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Preface 

In the thin boundary layer of air along aircraft surfaces, somewhere transition 
from the laminar to the turbulent state will occur. As the transition marks 
a significant increase in viscous drag, the transition location is an important 
design parameter. But the physics of stability and transition of fluid flows are 
quite complex. A better knowledge of what is going on will enable to implement 
the concept of Laminar Flow Control in future generations of aircraft. 

Since the pioneering experiments of Reynolds, more than a century ago, for 
the transition of the flow in a pipe, much progress has been made in transition 
research. Over the past 4 decades, the en method for the prediction of the tran­
sition location has been very popular in the aerodynamic design of airfoils and 
wings. In the past few years some new ideas and concepts have come up, which 
are very promising, and are expected to have an influence on design methods in 
the next decade. For example, there is now considerable interest in receptivity, 
which describes how environment al disturbances enter the boundary layer and 
are transformed into unstable waves. Also the Parabolized Stability Equations 
(PSE) have been introduced. The nonlinear PSE contain much more physics 
than the en method (which is fully based on linear theory), but still much needs 
to be done to make it available for designers. The availability of supercom­
puters enables to perform Direct Numerical Simulations (DNS) for all stages of 
the transition process. The resulting data bases contribute to the fundamental 
understanding of the transition process. Although the capabilities of PSE and 
DNS are quite impressive, accurate experiment al data remain required for their 
validation. The experiments are particularly important for the receptivity pro­
cess. The experiments can also reveal new (primary and higher order) instability 
mechanisms, not yet captured by the physical models. A remarkable improve­
ment of the experiment al techniques over the last years is the use of sophisticated 
disturbance generators, which can introduce two-dimensional or oblique waves 
of a prefixed frequency and wavelength. 

In view of the fast scientific progress, on the one hand, and the st rong need 
for improved prediction methods by industries, on the ot her hand, a 3-day Col­
loquium (6-8 December 1995) on Transitional Boundary Layers in Aeronautics 
was organized in the historical building of the Royal N etherlands Academy of 
Arts and Sciences in Amsterdam, The Netherlands. The Colloquium had the 
subtitle State-of-the-art and Future Directions of Research. The state-of-the-art 
was covered by 14 invited speakers, coming from universities, research institutes, 
and industries. In fact all speakers of our first choice did accept the invitation. 
Following a call-for-papers, 23 technical presentations were selected (out of dou­
ble the number of submitted abstracts). These presentations give a valuable 
over view of current and future research on transition with aeronautical applica­
tions. The Colloquium was attended by 50 invited participants, coming from 12 
countries: Australia (1), Belgium (1), France (1), Germany (13), India (1), The 
Netherlands (9), Portugal (1), Russia (5), UK (7), Sweden (1), Switzerland (1), 
and USA (9). 
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The Colloquium was concluded with a general discussion on the future di­
rections of research. It became very clear that the collaboration between the 
developers of transition theory ('the scientists') and the end users of transition­
prediction tools in aircraft industries ('the engineers') should be further strength­
ened. Industries want tools that can be used by an engineer, without the need 
to have a thorough knowledge of all the details of transition theory. Therefore 
industries very much like the simple en method, though the limitations for exten­
sion to 3D are realized. The scientists emphasize that the physics of transition 
are not simpIe, and therefore hard to capture in engineering methods. We think 
that the present Colloquium will help to bridge the gap between the engineering 
and the scientific world. 

All papers included in this volume of the 'Verhandelingen' of the Royal 
Netherlands Academy of Arts and Sciences were double reviewed. All authors 
are acknowledged for the time they spent in delivering these high-quality pa­
pers. Thanks are also due to the members of the Scientific Committee of the 
Colloquium: Prof. P.H. Alfredsson (Royal Institute of Technology, Stockholm); 
Prof. T. Cebeci (McDonnell Douglas Aerospace, USA); Prof. Y.S. Kachanov 
(Russian Academy of Sciences, Novosibirsk); Prof. Th. Herbert (The Ohio 
State University, USA) and Dr H.W. Stock (Dornier Luftfahrt). The Scientific 
Committee selected the presentations and did most of the review of the written 
papers. Thanks are also due to Bas Flipsen, student of our Faculty of Aerospace 
Engineering, who helped to bring the papers in their final uniform format. 

R.A.W.M. Henkes & J.L. van Ingen 
Faculty of Aerospace Engineering, Delft U niversity of Technology 
Delft, July 1996 

The Colloquium on Transitional Boundary Layers in Aeronautics was organized 
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Colloquium on Transitional 
Boundary Layers in Aeronautics; 
Background, Summary and Discussion 

Abstract 

This paper gives background information on the specific aspects of Transitional 
Boundary Layers in Aeronautics that were handled in the 8 sessions at the collo­
quium that was held on 6-8 December 1995 at the Royal Netherlands Academy 
of Arts and Sciences in Amsterdam. Invited and technical presentations in each 
of the sessions are summarized. The general discussion on future directions of 
research, with which the colloquium was closed, is also included. 

Introduction 

In the external aerodynamics of aircraft, the thin boundàry layer along the sur­
face plays an important role. To a large extent, the boundary layer determines 
the drag of the aircraft. A better knowledge of the laminar-turbulent transit ion 
process within the boundary layer may provide technical possibilities for transi­
tion control. In this way transition can be postponed, leading to a reduction of 
the total drag and consequently of the fuel consumption. 

It is generally recognized that transition belongs to the most difficult prob­
lems in Huid mechanics. Due to the fast development of computational capabili­
ties and of new measuring techniques, in recent years our knowledge of transition 
has been greatly improved. Therefore the Royal Netherlands Academy of Arts 
and Sciences (KNAW) has organized, in collaboration with the J.M. Burgers 
Centre for Fluid Mechanics, a three-day Colloquium (6-8 December 1995) on 
Transitional Boundary Layers in Aeronautics. The Colloquium was meant to 
bring together leading researchers in this field. 

Fourteen invited speakers have given an overview on what has been reached 
up to now. These lectures formed the basis for discussions, which will contribute 
to establishing the research directions that can be taken in the coming years. 
The emphasis in the Colloquium was on the scientific aspects oftransition. Some 
speakers from the air cr aft industry were also invited; their problems and wis hes 
are of particular importance for directing future research. N ext to the invited 
lectures also 23 technical papers were presented, which were selected by the 
scientific committee following a call-for-papers. 



4 Background, summary and discussion 

The present paper gives the general background for the different sessions 
that were part of the colloquium, it summarizes the invited and technical pre­
sentations, and it ends with some remarks on possible future directions of the 
transition research with applications in aeronautics. 

Past and future 

From detailed experiments by Schubauer & Skramstad (1947) on a smooth plate 
in a wind tunnel with a degree of turbulence less than 0.1 % it is known that the 
flow is completely laminar when the local Reynolds number is below 2.8 X 106 

and fully turbulent for Reynolds numbers above 3.9 X 106. For intermediate 
values of the Reynolds number, a transition region occurs where the flow passes 
from the laminar to the turbulent state. A similar behaviour is found for the 
boundary-Iayer flow along the aircraft surfaces (such as the fuselage and wings). 
Although the phenomenon of transition has been known already since the famous 
experiments for pipe flows by Reynolds in 1883, all aspects of the mechanisms 
leading to transition are still not yet completely understood. 

The colloquium was opened with a presentation by Fernholz (Technical Uni­
versity of Berlin), who made a historical excursion and revisited one of the ear­
liest experiment al data sets for laminar-turbulent transition of boundary layers, 
namely the experiments for the zero-pressure gradient boundary layer performed 
by Burgers & Van der Hegge Zijnen in 1924 at Delft University of Technology 1. 

The hot-wire measurements show maximum fluctuations in the transition regime. 
Fernholz rescaled the data in the turbulent regime by the now well-known inner 
scalings, which shows that the old data are in very good agreement with more 
recent experiments. 

This paper, pointing to the value of the past, was immediately followed by a 
paper pointing to future applications of transition research: the invited presen­
tation by Voogt (Fokker Aircraft, The Netherlands) describes the results from 
a test flight with a special laminar flow glove on a Fokker 100 wing, which was 
developed within the collaborative program ELFIN (European Laminar Flow IN­
vestigation). Transition was measured in flight by an infrared camera at different 
transonic Mach numbers and for different sweep angles ofthe wing (simulated by 
side slipping of the aircraft). The transition location turns out to be considerably 
affected by environment al conditions, such as ice crystals on the wing and insect 
impact. This may pose a serious problem for maintaining Natural Laminar Flow 
(NLF). The obtained flight data can be used for the validation of transition pre­
diction methods. First comparisons show considerable differences bet ween the 
methods, which give predictions ranging from 30 to 50% of the chord. 

Before addressing the methods for transition prediction for such applications, 
first three sessions were devoted to the basic physical mechanisms of stability and 
transition. 

1 Prof. J .M. Burgers gave his name to the later Dutch research school for Huid mechanics, 
that co-organizes the present colloquium 
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Session 1: Tollmien-Schlichting waves and subsequent instabilities 

Rayleigh (1880), Tollmien (1929), and Schlichting (1933) have developed a lin­
ear theory that describes the onset of transition. In this theory it is shown 
that small harmonic disturbances in the boundary layer may become unsta­
bIe and amplify. These linear instabilities become visible as so-called travelling 
Tollmien-Schlichting (TS) waves in the boundary layer. These waves were dis­
covered in wind-tunnel experiments for a flat-plate boundary layer by Schubauer 
& Skramstad (1947). It was found that the linear stability theory is valid only 
if the turbulence level in the free stream outside the boundary layer is less than 
about 0.1 %. In the free atmosphere and in modern low-speed wind tunnels the 
turbulence degree is indeed considerably less than 0.1%, and under such cir­
cumstances transition on smooth bodies is, at least initially, governed by linear 
stability theory. 

As this linear theory assumes the perturbations to be sufficiently small, it 
cannot describe the whole transition process. Further downstream, nonlinear 
interaction leads to subsequent higher-order instabilities (such as secondary and 
tertiary instabilities ). From experiments it is known that once the perturbations 
have become sufficiently large, suddenly turbulent spots are generated in the 
flow. These spots grow and merge as they move downstream, until finally they 
cause the breakdown into a fully turbulent flow. 

For the Blasius boundary layer the subsequent instabilities have been in­
vestigated in different experiments using controlled disturbances. Sophisticated 
devices have been developed to introduce disturbances with some well defined 
frequency, and streamwise and spanwise wave lengths. Examples of such devices 
are the vibrating ribbon, heating elements, suctionjblowing elements, and se­
ries of loudspeakers. Transition introduced by controlled disturbances should be 
distinguished from natural transition, in which the disturbance level naturally 
present in the wind tunnel intro duces the transition . 

For the subsequent instabilities, following the 2D Tollmien-Schlichting type 
of primary instability in the Blasius boundary layer, one of the next (at least) 
two regimes may occur: 
(i) fundamental regime; This regime was experimentally found by Klebanoff et al. 
(1962), and is therefore also referred to as the K -type breakdown of the primary 
instability. With the help of a vibrating rib bon 2D Tollmien-Schlichting waves 
were introduced with superimposed 3D waves, i.e. so-called oblique modes. 
Further ~ownstream this leads to a spanwise wave modulation of the Tollmien­
Schlichting waves, showing alternating regions of high and low shear in spanwise 
direction; denoted as the splitting in peaks and valleys, respectively. The resulting 
three-dimensional structures are denoted as A vortices, and they appear in an 
aligned pattern with the same fundamental streamwise wavelength as the original 
Tollmien-Schlichting waves. 
Further downstream a tertiary instability enters the flow, which is characterized 
by additional discrete frequencies in the frequency spectrum, which are referred 
to as spikes. 
(ii) subharmonie regime; This regime of breakdown is also referred to as C-
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type or H-type (af ter Craik, 1971, and Herbert, 1988, respectively, who did 
some theoretical work on the subject), or also as N-type (after Novosibirsk, 
the name of the Russian city in which Kachanov c.s. performed the stability 
experiments). Kachanov & Levchenko (1984) have used a vibrating ribbon to 
introduce the disturbances. Now the secondary instability manifests itself by a 
staggered pattern of lambda vortices, implying that the streamwise wavelength 
is double the value of the Tollmien-Schlichting wave. For unaltered phase speed 
this implies that the frequency has become twice as small, which explains the 
name subharmonic breakdown. 
In contrast to the fundamental regime, where the tertiary instability set in as 
spikes, for the subharmonic regime the tertiary instability seems to manifest 
itself as a gradual broadening of the frequency spectrum. 

The prevailing type of secondary instability depends on the amplitude, fre­
quency, and phase of the external disturbances. Herbert (1988) has analytically 
studied the linear, secondary instability of Tollmien-Schlichting waves by super­
imposing linear disturbances on periodic waves , using so-called Floquet theory. 
This is actually an eigenvalue problem for periodic base flows. Direct Numeri­
cal Simulations (DNS) are also a valuable approach to analyse the higher-order 
stability of boundary layers. For example the temporal approach with DNS has 
been followed by Kleiser c.s. (see also Wintergerste & Kleiser in the next ses­
sion), and the spatial approach with DNS has been considered by Rist c.s. (see 
this session). 

At the colloquium, the invited paper by Kachanov (Institute for Theoretical 
and Applied Mechanics, Novosibirsk, Russia) gave an overview of recent experi­
mental studies for the linear stability of 2D and 3D boundary layers with respect 
to Tollmien-Schlichting waves and Cross-Flow Vortices (see also next session). 
The linear theory is of importance for engineering transition prediction methods, 
such as the en method (see Session 4). The paper also includes experiments for 
the 3D instability of the 2D boundary layer along airfoils, and for the swept 
wing boundary layer. In contrast to the 2D instability, non-parallel effects are 
important in the 3D instability. There is qualitative agreement between available 
experiments and the linear theory, but more needs to be done for the quantitative 
verification. 

The paper by Van Hest, Groenen, & Passchier (Delft University of Tech­
nology, The Netherlands) presents hot-wire measurements for the transitional 
boundary layer under an adverse streamwise pressure gradient. Here the transi­
tion is not triggered by controlled disturbances, but instead the natural transition 
is examined. The energy in the dominant Tollmien-Schlichting waves shows a 
double near-wall maximum. Further downstream a secondary instability sets 
in; one maximum shows the characteristics of a fundamental resonance whereas 
the other maximum shows the characteristics of a subharmonic resonance. Fi­
nally turbulent spots appear and the resulting intermittency distribution was 
also measured. 

The paper by Bake, Kachanov & Fernholz (Technical University of Berlin) 
describes experiments for the subsequent instabilities in the Blasius boundary 



R.A. W.M. Henkes 7 

layer. Controlled perturbations, consisting of 2D waves or oblique waves, are 
introduced with a new technique, utilizing loud-speaker pulses. In earlier exper­
iments the occurrence of spikes was only found in the K-regime (fundamental 
regime) of breakdown (with the aligned pattern of A structures), but the present 
experiments also reveal the spikes in subharmonic regime of breakdown (with 
the staggered pattern of A structures); this explains the apparently conflicting 
title of the paper subharmonie K -regime of breakdown. 

Baumann & Nitsche (Technical University of Berlin) have developed an ex­
perimental device to test the possibility of active control of TS waves in the 
boundary layer of an airfoil. 2D instabilities are detected by a surface hot-film 
sensor, after which an anti-wave is introduced through a downstream positioned 
actuator, that consists of a suctionjblowing slot. The system was found to work 
well for wave cancellation in the boundary layer along a NACA 0012 airfoil. 
Whether the concept of active con trol also works for 3D or nonlinear instabili­
ties remains a challenging topic for future research. 

The invited paper by Rist gives an overview of the work on Direct Numer­
ical Simulations for transitional boundary layers as performed in the group at 
the University of Stuttgart, Germany. DNS are presented for spatially evolving 
boundary layers with zero and adverse streamwise pressure gradient, undergo­
ing a K-type transition. The considered adverse pressure gradient cases are 
the Falkner-Skan base flow with Hartree parameter (3H = -0.18 and the flow 
along the NACA 642-A-215 airfoil with suction. The computed breakdown for 
the zero pressure gradient case closely resem bles Kachanov's experiments. The 
breakdown of the (3H = -0.18 case shows roughly the same characteristics as 
the breakdown of the Blasius flow, but also some differences are reported. The 
integral boundary layer parameters for the airfoil also ag ree with Van Ingen's 
experiments. Future DNS in the Stuttgart group will concern flow control, re­
ceptivity, and the late-stage structures of transition. 

The last paper of this session is due to Gushchin (Institute for Computer 
Aided Design, Moscow), and is devoted to DNS for unsteady structures in the 
near wake of a circular cylinder. This topic is a bit on the side of the main focus 
of the colloquium. The numerical results were obtained on somewhat coarse 
grids, but accurate DNS for separating flows, including transitional separation 
bubbles in boundary layers and unsteady features in wakes of streamlined or 
bluff bodies, seem to be feasible in the near future. 

Session 2: Cross-flow instabilities 

The cross-flow instability can occur in the three-dimensional boundary layer that 
develops along a wing with nonzero sweep angle A. On the leading edge of the 
wing an inviscid streamline can be identified which marks the distinction bet ween 
fluid that will follow the su ct ion side of the wing and fluid that will follow the 
pressure si de of the wing: this is the so-called attachment line. For the two­
dimensional flow along unswept wings (A = 0) the attachment line also contains 
the stagnant points (that is all three velocity components are zero at this line), 
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but for swept wings a non zero velocity component along the attachment line 
remains. Due to the resulting non zero spanwise pressure gradient, the inviscid 
streamline (which describes the flow outside the boundary layer) coming from 
the leading edge will be bent inwards to the wing root (for A > 0), and outwards 
when reaching the trailing edge. As the streamwise velocity, and hence the 
momentum, is smaller in si de the boundary layer than at the outer edge, the effect 
of the spanwise pressure gradient is largest inside the boundary layer causing a 
cross flow, w hich is directed towards the wing root at the leading edge and 
towards the wing tip at the trailing edge. 

The cross flow profile has zero velocity at the wall and at the outer edge, 
and reaches a maximum inside the boundary layer. As aresult , the cross flow 
profile always has a point of inflection which is known to give rise to inviscid 
(Kelvin-Helmholtz-like) instabilities. The typical maximum cross flow is only a 
few percent of the oncoming velocity (Gregory et al., 1955). 

Different groups have performed experiments for cross-flow instabilities. Poll 
(1985) has measured the flow along a swept cylinder (with A varied bet ween 
55° and 71°), which gives stationary co-rotating vortices , or so-called cross-flow 
vortices, which are practically aligned with the inviscid streamwise direction. 
Saric c.s. at Arizona State University (see e.g. Dagenhart et al., 1989) also 
found such stationary cross-flow vortices in experiments for a swept wing with 
A = 45°. M üller & Bippes (1988) found, besides stationary vortices, also trav­
elling waves in the flow along a 45° swept flat plate (with a displacement body 
above it to generate a negative streamwise pressure gradient). It seems that, 
dep en ding on the external disturbance level, both stationary vortices and trav­
elling waves appear as the primary cross-flow instability (Saric, 1994). If the 
free-stream turbulence level is very low, the receptivity mechanism is by sur­
face inhomogeneities and small roughness, which gives stationary vortices. If the 
free-stream level is somewhat larger, travelling waves are generated. 

Most stability computations for the swept wing have concentrated on the 
region close to the blunt leading edge. Close to the leading edge the configuration 
can be replaced by a flat plate that is perpendicular to the oncoming flow if A = 0, 
and which is swept for nonzero A. Similarity solutions of the three-dimensional 
boundary-layer equations are described by the Falkner-Skan-Cooke equations. 
One of the similarity solutions holds for the here considered yawed plate, giving 
the so-called (swept) Hiemenz flow. 

The velocity at the outer edge of the boundary layer close to the attachment 
line has two components: U = ~oocosA in the x direction, which is along the 
surface, but perpendicular to the attachment line, and W = ~oosinA in z direc­
tion, which is along the attachment line (here ~oo is the undisturbed velocity ). 
Close to the leading edge the potential solution gives 

U = C·x, (1) 

where C· is a constant that depends on the configuration; for example for the 
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potential flow along a cylinder it follows that 

C* = 2q,oo cosA, 
r 

9 

(2) 

with r being the cylinder radius. U sing the Hiemenz base flow, it can be shown 
that the stability problem close to the blunt leading edge is covered by two 
Reynolds numbers: 

R = UI , 
v 

and 
- WI 
R=-, 

v 
(3) 

with I = IJ; being a typical boundary-Iayer thickness. R is fixed for a given 

flow, but R depends on the local x coordinate according to 

R = xJ?;. (4) 

Malik et al. (1994) have computed the stability of the swept Hiemenz flow, 
using different approaches, including the parallel, linear analysis, linear and non­
linear PSE, and linearized Navier-Stokes equations. For some selected R values, 
the critical x position (i.e. Rcr) was determined for the onset of the cross-flow 
instability. All considered approaches give more or less the same Rcr and growth 
rates. Inclusion of non-parallel effects is found to slightly destabilize the flow. 
Travelling disturbances are amplified more than stationary disturbanees. 

The first paper in this session was delivered by the invited speaker Sarie (Ari­
zona State University, USA). Hot-wire measurements, performed in his wind tun­
nel, are described for the cross-flow instability developing on a 45° swept airfoil. 
Uniform stationary cross-flow vortiees are generated on an NLF(2)-0415 airfoil 
through arrays of 6 /-Lm roughness elements near the leading edge. The experi­
ments are in very good agreement with nonlinear PSE eomputations. Without 
the array of roughness elements, it was found that the natural surface roughness, 
though polished up to 0.25 /-Lm, was sufficient to generate nonuniform cross-flow 
vortices. 

Lerche & Bippes (DLR, Göttingen, Germany) present an experimental hot­
wire study for cross-flow instabilities on a 45° swept flat plate with imposed pres­
sure gradient. In addition to Saric's roughness elements, also unsteady oblique 
perturbations were introduced by a new disturbanee generator, consisting of an 
array of 40 membranes, flush mounted parallel to the leading edge, and driven by 
loud speakers connected via tubes. In this way the interaction between station­
ary and travelling cross-flow modes can be measured. The characteristics of the 
travelling waves agree with predictions from local linear stability theory. The 
nonlinear interaetion of stationary and travelling modes ean lead to the high­
frequency secondary instability, as was also found in the experiments of Kohama 
et al. (1991) . 

The DNS as presented by Wintergerste & Kleiser (Swiss Federal Institute 
of Technology, Zürich) are adapted to the swept-wing experiment of Lerche & 
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Bippes. The local base flow is assumed to be parallel and is described by a 
Falkner-Skan-Cooke similarity profile. The transition and breakdown to turbu­
lence are simulated by the temporal approach using Fourier modes parallel to 
the wall, and Chebyshev modes normal to the wall; the spatial discretization 
applies a total of 240 X 192 X 160 grid points. The introduced initial disturbance 
consists of a stationary cross flow mode and a tra velling 3D wave. The modes 
grow exponentially in time as predicted by linear theory. Once they saturate 
new 3D vortices emerge which initiate the full breakdown to turbulence. 

Atkin & Poll (DRA and Cranfield University, UK) have applied the en tran­
sition prediction method to the swept cylinder with cross-flow instabilities, for 
which experiments were obtained by Poll (1985). The envelope integration strat­
egy is used in the en approach to account for the three-dimensionality, which gives 
a constant n value of about 15 at the position of transition introduced by the 
unsteady cross flow vortices. 

The last paper in this session is presented by Chapman, Glauser, Reibert, and 
Saric (Clarkson University and Arizona State University, USA) and applies the 
Proper Orthogonal Decomposition to detect wave structures in the experimental 
data for a 45° swept wing. Stationary cross flow vortices are introduced with 
an array of roughness elements, as described in the invited paper by Saric. The 
data were obtained with surface-mounted multi-element hot films, which were 
positioned both in streamwise and spanwise direction. Furthermore two-point 
correlations were obtained with cross-wire anemometry. The POD analysis shows 
that 98% of the total energy is contained in the first three spanwise modes, 
whereas 69% is contained in the first three streamwise modes. 

Session 3: Attachment-line instabilities 

Depending on the value of the Reynolds number R, which does not depend on 
x (see equation (3)), the boundary layer at swept wings can become directly 
unstable at the attachment line. At the attachment line there is no cross flow 
but only a streamwise velocity profile in the direction of the attachment line. 
Therefore the first instability is a viscous, streamwise instability giving Tollmien­
Schlichting waves which travel along the attachment line. 

Hall et al. (1984) have solved the linear stability problem for the attach­
ment line. The swept-Hiemenz flow is used as the base flow, which is not only 
an exact solution of the similarity equations, but also of the steady N avier­
Stokes equations. To ex amine the stability, Hall et al. have introduced so-called 
Görtler-Hämmerlin modes, which are exact solutions of the linearized Navier­
Stokes equations. In contrast to the normal modes, used to derive the Orr­
Sommerfeld equation, the Görtler-Hämmerlin modes also account for non parallel 
effects. The nonparallel approach gives Rcr = 583, whereas the parallel approach 
using the Orr-Sommerfeld equation gives a significantly larger value Rcr = 662. 
Hence non parallel effects destabilize the flow. 

Another instability mechanism that can occur along the attachment (or: the 
leading edge) is the so-called leading-edge contamination. This term is used 
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to describe that the turbulence which is formed in the boundary layer along 
the fuselage of aircraft can easily be convected along the leading edge, causing 
the direct transition of the whole boundary layer on the wing. It turns out 
that the contamination can occur at Reynolds numbers above about R = 250, 
which is more than twice smaller than the linear stability limit R = 583. The 
occurrence ofthis so-called subcriticalinstability mechanism, emphasizes that the 
linear theory only holds for very small disturbances. Leading-edge contamination 
might be interpreted as a type of by-pass transition, in which disturbances are 
so large that linear instability mechanisms are by-passed. 

If one wants to design a wing with (partly) laminar flow, first the occurrence 
of leading edge-contamination has to be prevented. Gaster (1965) has developed 
a special device, a so-called Caster bump, that can be used for that purpose: a 
small bump is placed on the leading edge close to the wing root, which stops 
the prapagation of the turbulence along the attachment line, and creates a new 
laminar boundary layer instead. Another solution to stop the turbulence is the 
use of boundary-Iayer suction at the leading edge. 

The session was opened by the invited lecture of Arnal (Onera, Toulouse, 
France). A typical value for R at the root of the wing of large transport aircraft 
is 800 - 1000, which means that first the leading edge contamination needs to 
be removed before systems like NLF (Natural Laminar Flow), LFC (Laminar 
Flow Control) or HLFC (Hybrid Laminar Flow Contral) can become meaningful. 
To prevent leading-edge contamination two devices were tested for a 40° and 
50° swept wing in the transonic wind tunnel of Onera: the Gaster bump and 
suction along the attachment line. Without such means contamination occurs at 
R = 250; the Gaster bump gives R = 320; and the maximum obtainable suction 
rate further delays the contamination to R = 550. If leading-edge contamination 
is avoided, the attachment-line is the next problem that needs to be considered. 
Arnal's experiments show that even weak suction is sufficient to suppress the 
attachment-line instability. en and nonlinear PSE computations were performed 
also for such instabilities. The en method is able to predict the trends, but a 
unique n value does not seem to exist. The nonlinear PSE poses the new problem 
of finding proper initial conditions. 

Poll, Danks & Yardley (Cranfield University and University of Manchester, 
UK) present experiments for the attachment-line flow along a 60° swept cylinder. 
Hot-wire measurements were performed for different blowing and suction rates. 
Blowing reduces the Reynolds number at transition onset by a factor 3, whereas 
a minimum suction seems to exist above which the turbulent attachment-line 
flow is always re-Iaminarized. 

Theofilis (DLR, Göttingen) closes the session with a presentation on the 
computation of the secondary instability of the attachment-line instability. For 
incompressible flow this is done by applying linear stability theory, utilizing Flo­
quet secondary theory, to the Görtler-Hämmerlin primary modes of the Hiemenz 
stagnation flow at the attachment-line region. For compressible flow the sec­
ondary stability analysis becomes much more complex as something similar to 
the GH modes does not seem to exist. Therefore a method using DNS is being 
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developed for the compressible attachment-line flow. As a first step, the method 
has been validated for inflection-point instabilities in the compressible free shear 
layer. 

Session 4: Applied transition analysis 

A well-known method to predict the streamwise growth of disturbances and the 
resulting transition position is the en method, which was developed indepen­
dently by Smith & Gamberoni (1956) and by Van Ingen (1956). The en method 
can be summarized as follows. First the undisturbed laminar flow is computed 
by solving, for instance, the boundary-Iayer equations. For the computed veloc­
ity profiles at different streamwise positions the corresponding stability diagrams 
are determined. If the boundary layer is similar , only one diagram is needed. In 
the diagram a curve for a constant physical frequency is followed. For increasing 
x position, a typical frequency is first in the stabIe region, it crosses the neutral 
curve and enters the unstable region, and finally it crosses the neutral curve again 
and returns to the stabIe region. From this trajectory the amplification factor 
for the considered frequency can be determined as (J = InA/ Ao. For each fre­
quency the amplitude development can be determined and collected in a (J - Rex 
diagram. In that diagram one can determine for each Rex station the maximum 
amplification ratio, denoted by n, that occurs for all possible frequencies. In this 
waya n-envelope is constructed as a function of Rex. 

By comparison with experiments for 2D boundary layers it was found that 
transition occurs when n has reached a more or less uni vers al value, being about 
9. This method is called the en method, or sometimes also the e9 method. It is 
based on the finding that independen t on the details of the boundary layer, and 
independent on the precise amplitude level Ao at the neutral curve, transition 
takes place when the amplitude ratio A/ Ao exceeds a critical value. Through 
the years experiments have shown that n is not really a universal constant, but 
depends on, for instance, the free-stream turbulence level of the wind tunnel. 

Linear instabilities such as Tollmien-Schlichting waves grow on a relatively 
slow viscous time scale, whereas secondary and subsequent instabilities growon a 
much faster convective time scale. Hence a relatively large region oflinear growth 
is followed by a short region of nonlinear growth quickly leading to transition. 
This seems to be the main re as on why the en method, which is based on linear 
theory, can be adequate to predict transition onset. Disadvantages of the method 
are that it does not account for nonlinear effects, it neglects non-parallel effects, 
and its extension to 3D boundary layers and instabilities requires a choice on the 
proper integration strategy in the wave plane. Receptivity is also only indirectly 
included by properly tuning the n value. Despite this, the en method has proven 
to be a very practical tooI for engineering transition predictions. 

A very efficient stability formulation that has the potentials to overcome the 
shortcomings of the en method been proposed by Herbert & Bertolotti (1987), 
and is named the Parabolized Stability Equations (PSE). Disturbance modes for 
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the base flow are introduced with a stream function of the form 

7f;(x,y,t) = <p(x,y) exp (i(ax - (3t)). (5) 

In contrast to the normal-mode formulation, used to derive the Orr-Sommerfeld 
equation, now the amplitude function <p does not only dep end on the y coordi­
nate, but also on the x coordinate. Furthermore the wave number a can be a 
function of x as weil. It is assumed that the streamwise dep enden ce of <p and 
a is only weak, which justifies the neglect of the terms <Pxx, axx , and ax<px. 
Substitution of equation (5) into the Navier-Stokes equations and neglecting the 
mentioned terms gives the Parabolized Stability Equations. 

If the PSE are linearized the linear PSE method is obtained, which is sim­
ilar to the Orr-Sommerfeld equation in case the flow is assumed to be parallel. 
Both linear and nonlinear PSE have become popular approaches. Bertolotti et 
al. (1992) have applied the linear and nonlinear PSE to the stability of the Bla­
sius boundary layer. The linear PSE gives only a very small modification of the 
neural curve resulting from the Orr-Sommerfeld equation. This shows that non­
parallel effects cannot explain the difference bet ween theory and experiments. 
Nonlinear PSE gives only a small modification also. During the discussions at 
the colloquium Alfredsson has shown new experiments as obtained in his group 
at KTH Stockholm. These new data are in very good agreement with the theory. 
Great care was taken in the experiment al set-up to obtain a very good zero zero 
streamwise pressure gradient. Therefore it seems probable that a smail nonzero 
pressure gradient was present at the leading edge of the plate used in the classical 
experiments by Schubauer and Skramstad (1947). 

Van Ingen opened the session with some remarks on the 40 years history of 
the en method. Despite the physicallimitations of the method, the en approach 
is still very popular in airfoil design. This is partly due to the complexity of 
the full transition process, which makes it difficult to come with a bet ter design 
method, containing more physics. The success is also due to the fact that a 
large part of the transition is dominated by linear physics. The en method has 
shown to be useful to predict the distance to transition in 2D incompressible 
flows. Apparently the linear stability theory has also enough physics to account 
for the effects of pressure gradient, suction and heating or cooling. 

Stock (Dornier Luftfahrt, Germany) has presented an invited paper on the 
application of the en method in industrial aircraft design. A data base has been 
set up in which the linear stability characteristics are stored for a series of self­
similar velocity and temperature profiles. For real (non-similar) boundary layers 
the stability limits according to the data-base method agrees very weIl with the 
limits computed by numerically solving the stability problem. Of course the data 
base method is much faster, which makes it suitable for design purposes. 

The invited paper by Cebeci (McDonnell Douglas Aerospace, and Califor­
nia State U niversity) reviews the envelope, or 'Zarf' , strategy in applying the 
en method to 3D boundary layers. The choice for the strategy, i.e. the cho­
sen relation between the two spatial wave numbers and the frequency, has a 
large influence on the performance of the en method. The envelope method 
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was checked to give good predictions for the critical frequencies and transition 
location for different experiment al test cases , including the ONERA-D airfoil 
(at different sweep and incidence angles), a 15° swept Aérospatiale wing, and a 
prolate spheroid at 10° incidence angle. 

Herbert (DynaFlow Inc. and Ohio State University) was invited to give the 
last presentation of this session. He gave a comprehensive review on the status 
of applied transition analysis , that is the en method and the linear or nonlinear 
PSE approach. Industries want methods that are fast and can be used by their 
engineers without requiring much knowledge on transition. Different existing 
codes utilizing the en method with the same 3D strategy we re found to lead 
to different transition predictions. Possible causes for these differences are dis­
cussed, ane af them being insufficiently accurate numerics for the base flow. The 
en method is alocal stability analysis, implying that some strategy is needed to 
recannect the local solutions to provide amplitude growth curves. Only for 2D 
and swept-wing boundary layers a rigorous proof on the correct strategy exists, 
which is violated by, for example, the envelope method. Different strategies lead 
to different n factors. For fully 3D boundary layers no theory for the best strat­
egy is available, and a single n value for such cases does not seem to exist. The 
PSE method is able to track the evolution of disturbances without any heuris­
tic strategy, but needs a considerable higher computational effart than the en 
method. Nonlinear PSE needs proper initial and boundary conditions; at least 
the most dangerous ingredients of the disturbance environment and the receptiv­
ity mechanism should be included, such as the free-stream turbulence level and 
the average surface roughness. Most parameters for the input model are derived 
from primary and secondary stability characteristics, and receptivity coefficients 
are derived from experiments . The nonlinear PSE method was applied to var­
ious flows were experiment al data are available, such as the turbine blade with 
0.5 to 2.4% free-stream turbulence level and the swept wing, using the ATTAS 
flight-test database. It is remarkable that the input model for the swept wing 
gives transition at alocation that corresponds with an n factor of about 9 in 
the en method. More understanding of receptivity and detailed documentation 
of the actual disturbance environment is needed for further improvement of the 
transition analysis for engineering design. 

Session 5: Transition modelling 

Quite soon af ter secondary and tertiary instabilities have entered the flow, the 
first so-called turbulent spots appear. These spots are also referred to as Emmons 
spots , af ter Emmons (1951), who first observed them in a boundary layer of 
water. 

The first appearance of turbulent spots in transitional boundary layer occurs 
quite randomly in space and time. Further downstream the spots overlap, and 
interact, and more and more spots are being generated. As a measure of the 
actual turbulent-spot activity at a certain location the level of intermittency can 
be used. The intermittency I is defined as the fraction of time that the flow 
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is turbulent: hence, = 0 just before transition when turbulent spots are still 
absent, and , = 1 when the transition is complete, and the flow has become fully 
turbulent. The intermittency first reaches the value of one close to the x position 
where the wall-shear stress reaches a local maximum. This marks the end of the 
transition regime. The length of the transition regime might be defined as the 
x distance bet ween the positions where the wall-shear stress obtains its local 
maximum and minimum, respectively. 

The intermittency is in fact a function of both x and y. Approaching the 
outer-edge of the boundary layer, , decays to zero, whereas close to the wall the 
maximum intermittency is found. N arasimha (see Dhawan & N arasimha, 1958) 
detected, from experiments for a constant pressure boundary layer, a more or 
less universal streamwise distribution of the intermittency close to the wall in 
the transitional regime: 

(6) 

where À is the distance bet ween the x positions where, = 0.75 and 0.25, respec­
tively. 

It is clear that transition does not occur in a single point, but rat her over a 
certain length. Hence in prediction methods for transition a model for the tran­
sition length is needed. The transition length is of particular importance for the 
prediction of the flow on gas-turbine blades. Here the transition is due to free­
stream turbulence, induced by the turbulent wake of the previous row of blades. 
The operational conditions of the blades (Reynolds number and streamwise pres­
sure gradients) of the blades are such that extensive regions of transitional flow 
can be found. For the transition on aircraft wings the overall Reynolds number 
is so high that the transition length is only a very small portion of the chord; 
here the representation of the transition length by a transition point might be 
sufficiently accurate. In particular the transition length is short when transition 
occurs in a region with adverse pressure gradients. 

For instance, the en method can be used for the prediction of the position 
of transition onset Xtr' U sing experiment al data, Van Ingen (1977) has also 
derived a simple relation, based on the en approach to denote the end of the 
transition regime. For free-stream induced by-pass transition, Abu-Ghannam 
& Shaw (1980) have used experiment al data for boundary layers with different 
streamwise pressure gradients to derive empirical relations for the start and end 
of transition. 

More sophisticated models for the transition region try to connect the laminar 
flow with the fully turbulent flow (as described by a turbulence model) by using 
some model for the streamwise intermittency function ,. Different types of 
models can be used in the turbulent regime, such as algebraic models, two­
equation models, and Differential Stress Models. A simple method to connect 
the laminar velocity profile (denoted by UI) and the turbulent velocity profile 
(denoted by ud is taking a linear combination with the help of the intermittency 
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function 

U=(1-,)Ul+,Ut. (7) 

N arasimha's relation (6) can be applied for the intermittency. 
Another approach of modelling transition is by simply ignoring the direct 

effect of intermittency, and applying turbulence modeis, originally developed for 
fully turbulent flow, in the laminar and transitional regimes as well. No stability 
analysis is performed. Hence the turbulence model is used to predict both the 
instability position and the start and end of the transition regime. This ap­
proach can onlybe expected to work, if it works at all, in cases where transition 
is introduced through a sufficient amount of turbulence at the outer edge of the 
boundary layer (say for free-stream turbulence levels above 1 % or so). In those 
cases it might work if proper so-called low-Reynolds-number terms are included 
in the turbulence model. Those terms were originally added in the description of 
fully turbulent boundary layers to account for the damping of turbulence when 
a fixed wall is approached. With respect to the turbulence activity, the subse­
quent regions in normal direction of a fully turbulent boundary layer (namely 
the viscous su blayer, the buffer layer, and the inertial su blayer) show an analogy 
with the subsequent streamwise regions of a boundary layer (namely, the lami­
nar state, transitional state, and fully turbulent state, respectively). Based on 
this analogy, the low-Reynolds-number terms developed for near-wall turbulence, 
might also predict streamwise transition. 

There is no doubt that DNS and LES (Large Eddy Simulations) can give 
much better predictions of the transition regime than the above mentioned mod­
els and empirical correlations. For practical applications in engineering design, 
however, such methods are much too costly, and there is still astrong need to 
further improve the simpier models. 

The invited paper by Spalart (Boeing Commercial Aircraft Group, USA) fo­
cusses on industrial viscous flows with transition. Boeing wants a single model 
that can compute a variety of viscous flows. High-lift configurations and LFC re­
quire detailed control of turbulence in the computational solution. Calculations 
are performed with the Reynolds-Averaged Navier-Stokes equations (RANS) 
with the one-equation Spalart-Allmaras model for the turbulence. It is investi­
gated how the transit ion from a laminar to a turbulent region can be established. 
Zonal methods are avoided, as they become unmanageable in complex high-lift 
systems, especially when computed with multi-block and unstructured-grid nu­
merics. Two transition methods are considered: a method with and without 
triggering strip respectively. At the strip some turbulence is introduced which 
directly triggers the transition to occur over a length of about 8 boundary-layer 
thicknesses, which is considerably shorter than found in N arasimha's experi­
ments. However, for wing applications the transition length is of less importance 
and considered as higher-order effect; it is reminded that perfection is not ex­
pected from the turbulence model. Examples of transition with and without 
triggering are given for different cases, such as for the leading edge flow over a 
flap (where the upper boundary layer is naturally triggered to turbulence by dif­
fusion of turbulence from the cove below the main airfoil trailing edge) and the 
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flow behind a cylinder (where the transition and turbulence are self-sustained 
through the unstable free shear layers and the turbulence back transport in the 
recirculation zone). Future CFD challenges are the effects of turbulence genera­
tors and relaminarization in favourable pressure gradient. 

The invited paper by Hanjalié (Delft University of Technology, The Nether­
lands) explores how single-point closure models for turbulence can be used to 
predict certain types of transition, such as by-pass transition introduced in the 
boundary layer by a relatively high free-stream turbulence level. Such mod­
els are not expected to be able to predict the natural transition along aircraft 
wings, which encounter only extremely low free stream turbulence levels, but 
they might be suitable for the transition prediction along, for example, turbine 
blades. A new Differential-Stress Model (second-moment closure), which in­
cludes low-Reynolds-number effects and near-wall effects, is used to demonstrate 
the capabilities for different test cases. Concerning the transition location, the 
model closely reproduces the experiment for by-pass transition in the flat-plate 
boundary layer with 6% free-stream turbulence level, but agreement for the 3% 
test case can only be found af ter modifying the initial level of the dissipation 
rate. The prediction for the transition and relaminarization for a boundary layer 
with a streamwise edge velo city oscillating around a zero mean is in very good 
agreement with experiments and Direct Numerical Simulations. 

The invited paper by Narasimha (Indian Institute of Science, Bangalore) dis­
cusses recent developments in the linear combination model. There is a remark­
able difference between workers studying the pre-onset of transition (instability 
regime) and those studying the finite-Iength transition region itself. Concerning 
the prediction of the position of transition onset, N arasimha c.s. has shown 
with asymptotic analysis that non-parallel effects can be neglected in the linear 
stability problem, unless the adverse pressure gradient is strong. Therefore it is 
sufficient to base the en method on the Orr-Sommerfeld equation. The linear 
combination model of Dey and Narasimha has been extended for application in 
cases with non zero pressure gradients and compressibility by taking new exper­
imental data on the spot shape and formation rate into account. 

An overview of the efforts with RANS-based statistical turbulence models 
applied to by-pass transition (with free-stream turbulence levels up to 10%) has 
been given by Savill (Cambridge University, UK). A comparison study is made 
by different groups, all collaborating within the European organization ERCOF­
TAC. A variety of models are considered, such as integràl methods, two-equation 
models (also with extra equation for the intermittency), and Differential Stress 
Models. Comparison is made with experiments, DNS and LES. A few mod­
els (including the low-Reynolds-number k - E model of Launder & Sharma) are 
shown to be able to accurately predict the transition onset, but the length of the 
transition region is underpredicted. Such models do not contain a wall-distance 
parameter (such as y+) to account for the near-wall turbulence damping, but 
only a turbulence-based Reynolds number. Results are very much dependent 
on the initial profiles for the turbulence equations in the laminar regime. In 
particular there is a st rong effect of the prescribed turbulent length scale. Fur-
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ther improvement of the turbulenee models is expeeted from combining them 
with a separate stability method (such at PSE) to predict the transition onset. 
The NASA Transition Project has shown good PSE predictions for transition 
at non zero free-stream turbulence levels. Onee the transition onset is know, the 
turbulence model can used to represent the transition region. 

This session was ended by the paper of Solomon, Walker & Gostelow (Univer­
sity of Tasmania) on a new model for the transition length in boundary layers 
with moderate to st rong favourable or adverse pressure gradient and various 
free-stream turbulenee levels. An experiment al correlation is given for the prop­
agation rate, spreading rate and spreading angle of turbulent spots, which in 
turn appear in the relation for the intermittency, that fixes the transition length. 

Session 6: Asymptotic analysis 

As the Reynolds number in aeronautical applications is usually very large (the 
typical overall Reynolds number is in the range 106 -108 ) analytical solutions of 
the flow equations might be sought in the form of asymptotic expansions using 
f = R-l as the small expansion parameter. In this way Prandtl derived that the 
boundary-layer equations are a first asymptotic approximation of the boundary 
layer close to the wall. The asymptotic theory has also proven to be useful 
in analysing the stability and transition of the boundary layers, though the 
asymptotic analysis becomes gradually more complicated as multi-deck layers 
have to be distinguished and matched. This is by no way an easy task and 
requires thorough mathematical analysis. 

An of ten heard criticism on some of the results obtained with asymptotic 
theory is that their range of applieability is at Reynolds numbers far above what 
is met in applications. However, asymptotic transition methods are not intended 
to replace the new computational approaches sueh as PSE and DNS methods. 
The strength of asymptotic analysis is that it can isolate the underlying physical 
mechanisms of transition. In this way asymptotic theory can direct the PSE and 
DNS with respect to the scales of the problem (and thus the required numerical 
resolution) as weil as the dominant parameters of the problem. Furthermore, 
parameter variation (such as frequencies and wavelengths ) and trend studies can 
easily be carried out with the analytical methods, whereas they are computa­
tionally too demanding for PSE and DNS approaches. 

F.T. Smith (University College London) was invited to give the first present a­
tion in this session. He has given an overview on recent work on the combination 
of (asymptotic) theory and its computational solutions, speeifically for the last 
stage of transitions in incompressible boundary layers, characterized by spikes 
and nonlinear spots. Nonlinear TS waves or vortex-wave interactions can be 
described by 2D or 3D interaeting boundary-layer equations (IBL), which have 
links with the PSE. The IBL ean lead to a singularity within a finite time, where 
both the pressure gradient and the skin friction beeome unbounded loeally. This 
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breakup is associated with the formation of short scales owing to sublayer erup­
tion and shows up as the first spike in transition experiments. The repeated 
break-up process is probably connected with intermittency. The integral crite­
rion that defines the breakdown in the IBL also applies to 3D transition over 
surface roughness elements. A comparison of the analytical breakdown with DNS 
results was made. The formation and propagation of spots was also analysed . 
The spot dynamics can be split up in an inviscid regime and a viscous-inviscid 
regime. The former regime, the Euler stage, has been solved as a 3D initial-value 
problem for a localized input disturbance. The latter regime can be described by 
linking 3D boundary-Iayer equations to unsteady Euler equations. Good results 
with the spot description are obtained; for example the analysis gives a spot 
spreading angle of 11 0, which is close to the experiment al value. 

Duck (U niversity of Manchester, UK) presented solutions of the inviscid 
triple-deck equations. Triple deck theory can describe the lower branch of the 
neutral stability curve of the Blasius boundary layer, and it appears also when 
describing the earlier stages of transition. For the high-frequency problem the 
viscous triple deck equations reduce to the inviscid triple deck equations. The 
lat ter equations are numerically solved with Fourier modes in spatial direction 
and a finite-difference time integration. For the 2D problem there was no ev­
idence for any solution breakdown, but the 3D solution indicates a finite-time 
breakdown. 

Kazakov (Central Aero-Hydrodynamic Institute Zhukovsky) has used a finite­
difference numerical method to solve the unsteady, two-dimensional, viscous 
triple-deck equations. For increasing time wave structures with multiple sep­
aration regions appear. However, the finite- time breakdown as revealed in the 
studies by F.T. Smith c.s. is not found. That would probably need a further 
increase of the spatial and temporal numerical resolution. 

Session 7: Disturbance sourees and receptivity 

Experiments showed that the n factor in the en method was actually not a 
universal constant for all experimental configurations, but it is dependent on the 
external disturbance level. Morkovin (1969) has denoted the process in which 
disturbances enter the boundary layer as receptivity. 

Different receptivity sources are summarized below: 

Free-stream turbulence 
Outside the boundary layer the amount of turbulence in the free-steam flow can 
be characterized by its kinetic energy and its length scale. The turbulent kinetic 
energy of the free-stream turbulence can be referred to as the turbulence level, 
defined as 

(8) 
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Here a prime denotes a fluctuation and an overbar denotes a time-averaged value. 
Although the turbulence also depends on its length scale (or time scale), its effect 
on receptivity has not been studied very much so far. For increasing turbulence 
levels transition is enhanced, implying a lower critical Reynolds nu mb er and 
a lower n factor. Van Ingen (1977) has given the following empirical relation 
bet ween the n factor for the onset of transition and the free-stream turbulence 
level Tu: 

n = 2.13 - 6.18 1010g Tu, (9) 

where Tu must be given in percent. For in-flight aircraft the free-stream tur­
bulence level is very low, say Tu « 0.01%. Therefore good wind tunnels for 
aircraft aerodynamics are designed such that the free-stream turbulence level is 
low, typically 0.1% or lower, which corresponds, according to equation (9) to n 
factors above 8. Therefore the n factor is only a universal constant when the 
transition experiments for different configurations are performed in the same 
wind tunnel. 

Equation (9) no longer holds for very low free-stream turbulence levels, typ­
ically below 0.1% , as other sources dominate the receptivity process. For higher 
free-stream turbulence levels linear , exponentially growing instability mecha­
nisms, such as Tollmien-Schlichting waves, are by-passed, and Morkovin has 
denoted this type of transition as by-pass transition. 

Sound 
Pressure waves are another disturbance source. For example, the n factor for 
a given wind tunnel can be further increased when dampers are used to absorb 
the noise. Sound can become a dominant receptivity source if there is some 
mechanism to transfer the relatively long wave length of the sound waves into 
the short wave lengths (typically a few times the boundary-Iayer thickness) of 
unstable Tollmien-Schlichting waves that initiate the transition. Such a mech­
anism may be provided by leading-edge curvature, surface inhomogeneities or 
waviness, discontinuity in the surface curvature, or strong streamwise pressure 
gradients. 

Due to the relatively large wave length of the sound waves, in receptivity 
computations the wave length can be set to infinity. Hence its effect can be 
analysed by imposing the following time-dependent streamwise velocity at the 
outer edge of the boundary layer 

u' = f sin(27r ft). (10) 

for all x (where f denotes the frequency and t den ot es time). Here f is the 
(small) amplitude level of the sound wave. 

Wall roughness 
Only for very smooth walls, the transition can be determined by linear stability 
theory. Wall roughness may lead to immediate transition. For aerofoils in wind 
tunnels this may be established by gluing sandpaper or tape to the surface. In 
flight, insects caught by the wing might introduce sufficient wall roughness to 
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give an early transition. This actually is one of the reasons why it is difficult to 
maintain a laminar flow over large part of the wing during flight. 

The theory of receptivity due to wall roughness addresses how the shape 
and distribution of very small elements introduces disturbances in the flow. The 
interaction between wall roughness and sound waves can be a relevant receptivity 
mechanism also. 

The invited lecture of Alfredsson (KTH, Stockholm) describes how stream­
wise-oriented streaky structures , introduced by disturbances coming from the 
free stream or from the wall, can be the first stage oftransition. Small-amplitude 
disturbances introduce wave packets, large-amplitude disturbances give turbu­
lent spots, whereas intermediate disturbances where found to generate long 
streaky structures. The lat ter type is found in experiments for by-pass tran­
sition due to moderate free-stream turbulence levels (where Tu is in bet ween 1 
and 10%). DNS indicate that those streaky structures are due to the algebraic 
transient growth of oblique TS waves, leading to subcritical instability and tran­
sition. The development of the streaky structure was measured by introducing 
a localized disturbance in the free stream. The disturbance penetrates into the 
boundary layer and causes a maximum perturbation in the middle of the bound­
ary layer. The amplitude of the streaky structure shows a downstream decay, 
unless a TS wave is introduced also; the nonlinear interaction leads to amplitude 
growth and secondary instability of the structure, followed by breakdown into 
turbulence. 

Kozlov & Grek (Institute of Theoretical and Applied Mechanics, Novosibirsk, 
Russia) have presented an experiment al study for the influence of riblets on 
different transitional structures. Riblets are known to reduce the wall-shear 
stress for the fully turbulent regime. Experiments in the transitional regime were 
made in a low-speed wind tunnel with streamwise-oriented V-grooved riblets in 
the flat surface. The riblets were found to suppress cross-flow vortices and Görtler 
vortices. Also the A structures in the nonlinear stage of transition were damped 
by the riblets. In contrast to this, Tollmien-Schlichting waves were amplified 
by the riblets. This seems to agree with some kinds of shark skins, which have 
riblet-like structures only at places where the boundary-Iayer will be turbulent, 
but not at places where the boundary layer is laminar or transitional. 

The paper by Laurien (Technical U niversity of Braunsweig, Germany) de­
scribes new DNS for the spatial and temporal evolution of alocal disturbance 
introduced in a compressible boundary layer at Reó = 5800 and Mach number 
0.65. Fourier modes are used in both horizontal directions and sixth-order finite 
differences are used in normal direction. When the amplitude of the initia! dis­
turbance is small, the disturbance decreases for increasing time, but for a larger 
initial amplitude the disturbance is unstable and increases in time. The devel­
opment of the growing structure (probably leading to a turbulent spot) closely 
resem bles existing DNS for incompressible flows. 

Corke & Haddad (Illinois Institute of Technology, Chicago, USA) have stud­
ied the receptivity to sound on a parabolic leading edge, by numerically sol ving 
the two-dimensional, incompressible Navier-Stokes equations. The sound waves 
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were represented by small amplitude time oscillations of the free-stream veloc­
ity. The free-stream sound forces fini te-amplitude TS waves in the leading-edge 
boundary layer. The receptivity is defined here as the ratio between the maxi­
mum amplitude of the TS wave and the amplitude of the free-stream oscillation. 
The computations show that the receptivity (coefficient) increases for decreasing 
nose radius, and becomes maximum for a sharp leading edge. 

The last paper of this session was presented by Semionov, Kosinov & Maslov 
(Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia). Hot-wire 
experiments were performed for the receptivity due to sound for a supersonic 
boundary layer along a flat plate at Mach number 2. The sound waves were 
generated by the boundary layer along another plate (plate 1) that was placed 
in parallel below the test plate (plate 2); the nose of plate 1 was somewhat 
ahead of the nose of plate 2. Sound waves at plate 1 are introduced by the TS 
waves in the transition regime as well as artificially induced pressure fluctuation 
in the surface. First the acoustic disturbance level in the plane of the test 
plate was measured (while the plate itself was removed). Second, the receptivity 
coefficients inside the boundary layer along the test plate were measured. It is 
found that only downstream propagating acoustic disturbances are received by 
the boundary layer. 

Session 8: High-speed flows 

The renewed interest in supersonic civil aircraft and in space planes, has given 
new impetus to research into stability and transition of supersonic and hypersonic 
boundary layers. Delay of transition will reduce the viscous drag and thermal 
loads. Far less is known for the transition of high speed flows, compared to low­
speed flows, as the theory is more complex and accurate experiment al data are 
more difficult to obtain. 

The linear theory for supersonic and hypersonic boundary layers was mainly 
developed by Mack (1984). A sufficient condition for the existence of an in­
viscid instability is the (generalized) inflection-point criterion that states that 

:yP ~; = 0 somewhere in the boundary layer. This shows that the compress­

ible boundary layer at zero pressure gradient can have an inviscid instability, 
whereas the incompressible counterpart is stable. Furthermore, the inviscid lin­
ear stability problem can have multiple solutions for a Mach number above about 
2.2. The first mode is also found in incompressible flow. The additional modes 
(second mode and higher) are referred to as Mack modes or acoustic modes. In 
contrast to the incompressible case, oblique waves for boundary layers at M > 1 
are less stable than 2D waves. But for the second mode, 2D waves are most 
unstable. Inclusion of the viscosity stabilizes the first mode. For M > 4 the 
second mode grows faster than the 3D first mode, and becomes the dominant 
instability mechanism. 

The transition of high-speed flows can be delayed by wall cooling or suction. 
Cooling only works if the first mode is unstable, as it has a destabilizing effect 
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on the second mode. Suction is no longer practical for hypersonic speeds, wh ere 
the air temperature has become too high for the materials that can be used in 
the suction system. 

As supersonic aircraft have wings with a st rong sweep angle, besides the above 
mentioned first and second linear modes, also cross-flow instability, attachment 
line instability, or leading edge contamination can occur. The lat ter instabilities 
can be suppressed by reduced sweep angle, applying suction, smoother surface, 
or reduced leading-edge radius. 

At the colloquium, Bertelrud & Graves (N ASA Langley and Lockheed, USA) 
presented data from flight experiments for transition at supersonic Mach number. 
The data can provide the n factor in the en method or the input disturbance 
level for the PSE method. Fight data are particularly needed for high-speed 
flows, as the disturbance level in wind tunnels is usually much too high. A 
flight experiment was performed for a flat plate with an elliptical nose, mounted 
underneath an F-15 at Mach 2. The instrumentation included pressure taps 
and surface hot films. The transition location and dominant frequencies could 
be derived from the measured unsteady signaIs. The same equipment will also 
be used in new flight experiments at hypersonic speeds (Mach 6 to 8), where 
a smooth metallic glove will be mounted on the boost of the Pegasus launch 
vehicle. 

Zanchetta & Hillier (Imperial College, London) have performed measure­
ments for the transition in the boundary layer along a cone at the hypersonic 
Mach number 9. The unsteady wall-heat transfer was measured with 65 film 
gauges, The surface temperature was also visualized with liquid crystals. The 
transition location is dependent on the Reynolds number based on the radius 
of the blunt nose Ren. For relatively low Ren the transition is characterized by 
high-frequency oscillations followed by a sudden break down into turbulence. For 
increasing Ren transition is first delayed, but above some critica! value further 
increase of the Reynolds number moves the transition back to the nose. The 
latter phenomenon is denoted as the 'reversal regime', and there the transition 
location strongly depends on the surface roughness. The transition region is 
relatively large, and has low-frequency events. 

Wendt (DLR, Göttingen, Germany) has performed hot-wire measurements 
for transition in the boundary layer along a co ne and a flat plate at Mach 5. 
Linear stability theory predicts that the high-frequency second mode induces the 
primary instability (corresponding to frequencies above 200 kH z for the present 
configurations). However, the experiments do not show this behaviour. Instead 
mainly lower frequencies are amplified; up to 50 kHz for the plate and up to 
200 kHz for the cone. Comparison with the theory shows that the measured 
frequencies correspond to oblique first-mode unstable waves. 

Kosinov, Semionov & Yermolaev (Institute for Theoretical and Applied Me­
chanics, Novosibirsk, Russia) presented a paper describing hot-wire experiments 
for transition in boundary layer at Mach 2 and3. Disturbances were intro­
duced through the surface of the plate. The experiments are focussed on the 
nonlinear transition regime. In earlier experiments at relatively low Reynolds 
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numbers only low-frequency subharmonie waves we re found. The present exper­
iments also show the appearance of high-frequency oscillations. The cause of the 
amplification of the high-frequencies in the nonlinear regime is not yet dear. 

EissIer & Bestek (University of Stuttgart, Germany) have dosed the session 
on high-speed flows with a DNS study for transition in a supersonic boundary 
layer at Mach 4.8. As experiments for high-speed flows are quite difficult, DNS 
might be a valuable alternative tooI to get insight in such flows. The 3D com­
pressible Navier-Stokes equations were solved using a 4th-order finite-difference 
scheme in streamwise and normal direction, Fourier modes in spanwise direction, 
and the 4th order explicit Runge-Kutta scheme for the time integration. DNS 
were performed for different choices of the boundary condition at the wall for the 
base flow temperature and the temperature perturbation, induding a constant, 
adiabatic, and mixed (radiation-like) condition, respectively. The latter condi­
tion seems to be most realistic. The transition strongly depends on the thermal 
boundary condition; for example, in agreement with linear stability theory, a 
lower wall temperature destabilizes second-mode waves. Further downstream, 
three-dimensional structures being characteristic for the fundamental type of 
breakdown are computed. 

Discussion on the fut ure directions of research 

The colloquium was closed with a general discussion on the future directions of 
research, chaired by Van Ingen. The main contributions to the discussion are 
reproduced below. 

Van Ingen: 
Now we have co me to the end of this colloquium, we may know what still has 
to be done in the coming years. A main question is whether we have enough 
information to design a laminar-flow wing. Do we for example agree on the 
proper integration strategy for the three-dimensional en method? 

Herbert: 
We do not have sufficiently de ar data to test any strategies. There is a need for 
non-proprietary benchmark experiments. There is currently work going on for 
these strategies at ONERA to calculate these flows with PSE. We also work on 
that too. We also work on DNS, but that is for somewhere in the future. But 
even then we do not know how to check. Perhaps lan Poll, or someone else, can 
provide us with wind tunnel experiments for 3D flow instabilities. 

Saric: 
What is a 3D problem? 

Herbert: 
Normally you have big problems on the wing in the neighbourhood of an engine; 
everything is 3D. But the industries do not give me the geometry. They have the 
data from experiments. We need a real 3D flow, with sufficient accuracy such 
that we can compare something like cross-flow vortices. 
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Saric: 
3D experiments are done at DLR. 

Herbert: 
That is not what I mean. That is a 2D geometry. I talk about a 3D geometry. 

Saric: 
First con si der Bippes' experiments and my own experiments. Thereafter we can 
go to more complicated geometries. 

Herbert: 
If we talk ab out integration strategies in a 3D boundary layer over an infinite 
wing, then it is dear. But the question is, what shall we do in an actual3D flow. 
That means a 3D boundary layer that depends on three spatial variables, not on 
two. 

Bertolotti: 
As I understand correctly, do you already have, or are you working on, the PSE 
for fully 3D mean flows? 

Herbert: 
That is right. I did not ment ion it in my lecture. 

Van Ingen: 
Do we need more experimellts? 

Poll: 
There are two issues. One in which we try to understand the physics oftransition. 
The other is that you do not necessarily need to understand the details of the 
physics to design a lamina.r-flow aircraft. The idea that one worries about the 
tiniest suction input re-supposes that somehow you have to minimize all this in 
order to get some kind of performance benefit. But it would also be good to 
design for half of what is available rat her than 99%. 

Van Ingen: 
You could also turn it around: suck double the amount of the full performance 
benefit. This is not wasting the advantage, because the suction amounts are 
rather small. Keeping some safety margin would keep you in a region were 
design would be easier. 

A lfredsson: 
Concerning the question whether we need more experiments: Maybe that is not 
really what is needed. What is needed is that the theory tries to replicate the 
experiments. Then we can make a direct comparison. Of ten I feel that the 
theory does not do that. The experiments must be taken for what they are, but 
theoreticians can more easily apply the experiment al boundary conditions. 

Van Ingen: 
Theoreticians and experimentalists should use the same format. They should 
together design experiments and computations to get the right things. 
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Herbert: 
I was in fact very pleased to see the progress of the experiments by Bippes and 
his coworkers, as well as Bill Saric and his group, and also the DNS results by 
Wintergerste and Kleiser , in spite of the fact that they have not answered all my 
questions. Still open is the question on the mechanism of breakdown for large 
stationary cross flow vortices. What is also open is the roll of unsteady cross flow 
vortices in many cases, in particular in flight experiments. There is no informa­
tion about whether they are important or not important. It is also important 
to get input for N avier-Stokes and PSE results. What is highly desirable is an 
easier relation between external influences, like free-stream turbulence, surface 
quality, vibrations, noise, to the initial disturbance levels and the disturbance 
levels in the transition region. Also open is the question what is the atmospheric 
environment. To document this in some way would be very interesting. 

Saric: 
Also for experiments it would be a lot easier if you could design your experiments 
with a good theoretical model for receptivity. So far we raised a few issues 
on the cross-flow boundary-layer problems with receptivity, such as roughness 
receptivity and its role in unsteady disturbances. In experiments it is hard to do 
with a big matrix of conditions and sort it out. If we have analytical models -
maybe Frank Smith can provide them- this would really be something that would 
guide us very strongly with the experiments. 

Bippes: 
All the experiments for cross-flow instabilities have shown that the appearance 
of high frequencies in the secondary instability is immediately followed by the 
final breakdown. I think it would be meaningful to calculate this with nonlinear 
PSE. This would be easier to do than finding the proper integration strategy for 
the en method. 

Herbert: 
I have another point: the relation to industrial applications. Are we doing 
something useful? The industry wants us to provide methods that can be used 
finally by untrained engineers. I would not know how to do that. 

Gebeci: 
I have been working in industry for about thirty years, and revealed that transi­
tion is a complicated phenomenon. We also have to realize what industry would 
like to have in the area of transition. Applications are laminar flow con trol and 
transition in high-lift systems. People are not going to ask you to document the 
wind tunnel. What industries, like Boeing and McDonnell Douglas, really need 
is the development and evaluation of an accurate and robust user-friendly design 
method. This does not mean that the user has to have any advanced degree. 
Codes must be developed, and have been developed, that can be used by an 
engineer. 
When the en method came about 40 years ago, people said it is an empirical 
correlation, the transition is maybe linear in its initial stage, but it is nonlinear 
in its later stages. But what has happened. Around 1970's when the Navy was 
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testing torpedos, they found that the only method that could predict transition 
was the en method. Now we have PSE and DNS, and a lot of experimental data, 
for example taken by Arnal. Let those who are involved with PSE methods take 
their codes and apply them and show whether these methods are better or not 
than the en method. 
My last comment is about the operating costs. People make studies on the lam­
inar flow con trol assuming that you could find a certain suction rate that will 
maintain a laminar flow. When you increase the suction rate, then there is suc­
tion drag. So from a technological point of view you can come up with a design. 
But as far as the operating conditions are concerned, there are a lot of other 
issues that must be considered. A little bit roughness, ice or insects can make a 
big difference. We must also con si der whether airlines will really buy a wing for 
an airplane with laminar flow con trol. At a meeting like this we can only talk 
about whether we have enough technology to design a laminar wing under ideal 
conditions. 

Stock: 
I am really concerned about laminar flow applications by industry. Ten years 
ago the interest in laminar flow started and there was really a boom. There 
was a collaboration between engineers from the industries, research centres, and 
universities, and the outcome was ATTAS. Now we are in a status that we have 
a separation in industry. There is a group that has to go to NLF; those working 
on regional aircraft at low Mach numbers, and with low leading edge sweep. 
The other group makes transporter type aircraft, like Boeing and Airbus, which 
fly at high Mach numbers and consequently have high sweep. They have to do 
something at the leading edge, like sucking, to get rid of the cross-flow instability. 
The regional aircraft has the problem with LFC that due to the short flight 
distance, it has to be laminar in cruise, and also in climb and descent. 
Aerodynamics of laminar flow is not the only thing. It is now really time that 
new disciplines come in and they will do, such as materials and structures. But 
there is still a next discipline entering the field: system engineering. For example, 
a suction device on the leading edge needs about 20 different chambers to avoid 
outflow, and they have to be glued to a Titanium sheet. So far no conclusive 
research was done on the fabrication of 5 /-Lm holes in such a sheet. Only recently 
people started to think about what happens to a little hole, where a vort ex can be 
created. If you oversuck, you transport transition upstream instead of preventing 
it. 
First the feasibility has to be shown that the system works. If then you can 
demonstrate that the direct operation costs are not increased above the gain in 
fuel we have a chance to come into the market. 
So far this scenario. What I heard in the sessions were remarks on what we 
can do and cannot do. Industry cannot do DNS, as we cannot wait 120 hours. 
And as far as I understood, in DNS mostly output is input; you postpone the 
transition location problem to the initialization problem. I heard that the en 
method is rat her stupid. This community has to give us something at hand that 
we can use. We have to freeze at least for 5 years the goals in order to get the 



28 Background, summary and discussion 

rest of the people accustomed to it. If we fail, the money will be reduced and 
we will really drop down to the situation in 1984. 

Atkin: 
I have been involved in transition and turbulence in both industry and research. 
There is a real danger that we get polarization. There is a lot of sense in having 
a variety of methods. Those who are defining aÏrcraft configurations need to 
know how the the skin friction and form parameters influence their drag estima­
tion. What is perhaps missing is a good dialogue, and this is true in turbulence 
modelling as well. There you have people at university solving very difficult 
problems, and people in industry who are still using simple one-equation mod­
els. We need to talk with each other, because otherwise we will not get money, 
and we are actually all out of business in a few years. It is not good enough 
to say to industry that their methods are physically inconsistent, do not use it. 
Because it is all they have, they have to use it. 

Participant: 
It seems these days that we are discussing only stability analysis, PSE, and DNS. 
Does that mean that the good, old empirical relations are thought to be hopeless 
and abandoned completely. 

Saric: 
Yes. 

Van /ngen: 
If they are good, old does not matter. One of my teachers of ten said: the real 
engineer is someone who uses corrupt data, but can still make a good product. 
Some of that is true of course. People who build and sell aircraft do not wait 
until we have solved all these problems. 

On behalf of the participants Bill Saric thanks the organizers for the very good 
colloquium. 
Van /ngen thanks the Royal Netherlands Academy of Arts and Sciences and the 
J.M. Burgers Centre for their support. Then the colloquium is closed. 
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H.H. Fernholz 

Preliminary Measurements of the Distribution 
of the Velocity of a Fluid in the Immediate 
Neighbourhood of aPlane, Smooth Surface 
by J .M. Burgers and B.G. van der Hegge Zijnen 
- Revisited and Discussed -

Abstract 

This is a brief historical excursion to revisit some hot-wire measurements in a 
flat-plate laminar-transitional-turbulent boundary layer which were performed 
before 1924. Using calculated skin-friction data, the measured mean velocity 
profiles are presented in inner-Iaw coordinates and compare weil with more recent 
measuremen ts. 

Introd uction 

When reading in the recently published "Selected papers" of J.M. Burgers (1995), 
1 was intrigued by the hot-wire measurements performed by van der Hegge Zijnen 
and Burgers in the early twenties of this century. Since the data were presented 
in tables, it was easy to process them and to plot them in inner-Iaw coordinates. 
These are the first hot-wire measurements ever taken in a boundary layer and, 
before discussing them, it seems to be appropriate to briefly set the "boundary 
layer scene" at Delft and in Europe at the time. J .M. Burgers was appointed as 
ordinary professor of "Aerodynamics Hydrodynamics and their application" at 
the Technical University of Delft at the age of 23 in 1918. His laboratory was 
functioning in the beginning of 1921 and so was an open return wind-tunnel of 
the Eiffel type with a test section of 4xO.8xO.8 m (Fig. 1). In the same year B.G. 
van der Hegge Zijnen joined Burgers' group and probably designed and built the 
hot-wire probe and the CT-anemometer and performed the measurements in the 
boundary layer (van der Hegge Zijnen, 1924). 

L. Prandtl had presented his boundary-Iayer theory to a smail scientific 
community in 1904 and his doctoral student H. Blasius had solved the equa­
tions for the 2-D incompressible laminar boundary layer with zero pressure 
gradient in 1907. An important result was the Blasius skin-friction formula 
cf = 0.664/ v' Rex. Transition from a laminar to a turbulent boundary layer was 
probably discovered by Prandtl (1914) when he investigated the drag of spheres. 
Finaily the principle of hot-wire measurements had been brought to general at­
tention by L.V. King (1914). Burgers and van der Hegge Zijnen quote earlier 
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Figure 1: The closed test section of the Eiffel-type open windtunnel at Delft (Iength in 
mm). 

measurements in a boundary layer than their own by Riabouchinsky (1914) "but 
the St. Peters burg group did not supply sufficient data for a detailed study of 
the flow in the boundary layer". So Burgers decided to investigate the problem 
in Delft and the goals were clearly stated: 

• "obtaining data of the distribution of the velocity in the boundary layer; 

• to ascertain if the upstream part of the boundary layer showed the laminar 
motion, corresponding to Blasius' formula; 

• to obtain data on the change from the laminar state of motion to the 
turbulent one; 

• to determine the gradient (&uI {}y )y=o". 

Where and how did they perform their measurements? The test plate was 
made of polished glass with a leading edge formed by two circular arcs (0.75 m 
radius of curvature). The plate did not span the tunnel width (0.40 m wide) 
and had a length of 1.675 m. The hot-wires were made of platinum-iridium 
with diameters of 200 to 15 J.Lm and lengths between 21 and 29 mmo The wall 
distance was set by a micrometer screw and the near-wall distance was controlled 
by the wire/image method. The probes were calibrated in the irrotational flow 
against a Pitot-static tube. The freestream velocity U oo was kept constant at 8 
mis at each respective measuring station and the atmospheric pressure and the 
temperature were measured for each velocity profile. Only mean-velocity data 
are available. 

Discussion of data 

Burgers & van der Hegge Zijnen could not measure the skin friction and so de­
termined it from the wall slope of the mean-velocity profile. These data (.) are 
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Figure 2: Comparison of skin-friction data determined from the wal! slope (aujoy)w 
and from semi-empirical relations in a zero-pressure gradient 2-D boundary layer. Data 
from Burgers & van der Hegge Zijnen (1924) . 

plotted as Cf = 2Tw / pU! against ReÓ2 = U0062 /v in Fig. 2 where 62 is the 
momentum loss thickness, T w the mean skin friction and Uoo the free stream ve­
locity. They are compared in the upstream region with the skin-friction formula 
of Blasius for a zero-pressure gradient laminar boundary layer. They were also 
recalculated from the velocity profiles (0) by the skin-friction formula of Walz 
(1966) which is of the form 

- 3.452(H _ 1 515)0.716 
Cf - R 32· , 

eÓ2 

(1) 

and thus can take account of the pressure gradient dp/ dx in the streamwise 
direction. Since the data lie above the curve of Blasius a favourable pressure 
gradient must have been present (this is also discussed by Hansen, 1928). There is 
still no reliable calculation method for the skin friction in a transitional boundary 
layer; so we can only show Burgers' "slope data". 

The downstream boundary layer is apparently turbulent and the "slope 
method" becomes rather inaccurate. Skin friction (®) was therefore also de ter­
mined from a semi-empirical relationship (Fernholz, 1971) and compared with 
the Delft data which are definitely low. The skin-friction data, determined as 
given in the legend of Fig. 3, were used to plot the mean-velocity profiles in 
inner-Iaw sealing in Fig. 3. It is astonishing how weil the measurements agree 
with the linear law in the viscous sublayer and how they show the typical be-
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Figure 3: Mean veloeity profiles in a zero-pressure-gradient 2-D boundary layer in 
inner-Iaw sealing. Data from Burgers & van der Hegge Zijnen (1924). 

haviour in a transitional and for the last profile (V') in a turbulent boundary 
layer (e.g. following the logarithmic law of the wall). Fig. 4 presents the devel­
op ment of the relevant boundary-Iayer parameters, such as the shape parameter 
H12' the Reynolds number ReÓ2 ' and the skin-friction parameter Cf against the 
streamwise distance x. The different flow regimes can be determined clearly but 
again it seems to be appropriate to quote Burgers and van der Hegge Zijnen 
(1924) on the transition regime: 

" ... the character of the mot ion changes at x = 0.75 m .... The con­
clusion is allowed that here the two manners of mot ion are present 
at the same time: the laminar one at x < 0.75 m, the turbulent one 
at x > 0.75 m. .... It was observed that the needIes both of the 
galvanometer and of the ammeter were very quiet during the mea­
surements at the former part of the glassplate .... The fluctuations 
showed a maximum in the region of transition; in this region they 
were so intense, that they could be observed by the eye from the 
glittering of the wire. Probably this phenomenon has to be ascribed 
to the formation of large vortices or irregular waves, which mark the 
breaking down of the laminar motion .... These fluctuations gave the 
greatest disturbances for values of y bet ween about 0.25 and 1 mm" 
(corresponding with y+ = 5.8 and 23 at x = 0.80 m which is very 
close to the criticallayer). 
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Figure 4: Streamwise development of the Reynolds number Re62' the shape parameter 
H12 and the skin-friction coefficient cf in a zero-pressure-gradient 2-D boundary layer. 
Data from Burgers & van der Hegge Zijnen (1924) (lines are for visual aid only). 

The first transition diagram bJ(vxJUoo )1/2 against Rex was presented by Hansen 
(Aachen, 1928) who also used and discussed the measurements from Delft. 

Finally one should ment ion same conclusions of Burgers and van der Hegge 
Zijnen about the velocity distribution and about transition: 

i) For values of y < 0.2 mm the mean velocity u becomes approximately a 
linear function of y. 

ii) In the turbulent part values of the mean velocity u can be represented for 
values of y > 1.25 mm by a power law 

uJuoo = (yJb)1/7 . (2) 

iii) The region of transition marks itself by an inflection of the curve of the 
boundary layer thickness b. 

iv) The transition from the laminar state of motion to the turbulent one is 
influenced by the magnitude of the disturbance of the air current. 
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Flight Testing of a Fokker 100 
Test Aircraft with Laminar Flow Glove 

Abstract 

Within the framework of the ELFIN project for laminar flow investigation a 
natural laminar flow glove was designed, built and tested in flight on a Fokker 
100 test aircraft. The glove design is described and some of the flight test results 
are discussed. 

Introduction 

For at least five decades research has been going on in the area of drag reduction 
by various means of laminar flow control. Not only the impressive potential 
for drag savings up to 15 percent but also the associated reductions in fuel 
consumption and pollutive emissions are driving the pursuit of laminar flow 
technology. Especially the environment al factors will be of major importance 
in view of the predicted doubling or even tripling of air traflic within the next 
decades. 

Although a large knowledge base has accumulated during many years of 
laminar flow research, practical application on commercial transport aircraft has 
not been feasible due to severe surface quality and contamination requirements. 
Recent advances in aerodynamics, computational design capabilities, materials, 
structures and aircraft systems have stimulated national research programs in the 
USA and some European countries, notably France and Germany (see Wagner 
et al., 1988, Bulgubure & Arnal, 1992; Dxiomba et al., 1989). 

In 1989 the ELFIN project [European Laminar Flow INvestigation] was initi­
ated as one of the largest projects within the BritejEuram Aeronautics Program 
supported by the EC. The objective of the ELFIN project is to strengthen the 
laminar flow technology basis by combining European resources in conducting 
windtunnel and flight tests as weIl as in advancing prediction methods. 

The project is in its second phase and is building on results obtained in 
ELFIN I which was the first phase and which ended in 1992. ELFIN I was split 
up in four strongly related tasks shown in Fig. 1: 

task 1: windtunnel testing at transonic speed on a large-scale model 
with leading edge suction 

task 2: developing testing techniques and suction devices 
task 3: developing effective computational methods for ,predicting 

transition from laminar to turbulent flow . 
task 4: flight testing of a naturallaminar flow wing 
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Figure 1: Main topics in ELFIN I. 
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Figure 2: Flight test range Fokker 100 
with glove. 

The ELFIN I project proved to be a successful cooperation with 24 organiza­
tions in 11 countries comprising participation of all large aerospace companies, 
research institutes and a number of universities. 

This paper will describe activities in task 4 where scientists and engineers 
from 12 organizations from ail over Europe worked together in a unique coop­
eration to design, build and flight test a natural laminar flow wing glove on a 
Fokker 100 test aircraft. 

ELFIN Hight test objectives 

The ELFIN flight testing builds on previous experience with an ATTAS VFW 
614 test aircraft which was equipped with a part-span, part-chord glove. One 
objective of those tests (1986-1989) was to correlate results from flight tests and 
transonic as weil as low speed windtunnel experiments. The other objective was 
to validate new advanced measuring techniques for boundary layer investigation. 
In contrast with the ATTAS flight testing which was limited to the lower tran­
sonic Mach number range the aim of ELFIN flight testing was to cover a range 
of Mach numbers and Reynolds numbers which are representative for modern 
regional aircraft. 

The first objective was to validate and calibrate existing prediction methods 
for boundary layer stability. Although several methods of varying physical com­
plexity are available, their usefulness can only be established by correlation with 
fuil-scale experimental data. The ELFIN flight testing was essential in creating 
a data base for this purpose. 

The second objective was to measure the performance of the glove in terms 
of drag reduction potential. For that purpose advanced, but weil-proven instru­
mentation was to be applied to establish the extent of laminar flow for a wide 
range of operating cOnditions. 

The third objective was to establish limits for application of naturallaminar 
flow. Within laminar flow technology three application areas can be distin­
guished: 
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• naturallaminar flow - NLF - where a specific wing shape generates favour­
able surface pressure gradients to stabilize the laminar boundary layer. 
NLF can be applied from general aviation to medium-sized aircraft. 

• hybrid laminar flow control- HLFC - where limited suction is used in com­
bination with a favourable pressure distribution. HLFC is applicable to 
medium-sized aircraft with moderate sweep angles. 

• laminar flow control- LFC - where extensive suction is required in combi­
nation with an appropriate airfoil shape. LFC is applicable to large aircraft 
with high leading edge sweep angles. 

Throughout the various application areas wing sweep angle, Reynolds number 
and leading edge curvature are important parameters in connection with the 
various types of instabilities [Tollmien-Schlichting, cross flow and attachment 
line instabilities] which can provoke transition to turbulent flow. 

Since no clear boundaries are known to exist between the area where NLF 
can be applied and the other areas where suction is required the "in between" 
region, as shown schematically in Fig. 2, was investigated. 

This figure also illustrates the suitability of the Fokker 100 as a test aircraft 
in view of the leading edge sweep angle of 21.5 degrees in the mid-wing region 
and the range of its operational Reynolds numbers (bet ween 15 and 30 million). 

Design of the NLF glove 

The NLF wing glove was designed for cruise conditions which are representative 
of those for fut ure regional airliners. In order to obtain the best aerodynamic 
performance at a range of operating conditions the glove should be located in 
the wing area which is least disturbed by three-dimensional e:ffects from wing 
root and wing tip. Therefore the mid-wing region of the Fokker 100 (starboard) 
wing with a span of about three meter was selected (Fig. 3). 

Fairings of about one metre wide were incorporated at both ends of the glove 
to enable the transition from the turbulent flow pattern on the Fokker 100 to 
the laminar type of pressure distribution as required on the glove. The following 
design requirements were set: 

• the glove should be designed for a design point at a Mach number of 
M = 0.75 and a lift coefficient of CL = 0.40 for a Reynolds number of 
of 22 million. The aim was to reach a laminar flow extent of 50 percent 
chord length on up per and lower glove surfaces. In addition sufficient lam­
inarity should be achieved for a range of lift coefficients between CL = 0.25 
and CL = 0.55. 

• aircraft transonic characteristics should not be a:ffected by the presence of 
the glove. 
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Figure 3: Glove location on Fokker 
100. 

Figure 4: Transonic pressure pattern 
on Fokker 100 upper surface. 

• a minimum clearance of 10 mm should be taken bet ween existing wing and 
glove contour and a maximum leading edge extension of about 5 percent 
chord. 

Preliminary infinite sheared laminar wing design studies by several design 
teams indicated that a leading edge sweep angle of 20 degrees would be required 
to satisfy the 50 percent laminarity requirement. Since the leading edge sweep 
angle in the mid-wing region on the Fokker 100 wing is somewhat larger the 
glove planform was adapted accordingly. 

The design process was hampered by several complicating factors: 

• the large discrepancy at the design point between actual "turbulent" flow 
condition on the Fokker 100 wing (Obert, 1988) and the required flow con­
dition. The transonic flow pattern on the Fokker 100 wing at M = 0.75 
is characterized by a double-shock system on the upper surface as shown 
Fig. 4. At the same con dit ion the lower surface pressure distribution shows 
a suction peak in the nose region (Fig. 5) which is associated with lead­
ing edge droop introduced to optimize low-speed, high-lift characteristics 
(Obert, 1988). Fig. 5 also shows the very different pressure distributions 
required for laminar flow. 

• the three-dimensional interaction between the Fokker 100 flow pattern and 
the NLF flow pattern on the glove. 

Especially the problem of embedding the laminar type pressure distribution 
on the glove in the double-shock pressure pattern demanded much attention and 
required specially adapted fairing airfoils at both ends of the glove as weIl as 
three different airfoil sections on the glove itself. 

Final glove contours are shown in Fig. 6 together with the modified planform 
and the original Fokker 100 wing sections. The 20 degrees swept leading edge 
on the glove is continued on the inboard fairing. Connection with the existing 
inboard wing is made through a narrow area with zero leading edge sweep. This 
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is used as a safeguard against attachment line instabilities propagating from the 
inboard wing. 

The influence of the glove on the pressure patterns in the design condition 
is shown in Fig. 7. At this condition the flow on the glove seems to be isolated 
from the flow pattern on the rest of the wing. 

For higher lift coefficients at the same Mach number, however, the pressure 
distribution will be affected by three-dimensional influences mainly from the 
inboard wing. Shown in Fig. 8 are computed pressures on the glove - inboard, 
mid and out board - for higher lift coefficient. This result shows that eventuaily 
the double-shock type pressure distribution will dominate the flow field again, 
and obviously more clearly at the inboard end of the glove. 

The final glove design (see Dressler et al. , 1992) was performed by a joint 
German team of Deutsche Aerospace Airbus and research institute DLR and the 
result was evaluated by the other partners. Predictions of the chordwise extent 
of laminar flow covered a range fr om 30 to weil over 50 percent depending on the 
different methodologies used. This fact again illustrated the need for a fuil-scale 
NLF data base. 

Windtunnel experiment 

Af ter the glove design was finalized an existing half model of the Fokker 100 
was modified to represent glove and fairings. The glove was made of epoxy-resin 
allowing for infrared measurements of transition and shock patterns. A pressure 
measuring section was incorporated in the middle of the glove and in addition a 
number of pressure taps at both ends of the glove to check two-dimensionality. 
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Figure 7: U pper surface pressure pat­
tem at glove design condition. 

Figure 8: Off-design pressure distribu­
tion on glove. 

The model was tested in the High Speed Tunnel of NLR at Mach numbers 
bet ween M = 0.19 and = 0.80 and at Reynolds numbers between 2.4 and 8.5 
million. 

Objectives for the windtunnel tests were to investigate: 

• effect of the glove on aircraft characteristics and therefore on flight safety 
aspects . 

• the integration of the laminar flow type of pressure distribution and the 
Fokker 100 flow pattern. 

The experiment showed an excellent correlation bet ween measured pressures 
and results from some of the viscous transonic computations such as the DLR 
result shown in Fig. 9 for a Reynolds number of Re = 5 X 106• The high­
speed tests showed no major changes in aerodynamic characteristics due to the 
presence of the glove. Effects of transition shifts were established by testing with 
natural transition and fixation near the nose of the glove. From these data it 
could be concluded that a sudden movement of transition over 50 percent chord 
- which can be expected when flying through ice clouds - could be adjusted for 
by aileron deflection of less than 1 degree and elevator deflection of less than 0.4 
degrees. 

Low-speed test data revealed a substantialloss in maximum lift of l1CL = 
0.12 as compared with the original half model data. In addition infrared images 
showed a different wing stall behaviour. Although loss of maximum lift was 
not unexpected in view of the different nose shapes on glove and original wing 
this result required restricted operation of the test aircraft in low-speed, high 
angle-of-attack conditions. 

During the second ELFIN phase a further investigation was made of this 
phenomenon and an existing two-dimensional windtunnel model representing 
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a mid-wing section of the Fokker 100 with high-lift devices was modified to 
incorporate the nose section of the ELFIN mid-glove contour (Fig. 10). Also in 
this case windtunnel tests as weil as computations showed a substantialloss in 
maximum lift especially with deflected high-lift devices. 

Glove build-up and instrumentation 

The instrumentation on the test aircraft was strongly interrelated with the glove 
structural build-up. The main element, essential for the measurement of transi­
tion, was the infrared system. As shown in Fig. 10 two infrared camera systems 
we re installed to monitor transition on upper and lower surfaces of the glove. 
For effective measurement in level flight the infrared system requires a smail 
temperature gradient bet ween glove and surrounding air so that laminar and 
turbulent flow regions with their different heat exchange rates can be visual­
ized. The glove surface was heated by means of specially made thin carbon fibre 
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heating elements inside the glove skin. To support analysis of infrared images 
complementary data was supplied by hotfilm sensors in the leading edge region 
and at the glove inboard end. 

To provide experiment al data for validation of boundary layer stability meth­
ods detailed pressure measurements were made in two rows each containing 120 
flush-mounted pressure taps at both ends of the glove. In the wake of the glove 
statie and total pressures were measured by means of several rakes to derive 
section drag data. The rakes were installed on a beam mounted bet ween the flap 
track fairings (Fig. 11). 

A schematic cross-section showing the glove structure with the embedded in­
strumentation, wiring and tubing is shown in Fig. 12. A substructure of profiled 
wooden ribs was fiiled-in with polyurethane foam shaped to the glove profile 
(minus outer skin). On top of the substructure a prefabricated composite skin 
was glued consisting of a glass fibre woven cloth construction which contained 
the carbon fibre heating elements within the lay-up. A skin thickness of about 3 
mm was selected as a compromise between having enough thickness to maintain 
profile shape and having little thickness to minimize loads. 

Flight testing 

With the glove installed the Fokker 100 test aircraft has an asymmetrical con­
figuration and although windtunnel tests did not indicate potential problems in 
the high-speed regime some precautions were taken: 

- weil ahead in time of the glove mounting, critical instrumentation elements 
su eh as the infrared camera installation were tested in flight to ensure their 
operation without vibration or excessive drag. 

- in view of potentiallow-speed, high-lift problems (reduced maximum lift, 
flaps inoperative) higher take-off and landing speeds had to be prescribed 
and ground runs were made at high angle-of-attack conditions. 

During ground run testing the aircraft showed astrong and unexpected ten­
dency to roll. It appeared that the starboard wing produced more lift than 
anticipated. The phenomenon could be explained when the beam carrying the 
wake rakes was included in the computational model. Especiaily in ground effect 
the additional lift on the beam as found to be responsible for this effect which 
could easily be compensated for by aileron deflection. 

No further complications occurred and the planned range of flow conditions 
could be covered in 15 flight hours during which more than 100 recordings were 
efficiently obtained thanks to flawless operation of the instrumentation. 

Infrared images and hot film signals were evaluated and stored onboard the 
aircraft while simultaneously recorded and transmitted pressure distributions 
such as shown in Fig. 13 were evaluated at a ground station. 
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Figure 15: Effect of Mach number on 
upper surface transition . 

During the first three flights (10 flight hours) a large part of the intended range 
of flight test points representing the most interesting flow conditions could be 
recorded. Some of the results are summarized in Figs 14 and 15. The important 
effect of sweep angle variation - simulated by sideslipping the aircraft· is shown in 
Fig. 14. Transition on the lower surface at the design Mach number is strongly 
affected by variation in leading edge sweep angle whereas no clear correlation 
with sweep angle could be established for the upper surface. Lower surface 
transition is apparently dominated by cross flow instabilities. 

Mach number variation has an effect on both surfaces since the pressure 
distribution steepens up and the flow more strongly accelerates up to 50 or 60 



48 Flight testing of a Fokker 100 

M = .75 

-, -, 

Cp ~ 

e~~ 

Cp 

.,-l----~~~_~ __ 
iJ . e e. ç , . ~ 

X/ C 
. , .-1-,-.1 ~-----:-:-~--:- I a. IJ I. ç 1 . IJ 

Xt C 

OR1G1NAL GLOve REFlN1SHED GLOve 

Figure 16: Recorded pressures on original and refinished glove. 

percent chord on both surfaces when the Mach number increases. The effect of 
Mach number around the design condition on measured upper surface transition 
is shown in Fig. 15. The - not very strong - effect is similar for inboard and 
out board ends of the glove but the extent of laminar flow is consistently larger 
on the out board end. This effect can also be noticed in Fig. 14 and it indicates 
that on the aircraft in flight the flow on the glove is less two-dimensional than the 
flow measured on the windtunnel model. Further evidence of surface irregularity 
was found when comparing measured pressures near the design condition with 
computed results for the design case. 

Although the glove surface - which during manufacturing was checked against 
templates - seemed sufficiently smooth before the tests, the measured pressures 
showed irregularities associated with surface waviness. Accurate measurement 
of the glove af ter the first three flights showed that the glove did not satisfy the 
severe waviness requirements set for laminar flow surfaces but complied with the 
less severe requirements for surface waviness on present day commercial airliners. 

It was decided to refinish the main part of the glove upper surface to the 
highest possible standard and to measure a second set of datapoints. Fig. 16 
shows an example of an improved measured out board pressure distribution close 
to the design condition indicating that the main irregularities have disappeared. 

The effect of the improved glove surface quality on the extent of laminar 
flow is shown in Fig. 17 where results for similar flow conditions are compared. 
The spanwise extent has become more regular and in chordwise direction an 
additional 10 to 15 percent of flow laminarity is recorded. This gain was found 
for most of the test conditions which could be compared. The turbulent wedge 
shown in Fig. 17 on the original glove surface is due to a surface irregularity 
caused by insect impact. 

In-flight pressure measurements confirmed that three-dimensional effects be­
come important for higher lift coefficients (see also Fig. 8). A result of such 
measurements is shown in Fig. 18 where differences between inboard and out-
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board recordings are si mil ar to those shown in Fig. 8. It was however found 
that the measured lift coefficient at this flow condition was somewhat lower than 
anticipated on the basis of computations. 

Apart from surface quality imperfections the extent oflaminarity at a certain 
flow condition was also influenced by "environmental" conditions such as ice 
clouds and insects. During encounters with ice crystals in cirrus clouds laminarity 
disappeared only temporarily but most of the insects picked up during take-off 
left their turbulent "signature" during the remainder of the flight. Examples 
of disturbances related to insect impact are shown in Fig. 17 and also in Fig. 
19 where signals are shown from hotfilm sensors placed along the glove leading 
edge to detect any attachment line instabilities. The sensors at both ends of 
the glove show a laminar signal whereas the middle one detects transition. This 
local transition is most likely caused by a small disturbance resulting from insect 
impact. 

Because of the large number of insect impacts observed during the first flights 
in late November 1991 take-offs during the second series of flights in May 1992 
were made early in the morning to minimize risk of insect encounters. This 
strategy appeared to be very effective. 

Concluding remarks 

As part of the ELFIN project and within the time frame of two years a full-chord, 
part-span naturallaminar flow glove was designed, built and tested in flight on 
a Fokker 100 test aircraft. Combination of available knowledge and experience 
on a European level proved very effective. 

During 15 flight test hours an extensive database was collected with more 
than 100 recordings covering a wide range of flow conditions for two types of 
glove surface quality. This database was an essential element for validation and 
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calibration of prediction methods for boundary layer stability which are applied 
to aerodynamic design. 

A major step has been made in understanding laminar flow aerodynamics 
although an adverse effect, such as reduction in maximum lift at low speed 
as observed in this application, requires further attention. Other application 
aspects such as surface quality requirements will imply new manufacturing and 
maintenance standards. 

Therefore any future application of laminar flow technology, which potential 
was demonstrated by this project, requires a combination of aerodynamic (de­
sign) -, production (surface quality) - and systems (clean leading edge, suction) 
-technologies . 
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Three-Dimensional Instabilities in 
Boundary Layers 

Abstract 

The paper is devoted to a survey of experimental studies of the stability of both 
2D and 3D boundary layers with respect to 3D stationary and traveling waves 
inclined at various angles to the flow, including Tollmien-Schlichting (TS) waves 
and cross-flow instability modes. These results are compared with theoretical 
ones obtained by different authors by means of the stability theory, Parabolized 
Stability Equations (PSE), asymptotic theory and Direct Numerical Simulation 
(DNS). 

Introduction 

The problem ofboundary-layer transition has three main aspects: (i) the laminar­
flow receptivity to external perturbations, (ii) the linear boundary-Iayer instabil­
ity, and (iii) the nonlinear flow breakdown. The present paper is devoted to the 
second aspect. The experiments, described in the paper, were conducted in the 
Institute of Theoretical and Applied Mechanics in Novosibirsk during past sev­
eral years. The theoretical results used for comparison we re obtained in different 
groups in Moscow, Berlin and Seattle (the linear stability theory), Stockholm 
(PSE), London (asymptotic theory), and Stuttgart (DNS). 

The linear hydrodynamic stability theory is undoubtedly the most developed 
branch of our knowledge about transition. This theory is very important for en­
gineering methods of transition prediction (for example for the en-method). At 
the same time, the three-dimensional instability of both 2D and 3D basic flows 
has not been studied in detail until now. More recent studies can provide some 
quantitative stability characteristics of boundary layers that could be used for 
comparison with theoretical approaches and for quantitative verification of 3D 
computer codes. Some recent results of such quantitative comparisons are pre­
sented below. In contrast to most other studies the experiments described here 
we re conducted at controlled disturbance conditions with excitation of instabil­
ity modes by means of disturbance sources of different types. Such experimental 
conditions, together with special methods of analysis of the data, give the possi­
bility to obtain very detailed information on the flow stability to 3D stationary 
and traveling modes. 
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3D instability of the Blasius boundary layer 

The first successful experiment al investigation of 3D instability waves in the flat­
plate boundary layer was conducted by Gaster & Grant (1975) and the results of 
this study were compared with calculations by Gaster (and, recently, with DNS 
by Konzelmann, 1990). Later a complete set of stability characteristics of the 
Blasius boundary layer was obtained experimentally by Gilyov et al. (1983). In 
the paper by Kachanov & Michalke (1994) the experiment al dataobtained by Gi­
lyov et al. we re used for additional processing and for a quantitative comparison 
with the results of calculations carried out by Michalke within the framework of 
the parallellinear stability theory (PLST). Another set of measurements in the 
Blasius flow was conducted very recently. The first results of the data processing 
are published by Kachanov & Obolentseva (1996). The goal of these experiments 
is to investigate the stability characteristics in more detail, including measure­
ments at various distances fr om the wall, in order to obtain the eigenfunctions 
of the 3D TS modes (inclined at different angles to the flow direction) as well as 
to investigate the non- parallel effects and criteria of instability in the 3D case. 

In the experiments by Gilyov ét al. (1983) and Kachanov & Obolentseva 
(1996) the disturbances (harmonic in time) were introduced into the boundary 
layer by means of localized disturbance sources of two types, namely by a "point" 
source and by a circular membrane-type vibrator. In both cases during the 
data processing the wave trains were decomposed into normal oblique TS waves 
inclined at various angles to the flow direction. This procedure was used for 
the first time by Gilyov et al. (1983) and described in detail by Kachanov & 
Michalke (1994). 

The structure of the mean flow, realized at the conditions of experiments by 
Gilyov et al. (1983) and Kachanov & Obolentseva (1996), corresponds locally to 
the Blasius boundary layer with very high accuracy. 

Dispersion characteristics of 3D TS modes in Blasius flow 

The dependences of the nondimensional streamwise wavenumber arbl (where 
bI is the boundary-Iayer displacement thickness) on the propagation angle () 
(where () = tan- 1[,BJa r (,8)] and,B is the spanwise wavenumber) for three different 
frequency parameters F = wv J U; are shown in Fig. 1 (where w is the disturbance 
frequency and v is the kinematic viscosity). A comparison of the experiment al 
points obtained by Gilyov et al. (1983) and Kachanov & Obolentseva (1996) 
(new experiments) with the results of the PLST by Michalke (see Kachanov 
& Michalke, 1994), non-parallel PSE approach by Hanifi (1995), and DNS by 
Ebert (1995) demonstrate a good quantitative agreement in a wide range of 
the propagation angles from 0 to 50°. At very large propagation angles the 
PLST predicts some unexpected growth of the streamwise wavenumbers (shown 
in Fig. 1 for F = 94.1 . 10-6 ) that is not observed in the experiments. In this 
range the PSE and DNS give better agreement with the experiment al results. 
Note that the data obtained by means of the localized disturbance sources (with 
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Figure 1: Streamwise wavenumbers of 3D TS waves versus propagation angle for the 
Blasius flow. 
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Figure 2: Phase velo city of 3D TS waves versus propagation angle for the Blasius flow. 

the subsequent Fourier decomposition) agree very weil with those obtained by 
means of an inclined (or flat) vibrating ribbonj the corresponding points for () = 0 
practically merge in Fig. LAs was shown by Kachanov & Michalke (1994) the 
data from the experiments by Gilyov et al. (1983) are in a very good agreement 
with the results by Ross et al. (1970) obtained for 2D waves with the help of a 
vibrating ribbon. 

Downstream phase velocities (ex = winT)' shown in Fig. 2, demonstrate the 
very good agreement between theories and experiment, especially for angles less 
than 50°. The PSE results by Hanifi (1995) almost coincide with the PLST data 
by Michalke (except for very high propagation angles, shown for F = 94.1.10-6). 

A very good agreement of the phase velocities obtained by Gilyov et al. (1983) 
with the experiment al data by Schneider (1989) is found by .Kachanov & Michalke 
(1994). Note that the Schneider's (1989) results were obtained under completely 
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Figure 3: Growth rates of 3D TS waves versus propagation angle. Blasius flow . 

different experiment a! conditions in a water flow, without Fourier decomposition, 
with excitation of the oblique waves by means of a set of heating elements. 

A mplification rates of 3D TS modes in Blasius flow 

The comparison of the growth rates -ai represents a much more complicated 
problem. Good quantitative agreement for -ai between the experiment a! and 
theoretica! values has never been obtained for the flat-plate boundary layer; not 
for 3D modes, and even not 2D modes. Some typical problems, which arise in 
this field, were discussed for the 2D instability waves by Fasel & Konzelmann 
(1990), Bertolotti (1991), Bertolotti et al. (1992), and Klingmann et al. (1993). 

Dependences of nondimensiona! amplification rates -aibl on the propagation 
angle (} shown in Fig. 3 are obtained in both experiment and theory (the PLST by 
Michalke and DNS by Ebert, 1995) for the frequency parameter F = 94.1.10-6 

and the Reynolds number Re = 1089. It is seen that the theoretical approaches 
and experiment demonstrate a very similar general behaviour of the growth rates 
with propagation angle. For not too large values of (} all theories (including the 
PSE ca!culations by Hanifi, 1995) are in a rat her good agreement with the ex­
periments and with each other. At the same time the theoretical data deviate 
from the experimenta! points for high propagation angles. Especially this is true 
for the PLST results. This is consistent with the theoretica! study of Bertolotti 
(1991) who found that the parallel-flow approach gives lower growth rates, es­
pecially for high propagation angles. The experiment a! data obtained outside 
the boundary layer (at y = 4.5 mm) display better agreement with the PLST 
and DNS rather than the points measured near the inner disturbance maximum 
(at yjb1 = 0.74). Note that these data are obtained inside the neutra! stability 
curve (for the 2D waves). Very similar results are observed at another va!ue of 
the Reynolds number (Re = 1129) aIid for the same frequency parameter. 

The agreement between the PLST and experiment is bet ter in the vicinity of 
the lower branch of the neutral stability curve at F = 63.6· 10-6 and Re = 1071 
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Figure 4: Growth rates of 3D TS waves versus propagation angle for the Blasius flow . 

(Fig. 4a) . However the PLST (by Michalke) still predicts somewhat lower growth 
rates for the modes propagated at angles higher than approximately 65°. N ear 
the upper branch, for F = 138.7.10-6 and Re = 1071 (Fig. 4b), the difference 
bet ween the PLST and the experiment al is largest, while the DNS (by Ebert, 
1995) predict the experiment al growth rates much better. 

Non-parallel effects and criteria of instability 

There are several causes for the discrepancies between the experiment al and 
theoretical growth rates . One of them is the dependence of the shape of the 
eigenfunctions on the propagation angle (see Gilyov et al., 1983 and Bertolotti, 
1991). The main experiment al results presented in Figs 3 and 4 are obtained at 
a constant nondimensional distance from the wall yjb1 = 0.74 that is close to 
the disturbance maxima but does not coincide with them exactly. Meanwhile 
the theoretical data (PSE and DNS) are obtained for the exact positions of the 
maxima. This explains, at least partially, why in the experiments the quasi-2D 
modes have usually lower growth rates compared even to non- parallel PSE and 
DNS , whereas the strongly 3D modes have larger growth rates. 

The discrepancies, observed bet ween the PLST and experiment , are consis­
tent with the results obtained by Bertolotti (1991) who found that this theory 
underestimates the growth rates of the 3D modes. This difference increases with 
the propagation angle. In our recent experiments (Kachanov & Obolentseva, 
1996) we found that the growth rates of the 3D modes in the Blasius flow de­
pend significantly on the non-dimensional distance from the wall where they 
were measured. This dependence (conditioned by the downstream growth of 
the boundary layer) turned out to be very strong for those perturbations that 
correspond to the vicinity of the upper branch of the 2D neut ral stability curve, 
it becomes we aker for lower frequency parameters, and it is very weak near the 
lower branch. This observation is also consistent with the results by Bertolotti 
(1991). 

Similar to the case ofthe 2D instability waves (see Fasel & Konzelmann, 1990 
and Bertolotti et al. , 1992) the question about the criteria of instability for the 
3D modes needs additional investigation. Depending on the method of definition 
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Figure 5: Influence of vortices and pressure gradient on dispersion curves for 3D TS 
waves, 

of the growth rates, the flow can be regarded as stabie or unstable with respect 
to the same 3D wave. 

lnfluence of streamwise vortices in Blasius flow 

A first experimental study of the influence of stationary 3D perturbations of the 
mean flow (the streamwise vortices) on the stability of Blasius boundary layer 
to 2D and 3D waves was conducted by Kachanov & Tararykin (1987). More 
recently a similar problem was investigated by Bakchinov et al. (1995) for the 
case of much more intensive streamwise vortices produced by roughness elements. 

Kachanov & Tararykin (1987) found that even when the streamwise vortices 
(introduced into the flow by means of a special slit generator) have amplitudes 
close to 10 %, they almost do not influence the growth rates of the 2D instability 
waves and do not lead to a growth of the 3D TS modes although some local mean 
velocity profiles have inflexion points and are expected to be more unstable than 
the original Blasius profile. Moreover, it is found that the streamwise vortices 
even stabilized the flow with respect to the 2D TS waves. This is an evidence 
that the local notions are not applicable when investigating the boundary-Iayer 
instability. Later observations by Bakchinov et al. (1995) corroborate this result 
in a case of not very high amplitudes of the vortices. 

Another important observation of the experiments by Kachanov & Tararykin 
(1987) is that the streamwise vortices influence significantly the dispersion char­
acteristics of the 3D waves. Without these vortices the downstream phase ve­
locity of the 3D modes increases with the propagation angle (see Fig. 2). The 
vortices are found to re sult in an almost complete disappearance of the depen­
dence of the phase velocities on the propagation angle (Fig. 5, points "with 
vortices"). Disappearance of the dispersion can play an important role at late, 
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weakly nonlinear, stages of transition where some resonant interactions between 
2D and 3D instability waves occur. 

3D instability of the 2D boundary layer on an airfoil 

An experimental study of the 3D instability of a boundary layer on an airfoil at 
low Reynolds numbers was carried out by Gilyov et al. (1988). At the incidence 
studied the boundary layer was subjected to both favourable and adverse pres­
sure gradients and had a 2D laminar separation point at a distance x ~ 400 mm 
from the leading edge. A localized wave train of TS waves with frequency 85 Hz 
(the Strouhal number St = w62 /Uo ~ 0.0088) was introduced into the boundary 
layer by means of a "point" source similar to that used in experiments by Gaster 
& Grant (1975) and by Gilyov et al. (1983). Af ter Fourier decomposition of 
the wave train into norm al (i.e. harmonic in time and space) oblique modes 
the stability characteristics of this flow with respect to various 3D waves were 
obtained. 

Growth rates of 3D TS waves on an airfoil 

The disturbance behaviour was studied in three different regions of the flow 
development. In region I the pressure gradient was favourable (öp/öx < 0) and 
in region Il adverse (öp/öx > 0). Region Il was subdivided into two subregions 
Il.1 and Il.2 that correspond to the flow before and after the separation point. 

In region I the flow is found to be stabIe and all the 3D modes attenuate 
downstream. In region 11.1 all the studied 3D modes are amplified, and the most 
rapidly growing waves are the two-dimensional ones (qualitatively the same as 
in the Blasius flow at subsonic speeds, see Figs 3 and 4). At the same time, in 
region 11.2 the most amplified modes are found to be the three-dimensional ones. 
This phenomenon looks similar to the case of a supersonic boundary layer. A 
fast growth of the 3D modes leads to a rapid increase of the three-dimensionality 
within the separation zone observed usually in experiments. 

Comparison of the growth rates of the 3D instability modes in region Il.2 
obtained by Gilyov et al. (1988) with some theoretical data is shown in Fig. 
6. The growth rates -ai62 (where 62 is the moment urn thickness) calculated 
by Michalke (see Dovgal et al., 1994) within the framework of inviscid PLST 
are shown in Fig. 6a together with the experiment al data. The agreement 
is rather good. At the same time, the theory does not predict the maximum 
at () ~ 40-45° observed in the experiment. The viscosity does not change this 
result qualitatively. Comparison with the asymptotic theory by Stewart & Smith 
(1987), shown in Fig. 6b, somewhat clarifies the question. Stewart & Smith 
(1987) have shown that the boundary-layer growth influences significantly the 
amplification rates of the 3D modes. In the.region behind the separation point 
the three-dimensional modes are shown to grow tnost rapidly when the parameter 
-A' (a measure of the flow non-parallelism) increases. This fact is consistent 
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Figure 6: Growth rates of 3D TS waves versus propagation angle for the adverse 
pressure gradient case. 

with the experiment despite the propagation angle of the most amplified modes 
is somewhat different in the theory. 

Dispersion characteristics of 3D TS waves on airfoil 

In contrast to the case of Blasius flow it is shown in the experiments by Gi­
lyov et al. (1988) that in region II as a whole the streamwise wavenumber is 
almost independent of the spanwise wavenumber and propagation angle (Fig. 5, 
"op/ox > 0"). The dispersion (i.e. the dependence of the phase velocity on the 
wave angle) disappears when the region of the adverse pressure gradient begins 
on the airfoil. Meanwhile in region I this dispersion becomes even stronger than 
in the Blasius flow and, in contrast to region II, it depends significantlyon the 
downstream coordinate and changes together with the local pressure gradient. 

Such disappearance of the dispersion of the 3D modes looks very similar to 
that observed in the Blasius boundary layer disturbed by the streamwise vortices 
(see Fig. 5, "with vortices"). Most probably, the cause of this phenomenon is 
the same in the two cases and associated with a prevailing role of the inviscid 
instability in the flow with inflexional velocity profiles. This instability appears 
in the two cases under influence of either the streamwise vortices or the ad­
verse pressure gradient . It is weil known that the most unstable inviscid modes 
propagate with the phase speed close to the flow velocity in the inflexion point. 

Instability of 3D boundary layer on a swept wing 

One of the most important types of instability in 3D boundary layers is the cross­
flow instability. Some recent studies of this instability are discussed in reviews 
by Reed & Saric (1989), Arnal et al. (1990) , Bippes (1990), Saric (1994) and 
others. In the transition process on the swept wings both the stationary and 
traveling cross- flow instability modes play an important role. In the present 
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Figure 7: Inviseid-flow velo ei ties (a) and streamline (b) over the swept-wing model. 

paper we concentrate on a brief review of some recent experimental results on 
the cross-flow instability obtained at controlled disturbance conditions. 

Experimental conditions and swept-wing mean flow 

The mean flow on an initial section of a swept wing was simulated by means of 
a flow over a model of a swept plate with the pressure gradient induced by a 
contoured wall bump put onto the test-section wall just above the plate. Both 
the plate and the bump had the same sweep angle X = 25.0°. For more details 
see Kachanov et al. (1989) and Kachanov & Tararykin (1990). The main results 
presented below correspond to alocal coordinate system (x*, z*) with the x*-axis 
directed along the vector Ua of the potential flow near the external edge of the 
boundary layer. In another coordinate system (x, z) the x-coordinate is parallel 
to the free-stream velocity and to the axis of the wind-tunnel. 

The disturbances were either stationary (the cross-flow vortices) or harmonie 
in time (the traveling cross-flow waves) and were introduced into the flow by 
means of several generators. In particular the following disturbance generators 
were used: (a) a steady blowing and suction through a set of slits, (b) periodic 
(along the span) roughness elements, and (c) isolated roughness elements. The 
traveling waves were generated by means of 3 different sourees: (d) an electro­
magnetic circular vibrator flush-mounted with the model surface (see for more 
details Ivanov & Kachanov, 1994a), (e) a similar pneumatic vibrator, and (I) a 
linear souree consisting of a spanwise slit in the model surface with a system of 
83 pipes below it, which are connected to eight loudspeakers. Several frequency 
parameters were studied: F· 106 = 0, 7.7, 16.2, 23.8, 35.4, 48.8, 68.6, and 82.4 
which correspond to disturbance frequencies: f = 0, 3.95,8.3, 12.15, 18.0, 25.0, 
35.0 and 42.0 Hz. 

The structure of the 3D mean flow field over the model was measured care­
fully in both the potential flow and the boundary layer by Kachanov et al. (1989, 
1990), Kachanov & Tararykin (1990) and Kachanov & Ivanov (1994a, 1994b). 
It was found that the characteristics of the potential flow over this model are 
almost independent of the spanwise z'-coordinate in the region of all the main 
measurements. Downstream distributions of the U- and W-components of the 
potential flow velocity are shown in Fig. 7a. The shape of the corresponding 
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streamline of the inviscid flow is shown in Fig. 7b. In the region of the main 
measurements the pressure-gradient parameter {3H (Hartree parameter) was ap­
proximately equal to 0.4 to 0.5, the local yaw angle of the flow was X ~ -1 to 
-2°, the local sweep angle was equal to about 23 to 24°. 

The measurements conducted inside the boundary layer and their comparison 
with calculations by Fyodorov (see Kachanov et al., 1989) testify that the struc­
ture of the mean flow over the model (in the region of the main measurements) 
is almost completely adequate for a swept-wing flow. 

A mplification mtes of cross-flow modes 

The growth rates ofboth the stationary and traveling cross-flow instability modes 
were obtained in the experiments by Kachanov et al. (1990), Kachanov & 
Tararykin (1990), Ivanov & Kachanov (1994b) and Gaponenko et al. (1995a, 
1995b) af ter decomposition of disturbances to normal oblique modes. U sing the 
linear source f (mentioned above) the author recently obtained (together with 
colleagues Borodulin & Gaponenko) some stability characteristies of the swept­
wing flow directly without the complicated procedure of the Fourier decomposi­
tion. 

Dependences of the disturbance growth rates on the spanwise wavenumber 
{3*61 are shown in Fig. 8 for two of frequencies studied (including the stationary 
perturbations). The points were obtained by means of four different methods of 
disturbance excitation and at severallevels of excitation. The lines in Fig. 8a 
represent the PLST results by Fyodorov (see Kachanov et al., 1990). It is seen 
that within the experimental accuracy (around ±0.003) the results obtained for 
different types and levels of excitation coincide with each ot her and correlate 
very weIl with the results of calculations. Crouch (1994) conducted recently a 
calculation for the conditions of our experiments for the frequency 18.0 Hz. His 
curve is also in good agreement with the experiment al data. 

The results obtained for all values of the frequency parameter show two 
dis tin ct maxima in the dependences of the growth rate 0:761 on the spanwise 
wavenumber {3*. These maxima are located around I {3*61 I ~ 0.4 - 0.6 and are 
attributed to the two kinds of instability modes propagated upstream the cross­
flow (for (3* > 0) and along the cross-flow direction (for (3* < 0). The former 
mode is the most unstable one. The amplification maxima are localized ne ar 
very large values of the disturbance propagation angles ()* with I ()* I bet ween 
80 and 90°. This is a very typieal property of the cross-flow instability modes 
predicted by all theories (see for example Dallmann & Bieler, 1987). 

Dispersion chamcteristics and eigenfunctions of cross-flow modes 

The dispersion curves (i.e. the streamwise wavenumbers 0:;61 versus the spanwise 
wavenumbers (3*61 ) are shown in Fig. 9 for several disturbance frequencies in 
the case of traveling modes. It is seen that in the coordinate syst~m (x*, z*) 
they are almost symmetrie. For all frequencies the typieal values of 0:;61 are 
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an order less than those of {3*b1 • The curve obtained for the frequency 25.0 Hz 
calculated recently by Crouch (1994) for the experiment al conditions was found 
to be in good agreement with the experiment. In the case of stationary cross­
flow vortices experiment al values of the angles ()* bet ween the wavevectors of 
the stationary modes and the x*-axis were determined. They were found to be 
almost independent of the spanwise wavenumber. The values of this angle are 
around 88- 89° and they are in a good agreement with the theoretical results by 
Fyodorov (see Kachanov et al., 1990) obtained for the experimental conditions. 

The eigenfunctions of the cross-flow instability normal modes were also mea­
sured by means of two different methods: (i) af ter spatial Fourier decomposition 
of the wave trains, and (ii) in direct measurements using the linear source f. The 
shape of the eigenfunctions was shown to agree with the stability theory and 
confirms the correctness of the choice of wall distances used for the main sta­
bility measurements (near the maxima of the u-component of the fluctuations). 
The phase part of the eigenfunctions of the traveling modes is found to be in a 
qualitative agreement with the linear stability theory by Takagi & !toh (1994). 

For most unstable traveling modes (with I (3* b1 I ~ 0.4 - 0.6) the phase 
velocities Ck along their wavevectors were found to be very small (around 0.05Ua , 

see Fig. lOa). These values are typical for the cross-flow instability waves and 
observed in theory and in the "uncontrolled" experiment by Deyhle et al. (1992). 
However the quasi-2D modes (with (3* close to zero) propagated with a velocity 
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Ck, which is around 0.3 - 0.6 of Uo • It is interesting that the downstream (along 
x* -coordinate) phase velocities C; of almost all the instability modes for all 
frequencies are rather close to each other and equal to half the edge velocity. 
Dependences of the phase velocity Ck on the disturbance frequency (Fig. lOb) 
demonstrate that a limit transition for the dispersion characteristics at f -+ 0 
exists for almost all values of the spanwise wavenumber except for the modes 
with zero spanwise wavenumber (i.e. with the wave front perpendicular to the 
flow direction ). 

The group velocities of traveling modes were determined with the help of the 
form ulas C* x = ow / oa; and C;z = ow / 0(3* using the dispersion curves like those 
shown in fig. 9. The streamwise component C;x of the group velocity vector 
is found to be rather close to half the free-stream velocity (mainly between 
0.4 and 0.8) for almost all modes. (This is very similar to the behaviour of 
the downstream phase velocity C;.) Meanwhile, the values of the spanwise 
component of the group velocity vector C;z are mainly very small (usually less 
than 0.05Uo ) and close to the phase velocity Ck of the most unstable modes. 
The absolute values of the inclination angle 1/J; of the group velocity vectors 
we re found to be very small also (mainly less than 5°). (Compare them with the 
propagation angles of these modes, which are close to ± 85°!) An inclination 
angle 1/J; of the grou po.. velocity vector for the stationary modes (the cross-flow 
vortices) was found to be very close to the x* - axis too. For the most unstable 
modes the inclination angle is 1/J; = -1.0° in experiment and 1/J; = -1.60 in theory 
by Fyodorov (see Kachanov et al., 1990), i.e. a difference between the theory 
and experiment is less than 10

• 

Having reached the end of this section, it is important to note that all the ex­
perimental results, obtained by means of different disturbance sources with and 
without Fourier decomposition , correlate with each other very well and demon­
strate the good experimental accuracy and reliability of the data obtained. 
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Conclusions 

• The 3D linear stability theory is still not compared quantitatively in an 
appropriate way with experimental data, even not in the classic case of the 
Blasius boundary layer. 

• Qualitative agreement bet ween the 3D stability theory and experiment is 
mainly achieved including the case of traveling waves in the swept-wing 
boundary layer. 

• Non-parallel effects are very significant for the 3D instability even in the 
Blasius flow. This is in contrast to the case of the 2D instability. Those 
effects need additional studies, in particular for the 3D boundary layers. 

• The problem of 3D instability of 2D boundary layers with pressure gra­
dients (especially those with adverse pressure gradients) needs a more de­
tailed investigation (including non-parallel effects ). 
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Nonlinear Development and Breakdown 
of TS-waves in an Adverse Pressure 
Gradient Boundary Layer 

Abstract 

The natural transition process in boundary layers subjected to an adverse pres­
sure gradient (APG) and low free stream turbulence intensities has been stud­
ied experimentally using hot-wire anemometry. The initial growth of Tollmien­
Schlichting waves is shown to agree with linear stability theory. The TS-wave 
amplitude distribution across the boundary layer shows two near-wall maxima. 
The nonlinear development of the Tollmien-Schlichting waves is shown to be of 
a combined resonance, with fundamental resonance observed at the first near­
wall maximum and subharmonic resonance at the second maximum. Breakdown 
to turbulence occurs at the second near-wall maximum. The streamwise in­
termittency distribution is found to follow N arasimha's universal intermittency 
distribution, while Klebanoff's fit in normal direction needs a modification. 

Introd uction 

The transit ion from laminar to turbulent boundary layer flow, subject to small 
free stream disturbances, begins with the generation of instability waves, known 
as Tollmien-Schlichting waves, in the boundary layer. Af ter a region of expo­
nential growth the waves reach a finite amplitude and nonlinear processes set 
in. These processes lead to a local breakdown of the flow and the formation of 
turbulent spots. The length of the transition region is determined by the growth 
rate of the turbulent spots. 

Although linear amplification and subsequent nonlinear processes have been 
verified extensively for zero pressure gradient (ZPG) flow (see e.g. Klingmann et 
al., 1993 and Kachanov & Levchenko, 1984), stability data for flow with adverse 
pressure gradients is still scarce. Recent experiments (Gostelow et al., 1995, van 
Hest et al., 1995) have shown that an adverse pressure gradient dramatical1y 
increases the spot growth rates. 

This paper presents the later stages of development and subsequent break­
down of natural TS-waves in a low-speed boundary layer with adverse pressure 
gradient. We will focus on the growth of the TS-waves and their sub- and 
higher harmonies, the break-down position and the subsequent growth of turbu­
lent spots in the transition region. The obtained experimental data can be used 
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Figure 1: Comparison between measured and Hartree {J = -0.10 pressure distribution 
(left) . Measured and Hartree {J = -0.10 velocity profiles (right). 

to develop more accurate models for the prediction of the transition onset and 
transition length of boundary layers along aircraft fuselage and wings. 

Experimental proeed ure 

The measurements were conducted on the fiat test wall of a closed return wind 
tunnel. Different pressure gradients can be imposed by the fiexible wall op­
posite of the test wall. The imposed pressure gradient (Fig. 1 left) varied 
from nearly neutral over the first 0.75 m, to Hartree f3 = -0.107 further down­
stream. The laminar velocity profiles (Fig. 1 right) , measured in bet ween 
1.070 :::; x :::; 1.320 m, have a shape factor H = 2.82 ± 0.04, which corre­
sponds to a Falkner-Skan profile with f3 = -0.107. The reference velo city was 
Ure! = 10 mis, measured at Xre! = 0.27 m, and the free stream turbulence level 
was Tu = 0.09 %. 

Velocity measurements were performed with Constant Temperature Anemo­
meters with both single and cross hot-wires. At each position at least 1.2 X 105 

samples, depending on the local turbulence intensity in the boundary layer, were 
taken at a sampling rate of Is = 4000 Hz. 

Tollmien-Schlichting wave development 

Linear growth 

The power spectral density was calculated from the discrete time series of the 
fiuctuating velocity signal using the Fast Fourier Transform algorithm and the 
Welch averaging method. The power spectral density P(f) is defined such that 

(1) 
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Figure 2: Measured and calculated TS-wave amplitude distributions at four streamwise 
positions in the frequency band of the most amplified TS-wave. 

The velocity spectra showed a broad maximum in the frequency range be­
tween 50 and 130 Hz, with three discrete peaks (probably caused by larger ini­
tial background disturbances) at f = 69 Hz, f = 90 Hz and f = 109 Hz. This 
frequency range corresponds to the most amplified Tollmien-Schlichting waves 
according to linear stability theory. In the remainder of this paper, we will 
consider only the central maximum at f = 90 Hz. The development of the am­
plitude distribution of the streamwise and norm al velocity fluctuations in the 
frequency band 90 ± 2 Hz is presented in Fig. 2. All the experimental amplitude 
distributions of the streamwise component of fluctuating velocity show a second 
near-wall maximum located at y / 6* ~ 0.9 (close to the critical layer and the 
inflexion point in the velocity profile). This second near-wall maximum is not 
present in the eigen functions calculated on the basis of linear stability theory 
(shown by the solid lines). In an earlier experiment with an APG boundary 
layer (see Wubben et al., 1990), it was suggested that the second maximum was 
due to the effect of nonlinear interactions but no supporting evidence was given. 
Linear stability calculations for oblique Tollmien-Schlichting waves (rust, 1996) 
show that three-dimensional TS-waves have a maximum at the position of the 
second near-wall maximum. Therefore, the experiments suggest that both two­
dimensional and three-dimensional Tollmien-Schlichting waves are present in our 
flow at the same time. 

The amplitude growth of the TS-wave and its subharmonic and higher har­
monies we re followed in the streamwise direction at the height of the first and 
second near-wall maxima (see Fig. 3). The growth of the TS-waves at both 
near-wall maxima agrees well with linear stability theory (solid line) up to 
x = 1.320 m, which is approximately two TS-wavelengths upstream of the onset 
of transition. At the first maximum both the subharmonic and second harmonic 
grow rapidly downstream of x = 1.220 m, where the rms-value in the 90 Hz­
frequency band has an amplitude of 0.1 % of the edge velocity. At the second 
maximum, the subharmonie grows continuously from the first measurement posi­
tion at x = 1.070 m with an enhanced growth downstream of x = 1.270 m (where 
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Figure 3: Amplitude of the subharmonie, fundamental and higher harmonies at the 
first near-wal! maximum (left) and seeond near-wal! maximum (right) . 

urms (90 Hz)/Ue = 0.1 %). Although the subharmonic modes are unstable, their 
amplification rate is much smaller than predicted by linear theory (solid line). 
Secondary instability calculations for subharmonic resonance (rust, 1996) per­
formed for a 2D base profile and 2D eigenfunctions with Arms/Ue = 0.7 % (at 
x = 1.370 m) and oblique subharmonic waves with cp = 60° provide the correct 
growth rate (dotted line). It must be noted, however, that the actual prop a­
gation angle of the oblique subharmonic waves in this experiment is unknown. 

Tollmien-Schlichting wave resonance 

Nonlinear interactions between Tollmien-Schlichting waves with the fundamen­
tal frequency and oblique subharmonics or oblique fundamental waves can be 
regarded as a form of three-wave interaction which causes a constant phase 
difference between the waves involved. As the present experiment considers 
natural Tollmien-Schlichting wave growth, in contrast with vibrating-ribbon ex­
periments, there is no direct method to determine whether a constant phase dif­
ference between the different frequencies exists. Therefore, the use of bispectral 
analysis (see Corke, 1987) has been adopted to determine nonlinear interactions 
between different waves. The bispectrum Bu(h, 12) is defined as 

Bu(Jl,h) = E [ü(h )ü(h)ü*(h + 12)] , (2) 

with ü(J) the Fourier transform, ü*(J) its complex conjugate and E[ ] the 
expectation operator. Because the velocity signal is a real signal and auto­
bispectra are calculated, a number of symmetry relations can be used to reduce 
the frequency plane for which the bispectrum is calculated to the area given by 

o <.5: 12 
12 <.5:h+h 

(3) 



B.F.A. van Hest, H.F. Groenen & D.M. Pass eh ier 75 

The physieal interpretation of the bispectrum is that it measures the degree of 
energy-transfer between to waves of frequencies hand 12 , by which a third wave 
is generated with the sum or difference frequency h = h ± h. Because the 
amplitude of the Tollmien-Schlichting waves, and as a consequence the absolute 
value of the energy transfer, changes in streamwise direct ion it is more interesting 
to determine the normalized bispectrum, called the bieoherence spectrum or 
bieoherence. The bicoherence is defined as a measure for the degree of phase 
locking between two waves. 

(4) 

with 0 :S b~ :S 1. A bieoherence of one indicates aquadratic interaction be­
tween a frequency pair (h, 12), resulting in a third wave with sum or difference 
frequency h. For values in between zero and one a partial interaction takes 
place, whieh means that part of the waves with frequency hare caused by the 
quadratie interaction, whereas the rest are spontaneous oscillations. A value of 
zero at a frequency pair (ft, 12) means that no phase relationship bet ween those 
frequencies is present. Because of the presence of noise in experiment al signais, 
the bieoherence will always be in the range bet ween zero and one. We will speak 
of quadratie interactions when the bicoherence lies above the mean noise level 
plus one standard deviation in the noise level, which is calculated in a part of the 
frequency plane without interactions. We will present the bicoherence spectra, 
with the frequency h fixed (at the Tollmien-Schlichting frequency and its sub­
or higher harmonie), as a function of the second frequency h. 

Special attention must be given to interpreting the bieoherence spectra. 
When a high bicoherence is observed at (h, 12), three possible interactions 
could have taken place, namely (i) the sum or difference frequency results from 
the interaction between hand 12, (ii) hinteracts with the sum or difference 
frequency to give 12, or (iii) h is the result ofinteraction between 12 and the sum 
or difference frequency. When the origin of a mode is known, like in the present 
case where the TS-frequency is known from linear stability theory and frequency 
spectra, this is not a problem. In other cases the order of interacting frequencies 
has to be determined from the streamwise development of the bieoherence. 

From x = 1.270 m to 1.420 m the bieoherence spectra (see Fig. 4) show a 
phase locking between the fundamental frequency h = 90 Hz and its harmonies 
h, 2h, 3h, etc at the first near-wall maximum. Further, a resonance is found 
between two of the three discrete frequencies in the velocity spectra, i.e. inter­
actions bet ween h = 90 Hz and 12 = 69 Hz take also place. These interactions 
produce high levels ofbicoherence at (h,h), (ft + 12,12) and (2h,h) . A sub­
harmonie resonance is displayed at the second maximum. At the first streamwise 
position, the same interactions are found as in the case of the fundamental res­
onance. Further downstream, maxima in the bicoherence appear at (~ft, ~ h), 
(~h, ~h) and at (ft - 12, ~h) and (ft - 12,1 h). One TS-wavelength before 
breakdown, the bicoherence becomes larger at tigher frequencies up to approxi-
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Figure 4: Streamwise development of the bicoherence spectra at the second (upper 
graphs) and first (lower graphs) near-wall maximum, at Llx = 2ÀTS and Llx = ÀTS 
upstream of transition onset and at transition onset , 

mately 4ft. In the transition region the bieoherence continues to spread to higher 
frequencies but the absolute value of the bieoherence is reduced drastieally, first 
at the lowest frequencies and next for the complete frequency domain. 

From the above mentioned results we believe that the measured secondary 
instability of the TS-waves is of a mixed type, in which both the higher harmon­
ies and subharmonies are amplified through a phase-Iocking mechanism. This 
mechanism differs for different positions in the boundary layer. 

Breakdown and intermittency 

At x = 1.420 m the TS waves break up and natural turbulent spots appear 
at approximately the height of the inflexion point. The turbulent spots were 
detected by comparing a detection function, taken as the short time average of 
Id2ujdt2 1, with a threshold level. Next, the velocity record was divided into 
laminar and turbulent regions. The fraction of time that the flow is turbulent, 
i.e. the intermittency " is shown in Fig. 5 left across the boundary layer. 
Klebanoff (1956) presents the following fit to the intermittency distribution for 
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Figure 5: Intermittency distribution across the boundary layer (left graph) in the 
transition reg ion and initial turbulent boundary layer at x = 1.370(0), x = 1.470(*), 
x = 1.570(x), x = 1.670(+) , x = 1.770(0 ) and x = 1.870 m(0 ). Intermittency in 
streamwise direction (right graph), measured at two wall distances (yj8* = 0.2 & yj8* = 
0.9) . 

(Jully developed) ZPG turbulent boundary layers 

(5) 

with Cl = 5.5 and C2 = 6. A modification is necessary to fit this relation to our 
APG turbulent boundary layer (at the, last, turbulent stations). New values are 
given by Cl = 1.3 and C2 = 7.3. It must be remarked that these values depeIi.d on 
the definition of the boundary layer thickness (which is not given by Klebanoff) . 
A second explanation for the difference may be the short distance bet ween the 
turbulent stations and the end of transition. 

Through the transition region the intermittency increases from zero at on­
set to one in the turbulent boundary layer (shown in Fig. 5 right at the wall 
distance of the two near-wall maxima in the Tollmien-Schlichting wave ampli­
tude distribution) . The curve follows the 'universal' intermittency distribution 
as proposed by Narasimha, except at the beginning, which is possibly due to the 
large negative spikes in the velocity signal prior to breakdown. This gives high 
values of J d2u / dt2

J and therefore causes an early detection of small patches of 
' turbulence'. N arasimha's 'universal' intermittency distribution is given by 

(x - Xt)2 
,(x) = 1 - exp [-ntl1 ], 

Ue 
(6) 

with ntl1 = 0.411~, Xt the start of transition and ). = X-y=O.75 - X-y=O.25 a 
characteristic parameter for the length of the transition region . A fit of equation 
6 to the experimental data with ntl1 given by arelation for the spot format ion 
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and growth, nt(J = nt tan a.( Ue/ Ute - Ue/ Ule) (see Chen & Thyson, 1971), results 
in a spot formation rate nt = 1.05 X 103, a spanwise growth a. = 16.5° and 
trailing edge velocityl Ute / Ue = 0.38. These values agree weil with results from 
a triggered turbulent spot experiment with the same loeal pressure gradient (see 
van Hest, 1995). This result gives confidenee in models for the length of the 
transition region based on experiments with triggered turbulent spots. 

Conclusions 

• Linear stability theory provides a good predietion of TS-wave growth. 
• In the present experiments both 2D and 3D TS-waves seem to be present 

in the flow, resulting in measured TS-wave amplitude distributions with 
two near-wail maxima. 

• Phase-Ioeking bet ween fundamental and higher harmonies and between 
fundamental and subharmonies is observed respectively at the first and 
seeond near-wail maxima of the TS-wave amplitude distribution. 

• Breakdown to turbulenee oeeurs at the second near-wail maximum. 
• The normal intermitteney distribution in APG flow needs a modifieation 

compared to Klebanoff's definition. This may dep end on either the defi­
nition of the boundary layer thiekness or the 'state-of-development' of the 
turbulent boundary layer. 

• The streamwise intermitteney distribution agrees with N arasimha's uni­
versal distribution. A fit to the experiment al intermitteney provides spot 
propagation parameters in agreement with triggered spot experiments. 
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Subharmonie K-Regime of 
Boundary-Layer Breakdown 

Abstract 

The paper is devoted to an experimental study of the nonlinear stages of the 
Iaminar-turbulent transition of a 2-D boundary-layer flow close to the Blasius 
flow. The possibility of a realization of some phenomena typical for the K­
regime of boundary-layer transition initiated by subharmonic resonance at very 
late but still deterministic stages of the N -regime of transition are investigated. 
A novel disturbance source was used for the generation of instability waves of 
the necessary frequency and spanwise wavenumber spectrum. In the main part 
of the measurements (case I) the generator introduced a large-amplitude 2-D 
fundament al instability wave and a pair of low-amplitude oblique subharmonics 
with spanwise wavenumbers ±f31/2. The phase angie between the fundamental 
and the subharmonic waves was chosen to be favourable for the subharmonic 
resonance. In this case the transition process is found to begin with a rapid res­
onance growth of the subharmonic modes typical for the N -regime of transition. 
However at late stages of the disturbance development the Iocal behaviour of 
the perturbations at the tips of the A-structures is very similar to the K-regime 
of breakdown with the formation of coherent structures associated with spikes 
in the time-traces of the hot-wire signal. A row of consecutive spikes appeared 
coinciding with the streamwise spacing of the subharmonic wavelength but their 
properties were found to be qualitatively the same as those usually observed in 
the K-regime. 

Introduction 

The nonlinear stage of the laminar-turbulent transition process in a boundary­
layer is the last phase before the final randomisation and breakdown to turbu­
lence. In contrast to the preceding linear stage many aspects of the last stage are 
still unclear. In a relatively short region wh ere the disturbances reach amplitudes 
of the order of 1-2% of the free-stream velocity the flow transforms rapidly from 
a deterministic laminar flow into a stochastic turbulent one. Recent progress in 
the understanding of the nonlinear phase is associated with the recognition of 
the importance of resonance phenomena (for an over view see Kachanov, 1994). 

Two main regimes of the 2-D boundary-layer breakdown have been identified. 
First the K-regime (af ter Klebanoff et al., 1962) and second the N-regime (new 
or Novosibirsk). The former is induced by a fundament al wave with an amplitude 
modulation in spanwise direction leading to the formation of 'peaks' and 'valleys' 
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Figure 1: Sketch of the flow phenomena in the axisymmetric measuring section. 

in the disturbance distribution and the formation of A-vortices in an aligned 
order (Saric et al., 1984). The most characteristic feature of the K-regime is 
the appearance of spikes , i.e. of low speed flashes, at late stages attributed to 
ring-vortices snatched away from the tip of the A-vortices (see Hama & Nutant, 
1963; Borodulin & Kachanov, 1993; Rist & Kachanov, 1995). 

The N-regime is initiated by the interaction of a 2-D fundamental wave and 
a pair (or more) of oblique subharmonic waves (Kachanov et al., 1977; Kachanov 
& Levchenko, 1984). The phase angle bet ween them has to be favourable for a 
parametric resonance which leads to a rapid amplification of the subharmonic 
amplitude and to the formation of A-vortices in a staggered order. The break­
down of the A-vortices in the N -regime is characterised by a gradual broadband 
filling of the disturbance spectrum but the formation of spikes as in the K-regime 
has not been observed experimentally (e.g. Corke & Mangano, 1989). However, 
Laurien & Kleiser (1989) indicated the possibility that the breakdown of A­
vortices in the N -regime can probably occur in the same way as in the K-regime 
if the initial amplitude of the subharmonic is high enough (for discussion see also 
Kachanov, 1994). 

Experimental set-up and procedure 

The experiment was conducted in the Laminar Wind Tunnel of the Hermann­
Föttinger-Institute in Berlin. It is a closed-cÎrcuit tunnel with an axisymmetric 
test section made of Plexiglas tubes with an inner diameter of 441 mm and a 
totallength of 6000 mmo The boundary-layer of the nozzle is blown out and the 
boundary-layer under investigation develops downstream at the elliptic leading 
edge of the test section. All measurements are made at the inner wall of the 
Plexiglas tube as illustrated in Fig. 1. 

A ring shaped disturbance source (based on the experiment al experience of 
Gaponenko & Kachanov, 1994) was inserted between the measurement sections 
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to excite the flow. The source consists of a slit in the wall with 0.5 mm width and 
260 mm length in spanwise direction. The slit is connected to loudspeakers via 
32 plastic tubes with a spanwise spacing of 8 mmo Time-periodic volume fluctua­
tions are produced by an excitation system consisting of a micro-computer, DA­
converters , amplifiers and loudspeakers. The ring with the disturbance source 
can be rotated to vary the spanwise position (z-direction) relative to the hot-wire 
probe. 

A constant-temperature hot-wire anemometer with linearizer was used to 
measure the streamwise component of the time-mean and fluctuation velocities 
U and u. The hot-wire of 5 J.lm diameter and 1 mm active length is mounted on 
an x-y traverse. The hot-wire signal is sampled and analysed with a Tektronix 
Fourier analyser in a way that phase locked ensemble averaged or instantaneous 
time-series triggered by the excitation signal were stored. The amplitude and 
phase values of the waves were determined by a Fourier transformation of the 
time series. 

The free-stream velocity Uoo was fixed at 7.2 mis resulting in a Reynolds 
number of R e,51 =785 at the position of the disturbance source (x=547 mm, 
Llx = 0 mm). The mean flow distribution U(y) in the boundary-layer was close 
to that of a Blasius profile despite the slight favourable pressure gradient due to 
the growth of the boundary layer in the test section. The free-stream turbulence 
intensity was below Tuoo =0.08% in a frequency range between 0.1 and 1000 Hz. 

The boundary-layer was excited through the slit in the wall with a two­
dimensional fundamental wave and/or a pair of three-dimensional oblique sub­
harmonie waves . The fundamental frequency was 1=62.5 Hz corresponding to a 
nondimensional frequency parameter F = 27r Iv / U,! = 115.5 . 10-6 at the posi­
tion of the source. The subharmonic spanwise wavenumber was 
f31/2 = ±27r /32 mm = ±0.196 rad/mmo 

Four eases of excitation were investigated: 

Case I : A 2-D fundamental instability wave with large amplitude Al and 
phase angle <PI and a pair of oblique subharmonics with low amplitudes 
AI/2' phase angle <PI/2 and spanwise wavenumber ±f31/2. The phase angle 
between the fundamental and the subharmonie waves was chosen to be 
favourable for subharmonie resonance according to earlier measurements 
(Kachanov & Levchenko, 1984). 

Case 11 : Only the pair of oblique subharmonic waves with the same spanwise 
wavenumber ±f31/2 and the same low amplitude as in case 1. 

Case 111 : Only the 2-D fundamental wave with the same amplitude as In 

case 1. 

Case IV : The same as case I but with the phase angle bet ween the fundamental 
and the subharmonic waves opposite to the resonant case. 

The initial eonditions at 50 mm downstream of the source are shown in Fig. 2. 
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Figure 2: Initial Conditions of the excitation at 50 mm downstream of the source. 
(a),(b) spanwise distribution. Amplitude (c) and ph ase (d) of the fundamental wave. 
Amplitude (e) and phase (f) of the subharmonie wave. 

Experimental results 

The downstream development ofthe instability waves is shown in Fig. 3. In case I 
an exponential growth of the 3-D subharmonic waves was observed and the phase 
angles (calculated in degrees of the fundamental period) of the fundamental and 
the subharmonic waves show a synchronisation i.e. they have the same phase­
velocity. This is the main condition for the existence of three-wave nonlinear 
resonance and in particular of the parametric resonant amplification (Craik, 
1971; Herbert, 1984). 

In case U the subharmonic amplitude decreases downstream according to 
linear stability theory (outside the neutral stability curve). 

The fundamental amplitude in case IU behaves in the same way as in case 
I and IV. This shows that it is not influenced by the nonlinear interaction with 
the subharmonic wave and plays only a 'catalytic' role in the whole process (e.g. 
Herbert, 1988; Kachanov, 1994). 

In case IV when the initial phase shift between the fundamental and the 
subharmonic wave was introduced opposite to the resonant case (I) the ampli­
tude of the subharmonic attenuates initially even faster than in case 11. This 
is followed by a slight growth of the subharmonic amplitude probably because 
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Figure 3: Downstream development ofthe instability waves at a spanwise position where 
the subharmonie amplitude has a maximum and at yj81=O.7. (a), (b) Amplitudes. (c) 
Phase angles. 

of an amplification of a very small but remaining resonant component of the 
subharmonics. 

The resonant growth of the subharmonic waves results in an intensive span­
wise modulation of the flow with formation of 'peaks' and 'valleys' with a span­
wise distance 7r / f31/2 . In Fig. 4 the typical A-shap~d disturbance structure can 
be seen in a staggered order characteristic of the N -regime or subharmonic type 
of boundary-layer breakdown. The A-vortices are inclined to the wall and show 
st rong vorticity concentration in the "legs" and at the "tip" . Thus until this stage 
of the transition development we find all typical attributes of the N -regime of 
breakdown which are well known from previous experimental and theoretical 
studies. At the same time, the subsequent development of disturbances turned 
out to be qualitatively the same as in the K-regime. In particular as shown in 
Fig. 5, in the peak positions the first, second, third and so on 'spike', and other 
phenomena typical for the K-regime (Klebanoffet al., 1962) were observed fur­
ther downstream. No significant differences in the disturbance behaviour ne ar 
the peak position we re found bet ween this late stage of the N -breakdown and the 
eorresponding stage of the K-breakdown exeept for the order of the A-structures 
and the frequeney of their passing by. Consequently, we ean speak of a "conver­
genee" of meehanisms of the N - and K-breakdown at late stages of disturbanee 
development, meaning a qualitative similarity ofthe loeal proeess near the planes 
of symmetry of the A-structures. 
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Conclusions 

The N -regime of the boundary layer transition is reproduced under controlled 
disturbance conditions by the excitation of a 2-D fundamental wave and a pair 
of 3-D subharmonics. It is shown that introduced separately modes are stabie 
or close to neut rally stabie and transition (N -regime) occurs only w hen the 
conditions for subharmonic resonance are satisfied. In this case detailed hot-wire 
measurements show the formation of A-structures in staggered order with the 
subharmonic frequency as observed in other studies of the N-regime. However, 
the further disturbance development was found to be qualitatively the same 
as usually observed in the ot her regime of breakdown - the K-regime. That 
is namely the formation of typical ~-wing shaped 3-D high-shear layers and, 
especially, the formation of a first, second, third, etc. spike in the peak position 
of the A-structures. 

The results testify that at late stages of the N -breakdown local physical 
mechanisms of the nonlinear disturbance development are qualitatively the same 
as those characteristic of the K-regime of transition. 
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Investigation of Active Control of 
Tollmien-Schlichting Waves on a Wing 

Abstract 

Experiments we re performed to delay the laminar-turbulent transition on a wing 
by means of active wave cancellation. For this purpose an active wave control sys­
tem (AWC) was integrated in the instability region of an unswept airfoil (NACA 
0012; c = 800 mm; Ree = 0.8.106). Natural 2D flow instabilities were sensed 
by a surface hot-film-probe, a downstream located actuator (suctionjblowing 
slot) was used to produce a cancelling wave and a further downstream located 
hot-wire was used to obtain a quality signal of the cancellation process. The 
sensor-actuator system was operated by a DSP controller (Digital Signal Proces­
sor) running an LMS adaptive FIR filter algorithm which performs a feedforward 
control of the cancellation process. In the experiments, an attenuation of 'natu­
ral' broadband TS-waves of 12 dB up to 25 dB was observed at the downstream 
located error sensor. The highest attenuation rates were obtained when 'natu­
ral' instability waves were periodically pre-triggered very lightly by a second 
suctionjblowing slot upstream of the AWC system. 

Introd uction 

Several methods are known to delay the laminar-turbulent transition of boundary 
layers. These methods can be divided into those which modify the mean velocity 
profile, such as a negative pressure gradient, suction through the wall or wall 
cooling in air (wall heating in water) and those which directly influence unstable 
oscillations dynamically using a wave superposition principle. The linear stability 
theory of laminar boundary layers suggests the possibility to cancel or to reduce 
naturally occurring instability waves with artificially excited waves due to linear 
wave superposition. 

In several experiment al and numerical investigations the feasibility of ac­
tive wave cancellation has been verified, but mainly under simplified test con­
ditions such as artificially induced sinusoidal TS-waves instead of randomly oc­
curing natural waves. The basic experiment al works of Milling 1981, Liepmann, 
Nosenchuck & Brown 1982a, 1982b, Thomas 1983 and Gilev & Kozlov 1985, 
1987 have clearly shown the feasibility of cancelling artificially induced sinusoidal 
TS-waves in flat-plate experiments in water and air by means of flush mounted 
vibrating ribbons, heating strips or periodic suction and blowing through a small 
slot in the wall. Pilipenko & Shapovalov 1987 were able to reduce 'natural' TS­
waves by pure sinusoidal blowing and suction through a slot on a wing. Advanced 
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attempts to cancel artificially induced broadband TS-waves using feedforward 
control devices were made by Ladd 1988 on an axisymmetric body with strip­
heaters in water, and by Pupator & Saric 1989 on a flat plate employing vibrating 
ribbons. In both works a very good success in reducing the disturbance levels 
was reported, e.g. in the work of Pupator & Saric the disturbance level could be 
reduced by an order of magnitude when compared to the case without control. 
Later experiments of Ladd 1990 indicated an amplitude reduction of natural TS­
waves by approximately 50 % using a simplified feedforward controller compared 
to his previous work (Ladd 1988) and a suctionjblowing-actuator instead of the 
strip-heater. 

Experiments without artificial excitation of instability waves are generally 
described as conducted under natural conditions, but it is weIl known that results 
of such sensitive transition experiments are influenced by disturbances present 
in the wind- or water tunnel used. Hence, the experiments presented here and 
which are described in detail in Baumann & Nitsche 1995, can also be classified 
as conducted under 'natural' conditions. A special case with artificially pre­
triggered TS-waves is also presented. 

Experimental apparatus 

The sensors and the actuator for active TSwave con trol were located in the 
instability region of an unswept NACA 0012 wing with a chord of c = 800 mmo 
The experiments were carried out at a velocity of Uoo = 14.5 mjs (Ree = 0.8.106 ) 

in a small closed test section of a wind tunnel at the Institut für Luft- und 
Raumfahrt of the Technical University Berlin. The freestream turbulence level 
was approximately 0.2 %. The angle of attack was chosen as a = 0.36° with 
respect to wall effects in the test section. The adverse pressure gradient obtained 
I::!.cpjl::!.x = 0.6 (CPO.2 = -0.67,cpO.5 = -0.49) corresponds to higher angles of 
attack under real freestream conditions. 

The principle of the active wave control system used on the wing is shown 
in Fig. 1. The perturbations (TS-waves) are sensed by the first sensor (flush 
mounted hot-film probe) and from this signal an adaptive controller generates 
a driver signal for the actuator located downstream (xjc = 0.43) to produce an 
appropriate cancelling wave. The actuator is based on the principle of periodic 
blowing and suction through a small slot. The actual cancellation effect takes 
place over a few wave periods downstream. The error sensor (hot-wire probe) 
delivers a quality or error signal for the optimization or adaptation of the con­
troller in order to achieve a minimum of residual disturbances. The adaptive 
controller performs a closed loop control due to the continuous adaptation of the 
unknown transfer function bet ween the perturbation signal and the best possible 
cancelling signalof the actuator. 

The location of the disturbance sensor (surface hot-film probe) was chosen far 
enough from the actuator to prevent an upstream coupling, which would disturb 
the adaptation process of the controller (Fig. 1). Additionally small piezofoil­
sensors (Nitsche, Mirow & Szodruch 1989) have also been tested as disturbance 
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Figure 1: Principle sketch of the developed AWC-System on the NACA test wing. 

sensors, but they react more sensitively to upstream coupling due to acoustic 
effects, which can be observed especially when the adaptation process is not 
completely finished (Baumann & Nitsche 1995). 

The location of the hot-wire error sensor had also to be chosen carefully. It 
was necessary to keep a certain relaxation distance from the actuator until a 
homogeneous residual disturbance remains in the boundary layer. Originally, 
fiush mounted hot-film- and piezofoil sensors we re too close to the actuator, 
thus making the wall fixed hot-wire necessary. The wall distance of the hot­
wire was chosen approximately to measure the maximum of the u'-fiuctuations 
across the boundary layer. Both sensors were operated in constant-temperature 
mode (eTA) and their signals were digitalized by A/D-converters of the adaptive 
control device. 

The actuator (Fig. 2) employed consists of a row of small loudspeakers 
moving the air in a specially shaped cavity which ends as a small slot (0.3 mm 
wide) in the wing surface and produces a v' velocity component. The chosen 
geometry combines the advantages of a minimal volume of the wedge shaped 
cavity and an equalizing effect on differences in the power of any loudspeaker. 
This results in a good dynamic response of the slot-actuator and in very low 
deviations in the perturbation velocity v' along the slot . It is known that wedges 
of 3D-disturbances develop downstream from the lateral ends of the 80 mm 
long slot, thus only a small area of controlled 2D-disturbances downstream of 
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Figure 2: Principle of the suction/blowing-slot actuator . 

the mid region of the slot remains. A second actuator (120 mm long) was 
located upstream (xJc = 0.25) of the main sensor-actuator system to enable 
simplified test conditions with artificial perturbations (excitation with random 
noise or sinusoidal signais) during the pre-tests of the AWC system. 

Adaptive controller 

In general, a controller for a sensor-actuator system has two primary functions: to 
find the time delay between the sensor signal and the actuator signal with respect 
to the relevant group velocity of the TS-waves and to find the amplification 
bet ween the signals in order to achieve the best cancellation. Thus, a controller 
has at least to adapt the delay time and the amplification factor. Ladd 1990 
reported an approximately 50 % reduction of 'natural' TS-waves with such a 
controller. In some preliminary experiments similar values were reached with 
a very carefully adjusted so-called 'Delay & Amplify' device. In ot her previous 
flat-plate experiments we indicated some fluctuations of the group velocity of 
TS-waves and we further assume that local receptivity effects at the boundary 
layer actuator and the actuator itself also include nonlinear effects. For these 
reasons it would be valuable to have a controller which is able to cover most of 
the still unknown effects with a very fast self adapting transfer function. 

Much recent research handles similar problems in active noise control (ANC) 
applications with modern DSP-based (Digital Signal Processor) electronic de­
vices. The problem of active wave control (AWC) is quite different, but similar 
tools can be used (Bellanger 1987, Elliott 1993). Especially, the relatively long 
travel times of TS-waves over the sensor-actuator system require a more com­
plicated controller design. On the other hand the long travel times give enough 
computing time to model the transfer function more precisely. Fig. 3 shows a 
block diagram ofthe implemented feedforward control algorithm, called 'filtered­
x-LMS'. The physical transfer function bet ween the disturbance sensor and the 
actuator (Path 1) is modelled by FIR-filter 1 (Finite Impulse Response). The 
filter coefficients are derived through an instantaneous adaptation by an LMS­
algorithm (Least Mean Square) in order to minimize the signal ofthe error sensor, 
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Figure 4: Amplitude spectra of the first and second path FIR filter . 

and so minimize the mean square of the error signal. The high time delay be­
tween the actuator signal and error signal requires a second FIR-filter 2 to build 
an internal model of the physical signal path from the actuator to the error sen­
sor (Path 2) ensuring the convergence of the LMS-algorithm. So the disturbance 
signal is filtered and multiplied by the error signal to generate a filtered reference 
signal for the LMS-algorithm, which explains the name: 'filtered-x-LMS'. The 
FIR-filter 2 can be adapted in a pre-training phase by sending random noise to 
the actuator. In the configuration used each filter vector has 300 coefficients and 
a sampling rate of 8 kHz was chosen. This means that the whole filter vector of 
FIR 1 was varied within one sampling period. 

The special value of having a fast adapting LMS-algorithm is that the filter 
coefficients keep moving and thus result in the ability to actually build a more 
precise transfer function than a weIl adapted statie FIR-filter would be able to 
do. In consequence the huge amount of fast calculations requires a sophisti-
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Figure 5: N-factors against frequency at xjc = 0.5 (calculation from DASA Bremen). 

cated RISC processor like a digital signal processor (DSP). For this reason a 
fifty megaflop DSP with 16 Bit A/D- and D / A-converters programmed in as­
sembly language was used. The typical convergence time (full adaptation of FIR 
1 from zero state) was one minute. Nevertheless the adaptation can follow small 
fluctuations such as small changes in the angle of attack within increments less 
than a second, because of the high update frequency. The obtained frequency 
responses of the adapted filters look very nonuniform. Fig. 4 shows such ampli­
tude spectra of both adapted FIR-filters. They could be of theoretical interest 
as numerically found transfer functions, but they also include the properties of 
sensors , the actuator and their amplifiers. Both filters also have a group delay 
which corresponds to the expected group velocity of the TS-waves. 

Stability of the laminar boundary layer 

U sing the slot-actuators, it was possible to excite very clean sinusoidal TS-waves 
(excitation by 30 dB of the single frequency above the background perturba­
tions), indicated by the sensors. This made it easy to measure the frequency 
response bet ween the excitation signalof the first actuator and the hot-film sig­
nal in a sine-sweep procedure to indicate the instability frequency range. Fig. 
5 shows a comparison bet ween calculated data (performed by DASA Airbus 
Bremen) and the measured frequency response, scaled as N-factors over the ex­
citation frequency at the hot-film location x/c = 0.5. The experiments had to be 
performed with a reduced angle of attack of a = 0.36° compared to the earlier 
planned and calculated case with a = 1.0°, which could almost entirely explain 
the difference of the two curves. The second actuator shows a similar behaviour 
to the first one, except that the boundary layer reacts much more unstably on 
excitation at the second actuator location. For a = 1.0°, the hot-wire already 
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Figure 6: Time traces of the sensor-actuator system without and with control (AWC) . 

indicates a st rong non-linear stage of the 'natural' instability waves, hence the 
unsuitability of this case for cancellation experiments . 

Results of active wave control 

During the development phase of the described AWC-system on a wing many 
simplified pre-tests with artificially excited perturbations were conducted. The 
results presented, however, will only illustrate the performance of the system 
under 'natural' flow conditions. Fig. 6 shows two sets of three time traces 
in downstream order (disturbance sensor, actuator, error sensor). The left set 
indicates large disturbances at the error sensor , when the actuator is switched 
off. It can be recognised that some signal peaks correspond to each other and 
are marked in the figure. The right set shows the three traces when operating 
the active control device. The signalof the error sensor indicates a significant 
amplitude reduction of the residual perturbations compared to the case without 
control. The actuator signal looks similar to that of the disturbance sensor. 
Characteristic peaks are also marked, indicating different delays fr om sensor to 
actuator and actuator to error sensor, which correspond to the different distances. 

A comparison of the averaged power spectra of the error sensor signal (with 
and without AWC) gives a detailed view of the attenuation performance. Fig. 7 
shows the power spectra of one of the best obtained damping results. It shows 
amplitude reductions between 10 dB and 15 dB in the instability frequency 
range from 200 Hz to 500 Hz. A characteristic value can be found with 12 dB 

file:///o.015
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Figure 7: Power spectra of the error sensor with and without AWe, 'natural case', 

at 330 Hz. Much higher differences are reached from 800 Hz to 1000 Hz, which 
is outside the unstable frequency range and therefore is easier to cancel. 

A critical view on the spectra shows why the test conditions have to be clas­
sified as quasi natural or even "naturai" . Especially, the two peaks (at 315 Hz 
and 630 Hz) in the spectra of Fig. 7 and also of Fig. 8 obviously result from 
disturbances of the wind tunnel. The AWC-system shows its best performance 
when reducing peaks in the disturbance spectra, like that at 315 Hz. This de­
pends on the LMS-algorithm and is also known from ANC-applications. As a 
consequence of this a further experiment was performed with an artificial sinu­
soidal excitation on the first actuator with a frequency of 344- Hz, which marks 
the centre of the unstable frequency range. The amplitude was chosen carefully 
so that the signalof the first sensor indicated almost no change in amplitude but 
seemed to be more uniform, which looks as though it was triggered periodically. 
Under these conditions bet ter cancellation effects we re observed. The averaged 
power spectra of Fig. 8 indicate an attenuation bet ween 15 dB and 25 dB. It 
is to be noticed that an excitation peak at 344 Hz can not be recognized. So it 
seems to be possible to force a random instability wave with a very small addi­
tional artificial excitation to a more uniform 2D-state which is easier to cancel. 

Conclusions 

Airfoil experiments employing AWC (Active Wave Control) have been success­
fully conducted. In particular it has been demonstrated that an LMS adaptive 
FIR-filter (filtered-x-LMS algorithm) in conjunction with a suctionjblowing-slot 
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Figure 8: Power spectra of the error sensor with and without AWe, artificially triggered 
(sine , f = 344 Hz). 

actuator has the ability to reach very high cancelling effects on 'natural' TS­
waves. Amplitude reductions from 12 dB up to 25 dB compared to the case 
without AWC we re observed. This is equivalent to damping factors of 4 up to 
18 or expressed as 'negative N-factors' by N = -1.4 up to N = -2.8. It is of 
particular interest that the highest attenuation was obtained in case of an arti­
ficial triggering of the 'natural' instability waves. This can be explained by the 
fact that natural instability waves, when artificially 2D-triggered, become less 
random and probably are forced to a clean 2D-development. In addition, the 
FIR-filter of the controller can be more precisely adapted to pre-triggered per­
turbations by the LMS-algorithm and hence cancels TS-waves more effectively. 

Questions concerning local effects of the cancellation process and especially 
concerning the artificial triggering still remain unanswered in this work. But 
the results obtained give a good basis for further investigations in future work. 
Especially, active control of artificially pre-triggered 2D-waves (TS-waves) could 
be a promising research field to understand the local mechanism of such a 'TS­
loek-in effect'. It is also of interest to study experimentally whether the method 
can be used to cancel 3D (primary, secondary) instabilities. 
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99 

Starting with the work of Fasel (1976), the research group at the University of 
Stuttgart has developed numerical methods for the realistic Direct Numerical 
Simulation of controlled laminar-turbulent transition in boundary layers using 
the spatial model. This paper presents results of K-type transition simulations in 
zero and adverse pressure gradients. Subsequently it is shown that such simula­
tions can also be used for boundary layers in 'real-life' aeronautical applications, 
such as airfoils. For such a flow, the influence of steady suction at the wall is 
investigated and compared with experimental data. 

Introduction 

Laminar-turbulent transition in boundary layers plays a significant role in many 
practical applications. For instance, delaying the onset of transition on an air­
craft wing reduces the skin friction drag, thus decreasing the fuel consumption 
of the airplane. Airfoils with a large portion of laminar flow based on a design 
that avoids st rong adverse pressure gradients are only feasible for small aircraft, 
operating at relatively low Reynolds numbers where no wing sweep is necessary. 
Larger and faster air cr aft need laminar flow control (LFC) devices to enforce 
laminar flow. Designing and optimizing such devices undoubtedly requires a 
good knowledge of the transition mechanisms. 

Transition in boundary layers is a spatially evolving complex process influ­
enced by many parameters, such as free-stream turbulence, Reynolds number, 
pressure gradient, etc. In order to reduce the number of these parameters, tran­
sition research has focussed on so-called 'controlled ' transition in simple model 
flows, like, for instance, the flat-plate boundary layer. In such experiments, some 
kind of a wave maker is used to excite disturbances in the boundary layer. The 
streamwise evolution of these disturbances is then examined using, for instance 
flow visualization and hot-wire measurements. 

In addition to experimental and theoretical work, Direct Numerical Sim u­
lations (DNS) based on the solution of the complete Navier-Stokes equations 
have played an increasingly important role in transition research during the past 
decade. The basic approach is similar to that ·of controlled experiments. Some 
regular perturbations are introduced into the integration domain, and their sub­
sequent unstable, nonlinear development is computed. Two basically different 
kinds of numerical models have been used until the beginning of the 1990s, the 
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'temporal' and the 'spatial' model. The advantages and disadvantages of both 
models are not reviewed here, they have already been discussed elsewhere (cf. 
Fasel, 1990, Kleiser & Zang, 1991). 

In the spatial model the streamwise evolution of disturbances is simulated in 
a fixed integration domain extending over a large downstream distance. With 
this model, realistic simulations of controlled experiments are possible, even in 
flows with large streamwise gradients including feedback by local flow reversal. 
However, elaborating a properly working numerical method for this model is a 
difficult task due to the boundary conditions and high demands on numerical 
stability and accuracy. 

Today, the computationally less demanding temporal model with its under­
lying unphysical assumptions has been widely supplanted by the spatial model. 
The numerical results obtained by the research group of H. Fasel at the Univer­
sity of Stuttgart, for instance, compare favourably weIl with available theoretical 
and experiment al data. The vibrating-ribbon experiments of Kachanov (1987) 
for the fundamental breakdown in a Blasius boundary layer simulated by Rist 
and the nonlinear development of a three-dimensional wave packet according to 
the wave-packet experiments by Gaster & Grant (1975) simulated by Konzel­
mann proved to be the first successful DNS of controlled transition experiments 
using the spatial approach (see Fasel, 1990). 

This paper presents some results of two of the major investigations performed 
in the past several years at the University of Stuttgart: K-type transition in 
boundary layers with zero and adverse pressure gradient. It is then shown that 
these simulations can be easily extended to LFC studies in boundary layers of 
'real-life' airfoils including suction at the wall. 

Numerical model 

The latest version of the DNS-scheme originally developed by Fasel (1976), ex­
tended to three-dimensions by Fasel et al. (1990), improved by Kloker et al. 
(1993) and by Kloker (1993), is described here. Only a general outline of the 
numerical model is given; details are available in the mentioned references and in 
Rist & Fasel (1995). Many of the basic features of our numerical scheme (distur­
bance flow formulation, 'relaminarization zone' at the outflow boundary, forcing 
at the waIl, pseudo-spectral formulation, high-order finite difference discretiza­
tions, explicit time integration, etc.) are equally applicable for other flows, like 
separated flows, free shear layers, compressible boundary layers, 3D boundary 
layers, and Taylor-Couette flow, for example. 

The basic configuration of the integration domain for boundary layers is rela­
tively simpie. As shown in Fig. 1, a finite rectangular box is selected to represent 
a certain region of the flow over a flat plate. The integration domain extends in 
stream wise direction fr om x = Xo to x = X N, covering typically more than ten 
Tollmien-Schlichting wave lengths, and Yu is chosen to cover approximately three 
boundary layer thicknesses (6) at the out flow boundary. In the spanwise direc-
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tion, the flow is assumed to be periodic with a ehosen fundamental wavelength 
Àz. 

Governing equations 

The numerical method is based on the three-dimensional Navier-Stokes equations 
for ineompressible flow in vorticity-velocity formulation. The vorticity eompo­
nents are denoted by wx , wy and W z , and u, v and ware the velocity components 
in the x, y and z direetions, respectively (see Fig. 1). 

The equations are split into a set of equations for a two-dimensional steady 
base flow and a three-dimensional disturbanee flow, i.e., for all variables f = 
[u, v, .. . , wzl we have f(x, y, z, t) = fB(X, y) + f'(x, y, z, t). This allows the eal­
culation of different base flows by preseribing different free-stream velocity dis­
tributions without altering the boundary eonditions for the ealeulation of the 
disturbanee flow. Thus, for investigations of the effects of different streamwise 
pressure gradients or steady suetion at the wall, only a new base flow needs 
to be computed and specified for the ealeulation of the disturbanee flow. The 
base flow is ealeulated from the 2D Navier-Stokes equations, i.e., one vorticity­
transport equation and two Poisson equations for the velocity components. The 
disturbanee flow is deseribed by three vorticity-transport equations and three 
Poisson equations for the veloeity components. The detailed set of equations 
ean be found in Fasel et al. (1990), Kloker et al. (1993) or Rist & Fasel (1995), 
for instanee. 

Boundary conditions 

An arbitrary streamwise pressure gradient ean be imposed on the base flow by 
preseribing the streamwise velocity distribution Ue ( x) of the external flow at the 
free-stream boundary of the base flow calculation. Three different base flows 
are eonsidered in this paper, one with Ue(x) = 1 (Blasius boundary layer), one 
with Ue ( x) = (x / xo)-O.0826 (strongly deeelerated Falkner-Skan boundary layer 
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with Hartree parameter f3H = -0.18), and one where Ue(x) is taken from an 
experiment to represent the velocity distribution of an airfoil. In any case the 
vorticityat the free-stream boundary is set to zero and aVB/ay = -dUe/dx is 
specified for the calculation of VB. 

At the inflow boundary, Falkner-Skan profiles (= Blasius profiles for f3H = 0) 
corresponding to the imposed distribution of the streamwise pressure gradient 
are specified for the base flow variables. For a flow that does not belong to the 
Falkner-Skan family, as the airfoil boundary layer for instance, the streamwise 
velocity component UB(y) is taken from the Falkner-Skan velocity profile cor­
responding to the local pressure gradient and the local dis placement thickness. 
Then, the VB(Y) profile is integrated by using the continuity equation. At the 
outflow boundary, all equations are solved neglecting the second derivatives with 
respect to x, i.e., the equations are parabolized in the streamwise direction. At 
the wall, the velocity components are zero, except for the suction strip. The 
effect of suction through a porous strip is simulated by prescribing a normal 
velocity distribution VB,O( x) at the wall as sketched in Fig. l. 

A detailed description of the boundary conditions used for the calculations 
of the three-dimensional disturbance flow is given by Fasel et al. (1990), Kloker 
et al. (1993), and rust & Fasel (1995). At the wall, all disturbance velocity 
components are zero, except within the disturbance strip, where the normal ve­
locity component v:U can be prescribed as a function of x, z, and t in order to 
introduce controlled time-periodic 2-D and 3-D disturbance waves. At the free­
stream boundary, vanishing vorticity fluctuations and an exponential decay of 
the velocity disturbances are assumed. At the inflow boundary, all velocity and 
vorticity disturbances are set to zero. A harmonic wave condition in x-direction 
is applied at the outflow boundary. In addition, an artificial suppression of dis­
turbances is introduced in the 'relaminarization zone' upstream of the outflow 
boundary (see Fig. 1) to substantially reduce the disturbance level at this bound­
ary (cf. Kloker et al., 1993 for details). Thus, possible undue reflections caused 
by large amplitude, broad-band disturbances passing the outflow boundary are 
prevented. 

Numerical method 

For the numerical solution of both the base flow and the disturbance flow equa­
tions a fourth-order accurate finite-difference discretization is employed in the 
streamwise direct ion and normal to the wall, which allows for a proper treatment 
of the effects of the spatially varying boundary layer. The discretization in the 
spanwise direction for the disturbance flow is done by using a Fourier series 

K 

f'(x, y, z, t) = L Fk(X, y, t) eik'Yz 
k=-K 

(1) 

to exploit the periodicity with respect to z, where the complex Fk = [Uk, Vk, . .. , 
f2 zkl represent all disturbance variables in spectral space, and I is the basic 
spanwise wavenumber defined by I = 211"/ Àz. 
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For the base flow, the vorticity- transport equation is integrated by a semi­
implicit Euler scheme in artificial time until convergence to a steady state is 
achieved. For the disturbance flow, the integration in time is performed by an 
explicit four-stage Runge-Kutta scheme offourth-order accuracy. The time inte­
gration is coupled with a fourth-order accurate discretization of the x-convection 
terms using central, upwind, downwind, and again cent ral finite differences in 
each of the four stages, respectively. The sequence of upwind and downwind 
differences is altered for every time step. It can be shown that this technique ef­
fectively damps out small-scale oscillations that cannot be accurately discretized 
on a given grid at no additional computational cost (Kloker, 1993). The Vk­
Poisson equation is solved with a multi-grid method using SOR line iteration 
technique (LU-decomposition in y, iteration in x). The equations for Uk and Wk 
are reduced to ODEs and directly solved. 

Numerical results 

As already stated, the numerical simulation is performed in two steps. First, 
the steady two-dimensional base flow is calculated, i.e., a boundary layer under 
combined effect of streamwise pressure gradient and local suction through a nar­
row su ct ion strip (if necessary). Second, two- and three-dimensional disturbance 
waves with pres cri bed frequency and amplitude are introduced into the domain 
by periodic blowing and suction through a narrow disturbance strip at the wall 
(shown schematically in Fig. 1). Af ter several periods offorcing, the streamwise 
evolution of these disturbances can be observed in the unsteady numerical results 
like in a wind tunnel experiment. 

Using periodic disturbance input, a periodic wave train is generated which 
travels downstream as sketched in Fig. 1. The numerical method was carefully 
validated by extensive comparisons with results from linear (spatial) stability 
theory, secondary instability theory and experiments (Fasel et al., 1990). 

K-type transition 

DNS of the K-type controlled transition experiments by Kachanov et al. (1985) 
have been performed by Rist (cf. Rist.& Fasel, 1995), using K = 8 in equation 
(1), and extensively compared with the available experimental data (Kachanov, 
1987 & 1994). In order to document the good agreement of the DNS with the 
experiments, new comparisons for later stages of transition are shown here in 
Figs 2 to 4 using data computed by Kloker (1993) with K = 15. 

In Fig. 2, u'-rms amplitudes are shown together with amplitudes (Ah) and 
phases (4)h) from a Fourier decomposition ofthe x-velocity component u(x, y, z, t) : 
L:h Ah(x, y, z) cos[hftt - 4>h(X, y, z)], where ft is the fundamental disturbance 
frequency. The direct quantitative comparison of the DNS results with experi­
mental data for fj = 4 mm at the spanwise 'peak' and 'valley' stations in Figs 2(a) 
and 2(b) shows excellent agreement. It should be noted here that only the dis­
turbance amplitudes of the 2D TS-wave and its spanwise modulation at the 
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surements by Kachanov et al. (1985), h = disturbance frequency. 
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Figure 3: Comparison of phase speeds Cr with mean-velocity ti and spectral amplitudes 
B for various frequency-spanwise-wave-number modes (h,k). a. x = 350 mm; b. x = 
410 mmo 

disturbance strip placed at x = 250 mm we re adjusted in such a way that the 
experimental amplitudes at x = 300 mm were closely met . 

Two regions can be distinguished in the results for the 'peak' station: a rather 
modest weakly nonlinear disturbance development upstream of x ~ 430 mm, 
followed by a highly nonlinear region with several 'spikes' per disturbance cycle. 
The sudden increase of the peak rms- and higher-harmonie amplitudes is due 
to these spikes which are cut for x 2: 430 mmo Figs 2( c) and 2( d) show a 
quantitative comparison of the amplitude and phase profiles, respectively for 
the highly nonlinear 'two-spike stage' at x = 450 mm which also exhibits a 
remarkable agreement. The first spike is situated bet ween y/Ól = 2.4 and 2.8 
(ij ~ 4 mm) where the phases are equal to 1800 due to their normalization with 
respect to the passage of the first spike. 

In Figs 3 and 4 the disturbances are examined in the frequency-spanwise­
wave-number spectrum defined by u(x, y, z, t) = I:h I:k Bh,k(X, y) cos[k,z-hiIt­
lh,k (x, y)]. The phase speeds Cr h,k = h 11/ ( {}(h,k / OX ) ofthe modes (h, k) in Fig. 3 
exhibit new, interesting features. Upstream of x ~ 400 mm, the phase speeds 
versus y are practieally constant and all modes are phase-locked to the 2D wave. 
Thus, the disturbances show 'wave-like' behaviour and the flow field in this stage 
is defined by nonlinear waves. Fig. 3 clearly shows that the nonlinear interaction 
is not confined to the critical layer (i.e., the y-position where the mean flow u 
equals the phase speed): Except for mode (1,0), all phase speeds are significantly 
different from their linear values due to the phase lock observed above. In addi­
tion, there is no observable increase of higher harmonic amplitudes in the critieal 
layer by nonlinear interactions. Only the fundamental 2D and 3D disturbance 
amplitudes [modes(I,O) and (1,1)] exhibit a maximum in the critieallayer, but 
this is already there in the linear case. 

Further downstream in the spike stage, shown in Fig. 3(b), the 'wave-like' 
behaviour disappears: the phase speeds change with respect to y, especially 
inside the boundary layer. Outside, they are no longer phase-locked. At this 
stage it is much more difficult to define a critieallayer and to attribute a special 
nonlinear significance to it. The only distinct feature that can be observed is a 



106 

= 
10° 

e 5 
-" 2 

10- 1 

5 

2 
10-2 

5 

2 
1 0- 3 

5 

2 
10 -' 
5 

2 
1 O-s 

300 

DNS of boundary-Iayer instability and transition 

(1,0) 

nonlinear saturation 
~ 

350 400 450 500 

(a) Je [rn rn] 

- -0.4 
ti 

-0 . 3 

-0.2 

-0.1 

0.0 
300 350 1100 1150 500 

(b) X [rnrn] 

Figure 4: Amplitude maxima (a) and amplification rates ai (b) for various spectral 
modes: frequencies O, fI,2fI, spanwise wave numbers k = 1,2, 3,4,8. ($) = Floquet 
theory, Fasel et al. (1988). 

region of equal phase speed at ij ~ 2 mm where the first spike is just being formed. 
Since spikes are the manifestation of small f!-shaped vortiees, we suppose that 
this part of the flow field must be governed by nonlinear dynamie interactions of 
local fluid-flow structures in contrast to the wave interactions in the first sector. 

Both regimes also appear in Fig. 4 where the y-maxima of the B-amplitudes 
defined above and the amplification rates ai = -d/dx(Bmax) are shown for 
various frequency-spanwise-wave-number modes [(h , k), ° ~ h ~ 2, k > 0] versus 
x. It is quite evident that the initial amplification rates of the spanwise higher 
harmonies grow (linearly) with the spanwise wave number for x < 400 mmo The 
initial fan-out and deviation from linear increase of the modes with k = 3, 4,8 
should not be considered, since these modes are initially affected by the numerical 
round-off error due to their extremely smaU amplitudes (Bmax < 10-6 ) for small 
x. 

Comparisons of the amplification rates a i with an extension of Herbert's 
(1988) secondary instability theory are also shown. They reveal that the ampli­
fication of modes (1,1) and (1,0) is due to a 'combined' subharmonie-fundamental 
resonance with the 2D modes (1,0) and (2,0) (Fasel et al., 1988) . The possibility 
whether or not such a resonance could amplify other modes as weU has also been 
checked. It turned out that ai due to secondary instability is largest for k = 1, so 
that the modes with higher k must be considered as higher harmonie disturbance 
components of the fundament al disturbances. This hypothesis has been further 
checked in a number of test calculations using different initial amplitudes for 
these modes. It turned out that the local amplitudes (and amplification rates) 
of the higher harmonies do not depend on their initial disturbance amplitude 
but on the local amplitude of the waves that are amplified by the 'combined' 
resonance. Thus, it appears that this resonance is the kernel that drives the flow 
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Figure 5: Experimental (a) and numerical (b) contours of ou'joy at x = 500 mmo (b) 
together with u'. 

through the first stage of K-type transition. 
In the second stage, nonlinear effects lead to a saturation of all amplitudes 

on a high level as can be observed in Fig. 4. So far, no wave resonances could be 
discovered in the numerical data. This absence might be due to the appearance 
of local dynamics that apparently replace the 'wave-like behaviour' observed in 
the first regime. 

Simulations of the late-stage structures downstream of x = 450 mm have 
been started recently using K = 64 in eq. (1), see Rist & Kachanov (1994). 
Fig. 5 shows a comparison of the instantaneous shear au' joy at x = 500 mm 
for the peak station from the DNS with data from Kachanov (1994). Spikes and 
a high-shear layer close to the wall are mapped out by black dots and circles, 
respectively in the experimental data. Regions oflarge negative u' indicate spikes 
in the numerical results. Instead of only four in the experiment, five or six spikes 
can be observed in the DNS. Besides that, the qualitative features in both data 
sets are identical: a high-shear layer traversing the entÏre boundary layer and 
several spikes (n-vortices) at its downstream end. However, there is no doubt 
that further analysis of these new data is required to learn more about possible 
interactions of such structures with the near-wall region, for instanee. 

Application to a boundary layer with adverse pressure gradient 

Kloker (1993) has used a Falkner-Skan-type boundary layer with Hartree pa­
rameter f3H = -0.18 for comparison with the K-type simulation in the previous 
section. At first glance the results look very much like those for the Blasius 
boundary layer (cf. Fig. 6). Aligned A-vortices are forming out of a spanwise 
modulation of the large-amplitude TS-wave and n-vortices appear together with 
spikes at the spanwise peak stations. The downstream disturbance development, 
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x 

Figure 6: Simulated time-lines. Comparison between adverse pressure gradient (left) 
and zero pressure gradient boundary layer (right). 

however, although quite similar in the peak plane, is drastically more violent at 
the spanwise valley station in the case with adverse pressure gradient than with 
zero pressure gradient (Kloker & Fasel, 1995). A closer look at the results in­
dicated that the breakdown occurs much earlier there than at the peak station. 
This is why Kloker called this station a 'Co-Peak' station instead of 'Valley'. 
A new secondary vortex system close to the wall, centred around this station, 
induces a (lower) quite characteristic high-shear layer in bet ween neighbouring 
A-vortices and accelerates transition at the 'Co-Peak' station. This event pro­
ceeds much more rapidly than the formation and breakdown of the well-known 
(upper) high-shear layer on top of the A-vortex. These violent dynamic events 
are apparent in Fig. 6 but could be perceived much better in an animation. 

Application to an airfoil with suction 

The base flows of wind-tunnel experiments on a NACA 642-A-215 airfoil with 
suction performed by van Ingen (1965) have been calculated. Between 30% and 
90% of the airfoil chord (c) the wing section has been divided into 20 suction 
chambers, each of which was adjustable separately in order to prevent flow sep­
aration with only minimal viscous drag by suction through aporous surface. 
Bestek et al. (1994) have simulated this flow by prescribing the velocity distri­
bution shown in Fig. 7( a) at the free-stream boundary of the integration domain. 
Two calculations have been performed: one without suction at the wall with the 
integration domain reaching fr om sic = 0.2 to 0.55, and one with the suction 
velocity of van Ingen extending to sic = 0.72. 

Fig. 7(b) shows a comparison of the DNS results with the experiments for 
the streamwise distributions of the displacement thickness 61 and the momen­
turn thickness 62 for both cases. Without suction the strong growth of both 
indicates the inclination to separation. For the suction case, 61 and 62 grow only 
moderately. For both cases, the numerical and experimental results are in good 
agreement. The neglection of the airfoil surface curvature in the numerical model 
is justified due to the small ratio of boundary-layer thickness to surface curva-
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Figure 7: (a) Free-stream velocity Ue and wall-suction velocity VB ,O for the DNS of 
a NACA 642-A-215 airfoil boundary layer with suction. (b) Comparison of boundary 
layer growth. Symbols = experiments v. Ingen (1965). 

ture radius within the considered chord region. Thus, the basis for subsequent 
simulations of disturbance control in practical applications is prepared. 

Conclusions 

A numerical method has been developed and optimized over the past several 
years that can now be used to perform high-resolution spatial DNS of instabil­
ity and transition in various boundary-layers of practical interest, provided a 
high-performance, large-memory computer is available. The results shown here 
demonstrate a good quantitative agreement with available experimental data. 
Research within the next few years must focus on flow control in such flows, 
on boundary-layer receptivity, and on understanding the late-stage structures of 
transition to turbulence in 2D as weil as in 3D mean flows. 
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V.A. Gushchin 

Direct Numerical Simulation of 
Transitional Separated Fluid Flow 
Around a Circular Cylinder 

Abstract 

The transitional separated fluid flow around a circular cylinder is simulated nu­
merically. The main idea of the simulation is based on the existence of large scale 
organized structures in the boundary layer and the near wake of the body and 
the possibility of modeling the dynamies of such structures using the complete 
N avier-Stokes equations without any turbulence models. The SMIF method is 
used, which is an efficient numerieal method previously developed by the author 
with explicit hybrid non-oscillating (monotonie) finite difference scheme based on 
the combination of modified central and upwind difference schemes with a special 
switch condition and has second order accuracy and minimal scheme viscosity. 
It works in a wide range of Reynolds numbers. A comparison with experiment al 
data for subcritieal and critical Reynolds numbers is made. 

Introduction 

The transition from laminar to turbulent flow is one of the more important and 
less investigated phenomena in fluid dynamies. The difficulties of an experimen­
tal study of such regimes are connected with the complexity of the flow. The 
transitional separated fluid flow around finite bodies depends on many different 
factors such as the turbulence level and uniformity of the oncoming flow, the 
shape and smoothness of the surface of the body, etc. Therefore mathematical 
modeling may be one of the more effective approaches for such investigations. 
For the mathematical modeling it is necessary to develop an adequate physi­
cal and numerical model of the phenomena. In the past years more and more 
attention has been paid to the existence of an organized motion of large scale 
structures in laminar and turbulent boundary layers, in free shear layers, in jets, 
in the wake of finite bodies, etc. (Townsend, 1956; Cantwell, 1981). It is obvious 
that the construction of a universal model is impossible and each model (suit­
abie for some classes of flows) should be based on the reasonable combination of 
determinism and chaos, possibly with taking the intermittency into account. 

Our attempts are directed to the adequate reproduction of large scale (or­
dered, organized, coherent) structures, where the most part of the motion energy 
are concentrated. This investigation is based on the direct numerical simulation 
(without any turbulence modeis) using the complete Navier-Stokes equations to 
resolve the large scale structures (discrete model). 
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Foundation of the problem and numerical method 

Let us consider the incompressible viscous fluid flow past a circular cylinder 
with radius R which is described by the Navier-Stokes equations. The trans­
formation x = r( z )cos{}, y = r( z )sin{} is used to resolve the boundary layer and 

the outer flow, where r(z) = exp(z) - z - ~~ - ~~ + TfZ and Tf = Tf(Re) = 4jl;. 
Such transformation maps the investigated domain on the semistripe {(z,O) : 
o :S z :S zoo, 0 :S {} :S 27l"} and enables to use a finer spatial grid (with constant 
step si ze for z) in the boundary layer. Let u and v be the velocity components 
along zand {} respectively. The no-slip conditions on the rigid body are: u=O, 
v=O, and the velocities at "infinity"(z = zoo) are u = cos{}, v = -sin{}. 

The outer boundary Zoo was taken as zoo=5 (roo=105 R, where R is the 
radius of the cylinder). The number of grid points was 100 X 60 in zand {} di­
rections respectively except for Re = 106 (100 X 120). So the number of the grid 
points in radial direction inside the boundary layer was bet ween 10 and 15 for 
Reynolds numbers bet ween 104 and 106 . The influence on the solution of Zoo and 
the form of the boundary conditions at infinity, the grid size and time steps were 
investigated in Gushchin (1985). For the calculation offluid flows with large gra­
dients of hydrodynamic parameters it is necessary to use an effective numerical 
method with finite difference schemes that have the following properties: high 
order of accuracy (second or higher), minimal numerical viscosity, monotony of 
the scheme, and applicable in a wide range of Reynolds numbers. The Splitting 
on physical factors Method for Incompressible Fluid flows -SMIF (Gushchin & 
Konshin, 1992) uses an explicit hybrid finite difference scheme which is based on 
the combination of a modified central difference scheme (MCDS) and a modified 
upwind difference scheme (MUDS) with a special switch condition and possesses 
all the properties mentioned above. The SMIF method was used for the calcu­
lat ion of 2D and 3D steady and unsteady, internal and external, homogeneous 
and nonhomogeneous, and also free surface fluid flows. The method is portable 
for convenient and parallel architectures. . 

The method was tested in calculations of steady and periodic separated 
fluid flows past a circular cylinder for small and moderate Reynolds nu mb ers 
(Gushchin, 1985). The results are in a good agreement with experiment al data 
and calculations of other authors. 

Results 

For the Reynolds numbers 102 < Re < 2.103 (Re = U~D , where Uoo is the 
velocity of a uniform flow at "infinity", D is the diameter of the cylinder, v is 
the kinematic viscosity) the flow is periodic and laminar, but some secondary 
effects take place: the loss of stability in the separated boundary layer (Kelvin­
Helmholtz instability in a free shear layer), secondary vortices near the body 
surface, and secondary separation in the vicinity of the separation point. The 
life time for each secondary effect arising twice per period is about one tenth of 
the main period. 
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Parameters I Experiment Numerical results I 

Sh 0.179 0.18 
LID 4.22 3.5-4.0 
P(7r) 1.019 1.0 
Os 1030 950 

LslD 1.0 0.7 
Cd 1.237 1.0 

Table 1: Re = 1.4 . 105 Comparison with experimental data of CantweIl & Coles (1983) . 

For the Reynolds numbers 2 . 103 < Re < 1.5· 105 the characteristic features 
are the following: 

• The flow is three dimensional. 

• The flow in the boundary layer is unsteady but stilllaminar. 

• Outside the boundary layer the flow is turbulent with large-scale structures 
in the wake. 

Let us compare the numerical results with the experimental data of CantweIl 
& Coles (1983) for large subcritical Reynolds numbers (Re = 1.4 .105 ), where 
the boundary layer is still laminar. For this purpose we make some additional 
treatment of the obtained solution. Let f(x) = k~ Jt~o+kT f(x,t)dt be the time­
mean over k periods Tof the function f(x, t) (velocity components, pressure, 
etc.), where to is an arbitrary time moment in the weIl developed periodic flow 
regime. Then f(x, t) = f(x, t) - f(x) is the deviation (fluctuation) of the func­
tion f( x, t) with respect to the time-mean value f( x). Time-averaging of periodic 
flows allows us to find time-mean flow patterns and flow characteristics (drag co­
efficients, angles of separation, length of the separated zone, pressure in the front 
and rear stagnation points of the cylinder), the amplitudes of these characteris­
tics near the time-mean values and their dependenee on the Reynolds number in 
the considered range of Reynolds number. Such mathematical treatment of the 
results allows us to calculate the second and higher order moments, and brings 
together computational and laboratory experiments. In Table 1 the quantita­
tive comparison of some frequency, geometrie, local and integral characteristics 
is shown. Here Sh = U~T is the Strouhal number; ti D is the distance passed 

by the vortex during the period T; P( 7r) is the pressure in the front stagnation 
point; Os is the angle of separation; Lsi D is the length of the "recirculation" 
zone calculated from the rear critical point of the time-mean flow; and 'C d is the 
total drag coefficient. 

Table 2 compares the extreme values of some second moments (the energetic 
characteristics of the oscillating motion ) and their coordinates in the investigated 
domain. Here only the periodic part is taken (in table 2 total values for the 
second moments from the experiment are shown in brackets, CantweIl & Coles, 
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Parameters I Experiment Numerical results I 
U,2 0.085 (0.22) 0.075 (0.22) 
x/D 1.0 1.0 (0.7) 
y/D ±0.45 ±0.45 (±0.35) 
v12 0.25 (0.43) 0.22 (0.48) 
x/D 1.7 1.6 (0.6) 
y/D 0 o (0) 
u'v' ±0.055 (±0.12) ±0.07 (±0.11) 
x/D 1.3 1.3 (0.8) 
y/D ±0.4 ±0.35 (±0.35) 

Table 2: Re = 1.4 . 105 , comparison with experimental data of CantweIl & Coles (1983). 

1983). There are a few local extrema in the investigated domain in the numerical 
calculations. In table 2 only one local extreme value is shown for the second 
moment, and in brackets the absolute extreme values are shown. As may be 
seen from tables 1 and 2 the numerical results and experimental data are in a 
good agreement. 

Thus from the previous analysis the foilowing conclusion may be drawn: the 
large scale structures in the near wake are adequately reproduced by our numer­
ical solution of the N avier-Stokes equations provided sufficient resolution is used 
to represent the molecular mechanism, which is responsible for the separation 
from the surface of the cylinder. In the near wake this mechanism is not so im­
portant. It means that ne ar the solid surface it is necessary to use a fine enough 
grid. This grid may be more coarse outside the boundary layer but it must be 
fine enough for the resolution of separated vortices. 

This numerical approach was used to calculate the transitional separated 
regimes for critical Reynolds numbers between 2 . 105 and 5.105 . Here it is ad­
visable to use a finite-difference grid near the body, which allows us to reproduce 
the large scale vortex structures typical for the boundary layer. 

It is weil known that for large subcritical Reynolds numbers Re < 2 . 105 

laminar separation of the boundary layer takes place and the angle of separation 
is Ol ~ 100° (calculated from the rear critical point). The turbulization of the 
separated boundary layer takes place in the near wake. At supercritical Re (> 
4· 105 ) the separated boundary layer is turbulent. The angle of separation in 
this case is Ot ~ 70°. Both for laminar and turbulent separations the periodic 
motion with one main frequency takes place in the wake: for the laminar case 
the Strouhal number is Sh=0.2 and for the turbulent case Sh=0.28. In the 
last case this is probably connected with the decrease of the distance bet ween 
the separation points, the vortices are shed more of ten and the wake becomes 
narrower. 

At critical Reynolds numbers in the transitional regime the periodicity is 
absent, whereas in experiments wide range of frequencies is registered. The 
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Parameters Ol Ot Cd Sh 
Experiment 90° 45° 0.48 0.5 
Numerical results 93° 48° 0.32 0.42 

Table 3: Re = 4 · 105 ; Comparison with experimental data of Bychkov & Larichkin 
(1987) 

Figure 1: "W = const .; Re = 4.105 . 

existence of the bubble, its si ze and pi ace may be one of the reasons for the 
non-periodic lift force. A flow with nonzero lift force coefficient is indeed pos­
sible (Schewe, 1986). The separated structures were observed in calculations 
at Reynolds numbers between 2· 105 and 4 . 105 . The time-averaged flow pat­
tem (\[1= const, \[1 is the streamfunction) for Re = 4 . 105 is shown in Fig. 1. 
The comparison of our numerical results with experimental data of Bychkov & 
Larichkin (1987) is given in Fig. 2 where the time-mean surface pressure P(O) 
is shown, and in Table 3. The presence of two "plateaus" in every semi-plane 
confirms the existence of two separation points on the cylinder surface as found 
in experiments. Here Ol corresponds to the laminar separation point and Ot to 
the turbulent separation point. There is a bubble between these two points. 
Curve 1 corresponds to the numerical results (Re = 4 . 105 ), curve 2 is the 
laminar regime of the separation in the experiment of Fage & Falkner (1921) for 
Re = 1.1.105 , curve 3 is the turbulent regime in the experiment of Roshko (1961) 
for Re = 8.4 . 105 , and the circles are the transitional regime in the experiment 
of Bychkov & Larichkin (1987) for Re = 4 . 105 . 

For a more detailed comparison of the spectral characteristics of the flow 
with experimental data of Farell & Blessmann (1983) the numerical calculations 
were used to investigate the spectral density of velocity fluctuations. In both 
calculations and experiment the dep enden ce on time ()f the absolute value of 
the total velocity was recorded in four points in the vertical wake cross section 
located at x = 2.07 D from the centre of the cylinder. The points had different 
y coordinates. Then aspectral analysis of the time dependences of the abso­
lute values of the velocity was made. On the diagrams depicted in Fig. 3 for 
different Reynolds numbers and different wake points the nondimensional fre­
quency (Strouhal number) is along the abscissa axis and the spe ct ral density 
of the velocity fluctuation S(J)jcr is along the other axis. Here S(J) = u'2 (J) 
is the square of the velocity fluctuations for some frequency f and cr = u12 is 
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, Sh = 
0.20; cl) y = 0, Re ~ 3.74 X 105 , Sh = 0.34, Sh = 0.42; e) y = -0 .2D, Re = 3.80 X 

105 , Sh = 0.34, Sh = 0.42 . 

the time-averaged of the squared velocity fluctuations. The experiment al data 
are shown on diagrams by solid lines. The numerical results give us a discrete 
spectrum. 

It is wen known (and the same was observed in our calculations) that when 
the Reynolds number increases from 105 until 3 . 105 the Strouhal number in­
creases from 0.18 until 0.20. When the Reynolds number increases (but Re < 
Reer ) a sharp rise of Strouhal number takes place until 0.4 - 0.5. In the calcu­
lations at Re = 3.8 . 105 the value Sh = 0.42 (Fig. 3e) was obtained. MoreoV'er 
in the calculations at Re = 3.74.105 and at Re = 3.8.105 another additional 
frequency with Sh = 0.34 was observed (see Fig. 3d, e). The similar phenomenon 
was observed previously in some experiments (Bearman, 1969). 

The dependences of time-mean total drag coefficient and of the Strouhal 
number Sh on the Reynolds number are shown in Figs 4 and 5, respectively. 
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Figure 5: The dependenee of the 
Strouhal number Sh on the Reynolds 
number Re. 

The crisis of Cd and the sharp ri se of the Strouhal number take place and are 
simulated numerically (without ariy turbulence models) for critical Re = 4 · 
105 . As seen from Fig. 4 and 5 the numerical results denoted by the solid line 
are in a good agreement with experiment al data (1 = Cantwell & Coles, 1983; 
2 = Achenbach & Heinecke, 1981; 3 = Schewe, 1986) and calculations of other 
authors ( 4 = Jordan & Fromm, 1972; 5 = Kawamura et al., 1986; 6 = Braza 
et al. , 1986). Moreover from the calculation the following formula is found for 
time-mean friction drag coefficient 

- 258 Cd! = 1.879j(logRe)· , 

which coincides up to a constant multiplier with the well known Prandtl­
Schlichting law (Schlichting, 1979) for a smooth flat plate for turbulent regime 
at Re < 109 • 

Conclusion 

The direct numerical simulation of transitional separated fluid flow around a 
circular cylinder is based on the resolution of large ordered structures existing 
inside and outside the boundary layer. A spatial transformation of the radial 
coordinate was applied. The SMIF-method with explicit hybrid finite differences 
(second order accuracy, minimal scheme viscosity, workable in a wide range of 
Reynolds number, monotony) is used. 

The obtained numerical results and comparison with experiment al data con­
firm the applicability of the previously developed numerical approach for direct 
numerical simulation of transitional separated fluid flows. 



120 DNS of transitional separated cylinder flow 

Acknowledgement 

This research has been supported in part by the Russian Foundation for Basic 
Researches (grant 94-01-00395 and 96-01-00546). The author is grateful to Dr. 
V.N. Konshin for performing some of the numerical calculations. 

References 

Achenbach, E. & Heinecke, E. 1981 - On vort ex shedding from smooth and 
rough cylinder in the range of Reynolds numbers from 6 X 103 to 5 X 106• 

J. Fluid Mech. 109, 239-251. 

Bearman, P.W. 1969 - On vortex shedding from a circular cylinder in the crit­
ical Reynolds number regime. J. Fluid Mech. 37, 577-585. 

Braza, M., Chassaing, P. & Ha Minh H. 1986 - Numerical study and physical 
analysis of, the pressure and velocity fields in the near wake of a circular 
cylinder. J. Fluid Mech. 165, 79 -130. 

Bychkov, N.M. & Larichkin, V.V. 1987 - The pressure and the pulsations on a 
cylinder at low distance from a screen [in Russian]. ITAM Rept. N1658, 
Novosibirsk, ITAM SB AS USSR. 

Cantwell, B.J. 1981 - Organized motion in turbulent flow. Ann. Rev. Fluid 
Mech. 13, 457-515. 

Cantwell, B. & Coles, D. 1983 - An experiment al study of entrainment and 
transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 
136, 321-374. 

Fage, A. & Falkner, V.M. 1921 - Further experiments on the flow around a 
circular cylinder. ARC RM., 1369. 

Farell, C. & Blessmann, J. 1983 - On critical flow around a smooth circular 
cylinder. J. Fluid Mech. 136, 375-391. 

Gushchin V.A. 1985 - Numerical investigation of separated fluid flows around 
a circular cylinder. Steady and periodic regimes. Computing Cent re AS 
USSR, Moscow (in Russian) 

Gushchin, V.A. & Konshin, V.N. 1992 - Computational aspects of the splitting 
method for incompressible flow with a free surface. Computers and Fluids 
21, 345-353. 

Jordan, S.K. & Fromm, J.E. 1972 - Oscillatory drag, lift and torque on a cir­
cular cylinder in a uniform flow. Phys. Fluids 15, 371-376. 

Kawamura, T.,Takami, H. & Kuwahara K. 1986 - Computation of high Reynolds 
numbers flow around a circular cylinder with surface roughness. Fluid Dy­
namics Research 1, 145-162. 

Roshko, A. 1961 - Experiments on the flow past a circular cylinder at very high 
Reynolds number. J. Fluid Mech. 10, 345-356. 



V.A. Gushchin 121 

Schlichting, H. 1979 - Boundary layer theory. 

Mc-Graw-Hill Schewe, G. 1986 - Sensitivity of transition phenomena to small 
perturbations in flow around circular cylinder. J. Fluid Mech. 172,33-46. 

Townsend, A.A. 1956 - The structure of turbulent shear flows. Cambridge 
University Press. 

Author's address 

Institute for Computer Aided Design RAS, 
19/18, 2nd Brestskaya str., 
Moscow 123056, Russia 
E-mail: gushchin@inapro.msk.su 

mailto:gushchin@inapro.msk.su




Session 2: 

Cross-Flow Instabilities 





M.S. ReibertO, W .S. Sarico, R.B. Carrillo Jr. 0 & K.L. Chapmant> 

N onlinear Stability, Saturation, 
and Transition in Swept-Wing Flows 

Abstract 

Stability experiments are conducted in the Arizona State University Unsteady 
Wind Tunnel on a 45° swept airfoil. The pressure gradient is designed to provide 
purely crossflow-dominated transitionj that is, the boundary layer is subcritical 
to Tollmien-Schlichting (TS) disturbances. The airfoil surface is hand polished to 
a 0.25 J.Lm rms finish. Under these conditions, stationary crossflow disturbances 
grow to nonuniform amplitude due to submicron surface irregularities near the 
leading edge. Spectral decompositions isolate single-mode growth rates for the 
fundamental and harmonic disturbances. The measurements show early non­
linear growth causing amplitude saturation weIl before transition. Comparisons 
with nonlinear PSE calculations show excellent agreement in both the amplitude 
saturation and the disturbance mode shape. 

Background and motÎvatÎon 

The present swept-wing research program experimentally investigates the fun­
damental nature of the crossflow instability which leads to transition in three­
dimensional boundary layers. Gregory et al. (1955) provide the theoretical basis 
for the instability. It results in an Orr-Sommerfeld type solution that can be 
implemented in a variety of ways. See Mack (1984) for the development of the 
details of the instability. Reed & Saric (1989), Saric (1992b) and Arnal (1992) 
review the literature. 

Fundamentals 

In contrast to Tollmien-Schlichting (TS) instabilities, the crossflow problem ex­
hibits stationary (f = 0) as weIl as traveling disturbances. The traveling waves 
are more amplified according to linear theory, however many experiments are 
dominated by stationary waves. Müller & Bippes (1988), Bippes et al. (1991), 
and Deyhle & Bippes (1996) have shown that traveling waves are observed in 
tunnels rich in unsteady freestream disturbances, whereas stationary waves dom­
inate in a low-turbulence environment. Since the flight environment is more be­
nign than the wind tunnel, one expects the low-turbulence results to be more 
important. 

One of the important results to come out of the DLR experiments is the set 
of data that show early saturation of the stationary disturbance amplitude and 
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the failure of linear theory to predict the growth of the instability (Bippes & 
Nitschke-Kowsky, 1990; Bippes et al., 1991; Deyhle et al., 1993). Dagenhart et 
al. (1989, 1990) and Radeztsky et al. (1994) observed similar behaviour. Kohama 
et al. (1991) showed that the stationary crossflow vortex controls transition by 
causing a high-frequency secondary instability resulting from the nonlinear mean­
flow distortion. More recently, Deyhle & Bippes (1996) document the role of 
freestream disturbances with regard to traveling crossflow waves. Radeztsky et 
al. show that the receptivity process for stationary waves is strongly influenced by 
surface roughness, i.e., initial amplitudes. Insofar as stationary crossflow waves 
are concerned, it is clear that a successful transition prediction scheme must 
account for the initial conditions and the nonlinear growth of the disturbance. 
It is this aspect of the problem which we address in this paper. 

Objectives 

In earlier ASU experiments, Dagenhart et al. (1989, 1990) found that naturally 
occurring stationary crossflow waves of moderate amplitude have lower growth 
rates than predicted by linear theory. Under the same conditions, Radeztsky 
et al. (1993) investigated the sensitivity to surface roughness and showed early 
saturation of the natural stationary disturbance amplitude. Later experiments 
by Radeztsky et al. (1994) examined the growth of very weak crossflow waves 
in an attempt to close the gap between previous experimental results and linear 
theory. Even for these weak waves, linear theory completely failed to predict the 
disturbance growth. 

In all of the early experiments measuring the growth of the stationary cross­
flow wave (Dagenhart et al., 1989, 1990; Bippes et al., 1991), the initial con di­
tions for the disturbance amplitude came from the unknown natural roughness 
of the surface. Although a dominant wavelength appears, the resulting station­
ary structure is non uniform in span and contains many fundamental disturbance 
modes of unknown amplitude. Consequently, comparisons with single-mode nu­
merical predictions are not possible. 

The same NLF(2)-0415 airfoil (Somers & Horstmann, 1985) is used as in 
the previous experiments. With a 45° sweep and a _4° angle of attack, the 
favourable pressure gradient pro duces considerable crossflow while suppressing 
TS modes. Arrays of 6 JLm roughness elements ne ar the leading edge produce 
uniform stationary disturbances without excessive initial amplitudes. Spectral 
techniques are used to identify and follow specific stationary modes, thus provid­
ing single-wavelength growth rates for comparison with theoretical calculations. 

The experiment 

Facility and model 

The Unsteady Wind Tunnel at Arizona State University is a low-speed, low­
turbulence, closed-circuit facility used to study the stability and transition of 
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laminar boundary layers (Saric, 1992a). The airfoil model is mounted vertically 
in the 1.4 m X 1.4 m X 5 m test section. The aluminum surface is hand polished 
to a 0.25 J.Lm rms finish so that even micron-sized roughness elements are weIl 
above the background roughness level. 

Measurement techniques 

Two standard hot-wire scanning methods are used to investigate the stationary 
crossflow waves. These are described below. 

Wall-normal scans 

Wall-normal boundary-Iayer scans provide a detailed map ofthe stationary struc­
ture. These maps are constructed by taking a spanwise series of mean-flow 
boundary-Iayer profiles at constant x/co Once the scans are aligned with the 
airfoil surface, disturbance profiles are generated from which a stationary cross­
flow mode shape is computed. The disturbance growth is calculated by tracking 
the size of the mode shape at various chord positions. Three different measures 
of the mode shape size are used to characterize the disturbance amplitude: the 
maximum of the mode, the integral of lu'l with respect to y, and the integral 
of lu'12 with respect to y. When the disturbance growth is cast in terms of 
the amplification factor N, all three measures collapse onto a single N -factor 
curve. These results, however, cannot (in general) he quantitatively compared 
with single-wavelength linear predictions since all amplified stationary modes are 
lumped into a single mode shape. 

Single-wavelength information can be extracted from a boundary-Iayer map 
by taking a spanwise slice across the profiles at a constant height above the 
airfoil surface. The resulting velocity vs. span trace can be decomposed using 
spectral techniques to resolve the wavenumber content. Reasonable resolution in 
the wavenumher domain, however, requires a large spanwise extent of the mea­
surement region. Consequently, this technique can quickly become prohibitively 
time consuming. 

Spanwise scans 

lndividual-wavelength growth rates are obtained by restricting hot-wire measure­
ments to a single spanwise scan at a constant height above the airfoil surface. 
With this technique, data are acquired along the entire span of the measurement 
region (240 mm) at much higher (spanwise) resolution than the wall-normal 
scans. Since data are collected at only one height in the boundary layer, these 
scans progress very quickly (typically 75 minutes per scan compared to nearly 
45 hours for a full set of wall-normal scans with the same spanwise extent and 
resolution). The disadvantage of this technique is that the details of the sta­
tionary structure are not captured. For this reason, a disturbance mode shape 
(produced with a small set of wall-normal scans) is used to guide the spanwise 
scans. 
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Figure 1: Experimental and theoretical 
swept Cp distribution at Ree = 2.4 X 106 . 

The theory is computed with the NASA 
Langley code MCARF. 
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Figure 2: Streamwise velocity contours at 
x/c = 0.45, Re e = 3.0 X 106 . No artificial 
roughness. 

The basic state is documented with pressure measurements and mean-flow boun­
dary-Iayer profiles. Fig. 1 shows the measured and theoretica.l Cp distribution 
over the aÏrfoil upper surface. The experiment al data are the average readings 
from two sets of pressure ports in the airfoil surface. The theoretica.l curve is 
the inviscid solution from the NASA Langley code MCARF. The agreement, 
especially in terms of the pressure gradient, is good over the entire measurement 
region. 

Boundary-layer maps 

Fig. 2 is a contour plot of the streamwise velocity ui Ue in the (y , z) plane. The 
flow is toward the reader, and the stationary vortices are turning in the right­
handed sense. These data are acquired at x Ic = 0.45, Re e = 3.0 X 106, with no 
artificial roughness on the airfoil. The nonuniformity of the naturally occurring 
stationary waves is caused by submicron surface irregularities near the leading 
edge. Fig. 2 displays a strong feature at a 12 mm spacing, which is approximately 
the most amplified stationary wavelength. At the same time, the richness in the 
spectral content is evident. This is typica.l of all of the earlier data (Bippes & 
Nitschke-Kowsky, 1990; Bippes et al. , 1991; Deyhle et al., 1993; Dagenhart et 
al., 1989, 1990), and indicates both nonlinear behaviour and multiple modes. 
Thus, even a nonlinear ca.lculation that included only a single spanwise mode 
would be inappropriate to characterize the disturbance motion. 

In order to generate spanwise-uniform stationary crossflow waves , initia.l con­
ditions are controlled by applying a full-span array of roughness eiements at 
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Figure 3: Streamwise velo city contours 
at x/c = 0.45, Ree = 2.4 X 106 • A full­
span array of 6 J1.m roughness with 12 mm 
spacing is at x/c = 0.023. 
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Figure 4: Single stationary crossflow vor­
tex isolated from Figure 3 and plotted on 
a 1:1 scale. 

xJc = 0.023 (near the neutral point of the instability) following Radeztsky et 
al. (1993). The roughness height is k = 6 /-Lm, and the 3.7 mm diameter el­
ements are spaced 12 mm apart in span, corresponding to the most amplified 
wavelength according to linear theory. Fig. 3 shows the streamwise velocity con­
tours at xJc = 0.45 and Ree = 2.4 X 106 with this roughness distribution. Vnder 
these conditions , the roughness Reynolds number, Rek, is 0.1. The uniformity of 
the fundamental12 mm mode is striking, and allows for meaningful comparisons 
with single-mode theoretical predictions. A single vortex is isolated in Fig. 4 and 
plotted on a 1:1 scale. The crossflow vortex produces regions of upwelling and 
down welling which transport low- and high-momentum fluid , respectively. The 
symmetry of the co-rotating vortex distorts this moment urn transfer giving an 
apparent rollover of low-momentum fluid that appears above high-momentum 
fluid. 

Fig. 5 shows the 100 boundary-Iayer profiles from which Fig. 3 is generated. 
The profiles are obtained at 1 mm intervals in the swept span direction. The 
dots indicate the spanwise average of the profiles, which accounts for basic state 
plus the mean-flow distortion [(0,0) mode]. It should be emphasized that these 
are mean profiles and not an unsteady oscillation in the boundary layer. One 
can clearly see how the stationary vortex structure has distorted the mean flow, 
resulting in accelerated, decelerated, and doubly inflected profiles existing mil­
limetres apart. The nonlinearities are indicated by the distortion of the averaged 
profile in the vicinity of y ~ 2.8 mmo This distortion of the basic state leads to 
the secondary instability which controls the transition to turbulence (Kohama 
et al., 1991). 

Disturbance profiles are generated by subtracting the basic state plus mean­
flow distortion (i.e., the spanwise average profile) from the individual boundary­
layer profiles (Fig. 6). From these data, the crossflow mode shape is generated 
by computing the spanwise rms of the disturbance profiles (Fig. 7). This mode 
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Figure 5: Spanwise array of boundary­
layer profiles at xJc = 0.45 , Re e = 2.4 X 
106 . A full-span array of 6 Jl-m roughness 
with 12 mm spacing is at xJc = 0.023. 
The dots indicate the mean of the profiles . 
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shape contains the fundamenta! disturbance and all amplified harmonies. 
The tota! disturbance amplitude is computed using three measures of the 

mode shape size as outlined above. Growth rates are obtained by repeating this 
procedure at several chord positions. Fig. 8 shows the disturbance amplitude 
distribution for 6 /-lm roughness with 12 mm spacing at Ree = 2.4 X 106• The 
dashed lines represent the absolute size of the mode shape as computed byeach of 
the three measures. The solid lines show the corresponding amplification factor 
N. The ability of the N -factor to collapse the data onto a single curve is typiea!. 
The nonlinear saturation is clearly evident, and occurs weIl before the transition 
location of (xjc)tr = 0.52. It is worth emphasizing that these measures record 
the total disturbance amplitude since all amplified wavelengths are present in 
the mode shape. 

Fig. 9 compares the experimental N-factor (as computed from the maximum 
of the mode shape profiles ) with various theoretiea! predictions of Haynes & 
Reed (1996). The nonlinear parabolized stability equations (NP SE) results are 
computed using initia! amplitudes provided by the experiment. The agreement 
is excellent, especially in predicting the amplitude saturation. (At this time, the 
Haynes & Reed formulation does not contain curvature, which is known to be 
stabilizing and may account for the small differences in the disturbance growth.) 
In contrast, the Orr-Sommerfeld and linear PSE results fail to prediet the details 
of the disturbance growth. The early qualitative agreement with the linear PSE 
results indicates that the nonlinear effects are initially weak up to x j c = 0.20, at 
which time the growth rates depart from linear behaviour. It is at this location 
that the spanwise average of the boundary-Iayer profiles first begins to exhibit 
the distortion shown in Fig. 5. 

Wavelength separation 

As pointed out previously, crossflow amplitudes computed from mode-shape pro­
files contain all amplified stationary modes. To decompose the wavenumber con­
tent of the disturbance, the spanwise scan technique discussed above is used. 
Fig. 10 shows the spanwise velocity profile at xjc = 0.45 for Ree = 2.4 X 106. 
The roughness configuration is k = 6 /-Lm with 12 mm spanwise spacing. The 
data are acquired at y = 0.9 mm above the airfoil surface, corresponding to the 
maximum of the mode-shape profile. The strong distortion of the boundary-layer 
is evident, as is the spanwise uniformity of the stationary structure. 

The FFT-based power spectral density (PSD) is shown in Fig. 11. The dom­
inance of the fundamental 12 mm mode is clear. However, the superharmonies 
at Às = 6 mm and 4 mm are also amplified. (The amplitude of the 4 mm mode 
is too small to appear on the sca!e of Fig. 11.) This wave doubling was observed 
by Sarie & Yeates (1985) and predicted by Reed (1988). Disturbance amplitudes 
are computed by integrating the peaks of the PSD. When repeated at severa! 
chord positions, the growth rates of Fig. 12 are obtained. The dashed lines rep­
resent the rms amplitude of the individual modes, while the amplification factor 
N is plotted with solid lines. At each chord location, the spanwise scan is taken 
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Figure 9: Measured and theoretical N­
factor for Ree = 2.4 X 106 . A fuIl-span ar­
ray of 6 J1.m roughness with 12 mm spacing 
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the N-factor calculations is x/c = 0.10. 
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at the boundary-Iayer height corresponding to the maximum of the mode-shape 
profile. This permits us to compare the amplitude of the individu al modes with 
that of the total disturbance as computed from the maximum of the mode shape 
(indicated on Fig. 12 by the lines marked "Total"). It is a remarkable verification 
of the two different measurement techniques that the amplitudes of the total and 
fundamental (Às = 12 mm) disturbances agree for xje < 0.30. For xje > 0.30, 
the amplitude of the fundamental diverges from the total disturbance, and the 
harmonie at Às = 6 mm becomes measurable. In the region of st rong nonlinear 
interaction and amplitude saturation (x je ;::: 0.35), the 6 mm component shows 
significant energy and the 4 mm mode becomes unstable. 

Conclusions 

Stationary crossflow waves are investigated on a swept airfoil within a low­
disturbance environment. It is shown that even though the surface is polished 
to 0.25 J.Lm rms roughness, stationary crossflow waves still dominate the tran­
sition process. Because the initial roughness is nonuniform, the resulting dis­
turbance motion is nonuniform and is complicated by the presence of many 
different modes. Because of this, comparisons with different theoretical and 
computational schemes are unnecessarily rendered much more difficult. 

Systematic introduction of equally spaced 6 J.Lm roughness elements (Rek = 
0.1) is shown to produce an ideal fundamental mode at that spacing. When 
the roughness elements are placed at the most amplified linear-mode wavelength 
of Às = 12 mm, disturbance growth, departure from linearity, and saturation 
amplitude are documented. Evidence of growth at the 6 mm and 4 mm harmonics 
is shown. There is no evidence of wavelength doubling (i.e., components at 
24 mm or 36 mm). Comparisons with computations using nonlinear parabolized 
stability equations are very good. It is possible to conclude that the introduction 
of systematic weak roughness provides the necessary data base for comparisons 
with theory and computations. 

These data continue to illustrate the extreme sensitivity to leading-edge 
roughness. Strong nonlinear distortion of the mean flow is observed, as is the 
nonlinear saturation of the disturbance amplitude. This saturation occurs well 
before the transition to turbulence. Linear theory fails to capture these details of 
the disturbance growth. On the other hand, NPSE calculations agree remarkably 
well with the experimental data. 
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T. Lerche & H. Bippes 

Experimental Investigation of Cross-Flow 
Instablility U nder the InH uence of 
Controlled Disturbance Excitation 

Abstract 

A three-dimensional boundary-layer flow on a 45° swept flat plate with imposed 
pressure gradient is investigated experimentally utilizing controlled introduction 
of single mode disturbances. The base flow is subject to cross-flow instability, for 
which the nonlinear evolution largly depends on the initial amplitudes of station­
ary cross-flow vortices and oblique traveling waves. Both could independently 
be initiated experimentally by means of fixed roughness elements and a newly 
developed unsteady disturbance generator, respectively. The instability devel­
opment and transition process has been investigated for different combinations 
of initial conditions by means of hot-wire anemometry. 

The experimental set-up 

The present DLR transition experiment basically consists of a 45° swept flat 
plate and a displacement body which imposes a nearly constant negative pressure 
gradient (for more details see e.g. Müller & Bippes, 1988). 

The leading edge has a non-symmetrical Clark-Y profile without curvature 
discontinuity on the upper side. The attachment line is at xci c ~ 0.02 due to an 
angle-of-attack of -1.0°. Experiments were carried out in the 1 X 0.7 m2 wind 
tunnel at DLR Göttingen with Tu = 0.15 % in the frequency range bet ween 
2 Hz and 2 kHz. Infinite swept conditions could be achieved to a good degree 
of approximation by using two end plates (Fig. 1) with potential streamline 
curvature. Distinguished must be the chord oriented coordinate system (index 
c) and the streamline oriented coordinate system (index s). The lat ter is 10-
cally tangential to potential streamlines at the edge (index e) of the boundary 
layer. Specially designed subminiature V-type hot-wire probes have been used 
to measure the wall parallel velo city components. All measurements are non­
dimensionalized by the local velocity Qe at the edge of the boundary"layer. The 
freestream velo city Qoo has been determined from the settling-chamber velocity 
by taking the blockage effect of the model into account. 
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Figure 2: Fourier spectra of excitation membrane displacements . 

The newly developed single mode disturbance generator 

The newly developed disturbance generator was eentered bet ween the two end 
plates at xc/c = 0.13. 40 equally spaeed cireular membranes are flush mounted 
parallel to the leading edge on the upper surface of the flat plate, i.e. in spanwise 
direetion. One generator version with membranes of 40 J-Lm polyurethane, diam­
eters d = 2 mm and spacings ~yc=6 mm was eompared to a seeond version with 
membranes of 15 J-Lm polyester, diameters d =2.5 mm and spacings of ~yc=4.5 
mmo 

The membranes oseillate sinusoidally with adjustable displaeement amplitude 
and phase shift by means of pressure fluctuations. The pressure fluctuations 
are produeed by 20 loudspeakers which are connected via tubes. A system of 
20 programmable signal generators using a eommon doek and trigger signal 
was built up to drive the loudspeakers. The limitation to 20 ehannels implies 
a symmetry condition that limits the phase shifts between two membranes to 
multiple integers of 180

• The phase shifts of the excitation signals assigned the 
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Figure 3: Amplifieation eurves for exeitation levels of 50%, 75% and 100% == 30 p.m for 
ease (1 ,1) (left) and 100% for ease (0,1)+(1,1) (right) at Qoo = 12.5 mis. *: stationary, 
!::. : fundamental, 0: first harmonie, 0: seeond harmonie. 

spanwise wavelength of initiated cross-flow waves. The signal of one channel was 
used to trigger the measurements and has been recorded as a reference signal of 
the hot-wire measurement data. 

Displacement amplitudes and phase shifts were measured and set by means 
of a commercially available laser optical device with an accuracy of 0.2 J.Lm/mV. 
Fig. 2 shows as an example the variation of displacement amplitudes spectra of 
the second generator version, measured in the centre of the membranes (hRMS = 
J !::.f . G with !::.f = 1 Hz and G denoting the power spectral density). Besides 
the excitation frequency of f = 82 Hz the higher harmonies appearing are smaller 
by more than one order of magnitude. The maximum amplitudes of the first and 
second disturbance generator were in the order of 30 and 10 J.Lm, respectively. 
The phase shifts we re found to differ by approximately ±4.5 % from the adjusted 
value. Both disturbance generators could be used to excite traveling waves with 
frequencies from 20 to 200 Hz. 

Linear and weakly nonlinear instability regime 

Measurements were carried out at the relatively low freestream velocity of Qoo = 
12.5 mis in order to qualify the effeetiveness of the integrated disturbance gen­
erator and to obtain data for comparison with numerical computation. For this 
case no transition occurred on the model surface. 

Excited traveling waves became measurable only 10 mm behind the mem­
branes at xc/c = 0.15 where the amplitude ofthe fundamental mode amounts to 
only 0.02 % of the freestream velocity. Furthermore, it was found that the distur­
bance amplitudes scale linearly with the excitation level (in a semi-Iogarithmic 
plot) up to 60% chord, thus indicating the linear range of amplification. Fig. 3 
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Figure 4: Wavenumber stability diagram for freesteam velocity Qoo = 12.5 mis at 
location xc/c = 0.6. Closed curves are curves of constant amplification rate. x 6. 0 0: 
measurements. 

shows exponential growth of the excited 80 Hz wave with spanwise wavenum­
ber (Je = 2rr / >'e = 0.37 denoted by (1,1) until from Xe/C 2: 0.6 on, nonlinearly 
generated harmonies become significant and amplitude saturation sets in. 

This (1,1) wave was experimentally found to have maximum amplification 
rate. For comparison, a 82 Hz wave with (Je = 0.42 was excited using the sec­
ond disturbance generator. Again, these parameters were determined to yield 
the most amplified wave. They match the former results almost perfectly al­
though the stationary vortiees have been initiated by 13 roughness elements at 
xe/c = 0.076 (diameter d=2mm, height h=18 pm, (Je = 0.45) denoted by (0,1) 
to increase the maximum stationary amplitude (max[us] - min[usD/[2Qe] from 
2 to 3 %. 

Additionally, wavenumber components of initiated waves we re determined 
from two parallel spanwise hot-wire traverses with z=const. and 60 mm length 
at 60 and 61 % chord. The spanwise phase <!>(Ye) distributions of the excited 
fundamental modes were determined from a cross spectra calculation of the hot­
wire signals and the reference signal. The phase distributions <!>(Ye) obtained 
from two parallel traverses are two parallel linear curves. The spanwise wave­
length was calculated from oYe/o<!> . 3600

• The displacement b..Ye of the linear 
phase curves was used in conjunction with the known measurement displace­
ment b..xe to calculate a propagation angle q; e = arctan[ b..xe/ b..Ye]' Values ofthe 
spanwise wavenumber component (Je and chord oriented component Qe norm al-

izedwith lref = JVXe/Ue,e = 0.79 mm for different excitation frequencies and 
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Figure 5: Amplifieation eurves for ease (1,1) (left) and ease (0,1)+(1,1) (right) at 
Qoo = 16.3 mis. *:stationary, 6: fundamental, 0: first harmonie, 0: seeond harmonie. 

spanwise wavenumbers are plotted in Fig. 4 (denoted by symbols) together with 
locallinear stability calculation results provided by Koch (1995). The measured 
wavenumber components are satisfactorily matched by numerical predictions. 
However, it should be noted that less amplified traveling waves could not be 
initiated. 

Nonlinear interactions and saturation 

Nonlinear effects have been studied at a freestream velocity of Qoo = 16.3 mis, 
where the onset of laminar to turbulent breakdown can be observed near the end 
of the model. 

Like figure 3, figure 5 shows the development of maximum amplitudes for 
two cases. Case (1,1) implies controlled excitation of a 82 Hz and f3c = 0.42 
traveling wave, whereas case (0,1)+(1,1) includes the additional initiation of 
statioilary vortices with f3c = 0.45 by application of 15 roughness elements of 
diameter d =2.5 mm and height h =18 J.Lm at xc/c = 0.076. The amplitude 
development of the traveling waves was found to be very similar although the 
saturation amplitude ofthe stationary vortices (max[us]-min[us])/[2Qe] differs 
significantly between 2 % for case (1,1) and 10 % for case (0,1)+(1,1). 

The effect oflarge amplitude vortices on the traveling modes is demonstrated 
in Fig. 6, where the spanwise distribution of fiuctuation velocity profiles for case 
(1,1) and case (0,1)+(1,1) is compared at location xc/c = 0.93. The strong am­
plitude variation for case (0,1)+(1,1) clearly indicates a superposition of several 
waves with equal frequency but different spanwise wavenumbers. 

This finding is confirmed by Fig. 7 which shows the corresponding phase 
distributions. It is furthermore in agreement with predictions of secondary in­
stability theory by Fischer et al. (1993) and direct numerical simulation results 
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obtained by MüIler et al. (1994). Further investigations will be aimed at a more 
detailed modal analysis of these phase distributions. 

Another important interaction between stationary vortices and traveling waves 
is documented in Fig. 8 where mean velocity profiles us(z) of one identical span­
wise wavelength are compared for case (0,1) and case (0,1)+(1,1). The spanwise 
variation of Us decreases, when excited traveling waves are present. This confirms 
earlier indications from measurements as weil as MüIler's (1994) numerical re­
sults that traveling modes extract energy from stationary modes and thus inhibit 
their amplitude growth. 

Conclusions 

A new type of disturbance generator has been developed and tested. It has 
proven to be a weIl-suited device for excitation of single, oblique traveling waves 
in a three-dimensional boundary-layer to foIlow their downstream development 
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for comparison with theory. The traveling wave characteristics have been found 
to be in agreement with local, linear stability theory predictions. 

Interactions between stationary and traveling cross-flow vortices can now be 
analysed by utilizing the important phase information of one reference excitation 
signal. It has been shown that large amplitude stationary cross-flow vortices lead 
to the nonlinear amplification of modes with equal frequency but different span­
wise wavenumbers. These modes contribute to laminar to turbulent transition 
as could be seen from the appearance of a high-frequency secondary instability 
towards the end of the plate. This high-frequency instability was found to be in 
agreement with observations of Kohama et al. (1991) and predictions of Fischer 
et al. (1993) and Malik et al. (1994) but also seems to be phase-coupled to the 
excited traveling wave. As another finding, large initial amplitudes of traveling 
modes attenuate significantly the growth of unsteady modes. 

Cross-flow modes with equal frequency but different spanwise wavenumbers 
also largely increase the spatial flow complexity. This could be seen from recon-
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structed phase-averaged velocity fields whieh could be decomposed by Proper 
Orthogonal Decomposition (see e.g. Lumley, 1967) to obtain coherent struc­
tures. However, this work and the fin ding of a high-frequency secondary in­
stability has to be elaborated in more detail and will be presented at the 6th 
European Turbulence Conference at Lausanne, July 2-5, 1996. 
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T. Wintergerste & L. Kleiser 

Direct Numerical Simulation of Transition 
in a Three-Dimensional Boundary Layer 

Abstract 

Transition to turbulence in a three-dimensional boundary layer is investigated by 
a highly resolved direct numerical simulation adapted to a transition experiment 
made at DLR Göttingen. A parallel base flow is defined locally by Falkner-Skan­
Cooke similarity profiles. As shown earlier, the temporal simulation results can 
be related to the spatial disturbance development in the experiment and show 
good agreement with measurements. The crossflow vortices, which develop as 
a primary instability of the laminar flow, break down at the late stages of the 
transition process. At the end of transition, the shape factor and local skin 
friction coefficient of the computed mean velocity profile reach their turbulent 
levels. Particular attention is given to the development of flow structures in 
the breakdown stage. A new three-dimensional vortical structure is found to 
emerge which propagates with approximately 70% of the free-stream velocity in 
the streamwise direction. Vortical structures are identified by different criteria 
based on local pressure minima or the velocity-gradient tensor Vu. 

Introd uction 

Transition to turbulence in the swept wing boundary layer of a modern aircraft 
can be caused by different instability mechanisms. The crossflow instability 
dominates regions on the wing where astrong favourable pressure gradient ex­
ists. This instability is characterized by the presence of co-rotating stationary 
crossflow vortices and travelling waves which are both linearly unstable. For an 
over view readers are referred to the paper by Reed & Saric (1989). 

Experiments and theoretical investigations have shown that nonlinear inter­
actions play an important role already at early stages of the transition process. 
These stages are characterized by interactions between the crossflow vortices and 
the travelling waves. At the highly nonlinear stages of transition, a secondary 
instability with a frequency a magnitude larger than the travelling primary dis­
turbances was observed in the experiments by Kohama et al. (1991). This insta­
bility was also observed in theoretical investigations by Malik et al. (1994) based 
on PSE in a swept Hiemenz flow. They found that the high-frequency instability 
is associated with a shear layer on the upper side of the crossflow vortex. The 
processes at the late stages which lead to the breakdown of the crossflow vortex 
and to the onset of turbulence are not yet fully understood. 

Our investigations are adapted to the transition experiment by Bippes et 
al. (1991). Various attempts have been made at clarifying the transition process 
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z 

streamline at boundary laye dge 

Figure 1: Sketch of the DLR swept plate transition experiment (Bippes et al., 1991). 

observed in this experiment. Fischer & Dallmann (1992) find a good agreement 
bet ween the results of the secondary stability of the crossflow-vortex modulated 
base flow and the experiment. Meyer and Kleiser (1989,1990) and Wagner (1992) 
carried out temporal simulations of the 3D-boundary layer transition. They ob­
served a st rong deformation of the mean flow which agrees weil with the ex­
perimental observations. These simulations reached a highly developed stage of 
transition but they were not fuIly resolved in the late breakdown stage of the 
crossflow vortices. 

In this contribution we present a continuation of the latter work which in­
cludes the complete breakdown process. Our interest will be focussed on the flow 
phenomena occurring in the late stages of transition where the crossflow vortices 
break down and the boundary layer becomes turbulent. 

Base flow 

The simulation presented here is adapted to the DLR transition experiment 
(Bippes et al., 1991) in which a three-dimensional boundary layer develops on 
a swept flat plate. A displacement body above the plate is used to generate an 
approximately constant negative pressure gradient normal to the leading edge. 
A sketch of the various coordinate systems which are used is given in Fig. 1. 
The coordinate system aligned with the local streamline direct ion is denoted by 
(x s, Ys). In the vortex-oriented system the coordinate Xv points into the direction 
of the crossflow vortex axis, which is determined from linear stability analysis. It 
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includes a small angle € with the Xs direction. The angle € is determined by linear 
stability analysis as the angle between the local streamline and the most amplified 
primary disturbance, i.e. the crossflow. The simulations have been carried out 
in the vortex-oriented system. The wall-normal direct ion is denoted by z. All 
quantities are nondimensionalized by the reference length d = [(zix c )/ÜOc ,eP/2 
(where zi is the kinematic viscosity and an index "0" refers tothe undisturbed 
laminar base flow) and the magnitude of the local velocity at the boundary layer 
edge QO,e. The local Reynolds number is defined by Re = (Qo,ed)/zi. 

The boundary layer can be approximated locally by Falkner-Skan-Cooke 
(FSC) similarity solutions (Cooke, 1950) as demonstrated by Meyer & Kleiser 
(1989). The profiles depend on the local sweep angle <Pe and the Hartree pa­
rameter {Jh. These parameters are taken from the experiment. Our computation 
simulates the development of the disturbances in the rearward region of the 
plate. In this region the two parameters <Pe and {Jh are nearly constant. We have 
chosen a position of 80% chord-Iength of the plate. Under the conditions of the 
experiment, this results in alocal Reynolds number of Re = 826, a sweep angle 
of <Pe = 46.9° and a Hartree parameter of {Jh = 0.63. 

Numerical method 

The nonlinear development ofthe streamwise and spanwise periodic disturbances 
is computed by solving the three-dimensional incompressible time-dependent 
Navier-Stokes equations. A Fourier/Chebychev spectral method is used for the 
spatial discretization. For the time integration a four-stage third-order Runge­
Kutta scheme is employed for the nonlinear terms and an implicit Crank-Nicolson 
scheme for the viscous terms. The nonlinear term is computed aliasing-free in 
the wall-parallel directions. Earlier simulations by Meyer & Kleiser (1989) and 
Wagner (1992) showed that the results of the temporal simulation are in good 
agreement with the experiment al results at corresponding stages of the develop­
ment. 

Results 

In the present investigations we are mainly interested in the processes occurring 
in the highly nonlinear stages of transition, when the stationary crossflow vort ex 
breaks down and the flow becomes turbulent. The spatial discretization of the 
computational domain has been increased up to Nx • Ny • Nz = 240 ·192 ·160 grid 
points. This number is increased by a factor of 3/2 in the wall-parallel directions 
for the alias-free calculation of the nonlinear terms. 

The streamwise and spanwise wave numbers are chosen as a v = 0.08 and 
{Jv = 0.48. The computational domain captures one crossflow vortex in the 
spanwise direction. The streamwise length of the domain is chosen from sec­
ondary stability theory. The initially excited travelling disturbance with the 
streamwise wavenumber av and spanwise wavenumber {Jv gives the maximum 
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Figure 2: Development of the maximum in the wall-normal direct ion of the Fourier 
amplitudes lûl(kx , ky) . 
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seeondary amplifieation rate as predieted by the secondary stability theory (Fis­
eher & Dallmann, 1992). As initial disturbances a crossflow vortex with an 
amplitude of ACF = 0.25% of the free-stream velo city Uv and a travelling three­
dimensional disturbanee with an amplitude of Atr = 0.1% we re superimposed. 
The temporal development of the maximum in the wail-normal direction of the 
Fourier-amplitudes lûl(kx , ky) is shown in Fig. 2. Both initial modes grow expo­
nentially up to the time t ~ 600 as predieted by the linear stability theory. The 
higher harmonie modes are generated in a regular cascade by the nonlinearity of 
the N avier-Stokes equations. Between time t ~ 700 and t ~ 920 the longitudinal 
vortex modes Û(O, ky) reaeh an approximate saturation, while the travelling wave 
modes û( kx , 0) are still growing. The maximum of the amplitude of the crossflow 
vort ex reaehes a value of ACF ~ 13% and the amplitude of the travelling wave 
A tr ~ 3%. Beyond the time t ~ 920 the maxima of the Fourier modes are highly 
fluetuating, and the boundary layer beeomes turbulent. 

Viewed in streamwise direction, the crossflow vort ex rotates in counter­
cloekwise direction. Thus, the vortex moves slow fluid from the lower part to 
the upper part of the boundary layer and generates layers of high shear 8u/8y 
and 8u/8z. Faster fluid from the upper part of the boundary layer moves closer 
to the wail. Velocity profiles with two infleetion points ean be obtained due to 
the upward motion of the slow fluid. 

Fig. 3b shows the vortieal struetures identified by the same criterion at a 
later time t = 920. In addition to the crossflow vortex, a new three-dimensional 
strueture is formed in the downstream part of the domain. The foot-print of 
this new structure ean also be found in the wail-pressure distribution, where it 
marks a st rong minimum. Downstream of the three-dimensional vortex a region 
of high pressure fluetuations is observed. The identifieation of this flow structure 
as a vortex ean also be eonfirmed by ealeulating streamlines in a moving frame 
of referenee. This vortex, whieh generates new shear layers, moves downstream 
rapidly and initiates the loeal breakdown of the crossflow vortex. The visual­
ization of the flow fields at later times shows that the breakdown spreads from 
this new vort ex while in the remaining part of the flow the saturated crossflow 
vortex persists (Fig. 3e). When the spreading has eovered the fuil domain the 
entire flow field becomes turbulent (Fig. 3d). 

The identifieation of vortieal struetures by isosurfaces of low statie pressure 
ean only eapture vortiees with the largest pressure minimum. This criterion fails 
if vortieal struetures with different strength appear in the flow. In Fig. 4 the 
identifieation of vortieal struetures by a "second eigenvalue criterion" is shown 
at two earlier times in order to investigate the emergenee of the new strueture 
mentioned above. This criterion, whieh is based on the velocity gradient tensor 
Vu, was first used by Jeong & Hussain (1995). It ean also be interpreted as 
loeating the "infleetion points" of the pressure field, and it allows to determine 
vortiees with different eore pressure minima. 

Next, the breakdown of the crossflow vort ex and the onset of turbulenee 
is investigated by visualizations of the vortieal struetures whieh appear in the 
flow. These struetures are important for the energy transfer from the large 
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Figure 3: Visualization of vortical structures by isosurfaees of low statie pressure. For 
visualization twiee the eomputational domain in the spanwise direction y is shown. 
a): t = 800, Pi.o = -0.0022; b): t = 920, Pi.o = -0.0031; c): t = 970, Pi.o = -0.004; d): 
t = 1300, Pi.o = -0.005. 

scales to the smaller ones. Different criteria for their identification can be 
applied to the three-dimensional flow field (e.g. Wintergerste et al., 1995). 
In Fig. 3a the crossflow vort ex is visualized by the most common criterion 
- isosurfaces of low statie pressure - at time t = 800 where a near-saturation 
state of the crossflow vortex is obtained. The modulation in the xv-direction is 
caused by the imposed travelling wave. 

Fig. 4 shows that a second near-wall streamwise vortex next to each crossflow 
vortex has been generated at time t = 800. This secondary vort ex is much weaker 
than the crossflow vortex. While the centre of the crossflow vortex is located at a 
height of 50% of the laminar boundary layer thiekness 6 this vortex is located at 
a height of approximately 0.156. The new vortex is induced by the co-rotating 
crossflow vortices in the presence of the wall and rotates in clockwise direction, 
that is opposite to the rotation direction of the main vortex. Such a near-wall 
streamwise vort ex was also found by Malik et al. (1994) in their simulation of 
swept Hiemenz flow. At time t = 850 it moves to the upper si de of the crossflow 
vortex. The interaction of these two vortieal structures with the travelling wave 
whieh has grownto finite amplitude then leads to the three-dimensional vortieal 
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Figure 5: Propagation velocity of the new three-dimensional vortical structure from 
time t = 920 to t = 1020. 

strueture whieh was visualized in Fig. 3 by isosurfaees of low statie pressure. 
This strueture moves to the upper part of the erossfiow vortex with inereasing 
time. As mentioned above, a foot-print of this strueture ean be found in the 
wall-pressure distribution already at early times of its appearanee. 

In order to estimate the propagation velocity of the new three-dimensional 
vortieal strueture, we eon si der the correlation of the wall-pressure distribution 
at two time steps tand t + T given by 

R( AI)I _ Pwall(t , I)·Pwall(t+T,I+LlI) 
T, L.1. (t ,l) - • 

VPwall( t , 1)2 . Pwall( t + T, I + Lll)2 
(1) 

Here Pwall(t, I) is the wall-pressure fiuetuation in a (x, y)-window whieh encloses 
the foot -print of the vortex, whose streamwise position is denoted as l. Averages 
are taken over the window. From the shift of the maximum of the eorrelation 
function the propagation velocity of the vortieal strueture ean be estimated. 
In Fig. 5 the propagation velocity of the three-dimensional vortieal st ru et ure 
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from time t = 920 to t = 1020 is shown. One can see that the propagation 
velocity is approximately 70% of the free-stream velocity. This velocity is an 
order of magnitude larger than the phase velocities of the most-amplified primary 
travelling waves. 

Conclusions 

The complete transition process in a three-dimensional boundary layer has been 
simulated using the temporal model. Af ter the crossflow vortices, which are 
excited as primary disturbances, have grown to finite amplitude, small secondary 
streamwise vortices appear close to the wall next to each crossflow vortex. The 
breakdown of the crossflow vortices appears to originate from the interaction of 
these vortices with finite-amplitude travelling waves. From this interaction new 
three-dimensional vortices emerge which locally initiate the final breakdown of 
the crossflow vortices. The three-dimensional vortices move downstream with 
a propagation velocity of approximately 70% of the free-stream velocity, which 
is an order of magnitude larger than the phase velocity of the initially excited 
travelling wave. This local breakdown finally spreads over the entire domain and 
makes the flow turbulent. 
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Correlation Between Linear Stability 
Analysis and Crossflow Transition Near an 
Attachment Line 

Abstract 

Results of exhaustive linear stability calculations are presented for the boundary 
layer flow near the attachment line of a yawed cylinder, the flow being that 
studied at length by Poll (1985). The results are represented following some 
dimensional analysis and demonstrate a clear transition onset position for all yaw 
angles and Reynolds numbers. Linear stability theory yields an unambiguous eN 
correlation, in contrast to previous attempts to apply the method to crossflow 
instability. 

Introduction 

The problem of transition on or near the leading edge of swept wings has been 
the subject of investigation for some years now. In addition to the problem 
of designing a laminar flow wing, where the leading edge is the most critical 
region, the phenomenon also impacts on the study of Reynolds number effects 
for wind-tunnel-to-flight extrapolation. 

This particular investigation concerns crossflow transition close to a laminar 
attachment-line flow which derives initially from the instability associated with 
the inflectional nature of the velocity profiles in three-dimensional boundary 
layers. The principle of crossflow instability has been weIl documented since the 
work of Gregory et al. (1955) but the subsequent processes leading to transition 
are not universally understood, although progress has been made with respect 
to some specific mechanisms (see for example Bippes, 1991). 

Prediction has proved a difficult exercise because the transition process is 
affected by a large number of parameters and it is not always clear exactly when 
and how these parameters should be taken into account. Current approaches 
to prediction vary from fully empirical criteria such as those discussed by Arnal 
et al. (1984) to direct numerical simulations (see Reed, 1994). The former 
methods at tempt to generalise the transition phenomena and suffer from an 
insufficient treatment ofthe physics ofthe flow, while the latter, which investigate 
specific transition scenarios, are quite expensive and require extremely detailed 
information about the external flow and the initial disturbance environment. As 
such they are limited in scope for use in design. In bet ween there are approaches 
which retain and discard varying amounts of physics such as the eN approach 
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u'" 

Figure 1: Cross-section of the yawed cylinder model. x is the distance along the surface, 
Ue the local velocity and Uoo the free stream velo city all measured normal to the leading 
edge. 

of Van Ingen (1956) and Smith & Gamberoni (1956) and the PSE method of 
Herbert (1991) and Bertolotti (1991). 

The semi-empirical eN method has been criticised in recent years because 
it of ten fails to yield a consistent N -factor correlation across a range of wind 
tunnel and flight test measurements, particularly for crossflow transition, and 
for its inability to account for receptivity or non-linear effects which are known 
to exist. However the method has been used with success to predict effects of 
suction and heat transfer on the growth of instabilities in the boundary layer, 
particularly when using a given wind tunnel. The method obviously works best 
when the position of transition is largely dictated by the exponential growth of 
small-amplitude disturbances. 

More sophisticated methods yield more convincing results but for aerody­
namic design simple eN is already regarded as an expensive exercise and the 
modelling of receptivity and of non-linear effects may push the cost of tran­
sition analysis beyond the levels allowable for rapid design iterations. This is 
the motivation for persisting with the technique in the face of its mathematical 
limitations. The majority of effort on the eN method is now concentrated on 
fin ding reliable correlations bet ween wind tunnels and for extrapolating from 
wind tunnel to flight. 

In this paper, which describes work performed late in 1993 at British Aero­
space Regional Aircraft Ltd and at the Manchester School of Engineering, the 
authors present very consistent N -factor results for the flow over a yawed cylin­
der measured in different wind tunnels and using different models. The raw data 
have been in the literature for some time but the presentation and the stability 
analysis are new. 

Experimental arrangement 

The flow being studied is that near the attachment line of an infinite-yawed 
cylinder (see Poll, 1985 for experiment al details). A cross-section is shown in Fig. 
1. The original data obtained at Cranfield were supplemented by tests performed 
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at the Goldstein Aeronautics Laboratory at Manchester University on a cylinder 
of twice the dimensions; the latter cylinder was laser-drilled for surface suction, 
although no suction results are presented here. In both sets of experiments the 
transition was set at given chordwise positions by varying the tunnel speed (and 
therefore local Reynolds number) for a particular angle of sweep. The variables 
in this problem therefore include model manufacture, surface finish, wind tunnel 
noise and tunnel turbulence intensity (up to 0.16%). These are all factors which 
are known to influence transition under various circumstances (see Bippes, 1991 
and Saric, 1994). 

The rele van ce of the yawed cylinder model to full-scale leading edges can be 
determined from dimensional analysis. In general the chordwise velocity distri­
bution (see Fig. 1) for a lifting aerofoil can be expressed as a power series: 

g~ = A (7) + B (7) 2 + c (7) 3 + ... , (1) 

where l, A, Band Care constants. In the vicinity of the attachment line: 

~~A(=) - (dUe) ~-K~ U 00 - I - dx x=o U 00 - U 00 • 
(2) 

We now assume the leading edge flow to be infinite-swept, the free stream to be 
isentropic and homenthalpic, and the wall temperature to be constant at Tw. 'We 
restrict the analysis to flows without surface suction and concentrate on integral 
properties: that is, we do not consider wall-normal variations. Any property q of 
the boundary layer flow in the vicinity of the attachment line is thus a function 
of the following variables: 

(3) 

where V is the spanwise velocity, R the gas constant and the subscript A refers to 
conditions at the attachment line. We neglect surface finish, tunnel turbulence 
and tunnel noise in the analysis. From Buckingham's TI theorem, ni ne indepen­
dent variables and four dimensions (mass, length, time and temperature) yield 
five dimensionless groups. We choose: 

and (4) 

By limiting our consideration to air and to adiabatic flow, we conclude that 
any dimensionless property Q of the boundary layer flow is governed by the 
parameters: 

(5) 

This tells us that the wing sweep is not explicitlya parameter in the problem. In 
terms of compressibility, the relevant Mach number is the spanwise Mach number 
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tion plotted with N-factor curves calcu­
lated for a cylinder yawed at 300

, using 
integration strategy 1. 

which , for all current transport wing applications, is in the low subsonic regime. 
To a good approximation, then, the flow near the attachment line depends on 
Rand Rx alone, whether on a low speed cylinder model or a transport aircraft 
leading edge. The cylinder model can thus provide data directly relevant to the 
full scale aircraft. 

The power of the dimensional analysis is demonstrated by re-plotting the 
results of Poll (1985) and adding the more recent data collected at Manchester 
in Fig. 2. The data generally cover values of R above those currently encoun­
tered on transport aircraft (R >400) and extend into the region where one finds 
attachment line instability,R >581. Work is in progress at the present time to 
extend the range of data to lower values of Rand higher values of Rx . The 
impressive collapse justifies the neglect of surface finish and tunnel turbulence 
and noise levels in the above dimensional analysis. However Bippes (1991) and 
Saric (1994) both find that transition dominated by stationary crossflow vortices 
is strongly dependent on these parameters, which suggests that transition in 
these experiments is determined not by the stationary modes but by some other 
mechanism. Whether this is due to the magnitude of the tunnel turbulence or 
whether this is a feature of transition in strongly accelerating flow remains to be 
established. 

The advantages of this collapse is that the yawed cylinder flow is expressed as 
a two-parameter problem where both parameters have been fully explored. The 
results are then a useful benchmark for empirical transition prediction methods, 
such as the crossflow Reynolds number Re! which is also plotted on Fig. 2. 
Re! is defined here as Wmax YlO%/Ve where W is the crossflow velocity within 
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the boundary layer and YIO% is the height at which w drops to one-tenth of its 
maximum value wmax . The correlation bet ween Rei and the experimental results 
is good only between 500~ R ~600. 

Boundary layer and stability analysis 

The cylinder boundary layer flow was calculated for various yaw angles, assuming 
that the chordwise velocity distribution was that given by potential flow: 

Ue = 2sin{} = 2.:. sin {}, 
Uoo r {} 

(6) 

if {} is small: 

(7) 

which represents swept Hiemenz flow. This has an analytica! solution (see Rosen­
head, 1963) and these analytical profiles we re also used for stability calculations. 
The cylinder experiment was used to evaluate the 'black box' operation of a linear 
stability method developed at British Aerospace Regional Aircraft Ltd and val­
idated during the European Laminar Flow Investigation programme (ELFIN). 
The code employs the spatial formulation described by Mack (1984) and the 
compact-difference scheme of Malik (1988). The method also accounts for the 
curvature terms arising from the use of body- and streamline-conforming co­
ordinates (see for example de Bruin, 1990). Aside from the modelling deficiencies 
already described, linear stability theory also suffers from the need to know the 
frequency w, spatial wavenumber k and the phase speed direction tp of an unsta­
bIe wave in the boundary layer before being able to calculate the amplification 
rate ai. However for flows which are of ten revisited, such as aerofoil flows at 
subsonic and transonic speeds, one can find empirical relations expressing k and 
w as functions of Rx and tp. These are sufficiently reliable to allow automated 
stability calculations without the need for manual input of frequencies or other 
wave properties: this approach was proven during the calculation of the cylinder 
N -factors for the full range of Rand Rx. In three-dimensions one must find 
all the amplified modes within the boundary layer for each combination of Rx, 
tp and w. The amplification rates are then integrated with respect to x (and 
therefore Rx) subject to certain constraints on wand tp: the frequency of each 
disturbance is invariant, but having assumed locally parallel mean flow, one must 
further assume a rel at ion f( tp) = constant to determine how the physical prop­
erties of the wave vary with Rx: this is the ray tracing or 'integration strategy' 
problem. Some workers take tp to be constant, but Mack (1983) suggested that, 
for infinity-yawed flows, the spanwise wavenumber (SWN) should be constant: 

(8) 

where </> is the angle between the local streamline and the x vector normal to the 
leading edge. This approach yields m X n integrations as follows: 
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a = 1, ... ,~ (9) 

b = 1, .. . ,n 

One must ensure that the 'worst' case (largest N-factor) is included in the anal­
ysis; fortunately it is quite simple to determine an appropriate range of kz values 
at an early stage in the calculations. Arnal (1984) and ot hers have used the 'en­
velope' strategy, which involves maximising ai( cp) at each boundary layer station 
Rx such that: 

(aad acp) Iw= o. (10) 

This approach reduces the number of N -factor curves to ~: 

l
R o. t =Rz 

Na = ai, max (x', W = Wa) dx' for a = 1, ... ,~. 
0';=0 

(11) 

Maximising ai( cp) may be marginally less expensive than the 'shotgun' approach 
required for the SWN strategy, but there is a risk that it converges only to a 
local rat her than an absolute maximum in the ai vs. cp curve: hence it can be 
ambiguous. 

An envelope of most-amplified modes Nmax = f(Rx) is compiled from the 
~ x n or ~ integrations and the analysis is repeated for different R to obtain 

Nmax = f (R, Rx). Selected curves of constant Nmax can then be plotted against 
the experiment al data. For each boundary layer calculation in this investigation 
eigenvalues were obtained over a range of 17 Rx stations, 10 frequencies and 20 
values of kz . Total epu time for 15 values of R was 45 minutes on an 8-bit 
Silicon Graphics Indy 4600 workstation running at 100 MHz. 

Results 

Fig. 3 shows the stability results for the cylinder at 30° sweep using the SWN 
strategy. The correlation is significantly better than that with Re! (Fig. 2) par­
ticularly at lower values of R where the curves are tangential to the experimental 
results. Transition onset corresponds to N = 14 ± 1 for the range 400~ R ~650, 
above which one encounters attachment line instabilities wruch would affect the 
experiment al results but which are not modelled in the stability analysis. Fig. 4 
confirms that the results are practically identical when the analysis is performed 
on swept Hiemenz flow except for large Rx, small R: this is the region where the 
approximation sin () ~ () implicit in equation (7) is invalid. These differences are 
magnified at larger sweep angles. 

Fig. 5 shows how the envelope strategy improves the fit, giving a different 
N value of about 18 for most of the R range. Integrating with constant cp yields 
a slightly worse fit than the two examples shown, particularly at lowér values of 
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R, giving 15:S N :S 18, but all three methods would probably satisfy engineering 
requirements for this particular set of data. 

Fig. 6 shows the effect of surface and streamline curvature treatment for the 
SWN strategy. The quality of the N -factor correlation does improve markedly 
below R=600 to give a very narrow band around N =15. Surface curvature im­
proves the fit while streamline curvature increases N. For the envelope strategy 
curvature increases N to about 18.5, but the fit is slightly poorer. Finally, Fig. 
7 shows the detrimental effect of considering only stationary modes. This result 
is unaffected by either integration strategy or curvature effects. 

Conclusions 

Dimensional analysis of the flow near a swept attachment line has shown that 
transition position is a function of Rand Rx. The variations in surface finish and 
wind tunnel environment during the experiments have not had a discernible ef­
fect on the results. The results of the linear stability analysis generally correlate 
well with the experimentally measured transition onset positions. The correla­
tion is a significant improvement on that obtained with the crossflow Reynolds 
number. Best results are obtained from the envelope integration strategy and 
from the spanwise wavenumber strategy with curvature terms included. The 
latter strategy has a better physical basis for infinite-swept flows. Including cur­
vature terms in the analysis alters the value of the N -factor for both integration 
strategies, but only improves the correlation for the SWN strategy. 

The experiment al observations (Poll, 1985) reveal the presence of both sta­
tionary and tra velling disturbances ahead of the transition region. The linear 
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stability analysis, however, only correlates well whén travelling modes are con­
sidered, prompting one of two conclusions: that in this flow there is a significant 
region of linear-theory-type wave growth, the travelling modes proving dominant 
over the stationary modes; or that the results presented here are a fantastic co­
incidence, given that linear stability analysis may be totally inapplicable to this 
problem. The dominance of stationary modes is usually associated with higher 
free-stream turbulence levels , but it is not clear how the presence of astrong, 
uniform chordwise velo city gradient influences the transition behaviour. 

The values of N-factor from the SWN strategy are believed to be higher than 
those previously recorded for any type of disturbance in a wind tunnel. The work 
of Malik et al. (1994) suggests that non-parallel effects would be small. This 
does not invalidate the use of the eN methad as an engineering taal, but confirms 
that there are different flow fields requiring different values of N. Neither does 
the quality ofthe N -factor correlation imply that the transition process is wholly 
linear: simply that here the non-linear growth is either short in extent or can 
be represented by an extension of the linear growth regime. Future work will 
extend the experiment al database to flows with suction and to situations where 
R < 400 andfor Rx > 1 million. 
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Proper Orthogonal Decomposition Applied to 
Boundary-Layer Transition on a Swept Wing 

Abstract 

Proper orthogonal decomposition (POD), a technique generally used in the study 
of turbulent flows, is used to analyze experiment al signals from multi-point mea­
surements in transitional flow over a 45° swept wing. The data used in this 
analysis include surface shear stress and two-component velocity measurements 
from two separate experiments in a highly three-dimensional flow with crossflow­
dominated transition. Measurements we re obtained across the span at constant 
chord locations just before and af ter transition. Streamwise surface shear-stress 
measurements were acquired through transition to turbulence. The POD solu­
tion produces energy-based modes w hich statistically determine the spatial evo­
lution of the particular flow field. These results reflect physical events in the flow 
which may provide valuable information to developing flow control strategies. 

Experiments 

Flow transit ion is a common phenomenon on aircraft surfaces, particularly on 
swept wings. The goal of this research effort is to use proper orthogonal decom­
position (POD) to statistically capture swept-wing flow evolution in space from 
multi-point measurements. The data used in this analysis were obtained via 
multi-element hot-film and cross-wire anemometry on a 45° swept wing (shown 
in Fig. 1) with a chord length of c = 1.83 mat the Arizona State University Un­
steady Wind Tunnel facility. Wall liners, contoured to the inviscid streamlines, 

Figure 1: 45° swept wing with wallliners at the Arizona State University Unsteady 
Wind Tunnel. 
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Figure 2: Dagenhart et al. (1989) experiment: Placement of hot-film array with naph­
thalene surface flow visualization results shown. Flow is left to right. 

are used to simulate a wing of infinite span. The experiments were designed to 
produce a highly three-dimensional flow consisting of stationary crossflow vor­
tices which dominate transition starting near x j c = 0.52 at a Reynolds number 
of Ree = 2.4 X 106• Naphthalene surface flow visualization and single hot-wire 
velocity scans are used to determine the boundary-Iayer state. 

An experiment performed by Dagenhart et al. (1989) included spanwise sur­
face shear-stress measurements in the laminar regime and streamwise measure­
ments through transition. The surface-mounted hot-film arrays we re aligned to 
the visualized crossflow vortex axis as shown in Fig. 2. The crossflow array con­
sisted of 13 sensors spaeed 1.3 mm apart, covering a range of 15.3 mm in span. 
The streamwise array consisted of 13 ·hot-film sensors spaeed 2.54 mm apart, co v­
ering a range of 30.48 mmo For a more detailed description of this experiment, 
refer to Dagenhart et al. (1989). 

A second experiment by Chapman et al. (1996) was based on the analysis 
of the Dagenhart experiment and designed with the POD technique in mind. 
A series of 6 J.lm thick roughness elements spaeed 12 mm apart were placed 
downstream of the attachment line across the entire span at xjc = 0.023 to 
force the dominant crossflow vort ex wavelength, thus isolating the dominant 
mode in the flow. The data acquired from this experiment included two-point, 
two-component velocity measurements in span at two chord locations; at x j c = 
0.50, just before transition, and at x je = 0.58 in the turbulent region. Thesè 
correlation measurements (outlined in Fig. 3) for each of the two chord locations 
we re made at a single height of y = 3.0 mm in the boundary layer at 8 span 
locations spaeed 4 mm apart. The cross-wire measurements were taken above 
surface-mounted hot-film arrays used to supplement the data from the Dagenhart 
experiment. Only the cross-wire data will be analyzed here. Refer to Chapman 
et al. (1996) for a more detailed description of the experiment. 
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Figure 3: Chapman et al. (1996) experiment: Schematic of cross-wire experiment at 
x/c=O.50 and x/c=O.58 with crossflow hot-film sheets used to define measurement grid 
points. 

Proper orthogonal decomposition 

Proper orthogonal decomposition (POD) is a mathematieally unbiased method 
for extracting a system of eigenfunctions through the solution of an integral 
eigenvalue equation. It was introduced to the study of inhomogeneous turbulent 
flows by Lumley (1967) as a way of identifying large-scale structures, i.e., those 
events in the flow which have the largest mean-square projection on the flow 
field. In general, it is an objective method that decomposes a system of signals 
into various modes on an energy basis without imposing a basis set asin Fourier 
decomposition, but determines the appropriate modes directly from the data. 
Hence, POD includes the results of the flow non-linearities in the solved eigen­
functions, unlike conventionallinear-theory methods. For a summary of POD 
and applications in turbulence, refer to Berkooz et al. (1993). 

Lumley (1967) defined coherent structures as those events in the flow with the 
largest mean-square projection on the random velocity field, i.e., those with the 
maximum energy. Defining ~(x, t) as the candidate structure and maximizing 
this project ion leads to the following integral eigenvalue problem: 

with a symmetrie kern el that is the velocity cross-correlation tensor, 

(2) 

The eigenvalues, ).(n), which represent an energy distribution across the POD 
modes, </>(n) (x, t), reflect the projection. Theoretieally, Eq. (1) has an infinite 
number of orthonormal solutions. However, it is maximally discretized experi­
mentally to the number of measurement sites. 
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In this study, paD is applied to the surface shear-stress measurements of the 
Dagenhart experiment and to the two-component velocity measurements of the 
Chapman experiment, treating each component independently. Therefore, for 
these scalar solutions, Eq. (1) becomes 

(3) 

where the discrete variabie, n, is the paD mode number maximally discretized to 
the number ofmeasurement sites . Note that in Eq. (3) , Ru is formed with either 
shear stresses or velocities and x denotes the coordinate in either the spanwise 
or streamwise measurement grids , as appropriate, since each data set is treated 
as an independent system. anly the one-dimensional paD solution is presented 
here. From these solutions, it is possible to statistically determine the spatial 
evolution of the eigenmodes across each measurement range. 

Proper orthogonal decomposition results 

Surface shear-stress solutions 

paD was applied to the spanwise surface shear-stress data in the laminar regime 
shown in Fig. 4 and to the streamwise surface shear-stress data through transition 
shown in Fig. 5. The solutions are obtained using two-point correlation tensors 
normalized by the appropriate root-mean-square values. 

In Fig. 6, the resulting eigenvalues plotted as a function of paD mode number 
for these data show the contribution of each mode to the total energy of the 
measured surface shear-stress fields. The spanwise eigenvalues contain 98% of 
the total energy in the first three modes, whereas only 69% of the total energy 
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IS In the first three modes of the streamwise solution. In fact, six modes are 
needed to rep re sent over 80% of the field 's total measured energy. Thus, the use 
of higher modes in the analysis of transitional flows is a necessity. 

The first three eigenfunctions for the spanwise and streamwise solutions are 
plotted in Figs. 7 and 8, respectively, and are weighted by ),1/2 to distinguish 
them as characteristic surface shear stresses. High modal amplitudes statistically 
correspond to regions of high shear. The spatial evolution of the first spanwise 
mode in Fig. 7 captures the dominant wavelength of the co-rotatingcrossflow. 
vortices, determined to be approximately 9.0 mm from flow visualizations and 
mean-velocity boundary-Iayer scans. Hence, the spatial wavelength is expected 
to span across seven hot-film sensors. This is captured by the first mode from 
sensor number 2 through 8 inclusive. A second v{)rtex of weaker amplitude is 
also captured by the first two modes from sensors 8 through 12 inclusive. In the 
cross-wire experiment, this type of non-uniformity of the vortices was removed 
through the use of roughness elements, effectively isolating the wavelength to 
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the fi.rst mode. Higher spanwise modes provided very little information. 
The spatial evolution of the streamwise modes in Fig. 8 reveal important 

characteristics of flow transition. From observation of the time history data 
in Fig. 5, one sees the onset of turbulence occurring near sensor number 9. 
This event is dramatically captured in the first three eigenmodes. The functions 
spatially evolve from high amplitude periodic waveforms to fairly constant values 
at the onset of turbulence. The fact that the first three modes are at the same 
amplitude in the transition region supports the absolute need for the inclusion 
of higher modes when modelling this regime. It also suggests that the dominant 
three modes are of equal importance. In the turbulent regime, the energy in 
the flow becomes organized and may be adequately represented by simply the 
first three modes. This is comparable to other POD applications in turbulent 
flows where increasing mode number reflects a significant decrease in energy. 
Therefore, the solution of the POD through transition to turbulence statistically 
reveals a spatial organization of energy which requires higher modal information 
in transitioning regions, but needs only the first three modes in turbulent regimes. 

lndividual velocity component solutions 

The POD was also applied to the two-point cross-wire data taken at a height of 
y = 3.0 mm in the boundary layer. Fig. 9 shows a typical mean velocity contour 
plot of the stationary crossflow vortices obtained by single hot-wire scans. Fig. 10 
is a statistical picture of the flow disturbances, i.e., the fluctuations about the 
mean, for the data shown in Fig. 9. The physics of the solved eigenfunctions at 
y = 3.0 mm can then be appropriately mapped to this plot. 

The eigenvalues for the u and w components of velocity are shown in Fig. 11 
for xjc = 0.50 and xjc = 0.58. The turbulent solutions are at an entirely higher 
energy level suggesting the fluctuating components have acquired more energy 
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from the mean flow. AIso, the eigenvalues demonstrate that only the first three 
POD modes are significant in the laminar regime, yet higher modes are active 
in the turbulent regime, consistent with the shear-stress analysis. 

The spanwise evolution of the first four eigenrnodes of both components in 
the laminar regime, shown in Fig. 12, demonstrate the effectiveness of the POD 
in capturing the crossflow vort ex wavelength of ).,CF = 12 mm entirely in the first 
mode. The vort ex structure in the first mode ranges from 7 mm to 19 mm on 
the measurement grid which can be mapped to the disturbance contour plot in 
Fig. 10. The circles in Fig. 10 represent five typical measurement points that 
could be characterized by the five eigenfunction points ranging from 7 mm to 
27 mm for the first modes of each component in Fig. 12. In this range, the first 
modes show two points of relatively low disturbances (each represented by 0 in 
Fig. 10) followed by a large amplitude event (represented by • in Fig. 10) and 
then two more points of relatively low amplitude velocity disturbances. 

The spanwise evolution of the first four eigenrnodes for the u and w compo-
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Figure 13: Spatial evolution of the first four eigen modes for both u and w velocity 
components in the turbulent regime at xjc = 0.58. 

nents in the turbulent regime are shown in Fig. 13. The same events in the first 
modes of the laminar solution which capture the crossflow vort ex wavelength 
are retained and increase in amplitude in the turbulent solutions. This suggests 
that the initial structures present in the flow field before transition acquire energy 
and remain intact in the turbulent regime. Flow visualization results show the 
crossflow vortex axis to be angled approximately 6° from the x coordinate axis 
thus explaining the 4 mm shift of the vortex structure position (from 15 mm at 
x/c = 0.50 to 11 mm at x/c = 0.58). The turbulent solution shows higher modes 
are now significant and have amplitudes nearly half of the first mode. 

Conclusions 

Proper orthogonal decomposition has been shown to be a useful and objective 
tooI in analyzing transitional flow. Large scale events, such as the crossflow 
vortex wavelength are easily tracked and can be used for structure identifica­
tion purposes where supplemental experiments such as flow visualization are not 
available. The POD modes clearly identify the onset of turbulence when ap­
plied to multi-point streamwise measurements. The POD solution provides a 
set of eigenfunctions decomposed on an energy basis which can then be used in 
developing flow con trol strategies and flow models. 
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to Skin Friction Drag Reduction Problems 

Abstract 

This paper gives an overview of some recent investigations conducted at ON­
ERA in order to improve the techniques for laminar flow control. The first part 
deals with the problem of leading edge contamination. It is shown that suction 
and the Gaster bump can significantly increase the Reynolds number at which 
contamination occurs. The second part of the paper is devoted to applications 
of numerical tools aimed at predicting the ons et of transition. 

Introd uction 

Among the different techniques which could be applied to reduce the drag of 
transport aircraft, laminar flow technology seems to have the greatest potential. 
The importance of the problem and the associated economic gains are high­
lighted by the large number of studies currently being carried out in the United 
States and in Europe. In France, ONERA is deeply involved in several national 
and European programmes (Falcon 900, A 320 fin, ELFIN project). Besides 
practical results directly applicable to free flight conditions, these numerical and 
experiment al studies gave the opportunity to obtain fundamental information 
concerning the transition problem. The objective of this paper is to give a sur­
vey of these results, by showing how such studies have improved our knowledge 
of the transition mechanisms and our capability to model them. 

For swept wings, a substantial region of laminar flow can be maintained by 
controlling the development of crossflow and/or Tollmien-Schlichting (TS) dis­
turbances. This control can be carried out either by adequately shaping the wing 
(NLF: Natural Laminar Flow) or by applying suction at the wall (LFC: Laminar 
Flow Control). Given the typicalleading edge sweep angles and chord Reynolds 
numbers of transport aircraft wings, most of the research effort is devoted to the 
combination of these techniques (HLFC: Hybrid Laminar Flow Control). How­
ever, it is first necessary to ensure that the attachment line boundary layer is 
laminar, i.e. to avoid the problems of leading edge contamination. This phe­
nomenon, by which the turbulence of the fuselage boundary layer is convected 
along a swept leading edge, is likely to occur on transport aircraft causing the 
wing boundary layer to become fully turbulent. A survey of these problems can 
be found in the AGARD Report (1992). 

The first part of this paper presents results obtained during wind tunnel tests 
for two anti-contamination devices, namely a Gaster bump and aporous leading 
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edge allowing to apply suction along the attachment line. The second part of the 
paper is devoted to the development of numerical methods aimed at predicting 
the transition location as accurately as possible. These methods are applied for 
several problems where different stabilization techniques are tested. 

Leading edge contamination problems 

It is weIl known that leading edge contamination occurs on a swept wing as soon 
as a leading edge Reynolds number R exceeds a critical value close to 250, see 
Pfenninger (1965) and Poll (1978). Ris defined as: 

- WeTJ 
R=--, 

Ve 

. h fïï; 
WIt TJ=YT' 

where Ve is the kinematic viscosity, We is the mean flow component parallel to 
the attachment line and J( is the velocity gradient along the surface and normal 
to the leading edge. 

As typical values of R near the root are of the order of 800-1000 for large 
transport aircraft, it is necessary to develop specific tools to delay the onset 
of leading edge contamination. This is in fact the first problem to solve for 
maintaining laminar flow on a wing: if the attachment line flow is turbulent, the 
NLF, LFC or HLFC systems will become useless. 

Gaster bump 

A successful device to prevent leading edge contamination is the Gaster bump 
(Gaster, 1967). It consists of a small fairing which is placed on the leading edge 
close to the wing root . It is shaped in such a way that the contaminated turbulent 
boundary layer is brought to rest at a stagnation point on the upstream si de 
whilst a "clean" laminar boundary layer is generated on the downstream side. 

Several Gaster bumps were tested in a water channel and in the transonic 
T2 wind tunnel at CERT ONERA. These experiments allowed to optimize some 
geometrical parameters of the bumps, while numerical investigations gave some 
insight into the transition mechanisms. 

An example of the results is presented in Fig. 1, which shows a comparison 
between the measured and computed transition lines around a bump tested in 
the T2 wind tunnel during the preparation of flight tests performed by Dassault 
A viation. Due to the strong deflection of the flow on both sides of the device, a 
powerful crossflow instability is generated and transition takes pI ace at a short 
distance from the attachment line. Further downstream (in the spanwise di­
rection), the transition front moves up to larger chordwise distances. When R 
increases, transition around the bump occurs closer and closer to the attachment 
line. This could explain the efficiency limitation of this kind of device. 
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Computations 

Figure 1: Transition front around a Gaster Bump, sweep angle <p = 35°, Moo = 
0.74 (L: Laminar, T: Turbulent). Comparison between experiments (sublimation) and 
computations (transition criteria, Arnal et al., 1995). 

Suction (without or with Caster bump) 

The first results related to the effect of suction on contamination were obtained 
from DNS carried out by SpalartJI988). These computations showed that con­
tamination can be delayed up to R ~ 350-400 for J( = -1. J( is a dimensionless 
suction parameter: 

J( = Vw R. 
We 

A first series of experiments carried out at eERT ONERA were performed 
on a small model by Juillen & Arnal (1995). With J( = -1.15, contamination 
first appeared at R = 470, but the small dimensions of the wind tunnel did 
not allow higher values of R to be investigated. Therefore ONERA decided 
to perform tests in the F2 wind tunnel at Le Fauga Mauzac in order to study 
this phenomenon at large values of R. The chosen experiment al support was a 
constant chord (C = 1.2 m) swept wing model generated from a symmetrical 
airfoil with a radius R of 0.2 m near the leading edge. The phenomenon of 
leading edge contamination was studied at sweep angles of 40° and 50° by fixing 
the model to the tunnel wal!. 

The objective of the tests was to delay leading edge contamination either 
by the use of a Gaster bump or by applying suction along the leading edge or 
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Figure 3: Experimental determination of the velocity gradient . 

a combination of both. Fig. 2 shows the two leading edges which have been 
testedj the first one consists of six independent suction chambers fitted along the 
leading edge and the second one combines a Gaster bump with three leading edge 
suction chambers downstream of the bump. Three-dimensional computations 
were carried out to determine the effect of the wind tunnel walls on the pressure 
distributions and boundary layers of the configurations tested. 

The chordwise width of the suction panel was about 70 mm, i.e. 35 mm 
on each si de of the attachment line. The titanium perforated panel was laser 
drilled by AS&T company and the mean diameter of the holes was about 50 J.lm . 
The model instrumentation consisted of 3 rows of surface pressure taps aligned 
normal to the leading edge. Furthermore, 12 pressure taps were installed inside 
the suction chambers in order to evaluate the operation of the suction system. 
Leading edge contamination was detected by flush-mounted surface hot films. 
The position of the hot film is shown in Fig. 2. 

The values of R were computed using pressure measurements made around 
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Figure 4: Leading edge contamination Reynolds numbers: summary of the results. 

the leading edge. The computation of the velocity gradient K requires a precise 
analysis in order to be sure that small perturbations, caused for example by 
some defects in the geometry of the porous wall, do not intro duce discrepancies 
into the computation. It was therefore decided to smooth the measured Kp 
distributions using second order polynomials (with Kp = (P - P=)/!PooQ~, 
where P is the statie pressure). Smoothing was carried out by the least square 
method in the interval -0.2 < XI R < +0.2. As an example, Fig. 3 shows the 
evolution of the measured pressure distribution and of the dimensionless normal 
velocity component UelQoo as a function of X (curvilinear distance normal to 
the leading edge) for the case Qoo = 60 mIs and 4> = 40° . Af ter smoothing, K 
and R can be accurately determined. The final values of R differ by about 10% 
from those of the potential flow around a circular cylinder. 

Fig. 4 shows the evolution of R corresponding to the onset of leading edge 
con tamination (first spots) as a function of the suction parameter K. The results 
obtained without Gaster bump for 4> = 500 are compared with the DNS results 
by Spalart (1988) and with the experiment al data currently available (Juillen & 
Arnal, 1995~ Poll & Danks, 1995). Without suction, leading edge contamination 
occurs for R ~ 250, as expected. Application of suction causes the onset of 
contamination to be delayed to R ~ 550 for the maximum suction rate attainable 
in the experiments (K = -2.4). 

For the configuration with a Gaster bump at 4> = 500
, leading edge contami­

nation in the absence of suction occurs at R = 320, a value whieh is lower than 
that obtained in other previous experiments. As soon as the flow over the bump 
is fully turbulent, the data with and without bump become close together (within 
the experimental uncertainty). The porosity of the porous leading edge fitted 
with the bump was larger than that of the leading edge without bump, so that 
the dimensionless suction parameter could be increased up to K = -3.07. This 
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Figure 5: Leading edge contamination Reynolds numbers at two spanwise positions. 

allowed to delay the onset of leading edge contamination up to fl = 670. The 
data for the onset of contamination without bump are fairly weil represented by 
the foilowing relationship: 

fl = 250 - 143 1(. 

The previous results were deduced from the time signals delivered by the hot 
films placed just before the end of the porous wail (hot film 6 without bump, hot 
film 5 with bump, see Fig. 2). The leading edge fitted with a bump was equipped 
with an additional sensor (hot film 6) af ter the end of the porous wail. Fig. 5 
shows the leading edge contamination limits indicated by hot films 5 and 6 for the 
case with bump and </> = 50°. The signals delivered by hot film 6 indicate that 
downstream of the sucked region, transition cannot be delayed above fl ~ 550, 
which roughly corresponds to the lower limit of "natural transition" (see next 
paragraph) . 

Numerical approaches for "natural" transition 

Assuming that leading edge contamination is avoided, transition will occur 
through the amplification of "naturaI" disturbances. This linear, local stability 
theory and the en method are widely used to analyse this type of transition 
process. The foilowing examples illustrate the efficiency and the limitations of 
the classical prediction methods and show how it is possible to improve the 
accuracy of these methods. The first example (localized surface heating) shows 
that the "old" en method is still useful for parametric studies. The second 
example (effect of suction) demonstrates how more recent approaches make it 
possible to take into account nonlinear phenomena. In the third example (leading 
edge instability), it is shown that classical TS waves are not always the most 
relevant ones for linear stability problems. 
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Linear, loeal theory: applieation of the en method to the problem of loealized 
heating 

The shortcomings and limitations of the classical en method (based on local 
stability computations) are weil known and have been discussed in several papers 
(e.g. Arnal, 1993; Arnal et al., 1995). However, this method remains a very 
practical and efficient tooI, especiaily for parametric studies. For a given test 
model and for a given disturbance environment, it is often able to predict the 
variation of the transition location when changing a parameter which governs 
the stability properties of the mean flow (pressure gradient, wall temperature, 
suction rate for instance). 

To illustrate the usefulness of the en method for this kind of analysis, let us 
consider the problem of transition control by a localized surface heating (in air). 
The principle of this new stabilization technique is as foilows. The wail is heated 
over a short streamwise distance, and a relaxation region develops downstream 
of the strip. In this region, the boundary layer temperature close to the wail is 
larger than the wail temperature, so that the boundary layer "sees" a cold wall. 
According to the linear stability theory, this leads to a decrease in the growth 
rates of the unstable disturbances. 

Recent Russian papers, (Dovgal et al., 1989a,b; Fedorov et al., 1991) indicate 
that wind tunnel experiments confirmed the stabilizing effect of localized surface 
heating, at least for some configurations. Fig. 6 shows experiment al results ob­
tained on a two-dimensional flat plate placed in a subsonic wind tunnel (Dovgal 
et al., 1989a). The wall is heated from x = 0 to x = 0.1 mand the wail tem­
perature without heating is 296 K. The figure presents the streamwise evolution 
of the velocity fluctuations (rms values) measured near the wall without heating 
and for two cases with heating (Tw = 365 and 381 K). The efficiency of this 
stabilization technique is obvious. The points on the x-axis correspond to the 
theoretical transition location predicted by the en method with the value of the n 
factor corresponding to the case without heating. It is interesting to observe that 
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the theory is able to reproduce the transition movement , at least qualitatively. 
Other measurements (Dovgal et al., 1989a) demonstrated that the best results 
are obtained when the heated strip is located in the area where the TS waves 
start to develop. Negative results (transition moves upstream) are obtained if 
heating is applied too far downstream of this area, because the destabilizing ef­
fect due to the heated strip becomes more important than stabilization in the 
relaxation region. 

As far as three-dimensional flows are concerned, the experiments reported in 
(Dovgal et al., 1989b) show that it is very difficult to ob serve a positive effect 
of the localized heating when transition is dominated by crossflow disturbances. 
Computations using the en method supported this conclusion (see Arnal, 1996). 

Linear and nonlinear, non local theory: PSE approach 

A new formulation ofthe stability analysis was proposed by Herbert (1993). The 
advantages of this so-called PSE approach (Parabolized Stability Equation), is 
that nonparallel effects are accounted for (nonlocal theory) and that nonlinear 
terms can be introduced into the equations. 

The use of the linear PSE approach for transition prediction is similar to 
that of the classical, local theory. In particular, it is possible to integrate the 
(nonlocal) growth rates in the flow direction and to apply the en method to 
predict the onset of transition. Although the disturbance growth rates from local 
and nonlocal theories can differ significantly, particularly for three-dimensional 
flows (Arnal, 1995), the basic problem for transition prediction remains the same, 
i.e. one has to choose a value of the n factor at transition. 

The nonlinear PSE approach is much more interesting because it is able to 
model resonances bet ween different unstable modes. This can result in a steady 
distortion of the basic flow which is interpreted as the onset of transition. In 
other words, the concept of the "critical n factor" does not exist for nonlinear 
PSE. 

As an example of application of nonlinear PSE computations, Fig. 7 shows 
the effect of suction on the stability properties for a two-dimensional flow (Casalis 
et al., 1995). The results are related to a flat plate flow with a free stream velocity 
of 50 mis. Suction is applied over a streamwise extent of 10 cm with a vertical 
suction velocity Vw equal to -1 cm/s. The numbers between parentheses denote 
the beginning and the end of the suction region. The left hand part of this figure 
shows the evolution of the amplitude A2 ,o of the primary, two-dimensional wave. 
The right hand part presents the variation ofthe amplitude AI,1 of the secondary, 
oblique mode (H-type peak-valley system). It can be seen that suction location 
has only a minor effect on the primary mode, but this effect becomes important 
for the oblique mode: if suction starts upstream of X = 0.5 m, the secondary 
mode is damped up to the end of the plate. If suction starts at X = 0.6 or 
0.7, resonance occurs. This demonstrates that suction is efficient if it is applied 
in the linear growth rate regime, i.e. before the appearance of the peak-valley 
system. Fundamental wind tunnel experiments performed by Reynolds & Saric 
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(1982) indicated that suction is more effective when applied at Reynolds numbers 
close to the lower branch of the neutral curve, in qualitative agreement with the 
previous theoretical results. 

"Natural" disturbances along attachment line 

Even in the absence of leading edge contamination, unstable waves may appear 
and grow along the attachment line of swept wings. They have been observed, for 
instance, by Pfenninger & Bacon (1969) and by Poll (1978). This simplest way to 
investigate the linear problem is to use the classical, parallel theory for Tollmien­
Schlichting waves (Orr-Sommerfeld equation). Based on this theory, the critical 
Reynolds number Rcr is about 670. It is also possible to followa more rigor­
ous approach by considering two-dimensional Görtler-Hämmerlin (GH) distur­
bances. In this approach, the disturbance amplitude in the X -direction normal 
to the leading edge depends linearlyon X. The parallel flow assumption is no 
longer necessary, so that the GH disturbances are exact solutions of the linearized 
Navier- Stokes equations. The critical Reynolds number is now about 580 (see 
Hall et al., 1984), in good agreement with the experimental data. Numerical 
investigations by Spalart (1988) and Lin & Malik (1995) indicated that the two­
dimensional GH disturbances were the most amplified ones in the incompressible 
attachment line boundary layer. 

Experiments on natural transition were conducted on a swept wing equipped 
with a suction system along the leading edge. This wing was the model without 
Gaster bump previously used for the investigation ofleading edge contamination. 
The experiment al set-up was modified in order to displace the apex of the model 
300 mm above the wind tunnel floor, see Fig. 8. Regular waves travelling along 
the attachment line were detected by hot film measurements. When suction 
(blowing) is applied, the value of R at which the waves are observed increases 
(decreases) rapidly. It can be seen in Fig. 9 that the trend is in qualitative 
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agreement with theoretical results. In the experiments, the maximum value of 
il (close to 800) is fixed by the maximum wind tunnel speed. 

An attempt was made to use the en method to predict the onset of transition 
along the attachment line. Fi~. 10 shows the spanwise evolution of the integrated 
growth rates in a case with R::::i 740 and K = O. Z = 0 corresponds to the apex 
(stagnation point) of the model where the attachment line boundary layer starts 
to develop. The pressure distribution around the model was first determined by 
inviscid computations taking into account the presence of the wind tunnel walls. 
In a second step, accurate boundary layer computations along the leading edge 
were performed by using a three-dimensional boundary layer code (Malecki et 
al., 1993). Then two n factors were computed, one for TS waves, the second for 
GH disturbances. As the boundary layer results indicate that the infinite swept 
wing conditions are approximately reached at Z ::::i 0.25 m, the unstable waves 
leading to transition do not start to develop upstream of this point. However, if 
the attachment line boundary layer is assumed to be uniform all along the leading 
edge, i.e. if is immediately equal to 740 at the apex, then GH disturbances start 
to be amplified at Z = 0 and the n factor curve is represented by the dotted line 
plotted in Fig. 10. Experimentally, transition was found to occur at Z ::::i 0.6 m. 
This leads to the following remarks 

• when the infinite swept wing assumption is used for the GH disturbances, 
the n factor at transition is close to 10, in agreement with previous in­
vestigations based on the same assumptions (Arnal, 1993; Lin & Malik, 
1995); 

• the n factor of the GH disturbances is reduced to about 3 to 4 when the 
upstream flow history is taken into account; 

• the n factor of the TS waves is close to zero. 

In any case, a fundamental problem remains: the frequency range of the 
observed unstable waves is lower than that predicted by the theory (around 6 kHz 
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Figure 9: Suction effect on "natural" transit ion Reynolds number along the attachment 
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in the experiments, around 7 kHz in the computations). In fact, the measured 
frequency range is close to the lower branch of the neutral GH disturbances, as 
observed in previous experiments (Poll, 1978; Pfenninger & Bacon, 1969). This 
discrepancy could be explained by nonlinear phenomena which are not yet fully 
understood (Hall & Malik, 1986; Theofilis, 1994). 

Conclusion 

For the purpose of skin friction drag reduction by laminar flow control, it is of ten 
necessary to delay the onset of leading edge contamination. This can be done 
either by using a Gaster bump or by applying suction along the attachment line. 
For a given aircraft, the choice of the most appropriate device depends on the 
value of R near the root (leading edge radius, sweep angle, cruise conditions ) and 
also on technological possibilities (for instance the use of anti-icing systems can 
make suction systems difficult to handle). Numerical and experimental investi­
gations provided some interesting insight into the capabilities and limitations of 
such devices. 

As far as natural transition is concerned, the en method remains a very 
efficient tooI for parametric studies. Of course, there are so many routes to 
turbulence that a "universal" value of n cannot exist. This is true for the "old" , 
local method, but also for the "new" , nonlocal method based on linear PSE. The 
major improvement of nonlinear PSE is that transition occurs naturally, because 
resonance mechanisms are now included in the model. The new problem is the 
choice of correct initial conditions (amplitude, frequency, orientation) which are 
unknown for most of the real flow situations. 

The attachment line instability is a particular problem which is likely to be 
important for large transport aircraft as soon as leading edge contamination is 
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Figure 10: N factors for TS and GH disturbances. 

avoided. It is now clear that GH disturbances play a major role; the present 
experiments showed that they can be damped by suction levels which are much 
lower than those necessary to relaminarize a contaminated turbulent boundary 
layer. However several problems still need to be solved, in particular those 
associated with nonlinear (subcritical ?) phenomena and with the use of the en 
method. 
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D.I.A. Pollo, M. Danksl> & M.R. Yardleyl> 

The Effects of Suction and 
Blowing on Stability and Transition at 
a Swept Attachment Line 

Abstract 

An experimental investigation has been carried out on the attachment-line flow 
formed on a long, inclined cylinder. When the flow is laminar, surface blowing 
has been applied to modify the stability characteristics and, ultimately, induce a 
transition to turbulence. Very substantial reductions in the transition Reynolds 
number have been observed. Conversely, surface suction has been used to mod­
ify a fully turbulent flow. Strong suction has been found to induce complete 
relaminarisation over a very wide range of Reynolds number. 

Introduction 

The attachment line is a common feature in the flow over many shapes of en­
gineering interest. However, there is currently a great deal of interest in the 
concept of an aircraft wing designed to support extensive regions of laminar 
flow and, consequently, having a much lower drag than its current technology 
turbulent counterpart. 

In the context of a laminar flow wing, the attachment-line flow is of paramount 
importance. It is well known, Poll (1979), that the attachment line flow can be 
tripped to the turbulent state at very low Reynolds number, if a sufficiently large 
contaminating agent is present. This may take the form of a trip wire, a skin 
joint, a wing fuselage junction or even an insect splat. By contrast it is also 
known, Hall et al. (1984), that, in the limit of very small forcing e.g. surface 
micro roughness or low free-stream turbulence, the flow exhibits a classic viscous 
instability which is well described by linear theory. A particularly intriguing fea­
ture ofthe problem is that, in terms of displacement thickness Reynolds number, 
there is a factor of 2.4 between the lower limit for turbulence and the linear sta­
bility, minimum critical value. To date, there has been no theoretical explanation 
provided for this very large difference, although the lower limit for turbulent flow 
has been found to be consistent with the lower "limit" for sustainable turbulence 
found in the DNS computations of Spalart (1988). Virtually all the plans for 
laminar flow wings on all but the smallest aircraft involve the use of surface 
transpiration to con trol the boundary layer instability. Therefore, it is necessary 
to have an understanding of the effect of transpiration at the attachment line. 
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Figure 1: The flow in the vicinity of a swept attachment line. 
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Figure 2: Sketch of the model in the wind-tunnel. 

The present paper addresses issues of blowing to destabilise a laminar flow and 
suction to relaminarise a turbulent flow. 

The attachment line flow 

Fig. 1 shows a schematic of the extern al streamline pattern for the flow over a 
swept leading edge. The attachment line lies along A-A and it is the demarcation 
between flow which passes over the up per surface and that which passes over the 
lower surface. On the attachment line itself, the chordwise component of the 
flow at the edge of the viscous layer is zero but the spanwise component is 
not. Consequently a "boundary layer" is established along A-A and this may be 
laminar, transitional or turbulent, depending on conditions. 

When the flow is incompressible, the low-speed, adiabatic flow along an infi­
nite swept attachment line is described by the parameters 

R = Ve17 and w(O) 
IJ Ve 
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Figure 3: Layout of the suction surface. 

Hot-wire probe 
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Attacbment-line Chamber 
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Figure 4: The spanwise length of surface transpiration, s. 

with 

[ 
v ] 1/2 

T} = dUe/dx x=o . 

Here Ve is the spanwise component of the external velocity and w(O) IS the 
transpiration velocity at the wall. 

Experimental arrangement 

Tests have been carried out on the model shown in Fig. 2. This consists of a 
semi-circular forward part with a wooden fairing at the rear, giving a "teardrop" 
cross section. The leading edge sweep is nominally 60°, the norm al- to-leading 
edge chord is 0.813 mand the leading edge radius is 0.202 m. All the measure­
ments are taken on the semi-circular portion which is made from a 1.2 mm thick 
titanium sheet. Before being rolled to form the cylinder, the titanium sheet was 
laser perforated with holes of 50 {lm diameter with a hole-to-hole and row-to­
row spacing of 400 {lm. The areas which were drilled are indicated in Fig. 3. 
Transpiration at the attachment line is provided by a strip of perforation which 
begins 1.35 m from the upstream tip and is 0.9 m long in the spanwise direction. 
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Perforations extend to ±35.3 mm either side of the attachment line which, in 
this case, coincides with the windward symmetry plane of the model. Beneath 
the perforation strip is a single plenum chamber. The model was mounted in 
the Goldstein Research Laboratory low speed, closed-return wind tunnel. This 
has a 2.74 m X 2.13 m test section and a maximum flow speed of 70 mis. The 
free-stream, mean turbulence level is approximately constant at 0.1% over the 
tunnel operating range - see Mullender (1995). 

Leading edge sweep may be set at any angle bet ween 38° and 65°, giving 
values of R in the range 190 to 800, whilst the mean through surface velocity, 
w(O), can be set in the range +0.002Ve to -0.01 Ve . In all the tests, an untran­
spired flow was established on the attachment line. This flow encountered the 
porous surface as shown in Fig. 4 and the transpiration velocity over the surface 
was invariant in s . Hot-wire anemometers we re used to monitor fluctuations and 
surface Pitot tubes were used to make mean flow measurements - as described 
by Yardley (1995). 

Blowing on a laminar layer 

Measurements were conducted with the hot-wire at a fixed position, s, and with 
the free-stream speed held constant. Flow conditions were varied by slowly 
increasing the surface blowing rate. A typical set of spectra, co vering the pro­
gression from stabie laminar to turbulent flow, is given in Fig. 5. Here the value 
of R is 195 with slry being 4350. For w(O)IVe below 0.00155, the laminar flow 
is stabie. However, when the blowing rate exceeds 0.0016, a group of unstable 
waves appears, as indicted by the peak in the spectrum, centred on a frequency 
of about 400 Hz. Further increases in the blowing rate cause the energy content 
in this frequency range to increase. At blowing rates above 0.00172, a series of 
peaks appear in the spectrum. In this particular case, three additional peaks are 
clearly visible. These are cent red upon frequencies of 800 Hz, 1200 Hz and 1600 
Hz respectively i.e. they are the second, third and fourth harmonics of the 400 
Hz fundamental mode. Finally, at a blowing rate of about 0.0019, the flow is 
turbulent and fluctuations have the appropriate spectrum. 

The above behaviour was observed for all the measurements taken bet ween 
an R of 195 and 545, although it should be noted that the hot-wire signals were 
not always as clear as those shown in Fig. 5. A more detailed description of the 
data may be found in Poll and Danks (1995). By considering only the central 
frequency of the fundamental modes, it was found that a clear correlation existed 
with R. This is shown in Fig. 6. In principle, this result should be comparable 
with the theoretical work of Hall et al. (1984). Unfortunately, the published 
stability data are insufficiently detailed to allow direct comparison. However, 
private communication with Theofilis (1995) has revealed that the experiment al 
data shown in Fig. 6 corresponds to the most amplified mode predicted by linear 
theory. Finally, Fig. 7 gives the conditions necessary for the onset of transition. 
It is clear that blowing produces a situation in which turbulent flow may be 
established at very low Reynolds number, with the value of R for transition 
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onset being reduced by more than a factor of 3 compared with the zero blowing 
case. 

Suction of a turbulent layer 

For this part of the investigation, a4 mm diameter circular trip-wire was wrapped 
around the model at a distance of 80 mm from the upstream tip. As expected 
from previous work e.g. Poll (1979), with zero transpiration, transition onset 
began when R exceeded 245 and the flow was fully turbulent for R in excess 
of 280. Having established turbulent flow , the free-stream conditions were held 
constant and the surface suction rate was increased until the flow reverted to 
the laminar state, as indicated by a hot-wire at a fixed distance, s, from the 
leading edge of the suction strip. When the distance exceeded approximately 
20001], the results became independent of s, and the conditions for complete 
reversion to laminar flow are given in Fig. 8. For smaller values of s/1], the 
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data for the attainment of laminar flow could be normalised as shown in Fig. 9, 
where w' is the ratio of the suction required at a particular value of 8/1] to that 
required for very large 8/1]. A more detailed description of the data, together 
with approximate curve fits are given in Poll and Danks (1994) - see also Juillen 
and Arnal (1994). 

The important points to note are that the turbulent flow can always be 
relaminarised with sufficient surface suction, and the data seem to indicate that 
a special suction rate exists, beyond which turbulent flow is physically impossible. 
Data from the present tests indicate that this suction level is in the region of 
0.0035. 

Since the suction rates required to produce relaminarisation are relatively 
large, there is significant distortion of the mean velocity profiles . A series of re­
sults for the case where w(O)/Ve is equal to -0.002 is given in Fig. 10. It is found 
that the laminar flow profiles are in very good agreement with the predictions 
of boundary layer theory. However, the turbulent results are achallenge to the 
theoretician. 
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On Secondary Destabilisation 
of an Attachment Line Boundary Layer 
in Compressible Flow 

Abstract 

199 

The generalised Hiemenz model is used to describe incompressible flow in the 
infinite swept attachment line boundary layer. This base flow is perturbed using 
local spatial LST and the resulting secondary instability problem is solved at 
high Reynolds numbers, extending earlier work. Issues raised by compressibility 
are discussed next; in the absence of a simplifying theoretical assumption, such 
as that of Görtler & Hämmerlin, we proceed to design a DNS in order to study 
the instability in question. The algorithm is outlined and first results on its 
successful application on a relevant compressible model problem are presented. 

Introd uction 

The investigation into secondary stability was initiated as an at tempt to explain 
the frequencies appearing in the spectrum, distinct from the linearly unstable 
ones, at conditions favouring linear growth (Poll, private communications; Poll et 
al., this volume). Although not sharply defined as such, these frequencies appear 
in the parameter space region where harmonies of the primary linearly growing 
wave are expected. A secondary instability analysis is thus called for to shed light 
into this problem. Within the framework of the classic, in Blasius flow, Floquet 
analysis (Herbert, 1988) it is impossible to introduce three-dimensional stream­
wise (chordwise) periodic disturbances superimposed upon the linearly growing 
spanwise eigen mode in a theoretically self-consistent manner. The re as on is, of 
course, the parity of the linear eigenfunctions in the attachment line problem; 
these have been assumed, in theoretical analyses, to inherit the symmetry of the 
base flow (Görtler-Hämmerlin assumption, henceforth referred to as GH) while 
the incompressible DNS of Spalart (1988) has demonstrated that this assumption 
may be justified in the linear regime. Invoking the GH assumption to study sec­
ondary instability in the attachment line, however, results in the elimination of 
the dependence of the system of equations on the streamwise coordinate which, 
in turn, prohibits the introduction of streamwise periodic disturbances in the 
present problem in a formal manner. 

The inability to introduce streamwise periodic disturbances into the stagna­
tion region, while being consistent with the currently available theoretical tools, 
does not preclude the actual presence of such waves in an experiment. The 
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conjecture is then made that ij present, streamwise periodic waves will amplify 
according to Floquet secondary theory. Further, use is made of the observa­
tion (Arnal, 1992; Theofilis & Poll, 1994) and theoretical prediction (Theofilis, 
1995) that the classic Orr-Sommerfeld model is an adequate approximation to 
the infinite-swept attachment line boundary layer linear stability problem at high 
Reynolds numbers. Comparisons between results obtained using the set of as­
sumptions exposed and experiments, currently performed, will test the validity 
of the present approach. The many analogies between attachment line flow and 
the Blasius boundary layer, alongside the success of Floquet theory in Blasius 
flow (Kachanov & Levchenko, 1984; Rerbert, 1988) renders this model as the 
first candidate to be investigated. 

In compressible flow the issue of attachment line instability is further com­
plicated by the lack of information on experimental results which would validate 
the base flow (e.g. Reshotko & Beckwith, 1955) to be used at the stagnation re­
gion. Even less is available on the experiment al validation of the various theories 
put forward for the linear stability of the compressible problem. From a theo­
retical point of view, one combines numerical solutions to the inviscid problem 
in the free-stream with first-order boundary layer theory near the wall, followed 
by linear analysis of the resulting profiles (e.g. Malik & Beckwith, 1988). It is 
weIl known, however, Mack (1984, for a review), that the linear stability results 
obtained using slightly different base flows can be profoundly different due to 
the presence of derivative terms in the stability equations. In our opinion it is of 
little practical importance to go even further and analyse the secondary stabil­
ity of compressible attachment line boundary layer along these lines before the 
issues raised above are addressed in a satisfactory way. 

In order to proceed we choose to embed the question of attachment line 
secondary instability within the framework of DNS . The design requirements for 
a DNS of the STAgnation Region (STAR) are stated and the potential of the 
algorithms used to meet successfully these requirements is demonstrated. Linear 
and nonlinear instability results are presented for a flow problem which exhibits 
inviscid instability, that of a free shear layer. Aside from the good documentation 
available there are more reasons for selecting this flow model for validation of the 
code. First, from a physical point of view, it is weIl known that the compressible 
flat-plate boundary layer flow is susceptible to inviscid instability through the 
act ion of the generalised inflection points developing in the base profile (Mack, 
1984). While incompressible attachment line instability is viscous in nature, the 
analogies between the eigenvalue spectra of this flow and the Blasius boundary 
layer gives rise to the conjecture that inviscid instability at the attachment line 
itself will come in play in compressible flow. Second, crossflow instability, active 
in the stagnation region at all Mach numbers, is inviscid in nature (Reed & Saric, 
1989). Finally, a purely practical reason exists in order to focus on the free shear 
layer, namely that best use of available computing resources can be made by 
developing the DNS on a model problem which exhibits instability associated 
with large growth rates. 
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Figure 1: (a) Spatial structure of secondary eigenfunctions; R=2000, Branch 11, A = 
1 %; The effect of primary amplitude (b) and Reynolds number (c) on the secondary 
growth rate. 

Review of incompressible results 

Extending the approach used by Theofilis & Poll (1994) for subharmonic instabil­
ity to studying fundamental disturbances as weIl, we use spatial LST to monitor 
a linearly unstable primary wave developing along the spanwise direction, which 
becomes unstable to three-dimensional streamwise periodic disturbances. The 
full body of results of this study is presented by Theofilis (1996); here a summary 
is presented. The spatial structure of secondary eigenfunctions at a particular 
set of conditions is shown in Fig. la. It may be seen that the secondary per­
turbations possess a structure analogous to that of the secondary waves found 
in Blasius flow; most of the activity is confined within the boundary layer, with 
the characteristic double-peak appearing in the subharmonic perturbation. 

The effect of primary amplitude and Reynolds number on the secondary 
growth rate is presented in Figs 1b and Ic respectively. A number of conclusions 
may be drawn from these results. First, it is seen that both types of secondary 
instability (and presumably also detuned modes, although not studied here) may 
be present. As the amplitude of the primary disturbance superimposed upon the 
base flow A -+ 0 the secondary growth rates are also seen to approach zero, as 
the case is in Blasius flow. At low A subharmonic instability is seen to be more 
powerful a mechanism than its fundamental counterpart. As A grows, much as 
in the Blasius boundary layer, fundamental instability takes over; the cross-over 
point is found to be A ~ 1.8%. For a fixed low value of A, on the other hand, 
increasing the Reynolds number fl results in the two instability mechanisms 
approaching a single one. While fl -+ 00 studies have not been performed, the 
trend obtained suggests that large fl secondary instability is inviscid in nature; 
this prediction awaits theoretical verification. 
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Issues raised by compressibility 

Even in incompressible flow there is no theoretical justification for the use of 
the GH assumption in the late linear and early nonlinear stages, although it 
still produces optimal results compared to ot her approaches in the linear regime 
(Arnal, 1992, and this volume). With compressibility taken into account it is 
not possible to use a GH-type of approach any more. The coupling of flow vari­
ables through density results in terms explicitly dependent upon the streamwise 
(chordwise) coordinate x appearing in the equations. 

A secondary stability study based on PSE (Bertolotti, 1991), on the other 
hand, is physically meaningful when considering mild growth of the boundary 
layer. In the attachment line problem this may only be the case in compressible 
flow along the spanwise direction; in the incompressible regime under the GH 
approximation the parallel boundary layer set up along the attachment line pro­
hibits PSE from improving the results obtained by spatial LST. However, the 
questions raised regarding the formal introduction of the third dimension into 
the compressible problem remain. 

Design requirements for a STAR DNS 

Our approach to solve the theoretical problems discussed has been to use DNS 
for the stagnation region. The fundamental requirement for a STAR DNS is that 
it solves for the flow in the vicinity of an attachment line. Physically this implies 
inclusion of the currently little understood region of interaction between attach­
ment line and crossflow instability. In so doing, DNS has the potential to provide 
initial conditions for the theoretical study of crossflow instability further down­
stream in the chordwise direction; these conditions appear to be essential for the 
convergence of PSE methods near the attachment line, as recently experienced 
in the ATTAS experiments (Stolte et al., 1995). 

From a numerical point of view, as with any DNS, the long-time integrations 
suggest use of low-dispersion, low-dissipation schemes for spatial differentiation. 
Schemes of this nature currently include spectral single- or multi-domain and 
Padé 3/4/6 or 5/6/5 compact finite-differences. The ability to interchange nu­
merical differentiation schemes has been found to be useful for diagnostic pur­
poses by Pruett et al. (1995). Time-integration may be performed by a member 

of the 0 ((Llt)3) family of Runge-Kutta schemes derived by Wray (1986) which 
ensure optimal memory use, given that the time-step Llt is low because of spatial 
discretisation requirements and the CFL-related restriction. 

Finally, the issue of the out flow boundaries in a STAR DNS has to be ad­
dressed. In the incompressible limit the generalised Hiemenz base flow ensures 
that a strictly parallel boundary layer is set up in the spanwise direction; this 
can be treated numerically as homogeneous and a Fourier expansion may be 
utilised in this direction. The streamwise direction, on the other hand, is one of 
st rong acceleration of the flow; as such it lends itself to application of the spatial 
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concept (Spalart, 1988). This may be accomplished by any of the techniques 
available, namely the sponge layer (Israeli & Orszag, 1981), the fringe technique 
(Spalart, 1988) and its windowing derivative model, the relaminarisation-zone 
technique (e.g. EissIer & Bestek, 1996) or the buffer domain approach (Streett 
& Macaraeg, 1989). 

Application of the ideas discussed and assessment of their performance is 
presented next. It should be noted that the modular construction of the DNS 
code permits study of a variety of flow problems with minimal additional effort, 
concentrated mainly on the provision of base flow and the associated LST- or 
PSE-based initial conditions. 

DNS validation results 

The argumentation on the choice of the compressible free shear layer as the 
model base flow problem to validate the DNS approach has been presented ear­
lier. Further, the Crocco-Busemann integral is utilised to obtain the base flow 
temperature pertinent to the hyperbolic tangent model for the base flow veloc­
itYi alternatively the Lock profile has also been used, or the temperature has 
been kept constant across the layer. The inviscid instability ofthis flow to three­
dimensional linear disturbances is obtained by spectral collo cat ion solution of 
the Lees-Lin system (Mack, 1984) and is fed as initial condition into the DNS at 
low amplitude. 

The compressible three-dimensional Navier-Stokes equations are then march­
ed in time with spatial derivatives in the streamwise x and spanwise z directions 
calculated using Fourier collocation (temporal approach) and those in the normal 
y direction using a choice of Chebyshev collo cat ion or Padé 3/4/6 compact finite­
differencesi for the type of instability considered and the purposes of validation of 
the numerical techniques suffices to integrate only the Euler part of the equations. 
Characteristic non-reflecting boundary conditions are applied at the Iyl -+ 00 

Table 1: Convergence history for the reproduction of the 2- and 3-D LST result by 
DNS. A denotes amplitude of the superimposed perturbation. 

MacIi=O.4, a=0.409 
t/J=O =71'6 

LST DNS DNS 
A=10- 2 A=10- 6 NY (8, NY, 8) (16,NY,16) (32,NY,32) 

NY Wj Wj 

.1 .1 4 7 
64 0.155301 0.155275 0.155277 64 0.130305 0.129809 0.129806 
128 0.155301 0.155300 0.155301 128 0.129795 0.129961 0.129961 

256 0.129930 0.129948 0.129948 
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Figure 2: Nonlinear development of (a) 2D and (b) 3D unstable inviscid mode; (c) 
perturbation energy and growth rate evolution with time in the 2D simulation. 

boundaries (Adams, 1992). The solution is obtained exclusively in real space, 
derivatives being calculated by straightforward matrix multiplication as opposed 
to the classic FFT; the former approach has been found to be of comparable 
efficiency to the latter for the grids and machine architect ure utilised. Both the 
conservative form of the governing equations, as weil as the pressure equation 
(Pruett et al., 1995) have been solved with identical results obtained including 
the nonlinear stages. 

The quality of the DNS solution in the linear regime is assessed by monitoring 
the reproduction of two- and three-dimensional linear growth rates. Such a 
comparison is presented in Table 1 as a function of the number of nodes NY 
utilised in the normal direction y. Both a two-dimensional ('Ij; = tan-1 (~) = 0) 
and a three-dimensionallinear perturbation are used to initialise the DNS. The 
former was used in order to monitor spurious growth of three-dimensionality in 
our code; the perturbation eigenvector was obtained on the same grid as that 
used for the DNS. By contrast, the three-dimensional mode was obtained on a 
grid different to that on which the DNS was performed and was transferred on 
the latter using piecewise cubic Hermite interpolation. The agreement between 
LST and DNS results for the 2D mode may be seen as typical of weil-resolved 
DNS; no spurious three-dimensional growth was detected in this simulation. The 
interpolation procedure was proven to be responsible for the discrepancy bet ween 
LST and DNS for the 3D mode; with the DNS performed on ihe grid on which 
the LST problem is solved agreement similar to that obtained for the 2D mode 
is achieved. 

In Figs 2a and 2b the results of two simulations starting with the 2- and 3D 
modes as initial conditions, respectively, are presented. The nonlinear structures 
characterising the vort ex roil-up at the late transitional stages may be seen. The 
wiggles present in both simulations are a result of attempting to solve the Euler 
equations without any form of artificial dissipation, and not of low resolution. 
In a corresponding Navier-Stokes calculation these wiggles disappear. Finally 
in Fig. 2c we present the evolution of a 2D mode through the linear stage 

http://aW.ft4.4GS
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(growth rate obtained by the slope of the function In(Epert )1/2(t), Epert being 
the perturbation energy) into nonlinear saturation at large t; at this time a 
weil-resolved analogous three-dimensional calculation would have resulted into a 
turbulent state having been reached. 

Conclusion 

The theoretical difficulties in modelling secondary stability in the attachment line 
problem, combined with the lack of experimental support for a specific model 
of base flow and its primary stability, led us to design a DNS for the stagnation 
region. The numerical tools to be utilised have been validated on a compressible 
three-dimensional model problem, physically relevant to the flow at hand. 

A simplified model has been proposed for secondary destabilisation of the 
corresponding incompressible flow; its results are currently being compared with 
recent experiments and, if validated, will be used to provide intuition in the pa­
rameter ranges to be monitored by DNS. Work in this area, as weil as on the 
remaining issues regarding the STAR DNS described, namely buffer implemen­
tation as weil as base flow and its LST is currently underway. 
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J.L. van Ingen 

Some Introductory Remarks on 
Transition Prediction Methods 
Based on Linear Stability Theory 

Abstract 

Nearly 40 years ago the en method was introduced independently by A.M.O. 
Smith and the present author. Further developments have been made by many 
researchers, extending it to higher speeds, three-dimensional flows and including 
the effects of suction and heat transfer. Various papers at the present Colloquium 
will discuss these developments. 

That the method is still being used is on the one hand due to the inherent 
difficulties of transition prediction from first principles. On the ot her hand, 
the en method contains enough physics to allow it to "predict" the distance 
to transition with only a simple experimental calibration. It was realized from 
the beginning that not enough physics was included to predict the process of 
transition itself. 

The paper reviews the early developments of the method by the author and 
gives some comparisons with recent experiment al verifications at the Low-Speed 
Aerodynamics Laboratory of the Faculty of Aerospace Engineering of Delft Uni­
versity of Technology. 

The birth of the en method 

In 1956 the en method for transition prediction in 2D incompressible flow, us­
ing linear stability theory, was introduced simultaneously and independently by 
Smith & Gamberoni (1956a) and the present author (Van Ingen, 1956a,b). From 
the end of the 19th century to about 1940 linear stability theory had been de­
veloped by a large number of mathematicians and theoretical aerodynamicists. 
Only through the famous experiments by Schubauer and Skramstadt (1948) it 
was shown that the theory was in deed applicable to real flows (the experiments 
were done in the period 1940-1945, but due to the war conditions the results 
became only widely known in 1948). 

Although Pretsch (1941, 1942) had already done some amplification calcu­
lations, it was only in the fifties that it was realized that linear stability theory 
might be used to bridge the sometimes large distance between the point of first 
instability and real transition. 

Liepmann (1945) had postulated that at transition the maximum eddy shear 
stress due to the laminar instability would be equal to the maximum laminar 
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Figure 1: Transition Reynolds number for the flat plate according to Schubauer and 
Skramstadt (1948) . 

shear stress. This postulate was the starting point of the discus sion by Smith 
and Gamberoni. Apparently Smith soon realized that it would be too ambitious 
to calculate the disturbance amplitude occurring in Liepmann's equation. Espe­
cial1y it was considered to be difficult - if not impossible - to specify the initial 
disturbances from which to start the amplification calculations, In fact up to 
the present time this remains a very difficult issue. How are disturbances gen­
erated in si de the boundary layer? How are they related to outside disturbances 
like free stream turbulence, noise and vi brat ion of the surface? At present this 
problem is denoted as "receptivity", Smith satisfied himself (and in fact had to 
be satisfied) with the calculation of the ratio bet ween the amplitude of the most 
amplified disturbance according to linear theory at the experiment al transition 
position and the original amplitude of this disturbance at its neutral position. 
From Smith's analysis it turned out that in many cases the same amplification 
ratio of about e9 was found. 

It is to be noted that under the many cases cansidered by Smith the Schubauer­
Skramstadt flat plate experiment did not take a prominent place, The present 
author however started from this experiment (Fig. 1). At turbulence levels 
less than about 0.1% the transition region extends over a large distance, carre­
sponding to Reynolds numbers Uxjv from 2.8 X 106 to 3.9 X 106. In addition 
the present author considered some of his own transition experiments on an EC 
1440 airfoil. Guided by the flat plate experiment this led to the canclusion that 
beginning and end of the transition region correspond to amplification ratios of 
e7 .8 and e10 respectively. On airfoils the transition region is in most cases only 
a few percent chord in length, Therefore it is not surprising that Smith, putting 
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Figure 2: Calculated amplification factor and measured transition region for the EC 
1440 airfoil section. 

much emphasis on his results for airfoils, had concluded to a mean value of e9 . 

The exponent 9 was very close to the mean value indicated by van Ingen. 
The present author, at that time not yet aware of Smith's results and not 

having access to as many transition experiments as Smith, had concluded that 
the prediction method looked promising but that more experiments would have 
to be evaluated. The reports by Smith and the present author were published 
only one month apart. A public paper on the method was given by Smith (1956b) 
in September 1956 at the 9th International Congress of Applied Mechanics at 
Brussels and by the present author (1956b) just one week later at the European 
Aeronautical Congress at Scheveningen. 

It was at Scheveningen that Schlichting himself, having been present at both 
congresses, informed the present author about the presentation by Smith. Some 
of the results which the present author produced for the EC 1440 airfoil, making 
use of the Pretsch charts, are collected in Fig. 2. It should be noted that the 
factors 7.8 and 10 do not provide a very precise prediction of the transition 
region . This may have been caused by the fact that the laminar boundary layer 
was calculated by the Pohlhausen method which is known to be inaccurate near 
laminar separation. From Fig. 2 it follows that at the higher angles of attack 
transition occurs near or sometimes even downstream of laminar separation. 
Stability calculations we re not available for separated flows (and hence Pretsch 
charts had to be extrapolated) and also the Pohlhausen method could not predict 
separated flows. It should also be realized that only later the possible existence 
of laminar separation bubbles was realized. 

In 1956 both Smith and Van Ingen based their calculations on the temporal 
stability diagrams which had been calculated by Pretsch (1942) for some of 
the Falkner-Skan velocity profiles. Pretsch used an asymptotic method which 
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was only applicable at very high Reynolds numbers. Therefore he had been 
unable to calculate the (very low) critical Reynolds number for the Falkner­
Skan separation profile. To the present author the Pretsch diagrams were only 
available on the small scale presented in Pretsch (1942). Smith apparently had 
already available some larger scale diagrams from Pretsch (1945). Both authors 
had to do some tedious cross plotting from these charts. It should be noted that 
Pretsch was already aware of the fact that there may be a large distance bet ween 
the position of the first instability and the actual transition position and that 
the then customary idea that transition location would be somewhere between 
the positions of instability and laminar separation, was not sufficiently precise. 
He even suggested that amplification calculations might give some more insight. 

Since the Pretsch charts had been calculated for the temporal mode, a prop­
agation speed of the disturbances had to be selected to calculate the streamwise 
development. The present author used the phase velocity in his first version 
of the method. Although Smith had realized that the group velocity should 
be taken, he used for convenience also the phase velocity. It should be noted 
that only in the sixties the importance of the group velocity was emphasized by 
Lighthill (1965) and especially by Gaster (1962). 

To emphasize that in 1956 the available numerical results of stability theory 
were not very consistent, Table 1 gives the critical Reynolds number based on 
displacement thickness for the Blasius profile as calculated by different authors. 
A number of neut ral curves for the flat plate boundary layer is shown in Fig. 3. 

321 
420 
420 
575 
645 
680 

author 

Timman (1956) 
Tollmien (1929) 
Lin (1945, 1946) 
Ulrich (1944) 
Schlichting-Ulrich (1942) 
Pretsch (1941, 1942) 

Table 1: Critica} Reynolds numbers for the flat plate as calculated by various authors 
before 1956. 

Extension of the en method to suction (1965) 

In his Ph.D. thesis, Van Ingen (1965) demonstrated that the e9 method could 
also be used for the case of porous suction. An extensive series of wind tunnel 
measurements was done (using filtering paper as aporous surface). At that time 
larger scale stability diagrams were available to the present author (Pretsch, 
1945). These charts had been reduced to a database containing about 100 num­
bers. In order to be able to analyse the suction experiments a two-parameter 
integral method for the calculation of the laminar boundary layer with suction 
was developed. Since in 1965 still only the Pretsch charts were available to the 
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Figure 3: Neutral stability curves for 
the flat plate without suction from dif­
ferent sources. 
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for different boundary layers according to 
Ulrich . 

present author, the database method mentioned above had to be made applicable 
to the suction case. This was done by assuming that: 

• All possible stability diagrams form a one parameter family with the critical 
Reynolds number (based on moment urn loss thickness) as the parameter; 

• The critical Reynolds number for the velocity profiles used in the two­
parameter method can be calculated from the approximate formula due to 
Lin (1955). 

Fig. 4 gives a comparison of neutral curves for various flows with pressure 
gradient andjor suction or blowing. From such comparisons it was concluded in 
van Ingen (1965) that the above mentioned extension of the database method 
to the suction case, where the effect of suction is replaced by an equal effect 
of the pressure gradient on the critical Reynolds number, might be a workable 
proposition. 

It should be emphasized that each time one of the components in the whole 
en method is changed (new boundary layer calculation method, new database for 
the stability diagrams, possibly improved stability diagrams, new experiments 
in the same or a different wind tunnel or flight tests) the whole method will have 
to be re-calibrated. In this way the present author had come up in 1965 with n 
factors of 9.2 and 11.2 for the beginning and end of the transition region for the 
same EC 1440 results as in Fig. 2 (see Fig. 5). 

It cannot be overemphasized that the n factor is not a magic number. It is 
just a convenient way to correlate into one single number a series offactors which 
are known from experiment to influence transition. The success of the method 
is due to the fact that an appreciable fraction of the distance bet ween the point 
of instability and transition is covered by linear theory. 
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Figure 5: Calculated amplification factor and measured transition region for the EC 
1440 airfoil section (Van Ingen , 1965). 

Some results of the suction experiments and the stability calculations are 
shown in Fig. 6. It should be noted that also in the suction case separating 
laminar boundary layers were encountered for which neither the two-parameter 
integral method nor the Pretsch charts were applicable (some results have been 
obtained through extrapolation ). In view of all the simplifications which had to 
be made, the conclusion at that time was that the en method could be applied 
with some confidence to the suction case. 

Extension of the method to laminar separation bubbles 

In 1966 the present author started to be involved in the design of airfoil sections 
for 2D incompressible flows. The foundation of this work was laid while sp end­
ing a sabbatical year at the Lockheed Georgia Research Laboratory. The then 
available numerical methods for conform al transformation, laminar and turbu­
lent boundary layer calculation and the en transition prediction method were 
used (Van Ingen, 1970). Later in Delft these design methods we re continuously 
improved, based on comparisons between calculations and wind tunnel tests. A 
large number of airfoil designs were made (especially by Boermans et al. 1976, 
1982, 1988, 1989, 1994) and applied in many different sailplanes. It was soon 
realized that at the chord Reynolds numbers applicable to sailplanes (and also 
wind turbines) the occurrence oflaminar separation bubbles was very important 
and warranted extensive research. 

The en method could be extended to separated flows because stability dia­
grams had been made available by Taghavi and Wazzan (1974) for the Stew­
artson reversed flow solutions of the Falkner-Skan equation. Moreover improved 
stability calculations for the Falkner-Skan velocity profiles had been published 
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Figure 6: Measured transition region and calculated amplification factor for the upper 
surface of a su ct ion airfoil. 

by Wazzan, Okamura and Smith (1968) and by Kümmerer (1973). The present 
author had supplemented these results with solutions of the Rayleigh equation 
for the inviscid instability of the inflexional Falkner-Skan profiles for attached 
and reversed flow. 

Using all the above mentioned results for the spatial mode, a new data base 
method was developed. The method is based on the observation that the sta­
bility diagrams show quite some similarity when as independent variabie is used 
lOlog(U()jv) _10 10g(U()jv)crit and the amplification rates are scaled with the 
maximum value for each diagram. The database consists of a table of about 
only 300 numbers. Fig. 7 gives an application of the en method to laminar 
separated flow on a Wortmann airfoil. 

The influence of free stream turbulence on the n factor 

At the time the above mentioned database was developed, it had been realized 
already for quite some time that a constant n factor could no longer be used. 
That for so long a constant n factor (with the value 9) had been useful, may 
have been due to the fact that most modern low speed, low turbulence wind 
tunnels had been built according to the same recipe, aiming at a turbulence 
level of just below 0.1% as had been suggested to be sufficiently low according 
to the Schubauer and Skramstad experiment. (Fig. 1). From this experiment 
it had been concluded that reducing the turbulence level Tu below 0.1% had 
no use because "transition would not be influenced by a reduction of Tu below 
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Figure 7: Distance between separation and transition on Wortmann airfoil in a smal! 
"noisy" wind tunnel. 

0.1 %". Since a further reduction of Tu requires a larger contraction ratio or more 
screens (and hence more money) most modern low speed wind tunnel designs 
have aimed at Tu = 0.1%. The n factor needed to predict flat plate transition as 
a function of turbulence level Tu follows from an evaluation of various transition 
experiments on flat plates at various turbulence levels and from the calculation 
of the n factor as a function of Uxjv (Fig. 8). 

It was shown by Wells (1967) and by Spangier and Wells (1968) that transi­
tion Reynolds numbers larger than the Schubauer and Skramstadt values could 
be obtained by further reducing the turbulence level and the acoustic distur­
bances (apparently the acoustic disturbances rather than turbulence have caused 
transition in the Schubauer and Skramstadt experiments for Tu < 0.1%). From 
Fig. 8. the present author concluded that beginning and end of transition could 
be predicted by n factors nl and n2 respectively according to 

nl = 2.13 - 6.18l D:logTu 

n2 = 5 - 6.18l D:logTu 

(where Tu is the turbulence level in %). Mack (1975) has given independently a 
similar formula for nl. 

It should be clear that the free-stream turbulence level alone is not sufficient 
to describe the disturbance environment. Information about the distribution 
across the frequency spectrum should also be available and in addition to tur­
bulence the acoustic disturbances are important. Of course the most important 
issue is "receptivity": how are the initial disturbances within the boundary layer 
related to the outside disturbances. Therefore we can only use Fig. 8 and the 
equations for nl and n2 to specify the n factor if an "effective Tu" is known. This 
effective turbulence level can only be defined through a comparison of measured 
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transition position with calculated amplification ratios. In fact it has become 
customary to define the quality of a wind tunnel by stating its "critica! n fac­
tor" . 

Through a combination of the en method with ca!culation methods for sep­
arated flows it has become possible to develop a suitable prediction method for 
laminar separation bubbles (van Ingen, 1975). Some examples, are given in Figs 
9 and 10. Brief explanations are given in the captions to the figures. In a sim­
plified version of the method, the length of the laminar part of the bubble is 
correlated with the effective turbulence level (and hence with the n factor). 

At one time the author tried to do some additional calibrations of the en 
method for separation bubbles by trying to short en the bubble by means of 
additiona! turbulence due to grids. Not much happened due to the fact that 
apparently turbulence was added by the grid in the wrong frequency band. 

Some applications of the Delft en method to airfoil designs 

It should be realized by now that the en method does not automatically lead to 
useful results. The airfoil designer should be aware of its shortcomings and should 
make a judicious choice of the n factors to be used. In genera! we use at Delft 
the following n factors and "effective turbulence level" for various circumstances. 
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In the author's group L.M.M. Boermans is the designer using the various 
calculation methods described above. He also has performed rat her extensive 
wind tunnel measurements and has evaluated many flight tests. A number of 
examples can be found in the referentes to his work. As an example, Fig. 11, 
taken from Boermans & Blom (1976), shows results of computations with the 
en method for wavy and smooth versions of the same nominal airfoil. It follows 
that the en method is capable of predicting the shift in transition position due 
to waves in the surface. Fig. 12 gives the n factor for the beginning of transition 
on the airfoil DU89-122 tested in the low turbulence tunnel at Delft, using the 
infrared imaging technique (Boermans, private communication). 

A possible explanation for the success of the en method for 2D incom­
pressible flow at low Tu 

In the past decades the en method has established itself as a useful method to 
predict the distance to transition in 2D incompressible flow. Apparently the 
linear stability theory has enough physics in it to account for the effects of 
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Figure 12: Critical n factors for the DU89-122 airfoil as a function of Reynolds number 
and angle of attack. 

pressure gradient, suction, heating and cooling, etc. on transition. Hence it may 
be expected that under these circumstances the linear part of the amplification 
process covers a large percentage of the distance between first instability and 
transition. Obremski (1969) gives some background to this idea by quoting the 
following characteristic numbers. 

In low speed, low turbulence wind tunnels (such as at Delft) the overall 
turbulence level at low speed is certainly less than 0.1%, even as low as 0.02%. 
Sin ce only part of the spectrum contains the dangerous Tollmien-Schlichting 
frequencies, the amplitude of the neutral disturbances, being present inside the 
boundary layer and which somehow (through "receptivity") may be related to 
the external turbulence level, may be of the order of 0.001 %. Linear theory is 
found to give a good description of the amplification process up till an amplitude 
of 1 to 1.5%. When transition is completed disturbance levels of the order of 
10 to 20% are found. Hence the linear part extends to an n factor of 7. The 
nonlinear part only has to cover the range of n values between 7 and 10. Hence 
one should not be surprised about the relative success of the en method. A 
calibration by comparison with experiment should be adequate to "predict" the 
distance to transition. Of course the physical process of real transition is not 
described by linear theory. 

An experimental illustration can be found in the work of Wubben et al. 
(1989). Transition experiments were done in a small boundary layer channel 
with a pressure distribution meant to represent a constant Hartree ,B-flow of 
-0.14 (Fig. 13). This tunnel has a rather large disturbance environment due to 
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Figure 13: Experimental (0) and theoretical (-) velocity distribution, Hartree f3 = 
-0.14 (Ure! = 10.96 mis) (Wubben et al., 1989). 

turbulence, vibrations, blade passing frequency of the blower, etc. Therefore it 
is not easy to verify experimentally the initial amplification. Fig. 14 gives some 
velocity fluctuation spectra as measured with hot wires. To eliminate most of 
the noise and to determine the relative amplification the spectra at different x­
values were compared to that at x = 330 mm by subtracting the latter from the 
others. Included in the figure is the amplification spectrum as calculated from 
our database method, also points calculated by the NLR version of the COSAL 
code are indicated. 

Considering the various causes for inaccuracies it is seen that the linear cal­
culations give areasonabie description of the amplification until x = 616 mmo 
Transition sets in at about x = 790 mm (to be concluded from the broadening 
of the spectrum). The relative n factor bet ween x = 330 mm and x = 518 mm 
is equal to 4. As the calculated n factor at x = 330 mm equals 5, the results are 
comparable with the values mentioned by Obremski. A comparison bet ween n 
factors obtained in flight and in the DNW low speed wind tunnel is given in Fig. 
15 (Horstmann et al., 1990). 

Concluding remarks 

In the present paper some of the history of the en method for 2D incompress­
ible flow has been highlighted . A discussion of further developments by other 
researchers would have been appropriate but proved to be impossible due to lack 
of space. Other papers in this volume may be consulted to learn about extensions 
to 3D flows and higher speeds. Not in all cases the extension is straightforward. 
An important issue is to define the proper "integration strategy" for 3D flows . 
Also an extensive discussion of simpier methods which also have some relation 
to the en method such as Michel's (1953) and Granville's (1953) methods would 
have been relevant. The Granville method uses a correlation between the dif­
ference between UO/v at transition and at the instability point and the mean 
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corresponds to the eg criterion for the similar Falkner-Skan boundary layers. 
The reader is referred to an extensive discussion of all these problems by Arnal 
(1993). 
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Some Aspects of Linear Stability Calculations 
in Industrial Applications 

Abstract 

In the design of laminar airfoils, using coupled inviscid-viscous methods, the 
transition prediction by the en method 'represents a large computationa! and 
moreover user's effort. 

In order to reduce these efforts, a data base method is developed. Hence, the 
iterative calculation of the inviscid and viscous flow together with the transition 
prediction is feasible at highly reduced costs. 

For the product ion of the data base, artificial boundary layers are generated, 
which show self-similar velocity and temperature profiles. The amplification 
rates are computed via the linear stability theory, using the envelope approach. 
It will be shown, that for real boundary layer flows the comparison between 
the N -factors computed by the stability theory and the data base method is 
excellent. The flows include compressibility, su ct ion and heat transfer effects. 

U sing N avier-Stokes methods for the design of laminar airfoils, transition 
prediction can also be done by the en method. The requirements will be described 
concerning the mesh generation and mesh adaption, to obtain meaningful results 
from N avier-Stokes and stability calculations. The quality of the N avier-Stokes 
results is validated by comparison to a boundary layer method using as input 
the pressure distribution obtained from the N avier-Stokes result. Finally, it will 
be demonstrated, that the coupling of the Navier-Stokes method with the data 
base method is feasible. 

Introd uction 

One of the most challenging demands in aerodynamics of laminar airfoils and 
wings is the reliable computation of boundary layer transition. The range of 
existing transition prediction methods extends from simple empirica! relation­
ships via stability theories of different levels (parallel flow and linear; linear or 
nonlinear PSE-methods) to direct numerica! simulations. The en method, based 
on linear stability theory and the parallel flow assumption, is used in aircraft 
industry for the design of laminar wings most frequently. 

However, the application of the en method is time and cost consuming, re­
garding the computational and moreover the user's efforts. There is clearly a 
need for a rapid and inexpensive data base method for transition prediction, 
which can be used routinely. Such a method allows to run coupled mèthods for 
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the prediction of the flow around airfoils in an extended version by computing 
iteratively the inviscid and viscous flow together with the transition prediction. 

Moreover, there exists also the possibility, to perform Navier-Stokes calcula­
tions in combination with the data base method in an iterative manner. 

Description of the data base method 

Arnal (1988) developed independently a data base method, using a different 
approach. In the actual case laminar velocity and temperature profiles are gen­
erated, using the similar solutions of the laminar boundary layer. For 13 shape 
parameters Hi, which cover the rangefrom highly accelerated up to separating 
flows, artificial boundary layers are generated, which show identical velocity and 
temperature profiles. The growth of the boundary layer is simulated by varying 
the Reynolds number, based on the incompressible displacement thickness 

(1) 

For each artificial boundary layer, stability computations are completed for a 
sufficient large range of excited frequencies. The results for the amplification 
rates ai are stored in the data base, where 

(2) 

with F being the reduced frequency 

(3) 

The stability computation for real boundary layers, using the data base method, 
is executed for a given frequency J in Hz in the following way: At each station 
the properties J, Reó~, Hi, Ue and l/e are known. Evaluating F from eq. (3), ai 

is obtained fr om eq. '(2) via interpolation in the data base. 

Data base method Jor incompressible flows (Stock & Degenhart, 1989) 

The similarity solutions are produced, using the approach of Falkner & Skan 
(1930). The Sally code (Skrokowski et al., 1979) is applied, using for that method 
the perturbation propagation direction W=O, which is identical to the use of the 
envelope method at Me = 0, except for large values of Reó•. , 

Data base method Jor incompressible flows with suction (Stock, 1990) 

It is shown, that laminar boundary layer flows with pressure gradient and suc­
tion are almost identical to flows for a corresponding pressure gradient without 



H. W. Stock & W. Haase 227 

suction. Hence, the data base method can be applied to boundary layers with 
suction directly. 

Data base method for compressible, adiabatic flows (Stock, unpublished) 

The near-similarity solutions are produced using the approach of Horton (1994). 
The stability code of Schrauf (1988, 1993) is applied, using the envelope method. 
The calculations are done for 4 Mach number levels Me = 0, 0.5, 0.9 and 1.4, 
such that the amplification rate ai is expressed by 

(4) 

Data base method for compressible, adiabatic flows with suction (Stock, unpub­
lished) 

It is shown, that also compressible laminar boundary layer flows with pressure 
gradient and suction are almost identical to flows for a corresponding pressure 
gradient without suction. Consequently, the data base method can be applied 
to compressible boundary layers with suction directly. 

Data base method for compressible flows with heat transfer (Stock, unpublished) 

The near-similarity solutions including compressibility and heat transfer are 
produced, using the approach of Horton & Stock (unpublished), which is an 
extension of Horton (1994). The stability code of Schrauf (1988, 1993) is ap­
plied, using the envelope method. The calculations are done, in supplement 
to the 4 Mach number levels, for 5 different heat transfer parameter values 
Sw = -0.2, -0.1,0.0, 0.1 and 0.2, where Sw is defined by 

Ht 
Sw = 1- H ' 

te 

with Ht being the total enthalpy. The amplification rate ai is expressed by 

Description of the Navier-Stokes Method (Haase, 1992) 

(5) 

(6) 

The Navier-Stokes equations, describing two-dimensional, unsteady, compress­
ible flows in conservation form, are solved by means of a finite volume approach 
using a Runge-Kutta time-stepping method with multigrid acceleration. 
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Figure 1: Spatial representation of the amplification rate ai for flat plate flow and 
different Mach numbers M . 

The Johnson-King turbulence model (1985) in its original form is used. For 
the turbulent length scale in the equilibrium outer layer eddy viscosity the for­
mulation of Stock & Haase (1989) is applied. 

The viscous length scales in the laminar and turbulent regime are determined 
by the diagnostic function 

the maximum of which gives the wall distance Ymax, where F 
viscous layer thickness is evaluated from 

8 = {3Ymax . 

(7) 

Fmax. The 

(8) 
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Figure 2: Boundary layer results for a linearly decelerated flow and and different suction 
rates M = 0.9 and Re = 9.4 x 106 . 
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Figure 3: N-factor computed by the stability theory and the data base method using 
the envelope approach . 

In the laminar regime the values are 0:=3.9 and ,6=1.423, Stock & Haase (unpub­
lished) and in the turbulent regime 0:=1.0 and ,6=1.936, Stock & Haase (1989). 
In the transitional region the viscous layer thickness is given by 

Ó = [1 - ,Jó/am + ,ÓtuTb , (9) 

where , is the intermittency function, given by Dhawan & Narashima (1958) 
The extent of the transition region is expressed by the formulation of Chen 

& Thyson (1971) , being based on the source density distribution of Emmons 
(1951) . 
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Figure 5: N-factor computed by the stability theory and the data base method using 
the envelope approach . 

Results of the data base method 

Compressible, adiabatic flows with suction 

For the flat plate flow, Fig. 1 gives a spatial representation of the results for the 
data base, where F is the reduced frequency. For a strongly decelerated flow, 
the boundary layer is calculated for different suction rates, where the suction 
is applied from x / c = 0 on, see Fig. 2. The boundary layer calculations are 
performed using the method of Horton & Stock (1995). The corresponding N­
factors are shown in Fig. 3. For the stability theory data the method of Schrauf 
(1988, 1993) is applied. 
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Gompressible fiows with heat transfer 

For the flow conditions of Fig. 2, the boundary layer is calculated for different 
heating and cooling rates, where the heat transfer is applied from xjc = 0 on, 
see Fig. 4. The comparison of the N -factors, obtained from the stability theory 
and the data base method is seen to be excellent, see Fig. 5 

Results of the Navier-Stokes method 

The Doal3-airfoil is designed at Dornier and tested under free transition condi­
tions in the transonic facility of the DLR-Braunschweig (Lück, 1987). 

The meaningful application of the Navier-Stokes and the stability method 
requires a solution-dependent mesh, besides an adequate number of mesh points 
(512 X 128). The adapted mesh is arranged such, that a nearly constant number 
of mesh points (60-70 mesh points) is embedded in the viscous layer including 
the wake. The N avier-Stokes calculations are initially started by fixing the tran­
sition at the place of laminar separation. This choice seems plausible as the 
combination of the Navier-Stokes method with the stability theory is easiest, if 
during the iterations the transition location moves continuously upstream. All 
further results , except those in the last part of the paper, are produced with 
transition fixed at laminar separation. 

Polar 

The lift and drag coefficient as a function of the angle of attack 0: is depicted 
in Fig. 6. The computational results for the initial and adapted mesh are 
almost identical. The maximum lift and the minimum drag are well predicted. 
The overprediction of the extent of the laminar bucket is caused by fixing the 
transition at laminar separation. The discrepancy of the value of dGL/do: is not 
well understood. Possible reasons are the absence of wind tunnel corrections and, 
may be, the presence of slotted walls in that Mach number range. All further 
computational efforts are concentrated on the upper surface of the airfoil and the 
flow con dit ion at 0:=1.5°. This value of 0: is just outside the measured laminar 
bucket and well inside the computed one. The lower surface boundary layer flow 
is stabie up to separation. 

Mesh generation 

For the initial and the adapted mesh inside the viscous layer (laminar, transi­
tional and turbulent) 60-70 points are embedded. In order to ren der the mesh 
differences more understandable, the mesh lines yjc [iJ=const] are given in the 
upper part of Fig. 7. As seen the laminar separation and thereby the transition 
occurs at x j c ~0.6. The line y j c [i,j=65] is almost identical to the computed vis­
cous layer thickness b j c for the adapted mesh. The lower part of Fig. 7 clarifies 
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Figure 6: Lift and drag coefficient for the DOAL3 laminar airfoil as a function of the 
angle of attack . 

the structure of the adapted mesh in si de the viscous layer. The lines y [i,j=const] 
are non-dimensionalized by the value of the line y [i,j=70]. In the laminar regime 
a mild geometrie stretching is performed, to come close to an equidistant mesh. 
In the turbulent layer region a larger stretching is used. Furthermore, the size 
of the first volume adjacent to the surface is evaluated solution-dependent, such 
that a value of y+ ~ 1 is achieved. In the transitional region a meaningful 
junction between the laminar and turbulent structure is adopted. 

Comparison of Navier-Stokes and boundary layer results 

The pressure distributions for the initial and the adapted mesh are almost identi­
cal, except in the transitionjseparation region. This result supports the identity 
of the lift and drag coefficient in both meshes, see Fig. 6. 

To quantify the N avier-Stokes results in the viscous layer region bound­
ary layer results are obtained for comparison. The pressure distribution of the 
Navier-Stokes solution is used as input to the boundary layer method (Horton & 
Stock, 1995). The Navier-Stokes and the boundary layer data are presented for 
the initial mesh in the upper part of Fig. 8. As seen, the values of the shape pa­
rameter Hi are very different. The incompressible analysis of the Navier-Stokes 
and the boundary layer data for the initial mesh via the envelope approach of 
the stability method of Schrauf (1998, 1993) delivers the expected result, that 
the N avier-Stokes viscous layer is clearly more stabie. The maximum value of N 
is 2.5 instead of 7.0. 

The viscous layer data for the adapted mesh are given in the lower part of 
Fig. 8. The viscous layer results are in a good agreement and consequently the 
stability data, see Fig. 9. In the lower part of Fig. 9 results of the data base 
method are given too. In the dam ping region (decaying N -factor) the results 
deviate from those of the stability theory. The reason is, that only amplified 
data are computed for the data base, in regions of damping the stability data 
are evaluated simply by extrapolation. 
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Figure 7: Mesh lines y [i, j =const] in different presentation forms for the initial and 
the adapted mesh plotted versus x/co 
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Figure 8: Comparison of the N avier-Stokes and the boundary layer results for the initial 
mesh and the adapted mesh . 

N -factor calibration of the wind tunnel 

Köster & Müller (1988) calibrated the N-factorfor the TWB facility ofthe DLR­
Braunschweig, using the en method for incompressible flow. The N -factor range, 
depending slightly on the Mach number but clearly on the Reynolds number, is 
from 5 to 7. Based on this information an N -factor of N =6 is used for the actual 
case, thus predicting transition at xjc= 0.17, see Fig. 9. 

Prediction of the transition location in Navier-Stokes 

Iterations are performed between the Navier-Stokes method and the stability 
method, moving by underrelaxation the transition location upstream. For the 
converged situation the transition location is found to be at xjc=O.ll. The 
corresponding values of the lift and drag coefficient are shown in Fig. 10. The 
free transition measurements and the solutions in the adapted meshes, where the 
transition is fixed at the laminar separation location, are given for comparison. 
The lift coefficient for Xtrjc=O.l1 is slightly smaller than for Xtrjc =0.6 due to 
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Figure 9: Stability theory results for the Navier-Stokes and the boundary layer input 
in the adapted mesh using the envelope approach . 
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angle of attack with X/CTran. = 0.11. 

the enlarged viscous effects. The drag coefficient is nearly doubled and almost 
identieal to the measurement. 

Conclusion 

The data base method delivers results of sufficient quality, when compared to 
results of the stability theory. This is shown for flows, including compressibility, 
suction and heat transfer effeets. This simplified en method ean easily be com­
bined with coupled methods, to allow for joined iterations of the inviscid and 
viscous flow together with the transition prediction caleulation. 

It is at least shown, that in prineipal Navier-Stokes methods ean be combined 
with the en method. So far only the feasibility of the jointedly used methods 
is demonstrated . For practical applications the computational and the user's 
costs should clearly to be reduced by automizing the described procedure of the 
computational sequences. Further studies have to be undertaken to augment the 
efficiency, i.e. at which con vergen ce level and in which grid level the combined 
act ion of mesh adaption and new transition location prediction is optimum. 
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Tuncer Cebeci, Hsun H. Chen & Eric Besnard 

The Role of Zarf in Predicting 
Transition in Three-Dimensional Flows 
with the Saddle-Point Method 

Abstract 

The en-method used to predict the onset of transition location in two and three­
dimensional flows requires the specification of dimensional frequencies to initiate 
the calculation of the amplification rates. This paper describes a convenient 
procedure based on the use of zarfs for calculating the frequencies needed in the 
en-method and discusses the role they have in predicting transition in three­
dimensional flows. 

Introd uction 

The en-method, first proposed independently by Smith and Gamberoni (1956) 
and van Ingen (1956), is the current state-of-the-art method for predicting the 
onset of transition in incompressible and compressible flows. It is based on 
the solutions of the linear stability equations obtained by using either temporal 
or spatial amplification theory. In the former case, the wave numbers a and 
{3 in the x- and z-directions are real but the radian frequency W is complex 
(= Wr + iWi). In the spatial amplification theory a and {3 are complex (= ar + 
iai, (3r + i{3i) but W is real. For three-dimensional flows, the solution procedure 
in either theory involves an eigenvalue problem with five scalars a, {3, Wr, Wi 
and R in the temporal approach and six scalars ar, ai, {3r, {3i, wand R in 
the spatial approach, and is considerably more difficult than its counterpart in 
two-dimensional flows because the requirements of a nontrivial solution of the 
stability equations provides only two relations connecting the eigenvalues a, {3, W 

and R. In the spatial amplification approach for transition prediction, wand R 
are prescribed and so two new relations connecting a and {3 must be given before 
the solutions of the stability equations can be obtained. 

The formulation of the relationship between a and {3 plays a crucial role in 
the eigenvalue problem since the onset of transition depends on the direction, 
magnitude and rate of the growth of the disturbances which propagate through 
the boundary layer and this information is represented by a and {3 which form 
a wave number vector, k, at an angle 4> to the flow direction. There are several 
formulations developed to provide this relationship. Mack's approach (1988) for 
an infinite swept wing, for example, employs spatial amplification theory and 
assumes that the spanwise wave number {3 is obtained from the irrotationally 
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condition applied to the complex wave number vector which, for an infinite swept 
wing, requires that the dimensional (3 is real and remains constant as the waves 
move downstream. With this assumption, the problem reduces to the calculation 
of the complex chordwise wave number a at each chordwise position for the 
spedfied dimensional values of (3 and w. Arnal et al. (1989) used this formulation 
and showed that the calculated locations of the onset of transition agreed much 
better with experiment on an infinite swept wing when the amplification rates 
(ai) were maximised at each chordwise position by varying (3. 

Malik's approach (1982) is based on temporal amplification theory in which 
the two wave numbers a and (3 are related through a disturbance angle cf> which 
is not known initially and is obtained iteratively. With W r spedfied and (3 given 
by 

(3 = a tan cf> (1) 

the eigenvalue problem is solved for a and Wi. Upon convergence, calculations 
are performed for other values of cf> in order to find the maximum value of Wi. 

The formulations of Cebed and Stewartson (1980), and Nayfeh (1980) make 
use of the saddle-point methad or the methad of multiple scales in which the 
relationship between a and (3 is not assumed but computed from the requirement 
that &al&(3 is real, as follows from concepts based on group velodty. According 
to this requirement, the wave orientation and growth direction of the disturbance 
are given by 

( &a) = _ tan cf> 
&(3 w R , 

(2) 

with spatial amplification theory. The amplification rate r 

(3) 

is calculated with a and (3 determined with the constraints of Eq. (2), and 
further calculations for different values of (&al &(3) lead to new values of a and 
(3 and to the maximum value of r. 

In the application of the en-method to two-dimensional flows, stability cal­
culations aften begin on the lower branch of the neutral stability curve where 
several dimensional frequendes needed in the amplification rate calculations are 
determined. It is plausible to assume that in the extension of the en-method to 
three-dimensional flows, the stability calculations should also begin on a neutral 
curve. Except for the work of Cebed and Stewartson, however, precise definition 
or extension of a neutral stability curve for three-dimensional flows has not been 
formally discussed and used in the literature. As a re sult , all current en-methods, 
except that of Cebed and Stewartson, assume the location and magnitude of 
these frequendes and calculate the amplification rates. The implications of this 
procedure are not clear and sa far have not been studied. 

In this paper we discuss the importance of calculating the location and mag­
nitude of these frequendes. We use the definition of a neutral curve introduced 
in the saddle-point met had of Cebed and Stewartson for this purpose. This 
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curve, known as the zarf (lit. "envelope", Turk) is defined as one on which dis­
turbances neither grow nor decay at a large distance from the origin of the flow 
in any direction. It has the following properties, 

{ja 
a i = fJi = 0, {jfJ = real. (4) 

The following section presents results obtained with the saddle-point method 
for three-dimensional incompressible and compressible flows with and without 
suction. It is followed by another section which shows the behaviour of zarfs used 
to perform the stability jtransition calculations presented in the previous section. 
The paper concludes with a summary of the more important conclusions. 

Application of the saddle-point method 

The saddle-point method of Cebeci and Stewartson has been applied to several 
three-dimensional flows. A sample of results are presented in this section to 
demonstrate the accuracy of the method. Fig. land 2 show the experiment al 
setup and a comparison between calculated and experimental results for the data 
of Arnal and Juillen (1987) obtained in the F2 wind tunnel at LeFauga-Maujac 
Center, respectively. The model had an ONERA-D airfoil section, symmetrie be­
tween xjc = 0.20 and xjc = 1 and equipped with a cambered leading edge (Fig. 
la), so that the pressure distributions differed from those observed on the clas­
sical ONERA-D profile. The chord norm al to the leading edge was 300 mm and 
the span 900 mm with zero angle of sweep. The wing and the half-fuselage were 
mounted on a turntable (Fig. 1 b). Three kinds of experiments were performed 
so that pressure distribution measurements, flow visualizations by sublimation 
technique, and hot-film measurements were obtained. Ten hot-films we re glued 
on the model, from 2.5 to 86 percent of chord, and recorded simultaneously for 
more than one hundred combinations of the wind tunnel speed, angle of sweep, 
and angle of attack. The positions of the hot-films are indicated on Fig. 1b and 
were chosen to avoid interactions bet ween probes. These results were verified by 
comparing the transition positions obtained by the hot-film records and by the 
flow visualization (in the absence of hot-films): the results were similar. Three 
angles of sweep (>,= 49, 55 and 61°) and four angles of attack (a = 0, -2, -4 
and 8°) were studied. 

The calculated results shown in Fig. 2 for À = 49° and a = -2° indicate 
very good agreement in the data. Similar agreement was also obtained for other 
sweep angles and angles of attack as discussed by Cebeci, Chen, Arnal and Huang 
(1991). 

Fig. 3 shows calculated results for an Aérospatiale wing for which data was 
obtained by Séraudie et al.( 1989) for compressible flows on a 15-degree swept 
tapered wing. The chord was 0.228 m at the root and 0.145 m at the tip. 
The wing had a span of 0.39 m with an AS409 cross-section and a trailing-edge 
sweep angle of three degrees. In order to avoid the need to perform fully three­
dimensional stability jtransition calculations, the measurements were carried out 
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(b) 

Figure 1: (a) ONERA-D airfoil with a cambered leading edge and (b) experimental 
setup . 

1.0 

xJc 0.5 

20 40 60 80 100 

Figure 2: Comparison of calculated (closed symbols) and experiment al (open symbols) 
transition locations. A = 49° , a = -2° . 

under infinite swept wing conditions with the wing having a mean sweep angle 
of 12 degrees at an angle of attack of 0.3 degrees. 

The results in Fig. 3 are for a freestream Mach number of 0.74 and Reynolds 
number of 14 X 106. The calculations were carried out by Cebeci, Chen, and 
Arnal (1994) for both adiabatic wall and specified wail temperature conditions. 
If we take the n value to 7.5 (a mid-n value of the expected n-value range for this 
wind tunnel) then transition occurs at x J c ~ 0.46 for adiabatic wail conditions 
and xJc = 0.47 for measured wall conditions. This compares weil with the 
experiment al transition location of xJc = 0.47. 

Fig. 4 shows a comparison between the calculated and experimental results 
for the data of Meier and Kreplin (1981) obtained for a three-dimensional incom­
pressible flow on a prolate spheroid at an incidence angle of 10°. The dashed line 
corresponds to the locus of transition location computed with the saddle-point 
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Figure 3: Calculated results for the Aérospatiale wing for (a) adiabatic and (b) mea­
sured wall temperature distributions, 
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Figure 5: Variation of w on zarf near the leading edge: (a) .À = 49°, Voo = 60 mis, 85 
mis, a = 0°; (b).À = 49°, Voo = 60 mis, a = _2°. 

method for n = 10. The experimental values denoted by the solid line are in 
good agreement with calculated values as reported by Cebeci, Chen, Arnal, and 
Huang (1991). 

Zarfs for some three-dimensional flows 

The calculated transition locations presented in the previous section utilized di­
mensional frequencies obtained from zarfs which have interesting and somewhat 
unusual behaviour in a very small region near the wing stagnation line. 

Fig. 5 shows the variation of zarf near the leading edge of the wing for the 
data of Arnal and Juillen. As can be seen, the lower branch of the w-zarf is 
negative with relatively flat values of w away from the leading edge, whereas w 
undergoes a very rapid variation near xl c = 0.04 and 0.05. 

Figs. 6a and 6b show that w becomes positive and increases rapidly around 
xlc = 0.04 for Q = 0°, Voo = 60 mis, and around xlc = 0.05 for Q = _2°, 
Voo = 85 mis. This behaviour of w near the leading edge is very important since 
the en-method requires the calculation of the frequency that leads to the greatest 
amplification rate r. An accurate calculation of this frequency and its location 
is crucial to the accuracy of calculating the transition location. 

Fig. 7 shows the zarfs used to obtain the n-factors presented in Fig. 3. As can 
be seen, the frequencies originate at nearly the same location (on a verticalline) 
and vary drastically from one another. Knowing the range of these frequencies 
and their location is an accurate and efficient way of computing n-factors. 

Fig. 8 shows a sample of integrated amplification rates with disturbances 
originating at various circumferential locations (0) of a prolate spheroid with 
frequencies determined on the zarf. As discussed in detail by Cebeci, Chen, 
Arnal and H uang (1991), the zarf shape at each O-location is different. 

Fig. 9 shows the location of the critical frequencies on the zarf used to obtain 
the n-factors in Fig. 4. We note from this curve that its behaviour approach­
ing the leeward line of symmetry (0 = 180°) begins to exhibit a difference for 
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() ~ 1600 from () < 1600
• As discussed by Cebeci et al., this difference is due 

to the effect of crossflow velocity profiles which exhibit significant changes as 
we approach the leeward line of symmetry. The calculated zarfs account for 
these changes in velocity profiles very weIl and are the main re as on for obtain­
ing the good agreement with the data, especially near the line of symmetries. 
Figs . 10 and 11 show the zarfs on a typical transport wing with and without 
suction, respectively, for transonic flow conditions. The results in Fig. 10a in­
dicate that with increasing suction rates (Cq ), the location of the zarfs moves 
downstream and the magnitude of the dimensional frequencies increases. The re­
sults in Fig. lOb show the effect the frequencies have on the computed n-factors. 
Fig. 11 shows a similar behaviour for the same transport wing, this time for 
a flow without suction. The figure also shows the procedure used to generate 
the zarf. The stability calculations begin first on the lower branch where the 
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Figure 11: Behaviour of zarf on a typical transport wing without suction. 

frequencies are negative and move upstream. In the region where the frequen­
cies become positive, as in other zarfs, frequencies increase significantly in a very 
small x/c-interval near the wing leading edge. Our experience with the calcu­
lations indicate that only the frequencies ne ar the most upstream part of the 
zarf lead to amplification rates that increase with increasing distance. Others, 
either on the lower or upper branches of the zarf do not continuously amplify. 
The integrated amplification rates first increase with increasing x but begin to 
decrease further downstream. 

Conclusions 

The studies conducted with the saddle-point method indicate that zarfs play 
a very useful role in the calculation of the location and the magnitude of the 
dimensional frequencies. The critical frequencies that lead to the highest am­
plification rates occur very close to the wing stagnation line and the use of zarf 
allows them to be located easily and accurately. 
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Th. Herbert 

On the Status of Applied Transition Analysis 

Abstract 

The implementation of the compressible, nonlinear PSE in gener al curvilinear co­
ordinates enables the analysis of transition in boundary-Iayer flows over objects 
of practical interest, such as swept and tapered wings or turbine blades. Our ef­
forts to produce PSE results and to establish links to the traditional eN method 
met with some success, but also with various obstacles that hamper reliable esti­
mates of the transition location. We discuss our experience and offer suggestions 
for the improvement of analysis software, input data, N -factor computation, and 
basic knowIedge. We illustrate the current capabilities to model the complete 
path from the external environment through receptivity, transient or unstable 
disturbances, and nonlinear mechanisms to the ultimate breakdown to determine 
the transition location. Nonlinear studies on swept wings demonstrate that the 
growth of crossflow vortices significantly exceeds the linear predictions and can 
cause transition at low N factors and unexpected locations. 

Introduction 

The desire to increase efficiency of fluid machinery of ten requires the designer 
to increase the area of laminar flow, because drag and heat transfer in laminar 
boundary layers are lower than in their turbulent counterparts. The transition 
from the laminar to the fully turbulent mot ion is an evolutionary process that 
may extend over a considerable streamwise distance. During this process the 
skin-friction coefficient Cf and Stanton number St increase, typically overshoot, 
and ultimately settle down to the values for fully turbulent flow. The length of 
the transition region may be further extended through the intermittent appear­
ance of transition in space or time. For practical purpose, it is necessary to (i) 
estimate the location Xt of the onset of transition and (ii) evaluate the down­
stream evolution of drag and heat transfer in the transitional flow. Given the 
transition location, empirical relations for the production rate of turbulent spots 
and intermittency factors together with turbulence models have been exploited 
to solve the second problem with reasonable success. Other attempts to use the 
Reynolds-averaged equations and "adapted" turbulence models to describe the 
complete transition zone including its onset have met with limited success even 
in simple situations, as shown by the ERCOFTAC test case T3A (Savill, 1992). 
Because of the large discrepancy between the laminar and turbulent Cf values at 
the same location, a small shift in the transition point causes significant changes 
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in the resulting drag. Therefore the accurate prediction of the transition loca­
tion along the chord of an aircraft wing or turbine blade has attracted intense 
efforts. However, the complexity of the transition process stillleaves challenging 
questions open. 

Since the discovery and experimental verification of TS waves, the transi­
tion process has been associated with the instability of boundary layers. Based 
on the linear stability theory (LST), various types of disturbances have been 
identified as capable of exponential growth, such as Görtler vortices on concave 
surfaces, cross-flow (CF) vortices in the three-dimensional boundary layers on 
swept wings, or Mack's higher modes at supersonic speeds. Numerous transi­
tion criteria have been developed (see e.g. the review by Arnal, 1984) involving 
characteristic parameters such as the Reynolds number formed with the mo­
mentum thickness and empirical corrections to account for the turbulence level, 
pressure gradients, and other conditions. While these criteria meet the demand 
for simplicity, their accuracy is unacceptable for all but rough estimates. 

The shortcoming of the simple criteria as weIl as the methads based on aver­
aged equations is their lack of accounting for the disturbance level, the detailed 
stability characteristics of the flow, and the resulting nonlinear processes that 
constitute transition. One of these obstacles was independently overcome by Van 
Ingen (1956) and Smith & Gamberoni (1956) who found that the transition 10-
cations in the 2D incompressible flow over airfoils correlated weIl with a constant 
value of the lirniting N factor 

N = max n(xtjw) , n(xjw) = -lx ai(w)dx 
W Xo 

in the range of 8 to 9, where w is the frequency, xo(w) the onset location of 
instability, -ai the spatial growth rate of the TS wave, and n(xj"') or n(sj"') 
describe the amplitude growth of the disturbance along the chord or arc of the 
airfoil. This observation is the basis of the eN methad, and links the transition 
location to a certain ratio of the disturbance amplitude At at transition to the 
amplitude Ao befare the onset of instability, At! Ao ~ eN. 

Meanwhile, the eN met had has been extended to compressible and 3D bound­
ary layers, and is extensively used in aerodynamic design for the low-disturbance 
environments found in wind tunnels and atmospheric flight. The widespread 
applications also have revealed same shortcomings of the methad. Since the 
"strategies" for computing N vary, different values of N can be obtained for a 
given problem. In fully 3D boundary layers1 the transition front does not cor­
relate with a single value of N. The database of reliably measured transition 
locations for boundary layers at high supersonic speeds is toa sparse to obtain 
N factors in a narrow range, and to validate the eN method. The methad also 
fails at the higher disturbance levels of flows in turbomachinery with turbulence 
levels ab ave Tu = 0.5%. In these flows, transition is attributed to apracess that 

1 With the attribute fully 3D we distinguish fiows that vary significantly in all three spa­
tial directions from those that have three velocity components, but vary only in two spatial 
directions . 
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"bypasses" the linear instabilities and causes rapid transition, as in the ERCOF­
TAC test cases T3A and T3B with Tu = 3% and Tu = 6%, respectively, at 
x = o. 

Clearly a method based only on the growth rate of linear instability modes is 
insufficient to find the transition location. While there is no strict definition of 
"transition" , all operational definitions rely on the nonlinearity of this process. 
Changes in Cf or St are caused by changes of the mean flow, which necessarily 
result from the nonlinear interaction of finite-amplitude disturbances. Even if 
we disregard bypass transition, improved methods for estimating the transition 
location will need to account for nonlinearity and the disturbance level. 

Direct numerical simulations (DNS) based on the Navier-Stokes equations, 
though successful in basic research, are still too limited and expensive for prac­
tical applications. The parabolized stability equations (PSE) (Herbert & 
Bertolotti, 1987) have reproduced microscopic experiments and DNS results for 
2D boundary layers (Bertolotti, 1991) at a fraction of the cost of DNS and were 
suggested by Herbert (1991, 1994) as a new approach to transition analysis in 
engineering applications. While this approach is fully developed for quasi-3D 
boundary layers up to high supersonic speeds, our intense efforts to produce 
PSE results and to establish links to the traditional eN method met not only 
with success, but also with various obstacles and questionable concepts that 
hamper reliable estimates of the transition location. 

Needs in applications 

The engineering practice poses a discouraging dilemma for any effort to improve 
transition estimates, both by the demands on the codes and by the input data 
provided. Engineering practice wants results at low cost, hence requires codes 
that run fast on lower-end computers, are robust, fooiproof, and can be oper­
ated by engineers without special training in the intricate matter of transition2 • 

Obviously these demands must be part of the nonfunctional requirements and 
user interface specifications for the software development. As functional require­
ments, however, speed and ease-of use should not compromise the underlying 
physics and jeopardize the usefulness of the results. 

Before any comparison with linear PSE results, we evaluated various propri­
etary and nonproprietary eN codes for a swept, untapered wing at supersonic 
speed, Ma = 1.5, using essentially the same input data. Some results for COSAL 
(Malik, 1982) are reported by Stuckert et al. (1993). Using virtually identical 
strategies, different codes, and in some cases different versions of the same code, 
provide different results. The codes vary widely in speed, depending on the order 
of the numerical method and the routines used to solve algebraic systems. The 
results depend on the numerical specifications which are left to trial-and-error 
by the user. Therefore, different users may obtain different results. Influential 

2These requirements we re also emphasized by the industry representatives at this 
colloquium. 
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options to suppress compressibility or curvature effects, or the chosen strategy 
are insufficiently documented in the results. The results of different strategies 
differ significantly. The envelope method - probably the fastest eN strategy be­
si des database methods - provides much higher amplitude growth than other 
strategies owing to the violation of physical constraints. In a larger variety of 
applications to wings and to compressor and turbine blades, one of the most cum­
bersome tasks is the search for unstable regions and the identification of unstable 
modes for the relevant types of instability. The codes show weaknesses in dealing 
with multiple regions of instability as they of ten appear on turbine blades. Input 
data, e.g. for the fluid properties, are of ten hard-coded and difficult to change. 
With respect to user interface, internal and external documentation, readability, 
and other quality requirements, the eN codes we evaluated do not meet the min­
imum standards for up-to-date software. Unfortunately, this criticism applies to 
many CFD codes in current use. 

The input of the basic flow for the LST or PSE based eN codes can be given 
directly in the form of a large file with precomputed boundary-layer parameters 
and profiles at numerous stations X n along the chord, or indirectly by separate 
data for fluid properties, geometry, freestream conditions, pressure distribution, 
and the distributions of wall suction, wall temperature, or wall-heat transfer. 
In the latter case, the boundary layer must be obtained by a separate code. 
Transition analysis requires an unusually high quality of the input data because 
the stability characteristics are sensitive to small changes of the basic flow. 

The fluid properties - specified or hard-coded - may not be the same for the 
boundary-layer code and the eN code. The independent use of values for the 
gas constant R, the specific heat cp, and the ratio, of specific heats for an ideal 
gas may be inconsistent with the relation cp = ,R/(, - 1) exploited elsewhere. 
The geometry is usually specified by a number of coordinate pairs along the 
airfoil. If this number is too small, the profile may be too inaccurate to compute 
the boundary layer and evaluate the curvature correctly. Data sets used for 
numerical solutions of the Euler equations of ten have too many points of limited 
accuracy (number of digits) and introduce unacceptable round-off errors in the 
curvature and wiggles in the Cp distribution. Differences bet ween the geometry 
specified for the numeri cal work and the actual geometry in wind-tunnel or flight 
tests can cause major discrepancies in the correlation of N factors. 

The pressure distribution can be obtained by measurements or computations 
with panel, Euler, or Navier-Stokes codes. The difference between computed 
and wind-tunnel data for single wings is usually significant, and increases for the 
even more confined flow in turbine cascades. Various detailed experiments on 
transition in turbines provide insufficient information e.g. on side-wall boundary 
layers to configure the input for 3D computations, and the use of 2D approxi­
mations is questionable for the relatively short blades of contemporary turbines. 
In the past, the accuracy requirements for flow computations in turbines have 
not been as stringent as in external aerodynamics, and the use of stability-based 
transition analysis is relatively new. Our experience with some of the CFD codes 
for turbine design indicates the need for improvements, from the generation and 
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implementation of better grids in the passage of the cascade to the removal of 
heuristic factors that may accelerate the con vergen ce to a less desirabie solution. 

CFD codes of ten provide Cp at points other than those defining the geome­
try. Linear interpolation of the geometry and pressure distribution is insufficient, 
while higher-order interpolation (e.g. by cubic splines) tends to overshoots, ex­
cept for smooth data. Because the boundary-layer starts at the stagnation point , 
this point must be accurately specified in the pressure distribution. An incorrect 
starting point can have significant effects on the boundary-layer and the N fac­
tors by affecting the crossflow instability near the leading edge. Inappropriate 
Cp distributions in the neighbourhood of the stagnation point can , and should , 
be corrected. 

We have found it necessary to perform detailed checks of the input data by 
computer, and to qualify geometry and Cp distribution by visual inspection of 
the data used in the computation of boundary-layer profiles and N factors. This 
inspection cannot be performed if the boundary-layer profiles are given directly 
to protect the proprietary geometry andJor pressure distribution. 

Most boundary-layer codes have been developed to compute the skin friction 
in the laminar and turbulent region and provide the profiles of the streamwise 
and spanwise velocity components U and Wand the temperature T as a byprod­
uct. While these profiles look unsuspicious, the derivatives in the normal direc­
tion y which are needed in the stability equations are not necessarily accurate. 
The widely used modification WING ofthe Kaups-Cebeci code distributed with 
COSAL provides first and second derivatives that deviate from the correct values 
in the neighbourhood of the wail and cri ti cal layer for TS waves. The second 
derivatives do not appear in the stability equations but are introduced by some 
numerical methods such as the fourth-order compact method used in COSAL. 
Based on the work of Kaups & Cebeci (1977) for conical wings, we developed a 
new code CBL to obtain correct derivatives. This code was validated by com­
parison with results of LISW (Elsholz, 1988), which solves the boundary-layer 
equations for a locally infinite swept wing in surface-oriented coordinates. The 
neglect of the surface curvature in the boundary-layer computation with CBL 
has a minor effect on the N factors. However, the concept of a locally infinite 
swept wing offers more flexibility to relax the restrictions on the sweep angles of 
leading and trailing edge, and on the spanwise variation of the pressure distri­
bution, thus benefitting the analysis of 2D as weil as more general 3D boundary 
layers. Calculating 2D flows with a code for conical flows starts the boundary 
layer from the wrong profile at the stagnation point, no matter how smail the 
sweep angles may be set. 

The development of a new code was also necessary to obtain the small nor­
mal velocity profile V, the streamwise derivatives of U and W, and the surface 
curvature terms which appear in the PSE. Attempts to retrieve these smail ve­
locity terms from the output of traditional codes provided unsatisfactory results. 
For the rough pressure distributions measured in flight tests, the V component 
and streamwise derivatives often exhibit strong variations and oscillations from 
station to station that are visible in the growth rates obtained from the PSE. 
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We had some success using the Plot3D files produced by various N avier­
Stokes codes to retrieve the boundary-layer profiles, derivatives, and metric in­
formation, although this procedure required pushing the grid resolution to the 
limits. Inconsistency bet ween the grids of the CFD codes and those used for the 
transition analysis necessitates extensive 3D interpolation. In general, it is more 
efficient and more accurate to retrieve the geometry and pressure distribution 
for application of a boundary-layer code. For boundary layers on turbine blades, 
knowledge of the Cp distribution does not allow matching the boundary layer 
asymptotically with the inviscid flow which exhibits strong velocity gradients at 
the wall. Boundary-layer solutions miss characteristic features revealed by Euler 
and N avier-Stokes solutions. 

To meet the needs of applications, improvements are necessary on both sides: 
code developers must improve the software quality for basic-flow and transition 
analysis, and the users of the software must improve the quality of the input 
data. This approach should permit largely unattended operation of the codes, 
and relieve the insistence on higher speed. Efficiency increases can be achieved 
with proper numerical methods but not beyond the limit set by the need to 
resolve our intricate physical problem. 

N -factor computation 

Traditional codes for N -factor computations rest on the LST for locally parallel 
flow. The parallel-flow assumption neglects the streamwise and spanwise varia­
tion of the basic flow and cuts the physical connection bet ween the local solutions 
in different points on the surface. Different strategies can then be selected to re­
connect these local solutions to provide amplitude-growth curves n( s; . . . ) along 
the arclength or chordwise direction. Depending on the strategy, ot her options 
and approximations, and on the settings specific to the implemented numeri cal 
method, the results for n(s;···) vary widely, and so do the limiting N values 
obtained by correlation with known transition points. The numerical meth­
ods reach from spectral collocation methods (slow, but most accurate), seventh­
or fourth-order Hermitean, Runge-Kutta shooting, fourth-order compact (needs 
higher derivatives of the basic flow), to second-order methods (fastest) on suit­
ably stretched grids. Minimum specifications are the number of grid points and 
the parameters of the stretching function. Most codes use transformed tempo­
ral growth rates instead of the more accurate spatial growth rates. Options are 
provided to include or exclude compressibility andjor curvature effects. Leaving 
aside undetected omissions in the tedious stability equations and small co ding 
errors as well as differences in the hard-coded thermal fluid properties, it takes 
hard work to obtain the same result for n(s;···) with identical input into two 
different codes. 

The PSE provide different amplitude-growth curves ii( s; w, (3) by accounting 
for the streamwise changes of U, W, and T, even if terms like V and aU jas 
are suppressed. Spanwise variations in fully 3D boundary layers are normally 
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neglected3 . The effect of this approximation can be reduced or eliminated by 
proper choice of the general curvilinear coordinates implemented in our code 
COPS. By solving the parabolized equations with a marching method, the solu­
tion is automatically connected from point to point along the marching direction, 
without leaving the freedom of choice for strategies. Therefore, the PSE results 
are comparable only with certain results of LST-based codes that are obtained 
with fitting strategies. 

Besides 2D flows, rigorous proof for the correct strategy can only be given for 
the quasi-3D boundary layers on infinite wings (Mack, 1977): the dimensional 
frequency w* and spanwise wavenumber (3* must be fixed, i.e. independent of s, 
during the evolution of a normal mode. This requirement is grossly violated by 
the envelope method which selects the mode with the largest growth rate at every 
station Sn. Some commercial airplane companies use the more sophisticated and 
computationally more demanding NTS - NCF method. NCF is computed for 
fixed w* = 0 from the envelope of amplitude growth curves for various fixed 
(3*, and is consistent with the physical requirements. NTS is obtained from 
the growth curves for various fixed frequencies w* while the wavenumber vector 
k = (a;, (3*) is aligned with the edge streamline. This procedure allows (3* to 
vary with s and w*, except in 2D flows where it is strictly justified. The deviation 
from the physics may be relatively small for wings where TS instability occurs in 
a region with small curvature of the edge streamline. Unsteady crossflow modes 
are ignored in the NTS - NCF method, although their growth rat es exceed those 
of steady CF vortices. The focus on steady modes appears justified for the low­
disturbance environment in flight, where roughness is regarded as the dominant 
source of crossflow instability. The lower values of NCF obtained from correlation 
with wind-tunnel data (as in the ATTAS tests, see Schrauf et al., 1992) is likely 
caused by the increased levels of unsteady CF modes. 

In fully 3D boundary layers where the flow field depends on all three spatial 
variables, we have no rigorous theoretical basis to judge the various procedures 
for computing N factors, nor are there accurate experiment al or computational 
data for comparison of different strategies. Experience with 3D bodies (e.g. 
Schwoerke, 1993) has shown that the transition front is not associated with a 
single value of N. Also for wings, the eN method deteriorates in regions of 
stronger spanwise variation of the boundary layer, e.g. near the engines. These 
spanwise variations are also neglected in the current PSE method. The attempt 
to retrieve lost physics by heuristic strategies is understandable, because the 
designer has to cope with these flows. However, there is a definitive need for 
improvements in this area. Such improvement requires first of all additional 
knowledge of the boundary layer: the spanwise variation, which can be obtained 
with a 3D boundary-layer code. Second, it is necessary to prescribe the initial 
disturbances along a line, not just in a single point. Tracking the evolution of this 
disturbance in the boundary layer is possible by solving the PSE appropriately in 
combination with the irrotationality condition (Mack, 1977). The computational 
demand, however, is obviously higher than for a single amplitude-growth curve. 

3 Fully 3D boundary layers can be correctly analyzed by a more elaborate PSE code. 
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Finally, there is the issue of "options". Compressibility has a minor effect on 
NCF but reduces NTS significantly for the Mach numbers of commercial flight. 
The NTS calculation ignores the shift of the maximum amplification of TS waves 
to different wave angles that occurs at higher Ma. For the ATTAS flight tests, 
NTS shows a clear decrease as the Mach number increases (Schrauf, 1994). There 
is no physical justification to prefer the NTS factors for incompressible flow, 
because they are "more consistent" with the illusion of a convenient "universal 
N factor" . 

The proper account for curvature in N factor computations has stirred con­
troversial discussions. Judging from the PSE analysis, only surface curvature 
has an effect, that hardly changes TS waves, but strongly stabilizes CF vortices 
on convex surfaces. The inherent streamwise changes in the boundary-Iayer flow 
over a convex surface partly compensate the effect of curvature alone. The use 
of LST with surface curvature does not permit accounting for the streamwise 
changes and provides unexpectedly low values of NCF or may suppress CF in­
stability completely. 

We face here another opportunity to improve transition predictions from two 
sides: by research to clarify the fuzzy approach to fully 3D boundary layers and 
by adhering to the physically (most) justified methods to link disturbance growth 
to transition even if they are not as fast and convenient as one would like them 
to beo 

Nonlinear PSE studies 

All operational definitions of transition by changes in Cf or St, simultaneous 
growth of modes, spectral broadening, and others rely on the nonlinearity of 
this process. The PSE provide a relatively inexpensive means for tracking this 
nonlinear process, but require the specification of proper initial and boundary 
conditions - a difficult task . 

The transition process is forced by environment al disturbances. These distur­
bances affect the flow through the boundaries ofthe computational domain either 
in the form of initial disturbances at the starting position of the marching proce­
dure, or through the boundary conditions in the free stream and at the wall. The 
disturbances do not directly enter the boundary layer, but are filtered through 
the mechanisms of receptivity. In a given environment, these mechanisms in 
essence determine the streamwise and spanwise length scales, time scales, and 
amplitudes of internal disturbances which may harmlessly linger around or par­
ticipate in the early or later stages of the transition process. Key to an efficient 
PSE analysis is the select ion of a few "most dangerous" ingredients consider­
ing the disturbance environment and the selective mechanisms of receptivity, 
primary growth, and nonlinear secondary instability. 

The environment is given at best by the turbulence level or average roughness, 
without the important spectral characteristics in the range ofrelevant scales. The 
atmospheric disturbance environment is largely unknown. The various receptiv­
ities, e.g. to free-stream turbulence, are still too incompletely knowr\ for deter-
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mining the internal disturbances by quantitative analysis. To overcome these 
obstacles, we have resorted to "input modeis" for different transition scenarios. 
Most parameters of these models are derived from the primary and secondary 
stability characteristics of the specific flow, and few ot hers such as the receptiv­
ity coefficients are fixed by correlation with experiments. The models provide 
the input into the relevant growth mechanisms, including both instabilities and 
transient growth (Butler & Farrel, 1992; Herbert & Lin, 1993). 

Transition on a turbine blade 

To ex plo re the nonlinear modeling capabilities, we have studied transition in var­
ious flows where experiment al data are available (Herbert et al., 1993), including 
the flow over heated flat (Sohn & Reshotko, 1991) or curved plates (Wang et 
al., 1985; Kim & Simon, 1991), and over the stator blade of a turbine (Dring et 
al., 1986) at turbulence levels Tu between 0.5 and 2.4%. K-type transition is 
most likely at these turbulence levels. Strong secondary instability of TS waves 
with respect to low-frequency spanwise modulations appears at TS amplitudes 
in excess of 1 %. Given the turbulence level and receptivity coefficient, and as­
suming equal receptivity in the band of relevant frequencies, this information is 
sufficient to select the TS frequency fr om the known amplitude growth curves as 
the highest frequency that achieves growth beyond the threshold. The spanwise 
modulation is provided by a steady Klebanoff mode or Görtler vortex of a fixed 
nondimensional wavenumber consistent with observations of Kendall (1991) and 
in the range of st rong secondary instability. The initial amplitude of this vortex 
is lower than the TS amplitude Aa at onset of instability and is less critical. 
The TS receptivity was estimated to provide Aa = 0.3% at Tu = 0.4%. Af ter 
minor parameter changes, a test run for the conditions of Sohn & Reshotko at 
Tu = 0.4% showed the rise of St at the observed location, and hence confirmed 
the validity of this simple model. For fixed receptivity coefficients, all initial am­
plitudes increase linearly with the turbulence level. With the built-in decrease 
of the frequency, and earlier onset of instability at a higher initial amplitude, 
additional runs with the same input model provided results in good agreement 
with the observed transition locations (minimum of St) at turbulence levels up 
to Tu = 2.4%. Similar agreement was found with the measurements on con­
cave and convex heated plates at Tu ~ 0.6%. Weak convex curvature stabilizes 
the longitudinal vortex and shifts Xt slightly downstream. Kim & Simon (1991) 
attributed the early rise of St on concave walls to bypass transition. The PSE re­
sults show instead that the concave curvature causes strong amplification of the 
longitudinal vort ex by Görtler instability. The nonlinear Görtler vort ex reaches 
high amplitudes and strongly affects the heat transfer without participation of 
the TS wave and before breakdown. 

For the blade of the annular stator used by Dring et al. (1986), the basic flow 
at mid span was obtained sequentially with a 2D panel code and the boundary­
layer code WING af ter extension to the heated-wall boundary conditions. Af ter 
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Figure 1: Variation of the Stanton number St with the arclength sic along a turbine 
stator blade, where cis the chord length. 

converting scales and performing a linear stability analysis of the flow, the in­
put model of the previous cases was adapted using the established rules. The 
PSE results for the variation of the Stanton number along the arclength sic 
on the suction side are shown in Fig. 1 together with the laminar values and 
experiment al data. 

The PSE run provides a minimum of St at sic = 0.764, somewhat lower 
than the experiment al value. We certainly can speculate on flaws of our input 
model, e.g. insufficient account for changes in the turbulence through the passage. 
However, we see the main reason in the deviation bet ween computed and actual 
laminar flow in the experiments, whkh is caused by three-dimensionality and the 
use of the lowest boundary-layer approximation in the narrow passage. Similar 
calculations for the pressure si de show the observed increase in St as a result of 
strong nonlinear Görtler vortices. 

Transition on swept wings 

Applications of the nonlinear PSE analysis to the 3D flows over swept wings 
have required extensive preparations to overcome the lack of knowledge on the 
variety of transition mechanisms and the disturbance environment in the absence 
of microscopie experiments and with restricted access to flight-test data. These 
efforts have focused on TS-dominated and CF-dominated transition as the most 
common types observed. 

For TS-dominated cases, we can lean on the results for 2D flows, and track 
the known mechanisms for increasing sweep angles. In essence, all secondary 
instability mechanisms (Herbert, 1988) carry over to 3D boundary layers. Ow­
ing ' to the loss of symmetry across the edge streamline, the "left" and "right" 
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Figure 2: Variation of the transition loeation with the disturbanee level Aw for subhar­
monie resonanee in ATTAS test ease B. 

subharmonic waves initially show different characteristics, but synchronize and 
grow simultaneously as the growing TS wave strengt hens the parametric insta­
bility. Combination resonance with weak detuning between left and right wave 
is slightly stronger than subharmonic resonance, but this small effect does not 
warrant introducing the additional detuning parameter for practical purpose. 
Fundamental, or K-type, resonance occurs primarily in combination with lon­
gitudinal vortices. As the sweep angle increases, the Klebanoff modes may be 
amplified by CF instability (Herbert & Lin, 1993). The amplification charac­
teristics of the secondary instabilities are sufficiently similar to the 2D case to 
obtain rough estimates from results for 2D flows. 

With the basic transition mechanisms known, we can construct input models 
for the PSE analysis. Receptivity coefficients are of little use without information 
on the flight environment. However, the initial amplitudes can be directly ob­
tained through evaluation of flight tests. Using the database of the ATTAS flight 
tests (Schrauf et al., 1992), we have performed systematic parametric studies of 
the TS-dominated mechanisms for test case A with moderate and case B with 
insignificant CF instability (Schrauf et al., 1995) to identify the most danger­
ous parameter combinations. We assume that noise and free-stream turbulence 
cause a common disturbance level of amplitude Aw for all wave components of 
the input model, and surface roughness independently provides vortices at the 
common level Av. From PSE runs with fixed Av, we obtain the variation of the 
transition location with Aw shown in Fig. 2 for case B. 

In-flight infrared photographs exhibit transition near 40% chord, which we 
attribute to an amplitude level Aw of 2 - 3 . 10-6 . Similar levels of Aw in the 
range of 1 - 3 . 10-6 lead to K-type or subharmonic transition in case A, where 
transition is observed at 17% chord. The CF amplitude in the K-type model has 
been varied bet ween Av = 10-8 and Av = 10-6 , but causes · only a small shift of 
less than 1 % chord. Other test cases must be analyzed to extract the strength 
Av of CF modes. It would also be desirabie to evaluate independent flight-test 
data to cross-check the range of Aw. So far, we can only resort to the eN method 
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to support the broader validity of our result: with NTS = 9, we obtain transition 
when the TS wave reaches an amplitude of 2· 10-6 . e9 , or 1.6%, whieh is weil in 
the proper range. 

Our earlier work on CF-dominated transition mechanisms for canonieal flows 
like swept Hiemenz flow has been supported by the experiments of Bippes and 
co-workers (e.g. Müiler & Bippes, 1988). Flows over swept wings are differ­
ent, though, sin ce the significant growth of the boundary layer causes the range 
of unstable steady and unsteady CF modes to change from high wavenumbers 
near the leading edge to much lower wavenumbers downstream. The analysis of 
the CF-dominated ATTAS flight test C has not yet progressed beyond a cata­
logue of interesting nonlinear interactions (Herbert & Schrauf, 1996). Single low­
wavenumber CF modes can nonlinearly grow to large, slowly varying saturation 
amplitudes similar to results for swept Hiemenz flow. The saturation amplitudes 
depend weakly on the initial amplitudes. Single modes of high wavenumbers 
decay af ter reaching a maximum amplitude, leaving behind a mean-flow distor­
tion that slowly decays. Traveling CF modes grow stronger than steady modes, 
and at large amplitude exert damping on steady modes, as observed by Bippes. 
We also found that steady modes at large amplitudes exert damping on traveling 
modes. The mean-flow distortion receives the largest contribution from the mode 
with the largest amplitude, and is key to saturation as weil as the modification 
of the growth rates of other modes, including TS waves. 

The infrared photograph for case C shows the characteristic zig-zag front of 
transition in the range bet ween 15% and 28% chord. The stationary wedges 
suggest that transition is associated with roughness-induced steady CF modes. 
Crouch (1994) finds that receptivity to distributed roughness introduces a broad 
band of steady CF modes. In contrast to the procedure for TS waves, it is 
impossible to select a single steady CF mode from the linear n(x; (3) diagram for 
the input model, because the nonlinear growth is significantly different. Already 
obvious for single modes, the differences increase by interactions of multiple 
modes. 

Fig. 3 shows the ?evelopment initiated by the steady modes (0, m) of wave­
numbers f3m = mf3 wlth 13 = 600 m- I , m = 5,·· ·12, and Av = 2 ·10- . Clearly, 
none of the modes decay as predicted by linear analysis. Self-interaction of the 
modes creates a st rong mean-flow distortion (0,0) which governs the satura­
tion process. Interaction of the high-wavenumber components forces the low­
wavenumber components with m = 1,···,4 at the difference of their wavenum­
bers. These modes grow unexpectedly st rong because of nonlinear forcing in 
combination with instability further downstream. In turn, the low-wavenumber 
modes maintain the high-wavenumber modes as harmonies and forcing at the 
sum of their wavenumbers. At xjc ::::: 0.15, the mode with m = 3 dominates, 
although its initial amplitude was zero. At the end of the run, the mode (0,1) 
with wavenumber {3 = 600 m- I has the largest amplitude although linear anal­
ysis indieates negligible growth, as shown by the dashed line in Fig. 3. 

The deeper reason for the evolution of CF modes as in Fig. 3 is the shift of 
the unstable region toward lower wavenumbers in flows with strongly growing 
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Figure 3: Interaction of steady CF vortices of different wavenumbers with Au = 2.10- 6 . 

The linear growth of mode (0,1) is given by the dashed line. 

boundary-layer thickness. The results suggest that the creation of strong CF 
vortices by the combination of nonlinear forcing with weak unstable growth can 
lead to CF-dominated transition at relatively small limiting N factors and at 
unexpected locations. For practical applications, it will be necessary to account 
for these nonlinear effects without repeating the tedious computation and inter­
pretation of the results. With the insight and quantitative information we have 
gained through our studies, it appears possible to develop a relatively simple 
model to estimate saturation phenomena and nonlinear mode interactions on 
the basis of the known linear amplitude-growth curves. The development of this 
model, and the analysis of the high-frequency breakdown process will be the next 
steps in our studies of ATTAS test case C. 

Conclusions 

In our efforts to improve prediction methods for the transition location, we have 
found that various groups must be cooperatively involved. Researchers should 
provide a solid basis for the analysis of fully 3D boundary layers, the developers 
of CFD software should improve the quality of their codes, and practising en­
gineers should improve the quality of the input data and favour the physically 
best justified approach. Transition is a synergetic process and requires care at 
every step of the analysis. Linear amplitude growth curves and N factors are 
an important ingredient of the transition process, but fail in some situations 
where nonlinearity causes significant effects. Progress in the understanding of 
receptivity and more detailed documentation of the disturbance environment 
will enhance the capabilities to trace the transition process from its beginnings 
without employing questionable concepts or requiring undue empiricism. It will 
be unavoidable, though, to apply intelligence and criticism to prevent failures, 
and to employ existing and future tools for transition analysis to fully benefit 
engineering design. 
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Abstract 

Progress in N avier-Stokes methods, both in terms of accuracy and flow com­
plexity, has made it unacceptable to ignore the presence of laminar regions in 
the boundary layers. Af ter some examples we examine the behaviour of current 
turbulence models in three flow modules, such as a transitional separation bub­
bIe, that put laminar and turbulent regions in forced contact. This behaviour is 
found to be correct, but only qualitatively. The need for a robust "Turbulence 
Subsystem" that is insensitive to the type of grid, and functions with almost no 
user input or scrutiny, is shown to conflict with the de sire to resolve the finer 
features of Transitional Boundary Layers in Aeronautics . 

Introd uction 

Viscous flow calculations based on the Reynolds-Averaged Navier-Stokes (RANS) 
equations with simple turbulence models have matured and will, from now on, 
contribute at least to the high-speed shape of any new airliner. The impact 
of Computational Fluid Dynamics (CFD) on high-lift system design is much 
weaker, but aggressive ongoing efforts in grid generation and algorithms mean 
that those responsible for the "Turbulence Subsystem" of CFD must now foresee 
the requirements of three-dimensional (3D) , viscous, high-lift CFD. 

By far the easier use of a turbulence model, whether it is algebraic or based 
on transport equations, is to have the model active everywhere in the shear 
layers. On a conventional airliner in high-speed flight, the laminar regions are 
small and a "Fully Turbulent" (FT) treatment is justified. The only certain 
laminar patches are on the nose and the engine nacelle lips. The difference 
bet ween a fully turbulent solution and one with correct laminar patches is only 
a few percent of the dragj more importantly, the difference is probably similar 
for different airplane models. At wind-tunnel Reynolds numbers the difference 
grows, especially if portions of attachment lines are laminar. The effect cannot 
be neglected, compared with typical drag guarantees. Airplanes with Laminar­
Flow Control (LFC) of course require detailed control of the turbulence in CFD 
solutions. High-lift systems also allow numerous possible laminar patches, since 
many stagnation points are present, and smallieading-edge radii on flap elements 
lower the attachment-line Reynolds numbers. The effect is weaker on skin friction 
than on lift and pressure drag, because of separationj a classical example is the 
"drag crisis" of a 2D circular cylinder. 
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For these reasons, the Turbulence Subsystem of any mature high-lift CFD 
code will have to recognize laminar patches. In this paper we do not discuss 
the prediction of transition internal to the boundary layer, such as caused by 
Toilmien-Schlichting or cross-flow instabilities. Our approach to RANS calcu­
lations is that a distinct subsystem predicts that type of transition, and then 
"instructs" the turbulence model to become active. We have studied how weil 
the model responds to these instructions, as weil as situations in which the model 
"over-rides" the instructions from the transition-prediction module. An exam­
ple is a boundary layer which transitions because it is touched by an already 
turbulent shear layer flowing next to it. 

Transition has long been incorporated to some extent in boundary-Iayer codes 
or Navier-Stokes codes with simple structured grids. Given a transition point 
(in 2D) or line (in 3D), an algebraic turbulence model is simply disabled on 
grid lines upstream of transition. Similar treatments have been made with 
transport-equation turbulence modeis, of ten by disabling the production terms. 
The method is zonal. Some codes incorporate "ramping up" of the eddy vis­
cosity over a few streamwise grid stations. Two motivations for ramps are to 
avoid discontinuities (which benefits the numerics), and to improve the realism. 
Realism demands a gradual rise of the skin friction, and of ten an overshoot over 
the eventual turbulent value. Much of the research and implementation work on 
the transition zone has been of that nature, narrowly directed at boundary-Iayer 
codes, and not readily applicable to even structured-grid RANS codes, especiaily 
in 3D. 

Zonal methods quickly become unmanageable when complex geometries such 
as high-lift systems are immersed in the now common multi-block or unstruc­
tured grids. Any logic that uses grid lines and blocks violates the physics when 
shear layers cross grid boundaries. As an example, high-lift airfoils depend on 
the interaction between the main-wing-element wake and the flap. It would be 
unacceptable to have the flap grid block "zero out" the turbulence in that wake 
just because the boundary layer on the flap has not achieved internal transition. 
This led us to constraining but clear policies for our viscous codes: no zonal 
information enters the turbulence model; the transition subsystem may instruct 
the model to transition to turbulence, but it may not disable the model. The 
result is that the turbulence model is left in control of phenomena that are tran­
sitional, although most would be termed "by-pass transition" . Conversely, the 
model has no competence for internal transition in boundary layers below a quiet 
freestream (it has no sensitivity to pressure gradient, cross-flow, or even suction); 
by itself, it remains at zero in any attached boundary layer. We do expect the 
transition-prediction subsystem to remain zon al and "boundary-Iayer oriented"; 
there are compelling physical reasons for that, but the logistical difficulties are 
substantial in 3D. 

Since the inception of the Spalart-Ailmaras (S-A) one-equation turbulence 
model, we have explored several transitional phenomena through model problems 
or local analysis of solutions (Spalart & Ailmaras, 1994, and Appendix). An 
example is the propagation ofturbulence into freestream fluid, the "entrainment" 
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Figure 1: Eddy-viscosity con tours in the cove and flap region of an airfoil. 

problem (Cazalbou et al., 1994). Another is the transition of a laminar boundary 
layer as it makes contact with an already turbulent shear layer. Fig. 1 was 
provided by Drs. Kusunose and Cao of Boeing (1994) and shows the flow details 
at the leading edge of a high-lift flap. The eddy viscosity on the upper surface of 
the flap rises away from zero, not due to the usual S-A "trip term", but because 
of diffusion from the turbulent region in the cove of the main airfoil (the lower 
flap boundary layer remains laminar). A more subtle effect the model would not 
reproduce is the accelerated transition caused by pressure fluctuations without 
contact of the vortical regions. Another issue is the extent of the transition 
region, the fi.rst of our three model problems. 

Transition as simulated by the S-A model 

Few transport turbulence modeis, particularly two-equation and more complex 
modeis, are equipped for transition control; manyencounter problems with spu­
rious "turbulence" outside the boundary layer, near the stagnation point. The 
S-A model may be the first designed with laminar regions in mind. A separate 
method predicts the transition line, and the "trip terms" activate the model 
at that line (upstream of the trip, the eddy viscosity is much smaller than the 
molecular viscosity, zero if possible). 

We now examine transition in the S-A model, using results obtained for Boe­
ing by Drs. Bassina, Shur, Strelets and Travin of the Russian Scientific Center 
"Applied Chemistry" in St. Petersburg (Shur et al., 1995). A flat-plate boundary 
layer is calculated, and the standard S-A trip placed at a streamwise Reynolds 
number Rx == xUoo /1/ equal to 106 (RB = 664). Here x is the streamwise coordi­
nate, Uoo the edge velocity, and 1/ the kinematic viscosity. Fig. 2 shows the flow 
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Figure 2: Boundary layer with S-A model "tripped" at Rx = 106 . Note that Ró ~ 5500 
atRx =106 . 

evolution in the streamwise direction. The grid was fine enough (R!:,.x = 2000) for 
the results to be grid-independent. Ro increases smoothly, whereas Rs. and H 
drop steeply at transition. The skin-friction coefficient Cf rises from 0.441 10-3 

to 4. 10-3 starting near Rx = 0.98 106 , which is about 4 boundary-layer thick­
nesses upstream of the trip "point". This anticipation is controlled by the con­
stant Ct2, which is not critical. Nevertheless, users may want to shift the trip 
downstream by 415 if they want to accurately locate the beginning of the Cf rise. 
Almost all the rise has occurred by Rx = 1.02 106 , therefore, it takes about 815. 
Transition is complete roughly at Rx = 1.1 106 • 

Fig. 3 shows velocity and eddy-viscosity profiles at three x stations. At 
Rx = 0.965 106 , the trip term has slightly raised the eddy viscosity V, but the 
velocity profile is unaffected. At Rx = 1.045 106 the eddy-viscosity profile is 
full and the velo city profile turbulent. The usuallaw of the wall U+(y+) is also 
rapidly established, from the wall up (not shown). 

Calculations we re conducted with larger grid spacings ~x, up to R!:,.x = 
80,000, more typical of N avier-Stokes practice. They yield values of gt as low as 
0.01 (gt is an auxiliary function in the S-A model, and its value with a fine grid 
is 0.1), and are not grid-independent. They produce a more extended transition 
region but no numerical difficulties, and little effect on the virtual origin of the 
turbulent layer. The trip system is quite robust. 

Completing transition within 8 boundary-layer thicknesses is not typical of 
natural transition in zero pressure gradient. The normal extent is about 8015 
(Narasimha, 1985). Thus, the model behaves much like a physically tripped 
flow, or one with st rong adverse pressure gradient. The shape of the Cf is also 
inaccurate in that it has a steep initial rise, and does not overshoot the turbulent 
Cf curve. This is not as important as the transition-zone length. We now show 
that these behaviours will not be controlled simply by altering the trip term. 
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Figure 3: Profiles in a boundary layer "tripped" at Rx = 106
. Left, velocity; right, 

eddy viscosity. Ry = yUoo/v and X = v/v . 

When the S-A eddy viscosity V is small compared with Uoo 6, it obeys the 
linearized S-A equation Dv / Dt = Cb1Sv where S is the shear rate. In a Blasius 
boundary layer at y = 6/3 this leads to exponential growth in x at a rate of 
roughly 0.3/6 (recall that Cbl = 0.1355). As a result, in a distance of 86 the 
amplitude ratio is over 10, and transition ends as the nonlinear terms come into 
play. Reducing the "trip constant" Ct! by a factor of 100 delays transition, but 
only by about 106, and makes the solutions more vulnerable to numerica! errors. 
We expect ot her modeIs, such as the I/t92 model of Secundov (Shur et al., 1995), 
to face similar conflicts. 

Elaborate "transition-zone modeIs" are found in the literature. However, 
they use the distance from the leading edge, or the boundary-Iayer thickness, 
and of course the flow direction. The thickness cannot be reliably calculated in 
genera! grids, and its use is against the locality requirements we placed on the 
S-A model. The flow direct ion mayalso change across the shear layer. For these 
reasons, we have been unable to incorporate these models. 

In summary the transition-control feature of the S-A model (with a separate 
prediction method) is used routinely in 2D (Kusunose & Cao, 1994) and will be in 
3D, especially if its cost can be reduced (the cost is currently O(N4) operations, 
in a grid with N3 points). Similar devices will probably be a standard feature 
of widely-used models for thorough studies of viscous flows. However, there was 
no attempt to obtain the correct length for the transition region; it is regarded 
as a "higher-order" effect. 

Lateral propagation of turbulence in a boundary layer 

With a transport-equation model, "turbulence" follows streamlines, where "tur­
buIence" means eddy viscosity and associated variables such as k, E, or w. For 
example, if the root region of a swept wing is turbulent, turbulence propagates 
along the attachment line and the whole wing is turbulent without any further 
tripping. This is qualitatively correct. 
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Figure 4: Plan view of a turbulent wedge in a boundary layer. Upper graph: skin­
friction coefficient Cf ; lower graph: moment urn thickness () . 

Here we address a weaker type of propagation than directly along streamlines. 
When a laminar and a turbulent boundary layer are side by side, the turbulence 
propagates laterally. A typical situation is an LFC wing, on which turbulence 
can be injected locally by the fuselage boundary layer, or by the engine strut, 
creating a "turbulent wedge". We wish to know the wedge angle relative to the 
streamlines , and the eddy viscosity pattern at the laminar-turbulent interface. 
We understand the propagation of simple models into shear-free regions (Cazal­
bou et al., 1994), but the propagation into a boundary layer should be different. 
All the calculations and supporting studies we re performed for Boeing under 
Dr. A.N. Secundovat the Central Institute of Aviation Motors in Moscow, by 
Drs. V.Ye. Kozlov and D.A. Lubimov. 

Calculations were conducted at several levels of complexity, regarding the 
slender-flowapproximations. They gave close answers; the figures are taken from 
a solution of the 3D parabolized Navier-Stokes equations, in which the spanwise 
velocity and pressure variations we re not suppressed. Several turbulence models 
were also applied. Grid-refinement studies demonstrated grid convergence. The 
flow had no mean pressure gradient , and the inflow Reynolds number was RB = 
550. The S-A model is used in the figures. 

Fig. 4 shows plan views of the flow. The skin-friction coefficient Cf is much 
higher in the lower region , which is turbulent. There the moment urn thickness () 
grows much more rapidly, and the shape factor H (not shown) drops fr om 2.6 to 
1.5, as expected. On the ot her hand the wedge angle is only about 3.60 compared 
with at least 80 in experiments. It appears that the model fails to reproduce the 
"growth by destabilization" described by Gad-el-Hak et al. (1981). The lateral 
propagation is faster than the vertical propagation, which makes an angle of only 
about 10

• Thus, lateral propagation is enhanced by the shear, which enters the 
production term, but remains far below the actual destabilization effect. The 



P.R. Spalart 275 

• • 1.5 ~ . 

10
0 1.0 ~ 
~ -0.5 ~ 

0.0 

1.5 

~ 1.0 
~ 

0.5 

0.0 
0 (5 

Figure 5: Con tours at the edge of a turbulent wedge. Upper graph , velocity, levels 
U jUoo = 0.095 to 0.995 by 0.09; lower graph , eddy viscosity. 

wedge angle in the model (3.6°) is somewhat larger than the thermal wedge angle 
(2°), which Gad-el-Hak et al. used to estimate pure diffusion effects. We believe 
the calculated wedge angle would also fail to respond to pressure gradients, 
because the model has little sensitivity to the second derivative of the velocity 
profile. 

Fig. 5 shows contours of streamwise velocity and eddy viscosity in a trans­
verse plane at the outflow boundary, xj60 = 35. The turbulent velo city reflects 
the transfer of momentum from the upper part to the lower part of the layer, as 
in Fig. 3. The eddy viscosity is biased towards the wall , where the shear rate is 
higher, leading to higher production. In practice, at higher Reynolds numbers, 
the ratio of turbulent to laminar thickness is larger than it is here; calculations 
with such ratios produced marginally lower wedge angles. 

The Vt92 (Shur et al. , 1995) and SST (Menter, 1994) turbulence models pro­
duced wedge angles marginally lower than the S-A model. This suggests that 
simple models constrained to give about the same rate of diffusion normal to the 
wall end up giving about the same rate of lateral propagation. We may have 
to be content with angles well below 4°; unfortunately this is not a conservative 
prediction (the skin friction on a wing is slightly under-predicted). Also note 
that grids used in industrial practice are much too coarse in the spanwise direc­
tion to resolve the structure shown in Fig. 4. As aresuit, the lateral propagation 
may well be suppressed further ; indeed, we found that calculations on coarser 
grids produced slightly smaller wedge angles. 
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U nsteady calculations past a circular cylinder 

The group of Drs. Strelets, Shur and Travin, in St. Petersburg, is exercising 
turbulence models in separated flows under Boeing contract. The unsteady so­
lutions we report on here are preliminary, because the grid-refinement study is 
still under way. A complete analysis will be presented elsewhere (Shur et al., 
1996). Steady solutions were considered for backward- and forward-facing steps 
and rather successful especially for the SST model (Shur et al., 1995). In con­
trast, for the circular cylinder and other bluff bodies, time-dependent solutions 
with vort ex shedding are appealing and have been claimed to be vastly more 
accurate than steady RANS solutions (Franke & Rodi, 1991; Johansson, David­
son & Olsson, 1993; Durbin, 1995). Predietably, they are much less sensitive to 
the turbulence model. At first sight this appears to be a costly but well-defined 
step forward. In reality, even before considering transition (all three studies 
concerned bodies with sharp corners) the situation is far from simpie, as many 
different computing policies could be justified. 

First, it is legitimate to pro duce a steady (possibly unstable) symmetrie 
solution; the "perfect" turbulence model would give the perfect average answer. 
With little or no separation, this steady solution is probably the only one, but we 
cannot predict at whieh amount of separation it loses stability (Franke & Rodi 
even obtained stabie steady solutions around a square cylinder, but then only 
with wall functions). Second, one could produce symmetric but time-accurate 
solutions; these could be unsteady in a "varicose" mode. In our opinion they 
have little physical value, but they may weIl show up if researchers rely on 
symmetry alone (as opposed to more obscure means such as long time steps) 
to obtain steadiness. Third, we have 2D shedding solutions as found in the 
literature. Fourth, if one argues that Reynolds-averaging in time is naive, then 
so is Reynolds-averaging in the spanwise direction. Three-dimensional cells can 
weIl alter the flow (Najjar & Vanka, 1995). Much work remains to be done. 

If separation occurs from a smoöth wall, transition becomes important and 
a turbulence model such as S-A can be exercised in at least four modes. The 
most convenient (although not mentioned in the original paper) is to set the 
inflow eddy viscosity v to a value such as 5v. Then the turbulence model rapidly 
"lights up" in the boundary layers (but not in the irrotational region), leading 
to a fully turbulent (FT) solution. The two modes of operation prescribed in the 
original paper have near-zero inflow values, and trips at the wall. In one mode the 
trips are fixed, either because physical trips exist or because good predietions 
of natural transition cannot be made. In the other mode the trips follow the 
(time-dependent) transition location predicted by a separate method (Kusunose 
& Cao, 1994). This is the most appealing mode, but it can be sensitive to exactly 
where transition is triggered, relative to separation. 

The fourth mode, conceived in St. Petersburg, is to establish some turbulence 
in the initial condition, but then to remove any trip or nonzero inflow value. We 
describe it as "trip-Iess" (TL). In an attached flow, all eddy viscosity would be 
convected out of the domain, and a laminar solution would result (unless nu mer­
ical errors sustained the non-zero eddy viscosity). For the cylinder, turbulence 
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is swept out of the boundary layers on the windward side, but survives in the 
separated region. It is convected back towards the separation point. We expect 
the same qualitative behaviour in three-dimensional "separation". In our experi­
ence, it is not sensitive to grid density. This mode of operation avoids transition 
predietion and plausibly addresses the Reynolds-number range in which separa­
tion from the cylinder is laminar, and Kelvin-Helmholtz transition rapidly takes 
place in the separated shear layer. We consider a diameter Reynolds number 
Re = 50,000, which is well within that range. The TL mode is of course not 
sufficient at high Reynolds numbers, or for aerodynamic flows. 

It appears that even in a 2D symmetrie geometry at a single Reynolds num­
ber, a model could potentially give sixteen different answers (by changing the 
steadiness, the symmetry, the three-dimensionality, and the tripping mode). The 
industrial community is not weil prepared to deal with this non-uniqueness, 
which we predict will show up as more massively separated flows are calculated. 
It is of considerable interest whether loss of stability of the steady CFD solu­
tions correlates with large-scale unsteadiness in the experiment. A less palatable 
but equally urgent subject is the relationship between convergence failure of a 
steady-state CFD code, and limit-cycle behaviour of a good time-accurate CFD 
solution of the same flow. In real situations, neither 2D not symmetrie, the 
only issue besides transition is time-dependence (although 3D cells could still be 
silently suppressed by a coarse spanwise grid spacing) and "only" eight modes 
would exist. We now review whieh modes actually lead to appreciable differences 
in the results, for the cylinder. 

We do not consider symmetric time-dependent cases, and we leave 3D cal­
culations for future work. Thus in terms of time- and spanwise-dependence we 
only consider steady cases (S), and 2D unsteady cases (U) . In terms of transi­
tion control, we do not present cases with natural transition. We also found that 
cases with non-zero upstream eddy viscosity and cases with trips weil upstream 
of separation gave very close results. Thus, we only have these "FT" cases and 
the "TL" cases. This leads to a two-by-two matrix of cases. 

Steady laminar solutions could not be obtained at Re = 50,000. This illus­
trates our incomplete control over steady solutions: their availability depends on 
numerieal features of the method, such as its tolerance of large time steps. The 
unsteady laminar solution was noisy and suspect in terms of grid convergence 
and time sample, and we elected not to use it. 

Fig. 6 shows the four solutions of the S-A model, and the experiment al results 
of Achenbach (1968) at Re = 105 for laminar separation, and Roshko (1961) at 
Re = 8.5 106 for turbulent separation. The best agreement is between the U­
FT solution and the turbulent-separation experiment . This is physieaily logieal 
and encouraging. None of the other three solutions agree very well with either 
experiment. The steady solutions give much longer recirculation bubbles, much 
higher eddy viscosity, and lower drag than the unsteady ones. This is consistent 
with published results on sharp-edged bluff bodies. On the other hand, the 
agreement bet ween the U-TL solution and the laminar-separation experiment is 
disappointing; the back pressure and drag are quite good, but the pressure is 
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Figure 6: Pressure (left) and skin friction (right) on circular cylinder. U, unsteady; S, 
steady; FT, fully turbulent; TL, trip-less . 

inaccurate near the crest (60° ::; a ::; 120°). The TL flow is less resistant to 
separation than the FT flow, as expected, but still more resistant than a laminar 
boundary layer. 

Fig. 6b shows the separation location, which for some cases is curiously 
inconsistent with the pressure; for instance for the U-TL case the pressure would 
suggest about 120°, but the skin friction crosses zero near 90°. We also note that 
the peak skin-friction coefficient (near a = 60°) is not much lower when the flow 
is laminar (TL cases) than when it is turbulent. With this Reynolds number and 
this pressure gradient , turbulence is not dominant. 

Fig. 7 displays the U-TL solution, at a particular phase of the shedding 
cycle. x and y are normalized by the cylinder diameter. The eddy viscosity is 
zero upstream of separation, and then rises due to the reversed flow and diffusion. 
The separating streamline (using a definition that is loose in an unsteady flow), 
line of peak vorticity, and line of peak eddy viscosity almost coincide for x ;::: 0.05; 
we attribute this to the facts that vorticity is convected, and that the production 
term of eddy viscosity is proportional to vorticity. The propagation of eddy 
viscosity upwards across streamlines appears unexpectedly rapid, compared with 
that of vorticity. This is largely an illusion due to the fact that the peak vorticity 
is decreasing, while the peak eddy viscosity is increasing. 

To conclude, transitional separation bubbles are produced in a free-standing 
and qualitatively correct manner by one-equation models in trip-Iess mode (we 
have not attempted TL solutions with two-equation modeIs). However, separa­
tion occurs somewhere between the locations oflaminar and turbulent separation 
in experiments. This is probably controlled by the diffusion mechanisms of the 
model, which were of course adjusted in other flows. In practice, this effect 
could be powerful for high-lift configurations, which are sometimes dependent 
on transitional bubbles. 
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Figure 7: Trip-less solution on circular cylinder . Flow from left to right. 

Summary 

The studies presented here are a reminder that perfection is not expected from 
turbulence modeIs, particularly when dealing with transition. In that, they re­
spond to the Scientific Committee's wish for the aircraft industry to make their 
"problems and wishes" known! On the other hand, our attempts reflect the firm 
ambition to treat a wide variety of flow phenomena with a single model. In addi­
tion, the models are about the simplest that can be formulated in complex grids 
and geometries. Such models will long be favoured to solve complex problems. 
SubtIe aspects of transition are given a rat her low priority. The ultimate objec­
tive is a full high-lift configuration. There is no lack of challenges as CFD further 
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pervades the Aerospace design activity; those facing the Turbulence Subsystem 
include the need to accurately and economically represent the effect of vortex 
generators, and to obtain relaminarization due to favourable pressure gradients 
or streamline divergence without zonal devices. 

Appendix: Spalart-Allmaras turbulence model 

The Reynolds stresses are given by -UiUj = 2VtSij, Sij the strain tensor. The 
eddy viscosity Vt is given by 

Vt = iI fV1, 
v 

X ==-. 
v 

v is the molecular viscosity. iI obeys the transport equation 

~~ = cbdI - fd S iI + ~ [V. ((v + iI)ViI) + Cb2 (ViI)2] 

[ Cb1] - cwdw - ---;;zï ft2 [~r + ft! ~U2. 
Here 

- v 
S == S + ",2d2fv2 ' 

X 
fv2 = 1 - 1 + Xfv1 ' 

(Al) 

(A2) 

(A3) 

where S is the magnitude of the vorticity, and d is the distance to the closest 
wall. The function fw is 

[ 
1 6 ]1/6 + cw3 

fw = 9 6 + 6 ' 9 Cw3 
9 = r + Cw 2 (r6 

- r), (A4) 

The wall boundary condition is iI = O. In the freestream and as initia! 
condition 0 is best, and va!ues below v/IO are acceptable. The ft2 function is 
ft2 = Ct3 exp( -Ct4 X2). The trip function ft! is as follows: dt is the distance 
from the field point to the trip, which is on a wall, Wt is the wall vorticity at the 
trip, and ~U is the difference between thé velocity at the field point and that 
at the trip. Then gt == min(O.I, ~U /Wt~Xt) where ~Xt is the grid spacing along 
the wall at the trip, and 

(A5) 

Finally Cb1 = 0.1355, a = 2/3, Cb2 = 0.622, '" = 0.41, Cw1 = cbd",2 + (1 + cb2)/a, 
Cw2 = 0.3, Cw3 = 2, Cv1 = 7.1, Ct! = 1, Ct2 = 2, Ct3 = 1.2, Ct4 = 0.5. 
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K. Hanjalié & I. Hadzié 

Modelling the Transition Phenomena with 
Statistical Turbulence Closure Models 

Abstract 

The paper discusses some issues related to modelling the laminar-to-turbulent 
and reverse transitions with single-point closure modeIs. It is argued that an 
important prerequisite for modelling by-pass transition or revival of inactive 
("background") turbulence in a laminar-like flow is to model separately the 
effects of viscosity and those associated with non-viscous, directionally biased 
wail-blockage effects. A second-moment closure model with low-Re-number and 
non-viscous wail effects in invariant form has been applied to the prediction of se­
veral cases of transitional flows including by-pass transition at plane and curved 
surfaces and at different pressure gradients, relaminarization of strongly accele­
rating flows, as weil as a sequence of forward and reverse transitions in periodic 
and osciilating flows at transitional Re numbers. 

Introduction 

Reynolds averaging, which serves as a basis for most single-point turbulence 
closure modeIs , conceals by its virtue the dynamics of flow disturbances, the 
incipience, development and amplification of local instabilities and the actual 
mechanism of naturallaminar-to-turbulent transition. For that reason the sta­
tistical single-point closure models have been regarded as inappropriate tools 
for dealing with the problem of transition. However, because an alternative to 
single-point closures for computation of industrial flows is still not in the offing, 
there has been much activity in accommodating statistical models to handle at 
least some forms of transition phenomena, such as by-pass transition caused by 
the diffusion of free stream turbulence into the boundary layer. It is generaily 
accepted that the turbulence closures offer more flexibility and better prospects 
for predicting real complex flows with transitions then any classicallinear stabi­
lity theory. The ability to predict a change-overfrom one regime to another (not 
necessarily the actual transition mechanism) at appropriate location and under 
appropriate conditions , and consequent modifications of mean flow parameters -
without having to introduce any artificial triggering - will often serve the purpose 
of computing complex industrial flows involving transition. 

Successful reproductions of the reverse transition (laminarization) have been 
reported already in early seventies even with simple two-equation modeIs, mo­
dified to account for "low-Re-number effects." (Jones and Launder, 1972). Since 
then a substantial progress has been made in the development of turbulence mo­
deIs, expanding graduaily their applicability to a wider range of flows including 
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some forms of transition. Progress reports on the activity of the ERCOFTAC 
Transition Special Interest Group (SIG), (Savill, 1993) provide a good overview 
of the current achievements of single-point closures in modeling the diffusion­
controlled by-pass transition. In spite of substantial efforts the outcome seems 
to be inconclusive. Particularly disappointing is the evidence that higher model 
complexity brought only marginal improvements, and only in some cases. Ne­
vertheless, some conclusions did emerge. The models which use the invariant 
turbulence parameters such as the turbulence Re number, perform better than 
those which use the local wall distance. Satisfying the correct walllimits of the 
shear stress and of energy dissipation rate was also found to be important for 
a successful reproduction of the transition. Finally, few contributions with the 
Reynolds-stress models (RSM) with low-Re-number modifications seemed all to 
perform better than two-equation modeis, particularly for low free stream turbu­
lence e.g. 0(1%). Major advantages of the RSM we re located in the provision to 
account for anisotropy of the free stream- and of the near-wall stress field, par­
ticularly in the ability to reproduce the normal-to-the-wall velocity fluctuations. 
Another merit is in the exact treatment of the turbulence product ion and of ef­
fects of streamline curvature. These features help also in handling other forms of 
non-equilibrium phenomena frequently encountered jointly with different forms 
of transition and present authors believe that a general model for complex flows 
should be sought within a low-Re-number RSM framework. 

This paper discusses some issues related to modelling transition with the low­
Re-number single-point closures. It attempts to identify minimum constraints 
which a model should meet, and discusses possible reasons for unsatisfactory 
performances of some modeis. The fulfillment of limiting and asymptotic tur­
bulence states (two-component turbulence, vanishing turbulence Reynolds num­
ber), identified as important prerequisites for modelling transition, will also be 
discussed. A version of the second-moment (RSM) closure model with low-Re­
number and wall proximity modifications was used, which was validated earlier 
in a series of non-equilibrium attached and separated wall flows, some involving 
strong low-Re-number effects (Hanjalié et al., 1996). In this paper we consider 
four flows with by-pass transition with different levels of free stream turbulence 
above 3% and a case of low-Re-number oscillating boundary layer in which the 
flow undergoes a sequential change of forward and reverse transition within a 
single cycle. The by-pass transition cases were selected from the ERCOFTAC 
Transition SIG database, known under the code names T3A, T3B, T3C and 
T3L4. The specification of the flows will be given together with the discussion 
of the results later in the text. 

Some basic model requirements 

Current statistical models can be expected to reproduce transition only when eit­
her a continuous source of turbulence exists somewhere in the flow or at its edge 
from where the turbulence will diffuse (be entrained) into the rest of the non­
turbulent flow. Alternatively, the laminar flow must contain some background 
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turbulence, sufficiently weak not to influence laminar-like mean flow properties, 
but sufficient to amplify itself when the tiow deformation or ot her disturbance is 
imposed or reaches a sufficient strength to interact with the background turbu­
lence. Such is the case of re-transition, e.g. in an oscillating turbulent boundary 
layer at low Re numbers, or in a laminar-like or laminarizing boundary layers 
subjected to a st rong adverse pressure gradient e.g. in a compressor cascades. 
The ability to predict the first type (by-pass) transition depends on the model 
of turbulent diffusion, particularly away from the wall, which essentially con­
trols the boundary layer turbulization. In contrast to that, the prediction of 
laminarization and of a subsequent re-transition depends on the model ability 
to repro duce accurately the process of turbulence decay and production at a low 
turbulence Re number in a strongly anisotropic field in the near wall region. 

Low-Re-number modifications have been proposed at different modeling le­
vels, but in most cases they were tailored to achieve overall damping ofturbulence 
as the wall approaches in equilibrium wall flows. In most cases no distinction 
is made between the pure viscosity effects, which are of scalar nature, and non­
viscous, directionally biased wall blockage and a consequent pressure reflection. 
U nlike the viscosity which damps evenly the turbulence fluctuations in all direc­
tions, asolid wall imposes a selective damping of the normal-to-the-wall velocity 
fluctuations and a consequent eddy splatting, resulting in increased turbulence 
anisotropy approaching the two-component state very close to the wall. Most 
low-Re-number models treat both effects jointly and of ten relating the overall 
damping to the local wall distance. While such apractice can reproduce ne ar 
wall behaviour in near-equilibrium steady flows similar to those in which the 
model was tuned, it fails in most cases with complex wall topography, or with a 
significant departure from equilibrium conditions. In view of the fact that most 
transitional phenomena are provoked, enhanced or otherwise controlled by sud­
den changes in boundary or external conditions, it is obvious that such models 
can not reproduce a broader variety of transition phenomena. 

A second-moment closure 

The present model is a variant of the low-Re-number second-moment closure, ba­
sed on the standard high-Re-number UiUj - € model with linear pressure strain 
terms, which serves as the high-Re-number asymptote. The novelty is in mode­
ling separately the viscous and wall-proximity effects by a set offunctions, which 
are all expressed in terms of invariant turbulence properties. The viscous effect 
is introduced through the turbulence Reynolds number Ret = k2 /(v€), which 
is both physical1y justifiabie and numerically convenient. The non-viscous wall 
blockage effects and pressure reflection depend indeed on the distance from a wall 
and its topography. However, the use of the wall distance and the unit normal 
vector (representing the local wal1 orientation), as practiced in most near-wall 
turbulence modeis, is inconvenient for flows domains with irregular boundaries. 
Asolid wall damps primarily the turbulent fluctuations in the normal direction, 
causing a st rong anisotropy of the turbulence field. Hence the parameters cha­
racterizing the anisotropy can be used to represent the wall blockage effects. In 
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the model described here we model the non-viscous wall effects in terms of the 
invariants of the turbulent stress tensor A 2 = aijaij, A3 = aijajkaki and of the 
dissipation rate tensor E 2 = eijeij, E3 = eijejkeki, where aij = uiuj/k - 2/38ij 
and eij = [ij / [ - 2/38ij . In contrast to early models which assumed a pro­
portionality of these invariants, recent direct numerical simulation (DNS) of 
simple wall flows showed a substantial difference in the anisotropy of the stress­
and dissipation rate fields even in equilibrium conditions. This is particularly 
evident in the behaviour of the "flatness" parameters E = 1 - 9/8(E2 - E3 ), 

A = 1 - 9/8(A2 - A3 ) which characterize a departure from two-dimensionality 
of the small- and large scale turbulence, respectively: both parameters become 
zero in two-dimensional turbulence and unity in isotropic turbulence. The DNS 
results for low-Re-number wall flows clearly illustrate that E reaches a value 
close to 1 at much closer distance from the wall than A indicating a higher de­
gree of isotropy in the small scale motion over most part of the flow (Hanjalié 
et al., 1996). This notabie difference in the behavior of A and E, particularly 
close to the wall, gives a justification for using both parameters for modeling 
separately the wall effects on large and small scale turbulence fields. The low­
Re-number dissipation equation is used with the additional term -Ce:4f4knknk 
introduced earlier (Hanjalié and Launder, 1982) with the purpose of differen­
tiating the effects of irrotational and rotational straining on the energy transfer 
process (production of [). Here nk = (ijk (oUd ox j) is the mean vorticity vector. 
This term has proved to be essential in modeling the flows with st rong linear 
straining particularly because it accounts for the sign of the linear strain rate, 
producing a desired effects on the dissipation rate dynamics both in strongly 
accelerating and strongly decelerating flows. The modelled transport equations 
for the turbulent stress and energy dissipation rate are: 

D€ 
Dt 

Model of the pressure strain: 

(2) 

<1> .. 2 = -C2 (P .. - ~Pk8 .. ) 'J, 'J 3 'J' 
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C2 = 0.8Al/2, 

9 
A = 1 - S(A2 - A3 ), 

9 
E = 1 - S(E2 - E3 ), 

[ 
k3/2 ] 

fw = min --; 1.4 , 
2.5€xn 

Cr = max(I-0 .7C; 0.3), C~ = min(A; 0.3), 
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The model of the stress dissipation rate: 

f CE2-1.4 [(Ret )2] 
E = 1- exp - - . 

CE2 6 

The term -Ce414knknk in the dissipation equation was used in a simpli­
fied form which emerges from the near-wall equilibrium constraint, C;4( u~ -

ui)( oUd OXt)é / k. This form eliminates the need to use the function 14 and 
is computationally more convenient. In this case Cel remains unchanged (i.e. 
Cel = 1.44) and so does Ce2 =1.92, while the corresponding value of C;4 is 1.16. 
The remaining coefficients take the following values: 

Cs = 0.22, Ce = 0.18, 

Numerical method 

Computations of the by-pass transition on a flat plate (cases T3A, T3B and T3C, 
see bellow) as well as the oscillating boundary layer, we re performed with a pa­
rabolized Navier-Stokes numerical code using the control-volume approach with 
typically 100 nodes across the flow in a collocated variabie arrangement. The 
corresponding pressure gradient was specified explicitly and the V-component of 
the mean velo city evaluated from the continuity equation. The parabolic com­
putations started at the leading edge with uniform profiles of all quantities equal 
to the streamline values supplied by experiments. Some modifications of the dis­
sipation scales we re made in some cases as discussed later. A partial validation 
of the parabolic approach was performed by computing the case T3B by the full 
(elliptic) N avier-Stokes solver , over a computational domain starting at the lea­
ding edge and extending sufficiently downstream to capture in full the transition 
region. Admittedly, this was not sufficient sin ce the elliptic effect of the leading 
edge could be detected only by starting the computation ahead of the edge and 
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accounting for the real shape and thickness of the plate. These were ignored in 
this case, but studied in details in the case of a symmetric round-edged plate. 

The flow over the finite thickness plate with round leading edge (case T3L4) 
test case has been computed with a finite volume 2-dimensional Navier-Stokes 
code with block-structured, body-fitted mesh with local refinement, Cartesian 
vector and tensor components, and collocated variabie arrangement, developed 
by Perié (1993). In this code several high- and low-Re-number eddy-viscosity and 
Reynolds-stress turbulence models are implemented. The results are obtained 
on a numerical grid with two blocks the inner with 308 X 60 and the outer with 
184x 15 control volumes (CV). Quadratic upwind interpolation (QUICK) is used 
for connective terms in the moment urn equations and the upwind differencing 
scheme (UDS) for turbulence properties. 

Some illustrations 

As an illustration of the ability of the model described above to predict transi­
tional flows, we consider four cases of by-pass transition and a case of periodic 
re-transition. The by-pass transition flows were selected from the ERCOFTAC 
benchmark library. The performance of the model is illustrated by comparison 
with experimental and/or DNS data. It should be noted that the same model 
with the same values of all coefficients was earlier tested in several classes of 
equilibrium and non-equilibrium attached and separating wall flows covering a 
broad range of Re numbers (Hanjalié et al. 1996) . Comparison with a variety of 
experiment al and DNS results supplied independently over the years by different 
authors gave in most cases very good agreement for all mean flow properties and 
in most cases also for the second moments. 

The first two cases, denoted as T3A and T3B, are the by-pass transition in 
an initially laminar boundary layer at a flat plate at constant pressure with free 
stream turbulence intensities (uooIUoo ) ~ 3% and 6% and corresponding free 
stream velocities of 5.2 and 9.6 mis, respectively. The experiment al data origi­
nate from Rolls-Royce Appl. Science Lab. (P.E. Roach et al. and J. Coupland). 

Fig. 1 shows the comparison of the computed friction factors and shape 
parameters for the two cases considered. The results for 6% we re obtained using 
the initial data fully in accord with the experiments. Except for a more gradual 
inception of transition, than found experimentally, the agreement is remarkably 
good, particularly in the later stage, when the model repro duces in full both 
the friction- and the shape factors. The case with 3% appeared to be more 
sensitive to the initial conditions. U sing the suggested initial value produced 
a milder transition, though its commencement was predicted weIl (dotted line 
in Fig. 1). An increase in the initial dissipation length scale moves the line 
closer to experimental data, though achieving a satisfactory agreement required 
a substantial increase (almost by factor of 10), as shown in Fig. 1. Contrary to 
the 6% case, the agreement is better in the initial than in the later stage. 
Further illustration of the model ability is illustrated in Fig. 2, where the profiles 
of mean velo city and of turbulence stresses are shown for the 6% case (T3B) at 
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several locations starting at x = 25 mm downstream from the leading edge. 
Mean velocity is reproduced very weU at all stations and so are the components 
of the normal stresses, particularly the u-component. However, the computed 
shear stress exceeds substantially the experiment al data at aU locations. This 
finding is st range in view of excellent prediction of the mean velocity. 

The third case (T3C) involves variabie pressure starting with favourable pres­
sure gradient and reverting to adverse pressure gradient further downstream. We 
present the results of the case T3C1, which corresponds to 8% free stream tur­
buience. Strong acceleration in the initial region makes this flow very sensitive 
to the initial condition. This sensitivity is illustrated by three computed lines 
corresponding to three slightly different initial dissipation length scales. The 
chain line obtained with Leooi = 5.0 mm shows no transition: the boundary 
layer remains laminar throughout the considered flow domain. A small increase 
to 5.5 mm reproduced the transition reasonably weil (fuil line), though its in­
cipience started somewhat earlier than found by experiments. Further increase 
in Leooi moves the transition location back towards the leading edge, but the 
effect is not very pronounced, as shown by dotted line. It should be noted that 
an accurate reproduction of the pressure gradient fr om the experiment al data 
for the free stream velocity variation is difficult and a smail changes can make a 
noticeable effect on the prediction outcome. 

The fourth case (T3L4) is the transition in a laminar boundary layer deve­
loping over a fini te thickness plate with round leading edge of 5 mm and free 
stream turbulence of 5.5%. Experiments indicated that the transition is preceded 
and enhanced by a thin laminar separation bubble. Predicting the correct shape 
and si ze of the separation region, which is crucial for predicting correctly the 
transition, was found to be a major challenge in which most conventional low­
Re-number models failed (Chien et al., 1994). Since at the leading edge the flow 
is still laminar, the major problem is of a numerical nature: accurate numerical 
resolution of the thin boundary layer at the round leading edge and later in the 
separation bubble is an essential prerequisite for predicting the transition evolu­
tion. For that reason we applied the block-structured numerical mesh, clustered 
towards the waU, with local refinement in the domain of 5 plate half-thickness 
around the plate, as shown in Fig. 4. Fig. 4c shows the streamline pattern ob-
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R=5mm 

Figure 4: Numerical grid (full and blow- up of the near-wall region) and the 
computed streamlines. Case T3L4. 

tained with the QUICK scheme, which is in close agreement with experiments. 
Further illustration is provided in Fig. 5 where the profiles of mean velocity and 
of the streamline fluctuation is shown for severallocations at x = 6, 15, 26, 75 
and 300 mm downstream from the leading edge. The first two locations fall wi­
thin the recirculation bubble. The agreement for all stations can be regarded as 
fully satisfactory, particularly in view of high demands for numerical resolution. 

The last case considered is a boundary layer on a flat plate oscillating around 
the zero mean with a different transition mechanism. In the rjge of Reynolds 
numbers Reós (defined with the Stokes-Iayer thickness 8s = 2v /w) between 
600 and about 2000 the flow undergoes a sequential change of strong damping 
(acceleration phase) and revival of turbulence (onset of deceleration) within a 
single cycle. Although the turbulence does not fully disappear, the damping 
is sufficient to produce laminarization effect in the mean flow. The turbulence 
revival at the phase angle when the flow deformation becomes sufficiently high 
is a form of forward transition, although the mechanism is different both from 
the natural and by-pass transition . This flow has been reported in more details 
in (Hanjalié et al., 1995) and here we will only illustrate some results. Fig. 6a 
shows the friction factor (based on the maximum wall shear stress in a cycle) for 
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a range of Re numbers. Compared are the computations with the present model 
and several sets of experimental and DNS data. Fig. 6b presents the phase lead 
of the maximum wall shear stress ahead of the maximum free stream velo city for 
Re nu mb ers corresponding to those in Fig. 6a. The agreement with most data 
is very good over the whole rage considered. 

Fig. 7 presents the variation of maxima of all non-zero turbulent stresses, 
illustrating the extent of turbulence damping and amplification during a cycle for 
the case for Reós = 1000, compared with the DNS data of Spalart and Baldwin 
(1987). In addition to excellent agreement with the DNS results, diagram shows 
that des pi te substantial variation, the shear stress still retains a non-negligible 
value ([uvJU!lmax ~ 0.0005). It should be noted that the distance of the posi­
tions of the stress maxima from the wall varies along the flow and it increases 
during the acceleration, thickening the viscous sublayer and producing the la­
minarizing effects on the mean flow. This is bett~r seen in Fig. 8, where a 
blow up of the phase-evolution of the turbulence Re-number is shown. As seen, 
Ret decreases below 100 up to Y J 8s ~ lover much of the acceleration phase 
(<p = 110 - 130°) leading to typically laminar mean flow velocity distribution 
and wall shear stress, in spite of the fact that a substantial turbulence is still 
present in the outer region. 

Conclusions 

The ability of second-moment closures to handle the laminar-to-turbulent and 
reverse transition has been examined by applying a rnodel, developed by the aut­
hOTS, to transition caused either by entrainment of outer free-stream turbulence, 
or by revival of the damped turbulence af ter laminarization. The considered by­
pass transition cases are all well reproduced for higher free stream turbulence, 
even with a parabolic solver, starting the computation at the leading edge. The 
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lower turbulence intensity (3% and bellow) poses a problem: better agreement 
can be achieved by decreasing the initial dissipation level as compared with ex­
perimental data. The application of the elliptic solver with the computational 
domain starting at the leading edge produced only marginal effects. The uncer­
tainty in the inlet flow dissipation is expected to have a smaller influence if the 
elliptic solutions were carried out ahead of the leading edge. The leading-edge ef­
fect was investigated in more details in flow around a finite-thickness round-edge 
flat plate, which was solved by full-Navier-Stokes solver with block-structured 
locally refined numerical mesh. The results show a good agreement with expe­
riments. The predictions of the oscillating transition flows were reproduced in 
excellent agreement with the DNS and experiments, indicating that the revival 
of laminarized turbulence, particularly in cases which are independent of the 
inlet flow conditions, can be successfully handled with the present model. 

References 

Chen, W.L., Lien, F.S. and Leschziner, M.A. 1994 - Computational modelling 
of turbulent flows in turbomachine passage with low-Re two-equation mo­
deIs. Computational Fluid Dynamics '94, pp. 517-524. 

Coupland, J. 1995 - Private communication. 
Hanjalié, K., Jakirlié, S. and Hadzié, 1. 1995 - Computation of oscillating turbu­

lent flows at transitional Re-numbers. Turbulent Shear Flows Vol 9, (Eds 
F. Durst et al.), pp. 323- 342, Springer. 

Hanjalié, K., Jakirlic, S. and Hadzié, 1. 1996 - Expanding the limits of "equili­
brium" second-moment turbulence closures. Fluid Dynamics Research, (in 
press). 

Hanjalié, K. and Launder, B.E. 1982 - Sensitizing the dissipation equation to 
irrotational strains. ASME J. Fluids Eng. 102, 34-40. 

Jones, W.P. and Launder, B.E. 1972 - The prediction of laminarisation with a 
two-equation model of turbulence. Int. J. Heat Mass Transfer 15,301-314. 

Perié, M. 1993 - Private communication. 
Roach, P.E. and Brierley, D.H. 1990 - The influence of a turbulent free stream 

on zero pressure gradient transitional boundary layer development. Part 
1: testcases T3A and T3B. Numerical simulation of unsteady fiows and 
transition to turbulence, (Eds O. Pironneau et al.), pp. 319-347. 

Savill, A.M. 1993 - Some recent progress in the turbulence modelling of by­
pass transition. Near- Wall Turbulent Flows, (Eds R.M.C. So et al.), pp. 
829-848. 

Spalart, P.R. and Baldwin, B.S. 1987 - Direct simulation of a turbulent oscil­
lating boundary layer. Turbulent Shear Flows Vol. 6, (Eds J.C. Andre et 
al.), pp. 417-440, Springer. 

Authors' address 

Faculty of Applied Physics, Delft University of Technology, 
Lorentzweg 1, 2628 CJ Delft, The Netherlands. 



R. N arasimha 

Some Recent Developments in the 
Linear Combination Model 

Abstract 

295 

Progress in the parameterisation of turbulent spot formation and propagation, 
which is at the heart of linear-combination (l.c.) modeis, is reviewed. Recent 
experiment al data demonstrate the strong influence of pressure gradient on both 
spot generation and growth; on the other hand flow divergence, while changing 
spot shape and direction of propagation, appears to have no other strong effect. 
A detailed study shows that the use of non-parallel stability theory is generally 
unlikely to make significant changes to the prediction of transition onset as ob­
tained with en methods. The range of flow conditions over which l.c. models 
can make reasonable predictions is increasing, and now covers pressure gradients, 
compressibility and divergence, but a thorough exploration of flows in severe and 
varying pressure gradients, including possible subtransitions within the transi­
tion zone, is necessary to gain greater confidence in predictions for aeronautical 
applications. 

Introduction 

There has been increasing interest in recent years in de velo ping satisfactory mod­
els for the transition zone in a boundary layer, the zone being defined as one 
within which the flow changes from a laminar (but possibly disturbed) state 
at its upstream end to fully developed turbulence towards the dowstream end; 
more specifically, the intermittency , (i.e. the fraction of time that flow is tur­
bulent) varies from zero (0+) to near-unity (1-). This interest is driven in part 
by technological applications where the design either forces operation in or seeks 
to utilize the benefits of extensive regions of laminar or transitional flow (e.g., 
laminar-flow aircraft, turbomachinery blades), or is governed by peak heat trans­
fer rates such as occur in the transition zone (e.g. turbomachinery, space shuttle, 
aerospace plane). A second re as on for the interest in the transition zone is that a 
proper accounting of it could automatically provide the natural initial conditions 
for the computation of fully turbulent flow downstream. In turbomachinery ap­
plications, the flow may experience a succession of events that include laminar 
separation, transition, reattachment, relaminarization etc., generally both three­
dimensional and unsteady (the latter because of periodic tripping by upstream 
rotor stages: see e.g. Mayle, 1991). No current model can handle satisfacto­
rily the whole range of phenomena thus encountered, although understanding of 



296 Some recent developments in the linear combination model 

various elements in this chain is increasing. Indeed, even the two-dimensional 
steady case still poses certain problems. 

A remarkable feature of the current research scene is a sharp division of labour 
bet ween workers studying the pre-onset (-y = 0) stage of the flow and those 
studying the post-onset stage (-y > 0). Few experiment al investigations cover 
extensively both si des of onset (an exception being Arnal et al., 1977). From the 
analysis in Narasimha (1985), it appears that the effective location of transition 
onset, as defined in the transition zone models we shall describe below, is very 
close to the well-known appearance of sharp spikes in the velocity signal in J(­

type breakdown. However, whether the environment is relatively quiet or not, 
and whether the linearly unstable Tollmien-Schlichting regime is apparent or not, 
the transition zone is almost always intermittent in the same way (Narasimha, 
1994). 

Approaches to modelling 

The earliest models (e.g., Goldstein, 1938) assumed transition to occur abruptly 
at some station x = X (say), the fully turbulent flow at x > X being so de­
termined that the momentum thickness () is continuous at X. Such abrupt­
transition models are still frequently used in engineering design. However, they 
yield unrealistically high values of peak wall stress and heat transfer. 

More sophisticated models for the transition zone can be classified broadly 
into three categories (Narasimha, 1985): algebraic, differential and linear-combi­
nation. In algebraic models (e.g. Cebeci & Smith, 1974), the molecular viscosity 
lIm is enhanced by an intermittency-weighted eddy viscosity, the effective total 
viscosity being taken as 

11 = lIm + "fliT' (1) 
Differential models tackle directly the Reynolds-averaged equations of motion, 
usually with one- or two-equation turbulence closures. In these modeis, some 
initial disturbance has to be specified; Wilcox (1981) uses the linear stability so­
lutions at the é amplification point to provide initial profiles of turbulent energy 
and dissipation. More recently, Wilcox (1994) has proposed a numerical trip on 
a J(-w model. Vancoillie (1984) formulates equations for conditional averages, 
introducing the intermittency explicitly in the J( -E approach. Steelant & Dick 
(1995) have pursued the 'J(-E-"f' model further. Most ot her differential models do 
not explicitly use intermittency, and a recent assessment (Narasimha, 1994) con­
cluded that, at that time at least, they needed considerably more development 
before they could be effectively used. 

The linear-combination model has been extensively used by the author and 
his co-workers (Dey & Narasimha, 1988, 1990a), as weIl as by other groups. Here 
the laminar and turbulent boundary layers (the lat ter originating at a specified or 
predicted onset location Xt) are separately calculated, and then combined in the 
proportion (1- "f):"f to obtain the transitional boundary layer. As the method 
gets to be used more widely, it may be worthwhile to begin by saying what it is 
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not. It is not necessarily an effective eddy viscosity method (although Warren 
et al., 1995 so imply), but the fully turbulent flow that is one element of the 
linear combination could be computed on that basis . It is also not (in general) 
a momentum integral method, for the momentum integral equation may not be 
obeyed. This might at first sight seem disturbing, but it must be noted that for 
laminar flow computations the DN model uses the method of Thwaites (1949), 
or a refinement of it (Dey & Narasimha, 1990b); neither of these satisfies the 
momentum integral either. Indeed the spirit of the Thwaites method is that there 
are relations bet ween integral parameters that are more robust than those that 
might be derived by using momemtum integral conservation (invariably based on 
velocity profiles that do not conserve momentum). Nevertheless, as the linear­
combination method has a more general foundation than the Thwaites method, 
a version of it that conserves integral momentum may also be devised (Dey & 
Narasimha, to be published). Finally, we should note that the conditionally 
averaged velocity profiles in the transition zone are close to but do not strictly 
match the 2D laminar or turbulent profiles, as assumed by the method. 

In spite of these limitations, we know of no ot her transition-zone model which 
has been validated against so many test cases with such generally satisfactory 
results. 

We will confine ourselves here to developments beyond those surveyed by 
Narasimha & Dey (1989) and Narasimha (1991a). Tt will be recalled that the 
overall structure of the DN model is modular, the different modules computing, 
respectively, laminar flow parameters and velocity profiles, turbulent flow pa­
rameters and velocity profiles, onset location and extent of the transition zone. 
The objective of this paper is to describe certain recent developments pertaining 
to the model, especially in the last two modules (which are critical to its success), 
and to review the status regarding its applications. 

Onset prediction 

With recent developments in treating the stability of non-parallel flows (e.g. 
Bertolotti et al., 1992), a question that arises is how important it is in practice 
to take into account the effects of non-parallelism in onset prediction using the 
classical Smith-van logen en methods. This question has been analysed in detail 
by Govindarajan & Narasimha (1995). They first provide a rational analysis 
of the 2D non-parallel linear stability problem to O(R-l), where R is alocal 
Reynolds number based on boundary layer thickness. The key to their analysis 
is the use of a transformation of the independent variables that is an extension of 
the well-known Falkner-Skan approach. Arbitrary pressure gradients are treated 
by a locally similar or a weakly non-similar approach. Fig. 1 shows a typical 
example of their analysis. Their gener al conclusion is that non-parallelism is sig­
nificant only in strong adverse pressure gradients, and for tracking the growth of 
high-frequency disturbances at relatively low Reynolds numbers. For example, 
they find that for the Falkner-Skan flow with m = -0.06, disturbances with a 
frequency parameter F = 2.52 X 10-4 (where F = wvjU2, W is the frequency, v 
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Figure 1: Effect of non-parallelism in estimation of n-factor on a Wortmann FX-63-137 
aerofoil, at zero angle of attack , chord Reynolds number = 2 x 106 . Parallel flow : - - - . 
Non-parallel flow: 00 (Iocal similarity) , - (weakly non-similar). From Govindarajan 
(1994). 

the kinematic viscosity and U the local free-stream velocity ), the log amplifica­
tion ratio is respectively 20% and 40% higher at the inner and outer maximum 
of the eigenfunction. 

Another interesting conclusion from this work is that a reduced Orr-Sommer­
feld equation already contains the major lowest-order effects of non-parallelism 
in the flow. It should be noted that inclusion of all effects of O(R-l) is unjustified 
unless the mean flow is known to that order, which demands the use of higher 
order boundary layer theory. For flow past a flat plate, if f( "l) is the well-known 
Blasius solution, the reduced Orr-Sommerfeld equation can be written as 

(2) 

where dashes denote differentiation in the Blasius variabie "l and <IJ is the eigen­
function of stability theory. Equation (2) has the same form as that considered 
by Smith et al. (1984), but the variables are different: the independent vari­
able is "l, <IJ is scaled according to local free-stream velocity and boundary layer 
thickness and Q is alocal wavenumber (being the streamwise derivative of an 
appropriate phase function). Realizing that R is a function of the streamwise 
coordinate x, it will be seen that the solution <IJ of (2) depends on both "l and 
x. Govindarajan & Narasimha (1995) show that it contains considerable infor­
mation about the effects of non-parallelismj e.g. the dependence of the critical 
Reynolds number on distance from the wall, characteristic of non-parallel theo­
ries, is predicted to great accuracy by (2). To be asymptotically correct, however, 
some additional terms need to be included (Govindarajan & N arasimha, to be 
pu blished). 
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The conclusion is that a non-parallel analysis is required, if at all, for accurate 
computations of amplitude ratios only in high disturbance environments (imply­
ing low amplification factors nt at transition) and significant adverse pressure 
gradients (where transition Reynolds numbers tend to be low). In general the 
non-parallel theory predicts slightly higher amplitude ratios (perhaps raising the 
n factor by up to 0.5); however for such results to be accepted as rational, higher 
order effects on the mean flow in the boundary layer, due to curvature, displace­
ment effect etc, would need to be taken into account. At the present state of 
development of en methodology, it appears that Orr-Sommerfeld computations 
(with or without the nA</> term) should be adequate. 

Turbulent spot propagation characteristics 

Spot parameterization is a key component of l.c. modeis. There is beginning to 
be useful data on spot behaviour in pressure gradients, but a consistent picture 
has not yet emerged. Katz et al. (1990) report that, in a favourable Falkner-Skan 
pressure gradient with ,B-parameter of 0.12, spot growth is inhibited (spread angle 
reduced to half its constant pressure value), and that spot propagation velocities 
tend to remain constant (instead of increasing in proportion to free-stream ve­
locity). Narasimha et al. (1984a), using varying favourable gradients, find that 
spread rates can change downstream, tending relatively abruptly to constant­
pressure values as soon as pressure gradients are relaxed. They suggest stability 
as a possible explanation: in a varying pressure gradient the stability-critical 
Reynolds number, as determined say from the Orr-Sommerfeld equation, can 
exhibit dramatic variations downstream, so the flow may change back and forth 
between subcritical and super-critical states as it develops. Data on the suction 
surface of a blade tripped periodically by the moving wake of rods upstream, sim­
ulating rotor blad es in a turbine stage (Dong & Cumpsty, 1990), show abrupt 
changes in velocity of propagation of the resulting turbulent "slab" as it moves 
downstream along the blade. 

On the other hand, Clark et al. (1994), studying spots in natural transition in 
constant favourable pressure gradients, report that leading edge velocities remain 
a constant fraction of local free-stream velocity, but trailing edge velocities tend 
to higher fractions than in constant pressure flows. (Incidentally their data are 
not inconsistent with a sudden change in the latter (at x = 55 mm, their Fig. 
14).) 

Gostelow et al. (1995) have recently studied spots in adverse pressure gra­
dients, and report that spread rates can be doubled over values in zero pressure 
gradient. A spot in divergent constant-pressure flow has been investigated by 
Jahanmiri et al. (1995); they find that the divergence changes spot shape sub­
stantially, and that, while the angle of the envelope of spot positions with the 
local streamline can vary considerably (3° to 13°), the spread rate remains at 
the standard 2-D value of about 10°. These results are consistent with the ex­
planation that divergence produces chiefly a geometrie distortion of the coherent 
structure in the spot, but not any significant dynamie modification. 
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These investigations show, as suggested by Narasimha (1985), that gross 
changes in spot propagation characteristics can occur under certain flow con di­
tions. Recent work has begun to address these problems, but much still remains 
to be done to provide a rational framework for understanding the observed ef­
fects. 

Intermittency distributions 

Emmons (1951) showed how the intermittency ,(x) could be related to a source 
function giving the rate at which turbulent spots are formed over the surface. The 
assumptions underlying this formulation appear to be sufficiently realistic that 
the resulting expression provides an effective means for analyzing transition-zone 
data. The additional hypothesis of concentrated breakdown (Narasimha, 1957) 
leads to the result, in 2D constant-pressure flow with linear spot propagation, 

where 

, , 0, x < Xt 

1 - exp [- (x-x~fn17] = 1 - exp( -0.41Ç2), Xt < x (3) 

(4) 

is a non-dimensional variabIe using the distance À between the stations where 
,=0.25 and 0.75 to characterize the extent of the transition zone, n is the mean 
rate of spot formation and (1 is the spot propagation parameter defined by Em­
mons (1951). The hypothesis of concentrated breakdown has received some direct 
support from the recent work of Shaikh & Gaster (1993). 

The validity of eq. (3) has been confirmed by a variety of measurements, the 
more recent on es including Fraser et al. (1988) and Gostelow & Walker (1990) 
in weak pressure gradients, Ramesh et al. (1996) in constant-pressure divergent 
flow (consistently with the spot data cited above), and Schmisseur et al. (1996) 
in supersonic flow. Other curves have also been suggested for the distribution, 
and a critical discussion will be found in Narasimha (1991b). With suitable 
fitting procedures any of several expressions provide reasonable approximations 
to the data, (3) being perhaps the most satisfactory (Fraser et al., 1988; cf. their 
Figs 3, 4 and 5). The real advantage of (3), however, is its direct relation to spot 
theory, and the natural way in which extensions can be derived for more complex 
situations based on information on spot behaviour. (See Narasimha (1985) for 
examples, using a generalized intermittency distribution.) 

In using (3), it is necessary to take some care in determining both À and Xt, 

especially as small departures from (3) are sometimes noticed near Xt. A good 
procedure to follow (Narasimha, 1957, 1985) is to plot F(!) = [-ln(l - ,)]1/2 
vs. x, and extrapolate from the best linear fit for F(,) in the middle of the 
transition zone to the point, = o. Failure to analyze results on this "F(,), t 
basis", as Walker & Gostelow (1989) call it, has sometimes been responsible for 
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Figure 2: Comparison of DN predictions with flow BW73 from Blair & Werle (1981) . 
Note the thinning of the boundary layer in the favourable gradient. Onset at Xt" 

subtransition at Xtl; other notation is standard. 

unjustified conclusions (as demonstrated by Dey & Narasimha, 1988; Gostelow 
& Walker 1990). 

We now consider the effect of pressure gradient on the intermittency distri­
bution. Abu-Ghannam & Shaw (1980) find no effect in their experiments; in the 
earlier work of Gostelow & Walker (1990) also, the intermittency distribution 
followed the expression (3). On the qther hand the extensive data of Narasimha 
et al. (1984b) found significant effects, especially when the pressure gradients 
vary appreciably within the zone. It is now clear that weak pressure gradients 
do not affect the distribution; in favourable gradients, Dey & Narasimha (1990) 
suggest the limit in terms of the Thwaites pressure gradient parameter as 

L = dU 
- dx 

(}2 
- < 0.06. 
v 

(5) 

The Chen-Thyson (1971) model, also based on the hypothesis of concentrated 
breakdown, seeks to take account of pressure gradients and flow divergence based 
on two further assumptions: (i) the spot propagation velocities are proportional 
to the local free-stream velo city U(x); and (ii) the spot spreads across the local 
streamlines at a (universal) angle. These assumptions are contradicted by some 
of the spot studies cited earlier. 

Under st rong and varying pressure gradients, the flow can behave in strange 
ways, as demonstrated by the experiments of Blair & Werle (1981; see in par­
ticular the flows called BW72, BW73 in Dey & Narasimha (1990), and Fig. 
2). lndeed, it is possible to conceive of a situation in which, following onset, 
transition is aborted midway by astrong laminarizing favourable pressure gra­
dient; an instance of this might be the 10° swept wing data shown in Narasimha 
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(1985) (Fig. 33). In these and other cases, it seems necessary to recognize that 
the intermittency distribution can best be seen as involving "subtransitions" 
(Narasimha, 1984), which are characterised by a kink in the dependence of F(-y) 
on x. Now F(-y) is proportional to the square root of the dependence area at 
x (Narasimha, 1985), and so mirrors spot growth in some sense. The kink can 
therefore be marking a rapid change in spot propagation characteristics of the 
kind noted above. The existence of a subtransition in some of the flows studied 
by Blair & Werle (1981) was suspected by Dey & Narasimha (1988) on the basis 
of the observed mean-flow parameters; this has since been confirmed by Blair 
(1992) through direct measurements of the intermittency. Early experiments, 
quoted in N arasimha et al. (1984 b ), show that a fa vourable pressure gradien t 
in the beginning of the transition zone has a marked effect on the intermittency 
distribution, and results in a subtransition, whereas a similar gradient in the 
downstream half of the transition zone has little effect. An obvious explanation 
is that the gradient is stabilizing in the first case, but in the second, where the 
flow is turbulent for a substantial part of the time, the response would be weakeL 
This suggests that the effect of pressure gradient cannot be seen in terms only 
of its magnitude in laminar flow scales (Eq. (5)), but must be coupled with the 
intermittency levels at which the pressure gradient is imposed. It therefore ap­
pears doubtful whether a simple prescription of spot formation rate as a function 
of L (see discussion below) would be ab Ie to describe the situation, unless the 
pressure gradient is low and the flow is always supercritical. 

There are other kinds of subtransition as weil. For example there are many 
interesting situations where there is a "subtransition" from the 2-D to the 1-D 
law in the same flow. (The 2-D law is given by Eq. (3), and the so-called "l-D 
law" is applicable to situations where one dimension of the spot is fixed, as for 
example happens in a pipe; see Narasimha, 1984.) This is easily understood 
on an axisymmetric body (Rao, 1974) that becomes, downstream of the nose, a 
circular cylinder with axis aligned to the flow: if Xt is in the nose region, a 2-D 
law near Xt changes to a 1-D law sufficiently far downstream (Narasimha, 1984). 
A similar situation occurs in the study of the phenomenon of wake-induced tran­
sition, currently of great interest in turbomachinery (where the wakes of passing 
rotor blades create a 1-D "slab" of turbulence (Narasimha, 1991b)): Mayle & 
Duilenkopf (1990) have provided an appropriate combination of 2D and 1D laws 
relevant to the problem. 

While it cannot be doubted that such subtransitions can occur because of 
relatively abrupt changes in spot characteristics, distributed breakdown could 
contribute to the observed effect. Gaussian distributions of the spot formation 
rate were already considered by Dhawan & Narasimha (1958), and have been 
revived recently by Mayle (1991) as a possible explanation for the observed 
departure of F( 'Y) from linearity near Xt in pressure-gradient flows. Further 
work is required to determine the relative importance of these mechanisms. 
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Current stat us 

The code TRANZ 2, used in Dey & Narasimha (1988, 1990a), has been updated 
in several ways, and should result before long in a new version, to be called 
TRANZ 3. The modifications to TRANZ 2 consist of the following. 

(ij Onset prediction 
Govindarajan & Narasimha (1991) showed that, at very low free stream turbu­
lence levels q, it is necessary to take account of residual disturbance levels in the 
facility or application situation (e.g. turbomachinery), as free-stream turbulence 
ceases to be the driving force in such a situation. They introduced an additional 
parameter qo to characterize the residual disturbance, and correlated results with 
the total disturbance 

(6) 

By a proper choice of qo, they could find a single correlation that agreed with 
all available data. What values of qo would be appropriate for flight conditions 
still needs to be investigated. 

As en methods have the advantage of providing an indication of the sensitivity 
of transition location to pressure gradients and can be of great use in design 
(e.g. of aerofoils), Govindarajan (1992) has sough t to express the n-factor for 
transition in terms of disturbance level and pressure gradient. For zero or adverse 
pressure gradients, she suggests 

(7) 

The situation in favourable gradients is more complicated, as transition can of ten 
occur at sub-critical Reynolds numbers even at relatively modest disturbance 
levels (as is evident in the data of Abu-Ghannam & Shaw (1980)). It appears 
essential here to estimate transient sub-critical growth of disturbances, along the 
lines of Reddy & Henningson (1993). 

(iij Extent: 
This is specified through the parameter N = na()r;v (Narasimha & Dey, 1986). 
For severe favourable pressure gradients, Dey & Narasimha (1991) propose a 
relation for N normalized at the subtransition point. Forlow pressure gradients, 
new correlations have been proposed by Fraser (1994) and Gostelow et al. (1995), 
showing a continuous variation of N with Lt == L(Xt) and q. It must incidentally 
be pointed out that the "Narasimha-Dey" curves presented in Gostelow et al. 
(1995) are not predictions given by us, as they are not based on our model for 
subtransitions (for which the reader is referred to Fig. 7 of Dey & Narasimha, 
1990a). When a subtransition does occur, the prediction of its location still 
remains a major problem. 



304 Some recent developments in the linear combination model 

Commentary on applications 

Gostelow et al. (1994) have computed ERCOFTAC cases T3AM, T3A and T3C, 
and find generally good agreement with predictions made by the DN method. 
They find however that the predictions depend quite strongly on the initial con­
ditions for integrating the equations for the turbulent boundary layer. Theyalso 
find that the extent of the transition zone, but not the onset location, is given 
reasonably well by Abu-Ghannam & Shaw's correlation, and suggest that the 
effect of high free-stream turbulence on the laminar layer can not be neglected. 

More recently, Solomon èt al. (1995) have made comparisons with exper­
imental data in pressure gradients, chiefly those obtained by Narasimha et al. 
(1984b), Sharma et al. (1982) and ERCOFTAC case T3C2. Using new cor­
relations for N as a function of pressure gradient and free-stream turbulence 
level, Solomon et al. report good agreement in several cases. It would also be 
interesting to find out how well the abrupt increase in the Reynolds number RB 
sometimes noted at the subtransition point (e.g. in flow DFU3) would be pre­
dicted by this method, and also in such rapidly varying pressure gradients as in 
the flows DFD1, NFD1 and NFU1 of Narasimha et al. (1984b). 

Swaminathan & Balu (1995) have applied the DN method to incompressible 
3D boundary layer flows. Comparison with the experiments of Meier & Kreplin 
(1980) on a 1:6 spheroid shows that, while DN is doing rather better than ot her 
methods, it predicts a shorter transition zone than is observed, especially at 
an angle of attack of 5°. However, a slightly downstream choice of Xt should 
appreciably reduce the discrepancy, and a slightly lower value of N should further 
improve the agreement. 

Bishnoi & Nandanan (1995) find that, in their analysis of a supercritical 
natural laminar flow aerofoil, the transition onset correlations of Govindarajan 
& Narasimha (1991) play a useful role; in particular they are helpful in design, 
as they can pinpoint those parts of the aerofoil (more precisely the pressure 
distribution) which are particularly vulnerable to transition, as in such areas the 
predicted RBt may be very close to (although higher than) the RB computed for 
the laminar flow on the aerofoil. 

The linear-combination method is being applied in supersonic flows as well. 
McKeel et al. (1995) do this on three test cases: cone at Mach 6, compression 
ramp at Mach 10.08 and flared cone at Mach 7.93, respectively representing 
zero, adverse and favourable pressure gradients. The agreement was considered 
good in the first and third cases and excellent in the second, but in the first 
two the values of N that gave best agreement were somewhat lower than those 
recommended by Narasimha & Dey (1986) for zero pressure gradient (based 
largelyon indirect evidence): it would not be surprising ifthey need some revision 
in the light of more elaborate modelling, especially when the pressure gradient 
is not zero. 

Warren et al. (1995) report that they do not get good agreement on recovery 
factors measured on a cone and a flat plate at Mach 3.36, but the experimen­
tal data are puzzling as they show a slowand continuous fall with increasing 
Reynolds number and do not tend to standard turbulent values far downstream. 
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A linear-combination (or, indeed, any other) model cannot of course do weil if 
the behaviour of the fuily turbulent flow is anomalous. 

Future work 

Further progress in transition zone modelling requires several careful experimen­
tal programmes. First of all, the behaviour of turbulent spots when subjected to 
such influences as pressure gradient, distortion, curvature, three-dimensionality, 
compressibility etc., needs to be investigated more extensively. Parameters of 
interest will include shape, velocities of propagation, conditional statistics, and 
flow structure. Further experiments are also needed in two-dimensional flows 
with pressure gradient, both favourable and adverse, with a disturbance envi­
ronment that is weil understood and carefuily controiled; the conditions under 
which subtransitions occur need to be investigated more thoroughly. Data on 
flows with separation bubbles are badly needed in turbomachinery applications. 
Little has been done on three-dimensional transition zones. Significantly bet­
ter models are unlikely to emerge without the benefit of all this experimental 
work, although certain improvements can 'be envisaged on current models and 
will undoubtedly appear as a result of work on hand. Predicting onset remains 
of course a major problem, but we also need better ways of estimating the spot 
formation rate parameter N. 
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Transition Prediction 
with Turbulence Models 

Abstract 

311 

The prediction of transition location (onset and length) is of vital importance in 
many internal and external aerodynamic flow applications. For aeroengine flows 
it may be regarded as the pacing item controlling the move from traditional 
(largely empirical) to future CFD design methods. Over the last five years the 
European Research Community on Flow Turbulence and Combustion (ERCOF­
TAC) Transition Special Interest Group (SIG) has made considerable progress in 
evaluating and refining intermittency descriptions and turbulence modelling ap­
proaches for predicting by-pass transition in turbomachinery. The present paper 
considers how the results may be relevant also to some external aerodynamic 
flow situations and discusses the possibility of extending the same predictive 
capability to natural transition under very low free-stream turbulence. 

Introd uction 

Even today most industrial design methods use 'point transition' at an assumed 
transition location and force a switch between laminar and turbulent computa­
tions at that point, or make use of empirical correlations to estimate the 'start' of 
transition and then scale up the eddy viscosity by a further empirical transition 
function until fully turbulent conditions are attained at the 'end' of transition 
so that the transition length is again determined by a correlation. These two 
approaches are gene rally used in conjunction with so-called zero equation mixing 
length models or even simpier integral methods. 

However, as early as 1972 it was demonstrated that the Jones-Launder two­
equation low-Re k - c model could predict a range of relaminarising flows and 
shortly afterwards also shown that this type of transport equation approach 
could be used to predict by-pass transitional flows as weIl - see Savill (1996). 

This and other early work on the application of low-Re turbulence models 
to such transitional flows led to the first extensive evaluations of transition pre­
dictions for simple and turbine blade test cases, using the Lam & Bremhorst 
low-Re k - c model. For free-stream turbulence (fst) intensities above 0.5% it 
was found this model could quite accurately predict the observed by-pass tran­
sition provided the initial conditions were carefully controlled. This remains the 
lowest level of fst for which low-Re turbulence models can provide results. 

The first real inter-comparison of the full range of different closure mod­
els for predicting by-pass transition, from the simplest correlation methods to 
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Direct Numerica! Simulations (DNS), was conducted as part of the Ist Euro­
pean Research Community on Flow Turbulence and Combustion (ERCOFTAC) 
Workshop held at the EPF Lausanne in 1990 - see Pironneau et al. (1992). 
Two sharp leading-edge test cases were considered for transition in zero pressure 
gradient under the influence of isotropic 3% (T3A Case) and 6% (T3B) fst. 

The results showed that specific turbulence models and DNS could predict 
flow development through transition more accurately than standard industrial 
correlation methods and led to the setting up of the ERCOFTAC Transition 
Specia! Interest Group (SIG) - see Savill (1992) - with the rum of eva!uating and 
refining turbulence models for predicting transitionj initially for turbomachinery 
applications. Work carried out over the last 5 years has established the optimum 
approaches at each level of model closure, in terms of potentia! for predictive 
ability and and widest ranging applicability, by reference to progressively more 
complex test cases - see Table 1 and Savill (1996). 

At the same time similar projects to assess turbulence models for predicting 
transition in natura! convection flows and pipes, as weIl as relaminarising flows 
have been undertaken by other researchers. In addition NASA are coordinating 
a very similar eva!uation exercise for by-pass transition models amongst USA 
research groups. All of these projects have reached similar conclusions, at least 
regarding the optimum low-Re k - é approach for predicting all these flows. The 
present paper concentrates on the ERCOFTAC Project results because model 
validation within this has been strictly controlled by insisting that test case 
computations are initially done 'blind'j using only specified initialjboundary 
conditions, and then compared with detailed experimenta! data complimented 
by DNS (with the industrial input to ensure relevance of comparisons). 

Recent developments in the prediction of by-pass transit ion 

In order to use (high-Re) turbulence models to predict transition one must in­
troduce additional (low-Re) model approximations to handle the turbulence de­
velopment through transition . For this approach to be successful there has to be 
some initia! source of turbulence activity within or outside the initia! (pseudo­
laminar) shear layer, and one has to make the inherent assumption that the 
transition is 'diffusion-controlled' in the sense that it is triggered by diffusion of 
free-stream turbulence into the flow. Such 'by-pass transition' only occurs for 
free-stream turbulence intensity levels 1%. It was given this name by Morkovin 
because most of the development stages in natura! transition are then by-passed 
and transition to turbulence then occurs at a point where breakdown of free­
stream-turbulence-induced streaks and secondary instability produces (in 2D) a 
line of turbulent spots across the span of the flow. 

Alternatively one can adopt an intermittency description and adopt the 
premise that the transition process can be modelled as a superposition of lami­
nar and turbulent flow in changing proportions , - taking , times a turbulent 
solution and (1-,) times laminar - where , is an intermittency factor varying 
from 0 at the start of transition to 1 at the end of transition. 
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Table 1: ERCOFTAC SIG Test Cases 

zero pressure gradient, 1% isotropic fst (theoretical or experimental initial 
conditions ) 
zero pressure gradient , 3% isotropic fst (theoretical or experimental initial 
conditions ) 
zero pressure gradient, 3% isotropic fst, but variabIe length scale (theoretical 
or experimental initial conditions ) 
zero pressure gradient , 6% isotropic fst (theoretical or expt . initial conditions ) 
zero pressure gradient, 4.S% weakly anisotropic fst (simulated initial 
conditions ) 
zero pressure gradient, 10% weakly anisotropic fst (experimental initial 
conditions ) 
pressure gradient representative of aft-loaded turbine blade (expt . initial con­
ditions; various Re) : Cl (6% fst) & C2 (3% fst , same design Re); C3 & C4 
(3% fst , lower Re without/with laminar sepn.); CS (3% fst, higher Re) 
zero pressure gradient, 0.1% isotropic fst , following laminar separation (expt. 
conditions; various Re) 
strong favourable/adverse pressure gradient, 0.01% fst, relaminarisa­
tion/retransition (expt. initial conditions) 
semi-circular leading edge, 0.2 - 6% fst (expt . initial conditions; various Re, 
fst, etc) 
Low-Speed (HP Rotor) Turbine Cascade, 4% free-stream turbulence (expt . 
initial conditions ) 

It has to be stressed however that neither approach considers many of the 
individual mechanisms and stages of transition. The low-Re modelling approach 
takes no specific account of receptivity, algebraic growth, secondary instability, 
or turbulent spots. Instead the modelling implicitly assumes that thediffusion 
of (generaily isotropic) free-stream-turbulence into an initial pseudo-laminar (es­
sentially Blasius profile) boundary layer leads to a build-up of weakly correlated 
turbulence activity and transition is initiated once the local production of tur­
bulence energy sufficiently exceeds the local dissipation. Aillow-Re models are 
rather insensitive to the actual turbulent (spot) structure. 

Intermittency methods do attempt to account for spot format ion and growth 
rates, with varying degrees of sophistication based on an ever expanding experi­
mental database, but only a few of these make any allowance for receptivity and 
algebraic growth, and even those that do lump these together with secondary 
instability effects in 'so-called' sub-transition corrections. 

It is also important to note that the the division between natural and by­
pass transition regimes is not as clear as Morkovin suggested. There is ample 
evidence in the literature to show that the 'T-S mechanism' can co-exist with 
other 'strongly amplifying mechanisms' over a wide range of fst intensities from 
weil below to weil above 1%. Indeed the Large Eddy Simulations performed for 
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3 & 6% fst test cases revealed the existence of TS wave-like behaviour as weil 
as free-stream-turbulence-induced streaks and isolated spots in the wail layer 
upstream of transition onset (characterised by minimum Cf). 

Turbulence modelling 

It must be emphasised that all current low-Re models were originally developed 
to handle low-Re near-wail regions ofturbulent flows, by introducing appropriate 
damping factors in order to extend the modelling right though the buffer layer 
where high-Re models resort to wail functions, and that no models have so far 
been proposed primarily to model low-Re transition regions instead or even as 
weil. For the purposes . of the present paper it is sufficient to note that each 
model version introduces different low-Re extensions to the standard high-Re 
turbulence model equations for turbulence energy and dissipation (length scale), 
and that the damping factors are always functions of on of the foilowing flow 
Reynolds numbers: 

Y 
Tl 

y+ = uTY 
v 

k 2 
Vt 

Rt = - = --, 
êV Cp, V 

A very large number oflow-Re one and two-equation models (k-l, k-ê, k-r 
& k - w) have now been evaluated for their ability to predict by-pass transition 
flows; including most, if not all, of the best known variants - see Savill (1993). 

The results obtained for zero pressure gradient, but variabie fst, T3A & B 
series of test cases have confirmed earlier findings that the Launder-Sharma low­
Re k - ê model variant is the best simple eddy-viscosity approach for predicting 
such by-pass transition. This is partly because it employs Rt dependent damping 
factors which allow a more general response to low-Re effects than alternative 
factors incorporating aspecific wall dependence. However it must be regarded as 
at least partiy fortuitous that the Launder-Sharma functions damping of uv with 
y happens to give roughly the correct functional change in uv with x through 
transition (particularly in the light of Direct and Large Eddy Simulations (LES) 
for by-pass transition by Yang & Voke - see Pironneau (1992) & Savill (1994) 
- sin ce other Rrbased models including the Jones-Launder scheme predict very 
different transition locations. 

The Launder-Sharma model also correctiy predicted a delay in transition on­
set with acceleration, but failed to capture the correct degree of sensitivity to 
pressure gradient variations representative of an aft-loaded turbine blade operat­
ing at its design condition. In fact this is a general problem with eddy-viscosity 
models. Correct ion factors need to be introduced to sensitise them to applied 
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strain rates in transitional and turbulent flows and to improve their sensitivity 
to the irrotational straining encountered in stagnation regions. 

This is one of the two major advantages in moving up to the RST level of 
closure to predict by-pass transition flows, and indeed many more complex tur­
bulent flows: stress transport models automatically capture the main effects of 
applied strain rates in both irrotational and curved flows. They can account for 
effects of (free-stream) turbulence anisotropy and correctly model the produc­
tion of uv in the transitional boundary layer due to the product of an imposed 
(external) v2 with the initial (Blasius) mean flow velocity gradient. 

One model in particular, the Savill-Launder-Younis (SLY) low-Re RST 
scheme has proved particularly successful in predicting a wide range of tran­
sitional flows. This model again uses only Rt damping factors, based on an 
extension of the Launder-Sharma low-Re treatment to the RST level óf closure. 

The basic SL Y model can accurately predict the onset of transition under 
nominally zero pressure gradient conditions for levels of free-stream turbulence 
in the range 1-10%, exhibits almost exactly the correct sensitivity to pressure 
gradient and Re for both on-design and off-design aft-Ioaded turbine blade test 
cases, and the correct trends with imposed curvature and large variations in the 
anisotropy of the free-stream turbulence. It has also has been found to correctly 
predict the effect on transition onset of a three-fold variation in free-stream 
length scale, and therefore represents a considerable advance over the simpier 
low-Re k - é scheme of Launder-Sharma. 

There is of course no a priori re as on why one should expect to successfully 
predict low- Re transitional flows with any of the current low-Re models since, as 
stated above, these have all been developed to model only the low-Re near-wall 
regions of fully turbulent flows. Fortunately it would seem that the turbulence 
Reynolds number is a sufficiently general property oflow-Re flows that one can 
in fact obtain reasonable predictions, at least for integral properties, with such 
a gross assumption. Such Rrdependent models also have the advantages that 
they can easily be applied to non-planar wall geometries and incorporated into 
unstructured codes and these provide powerful reasons for concentrating on such 
modelling for practical flow computations. 

Intermittency modelling 

Intermittency weighting for transitional flows has until recently only been em­
ployed in simple closure modeis, at least for design purposes. In particular a 
number of different integraljcorrelation methods have been developed and used 
to some effect. The first moderately successful model was that of Dhawan & 
Narasimha, which determined the onset of transition (at Rexs ) by extrapolating 
Narasimha's own assumed universal intermittency distribution as a function of 
x, and proposed a correlation for the length of transition in terms of Rexs itself. 

Within the ERCOFTAC SIG it has been found that a new new correlation 
for Rexs , based on a wide range of University of Technology Sydney (UTS) data, 
provides better Cf & H prediction for the zero pressure gradient 3% fst test case, 
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and a bet ter transition length prediction for the higher 6% fst case than that of 
Narasimha & Dey's model, while a modified version of the UTS integral method 
has been shown to produce good predictions for the lower (1%) fst and turbine 
blade pressure gradient test cases as well - see Savill (1996). 

In principle the intermittency approach could be applied to any type of tran­
sition, but until now it has always required some empirical input regarding the 
location of transition onset and the precise streamwise variation of ,. 

Prospeets for extending predictions to natural transition 

Combined intermittencyjturbulence modelling approaches 

The transition length prediction deficiencies of the best turbulence model ap­
proaches, may be rectified by introducing a Production Transition Modification 
(PTM), whereby the Production of turbulence energy is limited by an empiri­
cal function through transition. However the same results may be achieved by 
introducing intermittency scaling. 

In fact intermittency-weighting is still most of ten used to improve point tran­
sition methods by including an allowance for the 'length-of-transition' over which 
, varies from 0 to 1, but it has now also been utilised in a wide range of (high-Re) 
turbulence models. Both intermittency functionjcorrelation methods and more 
empirical transition weighting factors have been incorporated in the well-known 
Baldwin-Lomax & Cebeci-Smith mixing length models and used to produce rea­
sonable results for a range of simple by-pass transition test cases, with variabIe 
adverse pressure gradient and concave stream-line curvature. 

The equally well-known Fish & MacDonald integrated one-equation model, 
which is used in many other industrial design methods, also utilises a transition 
weighting factor which produces quite good predictions for transition onset, at 
least at fst levels of 0.25, 0.5 & 1.0%. 

The Dhawan & N arasimha intermittency description has also been success­
fully introduced into other one-equation and Algebraic Stress Model (ASM) 
schemes. In both cases the mean flow was separated into turbulent and non­
turbulent components conditionalised by , and the only turbulence model mod­
ification was to introduce a similar type of linear-combination allowance for the 
influence of T-S waves on the mixing-Iength scale. Good agreement was ob­
tained for the case of natural transition. Although allowance for T-S waves had 
little effect on the Cf predictions, the predicted turbulence intensity profiles were 
considerably improved when this was included. 

It would be expected that low-Re models which contain damping factors that 
are only a function of wall-proximity, and thus provide much poorer predictions 
for transitional flows than they do for turbulent ones, could also be by introducing 
additional x-dependent damping functions. 

There have been two recent attempts to improve the transition prediction 
performance of low-Re k - c models utilising y-dependent damping-function 
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by introducing an additional x-dependent intermittency functions - see Savill 
(1993). In both cases excellent predictions were produced for 3 & 6% fst test 
cases - better even than those obtained with the Launder-Sharma model. 

However, although the linear-combination concept inherent in the use of in­
termittency functions appears to work well in practise, experimental data indi­
cate that transitional profiles are not a simple combinations of purely laminar 
and fully turbulent forms. Therefore, in order to take better account of inter­
mittency, zon al conditional averaging of the mean and turbulent equations is 
required. Several earlier theoretical analyses by Libby, Dopazo and Chevray & 
Tutu - see Savill (1995) - have laid the foundation for developing models based 
on such conditional equations. 

This is the approach generally adopted within the SIG - see Savill (1994) 
- following exactly the original work of Libby to derive separate equations for 
laminar and turbulent zone mean velocities, as well as equations for k and (sim­
ply by analogy) E, which contain additional source terms relating to crossings of 
the turbulent/non-turbulent interface. Simplifying assumptions are then intro­
duced in order to model these; primarily by considering only an idealised purely 
2D turbulent spot geometry. The resulting conditionally zone-averaged k - E 

model approach with prescribed Dhawan & N arasinmha intermittency predicts 
transition fairly accurately, under zero pressure gradient conditions, for 3 & 6 
% fst, but too early for the lower (1%) fst and too late for the higher (10%) fst 
test cases. An alternative version, which employs an ODE for " is now being 
developed and has already produced better predictions. 

The use of prescribed intermittency variations is thus clearly well established 
for transition prediction, but as noted above, even the best low-Re models tends 
to underpredict transition length. This is particularly so for the 1 % fst test case, 
which is not surprising since this is on the boundary between by-pass and natural 
transition conditions and so one might expect astrong influence of intermittency 
effects associated with spot generation. An attempt has therefore recently been 
made to introduce an additional allowance for intermittency transport into the 
SLY low-Re RST model. There have been few attempts thus far to develop 
equations to predict the intermittency variation through transition, but a trans­
port equation for intermittency has in fact already been proposed and included 
in both conditionally-averaged k - E and RST models - see Savill (1995) - in 
order to model inhomogeneous turbulent free-shear flows and boundary layers. 
More recently an RST-, model has been applied to adverse pressure gradient 
boundary layers, while an alternative transport equation for , has been into a 
convent ion al high-Re Reynolds-averaged k - E scheme in which the eddy viscos­
ity is conditionalised by " but the k and E equations are not (although an extra 
intermittency source term is included in the latter) - again see Savill (1995). 
This latter model has been applied successfully to a range of turbulent free shear 
flows and is now beingextended to low-Re to predict first turbulent and later 
transitional wall flows. 

In order to keep the most general formulation all the terms from both models 
have been retained in the final SLY version with the sign of the source terms 
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altered to reflect the differences in modelling a pseudo-laminar flow with a tur­
bulent free-stream instead of a turbulent flow with an inviscid free-stream. In 
coupling this equation to the SL Y RST equations the production terms are con­
ditionalised by the maximum value of Cr ,1 - ,). 

Following limited optimisation the resulting SLY-, model has been found to 
predict growth of maximum intermittency under 1 and 3% fst quite accurately, 
although the , profile development is not so weIl predicted. 

Simulations, PSE fj en methods 

In addition to establishing an LES database for the by-pass transition, a number 
of coarser mesh LES have been performed for the ERCOFTAC T3A, T3B & 
T3C1 by-pass transition test cases and the T3D2 & T3L test cases involving 
transition following laminar separation under very low, background fst conditions 
- see Table 1. Each of these simulations appears to capture the essential features 
of the development of the mean flow and turbulence fields, including in the last 
case the detailed features of the laminar separation region, and a second fine 
resolution data base is now being created for this. 

At the same time a series of LES numerical experiments for variations on the 
T3BLES case have been carried out in order to investigate further the mechanisms 
of transition and the effect of varying degrees of fst anisotropy. 

Separate zero pressure gradient transition DNS have also been performed 
at NASA Ames (for 2.5% fst), which have generally produced results similar to 
those of Yang & Voke for the 3 & 6 % fst test cases, and ot her groups are already 
performing simulations of natural transition flows. 

At the same time interest is now developing in possible extensions of en and 
particularly Parabolised Stability Equation (PSE) approaches to variabIe fst by­
pass transition cases, because there is already some evidence from the NASA 
Transition Project and elsewhere that both methods can be used successfully to 
predict the onset of transition for non-zero fst. 

Concluding remarks 

It should be clear from the above discussion that there are considerable prospeets 
for extending the use ofintermittency methods and low-Re turbulence modelling, 
particularly in combination, to the prediction of low free-stream turbulence tran­
sitional, relaminarising, and retransitional flows encountered in extern al aerody­
namic applications. At Cambridge work is now beginning on the refinement of 
the low-Re RST /intermittency transport scheme and its extension to the pre­
diction of by-pass transition on riblet surfaces and natural transition on smooth 
surfaces. The possible advantages, particularly in terms of mesh resolution re­
quirements, ofintegratingintermittency transport with high-Re k-ê and simpIer 
Johnson & King models also need to be investigated. 

Future research must focus on developing methods less demanding of epu/­
store, but offering greater predictive abilities and applicability. The combination 
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of PSE with intermittency transport modelling may thus offer a nov el route 
towards this goal. 
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A new transitional flow model incorporating recent experiment al data for the 
influence of free-stream pressure gradient on both the inception rate of turbulent 
spots and their subsequent spreading rate is reviewed. It gives good estimates of 
transition length for steady flows with marked spatial variations in free-stream 
conditions, and successfully predicts departures from the standard N arasimha 
intermittency distribution (or 'subtransitions') accompanying sudden changes in 
streamwise pressure gradient. A quasi-steady application of the new transition 
model is used in a preliminary attempt to describe the periodically unsteady 
boundary layer development during wake-induced transition on an axial com­
pressor blade. Experimental observations show the relaxation of non-turbulent 
flow behind a wake-induced turbulent strip to be an important factor in turbo­
machine blade design; data for the length of relaxing flow from three independent 
transition experiments are compared. 

Introduction 

This paper is concerned with the prediction of transitional flow in cases where 
the boundary conditions change rapidly in space and/or time. The problem of 
rapid spatial variations is first examined. A new model making due allowance 
for the influence of pressure gradient on spot inception rate, and assuming spot 
spreading rate to be controlled by the local pressure gradient, is shown to give 
reasonable estimates of transition length under such varying conditions and to 
predict a priori the departures from N arasimha's standard intermittency distri­
bution (or 'subtransitions') accompanying sudden changes in streamwise pressure 
gradient. 

Transitional flow behaviour in the presence of rapid temporal variations is 
then examined with particular reference to the problem of periodic wake-induced 
transition observed on turbomachine blades. Some observations of wake-induced 
turbulent spot development on axial compressor blades are compared with wind 
tunnel measurements of triggered turbulent spots in a self-similar decelerating 
flow. Ari initial at tempt to model the periodic flow on the compressor blade 
is made by applying the new model for spatially varying flow in a quasi-steady 
manner. The paper concludes by suggesting future directions for research. 
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Spatial variations - the influence of changing pressure gradient 

Previous work 

A comprehensive review of basic work on laminar-turbulent transition has been 
given by Narasimha (1985) . The problem of modelling boundary layer devel­
opment through the transition zone is examined in detail by Dey & N arasimha 
(1988), who also discuss the experiment al data on transition published prior to 
that date. The early experiment al surveys generally suffer from a lower level of 
accuracy and a lack of consistency in defining the extent of the transition zone. 

The more recent survey by Gostelow et al. (1994), covering a wide range of 
pressure gradients and free-stream turbulence levels , has overcome this problem 
by fitting the universal distribution of N arasimha to measurements of intermit­
tency I within the transition zone. The fitted curve is then extrapolated to 
I = 0 and I = 1 to define the onset and complet ion of transition, respectively. 
This procedure has resulted in more reliable correlations for transition length, in 
terms of the boundary layer conditions at transition onset, which are presented 
in various forms by Gostelow et al. (1994). 

It should be noted, however, that such simple correlations are only valid for 
cases in which the pressure gradient is slowly changing and conditions remain 
approximately similar through the transition zone. They may break down in 
cases such as the suction surface of an aft-Ioaded aerofoil, where transition may 
commence in a region of accelerating flow and end in a region of st rong deceler­
ation. As observed also by Narasimha et al. (1984), such sudden changes in the 
magnitude and sign of pressure gradient may cause marked deviations from the 
universal intermittency distribution (termed 'subtransitions'). 

Intermittency models for spatially varying flow 

N arasimha et al. (1984) noted that a logarithmic plot of the intermittency dis­
tribution of ten exhibited a piecewise linear behaviour when subtransitions oc­
curred. However, this does not provide a method of predicting the intermittency 
distribution a priori for flows with arbitrary pressure distributions. 

The intermittency model of Chen & Thyson (1971) , based on the turbulent 
spot theory of Emmons (1951), purports to describe the influence of changes 
in pressure gradient through the transition zone. However, as noted by Walker 
(1989) it only allows for the changes in turbulent spot convection rates with 
local changes in free-stream velocity. The more important effects of changing 
breakdown physics and spot spreading rates with streamwise pressure gradient 
variations are not accounted for. 

Solomon et al. (1995) extended the Chen-Thyson model to incorporate the 
latter effects, using data of Gostelow et al. (1994) for the dimensionless spot 
breakdown rate N = naBtfv and data compiled by Gostelow et al. (1995) for 
the spot spreading half-angle a and spot propagation parameter a, as shown in 
Fig. LA slight modification adopted here is that the spot breakdown rates for 



W.J. Solomon, G.J. Walker & J.P. Gostelow 

35 

~ 30 • ~ 

"" ~25 • 
0. 20 • 
~ • "" ti 15 

"" ~JO 
~ 
~ 5 

o~-L~~~--~~~~--~~ 

0.8 ...-.--r~.,.-~--r-......., ....... """T'"-T"""""" 

~07 

10.6 

i 05 

. ~ 0.4 
<; 
~0. 3 

~ "'- 0.2 
ë 
~O.I 

0.0 L....L............J.~ ......... ....L...~~::ï::::±=.l 
·0.08 ·0.06 ·0.04 ·0.02 0.0 0.02 0.04 0.06 0.08 

>., 

JO' 

~ 
x 
~ 

-](f 

... •. ....•..•• q% 

....... ......... ........ - 0.1 
...... ... ". .. .... . 0.5 

............ :...... ............... - - 2.0 
, '-··5.0 

" .,~ .... ~"""' .... '------; 
" . ' ........ ... ..... ... ....... .. . 

' . " 
,.,.:.~-~.:.:.~-= . 

JO:~.L08---.0J...06----.0..L.04---"-. ....L0.0-2~...J0.'-0 ~-0 . .L...:02--:-'0.04 

>." 

323 

Figure 1: Correlations for spot spreading half angle a, spot propagation rate 0' and 
generation rate N. Experimental data from various sources compiled by Gostelow et 
al. (1995). 

negative pressure gradients have been assumed constant at their zero pressure 
gradient values. The latter change was made because the small amount of data 
available for accelerating flow made extrapolation dubious. 

These data correlations are expressed analytically as . 

a = 0.03 + (0.37/(0.48 + 3.0exp(52.9Ào))) 

Q = 4 + (22.14/(0.79 + 2.72 exp( 47.63Ào))) 

N = { 0.86 x 1Q-3 exp(2 .134Àeln(q) - 59.23Àe - 0.564ln(q)) 
0.86 x 1Q-3 exp(-0.564ln(q)) 

if Àe ::; 0 
if Àe > 0 

(1) 

(2) 

(3) 

where Ào and q are respectively the the local Pohlhausen pressure gradient pa­
rameter and free-stream turbulence intensity values. 

The intermittency distribution from the new model is given by 

[ l Xi a (dX) lXi ] I = 1 - exp -n ( ) - tan Q dx 
Xt tan Q U Xt 

(4) 

where nis the spot generation rate (m-1s-l) and U(x) is the free-stream velocity 
distribution. Assuming the turbulent spots are triangular in planform, with 
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Figure 2: Calculation of transit ion in flow with a changing pressure gradient, Experi­
mental data from Narasimha et al, (1984) - case DFUl. 

leading and trailing edge celerities of aU and bU respectively, the propagation 
parameter is given by (j = tan a(b- I - a-I). 

The model retains N arasimha's concentrated breakdown hypothesis, with 
the spot generation rate being determined by the boundary layer parameters 
and streamwise pressure gradient at transition onset. As seen from Fig. 1, the 
application of positive pressure gradient may alter the generation rate by an 
order of magnitude. The spot spreading angle and propagation parameter are 
assumed to vary continuously through the transition zone, according to the local 
value of À(} obtained from a purely laminar boundary layer calculation. 

Fig. 2 shows the results of the new model for the flow DFUI reported by 
Narasimha et al. (1984). Case DFUI involves an increasing acceleration over the 
forward part of the transition region; this is subsequently relaxed to near zero 
pressure gradient at the end of transition. The new model successfully describes 
the the observed intermittency distribution; in particular, it predicts the marked 
kink or 'subtransition' in the logarithmic intermittency plot of F(-y) around 
x = 900 mmo The comparative predictions by the methads of Dey & Narasimha 
(1988) and Chen & Thyson (1971) exhibit a linear variation in F(,) over the 
whole transition region, with slope approximating the observed behaviour in near 
zero pressure gradient conditions over the rearward part of the transition zone; 
the marked reduction in growth rate of intermittency in accelerating flow over 
the forward part of the transition zone is not predicted. 

The predicted boundary layer growth through the transition zone is toa rapid 
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despite the intermittency distribution being reasonably weIl estimated. This indi­
cates that there are deficiencies in modelling of the emerging turbulent boundary 
layer which remain to be addressed. 

Temporal variations - periodically unsteady fiows 

Triggered turbulent spots 

Fig. 3 shows the development of transition in a strongly decelerating lami­
nar boundary layer subjected to periodic perturbations from triggered turbulent 
spots generated at a fixed position by blowing through a hole in the surface. The 
time-space (t - x) diagram uses shading to indicate ensemble-averaged values of 
RMS disturbance level integrated over the boundary layer height; the contours 
indicate ensemble-averaged values of velocity profile shape factor H (displace­
ment thicknessjmomentum thickness). 

The development of the triggered spot is evident from the band of increasing 
disturbance level which appears at the upstream limit of the figure at times be­
tween 25 and 30 ms. This is accompanied by a sudden reduction in shape factor 
H at the leading edge of the spot. Prior to the spot passage the unperturbed 
laminar layer undergoes a natural transition with a characteristic fall in shape 
factor and the RMS disturbance level peaking around the centre of the transition 
zone. 

Behind the spot is the familiar relaxation zone (or calmed region ) which is 
characterised by a low disturbance level and a slow return of H to the unper­
turbed laminar value. The energyzing of the surface layer associated with the 
passage of a turbulent spot has the very important practical implication that 
laminar separation will be temporarily delayed in this region. Another impor­
tant consequence is the stabilisation of flow associated with the lower shape 
factor values in the relaxation zone; this significantly delays the natural transi­
tion process behind the spot, as evidenced by the tongue oflow disturbance level 
extending beyond x = 500 mmo 

Wake-induced transition 

Fig. 4 shows a similar time-space contour plot for the process of transition on 
the suction surface of a C4 section blade in an axial compressor stator. t* is time 
normalised by the rotor wake passing period; s* is surface distance normalised 
by the blade chord. The shading indicates ensemble-averaged intermittency ob­
tained from a chordwise array of surface hot-film sensors; it changes from white 
to black as I increases from 0 (fully laminar) to 1 (fully turbulent). 

The dark wedges commencing around s* = 0.1 at intervals of t* = 1 corre­
spond to transitional and turbulent flow wedges induced by passing free-stream 
disturbances from the wakes of upstream rotor blades. These are interspersed 
with laminar or transitional flow regions extending rearward to around s* = 0.9. 
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Figure 3: t - x diagram for a triggered spot in an adverse pressure gradient. Shading 
indicates RMS disturbance level integrated over the boundary layer height . Con tours 
give the shape factor H . 

The turbulent strip which should have originated around t* = 2 is missing be­
cause the corresponding rotor blade was removed to investigate the influence 
of changing wake frequency on the unsteady flow behaviour. In the absence of 
this strip, the turbulent onset following the passage of the preceding strip moves 
forward to around s* = 0.5 when the following wake-induced transitional strip 
arrives. The inter-wake turbulent onset would probably asymptote to a fixed 
streamwise location, given a sufficiently long time interval between successive 
rotor wake passages (possibly around s* = 0.4 where laminar boundary layer 
separation is predicted by a steady flow boundary layer calculation). 

These results mirror those of the triggered spot observations, and clearly 
indicate the existence of marked flow stabilisation caused by a preceding wake­
induced turbulent strip. The altered boundary layer profile behind the wake­
induced turbulent strip is ab Ie to maintain laminar flow regions over the majority 
of the blade surface, whilst preventing intermittent laminar separation provided 
tha~ the rotor wake passing frequency is sufficiently high. Full optimisation 
ofaxial turbomachine blade design clearly requires a detailed understanding of 
these unsteady phenomena and an ability to incorporate them in engineering 
design calculations. 



W.J. Solomon, G.J. Walker & J.P. Gostelow 

* ...... 

4.5 +-------:~~ 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 !....tI1II!!~~~::=~---... 
0.0 0.2 0.4 0.6 

* s - suction surface 

327 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.8 1.0 

Figure 4: Wake-induced turbulent spots developing on an axial compressor blade. t - s 
diagram of ensemble averaged intermittency. Wake induced turbulent strip at t* = 2 
eliminated by removal of a single upstream rotor blade. Particle trajectories for l.OU , 
O.88U, O.7U , O.5U, O.35U overlaid. 

Detailed observations of wake-induced transition have also been reported by 
Halstead et al. (1995) for blade surfaces in m ulti-stage axial compressors and 
turbines. Unsteady hot-wire measurements of boundary layer development were 
used to complement surface film data in these studies. Fig. 5, reproduced from 
Halstead et al. (1995), illustrates the morphology ofboundary layer development 
on the suction surface of a stator blade in an embedded compressor stage. The 
behaviour is closely similar to that observed in the present study, but the exis­
tence of an alternative mode of transition in regions of the t - x plane between 
successive wake-induced turbulent strips is more clearly evident. 

Quasi-steady calculations for wake-induced transition 

The transition model for spatially varying flow described above has been applied 
in a quasi-steady manner as a fi.rst attempt at modelling the periodically un­
steady flow associated with wake-induced transition. The results are compared 
with experiment al data of Halstead et al. (1995) for the boundary layer devel­
opment on the suction surface of an axial compressor stator (Test Point 2B), 
shown in Fig. 6. 

Fig. 6 presents data for three separate cases: 

1. Long-term time-average values of boundary layer parameters. 
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Figure 5: Unsteady boundary layer development on an axial compressor blade Halstead 
et al. (1995) - Test Point 2B. 

2. Ensemble-average values along a wake-induced transition path in the t - x 
plane (Path 1 shown in Fig. 5). 

3. Ensemble-average values along a path bet ween successive wake passages in 
the t - x plane (Path 2 shown in Fig. 5). 

The ensemble-average values fiuctuate quite significantly during the wake passing 
cycle, the values for the wake path being around twice those for the long-term 
time-mean. 

The boundary layer calculations have all been implemented with the time­
mean surface pressure distribution reported by Halstead et al. (1995). The linear 
combination integral method of Dey & N arasimha (1988) was employed with the 
following modifications: 

1. Calculation of the laminar component was progressed beyond separation 
by the artificial device of maintaining the shape factor Hand skin friction 
coefficient Cf at their separation values of 3.70 and 0.0 respectively. 

2. The initial momentum thickness for the turbulent component at transi­
tion onset was assumed equal to that of the laminar component, and the 
power law model for starting the turbulent calculation was limited to one 
streamwise step. 
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Figure 6: Quasi-steady calculation of the boundary layer development in the unsteady 
flow on the suction surface of a compressor blade. Symbols are experimental data of 
Halstead et al. (1995) - Test Point 2B. 

The transition onset was variously computed or prescribed from experimental 
data, as described below. The intermittency variation through the transition 
zone was computed from the model for spatially varying flow described above. 

The time-mean boundary layer calculation was implemented with transition 
onset at 38% su ct ion surface length (SSL) as calculated from the method of 
Ghannam & Shaw (1980). The free-stream turbulence level of 2.2% at transi­
tion onset was estimated from measurements upstream of the blade row, with 
due allowance for variation in free-stream velocity up to the onset point. The 
predicted variation in boundary layer thickness, as indicated by the moment urn 
thickness Reynolds number Re, is in surprisingly good agreement with experi­
ment. However, this is somewhat deceptive in view ofthe significant fluctuations 
in ensemble-average values mentioned earlier and the less satisfactory predictions 
of velocity profile shape factor H through the transition zone. 

The wake path calculation uses the experimentaily observed transition onset 
of 19% SSL, with a corresponding free-stream turbulence level of 4.4%. The com­
puted end oftransition b = 0.99) at 60% SSL compares very weil with the exper­
imentaily observed value of 62% SSL, indicating that the intermittency model is 
performing quite reasonably in this situation. However, the values of Re indicate 
that the boundary layer growth along the wake path is markedly underpredicted. 
This is thought to be largely due to deviations from two-dimensionality associ­
ated with relative flows normal to the blade surface in the passing rotor wakes: 
similar calculations for a turbine blade suction surface, where the direction of 
rotor wake relative flow is reversed, show an overprediction of boundary layer 
thickness along the wake path. There nevertheless remain significant turbulence 
modelling problems, as can be seen from a comparison of the shape factor data. 

The inter-wake path calculation uses the experiment al onset position of 52% 
SSL with corresponding free-stream turbulence level of 1.5%. This computation 
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is likely to be the least reliable, as it completely ignores the marked flow re­
laxation effects following the passage of the preceding wake-induced transitional 
strip. Transition occurs somewhat too rapidly, with the predicted end of transi­
tion at 70% SSL compared with 84% SSL fr om experiment. The boundary layer 
thickness is in fair agreement, but the shape factor development again shows 
significant discrepancies. 

There is a general trend in all three computations for the shape factor to be 
overestimated immediately prior to transition onset and in the forward part of 
the transition zone. This probably results from the combined effects of: 

1. The influence of free-stream turbulence in reducing the laminar boundary 
layer shape factor prior to transition. 

2. The neglecting of relaxation effects producing a higher than normal shape 
factor value for the laminar boundary layer component in the transition 
zone. 

The shape factor fails too rapidly through the transition zone, and only slowly 
recovers towards experiment al values in the region of fully turbulent flow further 
downstream. This indicates significant problems with modelling of the emerging 
turbulent boundary layer. 

Modelling of the relaxation zone 

For differential types of boundary layer calculations the extent of the relaxation 
zone following a turbulent spot should be predicted directly provided that an 
appropriate variation of intermittency is prescribed. For integral calculation 
methods, and for general engineering design purposes, it is necessary to provide 
some estimate of the relaxation time TT needed for the laminar flow to approach 
its unperturbed state. 

Table 1 gives data for dimensionless relaxation time TT = tT U / b L for the zero 
pressure gradient experiment of Schubauer & Klebanoff (1955), the triggered 
spot in adverse pressure gradient of Gostelow et al. (1995) and the wake-induced 
transition observations of Solomon & Walker (1995). bL is the total thickness 
of the unperturbed laminar layer surrounding a turbulent spot. There is some 
scatter in the individual experiments, but the values of TT are all of order 100. 

Concluding remarks 

A new model for the intermittency variation in flows with rapid spatial vari­
ations has been applied in a quasi-steady manner to periodic flows involving 
wake-induced transition on axial turbomachine blades. The predictions of in­
termittency for this case are encouraging, but some significant deficiencies in 
modelling the boundary layer development through the transition zone remain 
to be addressed. 
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Table 1: Comparison of relaxation times Tr = t~~ observed in different flows . q is 

local free-stream turbulence level. 

I Flow 
Schubauer & Klebanoff (1955) , flat plate, zero pres­
sure gradient 
Gostelow et al. (1995), flat plate, adverse pressure 
gradient 
Solomon & Walker (1995), compressor blade 

100-220 

90 

50-150 

q I 
0.03% 

0.3% 

2.2% 

One of the most important challenges is the modelling of flow relaxation fol­
lowing the passage of a turbulent spot. The increased shear stress within the 
relaxing non-turbulent flow region has the important consequences of delaying 
laminar separation and locally stabilising the flow . Some typical values of di­
mensionless relax at ion time have been presented as a first step in the modelling 
process. 

Other areas of uncertainty which remain for future investigation include im­
provement of the spot growth rate correlations with more experimental data and 
development of a correlation for the spot generation rate which is independent 
of the spot growth parameters and valid in favourable pressure gradients. The 
effects of free-stream turbulence on all of these parameters also needs to be clar­
ified. The model could be refined to allow for changes in spot shape around 
separation and possibly to predict transition in the separated shear layer. Tran­
sition onset correlations or prediction methods need to be improved as does the 
modelling of the emerging turbulent boundary layer. 
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A combination of theory and computation seems needed, with physical under­
standing, to improve computational capabilities especially at high Reynolds num­
bers, where numerous paths occur in deep transition (the later stages of tran­
sition). This contribution shows recent developments. Certain aspects of the 
combination have been followed through mostly in 2D for the TS path alone: 
e.g. composite approaches followed by parabolized stability approaches. The 
theory is being extended.into deep transition. A challenge is to obtain a theory­
computation duet for 3D at large Reynolds numbers and capture most relevant 
paths. Parts of the 3D theory are in place and include encouraging agreements 
with experiments, on the fi.rst spike, on the Klebanoff and Nishioka paths, on 
transitional spot characteristics, on ot her transition paths; and the theory is now 
being developed further; but the repercussions for computations have still to be 
followed through. 

IntroductÎon (item 1) 

To be specific we concentrate on spikes and nonlinear spots in transition, mostly 
for incompressible boundary layers. The emphasis is towards strong nonlinearity. 
Starting with spikes, the theory used herein is that of2D or 3D interacting bound­
ary layers (IBL), capturing nonlinear TS waves or following a vortex-wave inter­
action. Finite-time break-up produces shortened scales, yielding agreement with 
computations and experiments on the first spike in transition, with subsequent 
spot formation. Af ter the break-up normal pressure gradients and vortex wind­
up become significant locally. Also discussed herein are initial-value problems for 
spots containing a wide band of 3D nonlinear disturbances. The theory points 
to successive nonlinear stages starting at the wing tips near the spot trailing 
edge but gradually entering the middle as the amplitudes increase, downstream. 
This effect combined with shortening scales produces a spread angle near 11 0

, 

close to experiment al observations. Viscosity enters later as for the spikes above 
originating near the surface or through a novel interaction influencingthe global 
spot. This research on spikes, spots and their reproductions is directed towards 
greater understanding of deep transition. The theoretical understanding, e.g. of 
scales, should help Direct Numerical Simulations by determining which terms in 
the Navier-Stokes equations matter in any zone of flow andJor by interpreting 
results andJor by suggesting improved simulation methods, as well as providing 
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parameterization and comparisons with experiments. Here, through ad dressing 
spikes and spots, we highlight three main nonlinear theories, vortexjwave inter­
action theory, pressure-displacement IBL theory, high-frequency cum Euler-scale 
theory, corresponding basically to increasing amplitudes. These nonlinear inter­
actions can completely alter the mean-flow profiles. Their major assumption is 
that the global Reynolds number Re is large, in line with practical interest: eg. 
see comparisons herein at both subcritical and supercritical Re values. 

First, item 2 below on spikes, e.g. in forced transition, considers nonlinear TS 
or IBL interactions, controlled by the unsteady IBL equations. Emphasis is given 
to nonlinear finite-time breakups, detailed comparisons with computations and 
experiments, and the repercussions. This breakup involves the scaled pressure 
gradient and skin friction becoming unbounded locally. A change of scales is 
therefore induced. The repercussions are concerned principally with sublayer 
eruption and vortex formation. 

Second, numerous aspects of turbulent spots have been studied experimen­
tally, e.g. the main arrowhead-shaped spot, its tail, its not ion al speed, and 
spreading rate. From reviews by Clark et al. (1994), Henningson et al. (1994), 
Seifert et al. (1994), Shaikh & Gaster (1994), Smith et al. (1994), much of the 
spot dynamics resembles that in a fully turbulent boundary layer; a spot develops 
fast fr om localized disturbances with large initial amplitude; growth and spread­
ing perhaps take place in a domino-like manner, via successive production of 
hairpin vortices, or by other mechanisms; spanwise growth greatly exceeds nor­
mal growth; the leading edge and si de edges are sharp, with side-interaction with 
trailing wave packets. Again computations have been performed; see reviews 
above. Much extra physical understanding has still to be provided, nevertheless. 
Systematic tracking of increasing amplitudes remains absent, experimentally and 
computationally. Few if any systematic theoretical studies had been made until 
recently. The research below appears the only effort towards strongly nonlinear 
theory, for spot evolutions as initial-value problems. Much of the experiment al 
findings can be described by the theory, even though many complex phenomena 
arise during spot evolution. The Euler stage examined corresponds to distur­
bance wavenumbers a, f3 , frequencies w, propagation speeds c and amplitudes 
(e.g. pressure p', velocity u') all of 0(1), based on the boundary-Iayer thickness 
and local freestream speed, thus representing a wider range than convent ion al 
linear-type TS disturbances which have a, f3, w, c, Ip'l, lu'l all smaller. In conse­
quence, it seems not unreasonable to proceed first by means of the Euler-stage 
approach, but as a nonlinear 3D initial-value problem for a localized input dis­
turbance. This is the concern of much of item 3. 

Item 3 splits the spot dynamics into global (mainly inviscid) and internal 
(viscous-inviscid) properties, and concentrates on the former. Nevertheless, a 
new longjshort-scale global interaction is identified linking the 3D boundary­
layer equations and unsteady Euler equations via Reynolds-stress forces, far 
downstream. Moreover, internal properties, flow structures and interactions with 
global dynamics are mentioned, having been addressed in item 2. The viscous 
sublayer, its eruptions and ensuing vortex formations can become important in 
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practice. They introduce short er length and time scales, and hence even higher 
frequency and wavenumber content, and they play a key part in the domino 
process. Item 3 is aimed at relatively high-amplitude nonlinear responses, as 
opposed to gradual transition. Further comments are in item 4. 

IBL transitions and breakup: spikes (item 2) 

The velocities (u, v, w) in Cartesian coordinates (x, y, z) (streamwise, normal, 
spanwise), pressure pand time t are nondimensionalized globally, with respect 
to (say) airfoil chord and freestream speed, and then scaled. So, near the typical 
0(1) station x = xo, z = zo, the sublayer flow problem reduces to the unsteady 
nonlinear IBL one: 

au af; aw _ 0 
ax + ay + az - , 

(
a _ a _ a _ a) _ _ (ap ap) -1 a2(u, w) 
at+Uax+Vay+W az (u,W)=- ax'az +Re ay2 ' 

u = ij = w = 0 at y = 0 (no slip), 

u'" y + A(x,z,t) w - 0 as y - 00 (unknown displacement), 

p(x, z, t) = -- x X" X (interaction law). 1 100 100 a2 A/a 2( tjJ T)d dtjJ 
211' -00 -00 [(x - x)2 + (z - tjJ)2]I/2 

(1) 

(2) 

(3) 

(4) 

(5) 

Here (5) applies for subsonic flow. Two alternatives to the above are Direct Nu­
merical Simulations and IBL/related versions at finite Re. Both require numer­
ical treatments. In general, the former is hindered by grid-resolution difficulties, 
among others. IBL and similar methods, which are zonal treatments involving 
sensible interpretations of (1)-(5) at finite Re, have been developed a little for 
unsteady flows (Smith et al. 1984, our Fig. 1, Peri dier et al. 1991). These link 
with, and incidentally show the ellipticity implicit in, the parabolized stability 
equations (Bertolotti et al. 1992, Dr. M.R. Malik 1990's) developed successfully 
recently. 

For strongly nonlinear amplitudes, the unsteady IBL system (1 )-( 5) yields 
localized finite-time breakups (Smith, 1988). These breakups have, in 2D, x -
Xs = c(t - ts) + (ts - t)N~, 

ap (- 1\ 1 I ( ) ( ) ax '" t s - t J - PI ~, U - Uo Y (6) 

near the breakup position Xs and time tso The local profile Uo is smooth, Uo = c 
at the inflection point, ~ is 0(1), and the phase speed cis 0(1). The power N = 
3/2 is the most likely. Approaching the breakup an inviscid Burgers equation 
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Figure 1: Comparison between IBL-related results (x) and Orr-Sommerfeld results for 
linear growth rates in Blasius flow, at subcritical and supercritical Reynolds numbers 
R", Re 1/ 2 , from Smith et al. (1984). 

governs PI (Ç), from integration in y, provided the integral constraint (8) below 
on Uo is satisfied. This gives Pl(Ç), with Ipli ex lçll/3 at large lçl, so that 

- 1- - 11/3 P - Po ex x - Xs (7) 

where Po == p( is) is constant . Hence a singularity in pressure gradient is pre­
dicted at the breakup time i = is, as weil as increasingly large wail-shear re­
sponses. IBL computations support (6), (7) as do some direct simulations, 
whereas experiment al comparisons are described just below. The breakup applies 
to most unsteady interactive flows. Detailed quantitative comparisons between 
computations and theory in (6), (7) by Peridier et al. (1991) show good agree­
ment. 

New physical effects then come into play as normal pressure gradients become 
significant on shorter length scales. An appropriate computational approach in 
principle then is in Smith et al. (1984) , Smith (1991). The new faster stage 
is discussed by Hoyle et al. (1991), He et al. (1996) where an extended KdV 
equation holds for the pressure, subject to matching with (6), (7). Beyond that, 
in still faster time scales a st rong vortex formation takes place (Bowles et al., 
1996). This is associated with initiation and eruption of a vortex. Intuition 
suggests that this breakup process, repeated, is connected with intermittency. 
Smith and Bowles (1992) compare (see our Fig. 2) the breakup criterion (Smith, 
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2 
(a) 

Figure 2: Comparisons between theory (Smith & Bowles, 1992) and experiment (Nish­
ioka et al., 1979), concerning the nonlinear criterion (8) and the first transitional spike. 
All the cases (0)-(8) studied are close to the two representative cases (0), (7) for the 
local experimental profile shown in (a). In (b), effectively the circles denote theoretical 
results and the squares experimental results. Note that the complete range of possible 
evalues is between 0 and 1, and that the variation with case number in (b) indicates 
sensitivity with respect to the velocity-profile measurement. 

1988) for (6), (7), namely 

(8) 

with Nishioka et ai.'s (1979) experiments concerning the first spike. The agree­
ment is relatively close, given that Re is subcritical in the experiments. 

There are many related or follow-on aspects. First, high-frequency theory 
applied to (1 )-( 5) yields an alternative view of spikes, associated more with 
still larger disturbances as discussed in item 3( e) below. In the same regime 
Kachanov et al. (1993) compare 2D nonlinear theory and experiments showing 
other apparent spikes, fin ding good agreement as shown in Fig. 3(a); while at 
suitably reduced amplitudes upper-branch features and cri ti cal layers tend to 
arise further downstream of the lower-branch regime (1)-(5). Second there is 
recent work by Vickers & Smith (1994) on break-up of separating flows; see also 
Savenkov (1993). Next, Hoyle & Smith (1994) consider the extension of (6)-(8) 
to 3D, where (8) again applies and 

(9) 

gives a crucial spanwise scale. Likewise in 3D, Smith & Walton (1989), Stewart 
& Smith (1992) and Smith & Bowles (1992) imply that vortexjwave interac­
tions based on (1)-(5) for example can act at low input amplitudes as precursors 
to the strong-amplitude finite-time break-up above. The latter two yield good 
agreement with boundary-layer and channel flowexperiments (Figs 3b,c), in ad­
dition to that above. Other vortexjwave interactions are studied in the series by 
Hall & Smith (1988, 1989, 1990, 1991), with related works by Benney & Chow 
(1989), Wu (1993), Churilov & Shukhman (1987, 1988), Walton & Smith (1992), 
Timoshin & Smith (1995), Walton, Bowles & Smith (1994), Smith, Brown & 
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Figure 3: Further comparisons with experiments. (a) From Kachanov et al. (1993) , in 
mostly quasi-2D transition . (b) From Smith & Bowles (1992) , in the channel-flow 3D 
transition of Nishioka et al. (1979) . Theoretical results are shown as bars (i) - (viii). 
(c) From Stewart & Smith (1992) , in the boundary-Iayer 3D transition of Klebanoff 
& Tidstrom (1959). Theoretical predictions are indicated by bars (i) - (v) in the left­
hand diagram, (i) - (iii) in the middle, and b,c,d (compared with experiment al breaking 
points) in the right-hand diagram. 
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Brown (1993), in various weakly or strongly nonlinear settings with TS or in­
flectional disturbances. Hall & Smith (1988-1991) in partieular emphasize the 
ability of vortexjwave interactions to provoke strongly nonlinear effects even for 
quite tiny 3D input disturbances. Vortex effects are clearly very powerful, both 
theoretieally and in practice. Finally here, further work following on directly 
from (6)-(8) is mentioned later. 

The transitional spot (item 3) 

For free spots (cf. forced spots arising in item 2) the Euler stage has, throughout 
the boundary layer, 

Ux + 15y + W z = ° , 
(at + .ft. \7).ft = - S!.Ji. 

(10) 

(11) 

The coordinates, with an origin shift, are scaled on the thiekness 0(Re- 1/ 2 ) and 
similarly for t, w hile 

(u,15,W,p) ---* (ue,O,we,O) asy ---* 00, (13) 

15=0 at y = 0, (14) 

with the undisturbed profile UB(y) holding far from the initial disturbance. For 
the present Ue == 1, We = WB(Y) == 0, but compare (d) below. The profile UB(Y) 
is monotonie, inflexion-free, and UB( 00) = 1, uB(O) = ÀB > 0, and the initial 
disturbance itself has (u, v, W, p) prescribed for all x, y, z at t = 0. The problem 
(10)-(14) is a computational one usually. . 

Smith et al. (1994) con si der properties at large times, especially far down­
stream. Two major scales arise in the plan-view at distances O( t1 / 2 ) and O( t). 
See Fig. 4. In the O( t1 / 2 ) zone, the solution takes on a three-Iayer form, the 
'lowest' layer having 

and similarly for the 'middle' and 'uppermost' layers. The unknown surface 
pressure P(X, Z) and negative displacement A(X, Z) depend on (X, Z) defined 
by 

1/2 -­(x, z) = t (X, Z). (16) 

From (10)-(14) a nonlinear similarity inviscid-boundary-Iayer-like system then 
holds. (a) - (c) below are concerned with the spot "trailing edge", where (X,Z) 
are large, between the 0(t1/ 2 ) and O(t) zones, the latter being discussed in (d), 
( e). 
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Figure 4: (a) Plan view of the theoretical spot structure in item 3, with symmetry 
about the x-axis. In item 3( a-c) Re- 1/ 2 < < t < < 1, whereas when time t becomes 
0(1), in item 3(d,e), coupling occurs between the global (3DBL) and local (EuIer, see 
(b)) properties as indicated . .c,N.c denote linear and nonlinear regions in turn, the 
former envisaged as bounding the calm reg ion observed in experiments, while LE,TE 
denote the leading and trailing edges respectively. (b) The local 3D Euler structure a 
and subsequent sublayer eruptions b, leading to spots within spots: see item 2, item 
3(e). 

( a) A mplitude level I 

At comparatively large distances X > > 1 downstream, in the edge layer near 
Z ~ JLX (Fig. 4), 

-2/3 --2/3 
P = X (Epo + c.c.) + ... + X Pm + ... , (17) 

where JL = 8-1/ 2 , Z - JLX = X- 1
/
3 11, and the dominant fiuctuating part (sub­

script zero) has E = exp [i(b1X 2 + .xX2
/
3 11)] ,b1 = 33 / 2/16, À = (3/8)1/2,11 "'" l. 

The subscript m refers to the real mean-fiow, and e.c. denotes the complex con­
jugate. The nonlinear interaction is dominated by the fiuctuations E±1 and the 
mean-fiow correction EO,due physically to the relative slowness ofthe mean-fiow 
variationsj similarly in (b). 

The governing equations (Smith et al., 1994) stem from the outer interaction 
law and the relation Pm ex -IPoI 2 due to the mean components of moment urn 
coupled with modulation by the mean-fiow (vortex) correction. Sample solutions 
are presented in the last reference. 

(b) A mplitude level II 

Significant changes occur first when the amplitudes increase slightly and Z -
JLX = r, becomes 0(1). Now 

-3/4( ~~ ) --1/2~ P = X Epo + c.c. + ... + X Pm + .... (18) 
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The fluctuation with unknown Î( iJ), because of enhanced phase variations, is 

Ê = exp [i(b1X 2 + >"Xfj + Xl/2 Î(fj))] . New contributions come from extra mo­

mentum in the mean-flow, preserving the dominanee of the long/short interac­
tion between fluctuations and mean flow. Solutions are presented by Dodia et 
al. (1995). For enhanced amplitudes II there is a diminution of the mean-flow 
effect produced by the external motion. A new stage occurs when the whole 
trailing-edge region becomes affected by st rong nonlinearity, as Z - J.LX rises to 
O(X). Then the mean-flow correction becomes comparable with the basic mean 
flow. 

( c) A mplitude level III affecting the entire trailing edge 

Here the amplitude of fluctuations and mean-flow parts is raised to O(X), in 
U, W, with corresponding increases in V, P (Fig. 4). The interactions become 
strongly nonlinear and higher harmonie fluctuations are significant. In polars 
r,O, where (X,Z) = r(cosO, sinO),O is 0(1), with r being large, the flowfield 
solution has 

where U, Ware the r-, O-velocities. The subscript f refers to fluctuations, 
having zero mean. The total mean flow, e.g. U m, is unknown now but varies 
slowly, being dependent on Y,O, whereas unknown fluctuations, e.g. U!, also 
depend on the rapid variabie F == b( O)r2 • Smith et al. (1994) show that a closed 
nonlinear system is produced controlling the dominant fluctuations, the total 
mean flow, and the phase b(O). 

( d) The spot centre 

Here, at larger distances x '" t downstream, the fuil Euler equations (10), (11) 
re-apply. The three-Iayer structure coilapses into one and the x, z scale fails 
to O( 1) for fluctuations. (c) points to strong nonlinearity persisting here. The 
unsteady 3D Euler system holding implies a large numerical task. But also there 
is interplay bet ween those fluctuations and the slow total mean flow. So extra 
length scales operate, x, z of O( t) in addition to O( 1), associated with slender­
flow equations Jor the mean, and they play an equally important role, linking 
the main short- and long-scale behaviour similarly to (c). 

Moreover, as the spot continues downstream, to x, z of order Re1/ 2 i.e. global 
distances of 0(1), the interacting short- and long-Iength scales become 0(Re-1 / 2 ) 

and 0(1) respectively, in the global coordinates x, z, with the normal coordinate 
staying 0(Re-1/ 2). These scalings are physicaily sensible. Viscous forces now 
affect the mean-flow through the 3D boundary-Iayer equations 

Ux + vy + Wz = 0 , (20) 
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Üt + üüx + VÜy + WÜz = SI - Px + Üyy , (21) 

wt + üWx + vWy + wWz = S2 - pz + Wyy , (22) 

for the mean-flow (ü,v,w)(x,y,z,l), where t == Re-1/ 2t denotes global time. 
Here p(x, z, l) is the external-stream pressure, whereas SI, S2 are the unknown 
Reynolds-stress terms comprising nonlinear effects from the fluctuating velocity 
components governed by (10)-(14). The fuIl interaction between (20)-(22) and 
(10)-(14) also involves the mean profile Ü = UB in (13), which is now dependent 
on x, y, z, tand unknown, as is the corresponding non zero w = WB in general. 
It is intriguing that, according to the above argument, the flow properties on 
those two length scales remain fuIly interactive, with the viscous 3D boundary­
layer system (20)-(22) and the inviscid 3D Euler system (10)-(14) being coupled 
together via the Reynolds stresses in (21), (22) and the profiles in (13). See 
Smith et al.'s (1994) Fig. 4 and our Fig. 4. 

( e) Internal dynamics and viscous effects 

The major element missing 50 far in item 3 is viscosity, governing the finer-scale 
dynamics and the connection with larger scales, apart from the global-scale effect 
in (20)-(22) etc .. Although our concern in the majority of item 3 is with global 
features, intern al features are considered briefly in Smith (1995), more details 
and description being given in item 2 and in references cited. 

Further comments (item 4) 

There is still much to be explained. Further work is needed to understand the 
impact of the eruptive sublayer (item 2) on the larger-scale evolution in item 3, 
and the generation of faster time and length scales. 

Yet the global spot theory tentatively is in line with the experiment al findings 
summarized in item 1 in a qualitative or quantitative sense. Bowles & Smith 
(1995) point to important short-scaled effects combining with nonlinearity above 
to give a theoretical spread angle (Fig. 5) of approximately 11°, close to the ex­
perimental observations, for zero pressure gradient. On compressibility effects, 
Clark et aI.'s (1994) results demonstrate experiment al agreement with the the­
ory over a range of Mach numbers (Fig. 6). On internal features quantitative 
agreement with computations and experiments has been noted in item 2 and is 
shown in Figs 2 and 3; in particular the breaking point in Fig. 3(b) signals the 
onset of turbulent spots in the forced flow there, linking with the free type of 
spot considered in item 3. Comparisons of the integral criterion (8) with direct 
simulations have been attempted, in addition to those with experiments in Fig. 2 
which we repeat are at subcritical Reynolds numbers, indicating wide application 
of the theory (see also Fig. 1). 

The same criterion (8) applies to the onset of transition in 3D over surface 
roughnesses and similar flows (FTS with D.J. Savin). Other 3D theory is de­
veloping, e.g. vortexjwave interactions. The repercussions for 3D computation 
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Figure 5: Theoretical spot sol ut ion from Bowles & Smith (1995) incorporating short­
scale effects, and comparison with the typical 110 spread angle found experimentally. 
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Figure 6: Spot spreading angle vs. Mach number, for compressible boundary layers, 
from Clark et al.'s experiments (1994) and theory by Dr. R.G.A. Bowles with FTS 
(1995), following on from Bowles & Smith (1995). 
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are fairly clear, given the resolution difficulties of direct simulations at large Re. 
Item 2 implies that an IBL-type system is needed but supplemented by Euler 
terms, because of normal pressure gradient effects (item 2, end) along with item 
3 and Bowles & Smith's (1995) results. The composite system of Smith et al. 
(1984), Smith (1991b) has these in unsteady 2D flows (Fig. 1), while 3D steady 
computations (Smith 1991a) indicate accuracy and efficiency. Work is in progress 
on the 3D unsteady extension but it needs more attention. 
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Peter W. Duck 

Solutions of the 
Inviscid Triple-Deck Equations 

Abstract 

The three-dimensional triple-deck equations are derived and considered in some 
detail. Expressions for linearised solutions (valid for small levels of imposed 
disturbance) are described, and details of a numerical scheme appropriate for 
the nonlinear problem, based on a spectral approach are also given. In the case 
of two-dimensional disturbances, the solutions obtained appear to exist for all 
times, whilst in the case ofnonlinear, three-dimensional disturbances, finite-time 
singulari ties appear to occur. 

Introd uction 

One of the most notable successes of triple-deck theory has been its ability to 
describe the lower branch of the neutral-stability curve of Blasius-like boundary 
layers in the (important) limit of large Reynolds numbers. This connection 
was firmly established by Smith (1979a), and formed the basis of a number of 
studies, induding Smith (1979b), Duck (1985), Smith & Burggraf (1985). These 
later studies also strongly suggested that the earlier stages of transition are also 
captured by (non-linear) triple-deck theory. 

Of particular interest is the appearance, quite frequently, of finite-time sin­
gularities that seem to occur in numerical solutions of these equations. Found 
by Duck (1985, 1987), singularities of this type havealso been investigated by 
Brotherton-Radcliffe & Smith (1987), Smith (1988) and Peridier et al. (1991). 
The condusion seems to be that these 'breakdowns' are predominantly inviscid 
in nature, related in some way to an important physical (transitional) process, 
such as (conceivably) a burst of vorticity into the main body of the boundary 
layer. 

The work of Smith & Burggraf (1985) (effectively a high-frequency limit), 
led to the Benjamin-Ono equation. More recently this and related aspects have 
been the subject of further investigations. Kachanov, Ryzhov & Smith (1993) 
attempted a comparison between results from this equation, and experiment al 
data, whilst Bogdanova-Ryzhova & Ryzhov (1995) have mounted a thorough in­
vestigation into solutions of the forced Benjamin-Ono type, and found a number 
of diverse, interesting features, induding bifurcation phenomena, nearly limit cy­
de type oscillations and irregular pulsations with erratic sequences of amplitude 
and temporal behaviour. 

This previous work has focused on two-dimensional situations, and more 
specifically still for particular transverse distributions of velocity. All this work 
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sterns from the so-called inviscid triple-deck equations (Smith & Burggraf, 1985, 
Goldstein & Lee, 1992). lndeed these equations appear quite generic in nature. 
The aims ofthis paper are (i) to present results for two-dimensional cases, without 
the previous restriction on transverse solution variation, and (ii) to extend the 
ideas to three dimensions. 

Formulation 

The initial formulation ofthe problem foIlows that ofthe fuIl triple-deck problem, 
as described by Duck (1981, 1987, 1990). We suppose that we have a laminar 
incompressible flow over a flat plate. At a distance L* downstream of the leading 
edge of the plate, some form of disturbance is introduced into the flow. This 
could either be a surface disturbance, or alternatively some disturbance in the 
freestream - for our point of view the specifics here are not important. The origin 
of the coordinate system is taken close to the disturbance, the coordinates being 
(L*x, L*y, L*z) relative to the streamwise, transverse and crossflow directions, 
respecti vely. 

The flow far from the plate has a constant kinematic viscosity v and density 
p, and a constant freestream velocity Uoo ( u, v, w) = Uoo(1, 0, 0). The dimensional 
pressure is written as pU!p, and the Reynolds number Rand associated small 
parameter E are defined as R = c 8 = U 00 L * j 11. We assume R > > 1 (and con­
sequently E < < 1) throughout. We take the typical timescale of the disturbance 
to be T, and this then enables us to define a second dimensionless parameter, 
namely na = L* j(UooT), with dimensional time written as Tt. If unsteadiness 
plays a leading-order role in the problem, then we require na = c 2 n, where 
n = 0(1) (generally, although this condition will be relaxed later). We further 
suppose (again, at least initially) that the disturbance has dimensions O( é3 L*), 
0(E3 L*), 0(E5L*) in the streamwise, crossflow and transverse directions respec­
tively. 

This class of disturbance leads to a triple-deck structure, the key problem be­
ing in the lower deck, wherein x = E3 X, Y = éY, z = é3 Zand u = (EU, E3V, EW) 
and p = EP(X, Z). The foIlowing system then results: 

nUt + UUx + VUy + WUz = Uyy - Px, (1) 

nWt + UWx + VWy + WWz = Wyy - Pz, (2) 

Ux+Vy+Wz=O, (3) 

with 
U = V = W = 0 on Y = 0, (4) 

and as Y -+ 00: 

W -+ 0, U -+ Y + hF(X, Z, t) + A(X, Z, t), (5) 

and 
U -+ Y, W -+ 0 as X -+ - 00. (6) 
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Here A(X, Z, t) denotes a displacement function, which is unknown a priori, but 
may be related to the pressure by consideration of the upper layers (Smith et 
al., 1987) which for the three-dimensional, incompressible case may be written 

P(X Z ) - -~ 100 100 Aeçd~d( , ,t - 1 • 

211' -00 -00 [(X - Ç)2 + (Z - ()2)2 
(7) 

The forcing function F(X, Z, t) is some prescribed function. As pointed out 
above, we shall not concern ourselves with the particular details (i.e. origin) of 
this term. The parameter h is an amplitude parameter, which is useful when we 
con si der diminishingly small flow disturbances (in the foilowing section). 

The fuil system above has been treated before by Duck (1987, 1990), specif­
ically in the form of an initial value problem. However, here, we consider an 
important limit of the above system. 

We suppose that n > > 1 (corresponding to increasingly fi.rst time variations). 
Without any further rescaling, the high frequency problem of Duck (1981) re­
sults; however here, instead, we allow the foilowing scalings to also occur 

lAA AA 3AAAA 

U = n2 U(X, Z, Y, t) + ... , V = n2 V(X, Z, Y, t) + ... , 
IA A A A IA IA IA 

W = n2 W(X,Z, Y,t) + .. . ,X = n- 2 x, Y = n2 Y, Z = n- 2 z, 
P = nP(X, Z,t) + ... , A = ntA(X, Z,t) + ... ,F = nti'(X, Z, t). (8) 

This is equivalent to the procedure adopted by Bogdanova-Ryzhova & Ryzhov 
(1995) in a two-dimensional context. The resulting system (with "hats" dropped) 
is then 

Ut + UUx + VUy + WUz = -Px, 
Wt + UWx + VWy + WWz = -Pz, 

Ux+Vy+Wz=O. 

The appropriate boundary conditions are that V(Y 
Y ~ 00: 

(9) 
(10) 
(11) 

0) = 0, whilst as 

U~ Y+A(X,Z,t)+hF(X,Z,t), W~ 0, (12) 

and to close the problem, (7) is appropriate. 
The above system does of course violate the no-slip condition on Y = O. This 

1 
may be remedied by a sealing of the transverse variabIe, involving Y = O(n- 2 ). 

Although notionally passive (as in Bogdanova-Ryzhova & Ryzhov, 1995), this 
aspect could be crucial, and is discussed later in the paper. 

In the foilowing section we consider linearised solutions of the problem above, 
corresponding to h ~ O. Details of a fuil numerical treatment are given later. 
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Linearised solution 

Here we consider linearised solutions of the system (7), (9)-(12), in the limit as 
h -+ 0, i.e. diminishingly small disturbance amplitudes. Just as in the linearised 
solutions of the full triple-deck equations, by so doing, we are able to gain much 
physical and mathematical insight into the solution of the nonlinear problem. 

Specifically, as h -+ 0, we expect the flow to comprise a uniform shear in the 
X direction, plus some small perturbation, and so we write 

u = Y + hU + ... , W=hW+ ... , 

P = hF+ ... , A = hÀ + .... (13) 

We find it useful to introduce the double Fourier transform in X and Z, 
defined as follows (for example) 

U*(Y,t) = i: i: U(X,Y, Z,t)ékX+ilZdXdZ, 

(and similarly for all other flow variables ). 
Considering the O(h) terms in (9)-(11) leads to 

ut + ikYU* + V* = -ikP*, 
wt + ikYW* = -ifP*, 
ikU* + ifW* + Vy = 0. 

(14) 

(15) 
(16) 
(17) 

Differentiating (15) with respect to Y, and ad ding to this ~ times the deriva­

tive of (16) with respect to Y, leads to the following, very simple equation 

(1; + ikY (1* = 0, (18) 

where (1* = Uy + ft Wy. Since there is no forcing term to this equation, supposing 
(1*( t = 0) = 0, then (1* == 0, (an alternative scenario is considered later in this 
section). 

Integrating (1* leads to the conclusion 

U*(Y, t) + ~ W*(Y, t) = A* + F*. 
k 

Conditions on Y = ° imply 

Uny = O,t) 
wt(Y = O,t) 

-ikP* , 
-ifP* , 

(19) 

(20) 
(21) 



Peter W. Duck 

and the pressurej dis placement relationship (7) transforms to 

P* = k
2 

A* 1 , 
(k2 + f2)2 

(see Duck & Burggraf 1986). 
Combining the equations above leads to the result 

If we confine our attention to forcing functions of the form 

F* 0, t ::; ° 
F* = Fö(k, f)[e iwt 

- e- t
], for t > ° 

then 

W* 1 1 
(k2 + f2)2(W + kY)[w + k(k2 + f2)2] 

(k2 + f2)~[ik(k2 + i2)~ - l][Y - (k2 + f2)~]· 

U* may be determined by (19). 
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(22) 

(23) 

(24) 

(26) 

An alternative scenario to the above is the situation when O'*(t = 0) -I 0, 
A*(t = 0) -I 0, but F* == 0, corresponding to some initial disturbance to the 
flowfield, but without any forcing. 

The solution procedure is similar to the above, and leads to the following 
result 

0'* = O'*(t = 0, Y)e- ikYt . (27) 

The following equation determines A*: 
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The solution of this may then be written 

A* = A*(t = 0) - e-ik(k2+l2)~t fot eik(k2+l2)~t fooo ikYa*(t = 0, Y)e-ikYtdY dt. 

(29) 
P* then foilows from (22), W* from (16) and U* from (19). 

Before considering any numerical results of the above, we consider a numerical 
scheme to treat the fuil nonlinear (h = 0(1)) system, using a method based to 
a large extent on the above. 

Numerical proeed ure 

The linearised solution as described in the previous section is seen to be solved 
conveniently using the double Fourier transform approach in X and t. In the light 
of this, and also in the spirit of Burggraf & Duck (1981) and Duck & Burggraf 
(1985), we adopt an analogous technique when considering the nonlinear problem 
(9)-(12). 

In this case we write 

u = Y + Ü, V = V, W = W,P = F,A = Ä, (30) 

where tilde quantities are not necessarily smail, and then (9)-(11) may be written 
as 

Üt + YÜx + V + Fx = -ÜÜx - VÜY - WÜz = Rl, (31) 

Wt + YWx + Fz = -ÜWx - VWY - WWz = R2, (32) 

Üx+Vy+Wz=O. (33) 

Taking the double Fourier transform of the above (see (14)), then different i­

ating the transform of (31) with respect to Y, and adding to this ~ times the Y 

derivative of the transform of (32) yields 

* °kY * R* .e R* at + 2 a = IY + k 2Y' (34) 

The foilowing equation determines A *: 

P* is determined from (22), and W* from the transform of (32), U* from (19), 
and V* from continuity. 
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The Y coordinate was mapped to a transform coordinate and discretisation 
was applied in all four independent variables; Crank-Nicolson differencing was 
implemented temporally. We generally took, at t = 0: 

U* = V* = W* = P* = A* = O. (36) 

At the first time step (t = b.t, say), initially we set Ri = Ri = 0, thus mimicking 
the linear system (indeed, the computer code was written to operate in either 
nonlinear or linear mode). To evaluate the right-hand-side terms Ri and Ri, al­
though it is possible to write these in terms of convolution-type integrals, it is best 
(Burggraf & Duck 1981) to use the fast Fourier transform method to transform 
variables to physical (X, Z) space from transform (k, f) space. Then, the non­
linear terms are evaluated to yield R1(X, Y, Z, t) and R2 (X, Y, Z, t). Next these 
quantities are fast-Fourier-transformed back to transform (k,f) space; this has 
considerable computational advantages over the more direct convolution tech­
niques. With the newly eváluated Ri and Ri, the process is repeated, until 
the change in the values of all the physical quantities was sufficiently small; the 
process was then moved forward to the next timestep (t = 2b.t) and repeated. 

Results and Conclusions 

Two-dimensional disturbances 

The two-dimensional analogue of the system (31)-(33) does admit solutions of 
the form 

u = Y + A(X, t) + hF(X, t), V=-YAx-YhFx, (37) 

where the displacement function A(X, t) satisfies the forced Benjamin-Ono equa­
tion, namely 

1100 A~~ At + hFt + (A + hF)(Ax + hFx) =;;: -00 X _ çdç. (38) 

This class of problem is clearly simplified because of the removal of the 
Y -dependency, and has been considered by Bogdananova-Ryzhova & Ryzhov 
(1995) and was shown to exhibit some very interesting features. For the purposes 
of this paper we consider, instead, two-dimensional solutions which do not fall 
into this category. Here we take initial disturbances of the form 

U(X, Y, t = 0) = Y + G(X)H(Y), P(X, t = 0) = A(X, t = 0) = 0, (39) 

F(X, t) = 0 Vt. 

Note that in the linear solution of problems of this type, r = Uy(Y = 0) is 
predicted to be independent of time, a property confirmed by our numerical 
calculations. Here we present nonlinear results for the case 

(40) 
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Fig. 1 shows results for T at t = 10,20,30,40. This indicates a gradual 
driftjmovement of this distribution downstream with time (a feature of the non­
linearity of the problem). Figs 2a-c show the corresponding pressure distribu­
tions and present a very different (oscillatory ) picture, the oscillations becoming 
increasingly predominant as t increases. There was no real evidence of any solu­
tion breakdown; there was a fairly slow growth in the magnitudes of the higher 
wavenumbers of the (spectral) solution, but solution integrity could be controlled 
(up to and somewhat beyond) the time period shown, with a relatively modest 
numerical grid (2048 modes, with a spacing of 0.005, and 161 'f/ points, together 
with a timestep of 0.05). 

One important factor not incorporated into the above analysis is the role 
of viscous sub-Iayers that must inevitably occur, as alluded to earlier in this 
paper, of thickness O(n-~) relative to the originallower deck scale. These layers 
will be of the classical, unstèady boundary-Iayer type, in so far as the pressure 
gradient (and consequently the outer streamwise velocity ) will be prescribed a 
priori, (as determined from the calculations above). On account of the highly 
oscillatory nature of the imposed pressure gradients, it therefore seems possible 
that these boundary layers themselves may exhibit finite-time singularities of the 
Van Dommelen & Shen (1981) type, leading to an eruption of this sublayer into 
the main body of the boundary layer. 

Three-dimensional disturbances 

Here we restrict our attention to zero initial disturbances by taking undisturbed 
initial conditions corresponding to (36). the forcing to the problem provided by 
a forcing function of the form 

(41) 

corresponding to an initially undisturbed flow, with a forcing that grows in am­
plitude, but ultimately becomes a steady forcing. Here we present results for 
the particular case h = -5. Careful monitoring of the spectral solution revealed 
that shortly af ter t = 1.75, a rapid growth in the high-wavenumber solution oc­
cured (reminiscent of that observed in many full triple-deck problems, indicating 
a finite-time breakdown). 

Figs 3a, b show contours for the streamwise slip velocity, i.e. U(Y = 0) at 
t = 1.0 and 1.75 respectively. These figures indicate also gradual solution de­
velopment. Figs 4a, b show the corresponding contours of the (perturbation) 
streamwise velocity component along the centreline (i.e. Ü(Z = 0)), and these 
indicate rat her more dramatic solution development as time progresses. Taken 
together, these results point to a finite-time breakdown of the solution not ob­
served in any of our 2D calculations. This indicates a clear distinction bet ween 



358 Solutions of the inviscid triple-deck equations 

10.0 ---r--------..,-------- 10.0 -,--------..,----- -----, 

7.5 

N 5.0 

2.5 

0.0 

-5.0 -2.5 0.0 

X 

Figure 3: a) U(X, Y 
contours 

-5.0 -2.5 0.0 2.5 

X 

Figure 4: a) U(X, Y, Z 
contours 

2.5 

0, Z ,t 

5.0 7.5 

0, t 

7.5 

N 5.0 

5.0 

1.0) 

10.0 

1.0) 

2.5 

0.0 

-5.0 -2.5 0.0 2.5 

X 

Figure 3: b) U(X , Y = 0, Z , t = 1.75) 
contours 

-5.0 -2.5 0.0 2.5 5.0 7.5 

X 

Figure 4: b) U(X, Y, Z = 0, t = 1.75) 
contours 

5.0 

10.0 



Peter W. Duck 359 

2D and 3D computations of this type, and will be the subject of further inves­
tigation. lndeed, the 3D case appears much more complex; in the 2D case the 
vorticity is frozen, whilst this can not be the case in 3D (Kachanov et al., 1993). 
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V.A. Kazakov 

On the Formation of Spikes in the Growing 
Waves for a Laminar Boundary Layer 

Abstract 

The format ion and evolution of a wave packet in a two-dimensional laminar 
boundary layer on a flat plate in incompressible fluid is studied numerically. 
The flow perturbation is generated by alocal distortion of the plate surface. 
The analysis is carried out within the framework of triple-deck theory. A non­
linear initial-boundary value problem is formulated and solved by the strongly 
implicit procedure. To increase the accuracy of the finite-difference scheme, a 
nonsymmetric compact approximation is used. At a nonlinear stage, vortical 
separated bubbles are generated on the plate surface. Spikes peculiar to the 
K-type transition appear on the waves crests, and, as a result of their rapid 
growing, the flow breaks down. Their appearance may be considered to be a 
two-dimensional phenomenon. 

Introd uction 

Since the pioneering observations of the K-type transition (Klebanoff, Tidstrom 
& Sargent, 1962), the appearance of spikes (high-frequency oscillations in hot­
wire traces ) with the following breakdown to turbulence has remained the subject 
of investigations and speculation (e.g. Kachanov, 1987 and references therein). 
This way oftransition (in contrast to the subharmonic transition) is characterized 
by a rather large amplitude of growing waves traveling downstream, which makes 
the disturbed region more susceptible to secondary instabilities. 

In the present paper, computational experiments have been performed to 
study two-dimensional instability waves with emphasis on the nonlinear stage. 
In the computations, the waves are not sustained by a continuously vibrating 
ribbon but are generated by initial disturbances of the flow from a small hump 
rising at some moment on the plate with subsequent formation of a wave packet 
(see Duck, 1985, 1987; Kazakov, 1986). A formulation of the problem within 
the framework of a triple-deck model of asymptotic theory (Stewartson, 1974; 
Ryzhov & Terent'ev, 1977) allows to somewhat simplify the study (see e.g. com­
putations by Fasel, 1984). 

Governing equations 

We consider a two-dimensional unsteady flow of viscous incompressible fluid, 
which develops in a laminar boundary layer on a flat plate as a result of a small 
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hump rising on its surface at a distance L from the leading edge. Let Uoo be the 
velocity of the undisturbed flow ahead of the plate and v the kinematic viscosity, 
then Re = U L/v is the Reynolds number, which is assumed to be large and 
é = Re-1/8 < < 1. The height of the surface disturbance is assumed to be of the 
order O(Lé5 ), its length O(Lé3 ), the characteristic time O(L/Uooé2 ). 

We locate the origin of the Cartesian coordinate system at the centre of a 
surface disturbance with the x axis directed downstream along the plate and y 
normal to the plate. In accordance with triple-deck asymptotic theory in the 
wall region of a boundary layer with streamwise dimension O(Lé3 ) and normal 
dimension 0 (Lé5 ), the flow is described by Prand tl 's equations (standard triple­
deck nondimensional variables are used): 

Ut + UUx + vuy = -Px + U yy , (1) 

U x + vy = 0 , Py = 0 . 

At the outer boundary, as y - 00, matching with the external inviscid flow gives 
an interaction condition which links the unknown pressure with the boundary­
layer thickness function A( t, x) determined by the velocity field in the walllayer. 

At the outer boundary, as y - 00, matching with the external inviscid 
flow gives an interaction condition which links the unknown pressure with the 
boundary-Iayer thickness function A( t, x) determined by the velocity field in the 
walllayer: 

1 JOO aA/as p( t, x) = - ds . 
11" -00 X - s 

(2) 

The solution is subjected to the boundary conditions: 

U = v = 0 at y = 0 , 

U - y, v - 0, p - ° as x - -00 , (3) 

u-y-A(t,x)+!(t,x) as y-oo. 

The function !( t, x) describes the shape of the disturbed surface. In the numeri­
cal method, the boundary conditions are prescribed at finite, sufficiently remote 
distances. 

Numerical method 

The governing equations are approximated by finite-difference relationships on a 
grid (Xi, Yj), i = 0, ... , N,j = 0, ... , K. The temporal derivative in the momentum 
equation (1) is approximated by a usual three-point back second-order accuracy 
formula. The nonlinear terms in this equation are quasi-linearized also to the 
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second order, O(~t2). The derivative of u is calculated according to the flow 
direction. To increase the accuracy of the numerical scheme we approximate u 
by non-symmetrie compact differences of third-order accuracy on a three-point 
stencil (Xi-I, Xi, Xi+l) (Tolstykh, 1973). 

We intro duce the operators n± of a one-sided two-point approximation to 
the derivative U x at a point Xi : 

n- t 1- d U· - U· 1 1 lXi 
Ui = A = ~ Ux X, 

Ui+1 - Ui 1 l xi+1 

n+ Ui = = ~ uxdx . 
~X uX Xi uX uX Xi-l 

The integrals on the right-hand sides for an arbitrary function f( x) can be ap­
proximately calculated by interpolating f( xl over the segment [Xi-I, xi+ll by a 
quadratic parabola. Define the operators A as 

1 1 1~ 
A- fi = 12(5fi-1 + 8fi - fi+1) :::::: ~x Xi-l f(x)dx , 

1 1 l xi
+

1 

A+ fi = 12(5fi+1 + 8fi - fi-d ~ ~X Xi f(x)dx, 

It is easy to show that A±(J) - D± f = O(~x3). Thus, in the momentum 
equation (1), the derivative U x is treated as a new variable for which we have an 
additional equation 

with 

± 1 1 n Uij = 2~x[-(1 + S)Ui-1,j + 2SUij + (1- S)Ui+1,j . 

If Uij > 0 then S = 1 and the operators with the sign "-" are taken; else, 
if Uij < 0 then S = -1 and the operators with "+" are taken. The other 
derivatives Px u y, Uyy in the momentum equation are approximated by ordinary 
cent ral differences of the second order. 

The continuity equation is approached to second-order accuracy at points 
(Xi,Yj-l/2) by cent ral differences ÓxUi = (UHl - Ui_l)/2~x: 

1 1 
2( ÓxUij + ÓxUij-1) + ~Y (Vij - Vij-l) = 0 . 

Equation Py = 0 in (1) is represented as Pij+1 - Pij = O. 
Before the discretization the governing equations were written in new vari­

ables x, h obtained as a result of exponential stretching of the variable X = x(Ç) 
(in both directions from the coordinate origin) and Y = y( 1J). 
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The interaction integral (2) used as a boundary condition at Y = YK is cal­
culated as a sum ofintegrals over segments [am,am+l], am = (Xm-l +xm)/2. In 
each segment, the derivative U x in the integral is linearly approximated by means 
of derivatives (Ux)mK and (Uxx)mK which are replaced by central differences for 
a non uniform mesh. 

The resulting system with respect to vectors Fij = [Uij, ( U )ij, Vij, Pij JT, is 
solved by the strongly implicit procedure (Stone, 1968). In the first step, at each 
point (i, j), auxiliary matrix coefficients are calculated by recurrent formulas 
(Kazakov 1985) using values ofthese coefficients already found at points (i,j -1) 
and (i - 1,j). In the second step, increments at an iteration, ~<l>ij, and new 
iterative values <l>it = <l>fj + ~<l>ij are determined. As a result of con vergen ce 
of iterations, the solution <l>ij at a new time level is obtained. 

Numerical analysis 

The distortion ofthe plate was prescribed by the function f(t, x) = H(t)/ch( 4x), 
noticeably different from zero in the interval (-1,1), H(t) being the height ofthe 
hump. Initially, the hump of this kind rose linearly in time during the interval 
o < t < 0.1 up to its maximum height hand then disappeared in the same 
way. Computations were performed on non uniform grids: with 270 x 30 cells 
in the domain -12 < x < 24, 0 < Y < 15 with the zero point, Xio = 0, at 
ia = 90 and minimum values ~Xio = 0.1, ~Ya = 0.2; on grid 360 x 50, ia = 
120, -15 < x < 30, 0 < Y < 30, ~Xio = 0.05,0.1, tl.ya = 0.1; and on a fin er 
grid 540 x 50, ia = 240, -20 < x < 35, 0 < Y < 30, tl.xio = 0.025, ~Ya = O.l. 
The time steps we re taken to be equal to ~t = 0.02, 0.01 and 0.005 depending 
on the value of the minimum grid step tl.xio. 

The developing wave packet travels rather far downstream, so, to follow its 
evolution including a nonlinear stage, the computational domain is also trans­
ferred downstream in a certain time. Flows from disturbances of different height, 
with h = 0.001,0.1,1 and 2, have been computed. 

The formation and development of a wave packet from a hump, with h = 
0.001, are traced in Fig. 1 (the results of computations on the finest mesh are 
presented). At the initiallinear stage the waves amplitude grows exponentially, 
with the increment of 0.26, as was obtained by linear theory (Ryzhov & Terent 'ev, 
1986). With the beginning of a nonlinear stage, the places of higher pressure are 
moving faster, the front parts of the waves become steeper (Fig. 1, t = 8,8.5), 
and a tendency to waves tilting manifests itself. For increasing pressure gradients 
and waves distortion, intensive local shear layers with large positive peaks of the 
skin-friction r = Du/ Dy develop. These layers separate from the plate under 
the effect of unfavourable pressure growth, and regions of negative skin-friction 
appear on the surface within the packet, which corresponds to the format ion 
of vortices (separated bubbles with a reverse flow). This is clearly seen in Fig. 
2 where the flow patterns (streamlines) at different times are shown. As the 
packet continues develop other vortices arise. Thus at time t = 8, we see three 
small regions of reverse flow, at t = 8.5 four, at t = 8.8 six. Such regions of 
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reverse flow within Tollmien-Sehliehting waves in a boundary layer were reeorded 
experimentally by Kosorygin (1994). An adverse pressure gradient imposed on 
the flow he studied made the appearanee of separated bubbles earlier and easier. 

For inereasing amplitude of the oscillations and pressure gradients in the 
paeket, the intensity of the vortiees grows, and they extend from the plate surfaee 
into the main body of the fluid. At this stage, a new phenomenon is observed: 
small-seale fluetuations with still further inereasing amplitudes, "spikes" , appear. 
First one, then two, and finally three (Fig. 1). The spikes are growing very fast 
and, as aresuit, the flow breaks down. The streamlines at the plaees where 
the spikes develop also exhibit oscillations (Fig. 2). Their largest amplitude is 
reaehed at some elevation above the plate, whieh inereases when the paeket goes 
downstream. The distributions of the streamwise velocity component u' = u - y 
on the lines of constant y near the plate surfaee are qualitatively the same as that 
of the skin-friction, with the spikes growing generally in the direct ion of positive 
values, whieh is related to the vortical strueture of the flow near the plate. At 
time t = 8.8, the spikes in the u' distribution are the largest at y = 0.7 - 0.8. 
Farther from the surfaee, their amplitude diminishes (Fig. 3), and the wave­
like flow within the paeket is less distorted. As one ean see, the spikes arise 
at the end of the aeeelerating seetion of deereasing pressure and considerably 
inereasing skin-friction on the plate, at the plaee where the flow is slowing down 
before a loeal separation. Thus, their appearanee is linked with the format ion 
of an unstable instantaneous inflectional velocity profile, whieh is recorded in 
experiments. 

The evolution of the wave paeket from the point of view of its speetral ehar­
aeteristics is followed in Fig. 4, where the square of the absolute value of the 
pressure Fourier transform versus wavenumber is depieted. 

As followed from ealeulations on different grids the wavelength of the forming 
spikes are dependent on the grid eells size in aeeordanee with Tutty & Cowly 
(1986) who showed that the unsteady interaetion model incIuded the meehanism 
for Rayleigh inviscid instability. In the ease of marginal separated regions these 
short-seale instabilities lead to splitting the separation region into small eddies 
which start growing and destroy the flow very fast (Kazakov, 1985; Henkes & 
Veldman, 1987). Extensive studies of the latter phenomenon (so ealled finite 
time singularity) were made by F.T. Smith and some others (Bodonyi & Smith, 
1987 and works later on). In the present ease the separated bubbles forming 
within the wave paeket are initially small and short-seale instabilities are first 
displayed on the waves erests in front of the bubbles. A short time later the 
bubbles are destroyed too and the flow breaks down. 

Although a turbulent flow is essentially three-dimensional, the numerieal so­
lution evidenees that the beginning of its formation, in the form of small-seale 
fluetuations on the erests of the earrying primary two-dimensional wave of in­
stability, ean be displayed already at the stage of the development of wave dis­
turbanees in a two-dimensional flow. As the eonditions of their appearanee, we 
find the following eharaeteristics: fairly large pressure amplitudes and gradients; 
the inereasing steepness of the waves fronts in the paeket (a proeess of waves 
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tilting), which is accompanied by the appearance of new short-wave harmonics 
in the spectrum of disturbances at a nonlinear stage; the formation of unsta­
bIe shear layers with inflectional velocity profiles. These features make the flow 
prone to Rayleigh type instability. The role of three-dimensionality of the flow in 
the formation of short-scale fluctuations at the initial stage of transition is actu­
ally reduced only to localization of the places with sufficiently large amplitudes 
and gradients of the flow . 

. Validation of the numerical method used is presented in Figs 5 and 6. Some 
results for Duck's (1985) oscillating hump are depicted in Fig.6. Present compu­
tations we re carried out in the domain -15 < x < 32, 0 < y < 30 on a 400 X 50 
grid, i = 100 with .ó.Xio = 0.05, .ó.Yo = 0.1 and .ó.t = 0.01. Duck solved the 
problem by the spectral method. Both methods give close results within the 
section -5 < x < 5, for which Duck's data are presented. 
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Streaky Structures in Transition 

Abstract 

There is an increasing amount of evidence that streaky streamwise-oriented struc­
tures confined in the laminar boundary layer are the embryo for so called "by­
pass" transition in many flows of engineering interest. This paper mainly fo­
cuses on boundary layer development under the influence of moderate levels of 
free stream turbulence. Experiments show that free stream turbulence gives 
rise to very long streamwise structures, which grow in amplitude as they move 
downstream. These structures may lead to rms disturbance levels as high as 
10% inside the boundary layer before turbulence is observed. Flow visualisation 
suggests that turbulent spots originate from an instability of a "strong" streak, 
probably due to a secondary instability of (spanwise) inflectional type. Artifi­
cial introduction oftemporal disturbances drastically enhances breakdown in the 
disturbed boundary layer. 

Introd uction 

Consider a wind tunnel experiment where a laminar boundary layer develops 
along a flat surface. At some distance downstream the leading edge a short 
pulse disturbance is introduced through a small hole in the wall. The develop­
ment of this disturbance depends on several parameters; the two most important 
are the amplitude of the pulse and the Reynolds number at which it is generated. 
Several different scenarios may follow (see Fig. 1); if the disturbance is small and 
the Reynolds number above a critical value a wave packet may form and grow; 
if the disturbance is large enough it may result almost immediately in a turbu­
lent spot even for Reynolds numbers below the critical value, i.e. the Reynolds 
number for which linear waves are amplified. For disturbances of an intermedi­
ate strength the result may be a narrow (in the spanwise direction) elongated 
structure. The initial development of the wave packet can be described by linear 
theory (Gaster, 1975) and both propagation velocity, spreading and amplification 
are weIl predicted (although non-parallel effects become increasingly important 
with increasing wave angle, see e.g. Kachanov & Michalke, 1994). In case of 
a turbulent spot it spreads with a half-spreading angle of typically 10° and its 
re ar propagates with about 50% of the free stream velocity (see Elder, 1962). 
The disturbance of intermediate strength is however quite different: its spanwise 
spreading is almost negligible and the maximum streamwise velocity perturba­
tion is found in the middle of the boundary layer. Grek, Kozlov & Ramazanov 
(1985) found this type of disturbance in a laminar boundary layer and gave it 
the name 'puff'. Similar disturbances we re also found experimentally in channel 
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Figure 1: Three different types of propagating disturbances originating from a localized 
disturbance of different strength inside the boundary layer, a) wave packet, b) streaky 
structure, 'puff', c) turbulent spot. 

flow by Klingmann (1992), who also showed that there are many similarities be· 
tween the growth of sueh a disturbanee and the development known as algebraic 
or transient growth (Landahl 1980, Gustavsson, 1991, Reddy & Henningson, 
1993). 

Similar streaky struetures are indueed into a laminar boundary layer whieh 
is subjeeted to moderate levels of free stream turbulenee. This paper describes 
in some detail the work done at KTH on sueh struetures. However also other 
types of boundary layer flows for whieh growth of streaky struetures dominates 
the flrst stages of the transition proeess are described. The flows that will be 
diseussed are i) a Blasius boundary layer subjected to free stream turbulenee, ii) 
a Blasius boundary layer subjeeted to a deterministic free stream vortex, iii) a 
plane ehannel flow for which interaction of oblique TS-waves gives rise to streaky 
struetures and iv) a rotating ehannel flow where the Coriolis force gives rise to 
a primary instability of streamwise oriented roll eells. All these flows may break 
down to turbulenee through a proeess of a secondary instability of wave type 
and possible connections between transition to turbulenee in the different cases 
will be discussed. It is eoncluded that a combination of longitudinal streaks and 
continuous forcing by temporal disturbances plays an important roie in many 
types of natural transition. 

A n example of algebraic growth 

A simpie example of the aigebraie growth meehanism ean be obtained by study­
ing the equation for the normal vorticity (", = g~ _ ~W) in the inviscid limit. l If 
this equation is Fourier transformed, with Ct and f3 aenoting the wave numbers 
in the streamwise and spanwise direetions, respectively, it ean be written as 

1 U, v and ware the disturbance velocity components in the streamwise (x) , normal (y) and 
spanwise (z) directions, respectively whereas U is the mean velo city in the x-direction. 
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(:t + iaU)r, = -if3U'v, 

with the initial conditions r,(t=O)=r,o. This equation can be directly integrated 
to become 

r, = r,oe- iOtUt - if3U'e- iOtUt fot v(r)eiOtUTdr. 

In the case of structures of long streamwise extent, i.e. a -+ 0, and assum­
ing that the normal velocity is constant, i.e. v = vo, we obtain the following 
expression for the normal vorticity 

r, = r,o - if3U'vot. 
This shows that the normal vorticity will grow algebraically with time. If the 

streamwise velocity was measured one would see an amplitude growth of streaks 
of alternating high and low streamwise velo city. 

A laminar boundary layer subjected to free stream turbulence 

Free stream turbulence (FST) has astrong influence on the onset of transition 
and this was recognized already by Schubauer & Skramstad (1947) who took, 
at that time, unprecedented efforts to reduce the free stream turbulence level 
in their wind tunnel in order to be able to detect Tollmien-Schlichting waves. 
However FST influence transition also in many engineering situations, as for 
instance in turbomachinery applications. 

Attempts have been made to establish empirical correlations between the free 
stream turbulence and the transition Reynolds number. At FST levels above 5-
10%, transition occurs at the minimum Reynolds number where self-sustained 
boundary layer turbulence can exist, i.e. at R :::::: 500 where R denotes the 
Reynolds number based on the displacement thickness. At lower levels of FST, 
however, different experiments disagree widely for the location and extent of the 
transition region. There seems to be no strong correlation bet ween the level of 
FST and the location of transition onset.2 Neither can the transition Reynolds 
number be found by merely taking into account the fluctuations inside the bound­
ary layer. Transition may also be sensitive to a large number of other parameters, 
including not only the overall level of FST but also spatial scales, conditions at 
the leading edge of the model, presence of pressure gradients, etc., each of which 
requires special attention. Depending on these conditions, FST-induced tran­
sition may be caused by different types of boundary layer instabilities. At low 
ambient disturbance levels TS-waves (or rat her wave packets ) may still be of 
importance, but at higher levels different types of interaction are at hand, and 
the results of such mechanisms will be described in the following. 

2Some success has been made through an empirica! relation for the N-factor used in the 
eN -method and the turbulence level. However from the physica! point of view TS-waves have 
very little to do with the processes leading to transition in these cases. 
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Figure 2: Streaky structures, observed through smoke visualization, in a laminar bound­
ary layer at Uoo =2 mis subjected to 6 % free st re am turbulence. Flow is from left to 
right . White markers are 10 cm apart . Note the sign of streak oscillations and breakdown 
at the downst re am end of the photograph. 

Flow visualization 

Flow visualisation experiments in the MTL-wind tunnel at KTH (Matsubara 
& Alfredsson, 1995) have shown that during the initial receptivity and evolu­
tion phases FST induces longitudinal streaks with a spanwise, fairly periodic 
regularity inside the boundary layer. These structures grow downstream both 
in length and amplitude and their streamwise scale is much larger than typical 
longitudinal scales in the free stream (see Fig. 2). The spanwise scale of the 
boundary layer perturbations is comparable to the transverse scales in the free 
stream, however, no direct relation can be established from available data. 

Flow visualisation shows that breakdown to turbulent spots occurs where 
the smoke visualisation shows intensive streaks. The breakdown of streaks often 
occurs after a wavy mot ion of the streak has been observed and results in the 
appearance of turbulent spots which grow in number and size downstream, until 
the boundary layer becomes fully turbulent. 

Mean velocity and fluctuating disturbances 

Fig. 3 shows an illuminating comparison between time traces of the velocity 
outside and inside a laminar boundary layer. It is clear that the high frequencies 
in the free stream are effectively damped and that low frequencies are amplified 
inside the boundary layer. These low frequency fluctuations are probably related 
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Figure 3: Comparison between velo city signals inside and outside a 'laminar' boundary 
layer (Uoo =8.1 mIs). The upper two traces are u and v measured in the free stream, 
whereas the lower trace is u measured at Yló*=1.5. 

to meandering long structures of low and high velocity. The existence of streaky 
structures is also illustrated through spanwise correlation measurements of the 
streamwise velocity which show a distinct negative minimum corresponding to 
the average distance bet ween high and low velocity streaks (Westin et al., 1994). 

Although the U rms levels in si de the boundary layer may re ach 10% or more 
before transition to turbulence occurs, the mean flow boundary layer profile is 
only slightly changed as compared to the undisturbed flow. The presence of 
FST gives profiles with larger mean velocity close to the wall, whereas there 
is a velocity deficit in the outer part of the boundary layer, i.e. a systematic 
development towards a fuller profile, whereas the boundary layer thickness is 
only slightly affected. If the difference between the measured and Blasius profiles 
is plotted it is found that the shape is fairly self similar at all measured stations. 
The modification gives an increase in the wall shear stress and a decreasing shape 
factor in the downstream direction. The rms-profiles for both u and v for a case 
with 1.5% FST are shown in Fig. 4 for four different downstream positions. It is 
clearly shown how the intensity increases in the downstream direction and that 
U rms has a maximum in the centre ofthe boundary layer. This position is further 
out in the boundary layer compared to the position of the maximum amplitude 
of the TS-wave. It is also found that the maximum of urms/Uoo grows at a rate 
which is proportional to R. The level of Vrms starts to decrease from its free 
stream value towards the wall already several boundary layer thicknesses from 
the wall. This is due to that the wall limits motion normal to its surface on a 
scale typical of the FST rat her than the boundary layer thickness. Within the 
boundary layer there is a local maximum in Vrms , which possibly occurs through 
production of u2 within the boundary layer which is redistributed into v2 and 
w 2 or from the continuous forcing from the FST. 

High frequency disturbances and breakdown 

It is not clear to what extent the development of the streaks and their even­
tual breakdown inside the boundary layer are due to the internal dynamics or 



378 Streaky structures in transition 

y/S· y/S· 

8 8 

6 6 

4 4 

2 2 

° ° 0,00 0,02 0,04 0,06 0,08 unns/U_ 0,00 

Figure 4: Urm. and vrm.-profiles for four different downstream positions in a Blasius 
boundary layer at Uoo = 8 mis affected by 1.5 % free strearn turbulence (at the plate 
leading edge). Note different scale on Urm. and vrm.-axis. 0: X =100 rnrn, x: X =250 
rnrn, e: X =500 mrn, t::,,: X =800 rnrn 

whether they are a result of the continuous forcing from the free stream turbu­
lenee along the boundary layer edge. Boiko et al. (1994) showed that the streaks 
were sensitive to TS-waves, and by forcing them with small amplitude waves at 
frequencies in the range F=100-300 (F = 27rfv/U~· 106 ) breakdown occurred 
much earlier than without forcing. 

A localized free stream disturbance 

There are many difficulties associated with experiments at high FST-levels if 
one wants to look into the details of the generation and growth of disturbances 
due to their random appearance in space and time. To separate and study de­
tails in the transitional structures is therefore an intricate task. Assuming that 
transition at high and moderate levels of FST is the result of the evolution of 
localized, transient disturbances caused by free stream vortices impinging onto 
the boundary layer, Bakchinov et al. (1995) tried to simulate this in a controlled 
manner. They introduced a deterministic disturbance into the free stream from 
a small pipe located upstream of the leading edge of a flat plate. The free stream 
eddy gave rise to a surprisingly simple disturbance inside the boundary layer. It 
consisted of three longitudinal streaks, with the maximum perturbation ampli­
tude approximately in the middle of the boundary layer. However in this case 
the amplitude decayed downstream, despite a rather high amplitude of the deter­
ministic vortex when it impinged the plate leading edge. In Fig. Sc, the spanwise 
distribution shows a positive u-disturbance on the centreline, surrounded by two 
negative regions. The peak values of the perturbation (positive and negative) 
are located approximately in the middle of the boundary layer (Fig. 5a,b). The 
localized character of the disturbance should also be emphasized. The down­
stream development of the structure shows a slowly decaying amplitude whereas 
the disturbance itself is elongated, though without any dramatic changes in its 
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Figure 5: Localized disturbance at R = 125. Contour increments are 1% of Uoo . 
Negative increments are shown as dashed lines. a) yt-plane at z = 0, b) yt-plane at 
z ~ -1.75 mm c) zt-plane at yJ8* ~ 1. Dotted lines in a) and b) mark the boundary 
layer edge. (See Bakchinov et al., 1995) 

structure. The front of the disturbance is convected with approximately 0.9UCXll 

and the rear part with 0.5U(X). 
When comparing the characteristics of this controlled disturbance with re­

sults for boundary layers subjected to free stream turbulence, it is striking that 
the maximum perturbation amplitude is found approximately in the middle of 
the boundary layer in both cases. However, the localized disturbance amplitude 
is always decaying downstream, in contrast to the growing U rms in the FST-case. 
It is possible that the downstream development of U rms depends to a large extent 
on the continuous forcing from the FST above the boundary layer, and is not 
only confined to the leading edge receptivity. 

An interesting comparison can be made bet ween this structure and the op­
tima! disturbances discussed by Butler & Farell (1992). They found that a 
streamwise vortex has the largest growth for short times in the Blasius bound­
ary layer. Af ter the initia! growth, the amplitude of the disturbance starts to 
decay, which is first observable in the v-component. The streamwise pertur­
bation also starts to decay, but damping is smaller and low- and high-velocity 
streaks can be observed for long times. 

Interaction with high frequency wave disturbances 

The localized disturbance described above was a!so subjected to controlled TS­
waves to investigate whether interaction took place. The frequency was chosen 
to obtain the largest possible interaction for a specified forcing amplitude. This 
was realized for a non-dimensional frequency F of about 460. 

In order to study and distinguish non-linearly induced disturbances, three 
separate measurements were carried out at each position in space: a) Genera­
tion of localized disturbance (puff), b) Generation of TS-wave, c) Generation of 
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Figure 6: Non-linear interaction between 'puff' and TS-wave, a) 'puff', b) TS-waves, c) 
combined structure, d) non-linear interaction part. Contour levels are 1% of Uoo . (See 
Bakchinov et al., 1995) . 

localized disturbance and TS-wave simultaneously. The three sets of data were 
collected sequentially which gives the possibility to subtract the generated dis­
turbances (puff and TS-wave), giving only the perturbation that is non-linearly 
induced (Fig. 6d). 

It was found that both the puff and the TS-wave show a downstream decay of 
the amplitude when they we re generated separately. However, when generated 
simultaneously, astrong amplification could be observed. At this stage the total 
disturbance is almost entirely dominated by the effects of the interaction, which 
gives its largest contributions inside the high and low speed streaks. At a later 
stage oblique waves were formed and a new streaky structure was generated. 

A n example of streak instability 

A flow visualization experiment of a similar situation was made in the MTL 
wind tunnel in which a small roughness element was placed near the leading 
edge of the plate creating a laminar wake (low velocity streak) inside the flat 
plate boundary layer. When introducing TS-waves from a slot downstream of 
the roughness element it was clearly observed how breakdown occurred in the 
wake of the roughness element. The sensitivity to breakdown was largest for 
high frequency disturbances, which were highly damped waves. 

Oblique transit ion 

For incompressible flow three-dimensional TS-waves were for long con si de red to 
be of little importance, since Squire's theorem showed that such waves always are 
more stabie than their 2D counterpart. However, non-linear interaction of small 
but finite amplitude oblique waves has recently been investigated numerically 
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Alfredsson, 1995) 

and experimentally and was found to give rise to rapid transition also in flows 
subcritical to linear disturbances. The transition scenario consists of the forma­
tion and transient growth of streamwise streaks of high and low velocity and the 
subsequent rapid growth of high frequency disturbances leading to breakdown. 

Formation of streaky structures 

Consider an initial disturbance consisting of two finite amplitude, oblique waves, 
which interact non-linearly to form longitudinal streaks. The TS-waves can be 
specified through their frequency and spanwise wave numbers (w, ±,8) where w 
is the angular frequency and ±,8 are the spanwise wave numbers. For non-linear 
interaction between the two waves, i.e. (w, +,8) and (w, -,8), the first interaction 
may result in the components (0,0), (2w,0), (2w, ±2,8) and (0, ±2,8). The first 
corresponds to a mean flow distortion, the second to a travelling two-dimensional 
wave with the double frequency, the third corresponds to higher harmonic oblique 
travelling waves, whereas finally the fourth corresponds to a stationary, spanwise 
periodic disturbance. It was found by Schmid & Henningson (1992) that the 
highest energy growth was obtained in the (0, ±2,8) mode which corresponds to 
a streaky structure in the streamwise velocity. This was also found by Berlin, 
Lundbladh & Henningson (1994) in a numerical simulation of oblique interaction 
in a Blasius boundary layer. 

In the experiments by Elofsson & Alfredsson (1995) with two oblique waves 
generated in a plane Poiseuille flow at a sub-critical Reynolds number it was 
shown that both low and high TS-wave amplitudes gave rise to a spanwise mean 
velo city structure of large amplitude. In the low amplitude case this structure 
is sustained far downstream of the ribbons despite a decay in the fundament al 
wave, and for the high amplitude both the mean velocity structure and the 
fundamental is growing downstream until a turbulent-like state is reached. AIso, 
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in spectra obtained for the high amplitude astrong growth in higher harmonics 
can be observed which further downstream leads to a smooth distribution of the 
amplitude spectrum except for a peak at the fundamental frequency. Fig. 7 
displays the streamwise evolution of energy in different (w,,8)-modes at Re = 
UCLhjll = 2000 (where h is the half channel height) and with a wave angle of 
45° at y = 0.75 for a low and high amplitude case (y is normalized with hand 
y = 0 is at the channel centreline). For the high amplitude case breakdown was 
observed but the behaviour of the (0, 2)-mode was similar to the low amplitude 
case. The main difference was that also other modes were growing. InitiaUy the 
(0,2) and (1,3) modes experienced the largest growth but further downstream 
the modes that were multiples of the fundamental frequency grew the most. In 
Fig. 7b the st rong growth of the (2,2), (3,1) and (3,3) modes can be observed 
but also higher modes have a large growth. 

Streaky struct ures in fiows affected by body forces 

An interesting class of stability problems has its origin in body forces. Two types 
of body forces, common in engineering situations, are due to either streamline 
curvature (centrifugal forces) or system rotation (Coriolis forces). Such effects 
may be of importance in flows along curved surfaces andjor in rotating machin­
ery. The primary instability in such flows is of a completely different character 
as compared to TS-waves, since for the primary disturbance the principle of 
"exchange of stabilities" is valid and the instability takes the form of stationary 
streamwise aligned roU ceUs. 

A centrifugal instability will occur if there is an unbalance bet ween the cen­
trifugal force acting on fluid elements and the pressure gradient whereas a Cori­
olis instability occurs when there is an unbalance bet ween the Coriolis force and 
the pressure gradient. For rotating channel flow two parameters are needed to 
characterise the stability of the flow, namely the Reynolds number and the ro­
tation number (Ro = 3nhjUcL, where n is the system angular velocity). The 
linear stability theory gives, for Ro = 0.5, a critical Reynolds number which is 
almost two orders of magnitude smaller than that for which ToUmien-Schlichting 
waves become unstable. 

Secondary instability of roIl ceUs 

For low enough Re it is found both experimentally and from numerical simula­
tions that the primary instability saturates (usually af ter a slight overs ho ot in 
amplitude, see Bottaro et al., 1991). The typical maximum amplitude of the 
streamwise disturbance velocity is around 50% of the undisturbed centreline ve­
locity. For high Re, however, a secondary instability in the form of travelling 
wave disturbances develops which was first observed in flow visualization exper­
iments by Alfredsson & Persson (1989). At least two different kinds of sueh 
secondary instabilities have been observed in experiments and simulations, one 
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with short (order of the channel width) and one with long (an order of magnitude 
larger than the channel width) streamwise wave length (see Fig. 8). Another 
instability which can be stationary or time dependent is merging and splitting 
of vortices. The occurrence of this latter instability is not restricted to high Re 
but depends on the initial wavelength of the primary instability. 

It is clear that a primary instability induced by body forces is of quite dif­
ferent origin than the type of instabilities causing streaky structures in the cases 
discussed above. However the resulting streamwise velocity distribution has some 
similarities, as in both cases neighbouring regions of high and low velocity are 
dominating. 

Matsubara & Alfredsson (1995) described experiments in a rotating channel 
and investigated wave type secondary instabilities where the secondary distur­
bance was introduced through two small holes, one at each side of a low velocity 
region. The forcing was either in phase or out of phase. It was clearly observed 
that the out of phase disturbance was the dominating one and that the distur­
bance maxima were in the regions of large spanwise gradients of the streamwise 
velocity (Fig. 9). The maximum amplification occurred at quite high frequencies 
and stability calculations based on the spanwise velocity distribution could fairly 
weIl depict the frequency of the instability as weIl as its phase velocity. 

Breakdown of streaky structure - a unified scenario? 

The examples of wall bounded shear flows described in this paper have all in 
common that streaky structures occur in the near wall region although they are 
formed in various ways. They are initially stabie, but have in common that they 
can and of ten spontaneously will go through a wavy-type of secondary instabil­
ity before breakdown to turbulence occurs. For boundary layers the possibility 
of transient growth seems to give a mechanism for subcritical growth, which 
favours the development of streaky structures. It is interesting to note that the 
deterministic free stream eddy did not increase in amplitude as it moved down­
stream, but in fact decayed. However this is not true for the disturbance energy: 
through its elongation there was initial growth before it started to decay. The 
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energy associated with the streaks stayed however at a constant level. Although 
a growth of the rms-amplitude is observed in the boundary layer with FST the 
mechanism for streak generation may still be the same. In the FST case the 
collective behaviour among streaks formed by different free stream eddies, can 
give rise to a meandering of the streaks which may result in an increasing rms­
amplitude. For the FST case one should also remember that there is a continuous 
forcing by the free stream eddies. This forcing may also be the forcing required 
to trigger the secondary instability. In the case of interacting oblique waves the 
importance of algebraic growth is amply demonstrated, however breakdown is 
still through a mechanism related to high frequency secondary instability. Fi­
nally in the rotating channel case there is an exponential instability which gives 
rise to the streaky structures and the resulting flow field is again that of low and 
high velocity streaks (the streamwise vorticity is small) which is susceptible to 
secondary instabilities. 

It has been suggested for flows with body forces that the instability is of 
inflectional type (Le Cunf & Bottaro, 1993). However, some experimental results 
presented above seem to indicate a si mil ar instability also in other cases. For 
instanee the effect of high frequency TS-waves on the 'puff', on the wake behind a 
small roughness element and on the breakdown in oblique transition all indicate 
that inflectional instabilities play a role. For the FST case a hypothesis is that 
FST causes the streaks in the boundary layer whereafter it acts as a forcing for 
the initiation of secondary instability on the streaks. 
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Effect of Riblets on Flow Structures at 
Laminar-Turbulent Transition 

Abstract 

387 

This paper presents the results of an experimental study on the influence of 
riblets on various structures of the laminar-turbulent transition in the Blasius 
boundary layer in subsonic flow such as two-dimensional Tollmien-Schlichting 
waves and longitudinal vortex structures of the Görtler-like or cross flow-like 
vortices, A-vortices and vortices excited in the wake behind a roughness. It is 
shown that triangular riblet profiles mounted in the direction of the flow re sult 
in an unfavourable influence on the development of two-dimensional Tollmien­
Schlichting waves. On the other hand, riblets were also found to significantly 
affect the development of nonlinear wave packets (A-vortices) giving a slower 
growth of their intensity and delaying their transformation into the turbulent 
spots. The effect of riblets on the development of a crossflow-like single vortex 
and Görtler-like vortices lead up to reduction of their intensity, resulting in 
slow damping of the secondary travelling waves and the flow remains laminar 
throughout the studied region. The riblets inhibit the transition to turbulence 
in the wake behind a roughness. 

Introd uction 

So far many studies on riblets were carried out in the turbulent boundary layer, 
where riblets can cause drag reduction. Some of the earliest and more impor­
tant results were obtained by Walsh (1979, 1983, 1984). He showed that drag 
reduction could be obtained when the height of the riblet structure expressed 
in wall units s+ = su· Iv is below 30; the maximum reduction of 7-8% occurred 
when s+ is about 15. One of the possible concepts for the drag reduction mech­
anism by means of riblets is that it is due to changes in the near-wall coherent 
structures as presented, particularly, by Bacher & Smith (1985), Bechert et al. 
(1989) and Choi (1989). These studies demonstrated the importance of prevent­
ing crosll-flow by using longitudinal ribs, 'leading to drag reduction. The coherent 
structures of the turbulent boundary layer are similar to the vortex-structures of 
the transition region and an experiment al study in a laminar boundary layer by 
Smith et al, (1989) showed that this method is very promising for understanding 
the influence of riblets on coherent structures in the turbulent boundary layer. 

Studies on the influence of riblets on laminar-turbulent transit ion were pre­
sented only in a few papers and the conclusions are sufficiently contradictory 
to justify a more detailed investigation. Belov et al. (1990) did not find a 
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favourable influence of the riblets on the laminar-turbulent transition indepen­
dent of whether the riblets were located along or across the main flow. It should 
be noted that riblets in this case were placed on the entire surface of the flat plate, 
where the transition takes place. The work by Kozlov et al. (1990) demonstrated 
that longitudinal grooves on a test plate surface re sult in a positive or negative in­
fluence on by-pass transition due to high free stream turbulence (Tu = 1.5 - 3%) 
depending on the pressure gradient or leading edge shape of their test plate. 
In experiment al investigations carried out by Neumann & Dinkelacker (1991) it 
was found that riblets delay the development of initial turbulent structures in 
the transitional zone of flow on the body of revolution. Numerical simulations 
by Chu et al. (1992) showed, that in comparison with the smooth surface in 
the transitional regime there is drag reduction by means of riblets. The basic 
conclusions of the calculations by Luchini (1993) are that grooving has a desta­
bilizing effect upon Tollmien-Schlichting instability but a stabilizing effect on the 
Taylor-Görtler instability. The contradictory nature of these studies seems to be 
connected with paying too little attention to the type of disturbances and to the 
different stages leading to the so-called "naturai" laminar-turbulent transition. 
Thus, the main purpose of this paper is to study the influence of riblets on the 
development of Tollmien-Schlichting (TS) waves at linear (i.e. two-dimensional 
TS waves) and nonlinear (i.e. A-structures) stages of transition. The effect of 
riblets on the disturbances of ot her types of transition such as Görtler-like or 
cross flow-like flows and flow in the wake behind a roughness we re also studied. 

The experiments were performed in the low turbulence (Tu ~ 0.04%) wind 
tunnel on a flat plate and swept wing at free-stream velocities (U 00) from 5.4 to 
9 mis, depending on the type of experiment. The disturbances we re artificially 
excited and hence, measurements were carried out under controlled conditions. 
The rubber or steel disk with 160 mm diameter (riblet plate nurnber 1) and the 
plastic riblet plate, being 285 mm long and 285 mm wide (riblet plate number 
2) were mounted on the surface and used in the experiments for the flat plate. 
Riblet plate 1 (rubber disk) was used also in the experiment on the swept wing. 
A symmetrical triangular shape of the riblets was chosen. The riblet height 
and spacing were optimized in preliminary investigations by Grek, Kozlov & 
Titarenko (1996) with respect to the influence of these sizes on the development 
of the A-vortex. The height and spacing were varied from 0.3 rnm to 3 mm 
and from 0.5 mrn to 3 mm for plates 1 and 2 respectively, but the favourable 
influence on the A-vortex behaviour was found only for the height ranging from 
0.7 mm to 1.2 mm and for the spacing ranging from 1.0 mm to 1.5 mmo The 
riblet lateral spacing was normalized by "outer" (15*) and "inner" (v and u*) 
variables. Here 15* is the displacement thickness and v is kinematic viscosity. 

The non-dimensionallateral spacing is s+ = su* Iv, where u* = Jv läu/äyly=o 
is the laminar friction velocity and läu/äyly=o = 0.332Uoo /ó is the mean velo city 
gradient .on the wall , where 15 "V JvXJUoo . In the range of Rex considered, the 
non-dimensional lateral spacing and height normalized by "inner" variables are 
26 2: st '" ht 2: 17 (17 2: st "V ht 2: 11) and normalized by "outer" variables 
(s/ó* and h/ó*) are 1.4 2: (S/Ó*)l '" (h/ó*h 2: 0.8 (1.0 2: (s/ó*h "V (h/ó*h 2: 
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Figure 1: Amplification curves of the T-S waves on the smooth surface (1), riblets 
located across (2) and along (3) the main flow, Y = Y(u:nax)' Z = 0 mmo 

0.5) for riblet plates number 1 and 2, respectively. Hot wire anemometry of 
constant temperature was used to measure the longitudinal components of the 
mean velo city (ü) and the fl uctuations (u') with respect to the axes X, Y, Z, 
which denote the streamwise, normal and the spanwise directions, respectively. 
Note that R.M.S.-values uj of the velocity fluctuations are measured for the 
narrow frequency band (.ó.f = 4 Hz) of the fundamental TS wave frequency 
(F = 102 Hz). The values for u' (summarized for all velocity fluctuations) are 
measured for the broad-band frequency. 

Effects on the linear development of forced Tollmien-Schlichting waves 

Riblet plate 1 (s+ f'V h+ = 17 -26; hjó· = 0.8-1.4) was used in this experiment. 
It is seen from Fig. 1 that locating the riblets in the main flow direction leads 
to a considerable amplification rates of the TS waves in comparison with their 
development at the smooth surface. Locating the riblets perpendicular to the 
main flow lead to smaller amplification rate of the TS waves in comparison 
with their development if the riblets are located in the main flow direction. 
Observations by Dinkelacker et al. (1987) showed that some sharks have smooth 
scales close to the stagnation lines where the flow can be expected to be laminar 
or transitional and ribbed scales elsewhere. This fact is in excellent agreement 
with the present findings. 

Effect on the development of A-vortices on ribbed surfaces 

The behaviour of the A-vortices measured at the plane of symmetry at X 
370 mm on the smooth and riblet surfaces is presented in Fig. 2. The ensemble 
averaged 20 events amplitude spectra show a favourable influence of the riblet 
located along the flow and an unfavourable influence of the riblet located across 
the flow . 
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Figure 2: The ensemble averaged amplitudes spectra measured in the plane of symmetry 
of the A·vortices at X = 370 mm, Y = Y(u:nax)' 
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Figure 3: Power spectra and oscilloscope traces of the disturbance development mea· 
sured in the plane of symmetry of the vortex street behind a single roughness element 
on both the smooth and ribbed surfaces at X = 420 mm, Y = 0.5 mmo 

The detailed measurements ofthe A·vortex characteristics performed by Grek 
et al. (1995) showed that the behaviour of the disturbances on the riblet surface 
remains deterministic, while the disturbances on the smooth surface include the 
high frequency fluctuations of the beginning turbulent spot. The height of the 
A·vortex above the riblet surface is almost twice as small as that found above 
the smooth surfàce. 

Effect of riblets on the vortices in a wake behind a single roughness element 

The experimental reimIts of the effect of riblets on the vortex development in the 
wake behind a single roughness element (a small cylinder) in the laminar bound· 
ary layer on a flat plate are presented in the work by Grek, Kozlov & Titarenko 
(1996). This investigation showed that the riblet can substantially affect the 
way in which vortices develop in the wake behind a single roughness element (so 
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Figure 4: Influence of riblets on the amplification of disturbances. 
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called "vortex-street"). A triangular riblet located in the flow direction approx­
imately halved the height and span of the vort ex st reet compared to the smooth 
surface of the flat plate. Furthermore, the riblet made the flow inside the vortex 
st reet more steady, resulting in delay of the turbulence, see Fig. 3. According 
to the hot-wire measurements, this large influence of riblets on the vortex st reet 
was related to changes in the inner vortex structure. 

lnftuence of riblets on a swept wing boundary layer with embedded cross ftow-like 
vort ex 

The influence of riblets on the transition in a single stationary, artificially gen­
erated, vortex in a swept wing boundary layer was investigated by Boiko et al. 
(1995) . It was found that placing the riblets directed along the vort ex results in 
a significant prolongation of the laminar regime. The comparison is presented 
in Fig. 4. Beginning from x = 223 mm the disturbances on the smooth surface 
grow rapidly leading to turbulence whereas on the riblets surface their amplitude 
level is almost unchanged and the flow is laminar. 

lnftuence of riblets on a boundary layer with embedded streamwise Görtler-like 
vortices 

Laminar-turbulent transition in boundary layers is in many instances caused 
by the breakdown of longitudinal streak or vortex structures, such as Görtler 
vortices, crossflow vortices, or vortices caused by roughness elements or free 
stream disturbances. An important factor which promotes this mechanism is the 
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strength of the spanwise mean velocity in the boundary layer, i.e. the norm al 
vorticity. A recent experiment al study by Bakchinov et al. (1995) shows that 
such flows are unstable with respect to high frequency travelling waves, which 
can cause rapid transition. Available experiment al results on this subject are 
reviewed in their paper. The study described by Grek et al. (1996), shows hat 
surface manipulation makes it pos si bie to suppress longitudinal vortex structures 
in a boundary layer, and thereby stabilize it with respect to high frequency 
travelling waves, and delay the transition to turbulence (see Fig. 5). The results 
can be of interest for the contral of transition in crossflow and Görtler flow. 

Conclusion 

The present study has shown that the effect of riblets mounted in the direction 
of the flow is the suppression of longitudinal vortex structures in a boundary 
layer, such as A-vortices in the nonlinear stage of transition, vortices caused 
by roughness elements and Görtler-like or cross flow-like vortices . On the other 
hand, the same riblets promote the growth ofthe two-dimensional T-S waves and 
the effect is that the boundary layer flow is destabilized. Hence when transition 
is initiated by TS waves, riblets can be used as means of con trol for only the 
later stages of transition. 
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Direct Simulation of the Development of 
a Local Finite Amplitude Disturbance in a 
Compressible Boundary Layer 

Abstract 

395 

The development of alocal disturbance consisting of two pairs of counter-rotating 
vortices within a boundary layer is investigated numerically. As a model problem 
parallel flow along a flat surface with prescribed velocity and temperature profiles 
is studied. Af ter a transient phase the disturbance is damped when the initial 
amplitude is small and amplified when the initial amplitude is finite. In the 
amplified case the initially large vortices move closer to each other, become 
smaller, and form a compact structure with larger gradients as compared to 
the damped case. The vortices are stretched in downstream direct ion and wind 
around each other. These mechanisms are interpreted in the context of the first 
stages of a possible bypass transition mechanism. 

Introd uction 

The understanding and modelling of laminar-turbulent transition initiated by 
local finite amplitude disturbances (bypass transition) in compressible boundary 
layers is essential for the development of improved transition prediction methods, 
e.g. for boundary layers on turbomachine blades, where bypass-transition is dom­
inant (Mayle, 1991). Within this framework the present research is concerned 
with the direct numerical simulation of the development of a generic disturbance 
present in a model boundary layer in order to predict amplitude-dependent (i.e. 
nonlinear) amplification for any given base flow and disturbance. Our method 
could later be combined with empiricalor theoretical models of boundary-Iayer 
receptivity to study and maybe even predict bypass transition in boundary layers 
for a given disturbance environment. 

Because a finite disturbance amplitude is necessary to initiate turbulent spot 
formation , we focus our interest on the comparison of two simulations with the 
same physical parameters and disturbance shapes but different initial amplitudes. 
In the first case the amplitude is low and the nonlinear amplification may be ab­
sent. In the second case the initial amplitude is large, as in a boundary layer with 
high free-stream turbulence level. Nonlinear amplification is expected to occur in 
the second case, eventually leading to a turbulent spot. · In the present paper the 
ability of our numerical simulation method, which is similar to that of Henning­
son et al. (1993) but for compressible flow, to describe nonlinear amplification 
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Figure 1: Integration domain, coordinate system and boundary conditions. 

is investigated. A possible physical mechanism leading to amplitude-dependent 
amplification is identified. 

Integration domain and numerical method 

In the simulation, the blade surface having very little curvature in the transition 
zone, is approximated as plane. Furthermore the parallel flow assumption is em­
ployed, neglecting the effects of the boundary-Iayer growth. The nondimensional 
coordinates Xl, X2, and X3, see Fig. 1, have been normalized with the local 
boundary-Iayer thickness ó ;::::: 0.01 c, with c being the chord length. 

Beginning with an initial flow field, which consists of a given boundary-Iayer 
profile (base flow) and a superposed disturbance, the three-dimensional com­
pressible Navier-Stokes equations are integrated in time. At the surface X3 = 0 
no slip and isothermal boundary conditions and at X3 = 10 non-reflecting char­
acteristic boundary conditions are employed for the disturbances. The lateral 
boundary conditions are imposed by periodicity. 

A spectral-finite-difference method (Laurien & Delfs, 1994), based on Fourier 
expansions in Xl- and x2-directions and on sixth order compact differences in 
x3-direction, is used. All flow quantities are required to vanish at one stream­
wise and one spanwise station (preferably but not necessarily at Xl = 0, Ll and 
X2 = 0, L 2 ). With Ll = 10 and L 2 = 5 the domain is large enough to satisfy 
this boundary condition in an approximative manner up to the particular stage 
of development considered here. In order to keep the base flow stationary any 
unrealistic temporal development of the flow averaged in both horizont al direc­
tions over the entire integration domain (base flow, mode 0,0) is suppressed. The 
temporally averaged flow (mean flow) may change due to nonlinear interactions. 
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Figure 2: Velocity and temperature profiles of the base flow: measured data of 
Hoheisel 1990 (0) and curve fit used in the simulation (-). 

Base flow and initial disturbance 

As the base flow, see Fig. 2, the velocity profile of an accelerated boundary 
layer with adiabatic wall is considered. Although it is not intended to make 
any comparison of simulation results with experiments in this paper, we have 
derived the base flow from experimenta! data using curve fits. This is done in 
order to ensure, that the nonlinear amplification mechanisms to be investigated 
is present in this flow. We chose an experiment al test case relevant for subsonic 
turbine cascades (Hoheisel, 1990) at a chordwise position xjc = 0.65 and a 
free-stream turbulence level TUI = 7.1% (Tu has an influence on the velo city 
profile at xjc = 0.65). This position is close to transition onset as determined 
from the measured boundary layer shape factors (2.2 here). With the reference 
quantities h, Ue and Te (velocity and temperature at the boundary layer edge), 
the Reynolds number is Reó = 5800 and the Mach number is Me = 0.65. 

The initia! disturbance is chosen similarly to a distribution used by Hen­
ningson et al. (1993). This disturbance has been chosen in order to establish 
a reference case for later investigation of other initia! disturbances. All quan­
tities are multiplied by a free amplitude parameter A. The disturbance centre 
is located at Xl = 0.15 LI and X2 = 0.5 L 2 ; see the areas of upward or down­
ward motion in Fig. 3. The disturbance consists of two pairs of counter-rotating 
vortices, see Fig. 4. 

Simulation results 

The low amplitude case A = 0.005 has been simulated using a numerica! resolu­
tion of 322 X 76 points and a time step width of fl.t = 0.25 (nondimensionalized 
by U e and h). In the large amplitude case the initia! disturbance is chosen two 
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Figure 3: Initial disturbance, contour lines of the norm al velocity U3 in a plane X3 ~ 0.4, 
line spacing is A/20. 
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Figure 4: Initial disturbance, projections of streamlines on the X2-x3-plane at Xl = 1 
(top) and Xl = 2 (bot tom ). The disturbance is three-dimensional. 

orders of magnitude larger, namely A = 0.5 and the resolution is 32 x 64 x 76, 
t:::.t = 0.125. The development of the maximum norma! velocity U3/ A in the 
integration domain is compared in the following tabie: 

.180 

.180 

1 
.129 
.132 

2 

.123 

.129 

3 
.106 
.112 

4 

.086 

.099 

5 
.071 
.091 

6 
.056 
.104 

7 

.048 

.138 

8 
.038 
.176 

The low amplitude case is damped up to t = 8, whereas the large amplitude 
case becomes amplified for t > 5. The development for t < 5 may be interpreted 
as an initia! transient . 

The normal velocity distributions in a wall-parallel plane, see Figs 5 and 
7, indicate, that the flow structures are stretched in streamwise direction while 
travelling downstream. In the low amplitude case, Fig. 5, the distribution is 
very smooth with small gradientsj the structure spreads out and seems to be 
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Figure 5: Low amplitude case: contour lines of the normal velo city in a plane X3 :::::: 0.4 
at t = 4 (left) and t = 8 (right), line spacing is 2.5 x 10-4 . 
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dissipated. In contrast to this, in the large amplitude case, Fig. 7, steep gradients 
in x2-direction develop and the sp reading is much less pronounced. Since the 
amplitude A is the only parameter different in the two cases this development 
must be due to the nonlinearity of the governing equations. 

The instantaneous velocity field represented by streamlines starting and pro­
jected on planes Xl = const. at t = 8 is shown in Figs 6 and 8 for the two cases. 
The visualization technique used is helpful to understand the structure of the 
velocity field by identification of the vort ex centres (we are aware that the centre 
positions depend on the choice of the projection plane, the term vortex is used 
here for the particular structure observed). In the nonlinear case the vortices 
are smaller with their centres closer together than in the linear case. A detailed 
investigation of the position of two vortices I and II suggests that the nonlinear 
structure consists of a system of two counter-rotating vortices winding around 
each other. There seems to be little difference between our observation and the 
corresponding mechanism in incompressible flow as described by Henningson et 
al. (1993) . When the simulation is continued with much higher numerical reso­
lution it is expected, that the disturbance will finally lead to a turbulent spot. 

Conclusion 

Our numerical method is able to describe amplitude-dependent amplification or 
damping as expected. It has been shown, that the physical mechanisms observed 
in the development of the streamwise stretched disturbance can be described 
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with nonlinear vortex interaction. These mechanisms, previously described by 
Henningson et al. (1993) for incompressible channel and boundary layer flows, 
seem to be relevant in compressible boundary layers as weil. Our visualizations 
give further insight into the velocity field of the developing flow structures. 

This investigation considers a model problem and must be regarded as a 
st rong simplification of the real problem (transition in turbo-engines). It should 
not be interpreted as a practical transition prediction method in its earliest stage. 
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Receptivity to Sound on a 
Parabolic Leading Edge 

Abstract 

403 

The receptivity of the boundary layer over slender parabolic bodies subject to 
a free-stream sound disturbance is investigated. For this study, the full incom­
pressible Navier-Stokes (N-S) equations, in stream function and vorticity vari­
ables, were solved numerically. A novel formulation was used which allowed the 
unsteady N-S equations to be converted into two steady systems of equations 
describing the basic flow and its disturbance field. The solutions for the two flow 
fields agreed well with those found in the literature. The leading-edge receptiv­
ity was found to increase as the leading edge nose radius decreased, reaching a 
maximum for the infinitely thin flat plate. 

Introd uction 

The term "receptivity" was first introduced by Morkovin (1969) to characterize 
the relation bet ween disturbances outside the steady lamlnar boundary layer, 
and the internalized disturbances that may be amplified according to stability 
theory. Our knowledge of the physics of this process is important because it 
represents the first stage in the development of growing disturbances which lead 
to turbulence. Our understanding of the receptivity process has largely come 
from asymptotic theories. The earliest of these we re by Goldstein (1983, 1985). 
Although these set the framework, they referred to infinite flat plates without a 
leading edge. 

Murdock (1980,1981) used a numerical approach to study the receptivity over 
an infinitely thin flat plate and parabolic cylinders. For both cases, Murdock 
modeled the receptivity by the parabolized form of the N-S equations. More 
recently Hammerton & Kerschen (1992) have considered an asymptotic approach 
for a parabolic leading edge. Presently, there are no other analytical solutions 
or physical experiments to which these results can be checked. 

One of the earliest physical experiments on leading-edge receptivity was for 
a sharp flat plate by Shapiro (1977). More recently an elliptic leading edge 
joined to a flat plate was used in the experiments by Saric & Rasmussen (1992) 
and Saric, Wei & Rasmussen (1994). Lin, Reed & Saric (1990) performed a 
full N avier-Stokes calculation to model those elliptic leading edge experiments. 
Their numerical results are not complete from the point that it is difficult to 
distinguish between receptivity produced by the leading edge, or produced at the 
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joint between the ellipse and flat plate. Also, it is impossible in their geometry 
to separate the effects of curvature and pressure gradient on receptivity. 

The parabolic geometry has the advantage of having a constant curvature. 
For a zero angle of attack, the pressure gradient is everywhere favourable. The 
pressure gradient however can be changed by placing the body at an angle of 
attack. In terms ofthe basic flow, at 0° angle of attack, Davis (1972) has already 
formulated the numerical method. In this, he introduced a change in variables 
which removes the singularity in the vorticity that occurs in the limit as the 
body approaches a sharp infinitely thin plate. We follow a similar approach here 
in terms of both the basic flow and perturbation solutions. 

Physical problem 

Here, we consider the 2-D laminar incompressible flow of a constant-property 
fluid over a parabolic body. The equation of the surface of the parabolic-body 
is given by 

1 
x(y) = 2R(y2 - R2), (1) 

where Ris recognized as the nose radius of curvature of the parabolal. 

Governing equations 

The governing equations are the 2-D N -S equations in stream function ('Ij;) and 
vorticity (w) form. These are made dimensionless and converted into parabolic 
coordinates ({, 'Tl). In order to be able to solve for the flow over a flat plate 
(which is equivalent to the flow over a parabola in the limit as the nose radius of 
curvature goes to zero) including the leading-edge, it is necessary to remove the 
singularity at the leading-edge. To do so, we follow Davis (1972) and introduce 
the new variables j and g which are related to 'Ij; and w by 

'Ij;=çj(ç,'Tl,t) (2) 

The l1ew dependent variables are then governed by the equations, 

(3) 

lnote that Rin the dimensional form is the nose radius of curvature, but when nondimen­
sionalized, it is the Reynolds number based on the nose radius. 
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(4) 

This is the final form of the governing equations. We note that they are coupled 
and non-linear. 

To investigate the leading-edge receptivity to freestream sound waves, we 
consider the freestream to be composed of the uniform flow in x-direction with a 
superposed uniform small oscillation of temporal frequency cr and amplitude f, 

(5) 

where f is sufficiently smail for linearization. We then decompose the unsteady 
flow field into a steady basic state plus unsteady perturbation (in normal mode 
form), according to 

f (ç, TJ, t) = F (ç, TJ) + fe iut j (ç, TJ) 

9 (ç, TJ, t) = G (ç, TJ) + feiutg (ç, TJ)· 

(6) 

(7) 

Substituting the above equations (6 & 7) back into the governing equations (3 & 
4) as weil as the boundary conditions and then equating terms of equal powers 
in f on both sides of each equation leads us to the governing equations of both 
the basic and perturbation flow fields. 

The basic flow (zero-order terms in f) is governed by the foilowing equations, 

2 
F1)1) - G + Ff.f. + ~ Ff. = 0 (8) 

The boundary conditions consist of no-slip, no-penetration at the wall, and 
uniform vortex-free flow in the free stream. This yields: 

as TJ = Rl/2 F= 0, F1) = 0 and G = F1)1) (10) 

as TJ -+ 00 aF -+ 1 and G -+ 0 a1) (11) 

These equations which govern the basic flow are steady, coupled and non-linear 
in the real variables F and G. 

Af ter linearizing in f, the perturbation field (first-order terms in f) is governed 
by 

(12) 
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with the boundary conditions, 

as TJ = Rl/2 f = 0, (14) 

as TJ-OO fT/ - 1 and 9 - O. (15) 

These equations governing the perturbation field are steady, coupled and 
linear in the complex variables f and g. The disturbance frequency, (J, appears 
explicitly in the perturbation equations, therefore, the solution will depend on 
the frequency. The formulation of the two sets of equations developed here was 
first proposed by Herbert (1991). 

Method of solution 

The general method of solution was to formulate a set of simultaneous algebraic 
equations using 2nd order differencing forms. The details of the numerical so­
lution are given by Haddad (1995). The computational grid was nonuniform 
in both directions due to the use of Robert 's stretching to cluster more points 
near the body surface and near the leading edge. In order to calculate the flow 
for the body at angles of attack, the computational grid extends over the whole 
body. No assumptions about symmetry between the upper and lower halves of 
the body were made in the boundary conditions for the zero angle of attack case. 

Central differencing was used whenever possible, otherwise, forward or back­
ward differencing was used as applicable. The finite-difference scheme was second­
order accurate throughout the grid. At the surface of the body (TJ = Rl/2), there 
existed two conditions on the stream function (J in Eq. 14). To implement 
bo~h of these conditions, the condition fT/ = 0 was finite differenced first and the 
resulting equation was solved for one of the unknown variables. This was then 
substituted into the difference equation of the condition 9 = fT/T/' thus allowing 
us to implement all the boundary conditions at the wall. 

At the outflow boundaries, a so-called "non-reflecting" boundary condition 
was used. To implement this condition, a "buffer-zone" was used to gradually 
zero the elliptic terms in the governing equations. This was done using a 'tanh' 
weighting function which was multiplied by the elliptic terms. The streamwise 



Thomas C. Corke & Osamah M. Haddad 

0 .6 r--------------, 

0.5 
Re= 1000 

$ 0 .3~_~1~0_~ 
Q: 
..;. 
cr 

0 . 2~-....o....L--_ 

0.1 'f.-_---O..:<..O _ 

0.0 

10-2 10-' 10° 

: Pre.ent-Study 

o : 00v;.(1972) 

10' 

N .... 
'ä:: 
..;. 

407 

-- : Present-Study 

1.2 Re- 1000 0: 00v;,(1972) 
~-"=e-...:..::.:""-__ _ 

C5 0.8,---o--'-"---.:t--... 

0.6 

t 

Figure 1: Comparison of surface pressure (left) and skin friction (right) distributions 
along parabolic body to those of Davis (1972) . 

extent of the buffer zone was set to be at least four wavelengths of the instability 
waves expected in the perturbation solution. 

For the basic flow, the governing equations were linearized using a Newton's 
Method. The set of equations was solved using a standard banded matrix sol ver . 

Sample results 

The sample results are all for cases with a zero mean angle of attack. Two of 
the basic flow quantities consisting of the streamwise distributions of the surface 
pressure and skin friction are shown in Fig. 1. These are compared to the 
calculations by Davis (1972) for a range of nose Reynolds numbers, 0 :::; Re :::; 
1000. The symbols correspond to Davis' results and the solid curves represent 
the results from the present study. The agreement is excellent. We observe that 
far from the leading edge, the values of both quantities converge to constant 
(asymptotic) values. We have checked these against the asymptotic solution for 
the basic flow in the paper by Davis (1972), and again found excellent agreement. 

The results for the perturbation flow have been compared to those of Mur­
dock (1981) and Ackerberg and Phillips (1972). The agreement was excellent 
(Haddad, 1995). Samples of the perturbation solution are shown in Fig. 2. All 
the results are for Re = 10 and dimensionless frequency F = 2.3 X 10-4• In these 
cases, the u-component of the unsteady Stokes flow has been subtracted from 
the total perturbation flow. This was done by solving the original equations (12 
& 13), less the inertial terms, on the same computational grid and subtracting 
that solution from that of the full governing equations. The left part of Fig. 2 
has amplitude scales which capture the large peak in u at the leading edge. The 
scales of the plots in the right part of Fig. 2 have been magnified to better show 
the fluctuations in the linear amplified region. 
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Figure 2: Streamwise velocity perturbation amplitude distributions along parabolic 
body just above the wall (bottom) and at the amplitude maximum (top) . Right set of 
graphs have magnified scale. 

Fig. 3 shows wall-normal amplitude profiles of the streamwise perturbation 
velocity at consecutive downstream positions, starting from the leading edge. 
These show that slightly downstream of the leading edge, the amplitude dis­
tribution has a T-8 eigenfunction shape. This however decays rapidly. By the 
position where R!P ~ 55, the upper lobe is lost. This location is still far up­
stream of the linear stability Branch I. 

8tarting from the leading edge, we can expect that the fluctuations in the 
boundary layer will be made up of a combination offorced (non Orr-8ommerfeld 
(0-8)) modes, and 0-8 modes of both discrete and continuous spectrum types. 
Recall that we have already removed the unsteady 8tokes flow. The 0-8 modes 
will initially decay exponentially until they reach Branch I. Past that point they 
are expected to grow until they reach Branch II. Beyond Branch I1, they again 
decay. 

Murdock (1980) found that ne ar Branch I, the amplitude of the discrete 
0 -8 mode was overwhelmed by modes which he believed were part of the 0-8 
continuous spectrum. These were especially evident away from the wall, near the 
location of the 0-8 discrete-mode maximum. He believed that these were part of 
the continuous spectrum because at a fixed frequency, their longer wavelengths 
gave them a dimensionless phase speed close to 1. The appearance of longer 
wavelength modes were also observed by Gatski & Grosch (1987) in numerical 
simulations for the flow over an infinitely thin flat plate. 

Focusing again on Fig. 2 in the top-right plot, we can see evidence of a longer 
wavelength modulation ofthe streamwise velocity fluctuations. As with Murdock 
(1980,1981) , when we viewed the u-fluctuations close to the wall (bottom, Fig. 2) 
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Figure 3: Wail-normal amplitude profiles at consecutive downstream positions , 
close to the leading edge (Stokes wave has been subtracted). 
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Figure 4: u-amplitude distribution along body (left) at the height of the maximum 
amplitude, and wall~normal distribution at Branch 11 location (right) , after filtering 
long wave-Iength fluctuations. 

we can better differentiate a single fluctuation which has the proper wavelength 
for a discrete O-S mode at the freestream oscillation frequency. In order to 
separate out this mode from the total fluctuations, we used a spectral high-pass 
filter. The filter was designed to remove fluctuations with wavelengths less than 
that of the expected theoretical discrete T-S mode. The result is shown in the 
left part of Fig. 4. The magnified view clearly shows u-fluctuations which decay, 
grow and decay. We have marked the theoreticallocations of the linear-theory 
neut ral growth Branches I & II, as weil as the theoretical wavelength. Similar 
filtered results at different heights above the surface were taken to construct the 
wall-normal distribution shown in the right part of Fig. 4. The T-S eigenfunction 
based on linear theory for a Blasius boundary layer is shown as the solid curve. 
The agreement between it and the computed amplitude distribution is quite 
good. 
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Figure 5: Dependence of leading edge receptivity on nose radius of curvature, rn , based 
on different methods. The left plot corresponds to methods 1 and 2. The right plot 
corresponds to the amplitude at Branch 11, referred to as KIl. 

Fig. 5 documents the effect of nose radius on the leading edge receptivity 
coefficient, KLE = IUYSLEI/lu60l. Following Hammerton & Kerschen (1992), we 
have represented the nose radius in terms of aStrouhal number, St = 27r fTn/Uoo . 
The amplitude at the leading edge UYSLE was determined by three different meth­
ods. The first followed that of Murdock (1980). It involved fitting an exponential 
function to the envelope of amplitude fluctuations between the leading edge and 
the first neutral growth region. This method makes no discrimination about 
the origin of the fluctuations, namely if they are forced or O-S modes. The 
second method attempts to address this. It is based on an exponential extrap­
olation to the leading edge of the maximum amplitude at streamwise locations 
wh ere amplitude distributions had a T-S-like eigenfunction shape (e.g. Fig. 3 

at Re!/2 = 18.4). The third method used the maximum amplitude of the fil­
tered fluctuation profiles (e.g. Fig. 4) at Branch II. The re sult of this method is 
shown at the right plot of Fig. 5. These could be projected back to the leading 
edge based on the integrated amplitude ratio based on linear theory. The results 
show that the leading edge receptivity coefficient is maximum for the infinitely 
sharp flat plate, and decreases with increasing no se radius. The difference in the 
first two methods only results in a shift between their respective distributions. 
The result from the third method corresponds to the amplitude at Branch I1, 
which we refer to as KIl, Using the amplitude ratio, based on linear theory for 
a Blasius layer (which is relevant except very close to the leading edge), these 
amplitudes will be 0(1) at the leading edge. 

The dependence of the leading edge receptivity coefficient on nose radius is in 
good qualitative agreement with the analysis of Hammerton & Kerschen (1992), 
which shows a decrease in KLE with increasing Strouhal number. We can make 
a quantitative comparison to the experiment of Saric et al. (1994) . Their value 
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of the leading edge receptivity coefficient is shown as the filled square in the left 
plot of Fig. 5. We find that the experiment al value falls between that predicted 
by the two methods, and within 4% of that predicted by method 1. 

Conclusions 

The spatial formulation used in this problem was successful in predicting the 
evolution of instability waves induced by acoustic freestream disturbances. We 
found that the leading edge receptivity coefficient depended on the nose radius 
of curvature, with the largest receptivity occurring for the infinitely sharp lead­
ing edge. This agreed with the numerical results of Murdock (1980) and the 
asymptotic analysis of Hammerton & Kerschen (1992). We also found excellent 
agreement with the experiment of Saric et al. (1994). 

Acknowledgement 

This problem was first introduced to the first author by Thorwald Herbert while 
the author was on sabbatical and working at Ohio State University and Dy­
naFlow, Inc. The author is indebted to him for suggesting the problem and for 
the frequent suggestions as it evolved. 

References 

Ackerberg, R. C. & Phillips, J. H. 1972 - The unsteady laminar boundary layer 
on a semi-infinite flat plate due to small fluctuations in the magnitude of 
the free-stream velocity. J. Fluid Mech. 51, 137-157. 

Davis, R. T. 1972 - Numerical solution of the Navier-Stokes equations for sym­
metric laminar incompressible flow past ei parabola. J. Fluid Mech. 51, 
417-433. 

Gatski, T. & Grosch, C. 1987 - Numerical experiments in boundary layer recep­
tivity. Proc. Symp. on Stability of Time Dependent and Spatially Varying 
Flows, Springer-Verlag, pp. 82-96. 

Goldstein, M. E. 1983 - The evolution of Tollmien-Schlichting waves near a 
leading edge. J. Fluid Mech. 127,59-81. 

Goldstein, M. E. 1985 - Scattering of acoustic waves into Tollmien-Schlichting 
waves by streamwise variations in surface geometry. J. Fluid Mech. 154, 
509-530. 

Haddad, O. M. 1995 - Numerical study ofleading edge receptivity over parabolic 
bodies. Ph. D. Thesis, Illinois Institute of Technology. 

Hammerton, P. W. & Kerschen, E. J. 1992 ---' Effect ofnose bluntness on leading­
edge receptivity. Stability, Transition and Turbulence, ~ds. M. Y. Hussaini, 
A. Kumar, C. L. Streett, Springer-verlag, New Vork. 



412 Receptivity to sound on a parabolic leading edge 

Herbert, Th. 1991 - Numerical study of leading-edge receptivity. Internal re­
port, Ohio State University, Columbus OH. 

Lin, N. Reed, H. 1. & Saric, W. S., 1990 - Leading edge receptivity to sound: 
Navier-Stokes computations. Appl. Mech. Rev. 43, 175. 

Morkovin, M. V., 1969 - On the many faces of transition. Viscous Drag Reduc­
tion, ed. C. S. Welis, Plenum. 

Murdock, J. W., 1980 - The generation of a Tolimien-Schlichting wave by a 
sound wave. Proc. R. Soc. Lond. A 372, 517-534. 

Saric, W. S. & Rasmussen, B. K. 1992 - Boundary layer receptivity: Freestream 
sound on an ellipticalleading edge. Bull. Am. Phys. Soc. 37, 1720. 

Saric, W. S., Wei, W. & Rasmussen, B. K. 1994 - Effect ofleading edge on sound 
receptivity. Laminar-Turbulent Transition, Vol IV, Ed. R. Kobayashi, 
Proc. IUTAM Symp; Sendai, Japan. 

Shapiro, P. J. 1977 - The influence of sound up on laminar boundary layer 
instability. MIT Acoust. Vib. Lab. Rep. 83485-83560-1. 

Authors' addresses 

°Fluid Dynamics Research Center 
Mechanical and Aerospace Engi­
neering Department 
Illinois Institute of Technology 
Chicago, TI 60616 

I>Jordan UniversityofScience and Tech­
nology 
Mechanical Engineering Department 
Jordan, Irbed, P.O. Box 3030 



N.V. Semionov, A.D. Kosinov & A.A. Maslov 

Experimental Investigation of 
Supersonic Boundary-Layer Receptivity 

Abstract 

413 

The leading-edge receptivity of a supersonic boundary layer on a flat plate to 
controlled acoustic disturbances is experimentally studied. It is found that exter­
nal disturbances spreading upstream with negative phase velocities do not cause 
a response in the boundary layer. The acoustic disturbances with positive phase 
velocities generate oscillations in the boundary layer. The receptivity coefficients 
were obtained for the lat ter case. 

Introd uction 

At present it is generally recognized that transition is connected with the loss of 
stability of the initial laminar flow and with the receptivity of boundary layers. 
By receptivity we mean the process in which external disturbances generate un­
stabie waves inside boundary layers (Morkovin, 1957). The majority of theoret­
ical and experiment al investigations on receptivity were carried out for subsonic 
flow. Mack (1975) theoretically studied the interaction of acoustic waves and 
a supersonic boundary layer for the first time. He found that eigen oscillations 
can exceed the amplitude of acoustic waves a few times. Recently other theoret­
ical studies of leading-edge receptivity of supersonic boundary layers to external 
acoustic waves have appeared (Duck 1990, Fedorov & Khokhlov 1992, Gaponov 
1995). 

Fedorov & Khokhlov (1992) examined the case of arbitrary incidence angle 
of the external wave falling on the leading edge, and invented two mechanisms 
of generation. The first is connected with sound diffraction, the second with 
diffusion of acoustic waves on the leading edge. They found that the generation 
of unstable waves in the boundary layer depends on the incidence angle of the 
acoustic wave and on whether the sound source is located above or below the 
model. Gaponov studied the generation of boundary-layer oscillations by a lon­
gitudinal sound field and found that the intensities of the disturbances in the 
boundary layer depend on the spatial orientation of the external acoustic wave. 

The receptivity problem of supersonic boundary layers has almost not been 
investigated experimentally. One of the few examples is Kendall (1975), who 
measured the receptivity coefficient between free-stream pulsations and the dis­
turbances in the boundary layer at Mach numbers in the range 1.6 to 8.5. The 
receptivity problem can be solved with the help of external controlled distur­
bances, which generate eigen oscillations in the boundary layer. Using an exter­
nal disturbance source Maslov & Semionov (1986) could experimentally establish 
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:3 
Figure 1: Scheme of the experiment: plates (1 & 2); discharge (3); acoustic radiation 
(4); measured boundary layer (5); hot-wire probe (6). 

the regions of maximum boundary-Iayer receptivity on a flat plate to acoustic 
distur ban ces. These regions are: a) the leading edge of the plate; b) the area 
corresponding to the acoustic branch of the neutral curve; and c) the area corre­
spon ding to the lower branch of the neutral stability curve. Maslov & Semionov 
(1989) studied the wave structure of disturbances in the boundary layer when 
the maximum of the sound radiation feIl on the leading edge of the flat plate. 
These data we re compared with the wave structure of disturbances generated by 
a point source in the boundary layer (Kosinov et al., 1990a). These results show 
the complex process of the transformation of an acoustic wave to unstable waves 
within the supersonic boundary layer. 

Experimental conditions 

The experiments were performed in the supersonic wind tunnel T-325 of the 
Institute of Theoretical and Applied Mechanics of the Russian Academy of Sci­
en ces with the test section dimensions 600 X 200 X 200 mm3 , at Mach number 
M = 2, unit Reynolds number Rel = 6.6 X 106 m- l . The model is presented 
in Fig. 1. It consists of two flat plates, mounted at zero angle to the flow. 
Vortical and acoustic disturbances were generated by using a surface discharge 
with frequency f = 20 kHz as described by Maslov & Semionov (1987) and 
Kosinov et al. (1994). Plate 1 contains the surface discharge and can be moved 
in normal direction. Plate 1 was placed below plate 2. In this case generation 
of disturbances in the boundary layer by the controlIed external acoustic field 
takes place near the leading edge of plate 2. Disturbances were registered by a 
constant temperature hot-wire anemometer; a probe with a tungsten wire of 5 
J.Lm diameter and 1.2 mm length was used. The probe could be moved along 
three coordinates with the help of a traversing device with an accuracy of 0.1 
mm for the longitudinal and spanwise coordinates (x and z, respectively), and 
0.01 mm for the normal coordinate y. The hot-wire signal was processed by a 
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computer with a 10 bit 1 MHz AID converter. Synchronous summation of the 
signal up to 200 points was carried out in the experiments for improvement of 
the signal-to-noise ratio. Amplitudes A(J, x, z) and phases iJ!(J, x, z) of the ini­
tial acoustic disturbances and oscillations in the boundary layer of plate 2 were 
measured. The discrete Fourier transformation was used to define the complex 
wave-number spectra (Kosinov et al., 1990b) . Af ter transformation, the data 
were presented as A f(X), IJ! f(X) - distributions of the amplitude and phase of 
disturbances at f =const over the wave inclination angles defined by 

x = arctg((3 I ar) , (1) 

where ar, (3 - wave numbers are in x- and z-direction respectively. Wave numbers 
4ar , (3 were defined fr om the relation 

where E(Xi, Zj , tk) denotes the oscillations as obtained from the hot wire, and 
T denotes the realization time. To define the ratio between the disturbances 
generated in the boundary layer and the amplitude of the acoustic waves falling 
on the leading edge, a receptivity coefficient K was calculated from the relation 

(3) 

Results 

To define the initial amplitude of the fluctuations in the free stream, the dis­
turbance field was measured in the plane of plate 2 (while plate 2 itself was 
temporarily removed). Fig. 2 shows the amplitude and phase distributions 
Ao(x), iJ!o(x). Here the coordinate x was measured downstream from the border 
of radiation. To analyze the obtained data it is useful to present a simplified 
physical model of the disturbances source. An electric arc was drawn on the 
surface of plate 1. We propose that the vortices are generated with distinct di­
rections of rotation in the yx plane in front of and behind the arc. Besides the 
disturbances T -S waves appear in the boundary layer of plate 1 and propagate 
downstream. This process is accompanied by the sound radiation into the exter­
nal flow . U sing this physical model and distributions of Ao( x) and iJ! 0 ( x) we can 
choose the characteristic zones, corresponding to the different types of external 
disturbances. The zone 1.5 < x < 5 mm approximately corresponds to vortex 
radiation in front of the discharge, while the zone 9 < x < 13 mm corresponds 
to vortex radiation behind the discharge and the zone of radiation of tra velling 
waves is x > 14 mmo 

Fig. 3 shows the distribution of Ao over ar, obtained after processing the 
data presented in Fig. 2. The amplitude is normalized by its maximum. The 
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Figure 2: Dependence Ao(x), <l>o(x) of controlled initial disturbances at the plane of 
plate 2 (while plate 2 was removed) . 
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Figure 3: ar-spectra of controlled initial disturbances (data of Fig. 2). 

distribution Ao( ar) has two peaks with ar = -0.45 and ar = 0.75 rad/mmo 
The first peak corresponds to radiation of the vortex in front of the discharge, 
and the second peak corresponds to the radiation of the other zones. Values of 
ar were used for the computation of the disturbance phase velocity in x-direction 
by 

(4) 

Here U is free stream velocity. C = -0.54 was obtained for the first zone of 
radiation. The negative C corresponds to upstream spreading disturbances. For 
the other zones the phase velocity is C ~ 0.33 (acoustic disturbances ). 

To define ,6-spectra the initial distributions Ao( z) and cJ>o( z) were measured 
at x equal to 3.5, 11 and 23 mm, corresponding to different zones of radiation. 
The leading edge of plate 2 was installed at these three locations, where exter­
nal disturbances were measured. The distributions A(z), cJ>(z) of disturbances 
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Figure 4: Amplitudes and phases ofinitial disturbances and oscillations in the boundary 
layer for leading-edge coordinate x = 3.5 mmo 

were measured in the boundary layer of the plate 2 at x* equal to 40 and 50 
mm (here x* is the distance from the leading edge). The amplitude ,6-spectra 
were calculated. In this way the structure of the external disturbances and the 
waves generated by them in the boundary layer were defined. The measurements 
allow to make a quantitative estimation of the transfer function between initial 
and eigen oscillations. Fig. 4 shows amplitude and phase spectra over X of the 
external disturbances and oscillations excited by them in the boundary layer at 
x = 3.5 mmo Obviously, the amplitude of excited oscillations is close to zero. 
Consequently the receptivity coefficients are close to zero for the excited oscil­
lations by the upstream spreading disturbances. Hence, external disturbances 
with negative C do almost give no response in the supersonic boundary layer. 

Let us consider the analogous results for other zones. Fig. 5 shows the 
distributions of A j(X) and <P j(X) ofthe external disturbances and the oscillations 
excited by them in the boundary layer at x = 11 mmo It should be noted that 
the distributions of A j(,6) and <P j(,6) are similar (Kosinov et al., 1994) in the free 
stream and in the boundary layer, but the difference of phase velocities leads to 
the non-coincidence in magnitudes of X. Amplitudes of inclination waves with 
X ~ 10° and X ~ 30° become maximum in the radiation of the second zone, and 
disturbances with X ~ 30° are mainly generated in the boundary layer. 

Fig. 6 shows the distributions of A j(X) and <P j(X) of external disturbances 
and the oscillations excited by them in the boundary layer at x = 23 mmo Here 
the distributions of Aj(X) and <Pj(X) are similar in the external flow and in the 
boundary layer. The main amplitude peaks are observed at X = 0, which is in 
good agreement with results of Maslov & Semionov (1987), where the radiation 
from travelling waves was studied. The oblique waves have smaller amplitude, 
but for X 2: 35° the amplitude of oscillation in the boundary layer is larger than 
the amplitude of external disturbances. It may be noted that the distributions of 
A( z) and <p( z) are coinciding qualitatively with the results of Maslov & Semionov 
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Figure 6: Amplitudes and phases ofinitial disturbances and oscillations in the boundary 
layer for leading-edge coordinate x = 23 mmo 

(1989), where the disturbances in the boundary layer were excited by sound 
falling from above On the plate leading edge. The modulations in A{x,z) we re 
observed in both experiments, which points to the existence of several types of 
disturbances in the boundary ayer. 

Fig. 7 shows the receptivity coefficients J({X) for the second and third zone. 
For the second ZOne two characteristic regions of amplified disturbances over X 
are selected. The first region is within 10°, where the receptivity coefficients 
are minimum, and the second region is +(20° - 40°), where the coefficients are 
maximum. The data are presented for a disturbance amplitude that is above 
One third of the maximum amplitude. This is the reaSOn that the receptivity 
coefficients for the third ZOne are presented the -6° :s; X :s; 6° too. There is 
a difference in the receptivity coefficients for various zones in corresponding c. 
One of the reasons may be the distinct nature of external waves: radiation of 
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the second zone is due to the stationary sources and radiation of the third zone 
is due to travelling waves. These results correspond with theoretical conclusions 
(Fedorov & Khokhlov 1992, Gaponov 1995). The experiments also show that 
oblique waves are more amplified than the waves at X ::::::; O. This experiment al 
result with theoretical results obtained by Gaponov (1995). 

Conclusions 

Experimental data for the leading-edge receptivity in a supersonic boundary 
layer at Mach number 2 were obtained. Using controlled acoustic disturbances, 
the receptivity coefficients for different inclination waves were determined. It was 
found that the linear excitation of unstable waves in the supersonic boundary 
layer depends on the initial phase velocities and wave inclination of the external 
disturbances. The maximum receptivity coefficient corresponds to oblique waves 
with X angles from 20 to 40 degrees. 
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Transition in Flight at Supersonic and 
Hypersonic Mach N umbers 

Abstract 

423 

Features of a planned hypersonic transition experiment designed to validate sta­
bility codes are described, along with instrument at ion and data handling tech­
niques developed. A flight experiment concerning transition on a flat plate with 
elliptical nose section mounted underneath an F-15 flying at speeds up to Mach 
2 was performed to verify the instrumentation and the data acquisition tech­
niques. Results from the transition sensors (surface hot films and microphones) 
are exemplified. 

Introd uction 

Over the past decades the use of computational tools for transition prediction has 
become increasingly important. This also means that it is essential to verify the 
correctness of the codes and explore their reliability for different flow situations. 
The present paper concerns code validation experiments in flight at high Mach 
numbers. 

Two of the important issues in experiments of this type are: 

1. The experiment design has to be tailored to the code it is intended to 
validatej input parameters to the code and corresponding output results 
should be measured. For example, validation of a simple empirical for­
mula valid for incompressible flows where Reynolds number at transition, 
pressure gradient and turbulence intensity are correlated, can be limited 
to the measurement of these three quantities. To validate linear stability 
codes, the type of transition needs to be documented, and the most unsta­
bIe frequencies, their wavelengths and directions should be measured. If 
possible mean velocity profiles should be measured along with the pressure 
distributions. However, the free stream disturbance level is not part of the 
input and enters the validation only indirectly through the N -factor chosen 
to identify the transition, if the eN method is used. For PSE codes, the 
disturbance level and characteristics such as free stream turbulence, noise, 
vibration and roughness may be used as input for the code and hence 
should be measured. 
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Figure 1: The Pegasus launch vehicle . Length approximately 15 meters and wing span 
6.7 meters. The glove will be mounted on the starboard wing. 

2. Flight transition conditions are almost always 'reality'. In particular for su­
personic and hypersonic ground faeilities where the disturbance levels are 
very high, transition measurements may be useless in many cases, since 
a different type of transition (most of ten bypass) occurs in wind tunnel 
than in flight. While ground experiments ean provide uncoupled param­
eter variations, a flight test will in general mean that a combination of 
parameters is changing, and it may be neeessary to perform combinations 
of experiments to extract the effects of each parameter. A simple example 
is acceleration and retardation through the same MachjReynolds number 
range where the noise and vibration levels can be monitored. 

A hypersonic transition experiment 

A hypersonic flight experiment (Bertelrud, Graves, Young & Anderson, 1995) is 
in preparation to validate stability codes at Mach 6 to 8 and Reynolds numbers 
of interest for single-stage-to-orbit vehicles. A smooth, metallic 'glove' has been 
designed to be mounted on the delta wing of the first stage booster of the Pegasus 
launch vehicle (Mendenhall et al., 1991), as illustrated in Fig. 1. The main 
portion of the data is obtained at 120,000 to 180,000 ft (36 to 55 km) altitude 
while the vehicle is accelerating at close to zero angle-of-attack with a Mach 
number above 6. 
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Figure 2: Trajectory for Pegasus, Stage 1, as function of time and Mach number. 

The glove shape was designed using linear stability codes, enhancing the 
crossflow instability and reducing the probability of TS-type transition. Several 
steps we re taken to avoid bypass transition: 

• the leading edge radius was minimized to avoid attachment line contami­
nation. 

• vibration effects were evaluated using another launch to obtain acceleration 
levels and spectra up to high frequencies. 

• surface roughness was minimized through use of a metallic, smooth glove. 

• waviness was minimized through choice of a developable, single-radius pro­
file. 

Fig. 2 illustrates the trajectory of the Pegasus vehicle for the time period 
of interest for the crossflow transition experiment. During the launch, the pre­
dictions of attachment line transition indicate a laminar leading edge flow above 
Mach 5 to 5.5 (depending on the amount of leading edge contamination from 
the fuselage). Transition is assumed to move back as the vehicle accelerates and 
the Reynolds number is reduced due to the increasing altitude, moving past the 
glove trailing edge of the glove before reaching Mach 8. 

InstrumentatÎon 

The instrumentation includes flush pressure taps for verification of pressure dis­
tribution, thermocouples for temperature and transition location. A pressure 

10 
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Figure 3: Layout and dimensions of FTF (Flight Text Fixture), flown underneath the 
F-15 . 

rake, Preston tubes and Stanton tubes are used to document time-averaged prop­
erties of the boundary layer. 

Dynamic data will be obtained using recently developed dual surface hot 
films capable of high-frequency response at high temperatures along with fast 
pressure transducers mounted in an array to attempt space-time correlation. 

Since the Stage 1 of the Pegasus is non-recoverable and telemetry links do 
not permit transmission of high-frequency data at the rate needed for turbulence 
measurements, it is necessary to acquire the data, analyze it and compress it 
real-time. A 4-channel Data Acquisition and Processing System (DAPS, Graves 
et al., 1994) was developed using 100 kHz sampling per channel with digital 
processing and compression of the dynamic signals was developed. 

A flight experiment in supersonic flow 

Characteristics of the experiment 

To verify the instrumentation and data acquisition techniques required for the 
hypersonic experiment, a flight experiment was performed on a flat plate with 
elliptical nose mounted underneath an F-15, the Flight Test Fixture (FTF) (See 
Fig. 3) (Richwine & del Frate, 1994), and flown at Mach numbers up to 2, with 
the main region of interest for transition characterization being at flight Mach 
numbers 0.8 to 1.4. 
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From initial flight tests, where temperature-sensitive paint was used, it was 
known that transition would take pi ace over the elliptical nose region. Fig. 4 is 
an interpretation of the transition pattern found, for two Mach numbers. Despite 
the small aspect ratio of the FTF, transition appears to be fairly uniform and 
'quasi' two-dimensional, with a transition 'front' curving forward in the upper 
and lower edges of the test surface. 

Reference data defining the inflow conditions to the experiment was obtained 
from a boom mounted in the lower upstream corner of the FTF. Pressure dis­
tributions were measured along the surface at three spanwise locations. The 
instrumentation used for flow characterization (surface hot films, microphones, 
a pressure rake and Stanton tubes) was located on a removable panel, as shown 
in Fig. 5. 

Limited computations indicated that T-S instabilities existed only up to ap­
proximately 7 - 8 kHz, and the 25 kHz frequency response of the Pegasus instru­
mentation was considered suitable. 

Results 

With the layout of the transition sensors in _a spanwise row, but no streamwise 
simultaneous information obtained, the analysis of the results is done in two 
distinct parts. 
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Figure 6: Velocity distributions as function of timejflight Mach number. 

1. When a sensor indicates a change, either in terms of level (De or rms), or 
the DAPS output indicates a change in signal characteristics, it is possible 
to identify the transition onset or transition end as it happens at the sensor. 
At any ot her time instance, the transition is either ahead of or behind 
the sensor, and the data is usabie for qualitative estimates but not as 
quantitative measurements. 

2. For the identified transition passage it is possible to use the coincident in­
formation of flight conditions, Mach number distributions, vibration levels 
etc. to assess the data and compare it with computational codes. 

A time segment with an acceleration followed by a deceleration at constant 
altitude of 30,000 ft (9 km) is used as an example. Fig. 6 illustrates the 
flight Mach number as function of time along with the local Mach number 
at the sensor location. Already at a flight Mach number of 0.75 the flow 
contains alocal supersonic region. As illustrated by Fig. 6, the local 
pressure gradient initially is weakly adverse at the sensor location, but for 
flight Mach numbers above 0.85-0.9 the local gradient is favourable. Based 
on the measured velocity distributions, the boundary layer as function 
of time was predicted, using Mann & Whitten's integral method (White 
1974), and simple (incompressible) formulas such as e.g. Michel's or van 
Driest & Blumer's techniques were used to indicate where transition is 
expected to occur. The trend of estimated transition locations is in gener al 
agreement with the experimentally observed trends. 

Low-frequency information 

Figs 7a through 7c show the time series output from some of the transition sen­
sors. The Preston tube and Stanton tube outputs in Fig. 7a indicates very 
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and transitional time sequence. 
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distinct changes in skin friction levels, that can be used for documentation 
of transition 'front' passage. The different sensors indieate changes of lami­
nar jtransitionaljturbulent flows at slightly different times, as can be expected 
due to the spanwise physieal separation of the sensors (Fig. 5). While local flow 
is laminar, the wideband RMS from a microphone can be used to indieate the 
turbulence level associated with the experiment (Fig. 7b). Increases in the noise 
level is associated with changes in external noise level (e.g. enginejthrust) or 
transitionaljturbulent flow. Fig. 7c shows the output from one ofthe surface hot 
films. It indicates clear regions oflaminar and turbulent flow, but in the example 
there is a time segment where the flow is transitional and seems to change in 
character continuously. 

High-freq uency information 

In the preceding section, the information could be used to estimate if transition 
has occurred at a certain time. However, it does not give any indication of the 
re as on for transition - for this it is necessary to examine the characteristies of 
the dynamic signais, whieh more closely can be compared with predictions. 

Fig. 8 shows time-series of spectra from the hot film in Fig. 7 c. It can 
be seen how oscillations occur at a frequency slightly below 7 kHz. As the 
aircraft is accelerating (and the pressure distribution along the elliptical nose of 
the FTF changes), the disturbance frequency increases slowly, and at one point 
a higher harmonie shows up. As the Mach number (and Reynolds number) 
increase further, the intensity increase further until the spectra are filled out. 
Then af ter a few seconds, the flow suddenly loses the high frequency content; as 
can be seen in Fig. 6 this correspond to the pressure gradient turning favourable 
(i.e. dam ping disturbances ) at the sensor location. 

The next segment shows the low frequencies increasing in amplitude and 
spreading in frequency, and the segments of intermittent and turbulent flow can 
be clearly distinguished. In this case, the vibration levels are increasing as the 
aircraft it accelerating up to Mach 1.4. 

Conclusions 

An account of plans for a hypersonie experiment to document crossflow transi­
tion has been given, along with a description of and results from a quasi-two­
dimensional experiment up to flight Mach numbers of 2. An example of how to 
extract data for use as a validation experiment has been described. However, 
it is clear that a proper comparison with linear stability codes or PSE codes 
involves a large amount of computations to explore the experimental database 
for the parametric effects that exist in the flight data. 
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M.A. Zanchetta & R. Hillier 

Blunt Cone Transition at Hypersonic Speeds: 
The Transition Reversal Regime 

Abstract 

This paper reports on an experiment al investigation of transitional hypersonic 
boundary layers. The test geometry is a five-degree semi-angle cone. Experi­
ments are performed in the Mach 9 Imperial College gun tunnel. Time-resolved 
heat-transfer rates are obtained for laminar, transitional and turbulent boundary 
layers, for cases in the pre-reversal and transition reversal regimes. 

Introduction 

Of the many problems encountered in hypersonic aerodynamics, boundary-Iayer 
transition from laminar to turbulent motion remains an elusive area, of extreme 
interest to the scientist and also the designer/engineer. Severe thermal loads 
are encountered in hypersonic flight, and vehicles of ten present nose blunting 
to attenuate the kinetic heating. The blunt-body flowfield contains sub-, tran-, 
super- and hypersonic regions, in which many mechanisms (Mack modes, entropy 
layer instabilities, nonlinear by-pass, etc.) can promote transition. 

The nose-based Reynolds number Ren is defined as the product of th~ unit 
Reynolds number Reoo(m- 1 ) and the nose radius Tn. Transition studies have 
shown that increasing Ren initially delays the location of transition onset and 
increases the length to transition, as illustrated in Fig 1. Above a certain Ren, 
the transition front becomes highly three dimensional and may move upstream 
to the sphere-cone junction. This change in transition trend is denoted transition 
reversal and the range of Ren in which it occurs is named the transition revers al 
regime. In this paper examples of hypersonic transition in both the pre- and 
reversal regime will be given. 

Facility 

The Imperial College number 2 gun tunnel is an intermittent facility with a 4 
ms steady run window, capable of testing slender models up to 0.8 m in length. 
Three fully calibrated operating conditions exist, with the following nozzle exit 
plane conditions: 

low 
medium 
high 

8.89 
8.93 
9.01 

7.51 X 106 

12.62 X 106 

47.35 x106 

441 
760 

2815 
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1090 
1105 

Too (K) 
63.07 
64.31 
64.11 
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Model 

The basic model geometry is a five-degree semi-angle cone. A selection of inter­
changeable hemi-spherically blunted noses is used to obtain Ren from 0 (nomi­
nally sharp) to 1 million. The model is equipped with 65 thin film gauges aligned 
along a generatrix of the cone. Prior to and during the run, the temperature 
evolution is sampled and stored digitally at 125 kHz and successively convoluted 
to obtain the time-resolved heat-transfer rate using the expres sion of Cook & 
Felderman (1966). 

Transition in the pre-reversal regime 

To illustrate the pre-reversal transition process, a test case with Ren = 2.4 X 104 

has been selected. Time-resolved heat-transfer rates at five different streamwise 
locations in the laminar, transitional and turbulent regions are given in Fig. 2. 

Gauge 02, located at the most upstream station, shows the typicallaminar 
signal. The fluctuations arise mainly from digitisation and convolution noise. 
The boundary-layer edge properties at this location, as predicted by CFD, are 
given below: 

8 6* () Reedge (m-1 ) 

0.361 m 2mm 1.34 mm 0.07 mm 19.2 x 106 7.69 

At station 24, the appearance of transition events can be seen. Inspection of 
other time histories (w hich are not presen ted in Fig. 2) indicate that the first 
station at which the transition events are witnessed is gauge 06, (8 = 0.385 m) 
giving Retr=4.73 x106 . The high-frequency intermittent nature ofthe transition 
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process can be observed at gauge 34. Station 46 shows that the transition process 
is almost complete (other experiments show "stubborn regions" of laminar flow 
still persisting here). At the most downstream location (station 65) the boundary 
layer is believed to be fully developed turbulent. Again, inspection of time traces 
not included in Fig. 2, indicate that transition completion occurs at about 
gauge 60, s = 0.69 m, Res = 8.47 X 106). In Fig. 3, the variation of time­
averaged heat-transfer rate versus gauge location is given, together with the 
laminar CFD prediction. The mean heat-transfer rates can be seen to depart 
dramatically from the laminar trend given by the computation on ce the transition 
process begins, showing a local maximum (at s = 0.6 m) upstream of transition 
completion. Also of interest is the signal RMS, shown in Fig. 4. Although 
the inherent system noise has not been removed, the increase of signal RMS 
due to the onset of transition is obvious. The RMS reaches a certain peak 
value at alocation corresponding to the steepest gradient in mean heat-transfer 
rate, thereafter decreasing to a turbulent RMS value greater than the laminar 
level. The intermittency distribution for this case, obtained using a threshold­
type criterion, can be found in Fig. 5. The universal distribution based on 
the hypothesis of concentrated breakdown of Narasimha (1957) is also included 
in this plot. It is seen that it shows close agreement with the experiment al 
data, except at the low levels of intermittency activity, where the experiment al 
intermittency criterion is most prone to error. In Fig. 6, the PDF for selected 
gauges is given. The PDF for the "laminar" gauge (02) and the "turbulent" 
gauge (65) show a quasi Gaussian distribution, centred around the respective 
mean heating levels. The transitional gauges 24, 34 and 45 show the progressive 
re-arrangement of the PDFs with the advancement of the transition process. 

Transition in the reversal regime 

Visualisation experiments indicate that the reversal regime is characterised by 
sensitivity to roughness transition mechanisms. Experiments conducted with 
Ren = 1.08 xI 06 , illustrate the role of roughness in the hemispherical nose region. 
In Figs 7a and 7b, two liquid crystal visualisations are presented. In Fig. 7a, 
the nose region is polished to create a smooth surface and the boundary layer 
remains laminar over the entire model.length (Re s > 3 X 107). In Fig. 7b, 50 J.lm 
mean diameter roughness elements are distributed uniformly over the nose re­
gion. Streak-like wake structures appear downstream of the sphere cone junction 
and undergo transition by Res =4 X 106 . Heat-transfer measurements indicate 
that the turbulent events occurring in the reversal regime are characterised by a 
low-intermittency frequency « 1 kHz). 

The division bet ween the pre-reversal and reversal regime is not distinct, and 
there exists a range of Ren in which both mechanisms occur concurrently and 
"compete" to produce transition. In Fig. 8, the heat-transfer time trace for 
a "transitional gauge" can be seen. The nose Reynolds number is 1.26 X 105. 
Two types of transition events can be seen. The first are revers al regime events, 
marked X in Fig. 8, and originating in the nose and near nose region (Xtb in 
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Figure 7: Liquid crystal visualisation, Ren = 1.08 x 106 ; (a) smooth nose, (b) rough 
nose. 

Fig. 9). The second are transition spikes caused by the pre-reversal transition 
mechanism starting at Xts. In this particular case, after the onset of the pre­
reversal mode, (s = 0.4 m Res =16.8 X 106 ; found by inspection of the time 
histories not presented here), transition occurs rapidly. The occurrence of this 
transition mode is also highlighted by an abrupt rise in the transition event 
passage frequency, Fig. 10, reaching a maximum in excess'of 5 kHz at s = 0.52 
m which is found to be the 50% intermittency location. 

Reversal regime transit ion events 

The reversal regime transition event with its characteristic low frequency « 1 
kHz) and large spatial scales (> 100 mm) is reasonably weIl resolved by the 
sensors and AID equipment. For the Ren =1.26x 105 test case, the leading and 
trailing edge passage times for events have been tracked, using the time-history 
data, at 5 stations upstream of s = 0.4 m (Re s = 1.68 x 107). These are depicted 
in Fig. 11, and indicate for the leading and trailing edges speeds of 94% and 63% 
of the boundary layer edge velocity respectively. This information is included 
in the illustration of Fig. 12. Estimates for the mean-event convection speeds, 
evaluated using the cross-spectral density function and the correlation functions, 
are of 71 % and 82% of the edge velocity respectively. 
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Figure 8: Time-resolved heat-transfer rates, gauge 24 , Ren = 126,000. X indicates 
reversal regime transition events. 
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Conclusion 

In this paper, pre- and transition revers al regimes have been explored. The 
experiments indicate that transition in the pre-reversal is characterised by the 
breakdown of the laminar boundary layer at some streamwise location. Transi­
tion complet ion occurs by a high-frequency formation and subsequent growth of 
turbulent events. Increasing I(,en moves the point of breakdown further down­
stream. In the reversal regime, low-frequency turbulent events are formed in 
the nose and near nose region. The formation rate (spatial and tempora!) is 
dependent on the severity of the roughness environment in the hemispherical 
nose region. The "reversal" event has a streamwise length in excess of 10015 and 
leading and trailing edge speeds of 94 % and 63% ofthe edge velocity respectively. 
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Figure 12: Quasi one dimensional illustration of a turbulent event. 
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V. Wendt 

Experimental Investigation of Instabilities 
in Hypersonic Laminar Boundary-Layer Flow 

Abstract 

Hot-wire measurements are made in the laminar boundary layer of a flat plate 
and a cone at Mach 5. These measurements do not show the expected dominance 
of high-frequency second-mode instabilities, predicted by linear stability theory 
and found in ot her experiments. The growth of natura! disturbances within a 
broad frequency band up to 50 kHz on the flat plate and up to 200 kHz on the 
cone can be observed. 

Introd uction 

To develop an understanding of the physical processes involved in laminar­
turbulent transition in hypersonic boundary-Iayer flows it is necessary to per­
form detailed boundary-Iayer stability experiments, rat her than obtaining only 
the transition location. 

The most detailed hypersonic boundary-Iayer stability experiments are con­
ducted by Stetson et al. (1992) on a cone at a free-stream Mach number of 
8. These investigations show a distinct dominance of second-mode instabilities. 
The measured amplification rates of second-mode instabilities are in good agree­
ment with theoretical results recently obtained by e.g. Simen (1993) and Simen, 
Kufner & Dallmann (1993) using Thin Layer Navier Stokes solutions for the basic 
flow and local stability analysis with conical metric for the instability analysis. In 
contrast, measurements in the laminar boundary layer of a flat plate by Kendall 
(1975) and Wendt, Simen & Hanifi (1995) and for a hollow cylinder by Stetson 
et al. (1991) do not show the expected dominance of high-frequency second­
mode instabilities. However, the growth of natura! disturbances with rather low 
frequencies, partly growing in a frequency band that was predicted to be stabIe 
by linear stability theory, can be observed. It has to be determined whether 
the discrepancy between linear stability theory and plan ar boundary-Iayer in­
stability experiments is a feature of the plan ar boundary layer or whether other 
effects (e.g. a noisy wind-tunnel characteristic) are responsible for the differences 
mentioned above. 
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Figure 1: Experimental setup showing the flat plate and the cone both with mounted 
hot-wire probes in the Ludwieg tube. 

Experimental apparat us 

Wind tunnel 

The experiments are conducted in the Ludwieg-tube wind tunnel of DLR 
Göttingen. The range of possible test Mach numbers is Moo ~ 3 to Moo ~ 
12, and the Reynolds number can vary between Reoo/l ~ 1.5 X 106 m-1 and 
Reoo/l ~ 80 X 106 m-1 . A detailed description of the facility and its operational 
characteristics is given by Ludwieg et al. (1969). 

Models 

For the boundary-Iayer investigations a flat plate and a cone are used. The 
aluminum flat plate is 300 mm long and 10 mm thick, and it spans the full test 
section width of 500 mmo The sharp leading edge has a bevel angle of 11.6°. 
The cone is 500 mm long with a half angle of 7° and a sharp tip. The cone is 
made of steel and has a wall thickness of 5 mmo The nose is exchangeable, and 
the frustum can be divided in two parts allowing further instrumentation inside 
the cone. Fig. 1 shows the experimental setup of the flat plate and the cone with 
mounted hot-wire probes in the Ludwieg tube. 

Test conditions 

The Mach number for all the experiments presented here is Moo ~ 5. For the 
boundary-Iayer measurements on the flat plate and on the cone almost constant 
charge conditions of Pt,O ~ 5 bar and Tt,o ~ 110 oe are used, which results in 
a unit Reynolds number of Reoo/l ~ 7.5 X 106 m-1. In the case of the cone the 
Reynolds number at the boundary-Iayer edge is Reoo,e/1 ~ 9.3 X 106 m-1 . 
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Figure 2: Disturbance amplitude spectra for the flat plate (left, R=995) and the cone 
(right , R=1950) as a function of the wall distance. 

Hot-wire anemometry 

For the measurements a single wire probe with a tungsten wire of 1.25 mm length 
and 5 J..Lm diameter is operated by a constant temperature anemometer. In all 
the experiments the wire is operated at a high overheat ratio to assure that the 
wire is mainly sensitive to mass-flow fluctuations (Kovásznay, 1950; Morkovin, 
1956). This is proved by a wire calibration in the free stream of the Ludwieg 
tube at different stagnation temperatures, while keeping the stagnation pressure 
constant. This calibration cannot be used for the boundary-layer measurements, 
since the different temperatures and mass flows -according to the boundary-layer 
profiles- cannot be resolved by a single-wire probe. 

Results 

The unit Reynolds number in the flat plate experiments is Reoo/l = 7.5 X 106 

m-1 , which results in local Reynolds numbers ranging from Rex ~ 0.4 X 106 

(R ~ 650) to Rex ~ 1.7 X 106 (R ~ 1300). In the cone experiments the unit 
Reynolds number is Reoo/l ~ 9.3 X 106 m-1 , which results in local Reynolds 
numbers from Rex ~ 0.7 X 106 (R ~ 840) to Rex ~ 4.4 X 106 (R ~ 2100). 
At a fixed unit Reynolds number the range of the local Reynolds number is only 
dependent on the range of possible probe locations. Here R is the Reynolds 
number based on the local Blasius length, R = v' Rex. 

The measurement of profiles in the laminar boundary layer of the flat plate 
and the cone reveals disturbance-amplitude profiles with astrong peak at ap­
proximately 75 % of the boundary-layer thickness. This peak is typical for an 
unstable laminar boundary layer. The boundary-layer profiles also show grow­
ing maximum disturbance amplitudes with increasing distance from the leading 
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Figure 3: Maximum disturbance-amplitude spectra for the flat plate (Jeft) and the cone 
(right) as a function of the nondimensional streamwise position . 

edge of the fiat plate and the tip of the cone, respectively. Ta obtain informa­
tion about the frequencies contributing to the maximum disturbance amplitudes 
in the laminar boundary layer, fiuctuation spectra are calculated and plotted 
against the distance normal to the wall, as shown in Fig. 2. 

A braad frequency band up to an upper frequency limit of 50 kHz contributes 
to the peak ofthe disturbance amplitude for the fiat-plate case. The region above 
50 kHz, especially above 100 kHz, where linear stability theory predicts second­
mode disturbances, does not contribute to the disturbance level significantly. In 
the case of the cone a braad frequency band up to an upper frequency limit of 
200 kHz -what is in the first- and second-mode frequency range- contributes to 
the peak of the disturbance amplitude. In bath cases the upper frequency limit 
slightly increases with increasing Reynolds number, but the difference bet ween 
the fiat plate and the cone case cannot only be explained bya Reynolds-number 
effect . 

The fiuctuation spectra at the peak positions of the disturbance amplitudes 
in the laminar boundary Iayer are calculated at different streamwise positions. 
These disturbance spectra are plotted against the dimensioniess free-stream po­
sition R in Fig. 3. 

For the fiat-plate case one can clearly observe a growth of disturbance ampli­
tudes with increasing streamwise position R in the significant frequency range. 
For the cone the behaviour of the disturbance amplitudes is a littie different: 
After a first increase of the maximum disturbance amplitude with increasing 
streamwise position it slightly decreases in the region between R ~ 1200 and 
R ~ 1500 to increase again further downstream. This slight decrease of the 
maximum disturbance amplitude cannot yet be explained. One pos si bIe cause 
might be measurement uncertainties. Another possibie cause might be nonlinear 
instability effects. Calculations with nonlinear stability theory (which is not yet 
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available) might give an answer regarding whether this is areasonabie explana­
tion. 

Finally, some results of further data analyses are presented for the flat-plate 
case only. 

At the local Reynolds number R = 1050 the band-limited (b.f ~ 500 Hz) 
disturbance amplitudes are computed and compared with theoretical results ob­
tained by Simen & Hanifi (1994, private communication). They carry out a 
nonlocallinear instability analysis based on maximum amplified mass flow fluc­
tuations and obtain amplitude profiles for four different frequendes. In Fig. 4 
results of this comparison are shown. 

The location of the maximum values is in close agreement for all frequen­
des, although the boundary-Iayer thickness in the experiment can only be deter­
mined within an uncertainty of b.y / 8 = ±0.05. The shapes of the disturbance­
amplitude profiles, i.e. the form of a sharp peak near the boundary-Iayer edge, 
also closely agree. Only for f = 67 kHz the experimentally determined pro­
file is significantly wider than the theoretical one. As already mentioned, in 
the frequency range above 50 kHz the maximum values in the spectra of the 
anemometer voltage are in the range of the free-stream disturbance amplitudes. 
Hence the boundary-Iayer mass-flow fluctuation profiles may be contaminated 
by free-stream noise, which would explain the deviation from theory. 

The comparison of experiment al and theoretical results in Fig. 5 shows good 
agreement of amplification-rate spectra from the experiment and local instabil­
ity analysis for a Reynolds number of R ~ 1000. Since the theoretical data 
represent the amplification of oblique first-mode instability waves, the experi­
mentally observed disturbance growth can be regarded as an amplification of 
oblique first-mode instabilities. 

It is surprising that the nonlocal instability analysis, which additionally takes 
into account the variation of the basic and disturbance flow in the direct ion of 
the spatial amplification, and thus models the experimental conditions more 
completely than the local analysis, consistently yields higher amplification rates 
than the experiment. On the theoretical side this might be explained by the 
use of similarity profiles for the modeling of the basic flow. Thus the effect of 
interaction of the viscous boundary-layer flow with the inviscid free-stream is not 
taken into account. With this effect included, the theoretical amplification rates 
are reduced, as the interaction yields a negative pressure gradient in free-stream 
direction, which is known to stabilize first-mode waves (see Simen, 1993). 

Conclusions 

Hot-wire measurements inside of the laminar boundary layer on a flat plate and 
a sharp cone show disturbance amplitude profiles with a maximum at approxi­
mately 75 % ofthe boundary-Iayer thickness. This type of disturbance-amplitude 
profiles is typical for unstable hypersonic boundary layers. But the expected 
dominance of a high-frequency disturbance growth, as predicted by linear stabil­
ity theory, cannot be confirrned. Only streamwise growth of natural disturbances 
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within a broad frequency band up to 50 kHz and 200 kHz for the flat plate and 
the cone respectively, can be observed. Hence, lower frequency disturbances seem 
to dominate the transition process of the hypersonic flat-plate boundary-layer 
flow in the Ludwieg tube. 

A main result of the comparison bet ween fluctuation measurements within 
the hypersonic flat-plate boundary-layer flow and a local or nonlocal instability 
analysis is that the experimentally observed disturbance growth can be regarded 
as an amplification of oblique first-mode instability waves. 

Amplified disturbances can be identified for the cone in the unstable first 
and second mode frequency range, but no dominance of amplified high-frequency 
second-mode disturbances is found in the experiments. 
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A.D. Kosinov, N.V. Semionov & Yu.G. Yermolaev 

Laminar-Turbulent Transition of a 
Supersonic Boundary Layer on a Flat Plate 

Abstract 

Experimental data are presented for the nonlinear development of 3-D artificial 
disturbances in a supersonic boundary layer on a flat plate at Mach numbers 2 
and 3. The excitation of high frequency disturbances is observed. 

Introd uction 

Nonlinear stability experiments in hypersonic and supersonic boundary layers 
were recently started. KendalI & Kimmei (1990) examined the development of 
natural disturbances in a hypersonic boundary layer and found nonlinear inter­
acting fluctuations. Studying the development of artificial disturbances Kosinov 
et al. (1994a) have shown that subharmonic resonance takes place in supersonic 
boundary layers. Up to now experiments and nonlinear theory have developed 
quite independently. Recently a theoretical model of subharmonic resonance 
relevant to experiments (Kosinov et al., 1994a) was developed by Tumin (see 
Kosinov & Tumin, 1995). Theoretical work by Chang & Malik (1994) reveals 
the growth of a streamwise vortex, but this was not yet tested experimentally. 
Gaponov et al. (1995) found a new experiment al feature for the nonlinear stabil­
ity of the supersonic boundary layers: the transformation of wave spectra from 
three- to two-dimensional disturbances occurs for increasing Reynolds number. 
Parametric generation of sound waves at M = 2 was indicated by Ermolaev 
et al. (1995). The main goal of the presen t paper is a discussion of nonlinear 
excitation of high frequency disturbances in the supersonic boundary layer. 

Experimental equipment 

The experiments were performed in the supersonic wind tunnel T-325 of the In­
stitute of Theoretical and Applied Mechanics of the Siberian Division of the Rus­
sian Academy of Sciences. The test section dimensions are 200 X 200 X 600 mm3. 

Measurements were carried out in the boundary layer of a flat plate at Mach 
numbers 2 and 3. The model was 10 mm in thickness, 450 mm in length and 
200 mm in width. The leading edge had an angle of 14.5° and its thickness 
was b = 0.02 mmo The flat plate was mounted at zero angle of attack. Artifi­
cial disturbances in the boundary layer were generated by a localized periodic 
source using an electrical discharge technique, as described by Kosinov et al. 
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(1994a) and Gaponov et al. (1995). The disturbances from the discharge cham­
ber penetrated into the flow through a small hole in the plate surface. The 
diameter of the hole was 0.42 mmo The coordinates of the disturbance source 
were x = 38 mm, Z = 0 mm, where x is the flow direction and z is the transversal 
direction. The perturbation is described by Kosinov et al. (1994b). The dis­
turbances in the flow were registered with a constant-temperature anemometer. 
The probes were constructed from tungsten wires of 5 JLm in diameter and 0.7 
or 1.2 mm in length. To measure the dominant fluctuations in the mass flow, we 
gave the wire an overheating equal to 0.8. As the diagram for the amplitude of 
the disturbances is linear in the boundary layer, the following relation, based on 
Kovasznay's method, was used to estimate the fluctuations in the mass flow: 

, eT;" 
pu = E.I'l.exp , (1) 

where e is a measured fluctuation signal and E is a mean voltage of the hot­
wire bridge. To calculate J(exp an approximation < pu >' I < Ta >'= const. 
for Rel = const. was used. Here < Ta >' is the total r.m.s. value of the 
temperature fluctuation in the boundary layer. In this case we can define the 
mass flow fluctuations as it was indicated above. Using a traversing gear, the 
probe was moved in x, y, and z directions (where y is the coordinate normal 
to the flat plate). The coordinates of the hot-wire we re measured in steps of 
0.1 mm for x and zand 0.01 mm for y. Signals from the hot wire were recorded 
by a 10 bit, 1 MHz AID converter. To improve the signal-to-noise ratio in 
the experiments, we used a synchronous summation of 500 digital diagrams on 
400 points for M = 2 and 200 points for M = 3. The measurements of the 
wave train development were performed at ylfJ ~ 0.5 for M = 2, where the 
fluctuations reached a maximum. To define the disturbance spectra, the discrete 
Fourier transformation was used (see e.g. Ermolaev et al., 1995). To measure 
the transition location, we used the hot-wire technique. 

Results 

Below we present data for the transition measured for M = 2 and discuss the 
initial development of the wave trains close to the source hole at M = 3. Fig. 
1 shows the measured transition for M = 2. Here Re = U x I v is the Reynolds 
number. The measurements have been performed in the boundary layer at y = 
0.2 mm, z = 0 and for different unit Reynolds numbers, (1) Rel = 6.7 X 106, 

(2) 11.6 x 106 and (3) 18.6 x 106 m- l (where Rel = U Iv). These measurements 
were performed at different noise levels in the test section. The noise level was 
about 0.1% ofthe fluctuations in the mass flow for Rel = 6.7 X 106 m- l , about 
0.07% for Rel = 11.6 X 106 m- l and about 0.09% for Rel = 18.6 X 106 m- l

• 

(The noise level includes electronic noise of the hot-wire anemometer.) The 
transition data correlate with the changing noise level in the test section of the 
wind tunnel. To study the wave train development we have used conditions 
where the initial amplitude of the artificial disturbances was sufficiently small to 
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Figure 1: Transition data on a flat plate at M = 2. Here < pu >' is the total r.m.s. of 
the mass flow fluctuations . 

have the transition region close to the natural disturbance case at Rel = 6.7 X 106 

m- l and M = 2 (Ermolaev et al., 1995). 

On disturbance excitation close to the localized souree at M =3 

The background of this experiment were data obtained by Balakumar & Ma­
lik (1992). Figs 2 and 3 show the results of measurements of the disturbance 
magnitude near to the source at Rel = 11.2 X 106 m- l . The measurements 
were performed with a variabie x step from 0.5 to 3 mmo Fig. 2 presents the 
three-dimensional surface of the averaged fluctuations in the mass flow, pu'( t) in 
x-direction at z = o. These data show the evolution of excited disturbances for 
x > 29 mmo Note that the measurements were carried out at yj8 = const for 
x > 38 mm (that corresponds to the maximum fluctuation in the boundary layer) 
and at y = const for x < 38 mmo Artificial disturbances propagate downstream 
from the source (with the coordinate of the source at x ~ 38 mm). This can be 
seen in Fig. 3 where pu'(t) is shown for different x. Curve 1 and 2 correspond 
to positions upstream from the source (x = 29 and 33 mm), and 3 arid 4 to 
positions downstream fr om the source at x = 38.9 and 41 mmo The disturbances 
are very smail at x = 29 mm only. The results confirm the data obtained by 
Kosinov et al. (1992) on the upstream spread of disturbances from the localized 
source in the supersonic boundary layer. Similar results were observed in the 
free stream as described by Semionov et al. (1996). 

On nonlinear excitation of high frequency disturbances in a supersonic boundary­
layer at M = 2 

It is weil known that high-frequency disturbances appear at the laminar-turbulent 
transition in boundary layers (Morkovin, 1991; Kachanov, 1994). In our previous 
experiments we did not obtain data that indicate the existence of high-frequency 
fluctuations because the Reynolds numbers we re too low. In this paper we 
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Figure 2: Fluctuations close to localized souree; M = 3, Rel = 11.2 X 10
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present data on the excitation of high-frequency and low-frequency, nonlinear 
disturbances in the supersonie boundary layer at increasing Reynolds number. 
The experiment was made at M = 2 and Rel = 6.71 X 106 m-1 and had the 
same set up as in Kosinov et al. (1994a). Figs 4 and 5 show the amplitude 
spectra of the mass-flow fluctuations induced by artificial disturbances over z 
at x = 179 mmo Fig. 4 shows the low-frequency part and Fig. 5 shows the 
high-frequency part of the spectra. Subharmonie disturbances of J = 10 kHz 
predominate as described in Gaponov et al. (1995), but disturbances from 2.5 
kHz to 100 kHz with step 2.5 kHz are observed too. The used averaging method 
can only detect fluctuations that are correlated with the disturbances in the 
experiments. The excitation of the low-frequency disturbances at J = 2.5, 5, 
7.5 kHz may be due to a secondary subharmonie amplification as the primary 
fundamental disturbances (J = 20 kHz) decrease according to the linear stabil­
ity theory and the primary subharmonic amplification probably is insufficiently 
strong. However the primary subharmonie disturbances (J = 10 kHz) may put 
on the secondary subharmonie amplification, which could then explain the ex­
citation of low-frequency fluctuations. It is difficult to explain the excitation 
of high-frequency fluctuations. Perhaps their appearance is caused by a nonlin­
ear mechanism or by interaction of Mach waves in the boundary layer. Those 
Mach waves may be excited at the leading-edge angle of the flat plate through 
reflections on the wind tunnel walls. Figs 6 and 7 show wave spectra over (3. 
Fig. 6 presents the low-frequency part of the J, (3-spectra and Fig. 7 shows the 
high-frequency part. We have found a phase synchronism of the disturbances 
at -0.8 < (3 < 0.8 rad/mm and for J > 30 kHz. A more detailed processing 
of the fluctuations in future research may explain this behaviour because the 
transient wave packets are clearly observed at each period in the diagrams (with 
the period almost equal to the period of the subharmonie disturbances ), whereas 
there are also low-frequency modulations in the realizations. 

Conclusions 

Our experiments in the supersonic boundary layer show the development of wave 
trains including: linear growth, subharmonie amplification, subharmonie sound 
radiation, secondary subharmonic amplification, and high-frequency harmonie 
excitation. One of the main aims of studying laminar-turbulent transition in 
conventional supersonic wind tunnels is to find the influence of sound waves on 
the initiation of waves and transition within the boundary layer . The nonlinear 
interaction of sound waves radiated by the turbulent boundary layers on the 
wind tunnel walls and the development of nonlinear wave trains in the supersonic 
boundary layer will be investigated in future experiments. It might be that the 
parametric resonance interaction of sound waves and nonlinear vort ex waves 
in the supersonic boundary layer is the main cause of early laminar-turbulent 
transition in conventional wind tunnels. 
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W. Eifiler & H. Bestek 

Wall-Temperature Effects on Transition 
in Supersonic Boundary Layers Investigated 
by Direct Numerical Simulations 

Abstract 

The effects of different wall-temperature conditions on laminar-turbulent transi­
tion in Mach 4.8 flat-plate boundary layers at flight conditions are investigated 
using spatial direct numerical simulations. U sing radiation adiabatic wall tem­
perature conditions, the simulations allow, for the first time, to calculate the 
realistic increase of the wall temperature caused by the fundament al-type tran­
sition process. 

Introduction 

Heat loads resulting from friction and compression of air represent a key problem 
of hypersonic flight. The wall temperature is determined by the heat balance 
between heat transfer to the surface due to aerothermalloads, heat radiated from 
the surface, and heat conducted within and stored in the vehicle structure. For 
the design of hypersonic vehicles, a good estimate of the resulting aerothermal 
loads and wall temperatures is of vital importance, which requires the accurate 
prediction of boundary-Iayer transition and turbulence. However, the existing 
transition prediction methods and turbulence models needed for this task still 
contain an unknown degree of uncertainty as detailed experiments do not exist 
for such flow conditions. 

Transition to turbulence in supersonic and hypersonic boundary layers is still 
a poorly understood problem. While the first initial stage of the transition pro­
cess, i.e. the growth of linear disturbances is adequately described by compress­
ible linear stability theory (Mack, 1969; Mack, 1984), the subsequent nonlinear 
stages are widely unknown, as there is no guidance from experiments. Transition 
experiments in high-speed boundary layers are very difficult to perform. There­
fore, linear stability theory is widely used to determine the important parameters 
affecting transition and their trends, that is, whether and how much a change of 
some parameter is stabilizing or destabilizing. In recent years, direct numerical 
simulations have shown their capability to be used as a new tooI in high-speed 
transition research, as they can be applied in situations where experiments seem 
impossible to perform. This is demonstrated in the present paper for transition 
at flight conditions. 

In the past several years many efforts have been made experimentallYitheo­
retically, and numerically in order to gain a better understanding of supersonic 
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Figure 1: Sketch of the integration domain and the disturbance input. 

transition, which is indispensable for the development of reliable transition pre­
diction methods and turbulence models for compressible boundary layer flows. 
However, most of these studies were concerned with transition at wind-tunnel 
temperature conditions, aiming to understand and model the phenomena ob­
served in a few detailed experiments. The effect of high temperatures on tran­
sition, as encountered by a hypersonic vehicle in the atmosphere, are still com­
pletely unknown. 

In this paper, we present results from several simulations to study the ef­
fect of different wall-temperature conditions on transition in Mach 4.8 flat-plate 
boundary layers at flight conditions. The flat-plate is a representative model for 
the boundary-layer flow on a hypersonic aerospace plane at flight conditions at 
25 km altitude. U sing radiation adiabatic wall- temperature conditions the sim­
ulations allow, for the first time, to calculate the realistic streamwise increase of 
the wall temperature caused by the transition process. 

Numerical model 

Laminar-turbulent transition phenomena in a supersonic boundary-Iayer flow 
over a flat plate are investigated by spatial direct numerical simulations based 
on the complete, three-dimensional N avier-Stokes equations, the continuity equa­
tion, the energy equation, and the thermodynamic equation of state for a com­
pressible perfect gas in equilibrium. The equations are used in conservative form 
for the variables p,PU,PV,pw and pe (Eif31er & Bestek, 1995). The integration 
domain shown in Fig. 1 extends from x = Xo to x = XN in the streamwise x­
direction, with Xo being the downstream distance from the leading edge of the 
flat plate. In the wall-normal y-direction, the integration domain extends from 
y = 0 to Y = YM and typically covers several boundary-Iayer thicknesses. In 
the spanwise z-direction, the flow is assumed to be periodic with the domain 
extending from z = 0 to z = Àz, where Àz is a fundament al spanwise wavelength 
which can be chosen arbitrarily. 
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The governing equations are normalized with the freestream values of the 
velocity, the temperature, and the density. Furthermore the global Reynolds 

* * L 
number Re = Poo Uoo = 105 is used, where the superscript * denotes the di-

IL~ 
mensional quantities, and thus the local Reynolds number is defined as Rex = 
P~u~x* ... :.......:..;:..........:'-"----- = X • Re. The thermodynamlc propertIes are approXlmated as a calor-

IL~ 
ieaily perfect gas with a constant Prandtl number Pr = 0.71, a constant ratio of 
the specific heats K, = 1.4, and Sutherland's law for the dynamic viscosity IL. For 
ail simulations discussed in this paper the freestream Mach number is Ma = 4.8. 

Numerical method 

The numerieal method is based on an explicit Runge-Kutta scheme of fourth­
order accuracy in time. In x- and y-direction finite-difference approximations 
of fourth-order accuracy are used, and in the spanwise z-direction, aspectral 
(Fourier) approximation is employed. The grid is equaily spaced in the x- and 
y-directions. 

The numerieal procedure is decomposed into two steps: the calculation of a 
steady, two-dimensional, laminar boundary layer by solving the two-dimensional 
form of the governing equations (Eif31er & Bestek, 1995), and the calculation 
of the evolution of two- and three-dimensional disturbances which are intro­
duced into the laminar boundary layer by localized periodic blowing and suction 
through a narrow disturbance strip at the plate surface (see Fig. 1). The reac­
tion of the boundary layer to this periodic forcing, i.e. the spatial downstream 
development of the disturbance waves, is then simulated numerieaily. 

Similar to the linear stability theory (LST) and the PSE-method,. the flow is 
decomposed into the steady, laminar base flow cf> Band the disturbance flow cf> , , 
whieh consists of steady and unsteady disturbances. This procedure ailows for 
the calculation of two- and three-dimensional harmonie waves as weil as for a 
steady mean-flow distortion, which represents the transitional mean deviation 
from the laminar boundary layer. 

Boundary conditions 

Boundary conditions have to be defined for the steady, laminar two-dimensional 
base flow as weil as for the three-dimensional disturbance flow. For the distur­
bance flow, the boundary conditions have to he valid for high-frequency harmon­
ics as weil as for the steady mean-flow distortion. 

At the inflow boundary x = Xo an undisturbed steady base flow, as obtained 
from the solution of the compressible boundary-Iayer equations, is assumed. No 
disturbances are ailowed here. At the outflow boundary x = XN the second 
derivatives with respect to x are set to zero for the base flow. For the distur­
hance flow, a procedure similar to the "relaminarization technique" developed 
by (Kloker, Konzelmann & Fasel, 1993) is used (Eif31er & Bestek, 1995). At 
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Figure 2: Shape of the temperature distribution for different wall temperature con di­
tions for the base flow (Ieft side) and for the disturbance flow (right side) . 

the lateral boundaries z = 0 and z = ).Z the disturbances are assumed to be 
periodic with the spanwise wavenumber {3. At the freestream boundary y = YM 
an inviscid flow is assumed. For the base flow as weil as for the disturbance 
flow, non-reflecting characteristic conditions are used. At the walt Y = 0 all 
velocity components are zero, the pressure is calculated from the y-momentum 
equation , density is determined from the equation of state, and internal energy 
is calculated from its definition. 

No unique condition can be defined for the waIl temperature, as we do not 
solve the Poisson heat equation within the waIl, neither for the steady base-flow 
nor for the disturbance flow. Therefore, it is useful to know the temperature 
range that can occur principally. The conditions for the base flow and the dis­
turbance flow are discussed separately, and are sketched in Fig. 2. 

Without artificial heating, the maximum base-flow temperature is the re­
covery temperature of an adiabatic wall. For wind-tunnel experiments, the 
adiabatic-waIl condition is of ten used. For a flight vehicle moving at Mach 5 
in the atmosphere, the adiabatic wall temperature can reach some 1000 K. Of 
course, in reality waIl heat conduction and radiation will lead to a cooled waIl. 
These kinds of cooling can be approximated in the simulation by a constant wall 
temperature, or a radiation adiabatic wall, respectively. 

For the disturbance flow, the situation becomes more difficult, as the waIl-
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temperature condition must be valid for the mean-flow distortion and the high­
frequency disturbances. The condition almost always used, is the assumption 
of zero temperature disturbances at the wal!. This condition seems to be rea­
sonable as it is hardly conceivable that the wall temperature may fluctuate with 
frequencies in the order of 100 kHz. However, when applying this condition, 
the (mean) wall-temperature remains on its steady laminar value, even at the 
late stages of transition in DNS. This condition implies the largest temperature 
gradient that can be obtained at the wall and therefore the largest wall heat flux. 
In reality, this behaviour could be achieved by a wall with an infinite specific 
heat, where any heat flux does not affect the wall temperature. The opposite 
can be obtained using adiabatic temperature disturbances. Now, no heat flux 
penetrates into the wall but the temperature fluctuations are maximum. This 
would be true, if the the specific heat of the wall was zero. As a consequence, it 
is obvious that in reality the temperature condition must be somewhere bet ween 
these two extremes, as neither the temperature fluctuations nor the heat flux 
should be zero at the wall. 

A condition that contains both, temperature fluctuations and heat flux, is the 
radiation adiabatic wall. Here, the convective heat flux penetrating into the wall 

a(T* + T*') 
is equal to the radiative heat flux from the wall, and we get {j* Ba = 

y* 
f a (TB + T*')4, with the Stefan-Boltzmann constant a, the emissivity constant f 

of the surface and the thermal conductivity coefficient {j. The typical shapes of 
the temperature distributions in y-direction for the base flow and the disturbance 
flow, respectively, are plotted in Fig. 2 for the six boundary conditions discussed 
before. 

Results 

Effects of wall-temperature conditions 

To investigate the effects of the wall temperature on transition, simulations were 
performed for four cases using different boundary conditions. In all cases, the 
freestream temperature was assumed to be TB 00 = 220 K, corresponding to at­
mospheric conditions at 25 km altitude. The fr~quency of the forced disturbances 
was F = 10 .10-5 and the integration domain was located inside the second-mode 
unstable region for that frequency. At the disturbance strip, a two-dimensional 
wave (mode (1,0)) and a pair ofthree-dimensional waves (mode (1,1)) were forced 
with the same frequency, in order to initiate the fundament al-type transition pro­
cess. Here, the two- and three-dimensional disturbance components are denoted 
as modes (h, k), where h stands for the frequency in integer multiples of the fun­
damental frequency and k denotes multiples of the spanwise wave number. The 
resolution of the simulations was chosen to be sufficient for the initial nonlinear 
disturbance development. In agreement with a previous study (Ei13ler & Bestek, 
1995), where we considered simulations .A to D, the four cases were denoted by 
B,C,f, and F. The parameters of the four simulations are given in Fig. 3. 
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Figure 3: Amplitude maxima I(pu)i. k I, and simulation parameters of the four simu-
lations for fundamental resonance at 'atmospheric conditions. ( . ...... 8, - - - - C, 
_. _. -. E, - - :F) 

In simulation B, the base flow was assumed to be adiabatic (TB wall = 1065 K) 
and the temper at ure disturbances were set to zero at the wal!. This is tradition­
ally assumed in LST, The effect of a cooled boundary layer can be studied with 
simulation C, were a constant wall temperature (TB,wall = 650 K) was used. 
Again, the temperature disturbances were set to zero. The effect of adiabatic 
and radiation adiabatic disturbances can be studied with simulations f: and F, 
respectively. In simulation f: the base-flow wall temperature was held constant 
(TB wall = 650 K), and adiabatic conditions were used for the temperature dis­
turbances. In simulation F radiation adiabatic conditions were used for the base 
flow (TB wall between 647 and 633 K), and for the disturbance flow. , 

It is weil known from LST Mack, 1984) that wall cooling destabilizes second 
mode disturbances. Therefore, it is obvious that the amplitude of the two­
dimensional, fundamental disturbance (PU)l ,O of case C increases faster than the 
corresponding amplitude of case B, as can be seen in Fig. 3. When the wall tem­
perature disturbances are adiabatic or radiation adiabatic (f: ,F) instead of being 
zero (C), the two-dimensional amplitudes (PU)l,O grow even faster. Thus, the on­
set of resonance in simulations f: and F occurs upstream compared to simulation 
C. In simulation B, the two-dimensional disturbance re ach es a maximum and 
decays further downstream. Consequently, the secondary amplification of the 
three-dimensional, fundamental disturbance (PUh,l for case B is weak compared 
to the simulations C ,f:, and F. 

Comparing simulations C and f:, where minimum and maximum wall tem­
perature fluctuations were assumed, it becomes clear, that transition predictions 
based on stability results using the traditional non-fluctuating conditions are too 
optimistic. 

Fundamental transition for a radiation adiabatic waU 

To investigate the effect ofthe most realistic radiation adiabatic wal1-temperature 
condition in a transitional flow, simulation F was repeated with a bet ter reso­
lution in time and space. The streamwise amplitude developments of the 3-D 
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Figure 4: Amplitude development of l(pu),1 for (a) 3-D disturbances with fundamental 
frequency (modes (l ,k)) , and for (b) 2-D disturbances (modes (h,O)) . 

disturbances with fundamental frequency I(puh ,kl, and the 2-D disturbances 
l(pU)h,ol are shown in Fig. 4. The fundamental 2-D disturbance (mode (1,0)) 
increases continuously caused by the primary instability. At Rex ~ 55.5 . 105 a 
secondary growth of the 3-D disturbances starts , and the growth rate increases 
for larger spanwise wave numbers. Here is the onset of fundamental resonance 
is found. At Rex ~ 58.5 . 105 , where the resolution of the numerical simulation 
begins to be insufficient, the amplitudes of the leading 2-D disturbances are still 
higher than the 3-D disturbances . Thus , the initial transitional stages are dom­
inated by 2-D disturbances, the effects of 3-D disturbances become important 
only in the late transitional stages, and the transitional region is small compared 
to the unstable region, which begins at Rex ~ 46 . 105 . 

In Fig. 5, the corresponding streamwise evolution of the boundary-Iayer thick­
ness 6, the displacemen t thickness 61 , the momen turn thickness 62 , the shape 
factor Hl2 , and the skin friction coefficient cf are plotted. The location and the 
effect of the numerical dam ping zone near the outflow can be clearly identified for 
Rex> 59 . 105 , where the boundary layer parameters are ramped down to their 
laminar values. At Rex ~ 57.105 the shape factor begins to deviate remarkably 
from its laminar value, and the skin friction starts to increase faster. Here the 
onset of the boundary-Iayer transition of this simulation occurs. 

The radiation adiabatic wail-temperature condition was developed to study 
the effect of transition on the mean heat flux and the mean temperature de­
velopment at the wail. In Fig. 6, isolines of the mean temperature gradi­
ent oT/oy (which is proportional to the mean heat flux), and the mean wall­
temperature distribution at the plate surface are shown. The spanwise distribu­
tions of both parameters are almost two-dimensional, and almost constant up 
to Rex ~ 57.5.105 . Further downstream both parameters increase rapidly, and 
a three-dimensional deformation can be observed, which has a similar shape for 
both parameters. The fastest growth is observed in the plane À z = 0.5, which is 
the weil known "Peak Plane" of fundamental transition in incompressible bound­
ary layers (Kachanov et al., 1985). These results demonstrate the capability of 
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the newly developed radiation-adiabatic wall-temperature condition for the dis­
turbances to calculate the increase of the mean wall temperature in the late 
stages of transition, combined with a similar increase of the mean heat flux at 
the walL This was not achieved in earlier DNS. 

Conclusions 

In the present paper, three different boundary conditions for the wall temper­
ature to be used in spatial direct numeri cal simulations we re discussed. The 
conditions were applied to the mean, laminar base flow and to the disturbance 
flow in a supersonic boundary layer. It was shown that the classic non-fluctuating 
wall-temperature disturbance condition produces the largest possible heat flux at 
the wall but the mean wall temperature does not change its laminar value, even 
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in the late stages of transition. The opposite boundary condition was demon­
strated to be the assumption of adiabatic disturbances, where the temperature 
disturbances are maximum but the heat flux diminishes to zero. This condition 
led to a significantly lower transition Reynolds number than the non-fluctuating 
temperature condition for the investigated second-mode disturbances. A more 
realistic condition, the radiation adiabatic wall, was developed and applied. The 
resulting increase of the mean wall temperature and the mean heat flux at the 
wall using this condition was shown for fundamental transition in a flat-plate 
boundary layer at Mach 4.8 at flight conditions. 
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