. To find these conditions we return to the underlying community dynam­
ical scenario. When a mutant ousts its progenitor the community necessarily passes 
through a phase during which the progenitor is present only in very low densities. 
Therefore that progenitor no longer contributes to the setting of the environment al 
stage. This is done by the mutant in its steadj population dynamically yestertime's 
resident and mutant have switched roles. We conclude that for a successful mutant 
y to ou st its progenitor x, it is necessary that Sy(x) ::; O. We shall assume that this 
condition is also sufficient, as this accords best with our earl ier assumption that the 
community dynamics always has agiobal attractor. 

To construct the subset of X2 for w hich both s x I (X2) > 0 and s X2 (x d > 0, we 
flip copies of the diagrams of figure lover the diagonal and superimpose them on the 
originals. See figure 2. The intersection of the regions marked "+" we call 1P'2' 1P'2 
parametrizes the so-called "protected" dimorphisms. 

Remark: Our choice not to include in 1P'2 the points C = (Xl, X 2 ) characterized 
by sX1 (X2 ) = 0 or SX2 (Xl) = 0, is based on the usual pattern of soft bifurcation 
of community dynamical equilibria: If a parameter change moves a globally stabie 
interior equilibrium of some decent community dynamics smoothly onto the boundary 
of the positive cone, then at the bifurcation point the community dynamics has a 
boundary equilibrium attracting the whole interior of the positive cone. 

To have both the monomorphisms and the dimorphisms represented in one picture 
we embed X, and with it 1P'l, as the diagonal in X2. Af ter all, a combination of two 
identical types is ecologically indistinguishable from a single type. The potential 
adaptive conditions of the population, up to and including dimorphisms, correspond 
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x 
Figure 2: 

to the uni on of IP'I and 1P'2. lts representation as a subset of X? we shall refer to as 
A2 . The example in figure 3 indicates how such a representation can help us portray 
patterns of evolutionary movement. 

The invasion of a y mutant into a dimorphic population consisting of the type 
combination (Xl, X2) is determined by the sign of s"" ,"'2 (y). If y is successful, and if, 
say, (XI'Y) E 1P'2, (y,X2) ~ 1P'2, S"'I,y(X2) < 0, then a step is made to (XI'Y). When 
the mutational steps are only small the most usual pattern is that a mutant ousts 
its progenitor. This is the situation hinted at in figure 3. If ousting the progenitor 
results in a jump over the boundary of 1P'2 only the mutant remains. The cases in 
which mutant and progenitor will coexist will be discussed in section 4. 

X1 

Figure 3: 



194 J .A.J. Metz et. al. 

3.1.3 More about the space of adaptive conditions 

A neater way of looking at our embedding trick is by not icing that the realobjects 
of evolutionary interests are sets, not ordered lists , of trait values. This observation 
produces a natural equivalence between the diagonal of X? and)(. By the same 
token the labelling as 1 and 2 of the two types making up a point in )(2 is arbitrary. 
Therefore IP'z should be invariant under a permutation of the indices of the Xi. In 
figure 3 this symmetry is seen as a mirror symmetry around the diagonal. 

Terminological remark: We call the elements of Az adaptive "conditions", instead 
of adaptive "states" since we customarily tie the notion of state to being Markovian, 
and we don 't want to assume yet that the distribution of the mutational steps is 
determined in full by the adaptive condition. 

3.2 The classification of evolutionarily singular points 

3.2.1 Evolutionarily Singular Strategies 

The consideration of figures 1 to 3 makes clear that a very special role is played by 
points x· where a(n other) O-level set of the function s:z;(y) crosses the diagonal. We 
shall refer to such points as Evolutionarily Singular Strategies, or just as singular 
points. Such points correspond to the rest points of the movement in 1P'1 . Moreover 
IP'z and 1P'1 connect only in singular points x·(= (x·,x·) E 81P'2) OflP'l: It is only near 
such points x· that evolution can step up from 1P'1 to IP'z. (Downstepping from IP'z 
to 1P'1 is possible from all points near 81P'z for which mutants in the direction of the 
nearby part of 81P'z are potentially successful.) 

Singular points can be characterized by 

8s:z;(y) I =0. 
8y :z;=y=:z;. (3.1) 

Remark: Please notice that, contrary to the usual situation in dynamical systems, eVD­

lutionarily singular strategies, as defined by us, aren't the rest points of the adaptive 
dynamics . The rest points are the (globally) Evolutionarily Unbeatable Strategies, 
i.e., the strategies X· such that sx. (Y) < 0 for all Y :j:. X·. The local variant of 
EUSes are characterized by 

8sx (Y) 
8Y Ix=y=x· = 0 and 

8
Z
sx (Y) I . d fi . 
8Yz x=y=x· negatlve e mte, 

i.e ., in addition to (3.1) a second order condition should be satisfied. All rest points 
of an adaptive dynamics are local EUSes. And any local EUS can be made into a rest 
point by sufficiently restraining the size of the mutational steps. 

3.2.2 The expansion of s:z;(y) 

To classify the different types of singular points we linearize. To this end we define 

u:= X - x·, v := y - x·. (3.2) 



Adaptive dynamics 195 

We shall with a slight abuse of notation use the same symbol s for the local 
coordinate version of the fitness function. Our assumption that s is sufficiently smooth 
allows us to write 

(3.3) 

The fact that any mutation indistinguishable from the resident should be selectively 
neutral, i.e ., have zero fitness, translates into 

su(U) = 0 for all u, (3.4) 

allowing us to conclude that 

a = 0, (3.5) 

Finally (3.1) tells us that 
(3.6) 

Therefore 
(3.7) 

Apparently we need only two parameters, Cu and C22, at th is stage of the classification 
(and only the ratio of Cu and C22 really matters, since all the pictures locally are 
invariant under scaling). 

Figure 4 shows the dependence of the local sign structures of s on Cu and C22. 

The local direction of evolutionary movement in IP'I and the local configuration of 1P'2, 
both deduced from the local sign structure of s in figure 4, are depicted in figure 5. 

3.3 The expansion of SXIX2 (y) 

To complete the picture we need the pattern of movement in 1P'2 . From now on we 
confine attention to the cases C22 > -Cu to ensure that 1P'2 is not locally empty (see 
fig . 5). We define 

and write 

v := y - x·, 

Ct + {3I UI + {32 U 2 + {33 v + 'Yu ui + 2'YI2 UI U2 + 'Y22 U 22 

+2'YI3UI V + 2'Y23U2V + 'Y33V2 + h.o.t .. 

(3.8) 

(3.9) 

The numbering of the resident types is arbitrary. Therefore s should be invariant 
under a permutation of those numbers: 

(3.10) 

Another invocation of the principle of selective neutrality of the resident types gives 

(3.11) 



196 

, , 
, 

, , , , , 
, , 

, , , 

, , , 

~l ", """',,//// 0 
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 

,----_ _ '0 ,~:/ IA M """" 
The singular point ~ ~ 

is approached in ~ 1 
Irom a distance 

Figure 4: 

J.A.J. Metz et. al. 

As a final step we use that there is a single point, UI = U2 = 0, where 1P'2 toucues 
the diagonal of X2. In that point UI and U2 are equal, so that we are back in the 
monomorphic case. Therefore 

soo(v) = so(v) . (3.12) 

Combining all this information leads to 

(3.13) 

Apparently the whole classification can be done in terms of the two parameters Cu 
and C22 only! 

Remark: The above derivation was based on the, in afterthought somewhat unwar­
ranted, assumption that the smoothness of s on 1P'2 extends to the point (x*, x*) E 81P'2' 
In section 6 we shall argue that in general the behaviour of community dynamical 
equilibria under parameter changes only condones assuming (i) that s is smooth on the 
closure of 1P'2 with the ex cept ion of the points of 81P'2 where 1P'2 touches the diagonal of 
X2, and (ii) that s . (y) has continuous first and second (and higher) directional deriva­
tives in the directions pointing to the interior of 1P'2. In the points where 1P'2 touches 
the diagonal of X2 fun higher order derivatives fail to exist generally. However, for the 
case considered above it so happens that the condition that the resident types should 
be evolutionarily neutral together with (ii), implies that s is twice differentiable for 
(Xl, X2, y) on (closureIP'2) x X, the points (x*, x* , y) not excepted. 



Adaptive dynamics 197 

I Attraction na 
------

in 2 I yes 

na ,,' [2J [2J ", yes 
,----_ _____, -' yes na', ,--------, 
I Attraction I Connection trom 

I in 1 1 1 to 2 

Figure 5: 

3.3.1 Local evolution 

From figure 4 we immediately see that locally the monomorphic substitutions bring 
the adaptive condition of the population doser to x· wh en C22 < Cu, and move the 
adaptive condition away from x· when Cn > Cu. Figure 5 shows that lP'2 is locally 
non-empty when Cn > -CII and empty when C22 > -Cl I, From a consideration 
of both figures together we condude that locally around x· transitions from the 
monomorphic condition to a dimorphic condition occur almost surely when and only 
when -cu < C22 < Cu, and never when C2Z > Cu, or Czz < -Cu. (Assuming, of 
course, that the process never runs out of mutational variation.) 

To see how evolution proceeds from points in lP'z we observe that, according to 
(3.13) SUl U2 (v) for given values of UI and Uz is a parabola in v which crosses the v-axis 
in the points v = UI and v = U2. 

We first consider the case -CII < Czz < O. In that case only mutants v between 
UI and Uz can invade. A consideration of the local geometry of lP'z tells that v wil! 
oust at least that Ui for which sign (Ui) = sign (v) . The other resident mayor may 
not be ousted. A more detailed calculation shows that, if there is a continuous supply 
of mutations, (i) lP'z will al most surely be left for lP'I, (ii) the distance to 0 decreases 
by at least a factor () < 1 for every excursion that is made from lP'1 into lP'z and back. 
Every step from lP'1 into !PI also leads to a decrease of the distance to O. Therefore 
the linearized adaptive dynamics almost surely converges to O. 

When C22 > 0 only mutants v outside the interval (UI, Uz) can invade. A consid­
eration of the local geometry of lP'z tells that v wil! always oust the nearest resident. 
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When in addition Cu > 0 the linearized adaptive dynamics (i) stays in 1P'2 and (ii) 
keeps increasing the distance between Ul and U2 . When Cu < 0 the linearized adap­
tive dynamics can also jump over the boundary of 1P'2, to IP'l ; once in IP'l it moves away 
from x· (and from IP'l it never enters 1P'2 again). 

In figure 5 the arrows in 1P'2 symbolically summarize the results about the evolu­
tionary movement in 1P'2 locally near (x·, x·) which we have just described. 

3.3.2 Types of singular points 

The main dassification resulting from a combined consideration of the movement in 
IP'l U 1P'2 is threefold: 

(i) evolutionary repellers characterized by C22 > Cn, 

(ii) evolutionary attractors characterized by C22 < Cu and C22 < 0, 

(iii) branching points characterized by 0 < C22 < Cu. 

A look forward to figure 7 will explain our choice of the latter name. 
Of course we may everywhere replace Cu and C22 by 

(3.14) 

The dassification shown in figure 5 underscores our rem ark in subsection 1.2 that 
Evolutionarily Unbeatable Strategies are not necessarily evolutionarily attracting, 
a point first made by Ilan Eshel in 1983 (see also Eshel, 1995). Intriguingly the 
condition which locally characterizes an EUS , a singular strategy with C22 < 0, in 
retrospect turns out to be also the condition for attractivity in 1P'2. For an EUS to 
be a locally asymptotically stabie fixed point of the adaptive dynamics it has to be 
locally attractive in IP'l as well, i.e., it is also needed that C22 < Cu. In the litterature 
such fully attractive EUSes are called Continuously Stabie Strategies (Eshel, 1983; as 
opposed to the "Evolutionarily Stabie Strategies" which correspond to what we here 
call EUSes) . 

The general dassification of singular points for one dimensional trait spaces was 
first derived by Peter Taylor (1989), though in a rather different disguise, and from a 
very different perspective. Another derivation, somewhat doser in spirit to ours, was 
give by Ludwig & Levin (1992). 

4 Adaptive Dynamics in one dimension: 11 poly­
morphic evolution 

4.1 An example 

The following community equations should exemplify the results from the previous 
section. 

(4.1a) 
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y 

-1 < x < 1, (4.1b) 

and the summation extending over all values of the trait x supporting a non-zero 
population mass. In subsection 2.5 it was indicated how (4.1) translates into a fit­
ness function s. (This example is a slight adaptation of a time honoured model for 
competition along a resource axis, first introduced by Robert MacArthur and Richard 
Levins (1964; see also MacArthur, 1970, 1972) and extensively studied by i.a. Freddy 
Bugge Christiansen and Volker Loeschcke (1980, 1987; see also Christiansen, 1984, 
1988; Loeschcke, 1984; Loeschcke & Christiansen, 1984) .) 

The left panes of figure 6 to 8 show lPl UlP2 together with the directions of adaptive 
movement. The middle panes show the result of numerically sol ving the differential 
equation (4.1), with the following modifications: (i) The trait axis was discretized. 
(ii) Any trait bin with zero population mass adjacent to one with positive mass, had 
a fixed probability per unit of time to receive a small population mass of size 111 . (iii) 
Any population mass which dropped below IlO < 111 was instantaneously set to zero. 
The panes show, in a style conventionally used by paleontologists, those populations 
which had masses either larger than 112 or than 113, 113 > 112 > 111 . Finally the right 
hand panes show the instantaneous fitness, 1-Li a(y, xi)n(xi), of a potential mutant 
in the community indicated with an arrow in the middle pane. Figures 6 to 8 only 
differ in the value of Q (respectively 1/3, 2, and 3). The most conspieuous feature of 
figures 7 and 8 is the occurrence of branching events, one in figure 7 and several in 
figure 8. All these branching events are dichotomies, in accordance with the graphical 
results from subsection 3.2. 

Remark: Instantaneous fitness is a useful concept for non-structured populations 
only. In a constant environment such populations immediately start growing, or 
declining, exponentially. The instantaneous fitness TE(t)(Y), at time t of a type Y in 
an environment E, is the relative growth rate of Y clone in an environment which is 
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forever kept in condition E(t). For non-structured populations, and generically only 
for them, the fitness PE(Y) can be calculated from these instantaneous fitnesses as 

1it 

PE(Y) = lim - TE(r)(Y) dr. 
t-too t 0 

Remark: Preliminary explorations of an extension of the theory to higher dimensional 
trait spaces indicate that there polytomies should be possible, at least in principle. 
The maximum number of branches that can sprout from a single very small (a term 
in need of explanation, see section 7.1 for some ideas on this topic) region in trait 
space, af ter a line of descent has entered that region, is one plus the dimension of the 
trait space. 

4.2 Stagnation sets 

In the left panes of figures 7 and 8 we also have drawn the lines defined by 

i = 1,2. (4.2) 

From these lines the adaptive condition either cannot make local jumps in the xi-direc­
tion, or can equally jump in positive or negative xi-directions. This can be deduced 
from the following thought experiment: When we forbid Xj, j = 2,1, to mutate, we 
are back in a monomorphic adaptive dynamics, with only Xi, i = 1,2, evolving. (4.2) 
corresponds to the equation for the singular points of that monomorphic xi-dynamics, 
parametrized by Xj ' 

For one dimensional trait spaces the stagnation sets are somewhat comparable to 
the isoclines of a differential equation. More in particular, if we let the jump si ze 
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go to zero, and the mutation rate to infinity in such a manner that [mean mutation 
distance] x [mutation ratel goes everywhere to the same constant we end up with a set 
of differential equations for the Xi, which have the stagnation sets for their isoclines 
(Dieckmann & Law, 1995). Moreover, the intersection of the XI- and x2-stagnation 
sets in IP2 corresponds to the rest points of the dimorphic adaptive dynamics. This is 
weIl illustrated in figure 7, where that rest point is also stabie towards higher degrees 
of polymorphism. 

Termological remark: When we speak of the dimorphic dynamics in situations 
where trimorphisms aren't naturally excluded, we refer to the adaptive dynamics 
conditioned on the sample path staying dimorphic. 

4.3 Colour-coding the stagnation sets 

It is of course tempting to try to extend the classification of singular points from 
subsection 3.2 to the points (iXI ,i X2) of an xi-stagnation set. But we should be a little 
careful. Those parts of the classification that referred to attractivity or repulsivity in 
IP1 are not particularly meaningful in a IP2 context, due to the potential for movements 
of the remaining coordinate. 

Let 

(4.3) 

We shall call points of an xi-stagnation set black when iC22 < -iCU, and coloured 
when iC22 > -iCl1 . Coloured xi-stagnation points with iC22 < 0 we call green, and 
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Figure 9: 

coloured xi-stagnation points with iC22 > 0 we call red. In figures 7 and 8 the red 
parts of the stagnation sets are drawn as interrupted lines. 

The thought experiment in which we forbade one of the two types to mutate also 
tells us that the coloured parts of a stagnation set in 1P'2 make contact with the set of 
protected trimorphisms 1P'3 . 

Remark: The term contact should be interpreted in terms of the threefold embedding 
of X2 in X3

, as the three diagonal planes Xl = X2, Xl = X3, X2 = X3, which follows 
from the natural equivalence relation (Xl, .. . ,Xn ) '" (Xl, ... ,Xm ) :{:} {Xl, . . . ,Xn } = 
{Xl' . .. ,Xm}. By the same token 1P'3 should be invariant under permutations of the 
indices of (Xl, X2, X3), and the three diagonal planes should divide X3 up in six seg­
ments, each ofwhich contains a canonical piece of 1P'3, see figure 9. Each diagonal plane 
consists of two equivalent parts, just as did X2, plus the diagonal line Xl = X2 = X3 , 

separating them. These two parts each connect a different pair of segments of X3. 

For the green parts of the stagnation sets this contact is inconsequential, as can 
be seen from figure 7, but near to the red part of an xi-stagnation set there is the 
possibility that a transition (lXI +EI'1 X2 +8) ~ (lXI +EI'1 Xl +E2,1 X2 +8) is followed 
by steps moving the adaptive condition further and further away from the diagonal 
plane, and the same holds true for the x2-stagnation sets. In other words, from, and 
only from, near to a red xi-stagnation point there may occur a visible dichotomy in 
the line descending from Xi. This effect is illustrated in figure 8. Whether we really 
will see a fully developed dichotomy depends on the relative speeds of the movement 
in the directions parallel and orthogonal to the diagonal plane. In the example from 
figure 8 the branchings occur near a rest point of the dimorphic adaptive dynamics, 
so that the mot ion orthogonal to the diagonal plane dominates. Local domination of 
the component of adaptive motion parallel to the diagonal plane will lead in a few 
adaptive steps to a jump across 81P'3, back to 1P'2. 
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4.4 Extinctions and treeness 

Reductions in the number of types are results of jumps over the boundary of lP' n . 

When a disappearing type differs appreciably (a term in need of explanation, see 
section 7.1 for some ideas on this topic) from any of the remaining types we shall 
speak of an extinction. 

An example of an extinction can be seen in the middle pane of figure 8, where the 
sample path jumps 81P'4 to 1P'3. 

The particular extinction event from figure 8 owes its occurrence to a geometrical 
peculiarity which directly relates to our earlier classification of the singular points. In 
the four-type stage the various members of the community are seen evolving in such a 
manner that the two middle branches are pushed towards each other. Geometrically 
th is corresponds to a movement towards the diagonal plane X2 = X3 (assuming that we 
number the types from left to right). To see what happens geometrically we consider 
the slice through X4 which results from keeping Xl and X4 constant. From the direction 
of movement of the middle two branches, we infer that the geometry of that slice is 
locally similar to the diagram depicted in figure 5 between three o'clock and four 
thirty. This conclusion is corroborated by the right hand pane of figure 8, second 
graph from above. Therefore we may imagine the trajectory in lP' 4 as descending from 
some fixed height into a narrow furrow, with a codimension 1 bottom. Since the 
adaptive movement has a considerable stochastic slack there is essentially zero chance 
that the trajectory ever hits precisely that bottom. 

To develop the last argument a little further we assume that the mutational 
steps have length Ie ss than €, and that we consider a family of adaptive dynamics 
parametrized with €, where € acts as a sealing factor for the distribution of the mu­
tational steps. Otherwise the distribution of the mutational steps is assumed to be 
fixed. Moreover we assume that mutations in the different types occur in indepen­
dent Poisson processes with rates sealing as €-1, and otherwise only dependent on 
the composition of the community. Finally we assume that these rates are for fixed € 
bounded away from both infinity and zero, the latter with the exception of points near 
to a boundary of the lP' n under consideration where that type is pushed to extinction. 
(These assumptions are the simplest ones compatible with our wish to accommodate 
general types of community dynamics; see subsection 6.4.1). 

Our new assumptions imply that the crossing of a unit distance by our descending 
trajeetory brings with it a sideways wob bIe sealing as €1/2 . Therefore we predict that 
it hits the side walls of the furrow at a distance from the bot tom which sc ales as €8, 
with 0 ~ () ~ 0.5 depending on the particular assumptions that we make about its 
starting point. 

The argument which we just developed applies to any situation in which evolution 
of the members of a community pushes two lines of des cent towards each other. 
Except for a set of initial conditions with vanishing measure the chance that two 
lines of des cent will ever come within an €-distance from each other, on ce they have 
diverged further than that distance, should go to zero faster than €. 

The pleasant conclusion is that the trajectories of an adaptive dynamics in which 
the sizes of the mutational steps are bounded by €, € smalI , should, when observed at 



204 J.A.J. Metz et. al. 

a resolution coarser than E, look like good trees, without any merging branches. 

4.5 About the speeds of adaptive movement, and, agam, 
branching 

In the polymorhic situation, as in more species co-evolution, the relative speeds of 
stepping in different directions starts to matter. (For higher dimensional trait spaces 
this is already the case for monomorphic evolution.) Biologically this speed is deter­
mined by two classes of processes: Intra-individual ones, determining (i) the prob­
ability that a birth event produces a mutated individual as weil as (ii) the sizes of 
the mutational steps (and for higher dimensional trait spaces also the correlations 
between the various directions in which that step may be made). And ecologie al 
ones, determining (iii) the birth rate into a population and (iv) the probability that 
a mutant gets established. 

We shall argue below that population dynamical considerations suggest that in 
nature the latter probability is roughly proportional to the fitness of the mutant, as 
long as that fitness is but smalI. Therefore we shall make an assumption to this 
effect in section 6 where we describe the directions in which we think that taxonomie 
level theory should be developed. For the time being we only point to one important 
effect of this assumption: It makes the initial development of a dichotomy a relatively 
slow process, and thereby usually precludes the development of fulblown dichotomies 
when a sample path gets in the neighbourhood of a red stagnation set, except near 
rest points of the n-type adaptive dynamics under consideration. 

Remark: In the simulations from figures 6 to 8, the probability of a mutant with 
positive fitness getting established was set equal to a constant. For the combination 
of the particular initial condition chosen and the fitness function deriving from (4.1), 
this difference in assumptions effectively only affects the time scale of the middle 
panes. 

5 The individual based justification 

5.1 Two examples of the justification of determinist ic 
population models at the level of the individuals 
comprising the population 

The middle pane of figure 10 shows the results of a simulation of a stochastic pop­
ulation model, in which the individuals are counted in integers N(Xi), that may be 
thought as underlying the model from subsection 4.l. 

The individual-based models underlying the differential equation (4.1) have in 
common that, conditional on the present condition of their environment E(t), with 

n(Xj):= N(xj)/D., D. the "system size", (5.1) 

(i) individuals are independent, (ii) die at random, with death rate J.L(Xi' E(t)) , (iii) 



Adaptive dynamics 

t 
t 

adaptive dynamics 
limit 

individual-based 
simulation 

large number 
limit 

O~_1~-------L----~_1~-------L----~_1~------~ 

x--

Figure 10: 

205 

a living individual gives birth in a Poisson process with rate À(Xi, E(t)), and (iv) 

(5.2) 

As aresuit the counts form a continuous time Markov process with transition rates 

(5.3) 

(4.1) is interpreted as the large number limit of such processes, i.e., the limit in 
distribution of a sequence of processes {n(xi) = N(Xi)/f2}, for f2 -+ 00 (see e.g. van 
Kampen, 1981; Kurtz, 1981 ; Ethier & Kurtz, 1986) . 

To speed up the simulations we chose to set the birth rates uniformly equal to 
one and put all dep enden ce on E in the death rates. Moreover we discretized the 
trait axis into 99 equal intervals, or bins, with Xi the midpoint of the i th bin. f2 was 
set equal to 2500. Finally (5.2) was modified to the extent that at each birth event 
the newborn was put only with probability 1 - () in the bin of its parent, and with 
probability () /2 in either of the adjacent bins. The mutation probability () was set 
equal to 0.003; the value of the "competition strength" is the same as that from figure 
7, Cl! = 2. 

The right most pane of figure 10 shows the results from approximating the full 
individual-based model by the large nu mb er limit 

i = 1, .. . ,99. 

(5.4) 
(Note that (5.4) formally turns into (4.1) when we let () -+ 0.) The dark area corre­
sponds to n(xi , t) > 0.005. 
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5.2 The Adaptive Dynamics formulation of the same 
population models 

The left most pane of figure 10 shows the result of a simulation of the adaptive 
dynamics type. This figure is comparable to the middle pane of figure 7, except 
that we (i) assumed that the rate at which mutants were produced by type Xi was 
proportional to the system size times the equilibrium density ii(Xi) of that population, 
calculated from (4.1), (ii) we set the probability that a mutant got established equal 
to 

[ 1 - Ji(Y, E) ] + ' E = {(Xl, ii(xt)), . . . , (xgg, ii(xgg)) . (5.5) 

These assumptions are based on the following arguments: (i) If mutants appear suf­
ficiently rarely then the population dynamics has time to reach equilibrium before 
the appearance of the next mutant. (ii) Mutants appear as single individuals. As 
long as N(y) is small, and n large, (a) it still makes sense to count the mutants in 
integer numbers, (b) the mutants contribute only negligibly to E as perceived by the 
individuals (i.e., through the functions Ji(x, E(t))) . Therefore the mutant population 
initially grows according to a linear birth and death process with per capita birth and 
death rates 

À = À(y,E) = 1, (5.6) 

The sample path of such a process hits zero in finite time with probability min{l, Jil À}, 
and with probability (1 - Jil À)+ eventually grows exponentially at rate p = À - Ji. 
Only mutants which get into the exponential growth regime eventually get established, 
with a time to establishment which scales as log(n)1 p. 

Remark: The stochastic process {n(xi)} cannot equilibrate in the strict sense since 
"everybody dead" is an absorbing state. However, (i) the average time to extinction 
scales exponentially in n, (ii) when (} = 0 the functionals n(xi' t) converge in distri­
but i on to the sol ut ion of (4.1) for any bounded time, and (iii) an interior fixed point 
of (4.1) attracts the full interior of the positive cone. (i) to (iii) combine into the 
statement that for (} = 0 (a) the convergence to quasi-equilibrium (i.e., convergence 
to equilibrium of the process th at results from a conditioning on non-extinction) is 
much faster than extinction, (b) the distribution of n(xi) at quasi-equilibrium weakly 
converges to a point mass at ii(Xi) for n --+ 00. 

5.3 A comparison of the results from the three different 
formulations 

All three simulations in figure 10 show the same branching pattern. The most obvious 
difference is in the overall speed of the three processes: The large number limit is 
ab out 15 times, and the adaptive dynamics approximation about 3 times as fast as 
the real thing. We believe that latter difference is largely due to the demographic 
noise resulting from the smallness of n (nessecitated by the limited computer speed 
at our disposal): The realized instantaneous fitnesses for the full model ftuctuated 
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considerably over short time spans, and their moving time averages were much flat ter 
functions of y than the scO calculated from the adaptive dynamics approximation. 
(The latter effect also resulted in a much decreased propensity for further branching 
in simulations at higher values of Q.) The increased speed of the large number limit 
is due to the pres en ce of all possible types immediately af ter t = 0, even when the 
differential equation is started up with all but one n(Xi) equal to zero. These types 
may be present in extremely low densities, corresponding to a number much lower 
than 1 for any realistic value of 0 , but they can make up for this lack in numbers by 
their rapid reproduction. (In simulations for smaller values of Q this even resulted in 
the growth of a secondary peak, seemingly out of the blue, opposite to the primary 
peak, followed by a movement of the two peaks towards each ot her ending in their 
merger into a single peak around the EUS.) 

5.4 The justification of any general theory of Adaptive 
Dynamics 

Generalizing from the previous example we argue that adaptive dynamics type models 
should be seen as limits, for the system size 0 going to infinity, of stochastic individual­
based models in which (i) the influences of individuals on E scale as 1/0, (ii) the 
initial numbers of individuals are proportional to 0, (iii) the mutation probabilities 
per birth event scale as 0, where 00 -+ 0 when 0 -+ 00, while (iv) we look on a time 
scale T = OOt, t the old time scale, and (v) concentrate on following the trait values 
which are represented by numbers of individuals that are not 0(0). 

(i) and (ii) should guarantee that the population dynamical influences on E be­
comes free from demographic fluctuations on the t-scale, and (iii) should guarantee 
that that limiting population dynamics is not influenced by the occurrence of muta­
tions. Finally (iv) guarantees that (a) the average nu mb er of mutations per unit of 
T -time remains bounded and bounded away from zero, provided the original process 
had mutation rates which were so bounded, (b) the E dynamics converges to its at­
tractor infinitely quickly in T -time, provided that the limiting E dynamics in t-time 
has the right convergence properties, and (c) only time averaged properties in t-time 
E dynamics matter in T-time (but we should be careful to do our averaging right!) . 

It is in the light of this interpretation that we should judge the list of assumptions 
in the next section. 

6 Prolegomena to a general theory of Adaptive 
Dynamics 

6.1 Some notational conventions 

Adaptive Dynamics are stochastic processes with piecewise constant sample functions 
mapping Il4 to finite subsets of a compact and simply connected trait space X C IRk , 

with elements X, Xl," " X n , Y, satisfying certain special assumptions which we shall 
outline below. 
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For notational purposes it is useful to introduce 

(6.1) 

where 
)(0 := {V}, V the "virgin world". (6.2) 

The elements of X will generically be denoted as C = (Xl, . . . , X n). The connection 
between X and the fini te subsets of X is made through the map 

Set : C f-t Set(C) := {Xl , . . . , Xn}, Set(V):= 0, 

and the equivalence relation 

The equivalence class of C can be written as Seçl (Set( C)) . 
For later use we moreover define 

6.2 Fitness and protected polymorphisms 

6.2.1 Preliminaries about the fitness s 

Each process is "governed" by a function 

s : ir x )( -+ JR : (P, Y) f-t sp(Y), 

where 
ir c X is the set of "protected polymorphisms". 

(6.3) 

(6.6) 

(6.7) 

The elements of ir will generically be denoted as P . A recursive definition of ir, itself 
involving s, will be given in the next subsection. For the time being we only note 
that (ir, s) and '" should be compatible, in the sen se that 

PO: Set- l (Set(ir) = ir, 

SO: sp,(Y) = sp(Y) whenever P' '" P . 

Moreover s satisfies the selective neutrality of residents condition: 

SI: sp(Xi) = 0 for all Xi E Set(P) . 

6.2.2 Delineating the protected polymorphisms, first go 

A taxonomically oriented theory of adaptive dynamics requires that we can decide 
whether C E ir by a consideration of all expressions sc'(X) , with Set(C/) C Set(C), 
and X E Set (C) \ Set (C'). A rather straightforward generalization of the constructions 
from sections 3 and 4 leads to the tentative definition 
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for which sp(X) > Ol, 

{C E x;:n I Set(C) E Set(lP<n)}, 

lPn U][))n, 
00 

n=O 

Figure 11 exemplifies the meaning of Pla: The three numbered corners of the triangle 
symbolize three trait values Xl, X 2 , and X 3 . Vertices midway between two corners, 
say i and j, symbolize combinations of two trait values, C = (Xi,Xj ). The vertex 
at the center represents the combination of all three trait values, C = (Xl ,X2 ,X3 ). 

Vertices corresponding to trait combinations P E ïP have been encircled. An out­
going arrow from such an encircled vertex pointing to the i th corner signifies that 
sp(Xi ) > 0, and an ingoing arrow that sp(Xi ) < 0. The arrows attached to the three 
corner vertices tell us that (Xl, X 2 ) is the only protected dimorphism (up to equiva­
lence) that can be made out of {Xl ,X2 ,X3 }. We consider (Xl ,X2 ,X3 ) a protected 
polymorphism since all four encircled non-center vertices have at least one outgoing 
arrow attached to them. 

Pla is a direct adaptation to the clonal case of a definition appearing in various 
places in the population geneticallitterature (see e.g. Eshel, 1995). But this definition 
is not without problems, as we shall see in the next subsection. However, before we 
deal with these problems we first go a little further into the population dynamical 
intuition underlying Pla, or rat her figure 11. 

At the community dynamical level the vertices in figure 11 should be interpreted 
as representing a community with one, two or three types present out of {Xl' X 2 , X 3 }. 

Explanatory remark: The state space of a single Xi population necessarily is 
a positive cone. Negative population densities don't exist. The state space of a 
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Figure 12: 

community comprising a combination C = (Xl, ... , X n ) of n types necessarily is a 
product of n of these positive cones times the state space of the remainder of the 
community. When the state of the Xi population is zero we say th at Xi has been 
deleted from the community. The faces of the community state space defined by 
the deletion one or more of the Xl,"" X n , are community dynamically invariant. 
We call an attractor of a community global when it attracts for almost all initial 
conditions for which the states of all its ingredient populations are essentially non­
zero (meaning that there is a positive mass of individuals which are still able to 
repro duce effectively). An internal global attractor of a k-type sub-community (a) 
globally attracts inside the face of the community state space which results from 
deleting the remaining n - k types, (b) puts no community mass on the faces of the 
state space of the sub-community. 

The fact that the three corner vertices are encircled tells us that the faces of the 
community state space corresponding to the three single-type sub-communities are 
supposed to have internal global attractors. The arrows attached to these vertices 
teIl us that each of these internal attractors is externally unstable in the (Xl, X 2 , X 3 ) 

community. The same arrows also teIl us that only one of the three possible two type 
communities can ever have an intern al global attractor. For believers in a bounded 
noisy world the arrow pattern also strongly suggest that it in deed has such an attrac­
tor . (But few general theorems to this effect have been proved as yet; see e .g. Ellner 
(1984) and Chesson and Ellner (1989).) The total arrow pattern does not point to 
any structure in the combined faces of the community state space with the potential 
to attract all community mass from the interior. By a leap of faith we take this as an 
indication that the three type community should have an internal attractor. 

6.2.3 Some fties in the ointment, and two optional axioms 

Figure 12 shows, in a notation comparable to that of figure 11, three possible sign 
configurations of s on subsets of {Xl," " X 4 } which according to Pla should make 
(Xl, ... , X 4 ) into an element of IP4 . The left and right configurations are unproblem-
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atical, but the middle configuration contains a "heteroclinic loop". Any community 
dynamical model underlying this sign configuration necessarily sports a hetero clinic 
loop in the standard sense of the word. 

It is possible to construct community dynamical models with heteroclinic loops, 
or, more generally, heterocline networks, which attract with respect to the interior 
of the positive cone. Pla fails to exclude that an underlying population dynamics 
possesses an attracting heteroclinic network. Therefore "space of protected polymor­
phisms" is somewhat of a misnomer for a ïP which just satisfies PI. (NB: There is 
no inherent contradiction in the existence of a combination (ir, s) satisfying PI, and 
of a corresponding formal adaptive dynamics, which makes no community dynamical 
sense.) 

There are three ways in which we can proceed: 

(i) We just ignore the complication. Although it is impossible to interpret the re" 
sulting mathematical theory fully in terms of individual-based processes, there 
is no immediate reason that it contains internal inconsistencies. Of course we 
should be somewhat careful how we interpret any ensuing theorems. But none 
of our results so far seems to be particularly vulnerable to interpretational prob­
lems caused by the ensuing semantic gap. 

(ii) We modify Pla by including some additional conditions which should exclude 
from (include in) lP' n any (Xl, .. . , X n ) supporting attracting (repelling) het­
eroclinic networks of an underlying community dynamics. This strategy will 
only fit in our taxonomically oriented approach when it is generally possible to 
distinguish unequivocably between attracting and non-attracting hetero clinic 
networks solely in terms of our function s. Since all results so far known about 
the (non-)attractivity of hetero clinic networks in (differential equation models 
for) community dynamics are phrased in terms of that s (Brannath, 1994; Hof­
bauer, 1994) there is some hope that such an approach may become feasible in 
the future. 

(iii) We just exclude any s which happens to produce heteroclinic loops from our 
consideration by adding an axiom to that account: 

P2: No P E ïP supports a heteroclinic loop. 

Unfortunately we don't have easy ways for checking P2 for a given function s. 
Moreover, so far we never made explicit use of P2 in deriving results. Therefore 
strategies (i) and (iii) essentially amount to the same. 

P2 is but one way of singling out a special subclass of adaptive dynamics. A still 
smaller subclass is determined by 

P3: P E ïP implies that P/{i} E ïP for all i = 1, ... ,USet(P). 

The rightmost diagram of figure 12 provides an illustration. P3 trivially implies P2. 
Moreover it excludes all adaptive dynamics with sign configurations of s for which the 
existence of a good internal attractor of any underlying community dynamics may be 
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contentious. (But we wish to point out here that we have devised community models 
not satisfying P3 that behaved perfectly weIl adaptive-dynamically.) 

The following proposition, given without proof, provides a somewhat more easily 
checkable suflicient con dit ion for P3: s satisfies P3 if (i) for every P there is at least 
one i such that P/{i} E ir, and (ii) sp(Y) > 0 => Sp/{it ... .. ik}(Y) > 0 for all pairs 

P,P/{i1"id E P. 

6.3 Smoothness of s 

The two main reasons to develop any high level theory, i.e ., a theory which is not 
immediately tied to a particular class of models, are that (i) such a theory may point 
at results which risk to go unnoticed under the clutter of detail inherent in the analysis 
of special modeis, (ii) it is only through those means that we can bring out the robust 
properties of larger classes of models. Both (i) and (ii) hold water only if the ensuing 
results are sl'fficiently unexpected. Adaptive dynamics starts to get interesting when 
we may assume that s is sufficiently smooth. But there is a snag: It is rather hard to 
find what kind of smoothness conditions are condoned by our requirement that the 
theory can be tied to at least some classes of community dynamical modeis. Below we 
give our present insights in this matter, but this clearly is a topic in need of greater 
scrutiny. 

6.3.1 Smoothness of s away from the diagonal planes of xn 

Away from the diagonal planes of Xn it is relatively harmiess to assume fairly unre­
stricted smoothness of s. This smoothness may be flouted for some specific community 
dynamical modeis, but the models that remain form a sufficiently large class. More­
over, when smoothness is flouted we of ten can produce the complete picture by gluing 
together the results for a number of regions inside which smoothness holds fine. An 
example of a useful smoothness assumption is 

S2a: scan be continuously extended to (closure lP' n) x X, n = 1,2, . .. , and for all 
P E (closure lP' n) \ lE.s, lE.s the 6-neighbourhood of the diagonal planes of Xn, this 
extension satisfies, for both Q E ]Rnk and V E ]Rk small, 

1 
sp(Y) + Dsp(Y)(Q, V) + "2(Q, vf D2 sp (Y)(Q, V) 

+R(P, Yj Q, V), 

with the remainder term 

R(P, Yj Q, V) = O(I(Q, V1 3
) 

uniformly in (P, Y) on (closure lP' n) \ lE.s , 

where Di den ot es the i th derivative of s with respect to (P, Y). The reason for 
removing lE.s is disclosed in the next subsection. 
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Figure 13: 

6.3.2 8moothness of s on closure lP n 

Figure 13 illustrates the problems that we run into when we try to extend 82 to 
the intersection of closurelP n and the diagonal planes of Xn . The left hand diagram 
shows the isocline pattern for two members of a family of hypothetical unstructured 
two-type communities. In community A the two types differ, and there is a single, 
stabie, internal equilibrium; community B consists of two exactly equal types, so that 
the two isoclines become a straight line connecting the two equivalent single species 
equilibria. The right hand diagram on ce more shows the position of these equilibria, 
but now accompanied by two pairs of paths traced by the equilibrium when we move 
along smooth curves in closurelP2 • The two curves passing through the parameter 
vector of community A map into two paths which intersect at the position of the 
single A equilibrium. However, there is no reason at all why the paths corresponding 
to the curves passing through the parameter vector of community B, should intersect. 

Remark: We drew the lat ter paths as staying on one side of the line of B equilibria, 
ins te ad of crossing that line, since this happens to be the generic pattern for Lotka­
Volterra modeis . (Remember that the places where closureIP2 intersects the diagonal 
of X2 are strongly constrained; it is this constraint which is at the heart of an otherwise 
maybe rather unexpected result.) We haven't yet tried to prove that this pattern 
extends to general ODE community models though. The same Lotka-Volterra models 
also provide immediate counterexamples against the existence of a derivative of s on 
(cios ure lP n) x X. 

The ups hot is that community dynamical considerations may condone assuming 
that s has smooth directional derivatives in cios ure lP n, but not that it has smooth 
derivatives. Since these considerations only apply to the P-component of (P, Y) we 
conjecture that any overall smoothness assumptions on s should take the following 
format 

82b: scan be continuously extended to (cios ure lP n) x X, n 1,2, ... , and this 
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ex ten sion satisfies, for V E IRk small , 

Sp(Y + V) = sp(Y) + B(P, Y)V + VTC(P, Y)V + 0(1V13) 

with Band C continuous in (P, Y), and, for Q E C(P) (see below), IQI = 1, 

sP+<Q(Y) sp(Y) + fal (P, Y; Q) + E2a2(P, Y ; Q) + 0(E3
), 

B(P + EQ, Y) B(P, Y) + EBl(P, Y; Q) + 0(E2
), 

C(P + EQ, Y) C(P, Y) + O(E), 

with al (P, Y; Q), a2(P, Y; Q), BI (P, Y; Q), homogeneous in Q, and continuous 
in P, Y, and Q, and the various order estimates uniform on IPn, where 

C(P) := closure {Q E IRnk I P + EQ E lP n for all sufficiently small E}. (6.8) 

Remark: S2b al most implies S2a. (The proof follows the lines of the proof of theorem 
12.11 in Apostol (1974).) The exceptions are the corners of IPn (the set of points of 
non-smoothness of alP n), not only the corners where lP n touches a diagonal plane of 
Xn

. 

6.3.3 Extending SO, and some consequences 

Below we shall no longer distinguish between s and its extension to closureP. However, 
before we can do this we first have to assume explicitly that our old 

SO: Sp' (Y) = sp(Y) whenever P' '" P, 

also holds good for that extension. 
By applying SI to S2b we find that, for small Q = (UI, ... , Un ) and V, 

sP+Q(Xi + V) = iB(P)(V - Ui) + iBl(P,Q)(V - Ui) 

-uT iC22 (P)Ui + V T iC22 (P)V + O(I(Q, VW), (6.9) 

with 

SI and S2a teil us th at away from the diagonal planes of xn (6.9) may be replaced 
by the stronger 

n 

j=l 

n 

j=l ,#i 

+uT iCll(P)Ui + 2uT iC12 (P)V + V T iC22(P)V 

+O(I(Q, vW), (6.11) 
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Figure 14: 

with 

1 
iCl1 (P) := -"2 (i B li(P) + iB[;(P)) - iC22(P), 

so that 

(6.13) 

Formulas (6.9), (6.11), and (6.13) are the real workhorses. 

S2 mayalso be used together with SO and SI to justify the assumption made 
in section 3 for 1-dimensional X, that SlP2 XX unrestrictedly allows a second order 
Taylor formula. S2a already tells that this is the case away from the diagonal. For 
P = (x·, x · ) we use an elegant argument due to Christiansen & Loeschcke (1987). 
The first formula of S2b says that SP+Q(Xi +v) consists of a quadratic in v plus a third 
order correction term, with the leading term of the quadratic equal to iC22(P)V2 , and 
the other coefficients also depending on Q = (UI , U2) . The equality of the components 
of Pin combination with SO tell us that IC22(P) = 2C22(P), so that we can drop the i. 
The equality of the components of P combines with SI to tell us that this quadratic 
should be zero wh en either v = UI or v = U2 . But for a single variable, and only for 
a single variable, this implies that the quadratic equals C22(P)(V - Ul)(V - U2). 
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6.3.4 Consistency conditions connecting s on different lP' n 

Figure 14 shows the À 2 's, with the stagnation sets drawn in, for a sequence of param­
eter values measuring the steepness of competition between differently sized seedlings, 
of a family of models for the competition among plants differing evolutionarily only 
in the si zes of the seeds which they produce. On the part of the boundary of where 
X2 goes extinct the (Xl, x2)-community reduces to a pure Xl community. Therefore 
the Xl -stagnation set should intersect this boundary exactly at the values of Xl where 
the monomorphic xl-dynamics has a singular point. Moreover the local colour of 
the stagnation set should match the type of that singular point. A slightly more 
involved graphical argument shows that the x2-stagnation sets should intersect the 
xl-extinction boundary at the local extrema of that boundary in the xl-direction. 
Local convexity of 1P'2 around such an an extremum, call it (x~, x~), implies that 
2C22(X~,X~) > 0, local concavity that 2C22(X~,X~) < O. Figure 14 also shows that 
these rules considerably constrain how 1P'2 can transform when we change process 
parameters. 

The previous observations form the motivation for the introduction of two assump­
tions, of increasing strength, which tell how slPn xx connects to some of the sllPmXx, 
m < n. But before we can state these assumptions we first need to introduce some 
additional notation: Let Je {I, ... ,n}, 0 ~ ~J ~ n -1 and let i E {I, . . . ,n}, i rt. J. 
With this convent ion we define the smooth boundary components 

(1) (a) C/{i} U JE Pn-U({i}UJ) 

(b) SC/{i}UJ(Xi ) = 0 

(c) SC/{i}UJ(Xj ) < 0 for all jE J, 

(2) for any P such that 

(a) Set(P) C Set(C) 

(b) Set(P) =I Set( C) 

together with the corners 

(c) Set(P) =I Set(C/{i} U J), and 

(d) P E IP'n-h for some h > 0, 

there is at least one X E Set(C) \ Set(P) 

for which sp(X) > Ol, (6.14) 

(6.15) 

with the convention th at when UJ = 0 we just write 8 i lP' n instead of 8 i ;JIP' n' (Of course 
many of these houndary components may he empty!) 

For completeness we moreover introduce the houndary components, for J C 
{l,oo.,n}, 1 ~ U ~ n, 
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~J = {C E Xn I (1) (a) CIJ E 8lPn_p 

and 

(b) sC/J(Xj ) = 0 for all jE J 

(2) for any P such that 

(a) Set(P) C Set(C) 

(b) Set(P) t= Set( C) 

(c) Set(P) t= Set(CfJ), and 

(d) P E lPn - h for some h > 0, 

there is at least one X E Set(C) \ Set(P) 

for which sp(X) > Ol, (6.16) 

(6.17) 

To simplify the discus sion we shall below sometimes invoke the transversality 
condition 

T <n: the graph of slP<nxx is transversal to the graph of the nul-function on lP <n X X. 

From the definition of lP n and the continuity of s it immediately follows that, whenever 
T <n, 

u closure8i;J lP n U 
1 ~i~ n ,JC {l, ... ,n } ,o ~ ttJ ~n-l 

U closure~JlPn U U ÓilPn . (6.18) 
JC{l, ... , n} ,O~p~n O~i~n 

We start with an assumption about the behaviour of s near the smooth boundary 
components: 

83: sp(Y) = SP/ {i}UJ(Y) for all P E 8{i};JlPn . 

83 may be thought of as expressing the community level assumption that the attrac­
tors of the community dynamics dep end smoothly on the parameters differentiating 
the constituting species. 

83 nicely does away with the ~J lP n in the sense that, whenever T <n, 

8lPn = U (6.19) 
1 ~i~n , JC {I , ... ,n } ,o~ttJ ~ n-l 

(The proof goes by induction on n.) 
Next we observe that the combination of 82 and 83 implies that 

sp(Y) = sP/ {iduJt(Y) = .. . = SP/ {ik}UJk(Y) whenever P E 8it, ... ,ik ;lt , ... ,JklPn, 
(6.20) 
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i.e., in the corners the fuU functions Sp/ {ij }uJj ( .), j = 1, . . . , k, should coincide. This 
would be rat her a coincidence, ex cept when it so happens that we are basicaUy dealing 
with an invasion rate into one and the same PI, such that Set(P' ) C nj Set(P / {ij} U 

J j ) . (The points P/{i j } U J j , P E ait, ... ,ik ;Jt , ... ,J.lP'n, then should be also boundary 
points of lP' n-ö( {ij }UJj)') This observation suggests that we may without great loss of 
community dynamical generality assume: 

S4 tri",iaUy implies S3 , but not vice versa. 
S4 has two immediate consequences. The first is, not unexpectedly, 

k 

(ait , ... ,i.;Jt , ... ,1. lP n) / {i1 , .. . , ij-I, i j+1, ... , id U U J j C alP' n-ö( {i t , ... ,ik}uu7=t Jj)+1 ' 

j=1 

(6.21) 
The second one is slightly more involved. Therefore we will only give an example: 
For figures 6, 7, 8 and 14, S4 together with SI imp lies that near to the outer corners 
of 1P'2 the adaptive movement is away from the corner. 

6.4 The trait substitution process 

An adaptive dynamics is governed by its snot only through its sample functions 
being maps from 1I4 to Set(iP); s also governs the mechanics of the trait substitution 
process. 

A trait substitution, i.e ., a jump in the sample function, is generated by the 
composition of three processes: 

(1) The production of a mutant Y = Xi + V from an Xi E Set(P) . Mutations result 
from rare copying errors of the genetic material during individual reproduction 
events. A mutation gets expressed as a step in the trait vector of the mutant 
relative to that of its parent only through the action of the developmental process 
on the individual mutated genotype. 

(2) The establishment of that mutant. When sp(Y) ~ 0 the mutant will fail to 
establish and the sample function continues smoothly, when sp(Y) > 0 there is 
a chance that the mutant gets established. 

(3) The production of a new value of the sample function. The establishment of 
a mutant leads to a shake-up of the community in which one or more of the 
Xi E Set(P) may be lost . 

Only the end result of these three processes IS visible at the level of the sample 
function, as the positions and types of jumps. 
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6.4.1 The production of mutants 

Since the production of mutants contains a large intra-individual component we have 
but few a priori considerations to base our assumptions on. The list of assumptions 
below tries to strike a compromise between being biologically as weak as possible and 
yet being mathematically sufficiently useful. It is only at the intra-individual level 
that we strived for weakness. Where we could strengthen the assumptions by bringing 
in a community dynamical argument we have do ne so. 

From the present jump moment till the next one, mutations in Xi may be assumed 
to occur in a Poisson process with rate Ai . 

Basic biological considerations teIl us that Ai (a) may dep end on the history of 
the line of descent leading to Xi, and (b) depends on P. (a) is due to the fact that 
the map from genotype to any simple phenotypic representation necessarily is very 
many to one, so that there is no good reason to expect that on the phenotypic level 
the mutation process is Markovian, (b) to the fact that at the community dynamical 
level P determines the average birth rate into the Xi-population. We shall make only 
the weak assumption that the mutation probabilities per birth event are bounded 
away from both 0 and 00. If we make the same sort of continuity assumptions on 
the attractors of the community dynamics as before, we end up with the overall 
assumption: 

(i) ±Ai continuous in all points P E closure lP' n, with the exception of P for 
which X j = Xi for some j :j:. i, 

(ii) for P = (Xl, ... , X n ) -+ C = (XL .. . , X~) E 8i;JlP'n, ~Set(C) = n, 

±Ai(P) = O(lXh - XW 

±Ai(P) -+ ±Ai(Cj{i} U J) 

for h E {i} U J, 

for h ft. {i} U J, 

(iii) for P = (Xl, . .. , X n ) -+ C = (XL ... , X~) with Xj = XI, j > i, 

Of course, special adaptive dynamics may satisfy stronger assumptions, e.g. the 
Markovian dependence of Ai on P. Biology also tells that the distribution of the 
mutational steps V = Y - Xi may weIl depend on the history of the line of descent 
leading to Xi. Therefore we only make an overall non-degeneracy assumption: 

M2a: The mutational steps are continuously distributed, with the possible exception 
of a concentration of mass on 

~(Xi) := {V I Y = V + Xi E 8X}j 

the latter mass is continuously distributed on ~(Xi) . 
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M2b: Let 1 temporarily denote the density of Y in {V I Y = V + Xi E X}, and g the 
density of Y in B(Xd. Both 1 and gare uniformly continuo us on the closures 
of their domains and there exists a single constant c > 0 such that 1(0) > c, 
and, when Xi E ax, g(O) > c. 

M2b guarantees that mutations effectively occur in all directions. 
To make the smoothness assumptions on s pay, ot her than by providing some 

constraints on the possible shapes of ir, we have to assume that the mutational steps 
are uniformly smal!: 

M3: There exists an € such that 

P{IVI > €} = O. 

6.4.2 The establishment of a mutant 

To get established, the mutant population has to grow from a single individual to 
a number of individu als which is of the order of the system size n (compare the 
discussion in section 5). The initial phase of this growth process is dominated by 
stochastic demographic fluctuations. In the limit of infinite n the probability of 
establishment should equal that of the stochastic branching process where Y type 
individuals reproduce in the environment E(P). 

The estimates for the establishment probability of particular branching processes 
with low growth rates (Haldane 1927; KendalI, 1948, 1949; Eshel, 1981, 1984; Hoppe 
1992a, b; Athreya 1992, 1993; Pollak 1992; Haccou & Iwasa, in prep) all have an 
initial term which is linear in the growth rate. Therefore it seems safe to assume that 

B: The probability 7rp(Y) that a Y mutant successfully invades a P community is 
zero when sp(Y) < 0, and when sp(Y) 20 we can bound 7rp(Y) by 

asp(Y) + o(sp(Y)) ::; 7rp(Y) ::; f3sp(Y), 

with a, f3 > 0, and the order term uniform on ir. 

Remark: We slightly oversimplified the argument above. On the community dynam­
ical time scale both the birth rate of Y mutants and the probability that a mutant 
gets established are time dependent, ex cept in the special cases that the community 
attractor is a deterministic equilibrium. Therefore the two processes, production of 
mutants by Xi and the establishment of a mutant, cannot be treated separately. The 
correct argument runs as follows: Let À:(t) denote the production rate of mutants 
from Xi, and 7r~(Y)(t) the probability that a Y mutant gets established. Then 

When moreover 

a(t)sp(Y) + o(sp(Y)) ::; 7r~(Y)(t) ::; b(t)sp(Y), 
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Figure 15: 

with the order term uniformly in t, then B holds good with a and (3 the corresponding 
time averages of a(t) and b(t). With these definitions the only visible effect on the 
evolutionary time scale of a complicated community dynamics is a dependence of 
7l'p(Y) on the parent of Y, which we didn't make explicit in our notation. When M3 
is in operation this dependence is neçessarily slight, and it should be possible to make 
the estimate B independent of the parent of Y. 

6.4.3 The production of the post-jump value of the sample function 

The establishment of a mutant leads to a shake-up of the community in which one 
or more of the Xi E Set(P) may be lost. The following assumption about the types 
that are kept around is directly in line with the arguments underlying PI. 

K: The new value of the sample function is chosen at random, with probabilities 
which depend only on Pand Y, from among all P' such that 

(i) P' E ïP 
(ii) Set(P' ) C Set(P) U {Y} 

(iii) for all X E (Set(P) U {Y}) \ Set(P' ) 

Sp' (X) :::; O. 

Figure 15 provides an illustration. 

Remark: On the community dynamical level K only holds water as long as any hete­
roclinic loops are repelling. When the theory gets modified to cope in an acceptable 
manner with such loops, as we hope that will be possible in the future, the natural 
assumption is that P' also may be any trait combination that occurs in a vertex of 
an attracting heteroclinic loop. 

7 One research strategy and some conclusions 

The assumptions made in the previous section aren't the only possible ones. We listed 
them to make explicit our own preconceptions and to get a discussion started ab out 
possible useful and/or justifiabie alternatives. Moreover, it is possible to explore 
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their consequences in a number of different directions. One useful direction is the 
development of a bifurcation theory for EUSes. In this section we discuss, without 
proofs, a number of heuristical!y derived macro-evolutionary results, as an example 
of one other direction that could be taken. 

We emphasize that it is as yet unclear how robust the results below are with 
respect to relaxing our basic time scale argument. 

7.1 The research strategy 

The results below were derived by adhering to the fol!owing research strategy 

1. Let the scale of the mutational steps, as measured by their maximum seize E, go 
to zero, and simultaneously rescale time so that the process doesn't freeze (which 
choice of scale is appropriate depends on the ph en omen on that is considered). 

2 a. Forget about features of the sample path that can only be seen at a resolution 
of O(EI/2). 

2 b. Forget about events that only occur, in interestingly long stretches of the sample 
path, with probability 0(1). 

2 c. Concentrate on phenomena that are stabIe under slight changes of s. 

Remark: 2a also provides an exegesis of some of the verbiage in sections 3 and 4: 
"Smal!" should be interpreted as "O(EI/2) but not 0(EI/2)", "very smal!" as "0(EI/2)", 
and "vi si bIe" as "not very smal!" . 

7.2 Overall environment constant on the evolutionary time 
scale 

We start our discussion on the assumption that on the evolutionary time scale(s) the 
environment can be considered constant, i.e., the environmental fluctuations are ful!y 
restricted to the community dynamical time scale. In that case we should distinguish 
two time scales, each relevant to a particular type of evolutionary phenomena: 

1. Both the number of steps needed to cover a fixed distance in any lP n, n = 
1,2, ... , and the time needed for one step, scale as E- I (remember axiom B). 
Therefore starting from some point P E lP n, the time needed for convergence to 
an attractor in IPm, m :S n, and time pattern of the movement on a non-point 
attractor in lP m, scales as c 2

• We shal! label the corresponding evolutionary 
time scale fast. 

2. Branching, however, takes a time which scales as E- 3 , since s is local!y quadratic 
in Y - Xi near a branching point of Xi. We shal! label the corresponding 
evolutionary time scale slow. 
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If the mutation process is Markovian the movement on the fast evolutionary time 
scale can, but for the jumps to a lower degree of polymorphism, be approximated by 
an ODE (Dieckmann & Law, 1995). 

Branching only occurs on the slow time scale after the fast process has come to rest 
at a point attractor of the adaptive dynamics in lP' m which allows for the branching of, 
say, h, 1 < h ~ m , lines of des cent. Even for f -+ 0 the number of lines that branch 
may stay stochastic: Simulation results suggest that, due to the peculiar geometry of 
lP, the fast evolution of those branches that happen to have taken a relatively larger 
lead, inhibits the branching of the remaining lines of descent. 

The previous considerations may be translated into the following predictions about 
macro-evolutionary patterns that derive from our model assumptions: If there are no 
long term environmental changes due to extern al perturbations, the naturaloverall 
behaviour of an adaptive dynamics will of ten show a nu mb er of alternations between 
short periods of fast change in the species in the community, and long periods of 
stasis of the community as a whoie. The time scale of these phases is set by the 
production rate of mutational variation. "Speciation" is initiated only during statie 
phases, and the eventual di vergen ce of the nascent species starts the next fast phase. 
This alternation goes on till the process gets trapped in a non-equilibrium attractor of 
the adaptive dynamics, or in a fully attractive evolutionarily unbeatable combination 
of strategies . 

As a final point we mention once more that in higher dimensional trait spaces 
polytomies (in which one line of des cent gives rise to more than two branches during 
a single slow phase) shouldn't be unusual, the higher the dimension of the trait space 
the higher the degree of polytomy. 

7.3 Changing physical environments 

As a final topic we consider the consequences of overall environmental fluctuations on 
the evolutionary time scale, say due to climate change. 

Again we have to consider two time scales, but now of the environment al fluc­
tuations. If the overall environment fluctuates on the fast evolutionary time scale 
the fluctuations wil! inhibit branching, by the same geometric mechanism by which 
progressive evolution of ot her lines of descent inhibited branching. (This may be seen 
as a, tongue in cheek, explanation for the low species diversity in the North, where 
the ice ages provided precisely this type of fluctuations.) 

The second possibility is that the overall environment only fluctuates on the time 
scale of the static phases or even slower (the usual time scale of the geological record!). 
The typical patterns seen on that scale derive from the stabie bifurcations of attractors 
of the adaptive dynamics. As this subject has hardly been broached, our conclusions 
all derive from a few immediate graphical arguments. Two stably occurring types 
of hard bifurcations are (i) saddle node type bifurcations and (ii) bifurcations in 
which an evolutionary point attractor located in , say, lP' n transforms into a branching 
point. Intriguingly the latter type of bifurcation need not be of the pitchfork type in 
lP' n+l: The constraints on the places where the stagnation sets touch the boundary 
of lP' n+l make that it is possible that an evolutionary point at tractor located in lP' n 
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stably transforms into a branching point without making contact with evolutionarily 
singular points in lPn +1 . The result of such a bifurcation on the longest time scale is 
seen as the occurrence out of the blue, of an abrupt branching event, followed by fast 
progressive evolution of the novel "species". 

In the parlance of paleontologists the patterns resulting from hard bifurcations of 
point attractors are called punctuated equilibria, (i) within a line of des cent or (ii) 
with speciation. 

One punctuation event may lead to more in its wake, as the fast evolution of one 
line of des cent reverberates through the species assemblage, potentially resulting in 
extinctions and/or further branching events. We therefore may expect that the overall 
effect of a continually changing environment has the look of quasi-stasis interspersed 
with clusters of fast events, consisting of both extinctions and speciations. 

8 Concluding remarks 

In this section we place our main results in a larger biological context; in the final 
subsection we indicate some potentially fruitful further lines of research. 

8.1 Branching 

The prediction and characterization of branching events may well be con si de red the 
most interesting result from our attempt at classifying the various possible evolution­
arily singular points. However, as was clearly put forward by Christiansen (1991), it is 
also the re sult which is the least robust against the introduction of arealistic diploid 
genetics (no obligate self-fertilisation or absolute assortative mating). To keep our 
other results obtained so far intact under realist ic diploid genetics we have to assume 
that heterozygotes have phenotypes lying in between those of the two corresponding 
homozygotes. But this same assumption forces us to deal with the potentialof a con­
tinual stream of intermediate types where the sample path of a clonal model would 
start branching. Branching can only be rescued by assuming some newly developing 
or pre-existing mechanism which impedes the mating between two individuals from 
the diverging strains. Interestingly the few working ecological models for speciation 
through the development of some mating barrier, indeed seem to be organized around 
an evolutionarily singular point of the branching type (e.g. Seger, 1985). Moreover, 
there recently has been a spate of publications (e.g. Henry, 1994) about so-called 
cryptic speciation, i.e., the development of mating barriers (based on special mate 
recognition systems, compare Paterson, 1993) which are not yet reflected in the di­
vergen ce of some readily observable traits. Our hunch is that the crypsis will be lifted 
when, and more of ten than not only when, the community dynamically relevant trait 
values of those species co me to lie in the neighbourhood of a branching point. 

Remark: Only populations which are sufficiently strongly coupled by migration allow 
a representation by a single fitness function s. The existence of such a representation 
formed the basis for all our considerations. Therefore allopatric speciation, in which 
two populations become migratorily uncoupled before the onset of divergence, fallS 
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outside the range of our formalism. Only the so-called sympatric and parapatric 
speciation modes fall squarely within its range (compare Meszéna, in prep). However, 
past opinion was that the latter modes of speciation were at best rare, compared to 
the allopatric one. However, recently more and more field evidence is coming available 
for the frequent occurrence of rapid speciation in populations which are not divided 
up by any clear physical barriers to migratory exchange (e.g. Meyer, 1993) . And, 
bet ter still, such events in a number of instances even have occurred in a repeatable 
manner following the immigration of a founder species into separate lakes or islands 
(Schluter & Nagel, 1995; Losos, 1995). 

8.2 On the non-commutativity of limits 

The results from the previous section were based on three subsequent limiting ar­
guments, (i) the approximation of an individual-based stochastic community model 
by a deterministic one, combined with (ii) the assumption of rarity of mutations, to­
gether allowing the transition from the framework of community dynamics to that of 
adaptive dynamics, and (iii) the assumption of uniform smallness of the mutational 
steps, allowing the deduction of the macro-evolutionary conclusions in section 7. Both 
intuition and figure 10 suggest that we cannot be too sure that these three arguments 
are all the way compatible. 

The community dynamical time needed for a substitution of one type by another, 
say Xi by Y, sc ales as 10g(0)j[sp(Y)-S(P,Y)j{i}(Xi )], 0 the system size. The de­
nominator of this expression goes to zero when the size of the mutational steps, f, 
goes to zero. Therefore the limits f ~ 0, and n ~ 00 together with oe ~ 0, e 
the mutation probability per birth event, don't commute. Depending on the route 
we follow in (0, e, f)-space to (00, 0, 0) we get a different limit process. To get the 
results described in the previous section for the fast phase we should have that 
Oelog(O)jf ~ O. The results for the slow phases may be only expected to hold 
good when oe 10g(0) j f2 ~ O. In other words, those results can only have biological 
relevance if in reality oe 10g(0) j f, respectively oe 10g(0) j f2, are sufficiently small . 

As a final point we mention that at very small distances from an evolutionary 
point attractor the framework breaks down all the way. As soon as evolution has co me 
sufficiently ne ar to such an attractor new mutants are selectively almost neutral, so 
that on this scale the scene will be effectively dominated by demographic stochastic 
fluctuations. 

8.3 Some directions for further research 

We see at least two immediate directions for further progress. First of all the un­
derpinning andjor modification of our present assumptions, as far as these are based 
on community dynamical arguments, should be further explored. Two immediate re­
search problems are (i) the exploration of the continuity assumption S2, for example 
byelaborating the bifurcation patterns of community equilibria in some appropri­
ately chosen general ODE framework, (ii) the modification of our assumptions Pla 
and K to account for the occurrence of attracting hetero clinic networks. The second, 
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and ultimately most interesting, topic is the development of a bifurcation theory for 
Evolutionarily Singular Strategies (but to get started we need a better insight in the 
potential for generalizing assumption S2b). 
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