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Preface 

Parallel developments in quantum opties, atomie and molecular physics and condensed mat­
ter physics have realized the control of small optical systems, either in free spa ce, in fibers, 
at interfaces or in semiconductors. Quantum opties of sm all material systems offers many 
exciting possibilities, both for fundamental research and for applications. In this context, the 
most obvious definition of small is: on the order of the wavelength. A more precise definition 
of is: sufficiently small that only one or a few optical modes come into play. This "meso­
scopic" state of affairs imp lies that quantum noise is dominant. The material involved can 
be, on the one hand, semiconductor, glass, polymer, rare-earth or dye doped medium. On the 
other hand, trapped atomie or molecular species also present valuable model systems. 
This text is taken from the document proposing the Royal Netherlands Academy of Arts and 
Sciences to adopt an international workshop on Quantum Optics of Small Structures as an 
official Academy Colloquium. The Colloquium was held 23 and 24 September 1999 in the 
17th century "Trippenhuis" in the center of Amsterdam, home of the Academy. The meeting 
was organized by Daan Lenstra and Taco Visser of the Vrije Universiteit in Amsterdam. The 
present book contains most of the invited and contributed papers that were presented either 
as lectures or as posters. 

One reason for organizing this workshop was the initiation of a research program - carry­
ing the same name - funded by the (Dutch) Foundation for Fundamental Research on Matter 
(FOM) in 1998. Although internationally the above-described field is booming, of ten under 
the heading of Cavity Quantum Electrodynamics, a visible activity cluster in The Nether­
lands concentrating on fundamental optoelectronic research was c1early lacking. Through 
the new FOM-program a c1ear link should develop between modern optics and fields like 
microlasers, nanophysics and quantum optics. Thus, the Academy Colloquium provided the 
forum for international experts and Dutch scientists to meet and exchange ideas, and helped 
establishing a strong, coherent and visible research program in The Netherlands with con­
siderable international impact. 

The papers presented in these proceedings are organized in four parts, according to the 
four main sessions of the Academy Colloquium, but it must be emphasized that these parts 
have only vague boundaries. The collection of papers presented here will give the reader a 
good impression of the work that that has been presented and discussed during the work­
shop. We hope that with these papers all interested scientists who were not able to attend 
the Academy Colloquium on Quantum Optics of Small Structures can share in the synergy 
of that succesful meeting. 

Daan Lenstra, Taco Visser and Ton van Leeuwen, Editors 
Amsterdam, March 2000 
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G. Kurizki, A. Kofman, T. Opatrny and A. Kozhekin 

Quantum Opties in Photonie Band Struetures 

Abstract 

We address several generic quantum optical processes that undergo basic modifications in 
photonic crystals: (a) spontaneous formation of atomic coherence; (b) two-photon binding 
and entanglement; (c) self-induced transparency and gap solitons. 

1 Introduction 

Dielectric structures whose refractive index is periodically modulated on a submicron scale, 
known as photonic crystals (PCs) [IJ are attracting considerable interest at present. Optical 
processes involving many atoms or excitons in such (PCs) undergo basic modifications as 
compared to the corresponding processes in open space or in bulk media. Here we survey 
our recent results on these modifications, which we attribute to three fundament al properties 
of PCs: (a) Modified density of modes (DOM), which is characterized in PCs, by st rong 
suppression of the background DOM within photonic band gaps (PBGs), by sharp band­
edge cutoffs and intra-gap narrow lines associated with defects [IJ. Many of the results 
detailed below (Sec. 2,3) stem from the failure of perturbation theory and the onset of strong 
field-atom (-exciton) coupling near sharp band edges or narrow lines in various PCs [2J. (b) 
Band-edge and Bragg refiections, which cause spatial interference effects in pulse propagation 
through the structure (Sec. 4). (c)Photon effective masses, which are associated with band­
dispersion effects in PCs, and allow (i) photon "binding" to one or many atoms (Sec. 3), or 
(ii) Kerr-nonlinear inter-photon binding corresponding to quantum-soliton states [3J. 

2 Spontaneously formed coherence in PCs 

A fundamental process relying on mode-density spectra in such structures is spontaneously 
induced coherence, due to strong coupling effects. We have developed an exact (non­
perturbative) theory ofnear-resonant interaction with quantized fields having arbitrary DOM 
spectra [2J. This theory implies that an excited two-Ievel system, whose resonance lies near a 
band-edge or narrow line in the DOM of the vacuum field would spontaneously evolve into a 
superposition of single-photon dressed states. This is a generalization of vacuum Rabi split­
ting, which occurs wh en the atom is near-resonant with a narrow mode. For a finite-width 
band, the states are pushed away from the edge, the ones ending up in the allowed band 
decay, whereas the ones pushed into the gap do not. Remarkably, there can be multiple stabie 
dressed states in a coherent superposition, as many as there are gaps in the DOM. 

In Fig.l we show the splitting of an excited state Ie) into superposed stabIe states, os­
cillating at band-gap frequencies Wj, each consisting of superposed zero-photon le,O) and 
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Figure 1: Splitting of an atomie exeited state (dashed) into superposed stabie dressed states in gaps 
(narrow lines) and deeaying states (broad line shapes). 

one-photon Ig, lw) states, weighted by the field-dipole coupling K;(W) and DOM p(w) 

Ie) -+ IW1+2) = L Cj [Ie, {Ol) 
j=1,2 

(1) 

The amplitudes of these states, ej, and their eigenfrequencies Wj are eontrollable by the atomic 
transition detuning from cutoff and by the band DOM p(w). This spontaneous coherence 
control opens interesting perspectives for lasing without inversion (LWI) in PCs containing 
3-level atoms which have one resonant transition near a band edge. 

3 Two-photon bound states by resonant interactions with atoms 
in pes 

The one-dimensional interaction of light with a system of atoms has been shown, by Bethe's 
ansatz, to produce multi-photon correlated states (referred to as string states) [4). However, 
the energy of the two-photon correlated state in the string model is exaetly the same as that 
of the unbound state. This makes any direct observation of the string two-photon state 
highly difficult. 

We study here a principally new mechanism, whereby group-veloeity dispersion in a lD 
PC where light interacts with a collection of two-Ievel atoms may lead to the production 
of a bound two-photon state with lowered energy, which makes its creation more favorable. 
The construction of two-photon solutions is then possible. Group-velocity dispersion may be 
obtained in a PC outside the band gap. This dispersion allows us to control the characteristics 
of the diphoton bound state. 

We shall consider a one-dimensional structure, in whieh all the relevant mode frequencies 
ware not too far from the atomie resonance 0, i.e. 

10 - wl« 0 

Introducing the notation À = k - ko , we can write the dispersion relation as 

w(k) = 0 + VgrÀ + (À
2 

(2) 

(3) 
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where vgr = àw(k)/àklk=ko is the group velocity (we use units ft = c = 1 ) and the last term 
corresponds to the inverse effective "mass" ofthe photon, (= 1/2 à2w(k)/àk2 Ik=ko being the 
group velo city dispersion. 

In what follows we shall use the field operator f+(X), which is the Fourier transform from 
k to x of the photon creation operator a+(>,) 

f(X) = _a(>..)ei>'x JOO d>" 

-00 27f 
(4) 

One-photon eigenstates of this system can be obtained in the Wigner-Weisskopf form [5) 

I>") = I: dx ~t(>",x)IO) 

I: dx ei>'x f(>.., x)ë(x) 10) 

+ L g; (>")S; 10) 
; 

(5) 

where st are the pseudospin operators of the j-th two-Ievel atom, which is located at the 
point x; and the field amplitude envelope f(>..,x) and atomie excitation g;(>..) are obtained 
from the Schrödinger equation 'Hl>") = w(>")I>"). 

We search for a two-photon solution in the Bethe-ansatz form 

1>"1, >"2) = J I: dX1 dX2 AÀ1 ,À2(X1 - X2) 

X~t(>"1,X1)1ÎIt(>"2,X2) ® 10) (6) 

Here the Bethe factor A>'1,À2(X1 - X2) refiects the appearance of photon-photon correlations. 
The two-photon bound state "diphoton" corresponds to complex >..'s 

>"1 = A + iT 
>"2 = A - iT 

with positive "( (the inverse width of the correlation length of the diphoton state). 
We have the following equation for the inverse correlation length of the diphoton 

-4(2"(3 + [2(vgr + 2(A? 

+4«(vgrA + (A2)h = 'TJ 

(7) 

(8) 

To first order in the velo city dispersion ( the inverse width of the dip hot on may be 
estimated as 

"( "" 'TJ 
"" 2 A 2vgr + 12vgr( 

(9) 

and is of the order of the inverse life time of the excited atomie level. 
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The binding energy of the diphoton state is 

(10) 

Thus for positive group-velocity dispersion (, the energy of the diphoton state is lower than 
the energy of the unbound state. We have considered the case wh en corrections due to 
group-velocity dispersion are small (A «vgr . In this case the width of the diphoton state 
may be estimated to be close to the natural line-width of the resonant atoms, 'Y rv 1/ rv 109 

S-l, and the group-velocity dispersion coefficient for the photonic band gap structure may be 
estimated to be inversely-proportional to the band-width of the forbidden zone D..w rv 1012 

S-l. In this case the binding energy of the diphoton would be of the order of 106 
S-l. 

4 Self-induced transparency in photonic band structures: gap soli­
tons near absorption resonances 

Pulse propagation in a non-uniform resonant medium, e.g., a periodic array ofresonant films, 
can destroy self-induced transparency (SIT) [6], because the pulse area is then split between 
the forward and backward (reflected) coupled waves, and is no longer conserved [7J. Should 
we then anticipate severely hampered transmission through a medium whose resonance lies 
in a reflective spectral domain (photonic band gap) of a PC (a Bragg reflector)? We have 
shown analytically and numerically [8, 9, 10J that it is possible for the pulse to overcome 
the band-gap reflection and pro duce SIT in a near-resonant medium embedded in a Bragg 
reflector. The predicted SIT propagation is a principally new type of a soliton, which does 
not obey any of the familiar soli ton equations, such as the non-linear Schrödinger equation 
(NLSE) or the sine-Gordon equation. 

Qualitatively, the SIT soliton in a PC may be understood as the addition of a near­
resonant non-linear refractive index to the modulated index of refraction of the Bragg struc­
ture . When this ad dit ion compensates the linear modulation, then there is no band gap and 
soliton propagation is possible (Fig.2). 

The proposed mechanism of gap solitons is revealed in a periodic array of thin layers 
of resonant two-Ievel systems (TLS) separated by half-wavelength nonabsorbing dielectric 
layers, i.e., a resonantly absorbing Bragg reflector (RABR). Such a RABR has been shown 
by us to have, for any Bragg reflectivity, a vast family of stabie solitons, both standing 
and moving [9, 10J . As opposed to the 27r-solitons arising in self induced transparency, i.e., 
resonant field - TLS interaction in a uniform medium, gap solitons in a RABR can have 
an arbitrary pulse area. The main innovation of our findings is that they demonstrate an 
unexpected property of a RABR with active layers. The RABR with thin active layers 
provides, to the best of our knowiedge, the first example of a nonlinear optical medium in 
which stabie bright and dark solitons exist for the same values of the model's parameters (at 
different frequencies). 

The periodic grating gives rise to band gaps in the system's linear spectrum, i.e., the 
medium is totally reflective for waves who se frequency is inside the gaps. The central fre­
quency of the fundamental gap is Wc = kcc/no, c being the vacuum speed of light, and the gap 
edges are located at the frequencies W1,2 = Wc (1 ± a!/4), where al is the grating modulation 
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Figure 2: The first-harmonie modulation ~fl eos 2kz of the linear refraetive index (dashed eurve) in 
a strueture of periodieally alternating layers. This modulation ean be eaneeled by the near-resonant 
nonlinear response Re fnl (inset), if it has the opposite sign to ~fl at the TLS positions. 

depth. We further assume that very thin TLS layers (much thinner than I/kc) whose reso­
nance frequency Wo is close to the gap center Wc, are placed at the maxima of the modulated 
refraction index. In ot her words, the thin active layers are placed at the points Zlayer such 
that cOS(kcZlayer) = ±l. Quantum wells embedded in Bragg mirrors are adequately described 
as TLS layers. 

The electric field E(z, t) can be decomposed into cosine and sine spatial components, 
having the dimensionless slowly varying amplitudes ~+ and ~_, respectively, 

E(z, t) h(WO)-l (Re [~+(z, t)e-iwct] cos kcz 
Im [~_ (z, t)e-iwct ] sin kcz) , (11) 

where J-L is the transit ion dipole moment of the TLS, and the characteristic absorption time 
of the field by the TLS is TO = noJ-L- 1vh/27rwc{Jo, with {Jo being the TLS density (averaged 
over z). 

The equations for the field envelope in the symmetrie mode ~+ and the polarization 
envelope P form a closed system, 

a2~+ a2~+ 
-----aT2 a(2 

2VI - IPI2 ~+, 

i8P -VI - IPI2 ~+, 

wh ere dimensionless time T, coordinate (, and detuning 8 are defined as follows: 

(12) 

(13) 

(14) 

The dimensionless modulation strength 'TI is the ratio of the TLS absorption distance to the 
Bragg reflection distance, which can be expressed as 'TI = alwcTo/4. The envelope of the 
antisymmetric field component ~_ is driven byap/ac,. 
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Figure 3: The dispersion curves (dimensionless frequency X versus dimensionless wavevector k) at 
'TJ = 0.5 and 8 = -0.2. The solid lines show the dispersion branches corresponding to the "bare" 
(noninteracting) grating, while the dashed and dash-dotted lines stand for the dispersion branches 
of the grating "dressed" by the active medium. The frequency bands that support the standing dark 
and bright solitons are shaded. The arrow indicates a complete gap, where no field propagation 
takes place. 

The spectrum produced by the linearized version of Eqs. (12) and (13) is obtained on 
assuming the TLS population to be uninverted; we then arrive at the dispersion relation for 
the wavenumber '" and frequency X. Different branches of the dispersion relation are shown 
in Fig. 3. The roots X = ± J ",2 + TJ2 (corresponding to the solid lines in Fig. 3) originate 
from the driven equation for ~_ and represent the dispersion relation of the Bragg reflector 
with the gap lxi < TJ, that does not feel the interaction with the active layers. The important 
roots are described by the dashed and dash-dotted lines; they will be shown to correspond 
to bright or dark solitons in the indicated (shaded) bands. 

Stationary solutions for the symmetrie-mode field envelope ~+ and polarization envelope 
Pare sought in the form ~+ = e-iXTS(() and P = i e-iXT P(() with real Pand S. Bright 
solitons can be shown to appear in two frequency bands x; the lower band being Xl < 
X < min{X2, -TJ, <5}, and the upper band max{Xb TJ, <5} < X < X2, where the boundary 

frequencies Xl,2 are given by Xl,2 := (1/2) [<5 - TJ ~ J(TJ + <5)2 + 8]. The lower band exists 

for all values TJ > 0 and <5, while the upper one only exists for <5 > TJ - 1/TJ, which follows 
from the requirement X2 > TJ. An example of bright solitons is depicted in Fig. 4. Note that, 
depending on the parameters TJ, <5 and X, the main part of the soliton's energy can be carried 
either by the ~+ or the ~_ mode. 

Dark solitons (DS's) are obtained similarly to the bright ones. The condition for their ex­
istence determines the following frequency interval X (TJ is defined to be positive): maxi ó, -TJ} 
< X < min{X2' TJ}, and <5 < TJ. The DS frequency range is marked by shading (to the right 
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Figure 4: A typical example of a bright soliton. The variables S, P, and A are plotted as a function 
of ( for the parameters 1/ = 0.2, 8 = -2, and X = 0.4. 
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Figure 5: A typical example of a dark soliton, presented in terms of the variables S, P and A. The 
parameters are 1/ = 0.6, 8 = -2, and X = 0.25. 

from zero) in Fig. 3. An example of a DS amplitude in the ~+ mode, together with the 
corresponding quantities Pand A, are plotted in Fig. 5. The DS frequency band always 
coexists with one or two bands supporting the bright solitons. Quite naturally, the bright 
and dark solitons cannot have the same frequency. 

Let us now discuss the experiment al conditions for the realization of the solitons. Ex­
citons in periodic quantum wells can, under certain conditions (such as low densities [11]) 
be described as effective two-Ievel systems (TLS's). We consider their surface density to be 
~ 1010 

- 1011 cm-2 . Structures occupying a region of approximately 100 absorption lengths 
would require a device of the total width of approximately 1 mm to 1 cm, which corresponds 
to ~ 103 to 104 unit cells. The modulation of the refraction index can be as high as al ~ 0.3, 
so that the parameter 'Tl can vary from 0 to 102 • The intensities of the applied laser field 
corresponding to ~± ~ 1 are then of the order 106 - 107 W jcm2• The dephasing time is cur­
rently ljr2 ~ 10-13 s. Decreasing the dephasing rate appears to be the main experimental 
challenge. 
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5 Conclusions 

Strong field-atom coupling near band-edge cutoff or a narrow defect line in a PC has been 
shown to allow unprecedented control of the following properties: (a) Single-atom spontan­
eously-induced coherence, which can give rise to lasing without inversion (LWI). (b) Photon 
binding, resulting in stabie propagation in resonant media has been connected with photon 
effective masses. (c) Gap solitons have revealed their capacity for "filtering" undesired pulse 
shapes and creating self-induced "cavities". 

The above novel features offer the first glim ps es into the remarkable possibilities offered 
by field confinement in PCs for the design and control of coherentjcooperative processes. 
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M. Doosje, B.J. Hoenders and J. Knoester 

Photonic Band-Gap Optimisation in Inverted FCC Pho­
tonic Crystals 

Abstract 

We present results of band-structure calculations for inverted photonic crystal structures. We 
consider a structure of air spheres in a dielectric background, arranged in an Fee lattice, 
with cylindrical tunnels connecting each pair of neighbouring spheres. The width of the 
band gap is optimised by applying a gradient search method and varying two geometrical 
parameters: the ratios RI a and Rel R, where a is the lattice constant, R the sphere radius and 
Re the cylinder radius. We find that the maximal gap width in this type of photonic-crystal 
structure, with air spheres and cylinders in silicon, is ,6"wlwo = 9.59%. 

1 Introduction 

Photonic crystals, and their effect on the propagation of electromagnetic waves, have been 
studied intensively over the past few decades. A photonic crystal is a material with a spatially 
periodic dielectric function c(r). lts dispersion relation w(k), i.e. the photonic band structure, 
shows photonic band gaps between the bands, characterised by their central frequency Wo and 
spectral width ,6"w. The investigation of this type of dielectric structures, possessing large 
band gaps, is motivated e.g. by the desired ability to control spontaneous emission of radiation 
from atoms [1]. 

A new type of photonic crystal is the inverted Fee photonic crystal, consisting of a 
regular structure of spherical air holes in a dielectric medium [2, 3]. These air-sphere crystals 
are created using dried (polystyrene or silica) colloidal crystals, also known as artificial 
opais. Their structure is usually a close-packed (ifJ = 74%) stacking of colloidal spheres. At 
the stage of thermal annealing (sintering) of the artificial opal, the volume-filling fraction 
increases above 74%. This effect is modelled by means of cylindrical connections between 
each pair of neighbouring spheres. Af ter sintering, the empty voids in the opal structure are 
infiltrated with titania (Ti02). Then the original colloidal spheres are removed by chemical 
etching [2] . This air-sphere crystal, with a lattice constant matching the range ofwavelengths 
of visible and near-infrared light, provides a good opportunity to establish a photonic band 
gap. However, a fulI photonic band gap has not been measured in these crystals yet, probably 
due to the use of materials like titania [2] or carbon [3], whose index of refraction n is not 
sufficiently high. 

In this work we present resuIts of the optimisation of the calculated photonic band gap 
in the FCC structure of air spheres with connecting air tunnels, surrounded by silicon. 
The photonic band structure of these crystal structures were calculated by means of the 
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(a) 

Figure 1: (a) Three-dimensional visualisation of an FCC air-sphere crystal with non-overlapping air 
spheres, each of them connected to all of its 12 nearest neighbours by cylindrical air tunnels. The 
particular structure shown here has geometrical parameters, which for a silicon background (grey) 
optimise the band gap (see section 3). (b) Schematic cross-section of the structure in Fig. l(a) with 
the definition of the lengths a, R and Re indicated. 

plane-wave expansion method [4, 5]. Two parameters were varied in our band-structure 
calculations, namely the ratios R/ a and Re/ R. Here R is the sphere radius, Re is the 
cylinder radius and a is the lattice constant of the Fee lattice. The gap width increases 
substantially when the ratio Re/ R increases from zero to 0.4. By applying a gradient search 
method in eombination with the variation of the two parameters mentioned above, we obtain 
the geometrical parameters for which the relative gap width !lw/wo reaches its maximum. 

2 The method of calculation 

We will consider the inverted opals des cri bed in the Introduetion. We will use silicon (Si; 
n = 3.415) as our choice for the dielectric. To be speeific, we eonsider an Fee strueture, 
with lattice constant a, of non-overlapping air spheres of radius R, each of them eonnected 
to its twelve nearest neighbours by a cylindrieal air tunnel of radius Re. A three-dimensional 
visualisation of this strueture is given in Fig. l(a). 

The erystal structure is represented by a Fourier series for the inverse dieleetric function 
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Figure 2: Relative width of the fuII photonic band gap between bands 8 and 9 in the FCC inverted 
opals, as a function of Re/a. The background material is silicon (Si, n = 3.415). The number of 
plane waves used is N = 339. The four curves have been calculated for (a) R/a = 0.3437, (b) 
R/a = 0.3486, (c) R/a = 0.3504 and (d) R/a = 0.3536. For Re = 0, this corresponds to 4> = 68%, 
4> = 71%, 4> = 72% and 4> = 74%, respectively. 

17(r): 

17(r) = étr) = L 17m exp( -igm·r), 
m 

(1) 

where m labels the three-dimensional set of reciprocal-Iattice vectors gm. We have derived 
analytical expressions for the coefficients 17m for the structure under consideration. 

Also the magnetic field H is written as a Fourier series, 

3 

H(r,t) = exp(iwt) LLLh~(k)û~exp(-ikm·r), (2) 
m k ).=1 

known as the Bloch-wave expansion. Here, for any label m, {û~, û~, û~} is a right-handed 
orthonormal basis for Euclidian spaee, chosen sueh that û~ 11 km. Furthermore, km = k+gm 
and the summation over k denotes the summation over all wave vectors within the first 
Brillouin Zone. 

Substitution ofthe Fourier expansions for 17(r) and H(r, t) into Maxwell's equations yields 
the matrix equation 

[ 
Û2 . û

2 
_û

2
. û 1 

] [ h
1(k)] (W)2 [ hl (k) ] ~ k1km 17m-1 -üt,. ftl û~m. ûi

l 
hhk) = c h~(k)' (3) 

The ). = 3 components of the magnetic field vanish beeause V . H = o. The eigenvalues of 
the matrix involved in this equation, are real-valued, non-negative quantities, to be identified 
with (wie? 
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Figure 3: (a) Photonic band structure of an FCC inverted opal with silicon (n = 3.415) as dielectric 
medium and with the optimal parameters R/a = 0.3201 and Re/R = 0.398. The optimal relative 
width of the full gap between the 8th and 9th bands is !l.w/wo = 9.59% at wo/21r = 0.746c/a. The 
volume-filling fraction of air spheres and cylinders in this structure is 4> = 66.3%. The number of 
plane waves used is N = 1037. (b) The first Brillouin Zone for the FCC lattice (BCC in reciprocal 
space). 

3 Results and discussion 

Our main interest is the dependence of the relative width D.w/wQ of the fuH photonic band 
gap between the 8th and 9th bands, on the parameters R/a and Re/a. In Fig. 2, we plot 
the relative gap width as a function of Re/a for four different values of R/a. These results 
were obtained using 339 plane waves. It is known that, for this type of crystal structure, one 
needs N rv 103 plane waves in order to reach convergence of the band structure weIl below 
1% [6]. We used such high values for N only when optimising the band gap and calculating 
the density of states (see below). The relative errors in the band gap at N = 339 appear to 
be in the order of 6%. Although this is by no means fuIl convergence, it suffices to provide 
considerable insight in the behaviour of the band structure upon varying parameters, as we 
will see below. 

From Fig. 2, we observe that at first, when the cylindrical air holes are very narrow, 
their effect on the gap width is rather smaH. While the main purpose of the tunnels between 
neighbouring air spheres in these inverted opal structures, is to serve as passageways through 
which the original coIloidal material is removed, in addition these holes have a positive 
influence on the width of the band gap for larger values of Re, as is observed in Fig. 2. For 
the crystal structure presently under consideration, the largest gap width is achieved around 
Re/ R = 0.4, and it tends to increase when the value of R/a decreases. Curve (d) in Fig. 2, 
which gives the dependence of the gap width on the cylinder radius for close-packed spheres, 
agrees weU with the results of Busch and John [6]. A remarkable feature in Fig. 2 is the 
ohservation that the four curves nearly cross at one point for Rc/a ~ 0.052, where the gap 
width D.w/wo ~ 4.2%. We were unable to establish whether this feature has any physical 
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Figure 4: Density of states corresponding to the photonic band structure depicted in Fig. 3(a). 

significanee. 
Now we turn to the optimisation of the relative width of the band gap, perforrning a two­

parameter variation calculation, based on a gradient search method. This method consists 
of successively determining the gap width I == tJ.wlwo and the gradient 

'V I == (dl Id(Rla), dfld(Rel R)) , 

for certain values of RI a and Rel R, and adjusting RI a and Rel R such that a step is taken in 
the direction of 'V I. Thus we reach the maximal value of I by following the path of steepest 
ascent. 

In a first "crude" approach towards the maximal gap, we used band-structure calculations 
with N = 339, as before. We started at (Ria = 0.3437, RelR = 0.37), which yielded the 
maximal gap width as shown in Fig. 2, curve (a). Following the path of steepest ascent, 
we reached (Ria = 0.3200, Rel R = 0.398), for which I = 9.3% and 'V I ~ O. The central 
frequency of the gap obtained in this way, is wo/21r = 0.744cla. The error in this result is in 
the order of 6%. I 

The calculated band structures depend significantly on the number of plane waves con­
sidered. It is accepted quite generally that for N tv 103 , the error in the results for the 
lowest-lying photonic bands is weIl below 1% (for the type of crystals that we consider). 
Thus, a more reliable value for the gap width of our structure is obtained by doing the calcu­
lation using 1037 plane waves. This yields a value of tJ.wlwo = 9.59%. Further fine-tuning of 
the optimum, using 1037 plane waves and starting from the optimum obtained above, yields 
negligible changes: tJ.wlwo = 9.59% at (Ria = 0.3201, Rel R = 0.398). We remark that with 
only 339 plane waves (which allows for much faster computing), the optima! parameters were 
determined very accurately, i.e. within a 0.1% margin. 

The central frequency of the gap is wo/21r = 0.746cla. The photonic band structure for 
this geometry is shown in Fig. 3(a). The corresponding density of states is shown in Fig. 4. 
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This figure clearly demon st rat es the existence of a full gap. 
In general, the width of the photonic band gap depends strongly on the dielectric contrast 

and on the volume-filling fraction. We point out that for the optimised structure described 
above, the volume-filling fraction of silicon is only 33.7%, i.e., the optimal band gap occurs in 
a rather empty structure (see Fig. 1(a)) . The controlled preparation and manipulation ofsuch 
empty crystal structures will be a real challenge for material sCÎentists and experimentalists. 
It will be worthwhile to investigate whether also for other classes of geometries such empty 
structures optimise the band gap. 
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L. Kuipers, C. Peeters, E. Flück, M.L.M. Balistreri, A.M. Otter and 
N.F. van Hulst 

Looking into Photonic Structures with a Photon Scan­
ning Tunnelling Microscope 

Abstract 

We present our first photon scanning tunnelling measurements of optical fields around tailor­
made subwavelength structures. A new way to pro duce low-dimensional photonic crystals 
based on ion beam milling is also introduced. 

1 Introd uction 

Already more than 50 years ago Purcell [1] realized that spontaneous emission from an atom 
could be strongly infiuenced by placing the atom in a cavity with dimensions of the order of 
the optica! wavelength. Photonic crystals, by their nature, consist of building blocks of that 
dimension (see e.g. [2] (lD) and [3] (3D)) and also act as perfect mirrors in the direction 
of each stop gap. Thus, they are ideal candidates for gaining a high degree of control over 
spontaneous emission [4]. With the continued increase of possibilities for the production 
of submicron structures, it is therefore not surprising that photonic crystals for visible light 
have seen a tremendous research activity over the last few years. Here, we present focused ion 
beam (FIB) sputtering as a possible new tooI for the production of the photonic structures. 

Despite some notabie exceptions [5, 6] most of the investigations of photonic materials 
are carried out with input-output measurements. In other words, light emerging from the 
material is monitored as a function of parameters of the incoming light (polarisation, wave­
length, ... ). The results are subsequently compared to theory. Here, we present our first 
steps to investigate light inside low-dimensiona! photonic crystals with a photon scanning 
tunnelling microscope (PSTM) . Local studies have the distinct advantage over input-output 
investigations because they can directly determine the influence of heterogeneities on the 
optical field propagation. 

2 Focused ion beam product ion of subwavelength photonic struc­
tures 

Channel waveguides form the basis for our photonic structures. They consist of a ShN4 ridge 
(height 22 nm & width 1.4 (m) on top of a 33 nm layer of Si3N4 on Si02• For a wavelength 
of 632.8 nm in air the only supported mode is the so-called TEoo mode with an in-plane 
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Figure 1: FIB image of subwavelength structures produced by FIB sputtering. A single air rod (a) 
and a periodic array of 5 air rods (b) have been fabricated in a channel waveguide. 

polarisation. The effective index of refraction of this mode is 1.46, as calculated with the 
effective index method [7]. 

We have modified the waveguides by means of FIB sputtering. Figure la shows a FIB 
image of an air rod sputtered in a Si3N4 channel waveguide. The diameter of the rod is 
110 nm. We have produced rods with diameters down to 30 nm. The minimally attainable 
diameter is not determined by the size of the focal spot ('" 10 nm) but by charging of the 
nonconducting Si3N4 during the sputter process. As a consequence, the diameter increases 
with increasing exposure. Separate measurements have confirmed that air rods produced 
with the FIB are perpendicular to the waveguide surface. As yet, we have not been able to 
establish the depth of the holes. 

Figure 1 b shows a FIB image of a periodic array of 5 air rods, each with a diameter of 
90 nm. The diameter of the holes is the same for all holes to within the accuracy of the 
measurements from the FIB images (±5%). The distance between the centres of the air rods 
is 215 nm. The distance between the holes varies by less than 10 nm. 

3 Photon scanning tunnelling microscopy of photonic structures 

Figure 2 schematically depicts measurement with a PSTM on a waveguide structure. In the 
optical ray description light propagates through the waveguide by repeated total internal 
refiections. As aresult an evanescent field is present above the waveguide surface. In the 
PSTM measurement a subwavelength aperture probe is held at a constant height above the 
sample surface. The height ofthe probe is such that it frustrates the evanescent field which, as 
a result, is transformed into a propagating wave. The output of the probe is monitored with 
a photomultiplier tube (PMT). As the probe is raster scanned over the surface an image can 
be constructed of the optical fields in the sample (see e.g. [8] and [9]). A topographic image 
is simultaneously obtained with the optical image from the height adjustments necessary to 
keep the height constant. The probe is fabricated from a single mode fibre by standard fibre 
pulling in order to obtain a sharp apex. In order to minimize stray light entering the probe 
it is covered with Al. The definition and throughput of the resulting probe is then further 
improved by sputtering its end face with a focused ion beam (FIB) [10]. 

Figures 3a and b show a height image (a) and an optical image (b) simultaneously ob-
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Figure 2: Schematic representation of a PSTM measurement. An aperture probe is raster scanned 
over the sample while the height above the surface is kept constant at ~ 10 nm. As aresuit the 
evanescent field above the sample is frustrated and picked up by the probe. 

tained with a PSTM around the hole depicted in fig. la. In the topographical image the 
hole is clearly visible in the cent re of the waveguide. Light is coupled into the waveguide 
structure by means of a microscope objective (the direction of the incoming light is from top 
to bottom). In the optical image around the hole we observe a pattern attributed to interfer­
ence of scattered and unscattered light. The fringes have a separation of 217 nm just in front 
of the hole. Within the experimental accuracy this value is equal to the expected half of 
the wavelength as determined by the effective index of the channel waveguide (ne!! = 1.46). 
Note that ot her techniques would not be ab Ie to resolve this interference pattern. It is clear 
that the light intensity just in front of the hole is higher than further away. We attribute the 
increase in intensity close to the hole to light scattered directly out of the waveguide into the 
aperture probe. The interference pattern is not mirror symmetric with respect to the axis of 
the waveguide. This asymmetry is probably the direct result of the hole being off-axis by rv 

100 nm. 
Figures 3c and 3d show the height image (c) and an optical image (d) obtained with the 

PSTM of the structure depicted in fig. lb. Qualitatively the same optical pattern is observed 
as in the case of a single hole. Here however we observe two pronounced maxima 'followed' 
by a long (> lfLm) shadow. The two maxima and the three local maxima inside the shadow 
region are located at the 'down stream' air- Si3N4 interface of the air rods. Again the mirror 
symmetry is broken even though the array is less than 30 nm off-axis. 

Figure 4 (left panel) shows a line trace of the detected optical intensity as a function 
of the position along the waveguide. It shows the interference fringes mentioned previously 
with an increased intensity and modul at ion depth close to the holes. A beating pattern is 
also just visible. The beating becomes clearer when the boxed area is Fourier transformed. 
The result of this transform is depicted in the right panel. It shows two distinct peaks: the 
expected peak at 217 nm and an unexpected peak at 262 nm. We attribute the peak at 262 
nm to interference of light propagating inside the waveguide with light propagating above 
the waveguide. 
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Figure 3: Height (a & c) and optica! (b & d) images (4 I-'m x 4 I-'m) obtained with a PSTM. 
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Figure 4: (left panel) Line trace of the optica! signa! of fig. 3d along the direct ion of the waveguide. 
The increased optica! intensity due to scattering close to the fust air rods (at 9.2 I-'m) is clearly 
visible. (right panel) Fourier transform of the boxed array showing two distinct spatia! frequencies 
being present in the interference pattern. 

4 Discussion 

We have presented our first subwavelength photonic structures produced by focused ion beam 
sputtering. The technique is shown to have a high flexibility similar to that of electron beam 
lithography. The fabrication of nonperiodic structures like microcavities with dimensions of 
rv À3 seems feasible. The advantage of the technique over e-beam lithography is that no 
resist is required for structure production. 

We have mapped the optical fields around 2 different subwavelength objects (a single air 
rod and a periodic array of 5 air rods) with a resolution unattainable for other techniques. 
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Thus, we can observe interference of scattered and unscattered light. The optical images 
indicate that the production of 1D photonic structures requires a great positioning accuracy 
of the scatterers with respect to the waveguide structure. In the near future we will perform 
the same optical mapping as a function of wavelength. In addition, we will map the phase 
of the light by inserting the PSTM in one of the legs of a Mach-Zehnder interferometer. 
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A. Moroz 

Single Impurity in a Photonic Crystal 

Abstract 

Formulae for the density of stat es (DOS) and integrated DOS (IDOS) are discussed for the 
case when the dielectric constant é is a general function of frequency. 

1 Introduction 

Photonic crystals are characterized by a periodically modulated dielectric constant é. Some 
of such structures occur in nature, for instance, opals and nanostructured colour wings of 
butterflies [1]. There is a common belief that in the near fut ure photonic crystals will give us 
the same control over photons as ordinary crystals do over electrons [2]. At the same time, 
photonic structures are of great promise to become a laboratory for testing fundament al 
processes involving interactions of radiation with matter in novel conditions. 

Similar to the case of electrons moving in a periodic potential, photons can propagate in a 
given direction inside a photonic crystal only if their frequency falls within an allowed band. 
In the presence of impurities, localized photon modes can appear with frequencies within 
the forbidden bands (gaps), which separate the allowed bands (see Fig. 1). These localized 
modes can serve as resonance cavities with a very high quality factor [3]. In a finite crystal 
these modes are responsible for sharp transmission peaks at frequencies within a frequency 
gap of aparent system. Numerous applications involving impurities, for instance, efficient 
bandpass filters, channel drop filters, and waveguide crossing without cross-talk have been 
suggested thus far. 

In the Schrödinger case, for an electron moving in a potential V, the density of states 
(DOS) n(E) and the integrated DOS (IDOS) N(E) are defined as 

n(E) = f n(E, x) dx, 

where n(E, x) is the local DOS (LDOS), 

N(E) = i: n(t) dt, 

1 
n(E,x) = -- ImG(E;x,x). 

1T 

G(E; x, x) here is the Green function, defined as the limit 

G(E; x, x) = lim (x I [E + is - HJ-i I x), 
8--->+0 
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(2) 
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where H is the Hamiltonian. According to its definition, N(E) describes the number of 
modes with E' :s; E and dN(E) = n(E) dE. Formally, 

1 
n(E) = --Im TrG(E), 

'Ir 
(4) 

1 
N(E) = - Im Tr InG(E). 

'Ir 
(5) 

One can show that Im G(Ej x, x) :s; 0 for any self-adjoint operator H. Hence, as expected, 
both n(E) and N(E) are positively defined. 

The above formulae are derived under the assumption that the potential V is energy 
independent. However, for the Maxwell equations, the analogue of a potential V is 

(6) 

where w is frequency, cis the speed of light in vacuum (set to one in the following), and the 
analogue of energy is E = w2 j c2. Moreover , in all realistic cases the dielectric constant e is a 
complicated function of frequency. Thus the potential in the Maxwell case is both explicitly 
and implicitly frequency dependent. Therefore a question arises what is the analogue of the 
formulae (4) and (5) in the Maxwell case. Note that previous discussions of a single impurity 
in a photonic crystal [4, 5, 6] dealt with the idealistic case of a nondispersive e. 

2 Dispersive impurity 

It has been surprising to find out that in the dispersive Maxwell's case the formula (5) for 
the mos is still valid. Consequently, the change in the mos of a parent system induced by 
an impurity is given by 

1 
D.N(E) = -- Im Tr In[I - G(E)W] 

'Ir 
(7) 

where G(E) is the Green function ofunperturbed system and Wis the difference ofpotentials 
with and without the impurity. However, the DOS of a pare nt system and the change in the 
DOS induced by an impurity are given by 

n(E) -~ Im Tr [G(E)(I - dVjdE)] , 
(8) 

D.n(E) = -~ Im Tr [G(E)(I - dWjdE)] . 

Note that in the nondispersive case, the first formula in (8) reduces to 

n(E) -~ Im Tr {G(E) ~2 [w2e(w)]} 

1 
-- Im Tr [G(E) e] , 

'Ir 
(9) 

which has been used, for example, in [7]. 
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Figure 1: Substitutional impurity levels within the fust forbidden band of a parent structure com­
posed of alternating dielectric layers with El = 1 and E2 = 12. A is the length of a unit cello The 
width of impurity layer is d2 (d2/A = 0.4), the same as of the layers with the dielectric constant E2· 

As shown in [8], combining formulae (8) with the photonic analogue of the KKR method 
[9] allows one to treat efficiently the problem of dispersive impurities in a photonic crystal. 
Indeed, the impurity spectrum calculations using the plane-wave method are quite time 
consuming. The number of plane waves used to achieve convergence within 1% is typically 
5 x 102, 2.5 x 10\ and 7.5 x 105 in one, two, and three dimensions, respectively, [4]. On 
the ot her hand, using the photonic analogue of the KKR method [9], the impurity spectrum 
calculation in one dimension involves only matrices of the size 2 x 2. Even in three dimensions, 
the size of matrices involved do not exceed 300 x 300 [8]. 
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T. S0ndergaard 

Spontaneous Emission Rate Alteration in Photonic Crys­
tal Waveguides and Photonic Crystal Microcavities 

Abstract 

A model for spontaneous emission rate alteration based on the Fermi Golden rule and the 
position-dependent photon density of states is outlined. Numerical results are given for the 
rate of spontaneous emission in a waveguide and a microcavity, where the design is based on 
introducing a defect in a two-dimensional photonic crystal. 

Photonic crystals represent a new promising class of periodic dielectric structures for control 
oflight-matter interaction [1]. A new class ofwaveguides and microresonators, which we shall 
refer to as photonic crystal waveguides and photonic crystal microcavities, may be designed 
by introducing a defect in a photonic crystal. In this paper the alteration of spontaneous 
emission in the region of a line defect and a point defect in a two-dimensional photonic crystal 
is considered. Recently, a laser design based on introducing a defect in a two-dimensional 
photonic crystal was experimentally demonstrated [2]. The model for spontaneous emission 
used in this paper is based on the Fermi Golden rule and the position-dependent photon den­
sity of states (PDOS). The position-dependent PDOS for two-dimensional photonic crystals 
with no defects introduced has previously been considered by S!2Indergaard and Busch [3, 4]. 
The structures considered in this paper are approximated by a periodic structure using a 
supercell approximation, and for periodic structures the complex modes of the electric field 
may, in accordance with Bloch's theorem, be written on the form 

(1) 

where k is a wave vector, n is the band number, and Uk,n(r) is a function with the same 
periodicity as the periodic structure. The corresponding angular frequency is denoted Wk,n. 

In terms of these modes the position-dependent PDOS is defined as 

ê(r, w) = L 8(w - Wk,n) 1 Ek,n(r) 1
2, (2) 

k,n 

where the energy of each mode within a period of the periodic structure is normalized to 
unity. 

Enhancement and suppression of spontaneous emission is evaluated by comparing the 
PDOS (2) with the corresponding PDOS for a homogeneous dielectric with the same dielectric 
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Figure 1: The position-dependent photon density of states is shown for two positions A and B (see 
inset) within a two-dimensional photonic crystal waveguide. For comparison the density of states 
is also shown for a homogeneous dielectric with the same dielectric constant as the background 
material. 

constant as the background material. The electric field distributions (1) are calculated using 
fully vectorial plane wave expansion theory and a variational principle [5]. 

Spontaneous emission rate alteration for a photonic crystal waveguide is considered in 
Figure 1. The photonic crystal waveguide and the supercell used as an approximation are 
shown as an inset. The photonic crystal is characterized by circular air-holes arranged on 
a triangular lattice, and the waveguide may be thought of as a line defect in the crystal. 
The frequency is normalized using the center-to- center air-hole spacing A. The diameter 
of the air-holes is 0.83A, and the width of the waveguide is given by W = 1.2A. The 
PDOS (2) is shown for the positions A and B within the waveguide. Also shown is the 
PDOS for a homogeneous dielectric with dielectric constant 13 (representative of GaAs at 
optical frequencies) corresponding to the photonic crystal background material. At both 
positions A and B the PDOS is below the parabolic curve for the homogeneous dielectric, 
and consequently the rate of spontaneous emission is reduced relative to the homogeneous 
dielectric. 

Figure 2 shows the position-dependent PDOS for two positions A and B (see inset) in 
the region near a point-like defect in a two-dimensional photonic crystal. In this case the 
air-hole diameter is 0.86A, and a defect has been introduced by reducing the diameter of 
a single air-hole to 0.57 A. As an inset the amplitude of the electric field squared is shown 
for a localized non-degenerate mode with frequency wA/21fc = 0.374. The amplitude of the 
electric field squared for this mode is strong at position A and close to zero at position B. The 
sum of the amplitudes of the electric field squared for two degenerate modes with frequency 
wA/21fc = 0.382 is also shown as an inset. In this case the amplitude is strong at position 
B and not so strong at position A. Accordingly, for the frequency wA/21fc = 0.374 astrong 
peak is seen in the PDOS at position A, whereas a st rong peak is not seen at position B. 
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Figure 2: The position-dependent photon density of states is shown for two positions A and B (see 
inset) within a two-dimensional photonic crystal microcavity. For comparison the density of states 
is shown for a homogeneous dielectric with the same dielectric constant as the background material. 

Similarly, the photon density of states is strong at position Band not so st rong at position A 
for the frequency wA/21rC = 0.382. The PDOS for a homogeneous dielectric with dielectric 
constant 13 is also shown in Figure 2, and it is clear that the PDOS at position A for the 
frequency wA/21rc = 0.374 is enhanced relative to the PDOS for the homogeneous dielectric, 
and consequently the rate of spontaneous emission is enhanced. 

A similar conclusion may be drawn for the frequency wA/21rc = 0.382 at position B. 
However, position B is at the center of an air-hole, whereas position A corresponds to a 
high-index material, where it is more natural to expect an emitter. Both for the case of the 
photonic crystal waveguide and the photonic crystal microcavity the PDOS is shown for two 
positions to illustrate that the PDOS depends strongly on position. 

In conclusion, the numerical results show that the position-dependent photon density of 
states may dep end strongly on the position within a photonic crystal waveguide and a pho­
tonic crystal microcavity. For the two positions considered within the waveguide spontaneous 
emission was not enhanced relative to the rate of spontaneous emission in a homogeneous 
dielectric with the same dielectric constant as the background material. However, for the 
case of a photonic crystal microcavity the photon density of states is strongly enhanced just 
above the cutoff frequency for a few localized modes, and in th is case spontaneous emission 
may be enhanced. 
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J.A. Veerman, M.F. Garcia-Parajo, L. Kuipers and N.F. van Hulst 

Quantum Jumps of Individual Emitters at Room Tem­
perature 

Abstract 

Intersystem crossing jumps of individual molecules embedded in a polymer are observed in 
real-time. Both triplet state lifetime and crossing yield appear to vary in time. The range 
of the variation for a single molecule during long observation corresponds to the distribution 
for many individual molecules dispersed in space obtained during short observation: a direct 
manifest at ion of the ergodic principle of statistical physics. 

1 Single molecules 

Observations on an ensemble of emitters are blind for several intriguing phenomena that can 
directly be observed by studying individu al emitters [1]: spectral and rotational jumps [2, 3, 
4], photon-(anti)bunching [5, 6, 7] and discrete photobleaching. Moreover the monitoring of 
single emitters forms a powerful way to probe the dynamics of the local nano-environment: 
single molecule detection allows the inhomogeneity of the ensemble to be directly related to 
the real-time dynamics of the heterogeneity of the environment. 

Here we focus on the three level system (Figure 1) as is common for organic fluorophores. 
Besides the repetitive transitions between the singlet So and Sl states, giving rise to fluores­
cence, the molecule has a small chance to undergo intersystem crossing (ISC) from Sl to the 
triplet Tl state. As long as Tl remains occupied, the SO(Sl transit ion does not occur and 
the fluorescence is interrupted temporarily. Af ter decaying to So fluorescence restarts. Thus, 
as the lifetime of Tl is much longer than that of Sl, the fluorescence photons are emitted in 
bunches separated by dark periods that occur when the molecule is in Tl: so-called photon 
bunching. Fast integration of the fluorescence photons over time intervals shorter than the 
duration of the dark periods can identify the time length of each excursion to Tl [8, 7]. We 
have exploited the unique advantage of this real-time method to obtain time-resolved Tl 
state dynamics. We find that single molecular Tl lifetimes vary in time. A suitable length 
of time ('" 10 s) is found over which the distribution of Tl lifetimes of one molecule becomes 
similar to the distribution of constant Tl lifetimes obtained from many individual molecules 
during short observation times [9]. 

2 Real-time intersystem crossing dynamics 

Experiments were performed on DilCl8 molecules immobilized in a PMMA host. Dil has 
a high fluorescence quantum-yield and relatively low bleaching rate (10-6_10-8). Previous 
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Figure 1: Three level energy seheme describing single molecule fluorescence. So, SI are the singlet 
ground and excited statesj kA , kF the absorption and fluorescence ratesj Tl the fust excited triplet 
state, klSC the SI - Tl intersystem crossing ratej kT the Tl - So transition rate. The intersystem 
crossing rate is mueh smaller than the fluorescence decay rate, and the Tl lifetime (kTI

) is mueh 
longer than the SI lifetime (~kï;.I). 

studies at the single molecule level [10, 11] already yielded information about the fluorescence 
spectrum, fluorescence lifetime, orientation, quantum jumps to Tl and intensity fluctuations. 

Our experimental approach involves the excitation of individu al molecules by alocal 
sub-wavelength light source in a near-field optical configuration [12, 4, 13]. An excitation 
intensity of", 10 kW /cm2 is delivered at a 70 nm spot, yielding single molecule fluorescence 
signal up to 106 photon counts/s (close to saturation of the SO-Sl transition) , which allows 
a time resolution of 30 J..LS. 

In order to monitor the fluorescence of a single molecule continuously as a function of 
time, we positioned the near-field source directly above a molecule. All molecules in this 
study (several hundreds) were illuminated and monitored until irreversible photobleaching. 
Figure 2a shows a 15 ms timetrace of the fluorescence of a single Dil molecule. Clearly the 
emission switches abruptly from a high to a low intensity level and back due to singlet-triplet 
quantum jumps. Figure 2b shows a total 3.5 second observation interval in image format, 
with 5 orders of magnitude dynamic range in time and a few thousand triplet excursions. 
From such a fluorescence time trace both a Tl state decay time (TT) and intersystem crossing 
yield (YiSC) can be extracted. The duration of the dark periods was determined directly by 
selecting a signallevel to discriminate between emission ('light' periods) and dark periods. 
A histogram of the duration of all dark periods within a certain observation time interval 
yields an exponential decay with a typical decay time (TT) for that interval. Figure 3a shows 
such a histogram that was obtained by evaluating the fluorescence during an observation 
time interval of 2.8 seconds. Similarly, a typical Y1SC is obtained from the exponential decay 
of the number of photon counts in the light periods. 

We have determined TT and Yisc of 80 different molecules embedded in PMMA. For a 
fraction of these molecules, the histograms of the dark period duration and the number of 
counts of the light periods could be described by a single exponential relation. This indicates 
that both TT and Yisc were constant during the entire observation time for each of these 
molecules at their specific location. We obtain not only a mean value for TT and Y1SC , but 
also the full distribution for these subsets of molecules. In Figure 3b the distribution of TT 

is given for this subset in PMMA (51 molecules). The distribution peaks at 170 (s. The 
distribution of Yisc for the same set of molecules yields a peak value of 2.2 x 10-4• The 
width of the distribution is caused by the spatial heterogeneity of the sample, which results 
in a different local environment for each investigated molecule. 

Surprisingly, we found that for a considerable fraction of the molecules (35%) the his-
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Figure 2: (a) Single molecule fiuorescence timetrace with 57 I-'s integration time per point. The 
fiuorescence drops repeatedly to a low level due to transitions to Tl. (b) Image with 3.5 s of 
fiuorescence blinking. The gray level represents the photon count rate during a 57 I-'s bin: bright · 
streaks are due to SO-Sl cyclingj dark streaks represent residence in the triplet state. 

tograms of TT and Yisc could not be described by a simple single exponential decay. Closer 
inspection of the dynamics of these molecules reveals that TT is not constant in time. Fig. 4a 
displays a clear occurrence of a jump in intersystem crossing dynamics. To take the varia­
tion into account we determined TT over 400 ms intervals (typically 600 triplet excursions). 
Fig. 4b shows TT of a single molecule as a function of the observation time. The molecule 
displays TT variations on a characteristic time scale of about 1 second, ranging from 0.12 
to 0.28 milliseconds until irreversible photo-bleaching occurs after 13 seconds. Histograms 
of the relative occurrence of the different values of TT for the long-lived molecule of Fig. 4b 
are shown in Fig. 4c over the entire observation period. Superimposed to the histogram is 
also the distribution of TT as plotted in Fig. 3b for spatially dispersed short-lived molecules. 
It is found that the relative occurrence in time of TT for the individu al molecule matches a 
large part of the distributions of the constant TT for the set of spatially dispersed molecules. 
We find that this similarity is exhibited for all molecules with a time-varying TT (and Y/sc ). 
Furthermore, the longer the observation time, the stronger the overlap becomes. We find 
that variations in TT and Y/sc for a single molecule occur on a time scale of 0.2 to 20 seconds. 
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Figure 3: (a) Histogram of the length of the 'dark' perioels for a single DiIC18 molecule over an 
observation time of 2.8 seconds. The single exponential decay corresponds to a mean Tl lifetime of 
216 ± 5 J.ts. (b) Distribution of Tl lifetimes of 51 spatially dispersed DiICl8 molecules. Heterogeneity 
of the PMMA environment of the molecules accounts for the range of different Tl lifetimes. 

3 Discussion and conclusion 

The time-dependent behavior of TT and Y 1SC can be understood if one considers that the 
polymer host constitutes a semi-rigid environment, which is dynamic in nature at room 
temperature [10, 4]. As aresuit, photodynamical parameters such as TT and Y1SC can indeed 
vary with time. For instance, variations of the local oxygen concentration, related to local 
conformational dynamics of the polymer host [14], could be involved in the observed variation 
in TT, both in space and in time. 

Finally, a major conclusion can be drawn from the similarity of the two distributions of 
Fig. 4c for TT, one of them representing the behavior of one molecule in time, and the other 
representing the snapshot behavior of different molecules separated in space. The similarity 
indicates that all environmental sites become indistinguishable from each other in time. A 
molecule that would be observable for a sufficiently long period would indeed exhibit the 
same distribution of TT and Y1SC occurrences as a set of molecules dispersed in space at a 
single moment in time. Therefore, we observe that our measurements satisfy the ergodic 
principle of statistical physics, stating that for a physical stationary system a time-average 
is equivalent to an ensemble average. 
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Figure 4: (a) Image of fluorescence blinking with discrete bleach after 1.8 s. The intersystem 
crossing dynamics changes abruptly after 0.7 s (arrow). (b) Trajectory of the Tl lifetime of a single 
DilC18 molecule as a function of time. (c) Histograms of the relative occurrence of the Tl lifetimes 
for the single molecule in (b) (bars), and distribution of Tl lifetimes for spatially dispersed molecules 
in PMMA (line). 
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D. Lenstra, C.L.A. Hooijer, K. Allaart and G. Harel 

Quantum Description of Light Emitted from Semicon­
ductor Microstructures 

Abstract 

We present a quantum mechanical formalism to study the interaction between the active re­
gion in a semiconductor device and the electromagnetic field. The method explicitly avoids 
decomposition into modes. Instead, use is made of the classical Green tensor for the pas­
sive structure. We derive an expression for the spontaneous emission rate generally valid 
for localized and delocalized interactions. As an application, we calculate the spontaneous 
emission factor f3.P for an edge-emitting three-Iayer (waveguide) structure with a quantum 
weU as a function of the width of the middle layer and the position of the quantum wen in 
it. 

In view of apparent developments towards miniaturization of semiconductor devices as wen as 
realization of schemes where semiconductor lasers emit light with non-classical properties [1, 
2, 3, 4], there is an obvious need for a general quantum mechanical framework in which one 
is able to treat the electromagnetic field, the electron dynamics and the interaction between 
electrons and the electromagnetic field in a quantized way for general geometries. Such a 
framework could already today be necessary to understand the basic operation of quantum 
optical devices (noise properties, photon statistics and correlations). It should also allow for 
a straightforward integration with existing quantum mechanical models for the fuU electron 
dynamics in the active region [5J and in semiconductors in general [6J . 

The present paper reports on our approach towards such a general framework and the 
results obtained thus faro A key role in our quantum mechanical theory is played by the 
classical Green tensor of the passive dielectric structure, i.e., the fuU device with its active 
constituents like quantum wens removed. Most of the existing semiconductor light emit­
ting devices can be described in this manner. In our approach we deal directly with the 
electromagnetic field operators, rather than creation and annihilation operators for the nat­
ural modes of the structure. Thus we avoid certain complications connected to the lossy 
character of a mode as a consequence of the open nature of any dielectric structure. The 
problem is formulated by defining the Hamiltonian in a generalized Coulomb gauge and the 
basic commutation relations. Then in the Heisenberg picture the equations of mot ion for 
the relevant operators are straightforwardly derived. An important position is taken by the 
inhomogeneous operator wave equation for the electromagnetic vector potential in which 
the source term refiects the field-matter interaction. This equation can be implicitly solved 
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for the vector potential in terms of the classical Green tensor pertaining to the dielectric 
structure th at remains af ter removing the active constituents. From here on it is possible 
to build further towards a more comprehensive theory th at includes the analysis of higher 
order correlation functions, stimulated emission, squeezing and lasing. In the present paper 
we focus on the application of the theory developed so far to the fundamental problem of 
spontaneous emission. 

A general formula for the spontaneous emission rate is derived that, unlike the usual 
result based on localized electric dipole interaction, takes the delocalized character of the 
electron states fully into account (electric current rather than electric dipole interaction). 
Moreover, the orientation of the current matrix element, i.e., the polarization associated 
with the transition, is taken into account. Next, we apply th is formula to a multilayer 
dielectric configuration with a quantum well and we obtain explicit results for three-Iayer 
waveguide structures, a problem that received significant attention recently, both theoretical 
and experimental [7, 8, 9]. Not only can we demonstrate the strength and elegance of 
our method [10], and completely confirm the theoretical results obtained in [9], but we also 
calculate the spontaneous emission factor fJs p for a selected mode in a three-Iayer edge emitter. 

An important advantage of our method is that it allows a consistent Hamiltonian formu­
lation of the problem, without running into difficulties associated with the open character of 
the system. The field is quantized directly, without invoking a modal decomposition, while 
the electromagnetic features are separated, in a way, from the quantum-mechanical ones. It 
is assumed that the (classical) Green tensor for the full device geometry without the active 
carriers is known. In practice it may not be an easy task to calculate the Green tensor for a 
realistic multilayer device. On the ot her hand, for a given structure, it needs only be done 
once. This Green tensor is then used as input for the quantum mechanical equations of 
motion. 

1 Derivation of equations of mot ion 

In this section the Heisenberg equations of mot ion for the relevant operators in a light 
emitting dielectric device will be derived. The Hamiltonian for such a device and the com­
mutation relations for the operators need to be identified. For the charge carriers the weIl 
known fermion anti-commutation relations hold. For the field operators the situation is not 
so straightforward [11, 12, 13, 14] and indeed is different from the vacuum case. We distin­
guish two interacting parts in the light-emitting device. One part consists of the free charge 
carriers (the electrons in the conduction band and the holes in the valence band) the quan­
turn transitions of which produce or absorb (incoming) light. Usually these occur only in a 
small subregion of the system, e.g. a quantum weIl. The ot her part is passive and constitutes 
all the rest of the device, including the various interfaces that give rise to reflection like in 
a cavity or to guided, radiation and substrate modes like in a waveguide. Here only bound 
charges interact with the field . We neglect absorption in this part, which is areasonabie 
approximation in the optically relevant regime. The dielectric properties (that arise due to 
the interaction with the bound charges) are then accounted for by a real dielectric function 
é(r) that is only space-dependent. This dielectric space may be considered as an effective 
vacuum, in which the electromagnetic field may be quantized in a similar way as in the true 
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vacuum. This is shortly summarized in the next subsection. 

1.1 Quantization of the electromagnetic field in a lossless dielectric structure 

For the quantization of the field in the passive part we foIlow the lines of the extensive 
discussions by Knöll, Vogel and Welsch [11, 12], Glauber and Lewenstein [13], and Tip [14]. 
Note that th is part of the system contains no free charges or currents. We intro duce the 
vector potential field in the usual way as (in SI units) 

B(r, t) 

E(r, t) 

v x A(r,t) 
aA(r, t) 

at 

(1) 

(2) 

In (2) one normally expects a scalar potential as weIl. However, this term is chosen to be 
zero due to the absence of free charges. For the vector potential we choose the generalized 
Coulomb gauge [11, 12, 13, 14]: 

V· (c(r)A(r, t)) = O. (3) 

Note that this is compatible with V . D = 0, where D = -é'oc(r)Ä. Identification of the 
proper canonical momentum density as the conjugate variabie to A for quantization of the 
field requires special care, since the independent variables are non-trivial components of the 
vector field because of the generalized transversality condition (3) . It can be shown that the 
canonically conjugate momentum density is given by [12] : 

II(r, t) = coc(r)Ä(r, t) = -cot:{r)E. (4) 

The Hamiltonian for the electromagnetic field then reads: 

H . _! d3 ~ [(IT(r, t))2 (V x A(r, tW] 
doel - T 2 () + , cOc r I.to 

(5) 

the integration extending over all space, with c(r) == 1 everywhere outside the dielectric light 
emitting device. The canonical quantization condition is more complicated than in the usual 
Coulomb gauge, where it involves the transverse delta function [15]. Here, because of the 
generalized transversality condition (3) , one obtains the equal-time commutators [12]: 

[ 
, " ili ~ , 
Ao(r), E,8(r )] = --8

0
,8(r, r) . 

co 
(6) 

where 8~,8(r, r') is the generalized transverse delta function [12, 13]. For a transverse vector 
field XT(r) one has the relation: 

L! d3T'c(r)8~,8(r, r')XJ(r') = X~(r), 
,8 
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while for a longitudinal vector field XL(r): 

L f d3r' 8~p(r, r')c(r')Xj(r') = O. 
P 

(8) 

Note that with this definition the generalized transverse delta function differs by a constant 
factor c(r) = c from the usu al transverse delta function when c(r) is independent of r. In 
a number of recent papers [16, 17, 18, 19] it has been stressed that a real c(r) unequal 
to 1 violates the Kramers-Kronig relations and therefore causality. However, as a model 
valid for the limited frequency range of optical waves in a dielectric material it should be 
acceptable [8, 13, 19]. 

1.2 Hamiltonian 

The total Hamiltonian for the system has to be derived by determining the energy associated 
with all the processes in the system. The active particles and the interaction are confined 
to the active region. The part of the Hamiltonian concerned with the electromagnetic field 
is given in (5). Now consider the free charge carriers in the active region. The particle 
Hamiltonian is split into a part which contains only the canonical variables of the particles, 
now written in terms of the electron field operators ~(r, t) as 

Hel = f d3r~t(r,t)(;~:V'2+eU(r))~(r,t) 
act.reg. 

+~ f f d3rd3r'~t(r, t)~t(r', t)V(r, r')~(r', t)~(r, t) (9) 
act. reg. 

(in which U(r) is the lattice potential and V(r, r') is the instantaneous Coulomb interaction), 
and the electron-field interaction Hamiltonian 

Hint =- f drÁ(r,t).j(r,t) (10) 
act.reg. 

with, in the case of a generalized Coulomb gauge (3), an operator j (r, t) defined as: 

j(r, t) = ;~: {~t(r, t)V'~(r, t) - (V'~t(r, t)) ~(r, t)} 

• t • { ine V' c(r) e2
• } 

+1lT (r, t)1lT(r, t) --( -) - -2 -A(r, t) . 
2me cr me 

(11) 

The third term in this expression originates from V' Á and the condition (3). Note that 
~(r, t) and therefore the region of integration extends in practice only over the active region 
to which the free charge carriers are confined. 

When substituted in (10), the term in (11) proportional to Á(r, t) is often neglected on 
the basis of arguments that the electromagnetic radiation fields are weak compared to the 
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atomic field strengths [20, 21]. The term with the gradient of c(r) in (11) is also expected 
to be of minor importance, because the dielectric constant is by definition a macroscopic 
quantity, representing the effect of the average polarization of bound charges over a region 
that is large compared to atomic dimensions [22]. For the active layer it is a somewhat 
hypothetical quantity, referring to the system without the free carriers and will not differ 
very much from the dielectric constants of the surrounding layers. From now on, we will 
neglect these terms and identify J(r, t) with the electromagnetic current: 

It is only the transverse current which acts as a source of the electromagnetic field. This 
follows from the the operator Maxwell equation, which can be expressed as: 

a . . 
- at D(r, t) + 'V x H(r, t) 

1 . • 
= - in [coc(r)E(r, t), Hint], (13) 

where the second equality in (13) follows from the Heisenberg equations of mot ion (see (15)) 
for the displacement operator. Using (6) and (7) one obtains: 

JEM,o(r, t) = J d3r'c(r) L ó~p(r, r') Jp (r', t) = J~M,O(r, t), 
act.reg. p 

(14) 

where Jp(r', t) is the ,B-component of J(r, t) and a,,B = x, y, z. Since the current JEM(r, t) 
is transverse, we will denote it from here on as J~M(r, t). 

1.3 Equations of motion 

In the Heisenberg picture the operators are time-dependent, while the states are time­
independent. An advantage of this picture is that the electromagnetic field operators satisfy 
equations that resembie as close as possible the classical electromagnetic field equations. By 
assuming the interaction switched on at t = 0, all expectation values can be evaluated in 
the free-field state of the system at t = O. For an operator ft' that has no explicit time­
dependence, the Heisenberg equation of motion is given by: 

d·I· . 
dt F = in[F,H] . (15) 

For the vector potential operator Á(r, t) one deduces the following vector wave equation, by 
application of (15) with the Hamiltonians (5) and (10), using relation (14) and the gauge 
condition (3): 

(16) 
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After time-Fourier transformation of (16) the formal sol ut ion in terms of j~M(r',w) is ob­
tained as: 

Á(r,w) = Áfree(r,W) + ! d3r' ä (r,r',w)· j~M(r',w), 

in which the Green tensor satisfies the equation: 

(17) 

(18) 

and Áfree(r, w) is a solution of the homogeneous equation, representing the electromagnetic 
field operator for the passive dielectric structure. 

The operator for the electron field is expanded in a basis set: 

~(r, t) = L S(t)IP-y(r). (19) 
-y 

where the label 'Y indicates quantum numbers of Bloch states, i.e., band index n and wave 
vector k [6]. For the operator S(t) the Fermion anti-commutation rules hold: 

s (t)S' (t) 

S(t)ê~ (t) 
-s' (t)S(t), 
á-YT - ê~(t)S(t). 

(20) 

(21) 

In the same representation the current operator (14) can be expressed as: 

ifM.Q(r, t) = L ê~(t)ê-r(t)j~-YT(r), (22) 
"'(,"t' 

with 

j~-YT(r) = ! dVé(r) L á~,8(r, r')j,8.-YT(r'), 
act.reg. ,8 

(23) 

and 

(24) 

If the adopted basis representation IP-y(r) is that of the mean-field (Hartree-Fock) solutions, 
the many-body Hamiltonian for the electrons (9) is represented as [23, 24, 25]: 

Hel = LE-yê~(t)S(t) + ~ t Vtl,8'-YT ê1(t)ê1,(t)ê-r(t)S(t). 
-y tI,8'n' 

The prime on the summation in (1.3) indicates that Coulomb interaction terms already 
included in the mean-field energies E-y must be discarded in order to avoid double counting. 
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The equation of mot ion for the current density (22) is determined by Heisenberg equations 
of mot ion for a pair of electron creation and annihilation operators: 

- i~ L ! d3r {ê~(t)êa(t)Á(r, t) . j~a(r) - êl(t)ê.y, (t)Á(r, t) . j~-y(r)} 
a e!.ext 

1 
+ ih (E-y' - E-y)ê~(t)ê.r(t) 

+ i~ [ê~(t)ê.y,(t), ~ t V.8.8'aa'ê1(t)ê1,(t)êa,(t)êa(t)]. (25) 
.8.8'oa' 

The last term in this expression entails the many-electron problem and can be approximated 
in various ways to obtain a closed set of equations that can be solved [6). In the next section, 
which is intended to illustrate the use of the Green tensor, we shall treat (25) only in its 
simplest (free-carrier) approximation, i.e., we disregard the last term. 

2 Application to spontaneous emission 

2.1 Derivation of the spontaneous emission rate 

The method we use to derive the spontaneous emission rate is adapted from the methods' 
commonly used in quantum opties [26) and in particular inspired by [27). On the basis of 
the equation of mot ion (25), we will derive an expression for the occupation number of the 
conduction band (, = " = 2, k) of the form: 

(26) 

in which the brackets indicate expectation values, the factor r SE is interpreted as the coeffi.­
cient of spontaneous emission and the dots represent terms of more complicated form. From 
inspection of (25) it is clear that, neglecting the electron-electron interaction, a result of the 
form (26) must be obtained from the first line on the right hand side of (25) which contains 
the field operator Á(r, t). This field operator, which describes the creation of a photon in 
the process that we consider, consists according to (17) of a free part and a part generated 
by the (transverse) electromagnetic current. Since we are interested in optical transitions, 
only terms with optical frequencies of the current j~M(r, t) are relevant here. These are the 
terms of (22) for which , and r' refer to different bands. For them, we use the zero-order 
expression for the elements of the density operator: 

ê~k(t)ên'k,(t) = ê~k(O)ê,.'k,(O)e-iWn'nt; (n =F n') (27) 

with Wn'n = k(En'k' - Enk)' Then substitution of the current (22) into (17) yields: 

Á(r,t)=Áfree(r,t)+ L ! d3r'ä(r,r',wn'n)ê~k(t)ên'k,(t)·j~n,(r',k,k'), (28) 
n'#n,k'kact.reg. 
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with j~n,(r, k, k') =j~kn'k,(r). The use of (27) in the intermediate step implies a limitation 
to lowest order in the field operator Á(r, t) (note that the fermion operators are coupled 
via (25) to the field operator) and thereby higher order processes such as the re-absorption 
of emitted photons are neglected. 

The summation in (28) splits in two parts, one in which all terms have a negative frequency 
content (Eq < Ep): 

. - . - ~ J 3 t+ T t Aopt (r, t) = A free (r, t) + ~ d r G (r, r', Wqp) . jpq(r', kp, kq)êpkp (t)êqk.(t) (29) 
q<p,kq,kpact.reg. 

and the ot her part which is its Hermitian conjugate Áop/ (r, t) = [Áopt - (r, t)]f, in which all 
the terms have a positive frequency content. The former can be associated with a photon 
creation operator while the latter is associated with a photon annihilation operator. Cal­
culation of the spontaneous emission is most easily performed by normal ordering of the 
operators [27, 28, 29, 30], which implies that these photon creation operators are put on 
the left and the photon annihilationoperators are put on the right in operator-product ex­
pressions. In this way one loses all vacuum expectation values containing factor Álree; i.e, 
contributions of the free field, and the spontaneous emission is regarded as the radiation 
reaction of the current source back on itself. Moreover we adopt the familiar rotating wave 
approximation [29J, in which creation of a photon is accompanied by transit ion of an electron 
to an energetically lower state and the annihilation of a photon by the opposite transition. 
Substitution of (28) into (25) for '"t = '"t' = (n, k) and omitting the last commutator in (25) 
th en yields the Heisenberg equation of motion: 

[Á - (r, t) . j~ (r, t) - j~(r, t) . Á + (r, t) 

-Á - (r, t) . j~t(r, t) + j~k(r, t) . Á + (r, t)] , (30) 

in which 

j~(r, t) 
m<n,k' 

j~k(r,t) = L j~n(r,k',k)ê~k,(t)ênk(t). (31) 
m>n,k' 

Since the integrand in (30) is anti-Hermitian, one obtains for the expectation value of this 
equation, in any state of the form lepel> 10fieid > with arbitrary electronic state and vacuum 
photonic state, 

! < ê~k(t)ênk(t) >= 

-~ {L L Im [I(n,k,m,k',p,kp,q,kq) < (ê!kp(t)êqkq(t)ê~k(t)ê.".k,(t)) >] 
m>n,k' q<p,kpkq 

+ L L Im [I(n,k,m,k',p,kp,q,kq ) < (ê~k(t)ê.".k,(t)ê!kp(t)êqkq(t)) >]} (32) 
m<n,k' q>p,kpkq 
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where 

1(n,k,m,k',p,kp ,q,kq) == ! ! d3rd3r'j~m(r,k,k'). ä (r,r',wqp ) .j~(r',kp,kq). (33) 

act. reg. 

Equation (32) expresses the time evolution of the carrier number operator corresponding to 
band n and wave vector k in the first Brillouin zone as a net result of two contributions: 
transitions of electrons to band n and transitions from band n to other bands. We will now 
consider the simp Ie case of just two bands, an upper band labeled 2 (conduct ion band) and a 
lower band 1 (valence band). Then (32) for the occupation operator of the conduct ion band 
can be written as: 

:t < ê~k(t)ê2k(t) >= 

-~ L lm {1(2, k, 1, k', 1, kb 2, k) < 4k(t)ê2k(t)(8k'kl - êtk
1 
(t)êlk,(t)) >} 

k/,k} 

~ L lm {1(2, k, 1, k', 1, kb 2, k2) < 4k(t)êlk,(t)êtk1 (t)~k2(t) >} . (34) 
k' ,kl.k2T"k 

The first term on the right hand side of (34) describes, apart from a correction due to 
a possible Pauli blocking of the fin al state k' in the valence band, the effect of decay by 
spontaneous emission of intial conduction band state k. The second term on the right hand 
side of (34) contains combinations of ê-operators that give rise to quantum interference among 
multiple radiation pathways, some of which are similar to those occuring in V-type atomic 
systems [31, 32]. Such effects may lead, in principle, to much faster decay than resulting from 
the first term. However, in realistic situations the necessary coherences for such enhancement 
are most probably not observabie. Therefore, we will neglect such effects here. We may now 
find the coefficient of spontaneous emission from the term on the right hand side of (34) that 
is proportional to < 4k(t)~k(t) >. This coefficient is: 

rSE = ~Llm[1(2,k,1,kl,1,k',2,k)] = 
k' 

~lm ~ ! dr ! dr'jfl (r, k, k')· ä (r, r', W2k,lk') . jÎ2(r', k', kl . (35) 
k act. reg 

The form of (35) is reminiscent of the traditional Fermi Golden Rule result for the sponta­
neous emission rate, which reads: 

(36) 

The current densities Y play parts similar to the transition matrix elements in (36), while 
the Green tensor takes account of the electromagnetic contribution to the density of final 
states p(E). Our basic result has a simple interpretation in terms of the (self) radiation 
reaction energy of the emitting current in its own emitted field [33]. 
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d quantum weil..,. f2 
f2 

T interface 

Figure 1: A typical edge-emitting laser. The pump stripe on the top determines the pumped region 
of the quantum weIl, and this in turn determines the opening angle of the laser mode. 

3 The ,BBp-factor 

Applications of (35) to a quantum weIl in a dielectric multilayer configuration can be found 
elsewhere in these proceedings [34] as weIl as in [10]. These concern calculations of spon­
taneous emission rates and their variations as functions of width of the guiding layer and 
the position of the quantum weIl therein. As another application, we will present here a 
calculation of the spontaneous emission beta-factor, {Jsp, for an edge-emitting structure. By 
its definition [35], this factor is the spontaneous emission rate into a given (laser) mode as 
a fraction of the total spontaneous emission rate. These emission rates may be calculated 
using (35), in which for the emission into a lasing mode the corresponding contribution to the 
total Green tensor should be retained as follows. For a dielectric configuration that occupies 
a finite region in space, the mode of interest for lasing will, in most cases, manifest itself by 

++ 
a simple pole of G (r, r', w) in the complex w-plane at w = Wmode. Then the propagator of 
this mode may be constructed by the prescription: 

G7ed (r, r', w) = [ lim (( - Wmode) ë (r, r', ()] 1 , 
,~Wmod. W - Wmode 

(37) 

and the ,s.p-factor is obtained as: 

++ 
Im~k' I dr I dr'jIl(r,k,k'). Gred (r,r',W2k,lk') ·jf2(r',k',k) 

,sSP = act. reg ++ . (38) 
Im~k' I dr I dr'jIl(r,k,k'). G (r,r',W2k,lk') ·jf2(r',k',k) 

act. reg 

Since the Green tensor for a finite dielectric object such as, e.g., a VCSEL, is quite compli­
cated and, in fact, at present not available to us, we have adopted the model of a multilayer 
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Figure 2: (a) f3.p of the fundamental guided mode versus width of the middle layer d, with the 
active quantum weIl at the center of the layer. (b) f3.p versus position of the quantum weIl zo/d, 
for fixed width d = À/2 (zo/d = 0 means quantum weIl at the interface and zo/d = 1/2 means 
quantum weIl at the center). 

configuration with infinite extension in the lateral direction, for which the Green tensor is 
known in analytic form [8]. 

A complication that arises in the case of a dielectric structure with finite extent is that 
the mode spectrum has also guided modes which form continuous branches, so that the 
prescription (37) cannot be applied. However, we have shown in [10] that in this case the 
contribution of individual guided modes, for a given frequency wgap of the electronic transition 

++ 
between the conduction band and the valence band, can be identified as residues of G at 
poles in the complex k-plane, where k is the lateral wavenumber. The contribution of a single 
guided mode is then given by integration over alllateral directions of k. For a typical edge­
emitting laser, with structure as shown in Fig. 1, lasing can only occur in lateral directions 
within the activated layer, roughly determined by the orientation of the pump stripe. For 
typical stripe dimensions of 5 /Lm by 250 /Lm, this implies restriction of the lasing modes to 
an angle 1/J :::: 2 x 10-2 rad out of the 211" continuum of guided modes with a given k. 

Another complication is that in a real device the emission spectrum is not monochromatic 
but has a width 6.w'P:::: 3THz [36], while the selected longitudinal mode has a natural width 
6.wm ode :::: 30GHz due to outcoupling losses. Therefore, we take as an estimate of fl.p for 
arealistic structure the fraction (1/J/211")(6.Wmode/6.W.p ) :::: 10-4 /11" of the contribution of the 
fundamental guided mode of the same layered configuration with infinite lateral extension. 

We previously calculated the total spontaneous emission rate as a function of layer width 
for a three-layer waveguide fabricated from Al",Gal_",As with a quantum wen embedded at 
the center of the middle layer [10, 34]. The quantum wen is very thin and has dielectric 
constant equal to that of the middle layer. For the case of a three-layer waveguide fabricated 
from GaxAll_",As with x = 0.50, x = 0 and x = 0.50 respectively, we now calculate the 
flsp-factor, as described above, for the fundamental guided mode, i.e., the first guided mode 
to be bom with increasing width d of the middle layer, starting from d = O. The fl.p-factor 
as a function of d is plotted in Fig. 2(a). The width dis given in units of >'/2, where >. is 
the vacuum wavelength associated with the electronic transition frequency wgap ' It is seen 
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that as d increases from 0, the f:1.p-factor rises steeply, obtains a maximum near d = >'/4 and 
then decreases monotonously. This can be explained as follows. First it should be realized 
that the spontaneous emission rate into the mode of interest is proportional to the value of 
the mode intensity at the location of the emitter, i.e., the quantum weIl, whereas the total 
spontaneous emission rate does not change much with increasing width [10]. One can show 

that for small d the intensity at the center of the middle layer scales as I ex J k~m (d) - él ~, 
where kgm(d) is the pole in the complex k-plane associated with the mode of interest, given 
by [10]: 

=0, 
w w Ft - < kgm ~ .,fi2-. 
c c 

(39) 

From this one finds that for small d, where kgm is only slightly larger than Vfïw/c, the mode 
intensity is proportional to d: 

w2 

I ex 2c2 (é2 - él)d, (40) 

which explains the initiallinear increase of f:1.p with d. In turn, for large d the mode intensity 
scales as lid, which leads to the final l/d decrease of the f:1.p-factor. 

The value of the f:1.p-factor found here is on the order of 10-5, depending on the width 
of the middle layer. This agrees weIl with estimates by others [35, 36, 37], based on various 
different approaches. Clearly, our technique provides a good approximation for the f:1.p-factor 
and allows us to predict the general trends of its dependence on design parameters such as 
dielectric constants, quant urn-weIl position, and width of the middle layer. As an example, 
we show in Fig. 2(b) the variation of f:1.P with the position of the quantum weIl in the middle 
layer. Here the f:1op-factor dearly probes the mode intensity. 
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G. Bourdon, R. Adams, I. Robert, K. Nelep, I. Sagnes and I. Abram 

Enhancement and Inhibition of Spontaneous Emission 
in Room-Temperature Semiconductor Microcavities 

Abstract 

We have fabricated planar semiconductor microcavities with metallic mirrors in which we 
have observed both enhancement and inhibition of spontaneous emission, at room temper­
ature. Inhibition is an unambiguous signature of Cavity Quantum Electrodynamics effects, 
and its observation in these room-temperature semiconductor structures opens the way to 
novel devices with controlled spontaneous emission. 

1 Introduction 

Spontaneous emission of light is indispensable in the operation of optoelectronic devices: 
in Light Emitting Diodes (LED) it constitutes the useful output of the devices, while in 
semiconductor lasers it provides the first photon that triggers stimulated emission. However, 
as this phenomenon takes place generally in an uncontrolled way, a very large fraction of the 
emitted the light is lost. AB a consequence, the energy efficiency of LED's is only of the order 
of a few percent, whereas in semiconductor lasers only 1 photon in 105 goes into the lasing 
mode while all other photons are lost and contribute to raising the threshold of operation 
of the laser, limiting its bandwidth and introducing noise. Clearly, if the directivity and the 
dynamics of spontaneous emission can be controlled, this may contribute to greatly increase 
the efficiency of light emitting diodes, reduce the threshold of lasers, possibly to the point of 
canceling it, or may lead to the realization of novellight sources with non-classica! properties 
such as sources of controlled trains of single photons. 

2 Cavity Quantum Electrodynamics in atoms 

Over the last two decades, use of atomic systems, placed in optica! cavities of dimensions 
of the order of the wavelength (ca!led microcavities), has led to the demonstration of the 
possibility of controlling spontaneous emission, and gave rise to the field of Cavity Quantum 
Electrodynamics (CQED) [1]. In order to understand how spontaneous emission can be 
modified inside a cavity, one has to consider simply that this phenomenon is due to the 
coupling of the excited atomic states to the electromagnetic modes available. Thus, the 
different modal structure of the electromagnetic field in the microcavity as compared with 
that in free space produces a modification in the characteristics of spontaneous emission 
when an emitter is introduced inside such a microcavity. 
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Two situations are of partieular interest. The first one concerns cavities that display very 
sharp resonances, so that their modal structure consists of a few discrete states. If an atom 
inside such a cavity couples to a single one of these states (a situation called the "strong 
coupling" regime) its spontaneous emission will involve a periodic exchange of the energy 
between the atom and the cavity mode (Rabi oscillations) and, in the spectrum of the light 
emerging from the cavity, this will give rise to a doublet (vacuum Rabi splitting), rather than 
to a single emission line at the atomie frequency. 

The second situation concerns cavities in whieh the modal structure constitutes a con­
tinuum, such as planar microcavities with ideal metallic mirrors. In this situation, the atom 
will couple (in what is called the "weak coupling" regime), to the part of the continuum that 
is at the same frequency as the atomic transition and will undergo a radiative decay of its 
energy in favor of the electromagnetic modes of the cavity. Near the resonance frequencies 
of the cavity, the density of states in this continuum is higher than in free space, and this 
pro duces an enhancement of the spontaneous emission rate with respect to its value in free 
space. Below the cut-off frequency of the cavity, on the other hand, the density of electro­
magnetic states seen by a dipole parallel to the two mirrors falls to zero, implying that in 
this case there is no coupling between the dipole and the electromagnetie field in the cavity, 
and thus spontaneous emission is inhibited. 

AB the development of CQED has been based on considerations and experiments on single 
atoms that are subject only to the radiative interaction and are otherwise isolated from their 
environment, it is quite difficult to extend the principles of this theory to semiconductors. 
Semiconductors are complex material systems that possess very few of the simplifying features 
of isolated single atoms: In contrast to single atoms, semiconductors involve a very large 
number of atoms, their electronic excitations present a collective and delocalized character 
and are subject to numerous interactions with their environment that produce rapid processes 
of dephasing or energy relaxation. 

3 St rong coupling in semiconductors 

A major breakthrough in the direction of adapting CQED to semiconductors was accom­
plished in 1992, when the vacuum Rabi splitting was observed in planar mierocavities with 
high reflectivity Bragg mirrors, containing semiconductor quantum wells, at low tempera­
ture [2]. Soon afterwards, it was demonstrated that the spontaneous emission lifetime of the 
excitons inside the cavity was strongly modified, in accordance with the "st rong coupling" 
theory of CQED [3]. Two features of solid-state physics permit this complex system to meet 
some of the requirements of atomic CQED. The first one is the translational invariance of the 
planar cavity that intro duces a wavevector selection rule according to which each quantum 
well exciton can couple to a single mode of the planar cavity, reproducing thus the state-to­
state interaction conditions of the atomie "strong coupling" regime. The second one is the 
low temperature experimental conditions under which the exciton scattering by the thermal 
lattice vibrations is relatively slow, so that excitons retain essentially the same wavevector 
and thus satisfy the state-to-state interaction conditions throughout the experimental ob­
servation time. On the other hand, when the temperature is raised and the excitons to are 
rapidly scattered over all wavevectors, the "strong coupling" conditions are not met anymore. 

60 Enhancement and Inhibition of Spontaneous Emission in Room-Temperature . . . 



In that case, the spontaneous emission lifetime of the excitons recovers its free space value 
[3), while the Rabi doublet in the spectrum need not be attributed to CQED, but rather to 
the classical refractive index variations of the spacer in the vicinity of the exciton frequency 
[4). 

4 Weak coupling in semiconductors 

Even though the thermal scattering of carriers in semiconductors compromises the modifica­
tion of spontaneous emission in the "strong coupling" regime, surprisingly, it can be exploited 
to meet some of the conditions that permit such a modification under ''weak coupling". To 
understand this, one has to consider that the scattering of carriers and the statistical occupa­
tion of a given region in wavevector space can be thought, in direct space, as corresponding 
to a localization of the extended wavefunctions of the carriers into a statistical distribution 
of small "coherence volumes" whose extent is given by the Fourier transform of the occupied 
region in wavevector space. The excited electronic states all of the lattice sites contained in 
each "coherence volume" are in phase and therefore emit cooperatively as a single dipole, 
with a spontaneous emission lifetime that is inversely proportional to the number of sites 
contained in the "coherence volume". At room temperature, the spontaneous emission life­
time in GaAs or InGaAs quantum welIs at moderate carrier injection densities (1017 cm-3) 

is of the order of 10 ns, a lifetime that corresponds to a collective oscillator strength of 
approximately 6 x 105 unit cells. This implies that, at room temperature, the elementary 
collective emitters have a diameter of the order of 200 Angstroms and thus can be considered 
to be point-like when compared with the wavelength of light emitted by the semiconductor. 
As a consequence, at room temperature, the CQED behavior of the spontaneous emission 
of a semiconductor quantum weIl inside a cavity will be analogous to that of a collection of 
randomly placed point emitters. 

In considering the modification of spontaneous emission of a room temperature quantum 
weIl let us first examine the case of aplanar cavity bounded by GaAs/ AIAs Bragg mirrors. 
These mirrors present a high reflectivity for angles less than 20 degrees with respect to the 
normal, while for larger angles (which represent 95 percent of space) the reflectivity drops 
practically to zero. As a consequence, the spontaneous emission of a point emitter or a room 
temperature quantum weIl placed in such a cavity will not be modified appreciably and will 
retain essentially the same dynamics as in free space [5). A different behavior is expected, 
however, for a point emitter placed in a cavity with metallic mirrors where a modification of 
the dynamics of spontaneous emission is possible. Indeed, metallic mirrors generally present 
a relatively constant reflectivity over all angles, even if its value is lower than that of Bragg 
mirrors, at normal incidence, because of dissipative losses in the metal of the order of a few 
percent. In particular, for GaAs cavities bounded by silver mirrors, preliminary calculations 
indicate that the spontaneous emission of a dipole oriented parallel to the mirrors should be 
enhanced by a factor of 4 if the spaeer thickness is such that the cavity is resonant with the 
emitter, whereas for shorter cavities the spontaneous emission of a parallel dipole should be 
partially inhibited. Because the dissipative losses in the metal introduce additional channels 
of de-excitation for the dipole, inhibition can never the complete. For the case of silver, 
which is the metal with the smallest losses, inhibition is manifested by a reduction of the 
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spontaneous emission rate by a factor of 5 [5]. 
In general, when absorption losses increase, inhibition becomes weaker. Thus, the ob­

servation of this phenomenon requires a very careful control of aU loss mechanisms. On the 
other hand, the observation of enhancement is more tolerant to radiative losses and persists 
even in the presence of absorption in the mirrors or lateral leaks in the cavity. Indeed, for 
modes that display a very high quality factor and a smaU volume, the emission rate may 
be larger than for all ot her directions of free space, including the leaks, thus permitting 
a direct observation of enhancement [6]. Under the same conditions, however, where the 
cavity presents substantial leaks, no inhibition can be observed. Enhancement due to the 
Purcell effect was recently observed at low temperatures in laterally confined semiconductor 
microcavities with Bragg mirrors [7]. It should be noted that, in addition to the radiative 
losses discussed above, there exist a large number of parasitic processes in semiconductors 
(in particular, non-radiative electron-hole recombination on defects or surface states) that 
can open fast decay channels for the electron-hole pairs thus masking any enhancement of 
the spontaneous emission decay rate due to CQED effects. The importance of observing 
inhibition of spontaneous emission as an unambiguous signature of CQED effects as weIl as 
the experimental difficulties associated with this observation were recognized [8] as early as 
1981. Inhibition was first observed in Rydberg atoms [9] and was later observed at opti­
cal frequencies [10, 11], also in atoms. Until recently, it had never been observed in room 
temperature solid-state microcavities. 

5 Experimental 

With the aim of observing inhibition and enhancement of spontaneous emission in room 
temperature semiconductors, we carried out recently a series of experiments on the photolu­
minescence dynamics of InGaAs quantum wells placed in GaAs microcavities, bounded by 
silver mirrors. We fabricated 4 microcavities having spacers of different thickness: (a) 78 nm, 
(b) 90 nm, (c) 96 nm and (d) 102 nm, each expected to exhibit enhancement or inhibition. 
A schematic of the microcavity structure is given in Fig. 1. 

The spacer of each cavity is an MOCVD-grown multi-Iayer structure containing in its cen­
ter a 10 nm Ino.13Gao.87As strained-Iayer quantum weU, emitting at 950 nm at room temper­
ature. The choice of a strained-Iayer quantum weU is important because of the large splitting 
(40 me V) between the heavy and light hole bands. Because of this splitting, the emission 
at room temperature involves predominantly the heavy-hole to conduction band transition 
which is polarized parallel to the quantum weIl and the mirrors. A 20 nm Alo.4oGao.6oAs bar­
rier is grown on either side of the quantum weU to improve the confinement of the carriers, 
and 15 to 25 nm GaAs capping layers are introduced on both sides of the structure to obtain 
the right spacer thickness. Silver mirrors were evaporated on both sides of the sample. In 
order to improve the interface quantity between the silver and the GaAs, a 1.5 nm a layer 
of Cr metal was evaporated on the GaAs before depositing the silver. The introduction of 
this layer produces very strong dissipative losses and this reduces considerably the expected 
inhibition of spontaneous emission. Taking into account these losses, the expected inhibition 
corresponds to an emission rate reduced only by a factor of 1.6 with respect to the rate in 
the absence of the cavity. For each of the four samples the photoluminescence decay was 
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Figure 1: Schematic of microcavity structure. Left-hand side: "half cavity" consisting of semicon­
ductor spacer and a silver mirror on one side only. Right hand side: "fuIl cavity" consisting of 
semiconductor spacer with a silver mirror on either side. A thin chromium layer is introduced to 
improve the Ag-GaAs interface. 

measured in three different stages of its fabrication process, namely (1) for the as-grown 
MOCVD spacer on its GaAs wafer, (2) for the spacer transferred on a silver mirror ("half 
cavity"), and finally (3) for the spacer on a silver mirror plus a 42 nm-thick silver layer 
evaporated on the free side of the spacer ("full cavity"). 

The samples were excited optically by a mode-Iocked Titanium-Sapphire laser tuned to 
915 nm, delivering 1.5 ps-long pulses at 4 MHz, with the beam arriving at the sample at an 
incidence of 70 degrees. The spontaneous emission was collected at norm al incidence through 
a microscope objective and was detected through a time-resolved photon-counting setup. For 
all samples, photoluminescence decay curves spanning 4 decades of emitted intensity were 
obtained for a series of 15 different incident intensities corresponding to carrier injection 
densities between 1014 and 1018 cm-a. Examples of such decay curves, obtained for the half 
cavity and the full cavity of sample (b), are given in Fig. 2. 

A visual comparison of the luminescence decay curves of the half cavity and the full 
cavity reveals immediately that the introduction of the top mirror produces a considerable 
modification in the dynamics of spontaneous emission: the luminescence decay becomes 
much faster, underscoring the enhancement of spontaneous emission. The decay curves were 
analyzed in terms of a non-exponential decay that could be fitted to the bimolecular radiative 
recombination law characteristic of semiconductors 

dn 2 
- = -A n - B"nn - Bn dt nr '"'U 

where n is the number of carriers injected, Anr is the decay constant for non-radiative re­
combination, no is the residual doping and B is the bimolecular radiative recombination 
constant. The value of B extracted from this fit is proportional to the spontaneous emission 
decay rate obtained from Fermi's Golden Rule. The injected carrier density n was calibrated 
by determining the incident intensity for which the bimolecular recombination constant B 
exhibits saturation, when the electron or hole quasi-Fermi levels reach their respective bands. 
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Figure 2: Dynamics ofthe luminescence decay in sample (b) . Left-hand side: spontaneous emission 
in "half cavity". Right hand side: spontaneous emission in "fuU cavity" . 

For all the as-grown samples the B values were of the order of 1.6 x 10-10 S-lcm- 3 as 
in a quantum weIl embedded in a bulk semiconductor. For the half cavities the B values 
ranged between 1.7 x 10-10 s-lcm-3 and 3.1 x 10- 10 s- lcm-3 , corresponding to enhancement 
by a factor that ranges respectively between 1.1 and 1.9, while for the full cavities the 
radiative recombination constant ranged from 1.0 x 10-10 S-lcm-3 to 4.6 x lO-lO çlcm-a, 
corresponding to inhibition by a factor of 1.6 and to enhancement by a factor of 3 respectively. 
The results are displayed in Fig. 3. 

As can be seen in Fig. 3, the measured values for enhancement and inhibition as a function 
of cavity thickness follow the expected theoretical dependence, calculated by using the "weak 
coupling" model in which the dissipative losses due to the absorption in the mirrors have 
been explicitly taken into account by using the experimentally measured refiectivity of the 
Cr/Ag bi-Iayers. It should be noted that our results display a systematic deviation whereby 
the experimental measurements are 25 percent below the theoretical curve. This is probably 
due to the re-absorption of the emitted light by the quantum weIl which produces recycling 
of the excitation and thus changes the apparent emission lifetime, an effect that is not taken 
into account in our calculations. 

The modification of the bimolecular combination constant B by the local electromagnetic 
environment of the quantum weIl inside the metallic microcavity in a way similar to that 
of isolated at terms in the "weak coupling" model is an experiment al confirmation that the 
band-to-band transitions in room temperature semiconductors involve essentially randomly 
localized dipoles with coherence areas much smaller than the wavelength. At the same 
time, this result clearly indicates that the bimolecular radiative recombination process is 
not determined by a kinetic collisional bottleneck, in spite of all the rapid scattering and 
dephasing processes the carriers undergo at room temperature, but is a true radiative process 
subject to Cavity Quantum Electrodynamics effects. 
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Figure 3: Modification of the bimolecular recombination constant (spontaneous emission rate) of 
a semiconductor quantum weil in a metallic microcavity at room temper at ure, as a function of 
the cavity thickness. Fuil circles: experiment al results for full cavities. Open circles: experiment al 
results for half cavities. Full line: theoretical curve for fuil cavities. Dashed line: theoretica! curve 
for half cavities. Dotted line: spontaneous emission in the absence of mirrors. 

6 Conclusion 

In conclusion, in our experiments we have demonstrated both enhancement and inhibition 
of spontaneous emission in room-temperature semiconductor quantum wells placed in mi­
crocavities with metallic mirrors. The observation of unambiguous CQED effects, such as 
enhancement and inhibition of spontaneous emission in room temperature semiconductor mi­
crocavities contributes towards the extension of the principles of CQED to complex systems 
such as semiconductors. This extension is achallenge analogous to that faced by scientists 
in the early 1960s, when the principles of laser theory, developed initially for isolated atoms 
or ions, were translated into the language of semiconductors [12] thus opening the way to 
the development of the semi conductor laser. The observation of CQED effects under condi­
tions similar to those of operating optoelectronic devices (namely, at room temperature and 
under incoherent injection of the carriers) and the possibility of electrical injection afforded 
by the metallic mirrors permit us to envisage the design of optoelectronic devices that take 
advantage of CQED effects, such as high efficiency LED 's, ultra-Iow threshold semiconductor 
lasers, or emitters producing non-classicallight beams with strongly sub-Poissonian photon 
statistics or controlled trains of photons. 
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G. Nienhuis, K. Joosten and S.M. Dutra 

Photon Lifetimes in Laser Cavities and Excess Quantum 
Noise 

Abstract 

The concept of photon loss rates from laser cavities is discussed, and the fundamental dif­
ference between hot-cavity and cold-cavity loss rates is indicated. This difference gets par­
ticularly important in the presence of various loss channels. For a simple cavity model, a 
quantum mechanical expression is derived for the Hamiltonian that couples the quantized 
field inside the cavity to the outside world. 

1 Introduction 

Lossy resonators play an essential role in cavity QED as weil as in laser physics. In many 
cases, the cavity modes are described simply by ignoring the losses. The output of the cavity 
is then calculated by assuming a field distribution corresponding to a perfect cavity. The 
coupling to the outside world is described by a cavity loss rate. 

An important example of present interest is the excess noise factor of a laser. The 
linewidth of a quantum-limited single-mode laser can be expressed as [1] 

!:l.w = K!:l.wST, 

with !:l.wST the Schawlow-Townes linewidth [2] 

Here 

r 2 

!:l.WST = Rh . 
2 tot 

(1) 

(2) 

(3) 

is the loss rate of the lasing cavity (the 'hot-cavity loss rate'), defined as the ratio of the 
tot al power loss Ptot and the internal energy W of the laser. For simplicity, energies are 
expressed in units of the photon energy. The enhancement factor K can be expressed in 
terms of the non-orthogonality of the modes of the lossy cavity [3]. It is of ten assumed that 
the hot-cavity loss rate is identical to the inverse lifetime of a photon in the cavity without 
gain (the 'cold-cavity loss rate' re). 

In this contribution we discuss the concept of cavity loss rates, both from a semiclassical 
and a quantum mechanical point of view. First we indicate that the hot-cavity loss rate 
cannot simply be identified with the inverse of the lifetime of a photon in the non-Iasing cavity. 
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Moreover, unstable laser cavities generally lose power not only through their outcoupling 
mirror, but also into one or more other loss channels. Even when the tot al cold- and hot­
cavity loss rates are identical, the relative distribution of the losses over the various loss 
channels may differ in the situation of a lasing system compared to a decaying cavity. This 
has implications for the experimental determination of the excess noise factor K. 

In a simple model system of a half-sided open cavity, we discuss the form of the quantum 
mechanical Hamiltonian that describes the coupling of the intern al modes of the cavity, 
and the external world. In earlier discussions the coupling term in this Hamiltonian was a 
phenomenological parameter, that is commonly taken to be independent of frequency [4, 5]. 
We derive an explicit expression for the coupling term. The form of the Hamiltonian is 
important to describe quantum field effects, such as non-classical output fields from a cavity 
or spontaneous decay of atoms in cavities. 

2 Totalloss rates 

We consider a laser resonator of length L, that is lasing in a single transverse mode. As 
usual, we map the round trip of the light travelling up and down the cavity on the interval 
-2L < Z < 0, with z the coordinate in the propagation direction. The gain and loss are 
represented by the functions g(z) and lI:(z) respectively. A localized lossy element such as an 
aperture, positioned at Zi with effective intensity transmissivity li, is described by the loss 
function 

II:(Z) = -ln(li)Ó(z - Zi) . (4) 

For an outcoupling mirror with intensity reflectivity R, a similar expression holds with li 
replaced by R. The totalloss factor over a round trip can be written as the product of the 
loss factors of each lossy element, according to 

T = IIili = eXP[-jO dZII:(z)]. 
-2L 

The periodicity of the system implies that 

j o dz[g(z) _ lI:(z)] = 0, 
-2L 

which states that the total gain factor balances the totalloss factor. 

(5) 

(6) 

For a system with a totalloss factor T the cold-cavity loss rate is determined by the 
relation 

(7) 

with T the round-trip time. When Vgr is he group velocity in the laser cavity, then its round 
trip time is 

T= dz--. j o 1 

-2L Vgr(z) 
(8) 
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Above threshold the number of photons per unit length u(z) in the laser is constant in 
time. Then we find from the continuity equation 

(9) 

where Vgr(z)u(z) is the photon current. The first term in eq. (9) represents the rate of change 
of the photon number per unit length due to gain or loss, the second term gives the change 
due to flow. Formal integration of Eq. (9) gives for the photon current the expression 

Vgr(z)u(z) = vgr(-2L)u(-2L)exp (j% dz'[g(z') - K(Z')]) , -2L < Z < O. (10) 
-2L 

The internal photon number W is found by integrating u over one round trip, which gives 

W = JO dz Vgr (-2L)u(-2L) exp (j% dz'[g(z') -:- K(Z')]) . 
-2L Vgr(z) -2L 

(11) 

The total photon loss rate can be found by integrating the loss of the local photon number 
density K(Z)Vgr(z)u(z) over a round trip. This gives 

Ptot = I:L dZK(Z)Vgr(-2L)u(-2L)exp (I:L dz'[g(z') - K(Z')]) . (12) 

Af ter integration of Eq. (12) by parts, and using the periodic boundary condition K( -2L) = 
K(O), this may alternatively be written as an integration of the power density gain, in the 
form 

Ptot = JO dzg(z)vgr(-2L)u(-2L)exp (jZ dz'[g(z') - K(Z')]). (13) 
-2L -2L 

The identity of equations (12) and (13) reflects the fact that the power gain exactly com­
pensates the power loss. 

This way we arrive at a general expression for the hot-cavity loss rate f h as the ratio 
between Eq. (12) (or (13» and Eq. (11). One notices that the result is by no means always 
identical to the expression for fe, as determined by Eq. (7). Three different situations can be 
identified where f h and fe are identical. In all cases, the group velocity vgr must be uniform. 
The first case occurs when also the gain 9 is uniform, as one recognizes when using eq. (13) 
for Ptot . The second case corresponds to the situation of uniform 10ss K, which follows af ter 
using eq. (12). Finally, the identity offh and fe also ho1ds when in addition to vgr the photon 
density u is uniform, which requires that the gain and the 10ss compensate each other locally. 
Then the exponentia1 terms in eq. (10) disappears. In these three cases the 10ss rates are 
given by 

f h = V2grL JO dzg(z) = VgrL JO dZK(Z) = fe . 
-2L 2_2L 

(14) 

We recall that a non-uniform intensity tends to give rise to a 10ngitudina1 excess noise factor, 
due to the combined act ion of gain and 10ss [6]. This 10ngitudina1 factor must be combined 
with the transverse enhancement factor [7]. 
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3 Partial 10ss rates 

Laser cavities can have various loss channels, both at optical elements or due to absorption in 
the laser medium. Typical for unstable laser cavities is that intensity is also lost by absorption 
at an aperture, which is equivalent to spillover at the outcoupling mirror. Accordingly, the 
total power loss Ptot can be written as the sum over the power losses Pi at each lossy element. 
Then the loss rate (3) can be written as the sum over partialloss rates. According to eqs. (5) 
and (7), the cold-cavity loss rate can also formally be expressed as a sum over lossy elements. 
We now consider the case that the group velocity and the gain are uniform, so that r h and 
re are identical, and equal to vgrg. Then we obtain the identity 

(15) 

This identity (15) might suggest that the separate terms in the two summations are equal 
term by term, so that r i == P;jW = -vgr lnT;j(2L). However, this suggestion is wrong in 
gener al , as we illustrate by a simple example. We consider a laser cavity with length L, with 
one perfect mirror, and an outcoupling mirror with reflectivity R. An aperture is positioned 
in front of the outcoupling mirror, and the effective aperture transmissivity is Ta. This 
transmissivity obviously depends on the transverse mode profile incident on the aperture. 
The gain obeys the relation vgrg = re = r h. In order to extract the excess noise factor from 
measurements, we have to express the Schawlow-Townes linewidth (2) in terms of measurable 
quantities, as 

(16) 

The mirror output Pm and the hot-cavity loss rate r h can be measured directly [8). The 
partialloss rate through the mirror r m = P m/W can be calculated for this system, with the 
result 

r m = Vgrg (1- R)Ta = r
h 

(1/ R - 1) exp( -rhT) , 
1 - RTa 1 - exp( -rhT) 

(17) 

where we used that RTa = exp(-rhT). Note that all quantities appearing in the last term in 
(17) can be deduced from experiment. Thepoint is now that th is expression (17) can deviate 
appreciably from the expression for the loss rate through the mirror -vgr In R/ (2L), which 
one would guess on the basis of the identity (15). This deviation is particularly important 
when the loss over the aperture is appreciable. 

4 Quantum mechanical coupling Hamiltonian 

We consider a similar model of cavity decay, now from a quantum mechanical point of view. 
Photon loss from a cavity is a prototype of quantum dissipation. The cavity extends between 
a perfect mirror at z = -L and a non-absorptive semi-transparent mirror of amplitude 
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reflectivity rand transmissivity t at z = O. The global mode functions of this system can be 
denoted as 

(18) 

for - L < z < 0, and 

(19) 

for z > o. The intra-cavity field strength for a global mode is 

00 

C.(k) = Et (_re i2kL )I. (20) 
1=0 

The operators for the electric and magnetic field are given by their standard expressions 

• (OO [fiëk . 
E(z) = i Jo dky ~a(k)Fk(Z) + H.c. (21) 

and 

Ê(z) = (OO dkV n a(k) dFk(z) + H.c. 
Jo 2Eock dz 

(22) 

The global operators a(k) satisfy the usual commutation relations for continuous annihila­
tion and creation operators, i.e. [a(k) , a(k'») = 0 and [a(k), at(k')) = c5(k - k'). The field 
Hamiltonian is given by the standard expression 

(23) 

In order to introduce field operators inside and outside the cavity, we start from the 
normalized mode functions corresponding to the perfect cavity. These functions are given by 

(24) 

where kn = mr / L with n = 1,2,· . .. We know from the theory of Fourier series that these 
modes form a complete normalized set offunctions inside the cavity. However, this statement 
does not properly account for arbitrary boundary conditions. The field in a perfect cavity 
always vanishes at the boundary, which is not true in a lossy cavity. This boundary effect of 
the set Sn(z) is expressed by the closure relation 

00 

E Sn(z)S:(z') = c5(z - z') - c5(z + z') - c5(z + z' + 2L) , (25) 
n=l 
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for -L ~ Z ~ O. The last two terms in (25) contribute only when both z and z' located 
exactly at a boundary. For arbitrary continuous functions f(z), the well-known expansion 

f(z) = f:Sn(Z) JO dz'S~(i)f(z') 
n=l -L 

(26) 

is valid for z in the open interval (-L, 0). However, exactly at the boundaries z = -L or z = 
o the expansion (26) is valid only for functions f(z) that vanish at the boundary. In fact, 
the r.h.s. of eq. (26) vanishes for z = 0 and for z = -L, regardless the value of f in those 
points. This failure to reproduce the electric field on the boundary with the outside is the 
reason why a quantum description in terms of perfect cavity modes breaks down as the cavity 
quality factor Q decreases. 

We choose to expand the quantized electric field operator inside the cavity (i.e. for - L ~ 
z < 0) as 

(27) 

This operator must be identical to the expression (21) for -L ~ z < 0, which defines the 
operators tin.n in terms of the global field operators a(k). 

Another complete normalized set is formed by 

(28) 

with n = 0,1,2, .... These functions obey the natural boundary conditions for the magnetic 
field in a perfect cavity. The quantized magnetic field operator inside the cavity is now 
expanded as 

(29) 

which basically defines the operators Bin.n. Because the mode functions are real, tin.n and 
Bin.n are Hermitian operators. We want to introduce local field operators 1În, in such a way 
that the expansions for the electric and the magnetic field operator inside the cavity have 
the same form as in a perfect cavity. This is accomplished by the expressions 

i(cln -al) = t in•n , 

cln + al Bin.n. 
(30) 

If we equate the expressions (27) and (29) to the global expressions (21) and (22) for 
-L ~ z < 0, we can express the local operaors cln in terms of the global operators cl(k). 
Explicit expressions are obtained after multiplying eqs. (21) and (22) with Sn(Z) and Cn(z) 
respectively, and integrating over the cavity length. The resulting expressions are found as 

(31) 
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where 

(k) = _1_ (k sin([k - kn]L) -ikL C,. (k) 
anI y';IV k;. k _ k

n 
e , (32) 

an2(k) = __ 1_ (k sin([k + kn]L) e- ikL J::(k). 
y';IV k;. k + kn 

(33) 

In a similar way, we can introduce field operators b(k) corresponding to the outside, by 
starting from the expressions for the electric and magnetic field in the form 

(34) 

(35) 

with the continuum of mode functions for the outside part with a perfect mirror at z = ° 
defined by 

Sk(Z) -~ sin(kz), 

Ck(z) = -~ cos(kz). 

Then the outside field operators are defined by the expressions 

i(b(k) - bt(k») 

b(k) + bt(k) 

&out(k) , 

Bout(k) , 

(36) 

(37) 

which makes the external field operators identical in form as in the case of a perfect mirror. 
Again, we can derive expressions for the outside operators b(k) in terms ofthe global operators 
a(k). The expressions (21) and (22) obey the well-known canonical commutation relations, 
from which one can argue that also the inside and outside operators obey the standard 
commutation relations 

[an,an,] = 0, 

[A At] = Ónn, , an,an, 
(38) 

and 

[b(k), b(k')] 0, 

[b(k), bt(k')] c5(k - k'). 
(39) 

In order to derive an explicit form of the Hamiltonian in terms of the inside and outside 
operators û.n and b(k), we have to express the global operators a(k) in terms of these. How­
ever, the set of inside and outside operators is not complete in general, since they cannot 

Nienhuis, Joosten and Dutra 73 



properly describe the field at the mirror. For most models of the mirror, the reflection r 
deviates from its perfect-cavity value already to first order in the transmittivity, and non­
orthogonal modes (with non-vanishing field values at the mirror) are needed already in this 
order. Therefore, we consider a simple case where r ~ -1 up to first order for non-vanishing 
t. We take r = -VI - f2 and t = if for real, positive f < 1. In this case, the global op­
erators can be expressed as expansion in the the inside and outside operators a.. and b(k). 
Substituting this expansion in Eq. (23), and retaining only first order terms in f leads to the 
expression for the Hamiltonian 

Îl = ~ nckn (at a + a at) 6-2- n n n n 
n=l 

+ 1'''' dk ~k {bt(k)b(k) + b(k)bt(k)} 

+ ~ 100 

dk {Vn(k)bt(k)an + V:(k)a~b(k)} , (40) 

with the coupling term given by 

(41) 

The Hamiltonian (40) has the same form as the phenomenological Hamiltonian introduced 
by Gardiner and Collett (1985), which has also been used by Barnett and Radmore (1988). 
However, we have obtained an explicit expression for the coupling term V, which deviates 
from the common assumption of a constant strength. Moreover , we did not make the rotating­
wave approximation. The counter-rotating terms, consisting of products of two creation or 
two annihiltaion operators, vanish exactly in first order in the transmissivity. 

The Hamiltonian (40) can be used to study the decay of the cavity. One readily obtains 
the result 

d -t - _ r -t-dt < anCLn >- - < anCLn > , (42) 

with r = kI 2 /(2cL). However, it is more interesting to study the properties of the outside 
field. The explicit Hamiltonian allows us to study the quantum properties of the radiation 
field leaking out of a cavity containing a non-classical field initially. Moreover, the derivation 
indicates that for low-Q cavities, the operators for the cavity field and the outside can no 
longer be expected to commute. The modes needed to describe all possible fields inside, 
including the correct boundary conditions, must be expected to be non-orthogonal. 
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N.J. van Druten, A.M. van der Lee, M.P. van Exter and J.P. Woerd­
man 

Excess Quantum N oise is Colored 

Abstract 

We demonstrate both theoretieally and experimentally that exeess quantum noise is colored. 
The experiments were performed on a a mini at ure He-Xe gas laser, operating at 3.5 /-Lm, 
with an adjustable nonorthogonality of the polarization modes. 

Spontaneous emission is a fundamental souree of noise in a laser. Usually, this quantum 
noise amounts to a level of "one photon per mode", leading for instanee to the well-known 
Sehawlow-Townes limit to the laser linewidth. Reeently, there has been mueh interest [1, 2] 
in excess quantum noise, which appears when the eigenmodes of the laser resonator become 
nonorthogonal [3, 4]; the spontaneous emission noise has an apparent strength of "K photons 
in the lasing mode" in this case. The enhancement factor K can become quite large, K ~ 500 
has been demonstrated in recent experiments, and the possibility of K values larger than 104 

has been predicted [5]. This leads naturally to the question: what are the limitations to the 
concept of excess quantum noise? 

We have demonstrated both theoretically and experimentally one such limitation, namely 
that excess quantum noise is speet rally colored [6]. This is in contrast to the usual sponta­
neous emission noise in a laser with orthogonal eigenmodes, which is essentially white noise. 
The coloring can be attributed to the finite time it takes for the excess quantum noise to 
build up from the "one-photon per mode" level. Thus, the picture of simply having "K noise 
photons in the lasing mode" breaks down. 

The experiments were performed by measuring the intensity noise of a miniature He-Xe 
gas laser, operating at 3.5 /-Lm, with an adjustable nonorthogonality of the polarization modes 
[7]. The theory of the coloring of excess quantum noise applies here in its simplest form, 
since a two-mode description is sufficient. A typical result is shown in Fig. 1, together with 
the theoretical prediction. The coloring of the excess noise factor is clearly visible, and the 
agreement with theory is excellent. Clearly, the maximum value of K is only reached for 
zero frequency, and the excess noise disappears (K = 1) for high frequencies. The coloring 
bandwidth was typically a few megahertz in our experiments (1.1 MHz in Fig. 1). This 
corresponds to the time scale on which the polarization-modifying elements in the laser 
resonator convert polarization-angle fluctuations into excess intensity fluctuations. 

The origin of excess quantum noise, including the coloring, can be eonveniently explained 
using a geometrical picture, illustrated in Fig. 2. It shows two nonorthogonal eigenmodes (the 
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Figure 1: Demonstration of the coloring of excess quantum noise. The solid line is the experimental 
data, normalized intensity noise of a HeXe gas laser having nonorthogonal polarization modes. The 
dotted line is the theoretical prediction. 

lasing mode and a nonlasing eigenmode) as vectors in the state space describing the optical 
field in the resonator. In the case of our experiments on nonorthogonal polarization modes, 
these vectors can be thought of as simply representing the direction of (linear) polarization 
of the light in the laser resonator. Spontaneous emission that is directly emitted into the 
polarization direction of the lasing mode contributes the usual "one photon per mode" to 
the laser noise. More interesting is what happens to spontaneous emission that is emitted 
in a direction orthogonal to the lasing eigenmode, as depicted in Fig. 2. This is equally 
likely to occur, since spontaneous emission wiIl be isotropie in polarization direction. For 
orthogonal eigenmodes, these spontaneous emission events do not contribute to noise in the 
lasing eigenmode. In contrast, they are important for nonorthogonal eigenmodes. The time 
evolution of such a spontaneously emitted photon can be visualized by decomposing it into 
the separate components along the two eigenmodes, as indicated by the dashed lines. Each 
of these components will evolve according to the eigenvalue of the corresponding eigenmode. 
Hence the component along the nonlasing eigenmode (which has a net loss compared to the 
lasing mode) will rapidly decay, and only the component along the lasing eigenmode, labeled 
as "excess noise" will remain. Thus, spontaneous emission in a direction orthogonal to the 
lasing eigenmode will evolve into noise in the lasing eigenmode, with astrength corresponding 
to "K - 1 photons". The timescale for this to occur is the decay rate of the nonlasing mode, 
and this is what sets the timescale for the coloring. 

We are currently further exploring the limitations to the concept of excess quantum 
noise. Our results indicate that several other mechanisms can limit the amount of excess 
noise observed. Examples include the anisotropy of the gain saturation and the case that the 
excess quantum noise becomes so strong that it can no longer be treated perturbatively. In 
addition, we have studied the effects of mode-nonorthogonality on ot her fundamental sourees 
of laser noise, such as the Poissonian pump noise. 
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Figure 2: A geometrical representation of nonorthogonal eigenmodes, and the origin of excess 
quantum noise. This geometrical picture can also be used to explain the coloring of excess quantum 
noise. 
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C.L.A. Hooijer, K. Allaart and D. Lenstra 

Probing Field Mode Densities in a Multilayer Structure 
with a Quantum WeIl 

Abstract 

A calculation of the spontaneous emission rate from a quantum weU in a multilayer structure 
is presented. The dependence of the spontaneous emission rate on the parameters of the 
structure, (i.e. thickness of layers, position of quantum weU, dielectric constants) is shown 
to be smooth. In common dielectric waveguide structures, the guided modes and radiation 
modes have comparable contributions to the spontaneous emission rate and the ratio of these 
contributions increases with increasing dielectric contrast. 

Recently the influence of the dielectric environment on the spontaneous emission rate was 
studied for an atom inside a dielectric three-Iayer structure [1, 2] . Within a quantum­
electrodynamical approach we have theoretically investigated similar effects for a quantum 
weU embedded in a multilayer structure. Using the Heisenberg equations of motion for the 
charge carriers, the spontaneous emission rates may be obtained without an explicit modal 
decomposition of the radiation field . Considering a two-band model with an electron in the 
upper band (1), we find the following expression for the spontaneous emission rate in terms 
of the charge current densities and the electromagnetic transverse Greens function [3] as a 
summation over empty valence band (2) states: 

Using a parabolic two-band model, we found the current density matrix element [3]: 

(2) 

where K =< 11\712 >. The multilayer structure consists of n layers of dielectric material, 
each with a constant index of refraction illustrated in Fig.!. The index steps are in the 
z-direction, there is no variation in dielectric constant in the x- and y-direction. A quantum 
well is assumed to be embedded in the j-th layer with permittivity éi. The Greens tensor 
relating an observation point r = (p, z ) and a source point ro = (Po, Zo) was derived by 
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t quantum weU 

Figure 1: Multilayer structure with a quantum weil embedded in one of its layers. Each layer has 
a constant index of refraction. The index of the quantum weil, which is very thin, is set equal to éj 
of the cladding layer (with thickness dj). The position of the quantum weil is given by ZO. 

TomaS and reads for rand ro both in the j-th layer as [4]: 

ä;il (r,ro,w) = 2: ~~!~{3k(qexp(;t/dj) [er(k,wjz)eJ«-k,wjzo)B(z-zo) 
q=E,H J 3 

+er(k, Wj zo)er( -k, Wj .zo)B(z - .zo)] exp[ik . (p - Po)]eiPj(z-zo) 

o < z, Zo < dj (3) 

where the index q indicates the polarization of the field, which is either E-polarization or 
H-polarization, k = (k"" kll ) is the conserved component of the wave vector parallel to the 

system interfaces, {3j = Jêj~ - k2 is the local z-component of the wave vector, (E = -1, 

(H = 1 and 

D~ = 1 - r~ r~+e2ifJjdj (4) 
J 3- , 

with rJ+ (rJ_) being the reflection coeflicients of the upper (lower) interface. These coeffi­
cients obey the usual recurrence relations [4] 

rJ.± = D! [i'J,;±l + rJ±l,± exp(2i{3j± l dj±1)] (5) 
j±l 

with i'JJ±! the reflection coefficients for a single interface j/k(= j ± 1) reduce to 

i'~ = êk{3j - êj{3k. i'~ = {3j - 13k (6) 
, êk{3j + Cjf3k " f3j + {3k . 

The vectors e;-; and e~ describe the z-dependence of the electric field in the cavity of a 
q = H polarized or a q = E polarized plane wave of unit strength incident on the system 
from its upper (downward) and lower (upward) side, respectively. They are defined by 

e< (k, Wj z) er (k)e-ifJjz + rJ_eJ+(k)eifJj(dj-Z) 

e>(k, Wj z) eJ+(k)e-iPj(dj-z) + rJ+er(k)eifJjZ (7) 

_C_(±f3j k + kil, e~'F = k x i 
Vfjw ' 
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where e1'f' are the orthonormal polarization vectors associated with the downward and upward 

propagating waves in the cavity respectivelYi k and z are unit vectors. 
We assume that the quantum weIl is just a thin sheet at the z = Zo plane. The transverse 

++(j).1 
Greens tensor Gj (p,p',zo,w) at the zo-plane is obtained by subtracting the longitudinal 
part. The result is: 

with 

€J> (k, w, zo) 

€J«k,w, zo) 

ëf>(k,w,zo) 

ëf«k, w, Zo) 

(k x z)(e-i.B;(d;-zo) + rf+ei.B;(d;-ZO») 

(k x z)(e-ii3;Zo + rf_eii3;zo) 

z (e- ii3;(d;-zo) + r.f-t.ei.B;(d;-Zo») 

z (e-i.B;zo + rf-ei.B;ZO) . 

The spontaneous emission coefIicient then reduces to 

(9) 

(10) 

where -yE is associated with the E-polarized waves and -yH is associated with the H-polarized 
waves and 

According to eq. (11), the spontaneous emission rate depends on the reflectivity coefIicients of 
upper and lower layer stacks, the thickness of the j-th layer and the position of the quantum 
weIl in this layer. The E-polarized emission is only related to the current matrix element 
parallel to the quantum weIl, the H-polarized emission to that perpendicular to the quantum 
weIl. 

Typical results are shown in Fig. 2. The values for the index of refraction used are taken 
from Saleh and Teich [5]. In Fig. 2(a) and 2(b) cusps are seen in the separate contributions 
of guided and radiation modes. These cusps can be attributed to the birth of new guided 
modes [3], causing the suddenly higher contribution from the guided modes. Just before each 
cusp, the precursor of the new guided mode is composed of radiation modes. That is why 
the contribution from the radiation modes drops in the complimentary fashion at the birth 
of the new guided modes, such that the total spontaneous emission rate shows no effect. 

The results presented here show that changing the thickness of the cladding layer and 
the position of the quantum weIl in the cladding layer can modify the spontaneous emission 
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Figure 2: Spontaneous emission rate into E-polarized modes versus thickness d of the middle layer 
(figures (a) and (b)) and versus position Zo of the quantum weIl in this layer at a fixed thickness 
of 0.75>' (figures (c) and (d)). The contribution of the radiation modes (solid line) and the guided 
modes (long-dashed line) is summed to give the tota! spontaneous emission rate (short-dashed Hne). 
Configuration from top to bottom layer, figure (a): five layer, AlAs, Gao.5Alo.sAs (thickness 0.5>'), 
GaAs, Gao.5Alo.5As (thickness 0.5>') , AlAsj figure (b): three-Iayer, AIAs, GaAs, Gao.5Alo.5Asj 
figure (c): three-Iayer, AIO, GaAs, AIOj figure (d): three-Iayer, AlAs, GaAs, AlAsj refractive 
indices: AlAs 3.2, Gao.5Alo.5As 3.4, GaAs 3.6, AIO 1.76. Plots for the H-polarized modes are very 
similar. 

rate of the quantum weU significantly. This can be used to control the spontaneous emission 
lifetime of the quantum well. Moreover the guided modes do play an important rale in the 
spontaneous emission rate. One can see from Fig. 2(c) and 2(d) that, as long as one stays 
away from the interfaces, the spontaneous emission rate is not very sensitive to the position 
of the quantum well. 
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A. Tip 

Quantization and Microscopic Background of Macro­
scopie Dieleetries 

Abstract 

A microscopic linear response expression for the electric susceptibility of a finite dielectrie is 
presented. lts form justifies the use of the experimentally accessible macroscopie susceptibil­
ity in the quantisation of phenomenological absorptive dielectries. 

1 Background 

Quantization of macroscopic dielectrics is required for a proper description of processes such 
as the radiative decay of atoms embedded in absorptive photonic crystals, transit ion and 
Cerenkov X-ray radiation by fast electrons moving through absorptive dielectric layers, the 
Casimir force between absorptive media and quantum friction. In particular the atomic 
decay and X-ray cases have important technologieal implications. 

The quantization of conservative (non-absorptive) media, characterized by the real fre­
quency-independent electric permeability c(x), has a long history but a corresponding ap­
proach for the absorptive case, involving a complex, frequency-dependent c(x, w), has only 
become available quite recently and is at the moment still confined to the linear case. Two 
general approaches exist: 

• The addition of a Langevin noise current [1, 2, 3, 4], describing the absorption, to the 
free quantized free field equations. 

• The introduction of auxiliary fields in the classieal absorptive case [5J, restoring energy 
conservation and allowing a canonieal formalism and its quantisation. 

In these set ups the only input required is c(x,w), which can be obtained from experiment. 
Another line of attack starts from a microscopic quantum model for the material system 
[6, 7, 8J 80 far its scope is limited to spatially homogeneous situations and it uses aspecific 
model for the material system. This situation leads to the following questions: 

• Are the two macroscopic approaches equivalent? 

• Can a microscopic justification be given that goes beyond [6, 7, 8J? 

Both questions have an affirmative answer. It is easy to show that the auxiliary field model 
immediately leads to a Langevin current with the correct properties. In fact the converse 
route can be followed as weIl. The second problem is more intriguing. An obvious starting 
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point would be some linear (and higher order) response approach, involving a material system 
interacting with the free electromagnetic field, followed by the derivation of an effective set 
of equations for the electromagnetic subsystem. lts feasibility strongly depends on the actual 
material system. The first choice to be made is that between an infinite and finite system. 
In actual situations one is dealing with a finite piece of material, which is often so large that 
its spectrum approaches the simpier band structure of the infinite system in the crystalline 
case, suggesting the use of an infinite system to exploit this feature. However, there is an 
important drawback. In order to study the dielectric properties of the system an electric field 
is generated outside the material and its effect is studied with outside detectors. This gives 
serious problems in the infinite case. But even in the finite case a linear response expression 
may be meaningless (consider a single moving charge). Assuming our piece of material to 
be initially in a bound state (i.e., we look up on it as a large molecule) and the initial field 
state that of a wavepacket moving towards the material, we have a realist ie situation which is 
amenable to a scattering theoretical description. The idea is then to derive a set of Maxwell's 
equations for the field subsystem. This set is not unique but will in general depend on the 
observed process. Elastic scattering of the field wavepacket from the material can be handled 
by linear response theory, the coupling constant between the subsystems being the small fine 
structure constant Q. Non-linear processes, such as harmonie generation, require a higher 
order response approach. 

2 The system 

We consider a finite material system, made up from spinless Schrödinger particles interacting 
through Coulomb forces, whieh is coupled to the transverse quantized Maxwell field. lts 
Hamiltonian is 

H = Hm + Hf + Hint = Ho + Hint = Hm + Hf - ! dxJl.(x). A(x), (1) 

N p~ N ! 
Hm L 2~. + L l!ij(Xi - Xj), Hf = L dkka·(Uka)a(Uka), 

j=1 J i>j=1 a 
(2) 

A(x) = L! dk(2k)-1 j 2{a*(Uka)Üka(X) + a(Uka)Uka(X)} 
a 

(3) 

where Hm is the matter Hamiltonian, consisting of a kinetic energy term and a sum of 
Coulomb interactions, Hf the free field Hamiltonian, A(x) the vector potential and Jl.(x) 
the transverse part of the current operator 

e. e2 

J(x) = L ~{pj6(x - Xj) + 6(x - Xj)Pj} - L -L6(x - Xj) A(xj) = J(l(x) + Jb(x). 
j mJ j mJ 

(4) 

Here the a·'s and a's are creation and annihilation operators and the Uka are the free trans­
verse free field modes. Initially, as t ---+ -00 the system approaches the freely evolving 
product state 

Pin = Pm ®pf· (5) 
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Here Pm is the density operator describing the initial matter state, which we assume to 
commute with Hm, [Pm, Hm] = 0, whereas PI is the density operator for the initial field 
wavepacket. It can be constructed in such a way that it does not reach the material target 
untill some finite time t which we set equal to zero. This cannot strictly be true, since 
eigenvectors of Schrödinger operators have infinite tails. The latter decay rapidly over a 
distance in the order of Ángstr~ms and it makes sense to set the system density operator at 
t = 0 equal to Pin, 

p(O) ~ Pin. (6) 

This description can be improved, using wave operators to relate the initial situation to 
that at t = O. The time evolution of an observable in the Heisenberg picture is given by 
(LX = [H,X]) 

X(t) = exp[iHt]X exp[-iHt] = exp[Lt}X = U(t)X 

and for the field operators this leads to 

8tE(x, t) 
8tB(x, t) 

8x x B(x, t) - Jl.(x, t), 
-8x x E(x, t). 

(7) 

(8) 
(9) 

We then obtain effective equations for the field operators by taking the (partial) trace over 
the initial matter density operator, i.e., denoting (X) = trmPmX, we have 

or 

3 Linearisation 

8t (E)(x, t) 
8t (B)(x, t) 

8x x (B)(x, t) - (J)l.(x, t), 
-8x x (E)(x, t). 

-éft( A)(x, t) = -~( A)(x, t) - (J)l.(x, t). 

(10) 
(11) 

(12) 

A expression for Jl.(x, t), linear in the fields, can be obtained by making a Dyson series 
expansion of U(t) with LintX = [Hint,X] as the perturbation and retaining the first two 
terms. Thus, in terms of Uo(t) (U')'(t) = exp[iL')'t], L')'X = [H')', X]), 

U(t) = Uo(t) + i 1t 
dsUo(t - S)LintUO(S) + O(L~nt). (13) 

However, note that Lint contains linear and quadratic contributions in A. Expanded in 
increasing orders in A, we have 

00 

Jl.(x, t) = L J;(x, t), (14) 
n=O 
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where 

J~(x, t) 

Jf(x, t) 

Uo(t)J;(x) = Um(t)J;(x), (15) 

Uo(t)Jt(x) - i fot ds f dyUo(t - s)[J;(y)· A(y), Uo(s)J;(x)], (16) 

etc. We now average over Pm, leading to (J~(x, t)) = (J;(x)), which mayor may not vanish, 
depending on the symmetry properties of Pm. Next, after some rewriting, 

(Jf(x, t)) = (U,(t)Jt(x)) - i fot ds f dy([J.L(y)· U,(t - s) A(y), Um(s)J; (x)]) , (17) 

where the second term has the structure of an autocorrelation expression. Here the right 
hand side features the freely evolving U,(u)A(y) and our final step is to keep these first 
two terms in (12) in a self-consistent approximation where we replace U,(u)A with (A)(u), 
i.e. the same object as featured on the left hand side. Now it is straightforward to identify 
the quantity corresponding to the phenomenological electric susceptibility X , relating the 
polarisation P to the electric field 

P(x, t) = fot ds f dyX (x, y, t - s) . E(y, s), (18) 

which in general is a second rank tensor and a kemel in coordinate space as weIl. This is 
most easily done by switching to Laplace transforms, 

Î(z) = fooo dtexp[izt]f(t), Imz > 0, (19) 

so 

Ê(z) = -E(O)-iz A(z), (20) 

which relation can be used to express the current in terms of Ê(z). Apparently the above 
straightforward procedure in this general form has not been considered in the literature, 
although it has recently been applied to a description of collective excitations [9]. 
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M. Zong, M.A,F.H. van den Broek and H.J. Bakker 

Spatio-Temporal Correlation of the Zero-Photon Elec­
tromagnetic Field 

Abstract 

We propose a new imaging technique based on parametric generation to investigate the cor­
rel at ion properties of the zero-photon electromagnetic field. In a first measurement this 
technique is used to investigate the time correlation of this field. In the near future, the 
technique will be used to study the spatio-temporal correlation of the zero-photon electro­
magnetic field. 

1 Introduction 

Atoms in an excited state can decay to the ground state by spontaneous emission of a photon. 
In spite of its name, the rate of the spontaneous emission process is not only determined by the 
excited atom itself but also by the properties of the zero-point (zero-photon) electromagnetic 
field. For instance, the rate of spontaneous emission can be modified by changing the mode 
density ofthe zero-point field at the spontaneous-emission frequency with a cavity. [1,2,3,4]. 
Clearly, excited atoms can thus be used as a probe of the zero-point electromagnetic field. 
However, a major disadvantage of using an atom is that the field can only be probed at the 
resonant emission frequencies. The zero-point electromagnetic field can only be studied over 
a wide frequency range with a non-resonant process in which the properties of the light at 
the quantum-noise level are retained. Such a process is parametric generation. 

Parametrie generation is a second-order nonlinear optica! proces in which the photons of 
an intense pump pulse are split into two photons of smaller energy (signal and idler) in a 
nonlinear crystal under the condition of energy conservation : wp = W. + Wi, with p, s and i 
denoting pump, signa! and idler respectively [5]. This process has been widely used for the 
generation of intense mid-infrared pulses [6, 7, 8). 

Interestingly, although parametric generation can be used to generate high-intensity 
pulses, the process cannot be described using a classical description of the electromagnetic 
fields and the nonlinear optical interaction. In sueb a classical description there will only be 
a conversion from pump light to signal and idler if either the signalor the idler is already 
present at the beginning of the process to stimulate the conversion. However, it is important 
to realize that the absence of a classical signa! and idler field only implies that the expectation 
value of these fields will be zero. Due to the positive zero-point energy of every mode of the 
electromagnetic field, there will be a certain spreadjuncertainty in the electric fields of signal 
and idler. This uncertainty is referred to as quantum fluctuations of the zero-point field and 
seeds the parametric-generation process. 
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In the parametrie generation process, the quantum fluctuations of the zero-photon elec­
tromagnetic field are amplified and result in a (stochastic) phase modul at ion of the signal 
and idler fields . Due to the phase-sensitive nature of the parametric-generation process the 
phase modulations of the amplified signal and idler will be complimentary [9]. If the signal 
and idler fields overlap in time within their coherence time, the phase modulations cancel and 
the sum-frequency spectrum consists of a narrow peak (with the width of the pump-pulse 
spectrum) even though the individual spectra of signal and idler can be extremely broad. 
The occurence of a narrow peak in the sum-frequency spectrum can also be explained with 
a quantum-mechanical description of parametrie generation. The frequencies of signal and 
idler photons that originate from a common pump photon will be anticorrelated since the 
sum of their frequencies must be equal to the pump frequency. Hence, if signal and idler 
are recombined without any delay between the two, there is a large chance that the photons 
recombine with their twin brothers leading to a narrow peak in the sum-frequency spectrum 
(twin-correlation peak) [10]. 

2 Imaging the spatio-temporal correlation of the zero-photon elec­
tromagnetic field 

In previous twin-correlation experiments the signal and idler fields always originated from 
the same spatial region of the crystal. Hence, up to now there exists no information on the 
correlation of the quantum fluctuations at different positions. Here we present an imaging 
technique by which this spatio-temporal correlation of the zero-photon electromagnetic field 
can be investigated in detail. 

A schematic picture of the experiment al set-up is presented in Fig. 1. A short nonlinear 
crystal is used for parametric generation. In this process the crystal is illuminated with a 
st rong pump beam (Nd:YAG) that is relatively homogeneous both longitudinally (having a 
pulse duration of 35 picoseconds) and transversally (having a beam diameter of ::::::,7 mm). 
In the illuminated volume of the crystal, the quantum fluctuations of the zero-photon field 
will be amplified leading to the generation of signal and idler. We intend to investigate 
the time correlation of two signal fields that started at different positions rl and r2 in the 
crystal. These two positions are imaged using a microscope objective in combination with 
two pinholes. The distance rl - r2 between the imaged regions of the crystal can easily be 
varied by changing the distance ra - rb between the two pinholes. 

The imaged signal fields are parametrically amplified in two different chains of LiNb03 

crystals. These crystals allow the amplification of mid-infrared pulses tunable between 1.4 
and 4.5 {tm to an energy of a few hundred {tJ per pulse. The parametrie amplification of the 
signal field at rb williead to the generation of an idler field. This idler field is combined with 
the parametrically amplified signal field at ra in a short nonlinear crystal to generate the sum 
frequency. In the experiment the sum-frequency spectrum is measured as a function of time 
delay and distance between the imaged regions of the crystal. When signal and idler have 
time overlap, the sum-frequency spectrum will contain astrong twin-correlation peak [10]. 
Mathematically, the twin-correlation peak can be described as follows. The sum-frequency 
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SpectTo­
meter 

Figure 1: Schematic picture of the experimental set-up for measuring the correlation of the signal 
fields generated in different directions. The abbreviations have the following meaning: OPG : 
optical parametric generation j OPA: optical parametric amplificationj LNB : LiNb03j SFG : sum­
frequency generationj OMA: optical multichannel analyzer. 

electric field ês,(t) is given by : 

ês,(t,7) '" ê.(Ta, t)ê,(Tb, t + 7), (1 ) 

with ês(Ta, t) the signal field coming from position Ta and ê,(Tb, t + 7) the idler field coming 
from position Tb with a delay 7 with respect to the signal. 

The sum-frequency spectrum is measured as a function of the delay 7 . The power spec­
trum I,,(w) is given by : 

(2) 

with (ês,(t, 7)ê;, (0, 7)) the time correlation function ofthe sum-frequency field. Substitution 
of equation (1) in this correlation function and using the fact that the idler field ê,(Tb, t) is 
the complex conjugate of the signal field ê.(Tb, t) gives : 

(3) 

This fourth-order correlation function can be investigated as a function of 7 and the 
positions Ta and Tb. In the twin-correlation experiments reported up to now, the idler has 
only been recombined with a signal coming from the same position Ta. If Ta = Tb, the fourth­
order correlation function can be evaluated making use of the fact that the modulation of 
signal and idler are Gaussian processes: 

(ês(Ta, t)ê;(Ta, t + 7)ê;(Ta, O)ê.(Ta, 7)) '" (e-(4In2)t2/T~e-(4In2)T2/T; + e-(4In2)T
2N e-(4In2)t2N ), 

(4) 
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Figure 2: Sum-frequency spectra at different time delays between signal and idler. The central 
wavelength of signal and idler is 1.8 ",m and 2.6 ",m, respectively. 

with Tp the fuIl-width-at-half-maximum (FWHM) determined by the duration ofthe intensity 
profile of the signal pulse and Tc the correlation time of the signal field. In this equation it is 
assumed that the second-order correlation functions of the fields have a Gaussian dependence 
on the delay time T. The value of Tp is determined by the pulse duration of the Nd:YAG pulse 
used to pump the parametric-generation process and will in general be much larger than the 
value of the correlation time Tc . As aresuit, the sum-frequency spectrum wiIl consist of a 
narrow twin-correlation peak with the width of the pump-pulse spectrum (proportional to 
l/Tp ) superposed on a broad background with a width proportional to I/Tc. 

3 Results and discussion 

In Fig. 2 spectra of the sum-frequency light are shown obtained at different time delays 
between signal and idler in case the imaged regions are the same, Tl = T2 and T .. = Tb. The 
wavelengths of signal and idler are 1.8 and 2.6 p,m, respectively. The sum-frequency spectra 
clearly showastrong twin-correlation peak when signal and idler have time overlap. With 
increasing delay T the amplitude of the twin-correlation peak decreases. From this delay 
dependence the correlation time constant Tc can be determined. 

In Fig. 3 the intensity of this twin-correlation peak is presented as a function of the 

96 Spatio-Temporal Correlation of the Zero-Photon Electromagnetic Field 



Width=I.O p. , ,,'/Gaussllt 

·1.0 -0.5 0.0 0.5 1.0 

Time delay (ps) 

Figure 3: Intensity of the twin-correlation peak as a function of the time delay between signa! and 
idler. 

time delay between signal and idler. From a Gaussian fit to the delay dependence we find 
that this peak has a full-width-at-half-maximum (FWHM) of 1.0 picosecond. This correlation 
time is inversely proportional to the phase-matching bandwidth of the parametric generation 
process. The phase-matching bandwidth is determined by the wavelength of signal and idler 
and increases with increasing wavelength of the signal and decreasing wavelength of the idler 
for type I phase matching. If the wavelengths of signal and idler are the same (degeneracy), 
the phase-matching bandwidth reaches its maximum value. The phase-matching bandwidth 
also depends on the dispersion and length of the nonlinear crystal used in the parametric 
generation process and decreases with increasing length of the nonlinear crystal. 

The experimental results shown in Figs. 2 and 3 only give information on the time cor­
rel at ion of the zero-point electromagnetic field, they do not give information on the spatio­
temporal correlation, the length scale over which the time evolution of the field is correlated 
for a certain time. By measuring the amplitude of the twin-correlation peak as a function of 
the distance Tl - T2 the spatio-temporal correlation can be determined. 

A spatio-temporal correlation of the zero-photon field can result from several effects. In 
the first place it can result from a structuring of the modes of the electromagnetic field. Such 
a mode structuring will occur in periodic or random media for which the length scale is on 
the order of the wavelength of light. Examples of such periodic media are Bragg reflectors 
and photonic crystals. A spatio-temporal correlation of the quantum fluctuations can also 
result from a nonlocality of the linear and nonlinear polarization in the nonlinear crystal used 
for parametric generation. The linear and nonlinear polarization will radiate and amplify the 
zero-photon signal and idler field. The non-Iocality of the polarization will lead to a phase 
relation of the fields at different points for a certain time and thus to a spatio-temporal 
correlation. It can be expected that the non-Iocality of the linear and second-order dielectric 
susceptibility will strongly dep end on the dielectric properties of the crystal. Especially for 
ferroelectric crystals like LiNb03 and LiTa03 long-range interactions are important so that 
the quantum fluctuations will be correlated over relatively large distances. 
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4 Conclusions 

We investigated the time correlation of the zero-photon electromagnetic field using parametrie 
generation. In this process a signal and idler field are generated that contain the phase 
information of the quantum fluctuations of the zero-photon electromagnetic field. Sum­
frequency generation of signal and idler gives rise to the so-called twin-correlation peak. 
The dependenee of the intensity of this peak on the delay between signal and idler gives 
information on the temporal correlation of the signal and idler fields. At a signal wavelength 
of 1.8 /-Lm (idler 2.6 /-Lm) we observe a Gaussian twin-correlation peak with a FWHM of 1.0 
picosecond. In the near future we will use this technique to investigate the spatio-temporal 
correlation of the zero-photon electromagnetic field by combining signal and idler pulses that 
originate from different spatial regions. 
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F. Jahnke, M. Kira and S.W. Koch 

Quantum Theory of the Semiconductor Luminescence 

Abstract 

A fully quantum mechanical theory for the interaction of light and electron-hole excitations 
in semiconductor quantum-well systems is developed. The resulting many-body hierarchy 
for the correlation equations is truncated using a dynamical decoupling scheme leading to 
the semiconductor luminescence equations. Numerical results are presented for the photolu­
minescence of incoherently excited quantum wells. 

1 Introduction 

Recombination of electron-hole pairs and luminescence are fundament al processes in semi­
conductors. It is known from atomic systems that luminescence is modified when various 
atoms are optically coupled [1] or when atoms are positioned in a high-quality cavity [2, 3]. 
An analogous situation in semiconductors can be realized e.g. with an array of quantum wells 
(QW) [4] or for QWs in a semiconductor microcavity [5]. Like in atomic systems, strong 
coupling effects [5, 6] and suppressed or enhanced spontaneous emission [7, 8, 9, 10] due to 
the high quality optical resonances have been observed. For low excitations, the semicon­
ductor material shows excitonic resonances below the fundamental absorption edge. In a 
microcavity, such a resonance is strongly coupled to the cavity mode leading to the double 
peaked normal-mode coupling spectrum which has been observed, e.g., in transmission and 
reflection [5] as weIl as in photoluminescence [6]. 

The transmission spectrum can experimentally be determined using pump-probe tech­
niques. Such experiments can be explained in great detail [11, 12] on the basis of a classical 
description of the light field [13, 14]. The theory/experiment agreement might suggest that 
a quantum treatment of light only leads to minor corrections. However, this is usually true 
only as long as the classical fields exceed the vacuum fluctuations . Therefore, photolumines­
cence in such a correlated system is an important phenomenon which cannot be explained 
semiclassicaIly. 

Without external driving field the polarization and the coherent microcavity field (E) 
typically decays on a ps time scale aft er the excitation pulse. However, in many cases a 
substantial number of incoherent electrons and holes remain excited in the system. The 
system can th en reach its ground state via non-radiative electron-hole recombination and 
through spontaneous emission leading to photoluminescence, which cannot be explained by 
the classical properties of the light . 

The quantum mechanical analysis of the interacting photon-semiconductor system poses 
a considerable challenge to current theories. In the classical description of light, the major 
difficulties arise from the consistent inclusion of carrier-carrier Coulomb interaction effects. 
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In this paper, we review a general theory for the semiconductor luminescence of electron­
hole pairs where many-body effects are included. Staring point is a quantum mechanical 
treatment of the interacting carrier-photon system in the electron-hole picture. The operator 
equations presented provide a general starting point for investigating quantum properties of 
light in semiconductor systems. The approach is not only valid for stationary emission under 
equilibrium conditions but also for the temporal emission dynamics under nonequilibrium 
conditions resulting from the interplay of incoherent and coherent fields, e.g., luminescence 
in the presence or after excitation by externallaser fields [15, 16J. 

The emission properties critically dep end on the excitation conditions of the system. 
Even though incoherent excitonic populations are not included at the present level of the 
theory, excitonic effects enter through the Coulomb interaction between the carriers [17J. 
For the description of incoherent photoluminescence, we develop the "semiconductor lumi­
nescence equations" which are based on a generalization of the Hartree-Fock decoupling 
scheme. In some respect, these equations are the analog to the "Maxwell-Semiconductor 
Bloch equations" describing the coherent excitation dynamics. In their most elementary 
form the semiconductor Bloch equations are based on the Hartree-Fock decoupling; the ad­
dition of many-body-correlations is subject of intense current research, see [13J and references 
therein. On the other hand, carrier-correlations and non-Markovian effects are already par­
tially included in the presented semi conductor luminescence equations. 

2 Equations of Motion for Photons and Carriers 

For a classical field, the light-matter coupling is described by the dipole interaction Hamil­
tonian proportional to the scalar product of the field and the carrier polarization. When the 
treatment includes a quantum field, the specific form of the interaction Hamiltonian cannot 
be extracted trivially from the semiclassical Hamiltonian [18J. In [16], the quantized inter­
action Hamiltonian is derived in order to correctly include the quantum aspects of the light 
and the carrier systems. 

In principle, we could use the vector potential operator to describe the quantum properties 
of light, e.g., within a Green's function method [19, 20J. However, in this paper we choose an 
alternative method where the quantum aspects of light are derived directly from the nonlocal 
boson operators b~ and bq describing the creation and anihilation of photons in the mode q. 
This scheme directly leads us to a generalization of the semiclassical semiconductor Bloch 
equations [21J for the quantum case. 

The dynamics of the photon operator bq is obtained from the Heisenberg equation of 
mot ion ih8bq j8t = [bq, HJ with the Hamiltonian of the interacting system [16J, 

·h 8 bt - ruv bt 1: - pt ( ) 
2 at q.,qll - - Iql q.,qll + 2 qUq QW qll , (1) 

where &q and uq determine the vacuum field amplitude and mode strength at the QW, 
respectively. The evolution of the photon operators is coupled to the QW polarization 
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operator 

(2) 

with the dipole matrix element dcv(qll). In a Bloch basis for a two-band semiconductor, 
the interacting carrier system is described by creation (ct, vt) and annihilation (Ck, Vk) 
operators for conduction and valence band electrons, respectively. According to Eq. (2), 
optical processes can be described with the microscopic polarization operators 

(3) 

wh ere qc+qv = qll. The operator P~(qll) simultaneously creates an electron in the conduction 
band and destroys an electron in the valence band, i.e., it creates an electron-hole pair. The 
center of mass of this electron-hole pair moves with the momentum liqll. In principle, the 
ratio of qc and qv can be chosen arbitrarily, here we use the center of mass coordinates 

(4) 

The Heisenberg equation of motion for Pk ( qll) in the fully quantized case differs from 
the semiclassical calculation [21] only in those terms that involve commutators with the 
light-matter interaction Hamiltonian. We obtain 

ili! Pk(qll) = (f~+qc - fk-qJ A(qll) 

[
t A t A ] + dcv(qll) ck+qcE(qll)ck+qc - vk_q.E(qll)Vk-q. 

+ L {[A(q,,), P~W(qll)] Ê(qll)} + L Vk'-k 
'''' N k'k" q!l"r-qll ' 

X [vLq. (ct'+kll_kCkll +vt'+kll_kVkll) Ck'+qc 

-vt'_q. (ctIlCk'+kll-k + V~,Vk'+kll-k) ck+qc] 

where f~(v) determines the free carrier energies, 

(5) 

(6) 

using M = me + mh and 1 = ...L +...L. In Eq. (5), Vk is the QW matrix element of the 
~ me mh 

Coulomb potential, and { ... } N denotes normal ordering. The operator for the electric field 
in the dipole picture [18] is given by [16] 

A A 9 A 

foE(qll) = D(qll) - n2SPQw(qll), (7) 
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with the mode expansion of the displacement operator, 

€~ D(qll) = Js ~ i&q [Üq"qllbq"qll 

- ü* bt ] q.,-qll q.,-qll . (8) 

The QW confinement wavefunctions ~(z) enter via 

9 = ! dz 1~(zW· (9) 

For the carrier occupation number operators 1Îk = ctCJc: and 1Îk = vtvk as we obtain the 
equations of mot ion 

in! 1Îk = [L ~(qll)vt+qIlÊ(qll)Ck 
qll 

- L Vk'-kCt, (CtIlCkl+kll-k 
k',k" 

+vtIlVk'+kll-k) CJc:] - h.c., (10) 

in! 1Îk = [- L ~(qll)vtÊ(qll)Ck-qll 
qll 

+ L Vk'-kvt (ct'+kll_kCkll 
k/,k" 

+ Vt'+kll_kVkll) Vk'] - h.c. (11) 

In Eqs. (5), (10), and (11), the ordering of Ê and carrier operators is crucial since Ê contains 
both field and particle operators. Together with the operator equations (1), these equations 
serve as a general starting point for our investigations of quantum correlations. 

The equations of motion fOf l\(qll) and 1Î~v contain four-particle operator combinations 
as a consequence of the Coulomb interaction and the dipole self-energy. As usual, this leads 
to an infinite hierarchy of equations since expectation values consisting of n particle operators 
are always coupled to higher order terms having n + 2 particle operators. In practice, this 
hierarchy has to be truncated using a suitable decoupling. In the semiclassical regime, the 
simplest decoupling scheme is the dynamic Hartree-Fock approximation, 

(ala~a3a4)IHF = (ala4)(a~a3) 
- (ala3)(a~a4), 

combined with the random phase approximation, 

(12) 

(13) 
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This approach can be extended for the fully quantized system where it is important to retain 
also field-particle correlations in terms like (al a~OFa3a4) with a single photon operator OF. 
The corresponding truncation [16, 17] permutes OF between all possible Hartree-Fock terms 
of the carriers. For the incoherent excitations studied here, the intraband transitions vanish 
such that we find additional factorizations 

(14) 

3 Semiconductor Luminescence Equations 

Quantum corrections to the semiclassical limit can be determined by studying terms like 
t" _ t" t " t - t _ t ~(bqPk(qll)) - (bqPk(qll)) - (bq) (Pk(qll)) and ~(bq .. qllb~,qll) - (bq .. qllb~,qll) (bq.,qll)(b~,qll)' 

where the classical factorization is subtracted from the full term. The significance of such 
corrections increases as the coherent terms (bq.,qll) and (A(qll)) become smaller. 

In the following, we focus on the theoretical analysis of incoherent photoluminescence 
where carriers are nonresonantly generated in the QW by stationary or pulsed optical exci­
tation high above the semiconductor band-edge. Since there is no coherent field or intraband 
polarization generated in the vicinity of the exciton resonances ~e can use 

(bq(to = 0)) = O. 

Starting from these initial values, our equations show that for t > to 

(A(qll)) = (bq) = (1Î~"bq) 
= (bqA(qll)) = (bqbq/) = O. 

(15) 

(16) 

Under these incoherent conditions the quantum correlations are obtained directly from the 
fuIl terms, i.e. ~(b~A(qll)) = (b~A(qll)) and ~M.,q"b~,qll) = (bt.qllb~,qll)· Furthermore, 

the only non-zero quantities are f~,h, (b~A(qll))' and (bt.qllb~,qll)' The equation of mot ion 

for (b!bq') is obtained from Eq. (1) without the need of a factorization approximation 

ili! (bt.qllb~,qll) = li (Wql - wq) (bt.qllb~,qll) 
+ i&quq(bqIP~w(qll)) + i&q/u~/(b~PQw(qll))' (17) 

Thus, the photon number expectation values are coupled to field-matter correlations of the 
type (b~A(qll))' The equations of motion for (b~A(qll)) and f~,h can be derived from the 
quantum operator equations (1) and (5)-(11) combined with the dynamic decoupling and 
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the initial condition (16), 

{) t' in Ot (bqPk(qll)) 

= [f~+qc - fLqv -1iwq - ~(k, qll)] (b~A(qll)) 
- (1 - fk+qc - f~-qJ n(k, q) 

+ fk+qJ~_qvnSE(k, q) 

!fk = ~ L Im [-i~(qll)êqu~(b!..qIlA-qc(qll))]' 

!fk = ~ L Im [-id*cv(qll)êqu~(bLqllk+qv(qll))] . 
q.,qll 

(18) 

(19) 

(20) 

Equations (17)-(20) give a closed set of semiconductor luminescence equations with the energy 
renormalization, 

~(k, qll) = L Vk'-k (Jk'+qc + f~'-qJ ' (21) 
k' 

and the renormalized stimulated contribution, 

n(k, q) = dcv(qll)(b~Ê(qll)) 

+ L Vk'-k(b~Pdqll))' (22) 
k' 

In Eq. (18) the term proportional to 1 - fk - f~ intro duces either stimulated emission or 
absorption depending on the excitation conditions. The strength of the spontaneous emission, 

(23) 

is determined by the dipole matrix element dcv and the effective mode strength at the QW 
position uq . 

The term (b~A(qll)) gives the amplitude of a process where an electron hole pair, with 
center of mass momentum qll, recombines by emitting a photon with the same in-plane mo­
mentum. As long as there are carriers excited in the QW, this correlation starts to build up 
even if the field-particle and the field-field correlations are initially taken to be zero, because 
the term fk+qJ~_qVnsE(k, q) entering Eq. (18) is nonzero. Thus, it provides a spontaneous 
emission source to the recombination process. According to the factor fk+qJ~-qV' the spon­
taneous recombination takes place only if an electron at k + qc and a hole at k - qv are 
present simultaneously. As the field correlations start to build up, the stimulated contri­
bution n(k, q) can alter the photoluminescence spectrum. In other words, the observed 
photoluminescence is a result of the dynamic interplay of the field-field and field-particle cor­
relations affected by the elementary processes of spontaneous emission and the stimulated 
contributions. These effects have been shown to explain nonlinear effects in semiconductor 
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microcavity systems which previously had been incorrectly attributed to "boser" transitions 
[22]. 

Under coherent excitation conditions, quantum correlations ofthe type ~(btA(qll») con­
tain contributions form the coherent dynamics well-known from the semiconductor Bloch 
equations and incoherent dynamics described by the semiconductor luminescence equations. 
The resulting interplay of coherent and incoherent dynamics is studied in [15, 16]. 

4 Q uant um-WeIl Luminescence 

To illustrate the theory we study in the following examples of the semiconductor photo­
luminescence when the carrier occupation functions can be approximated as Fermi-Dirac 
distributions with equal carrier density for electrons and holes. Such an approach is reason­
ably well justified for situations where the intraband carrier scattering time is much faster 
than the carrier recombination and generation times. An experimentally relevant exam­
ple is the situ at ion where near band-gap lu mine sc en ce is measured af ter an excitation of 
the system into interband-absorption region. Af ter the excited carriers are thermalized due 
to carrier-carrier and carrier-phonon interaction, there exists a temporal window of several 
tenth of picoseconds, where the carrier dis tri but ion is practically constant, provided th at the 
recombination is weak. 

For a description of the incoherent excitation regime, we start our calculation by setting 
all correlations initially to zero and evolve Eqs. (17)-(20) to steady state. The simplest way 
to include the effects of screening and dephasing is to phenomenologically replace the bare 
Coulomb potential by a screened one V:. Furthermore, one has to add a term (~Eg -
ir)(btA(qll) in Eq. (18) where "y is the dephasing rate, and ~Eg = Ek(V: - Vk ) is the 
Coulomb-hole gap shift. The microscopic treatment of interaction-induced dephasing and 
screening is further discussed in [16]. 

Under steady-state conditions, the measured luminescence spectrum is determined by the 
photon flux in a detector, i.e., the number of photons in the detector modes per time interval. 
The steady-state photon flux is given by 

(24) 

For a similar definition, see [23]. If the light field is changing rapidly, a more general detector 
model has to be used [24]. 

For a QW embedded in a spatially homogeneous background, the free-field modes are 
plane waves. Using standard GaAs parameters, the resulting 3D exciton binding energy is 
EB = 4.2 meV and the Bohr radius is ao = 12.5 nm. Then, assuming an 8 nm QW width, 
the quantum confined exciton has its Is-resonance 2.45 EB below the band gap energy Eg. 

Figure 1 shows the computed photoluminescence in comparison with the absorption for 
different temperatures. The top row of figures displays the absorption spectra for low carrier 
densities and the middle row presents the corresponding photoluminescence spectra. We see 
that absorption and luminescence are peaked at the same exciton resonance energy, showing 
that even though our theory does not include population of incoherent excitonic states, the 
spectra are still peaked at the exciton resonance. This is a consequence of the well-known 
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Figure 1: Quantum-well absorption and luminescence for three different carrier temperatures and 
carrier density 1 x 1010 cm-2 . The middle row shows the photoluminescence obtained from the 
full calculation while for the bottom row the Coulomb terms have been neglected. Eg is the 
unrenormalized band gap energy and EB is the 3D exciton binding energy. 

fact, that the strong interband Coulomb correlations in semiconductors lead to excitonic res­
onances in the interband polarization (in a semiclassical picture) and in the photon assisted 
polarization (in the fuH quantum theory). The bottom row of figures shows the artificial 
results obtained by shutting oir the interband Coulomb term. Then the photoluminescence 
peak shifts to the band edge, as expected from free, i.e., non-interacting carrier theory. Fur­
ther inversitgations [17] show, that for increased carrier density, where the exciton is gradually 
bleached and eventuaHy gain occurs the QW luminescence stays peaked at the exciton res­
onance energy even when the absorption peak vanishes. For these elevated excitations, the 
band edge nonlinearities make the photoluminescence increasingly asymmetric. 

In summary, this article presents a quantum theory of semiconductor light emission. 
Examples for the evaluation of this theory have been shown for the electron-hole regime, 
where incoherent excitonic populations can be ignored. The theory has also been evaluated in 
the low excitation purely excitonic regime and interesting results regarding exciton formation 
dynamics and related photoluminescence have been reported [25]. Work is in progress to 
include excitonic populations also in the electron-hole approach and to study the influence 
of structural sample disorder on the exciton formation and light emission dynamics. 
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Y. Yamamoto 

Single Photon Turnstile Device 

Abstract 

We demonstrate a semi conductor device that generates single photons with a weIl regulated 
time interval. We also pro pose a new method of generating pairs of entangled photons. The 
semiconductor device consists of a single quantum dot as active medium embedded in a p-i-n 
junction and surrounded by a microcavity. Resonant tunneling of electrons and holes into the 
quantum dot ground states, together with the Pauli-exclusion principle, produce regulated 
pairs of entangled photons at a well-defined repetition rate. 

1 Introduction 

Quantum interference between indistinguishable quantum particles profoundly affects their 
arrival time and counting statistics. Photons from a thermal source tend to arrive together 
(bunching) and their counting distribution is broader than the classical Poisson limit [1]. 
Electrons from a thermal source, on the other hand, tend to arrive separately (anti-bunching) 
and their counting distribution is narrower than the classical Poisson limit [2, 3, 4]. Manip­
ulation of quantum statistical properties of photons with various non-classical sources is at 
the heart of quantum optics: Fermionic features such as anti-bunching, sub-Poissonian and 
squeezing (sub-shot noise) behaviors were demonstrated [5, 6]. A single photon turnstile 
device was proposed [7, 8, 9] to realize a similar effect to conductance quantization. Only 
one electron can occupy a single state due to Pauli exclusion principle and thus the electri­
cal conductance for a ballistic single-mode channel is quantized to GQ = e21h [10]. Here 
we report experimental progress for generation of similar single photon flow and entangled 
photon-pairs with a well-regulated time interval. 

2 Generation of regulated single photons 

When a light emitting p-n junction is driven with a high-impedance constant current source, 
injection of electron-hole pairs can be regulated to below the classical shot noise limit and 
the light with sub-shot noise intensity fluctuations can be generated [11]. This is possible 
because the inelastic scattering of electrons in a highly dissipative resistor can suppress the 
current noise due to Pauli exclusion principle [12, 13], and the Coulomb repulsive interaction 
between electrons in ap-njunction can suppress the electron injection noise due to collective 
Coulomb blockade effect [14, 15, 16]. In these squeezing experiments with a macroscopic p-n 
junction, however, only large number of photons on the order of"" 108 can be regulated due 
to a small single charging energy. 
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Figure 1: (a) The operational principle of a single photon turnstile device. (b) Scanning electron 
microscope (SEM) photograph of typical etched post structures. The diameters of the devices 
range between 200 - 1000 nm and the height of the posts is about 700 nm. (c) Schematic of the 
experimental setup. 

It has been demonstrated in mesoscopic physics that an ultra-small tunnel junction reg­
ulates the electron transport one by one due to large single charging energy compared to 
thermal background energy [17, 18, 19]. If such single electron control technique can be 
extended to simultaneous control of electron and hole in a p - n junction, a single photon 
will be regularly emitted one by one [7]. 

A single photon turnstile device utilizes simultaneous Coulomb blockade for electrons and 
holes in a mesoscopic double barrier p - n junction (Fig. la). The structure consists of an 
intrinsic central quantum well (QW) in the middle of a p - n junction and the n-type and 
p-type side QWs isolated by tunnel barriers from the central QW. The lateral size of the 
device is reduced to increase the single charging energy e2/2C;, where ei (i = nOr p) is the 
capacitance between the central QW and the i-side QW. The m-th electron resonant tunnel 
condition into an electron sub-band in the central QW is satisfied at a certain bias voltage Voo 
Wh en the m-th electron tunnels, the Coulomb repulsive interaction between electrons shifts 
the electron sub-band energy to above the Fermi level of the n-side QW, so the (m + l)-th 
electron tunneling is inhibited. In our single photon turnstile device, the number of electrons 
in the central quantum well is approximately m ~ 10 at an operating bias condition. At this 
bias voltage, hole resonant tunnel condition is not satisfied (the Fermi level of the p-side 
QW is higher than the hole sub-band energy level of the central QW), so there is no hole in 
the centra! QW. Then the bias voltage is increased to Vo + L\V to satisfy the hole resonant 
tunneling condition. If a single hole tunnels into the hole sub-band of the central QW, the 
negative charge of the central QW is decreased by one and the subsequent hole tunneling is 
inhibited due to the decreased Coulomb attractive interaction between electrons and holes. 
By modulating the bias voltage between Vo and Vo + D. V periodically, we can inject a single 
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Figure 2: (a) The modulation frequency dependence of the DC current in the 600 nm turnstile 
device. (b) The slopes I/fin the current-frequency curve VB. DC bias voltage. 

(m-th) electron and a single (first) hole into the central QW periodically. If the tunnel time 
and the radiative recombination time of an electron-hole pair are much shorter than the pulse 
duration, one and only one photon is emitted for every modulation period. 

A GaAs/AlGaAs three QW structure sandwiched by n-type and p-type ALGaAs bulk 
layers was grown using a molecular beam epitaxy (MBE) technique. Post structures with 
diameters of 200 - 1000 nm were made by electron-beam lithography followed by metal 
evaporation, lift-off, and BCl3/Cl2 electron cyclotron resonance (ECR) plasma etching. An 
SEM micrograph of typical etched posts is shown in Fig. lb. The surface of the device was 
passivated with sulfur in ammonium sulfide ((N H4hS) solution, and encapsulated by silicon 
nitride film. FinaIly, the structure was planarized with hard-baked photoresist and electrical 
connection was made to each one of the posts independently. The top semi-transparent metal 
served as the p-type contact from which an emitted photon is detected, and the n-type 
contact was formed in the substrate. 

The device was installed in a dilution refrigerator with base temperature of '" 50 mK, 
and was biased with a DC and AC voltage source (Fig. Ic) . A DC current flowing through 
the device was measured as a function of DC bias voltage with a square wave AC modulation 
voltage. The emitted photon from this device was detected by a Si solid state photomultiplier 
(SSPM) . This detector features a high quantum efficiency of", 88%, high multiplication gain 
of '" 30,000, fast response time of,..., 2 ns and absolutely no multiplication noise [20]. The 
detector was instalied on the mixing chamber ofthe dilution refrigerator, but the temperature 
was held at 6.5 K with good thermal isolation. 

We measured the DC current-voltage characteristics and observed a well-defined resonant 
tunneling current peak with very small background current, which indicates that a surface 
(leakage) current is weIl suppressed in spite of the very small size of the post by the above 
mentioned passivation process. Measurement of the photons generated from this device 
indicated that the internal efficiency for the electron-hole pair to emit a photon is ? 33%. 

When an AC modulation voltage was applied to the device in addition to the DC bias 
voltage, we observed that the DC current increased linearly as a function of the modulation 
frequency. Figure 2a shows the measured current as a function of AC modulation frequency, 
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with a fixed AC amplitude of 72 m V at three different DC bias voltages for a device with 
a diameter of 600 nm [21]. The measured current was in close agreement with the relation 
I = ej, I = 2ej, and I = 3ej (solid lines), wh en a frequency-independent background 
current was subtracted. This background current varies from device to device, and ranges 
from 0.5 pA to 6.5 pA. In Fig. 2b we evaluate the slope 1/ j from the current vs. frequency 
curves and plot it as a function of the DC bias voltage. We find that the slope increases 
discretely, creating plateaus at 1/ j = ne, where e = 1.6 x 1O-19C is the charge of an 
electron and n = 1, 2 and 3. 

The locking of the current at multiples of the modul at ion frequency (I = nej) suggests 
that the charge transfer through the device is strongly correlated with the external modula­
tion signal [17, 18, 19]. At the first current plateau at I = ej, single (m-th) electron and 
single (first) hole are injected into the central QW per modul at ion period, resulting in single 
photon emission. At the second current plateau at I = 2ej, two (m-th and (m + l)-th) 
electrons and two (first and second) holes are injected into the central QW per modulation 
period, resulting in two photon emission. Similarly at the third current plateau at I = 3ej, 
three electrons and three holes are injected per modulation period, resulting in three photon 
emission. This multiple charge operation becomes possible because of relatively broad in­
homogeneous linewidths of the n-side and p-side QWs. The experimental result was weil 
reproduced by the Monte-Carlo numerical simulation with a finite resonance linewidth. 

To observe the time correlation between the modulation input and photon emission, we 
measured the time delay from the rising edge of the modulation input to the photon detec­
tion event at first current plateau (1 = ej) and second current plateau (I = 2ej). The 
probability for a single electron-hole pair injected to the central QW of the turnstile device 
to be detected as a photon in the detector was about 1 x 10-4 due to a poor optical coupling 
efficiency between the two devices in the present setup. However, the detection quantum ef­
ficiency does not affect the time correlation characteristics. The histograms of the measured 
time delay with 10 MHz modulation frequency is shown in Fig. 3a (for I = ej) and Fig. 3c 
(for I = 2ej) [21]. The ph ot on emission probabilities have peaks near the rising edge of the 
modul at ion input. The rapid increase of the ph ot on emission probability is associated with 
the hole tunneling time (7h ~ 4ns), and the slow decay of the photon emission probability 
corresponds to the radiative recombination lifetime (71'h ~ 25 ns). Photon emission prob­
ability in Fig. 3a decays to a non-zero value during the on-pulse due to photons generated 
by background current. The ratio of the counts contained in the peak to those contained 
in the non-zero background is '"V 3 : 1, consistent with the ratio of the turnstile current to 
the background current in this device. The second and faster decay for I = 2ef (Fig. 3c) 
stands for the decay of the hole via backward tunneling and radiative recombination. The 
associated lifetime for this decay is (7h

1 + 71',,1)-1. The dashed lines show the analytical 
solutions using these parameters. The experimental results as weil as the analytical traces 
are weil reproduced by the Monte-Carlo numerical simulation, as shown in Fig. 3b (I = eI) 
and Fig. 3d (1 = 2ej). The fact that the photon emission probability decreases during the 
on-pulse duration is a unique signature that the number of holes injected during an on-pulse 
is restricted to either one or two due to the Coulomb blockade effect. Figure 3e shows the 
experimental result on a larger area device at a higher temperature of 4 K, where Coulomb 
blockade effect is absent. In this case, arbitrary number of holes are allowed to tunnel into 
the cent ral QW during an on-pulse, and so the resulting photon emission probability should 
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Figure 3: (a) Measured histogram of a time delay between the rising edge of the modulation input 
and the photon detection event at the first plateau (I = ef). (b) Monte-Carlo numerical simulation 
result for the photon emission probability vs. the time delay at the first plateau (I = ef). (c) 
Measured histogram of a time delay at the second plateau (I = 2ef). (d) Monte-Carlo numerical 
simulation result for the photon emission probability vs. the time delay at the second plateau 
(I = 2ef). (e) . Measured histogram of a time delay for a larger area device (diameter of l.4~m) 
at higher temperature (4K), where Coulomb blockade effect is absent. (f) Monte-Carlo numerical 
simulation result for this modulated classicallight emitting diode case. 

increase monotonically with a time constant Tph to the steady state value. This result is 
well-reproduced by the simulation (Fig. 3f). 

3 Regulated and entangled photons from a single quantum dot 

Even stronger non-linear interactions are expected in semiconductor quantum dots (QD's) . 
QD's are very attractive for possible applications in electro-optie devices due to their atom­
like properties and the st rong confinement of electrons and holes. The Coulomb blockade 
effect [22], the quantum confined Stark effect [23] and electromagnetieally induced trans­
parency [24] have been studied with the aim of realizing single electron transistors that 
operate at room temperature [25], ultra-fast electro optical modulators [26], and noveliasers 
[27] . 

A fundamental non-linear effect in a QD is the saturation of a single energy level by two 
eleetrons (or holes) of opposite spin due to the Pauli exclusion principle. In this section, we 
will show how this effect can be used in a realistic device to produce non-classical field states. 
We propose a device that pro duces regulated photons as weIl as pairs of entangled photons. 

Figure 4 (a) illustrates a seheme for the device, which consists of a single InAs QD as 
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Figure 4: (a) Proposed device structure. (h) Energy-hand diagram ofthe structure. 

the active medium embedded in a GaAs p-i-n junction. Electrical contacts are made from a 
top metal contact and via the n+ -doped substrate. The GaAs substrate is transparent for 
the ground state emission from the InAs QD's, and photons can be collected through the 
back side. It has been demonstrated that single QD's can be isolated from an ensemble of 
self-assembled QD's by etching small mesa or post structures [28], as sketched in the figure. 
The structure is surrounded by an optical microcavity, which modifies the spatial emission 
pattern and increases the spontaneous emission rate into resonant cavity modes [29). A very 
large fraction fJ of photons is thus spontaneously emitted into a single mode of the cavity, 
and the outcoupling efficiency from the high refractive index material is improved as weIl. 
For the present state of the art, fJ values as high as 0.9 should be possible [30). 

An energy-band diagram of the structure is shown in Fig. 4(b) for doping levels of 
1018 cm-3 on the n-side and 1019 cm-3 on the p-side. The QD layer is separated from 
the n- (p-) side by 190 Á(112 Á) wide GaAs intrinsic layers, which act as tunnel barriers. 
We assumed a typical dot diameter of 20 nm and height of 4 nm. For a qualitative discussion 
of the device operation, the Coulomb blockade energy can be estimated in a single particle 
picture [31, 32) for simplicity, with strain and piezoelectric effects [33) neglected. We assumed 
that the one and two electron ground state energy levels are 210 meV and 190 meV below 
the conduct ion band edge of GaAs, respetively, and that the one and two hole ground state 
energy levels are 100 meV and 80 meV above the valence band edge of GaAs, respectively. 
The first excited electron (p-like) state is about 70 meV above the ground state [34, 35). 
These values are consistent with experiment al observations [31, 34) and calculations [36, 37) . 
If the junction voltage Vi is weU below the built-in potential, the carrier transport takes place 
by resonant tunneling of electrons and holes. 

Figure 5 shows the calculated resonant tunneling rates for electrons and holes versus 
the applied bias voltage. The calculation uses the WKB approximation with an effective 
electron and hole mass of 0.067 mo and 0.082 mo, respectively, and a temperature of 4 K. 
The different lines correspond to the foIlowing (from left to right): Electron tunneling into the 
dot containing zero or one electron (solid lines) and hole tunneling into the dot containing two 
electrons and zero or one hole (dashed lines). Tunneling into the first excited electron state 
is indicated by dotted lines, where the three lines correspond to two electrons and two, one, 
or zero holes. The difference in the widths of electron and hole tunneling resonances is due to 
the asymmetric tunnel barriers and different doping levels. We chose the position of the QD 

116 Single Photon Turnstile Device 



within the GaAs-Iayer in order to have the first hole resonant tunneling condition fulfilled at 
a junction voltage above the second electron tunneling resonance. In this situation, we can 
switch on and off hole and electron tunneling by switching between different bias voltages. 

Two-photon turnstile operation is achieved as follows: At a low bias voltage Ve (indicated 
in Fig. 5), two electrons can tunnel into the initially empty QD. Further electron tunneling is 
now completely suppressed due to the Pauli exclusion principle, since the ground state is filled 
and the next available electron state, the first excited state, is far off of resonance. Then, we 
switch up to a higher voltage Vh (indicated in Fig. 5), where two holes tunnel. Again, further 
hole tunneling is suppressed due to the Pauli exclusion principle since the hole ground state 
is filled and the first excited hole state (not shown) is off resonance. The first excited electron 
state shifts by typically 7 m V [34] to lower voltages when a hole tunnels. This is indicated 
by the three dotted lines in Fig. 5. However, even after two holes have tunneled into the 
QD, electron tunneling is inhibited. Once the holes have tunneled, radiative recombination 
annihilates two holes and pro duces exactly two photons. Thus, modulating the bias voltage 
between Ve and Vh produces a regulated stream of photons, where two photons are emitted 
per modulation cycle. The intensity spectrum of the light emitted from the proposed device 
exhibits a squeezed background at low frequencies and pronounced peaks at integer multiples 
of the modulation frequency. The squeezing reflects the control of the number of photons 
per modulation cycle and the negligible hole (electron) tunneling at low (high) bias voltage. 
The peaks at integer multiples of modul at ion frequency indicate a regulation of the photon 
emission events. We performed a Monte-Carlo simulation in order to check that properties 
hold for realistic experimental parameters. 

The two photons arise from the decay of the biexcitonic ground state of the QD, where 
the correlated electrons and holes have opposite spins. If this anti-correlation translates 
into an anti-correlation in polarization of the emitted photons, it is easy to realize a single 
photon turnstile operation by selecting out only one photon per modulation cycle with the 
help of a polarizer. For quantum wells in direct-gap materials with a cubic lattice, anY 
photons emitted are circularly polarized, because the Jz = ±1/2 electron recombines with 
the Jz = ±3/2 heavy hole [38]. This is illustrated in the inset in Fig. 5, where solid arrows 
indicate the a+ and a- ground state transitions. In the case of a QD, the strong confinement 
introduces level mixing and the hole ground state may have contributions from the Jz = ±1/2 
hole states. Possible transitions to the Jz = ±1/2 states are indicated by dashed arrows in 
Fig. 5. Accordingly, when a Jz = +1/2 electron radiatively recombines with a hole in a QD, 
the emitted light is predominately a+ -polarized, but mayalso have a a- component. Thus, 
the two photons that arise from the decay of the biexcitonic ground state are not necessarily 
perfectly anti-correlated with respect to a+ - and a-- polarization. An asymmetric dot shape, 
strain, and piezoelectric effects [39] further reduce the anti-correlation. However, th ere is 
experimental evidence from polarized photoluminescence [40] and two photon absorption 
measurements [41] that the anti-correlation in a+ - and a-- polarization is preserved in QD's. 
An exact calculation of the energy levels and oscillator strength including spin for the system 
discussed here would be desirabIe (so far optical and electronic properties of self-assembled 
InAs QD's have been calculated neglecting spin [39]). 

We would like to point out that a previous single photon turnstile device relies on the 
relatively small Coulomb splitting [21] . This limits the operation of this device to very low 
temperatures (40 mK) in order to guarantee that thermal energy fluctuations are negligible. 
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Figure 5: Calculated resonant tunneling rates at 4 K into the QD ground state for electrons (solid 
lines) and holes (dashed lines) versus the applied bias voltage. Thnneling into the fust excited 
electron state is indicated by dotted lines. The inset illustrates optical transitions in a cubic lattice. 

In the proposed device, the turnstile operation is maintained up to much higher temperatures 
due to the very large splitting between the electron and hole ground and excited states. 
Electron and hole tunneling could be controlled merely by the Pauli exclusion principle, 
even if the Coulomb blockade effect were absent. For the parameters we assumed here, 
an operation at above 20 K should be possible. At higher temperatures, the electron and 
hole tunneling curves are broadened, mainly due to the thermal energy distribution of the 
electrons and holes in the n- and p-doped layers. The broadening leads to a significant hole 
(electron) tunneling rate at lower (higher) bias voltage v., (Vh ), and photon emission can no 
longer be controlled. With a smaller QD and a larger splitting between ground and excited 
states, a larger broadening could be tolerated and thus a higher temperature operation is 
possible. We calculated that, up to a temperature of 50 K, thermionic emission can be 
neglected in the proposed structure. 

We now focus on a unique property of the proposed device, which is the product ion 
of pairs of entangled photons at well-defined time intervals. Starting from the biexcitonic 
ground state of the QD, a first electron can recombine with a hole and emit a a+ or a a­
photon. Then, the second electron of opposite spin recombines with a hole, and a photon of 
opposite polarization is emitted. This situation is very similar to a two-photon cascade decay 
in an atom [42] . The two-photon state has the same form in any basis and is a maximally 
entangled (Bell) state: 1'1/1) = ~(Ia+h la-h + la-h la+h). Due to additional binding energy, 
the biexcitonic ground state has a smaller energy than twice the excitonic ground state [41]. 
Therefore, the first emitted photon 1 and the second emitted photon 2 have different energies 
(by approximately 4 me V). 

The advantage of the proposed structure compared to ot her sources of entangled photons, 
such as two-photon cascade decay in atoms or parametric down conversion in non-linear 
crystals, is that entangled photon pairs are provided one by one with a tunable repetition rate 
of up to 1 GHz by a compact semiconductor device. The source is electrically pumped and 
the photons are emitted in resonant modes of an optical resonator, which greatly improves, 
e.g., the efficiency of subsequent fiber coupling. 

The inset in Fig. 6 sketches the setup of a possible experiment, where the non-Iocal 
quantum correlation between photon 1 and 2 leads to a violation of Bell's inequality. The two 
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Figure 6: The inset shows the setup for a proposed experiment. The figure shows the calculated 
Ieft side of Eqn.1 (parameter S) versus the dephasing rate Rd. Rd is normailzed to the radiative 
recombination rate Elp and Rh = 10 Elp. Values above 2 (dashed line) are a violation of BeU's 
inequality. From top to bottom D-corr = 1, 0.9, 0.8, and 0.7. 

photons are separated with the help of a dichroic mirror (DM) and analyzed by a combination 
of quarter-wave plates (Ql, Q2), polarizing beam splitters (Pl, P2) and detectors (Dl, D2). 
Bell's inequality in the version of Ref. [43] is: 

s = IE(a, (3) - E(a', (3)1 + IE(a', (3) + E(a', {3')1 ~ 2 (1) 

where 

(2) 

Each photon is subject to a measurement of linear polarization along an arbitrary angle a 
or (3 with two-channel polarizers whose outputs are + and -. Then, e.g., C++(a, (3) is the 
number of coincidences between the + output of the polarization measurement of photon 
1 along a and + output of the polarization measurement of photon 2 along {3. Maximal 
violation of Bell's inequality is observed for a particular set of angles of the two polarizers: 
a = 0, a' = -'Fr / 4, {3 = 3'Fr / 4, (3' = 'Fr /8. For this set, quantum mechanics predicts S = 2V2, 
although the local hidden-variables theory is constrained by 2. 

In the proposed device, several procecces may degrade the entanglement and cause an 
evolution of the pure state into a statistical mixture of anti-correlated photons. For example, 
the QD initially contains two electrons, and then the bias voltage is changed to allow hole 
tunneling. It is possible that a first photon is emitted right after the first hole has tunneled, 
before the biexcitonic ground state has formed. A second photon can be emitted af ter the 
second hole has tunneled, but tbe fina! state is then a statistica! mixture. Alternatively, even 
if the QD is in tbe biexcitonic ground state, spin dephasing may occur between tbe pboton 
emission events. If tbe dephasing rate Rd is much larger tban tbe radiative recombination 
rate Rp, then the final pboton state is again a statistica! mixture. 

In order to demonstrate tbat it is possible to measure a violation of Bell's inequa!ity we 
performed a numerical calculation. A rate-equation model of tbe tunneling and radiative 
recombination processes in tbe QD, similar to that presented in Ref. [44), is used. In order 
to account for the above mentioned problem of imperfect correlation, we define the degree 
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of anti-correlation D.corr in the following way: 

R+ 
D. - p 

corr - Rf + Ri (3) 

In this equation Rt (Rp) denotes the radiative recombination rate of a Jz = +1/2 electron 
with a hole in the biexcitonic ground state of the QD through to the emission of a+ (a-) 
photons. In this notation, D.corr = 0.5 corresponds to no anti-correlation and D.corr = 1 to 
perfect anti-correlation. 

Figure 6 shows the left si de of Eqn.1 vs. the dephasing rate Rd for a hole tunneling rate of 
10 times the radiative recombination rate, in agreement with the calulated hole tunneling rate 
of 10 Ghz and radiative recombination rate greater than 1 Ghz in the proposed device. Values 
above 2 (dashed line) are a violation of Bell's inequality. The different curves correspond to 
different values ofthe degreee of anti-correlatin D.corr ; from top to bottom, D.corr = 1, 0.9, 0.8, 
and 0.7. Clearly, a violation of Bell's inequality can be measured even with imperfect anti­
correlation if the dephasing rate is small enough. Recent experiments in QD's indicate that 
the spin dephasing rate of conduct ion band electrons is much lower than 0.3 GHz [45], and 
thus much lower than the radiative recombination rate and tunneling rates. 

4 Conclusion 

We demonstrated a semiconductor device which acts as a turnstile for single photons and 
also proposed a new st ru ct ure for generating pairs of entangled photons. The latter device 
utilizes Pauli-exclusion principle and takes advantage of the large energy separation of the 
QD energy levels. A higher temperature operation than with previous device structures is 
possible. We demonstrate that it is possible to measure a violation of Bell's inequality using 
the proposed device as a source of entangled photon pairs. 
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w. ElsäBer 

Quantum Noise Properties and Generation of Nonclas­
sicai States of Light by Vertical Cavity Surface Emit­
ting Lasers: Theory and Experiment of Squeezing with 
VCSELs 

Abstract 

We present comprehensive investigations on the polarization resolved quantum noise be­
haviour ofvertical cavity surface emitting lasers (VCSELs) with various cavity designs. These 
experiments are accompagnied by detailed studies using a semiclassical approach to calcu­
late and model theoretically the amplitude fluctuations and correlations of a two orthogonal 
polarization-mode semi conductor laser as realized by aVCSEL, and, to explore theoretically 
the squeezing potentialof VCSELs. First, we demonstrate that there exists the possibil­
ity of squeezing also in the two-mode regime besides sub-shot noise emission in the well 
known ideal single-mode operation regime confirming the recently published first experimen­
tal demonstration of the generation of amplitude squeezed light with VCSELs. Second, we 
demonstrate the successful generation of amplitude squeezed light by a lateral and polar­
ization single mode VCSEL with the achievement of a maximum squeezing of 0.9dB. These 
experiment al findings are in extremely good coincidence with the modelling results. Finally 
the future trends, the applications and the limitations of these non-classical states of light 
with respect to metrology applications are discussed. 

1 Introduction 

The possibility of generating non-classical states of light with sub-shot noise amplitude fluc­
tuations (amplitude squeezing) was demonstrated a few years ago theoretically [1] and exper­
imentally [2]. Since then numerous work with the aim of first to understand and second to im­
prove the squeezing performances of semiconductor lasers have been performed [3, 4, 5, 6, 7]. 
The pursued strategies and the ingredients for the realisation of the optimum squeezing with 
semiconductor lasers have been low threshold current, high quantum efficiency, low internal 
loss, high longitudinal mode suppression, equivalent to the ideal single mode laser, and low 
gain non-linearity and no spatial hole burning [8, 9, 10, 11]. However, the real world oflasers 
showed up to be more or less far away from this ideal candidate leading to the fact that 
8.3 dB of squeezing [3] still represents the record and that conveniently between 1 and 3 dB 
are obtained with straightforward experiments [4, 5, 6, 7]. Only quite recently, two physi­
cal further progressing approaches have been made to overcome this actual state-of-the-art. 
First, to understand the possible squeezing limits from the device point of view and thereby 
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improving it [12, 13], and second, to explore theoretically physicallimitation mechanisms for 
the squeezing performance [14]. 

With the advent of a new laser structure, the VCSEL, the goal of generating sub-shot noise 
light seemed to be even easier accessible with their superior spectral longitudinal behavior 
[15, 16]. However, the trade-off with the complicated polarization modes [17] modified these 
first optimistic estimations. Therefore, sub-shot noise emission even with VCSELs seemed 
to remain a dream always ending up with the emission of light with fluctuations above the 
shot noise limit [18]. It was demonstrated quite recently that with a two polarization-mode 
VCSEL intensity squeezed light can be generated [19]. This result seems in contradiction 
to former theoretical work where the need for single mode behavior seems to be the first 
requirement [1, 9]. Consequently a better understanding of the influence of the polarization 
on the quantum noise of a semiconductor laser is needed [20]. The purpose ofthis contribution 
is threefold: First, we show results of comprehensive studies of the quantum noise properties 
of VCSELs demonstrating the relevance of the amplitude noise of both polarization modes 
and the importance of their respective correlations on the generation of sub-shot noise light. 
Then we present a theoretical description based on a new semiclassical laser noise model 
incorporating two polarization modes. The most important parameter determining the laser 
amplitude noise is the parameter M defined as the ratio between the power in the secondary 
mode S and the power in the primary mode P. We demonstrate that in a two-mode laser 
indeed two operation regimes exist in which amplitude squeezing is possible. Besides, the 
single mode (SM) regime, as characterized by M close to zero, the two-mode (TM) regime 
exists with M=l. In this case, the anticorrelation of the intensity fluctuations between the 
two modes leads to a st rong reduction of the amplitude noise of the total emitted field 
enabling finally the generation of squeezed light. This ideal TM laser is very weil realized 
by a laser with two orthogonal polarization modes as it can be the case for aVCSEL. 
Finally, we demonstrate the successful generation of amplitude squeezed light by a lateral 
and polarization single mode VCSEL. A maximum squeezing of 0.9dB is achieved [21]. From 
the experimental data we derive a direct dependence of the laser noise on the polarization 
mode suppression ratio, which is in excellent agreement with our theoretical predictions. 

2 Experimental setup 

We have investigated various types of VCSELs: 
1.) Polarisation multi mode VCSELS: Etched air-post GaAsjGaAIAs VCSELs, where 

the active zone consists of 3 quantum wells and the emission wavelength amounts to 770 
nm. We have studied the noise and polarization properties of 2 different 2 x2 arrays with 2 
different diameters of the emission window of 7 and 121-'m, respectively [22]. 

2.) Polarization single mode VCSELs: Oxide confined GaAsj AlGaAs VCSELs with 3.5 
I-'m apertures [23]. They offer typical values of more than 3.5 mW lateral single mode 
emission at a center wavelength >. ~ 840 nm and threshold currents of less than 0.5 mA. 

The experiment al setup consists of the laser supply circuit (under quiet pumping condi­
tions) and the detection circuit. The injection current is delivered by a dry battery with a 
fixed serial resistance and a subsequent passive network for current adjustment. The sum 
of all serial resistances, including the VCSEL's dielectric mirrors' resistances is estimated to 
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exceed twice the diode junction's differential resistance for any current in order to match the 
quiet pumping condition [1]. The multimode VCSELs have been mounted in a TO-8 can, 
the single mode VCSELs operate "on-wafer" at room temperature without active temper­
ature stabilisation. For the investigations of the quantum noise behaviour we used either 
a balanced detection set-up [24] where the shot noise calibration has been performed using 
a weakly coupled LED or a direct detection set-up. For the latter one the emitted light 
is collected with a large-area photodiode (EG&G FFD200, bandwidth 150 MHz) which is 
connected via a bias-tee (PPL) and an amplifier (Miteq) to an elect ri cal spectrum analyser 
(HP70000). The absence of collimating lenses in the beam reduces opticallosses and pre­
vents local saturation of the detector. The light of an incandescent lamp (white light source) 
is used to calibrate the standard quantum limit (SQL). A systematic comparison of differ­
ent shot-noise sources, such as a white light source, an IR-filtered (Schott RG9) cold-light 
source and a high-power light emitting diode shows exact agreement in the noise spectra and 
therefore assures the correct SQL calibration. For the polarization measurements we use a 
Glan-Thompson polariser (extinction ratio of 10-5) in a collimated beam. 

3 Experimental results and discussion 

3.1 Quantum noise of two-polarization mode VCSELs 

We started our investigations by measuring the noise of the rather large diameter VCSELs of 7 
and 12 {lm under quiet pumping conditions. The results are depicted in Fig. 1, simultaneously 
for the noise and the ratio M = SIP of the intensities of the two polarization modes which 
we denote by P for the primary and S for the secondary mode, respectively. First, it is quite 
obvious that the noise is far above the shot noise limit. 

Only for the small diameter VCSEL (7 {lm; left figure) an approach of 1 dB towards 
the SQL at an injection current of 4 mA is visible. These results can be understood when 
realizing that the investigated lasers exhibit always two polarization modes as can be directly 
seen from the value and the dependence of M (around 0.2 to 0.7) and consequently astrong 
contribution of mode competition noise dominates the overall noise behaviour. However, the 
striking result is that there is a nearly perfect coincidence between the noise behaviour and 
the dependence of M as can be seen for the 12 {lm VCSEL (right figure). From the results for 
the 7 {lm VCSEL (left figure) this agreement seems not to be that perfect. However, one has 
to note that, besides the intensity, the correlation of the fluctuations plays an important role. 
This is more illustrated by Fig. 2 where the measured normalized correlations and M are 
simultaneously plotted as a function of the injection current. Even the surprisingly high and 
rapidly above threshold established value of anticorrelation of -1.0 for the 7 {lm VCSEL can 
not completely counterbalance the fluctuations because Mist not equal to 1 in this regime. 
These understandings of the experimental results within the framework of the counterplay 
and the importance of both, intensity and correlations in the two-mode picture are nicely 
confirmed by the theory as illustrated in the next paragraph. 
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Figure 1: Intensity noise at Iow frequency normalized to the shot noise (Ieft scale) and ratio M 
(right scale) as a function of the pUIDping current for the 7 /-LID (Ieft figure) and the 12 /-LID VCSEL 
(right figure) . 

3.2 Noise theory 

For the calculation we have extended our semiclassical model which is based on a Green's 
function method to calculate the noise performances of serniconductor lasers and especially of 
VCSELs. This method has proven its validity [8, 25] and has given equivalent results to those 
obtained by existing quantum mechanical theory [1, 11, 10]. lts first advantage is to give 
quasi-analytical expressions for the amplitude and phase noise even if gain suppression and 
spatial hole burning are considered. Therefore we have extended our one-mode-model to a 
two-mode-model [26] representing the two polarization modes of the VCSELs. We performed 
this calculation using a formalism similar to Agrawals work in the spectral domain [27]. Our 
model originates from a phenomenological approach, not taking into account a microscopic 
description [28] and no lateral effects [29, 30] are included. 

In our description, the two modes P (Primary Mode) and S (Secondary Mode) are coupled 
to the same carrier reservoir. The following set of rate equations is obtained for the photon 
densities of the Pand S modes and for the carrier density N inside the laser cavity : 

dP P 
(1) 

dt 
vgglP- - +Fp 

Tpi 

dS S 
(2) 

dt 
v9g2S - - +Fs 

Tp2 

dN I N 
(3) 

dt 
- - - - V (giP + g2S) + FN 
eV Te 9 
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Figure 2: Normalized correlation of the fluctuations of the two polarization modes at low frequency 
(left scale) and ratio M (right scale) as a function of the pumping current for the 7 p.m (left figure) 
and the 12 p.m VCSEL (right figure) . 

where vg is the group velo city, Tpl and Tp2 the photon lifetime in each polarization mode, 
I the pumping current, Te the carrier lifetime and Fp,Fs and FN the Langevin noise forces 
associated with the photon densities of the two polarization modes and the carriers. 

The gain of each polarization mode, 91 and 92, is given by : 

91 = 9d (N - No) - {JuP - ()12 S 

92 gd (N - No) - f322S - ()21 P 

(4) 
(5) 

where 9d is the differential gain, No the transparency carrier density, {Ju and f322 are the gain 
suppression coefficients of each polarization mode and ()12 and ()21 the cross saturation coef­
ficients, respectively. These coefficients originate from the microscopie coupling mechanisms 
within the semiconductor material [17, 20]. 

It is important for the calculation to consider the correct interference condition for the 
fluctuations of the amplitude of the emitted Put and Sext polarization modes for reflection 
coefficients of the laser facets close to 1 : 

v(1- R) p r;:; 
8Aput = ~ - V RflJac 

T 2vP 
(6) 

P1-R) S r;:; 
8ASext = . ffl - V RflJac 

T 2vS 
(7) 

where A pezt and A Sext are the amplitudes of the emitted Put and Sut field, T the light 
round-trip time in the cavity and flJac the vacuum fluctuations. 
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Figure 3: Amplitude noise of the total emitted field at low frequency normalized by the shot 
noise level (top, left scale) and normalized correlation between the amplitude fluctuation of the 
two polarization modes at low frequency (bot tom, right scale) as a function of M for various total 
photon number in the cavity of Po = 103 , 104 , 5.104 , 105 ,5.105 , and 106 (curves (1) to (5)). 

The noise spectra for the two modes Sp(w) and Ss(w) and the amplitude noise of the 
total field Ss+p(w) have been calculated as weIl as the normalized correlation Cor(w) 

Cor(w) = Ss+p(w) - Sp(w) - Ss(w) 
2JSp(w) JSs(w) 

(8) 

The most important results are depicted in Fig. 3 where the amplitude noise of the total 
emitted field at low frequency normalized by the shot noise level (top, left scale) and the 
normalized correlation between the amplitude fl.uctuation of the two polarization modes at 
low frequency (bottom, right scale) are plotted as a function of the ratio M of the intensity 
of the two polarization modes for various total photon numbers Po in the cavity. 

A totaIly different behavior of the amplitude noise is observed, depending on the photon 
number inside the cavity , or, equivalentlyon the pumping level Rp defined as Rp = 1/ Ith -l 
with I the current applied to the laser and I th the laser threshold current. The noise is 
constant above the shot noise level (SNL), independent on the parameter M when the laser 
is very close to threshold, i.e. for Po = 103 or Rp = 1.5· 10-2 • This independence of the noise 
can be understood because the light emission under these conditions is mostly spontaneous 
emission which is not polarized. The situation is completely different highly above threshold 
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Figure 4: Amplitude noise normalized by the shot noise at low frequency (w=O) as a function of 
the pump rate for various values of M. 

(Po = 106 or Rp = 15), where the noise is strongly dependent on M, as depicted in the 
upper part of Fig. 3. The most interesting result is that in fact amplitude noise squeezing 
is possible in two regimes, which are M close to 0 (M < 10-4) and M close to 1, these two 
regimes being separated by a maximum of the noise. For intermediate values of Po, this 
maximum increases and shifts towards lower M with increasing Po . 

The bottom part of Fig. 3 shows the normalized correlation between the amplitude fluc­
tuations of the two polarization modes at low frequency as a function of the parameter M. 
The normalized correlation depends strongly on the photon number inside the cavity. Close 
to threshold, a negative correlation only occurs for M close to 1 and with decreasing M a 
transition to a correlation equal to 0 takes place. With increasing Po, this transition regime 
shifts towards lower M, the negative correlation occurs over a wider range and the maximum 
correlation for M close to 0 approaches to positive values. 

The same results are depicted in a different representation in Fig. 4, where the dependence 
of the normalized noise on the pump rate is plotted for different values of M. We find for 
extreme values of M, i.e. both for the single mode (M=0.0001) and the two mode laser 
(M=1), a continuous decrease of the noise level with increasing Rp . As already mentioned 
above, the achievable amount of squeezing as weIl as the range of M for which squeezing is 
possible is smaller for the two-mode than for the single mode laser, the pump rate being kept 
constant. For intermediate values of M, a minimum of the noise appears at Rp ::::l 0.1..1, 
which depending on the exact value of M can be either above or slightly below the shot 
noise level, expressing once more again the delicate counterbalance between individual mode 
noise, correlation, and total noise. However, this noise minimum is of no practical relevance, 
because these intermediate values of M normaUy are difficult to be realized. 

Therefore, two regimes exist, in which squeezing is possible. In the ideal two-mode laser 
it is the necessary and delicate perfect anticorrelation of the fluctuations of the two modes 
which leads to a noise suppression, whereas in the ideal single mode laser mode competition 
is excluded, by definition. The range of M for which squeezing is possible as weU as the 
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Figure 5: Shot noise normalized amplitude noise of the two polarization modes P and S and the 
tota! amplitude noise at low frequency (w=O) as a function of M for Po = 106• 

possible amount of squeezing is superior for the single mode laser. 
The strong influence of M on the noise in each single mode is clearly illustrated in Fig. 5 

where the amplitude noise at low frequency (w = 0) of the individual P and S modes as weIl 
as the total amplitude noise, all of them normalized to the shot noise, are presented as a 
function of M for a photon number Po = 106 inside the cavity corresponding to a pump rate 
Rp = 15.7. The amplitude noise of the P mode normalized to the shot noise level is always 
smaller than that of the S mode. The amplitude noise values for both S and P mode are 
strongly influenced by the ratio M. The we aker secondary S mode shows a weaker dependence 
on M than the stronger primary P mode, which is the only one to exhibit squeezing at all. 

Finally, our model can be also applied to study the influence of gain saturation and carrier 
lifetime on the amplitude noise. Their influence on the noise and squeezing properties has 
been already demonstrated for edge emitting lasers [1, 8, 9). We have therefore studied the 
influence of the efficiency of the laser determined by the losses inside the cavity lasers or 
equivalently the photon lifetime in the cavity on the VCSELs quantum noise including gain 
saturation effect via the gain suppression coefficients in order to deduce appropriate "design 
rules" for the most suitable VCSEL structure [31). 

3.3 Squeezing of single polarization mode VCSELs 

On the basis of these theoretical confirmations for the two-mode VCSEL we have now con­
centrated our research towards the realisation of squeezing with the ideal single polarization 
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Figure 6: Top: Normalized amplitude noise versus pump rate Rp at ft = 44.8 MHz (solid line), 
h = 62.5 MHz (dashed line), h = 122.9 MHz (dotted line); Bottom: PMR versus pump rate Rp. 

mode VCSEL. This goal has been succeeded with the superior performance VCSELs from 
University of Vlm. 

Figure 6 shows the dependence of the normalized noise (thermal noise being substracted 
from all noise figures) (top) and the polarization mode suppression ratio (PMR) (bottom) 
on the pump rate Rp = [I [th - 1 for various measurement frequencies. The PMR is defined 
as the logarithmic ratio of the powers in the two orthogonallinear polarization modes Pand 
S, i.e. PMR = 10 log SI P. The normalized noise graphs for the frequencies 1=44.8 MHz, 
1=62.5 MHz, and 1=122.9 MHz show a very similar behaviour. For low values of Rp, the 
noise amounts to more than 5dB above SQL. With increasing pump rate, the laser noise 
decreases, crosses the SQL at Rp ~ 3.5 and reaches a minimum of -0.9dB for 1=44.8MHz 
at Rp ~ 6. At Rp ;:::: 7.5 a st rong peak arises in the laser noise and for Rp ;:::: 8.5 the noise 
decreases again. Our experimental data show ciearly the dependence of the laser noise on 
the PMR: Starting at Rp = 0, the laser noise decreases as long as the PMR decreases until 
both simultaneously reach their minima at Rp between 5 and 7.5. As a striking fact, the 
PMR changes from positive values to negative values at Rp ~ 3.5 as the laser emission 
changes from S-polarization to P-polarization. This behaviour is known as polarization 
switching and has already been investigated experimentally and theoretically in proton­
implanted AIGaAs/GaAs multiple quantum weIl VCSELs [32]. Beyond this switching point, 
the modulus of the PMR exceeds 20dB in the range of pump levels between 4 and 8. Only in 
this range of high PMR squeezing is achieved. The strong peak in the laser noise at Rp ;:::: 8 
coincides with an redecrease in the modulus of the PMR which is caused by the appearance 
of the first lateral mode, which is then the source for additional mode partition noise. The 
decrease of the normalized noise for Rp > 8.5 can be attributed to the fact that in this regime 
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the normalized correlation of the emitted modes is approaching to -1 with the consequence 
that the noise in both modes can at least partly cancel each other, in agreement with the 
modelling results. 

These results are in total agreement with our theoretical calculations and confirm the 
direct link between the ratio M and the quantum noise behaviour of aVCSEL. For a more 
quantitative confirmation, we have calculated the dependence of PMR and the amplitude 
noise on the pump rate for a typical VCSEL in order to compare these results to the ex­
perimental results from Fig. 6. The upper part of Fig. 7 presents for a 'model' VCSEL 
with particular but realistically chosen parameters the PMR as a function of the pumping 
current. A polarization flip to the orthogonal mode occurs close to threshold. Then PMR 
reaches its maximum close to 20 dB with a plateau before strongly decreasing high above 
threshold accompagnied by the occurrence of a secondary polarization flip. The lower part 
of Figure 7 presents for the same conditions the total amplitude noise normalised by the 
shot noise level at low frequency also as a function of the pumping current. The shot noise 
normalised amplitude noise decreases as long as PMR increases and reaches the noise min­
imum (with the occurrence of squeezing) where PMR exhibits a maximum plateau. Then, 
the noise increases with decreasing PMR. At a first sight, this increase in the laser noise 
may seem unexpected, because the absolute value of the PMR is in the range of 20dB for 
all injection currents (except for the range, where the polarization flip occurs). However, the 
model aiready included saturation effects which may even lead to a roll-over characteristics 
of the VCSEL, i.e. for high injection currents, the slope efficiency is already decreasing and 
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may even become negative. This strongly reduced efficiency then leads to the pronounced 
re-increase in the laser noise for I ~ 13 mA. The features of these calculations correspond 
very weIl to the obtained experimental results. However, a more precise comparison of ex­
perimental data with the theory still needs the exact knowledge of all laser parameters which 
indeed can be extracted by various experiments [33]. Therefore, our performed modelling of 
the VCSEL polarization and noise properties is a good tooI to estimate the quantum noise 
and the squeezing properties even if a quite good knowledge of the VCSELs parameters is 
needed. 

4 Summary and conclusion 

In conclusion, we have presented theoretical and experiment al results on the quantum noise 
performance and the generation of intensity squeezed light with VCSELs. Taking into ac­
count the polarization behaviour of these circular sysmmetric lasers, squeezing is possible 
with single polarization mode VCSELs as weIl as with the ideal two polarization mode VC­
SEL. However, the achievable amount of sub-shot noise compression is determined by the real 
laser's performance, even if theoretically better performances are predicted for VCSELs .than 
for edge emitters. Therefore, the requirements for ideal VCSELs are rather severe. They 
have to exhibit single spatiallateral and single polarization mode behaviour, no saturation, 
and high efficiency, all performances which hopefully are only a question of technological 
maturity. Besides being very interesting candidates for basic research in quantum optics and 
semiconductor laser physics [28, 34] they offer also very interesting perspectives for applica­
tions in metrology and remote sensing. Very recently there have been numerous proposals 
and very interesting examples for the relevance of amplitude noise squeezed light for practical 
applications [35]. Gas sensing spectroscopy [36,35] as weIl as interferometrical measurements 
[37) have benefitted from the reduction of laser noise below the Standard Quantum Limit 
[38]. These trends can be even increased incorporating squeezed light emitted by VCSELs. 
However, it is always desirabie to increase the amount of squeezing, even if particularly de­
signed experiments already benefit from small degrees of compression [39]. Therefore "the 
dream of realisation and application of ultimately squeezed VCSELs has to be continued" . 
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G.P. Bava, F. Castelli, P. Debernardi and L. Fratta 

Amplitude and Polarization Fluctuations in VCSEL's 
with Two Nearly Degenerate Modes 

Abstract 

The paper is concerned with the evaluation of the noise spectra of the Stokes parameters 
in VCSEL's with two nearly degenerate orthogonally polarized modes. It is found that 
the spectra inside the cavity are non symmetrie with respect to frequency; however the 
asymmetry is eliminated at the output by the interference term arising from the reflected 
vacuum field fluctuations. A comparison between the numerical solution of the complete 
problem and an analytieal one obtained with the adiabatic elimination of the spin population 
difference is also carried out. 

1 Introduction 

The quantum noise characteristics of VCSEL's with two nearly degenerate modes are very 
interesting mainly for two reasons: first of all they allow to validate the model adopted 
for the physieal description of the device operation [1]; secondly, they allow to evaluate the 
macroscopie model parameters, such as dichroism and birefringence, on the basis of noise 
spectra measurements [2, 3]. The purpose of this paper is to present the noise spectra of the 
Stokes parameters, when all the noise sources of the system are correctly accounted for. To 
this aim, a complete quantum description of the VCSEL noise behaviour is developed with 
a rigorous calculation of the diffusion coefficients of the Langevin sources. In this way, an 
important difference between the noise spectra inside and outside the cavity is found. 

2 Model inside the cavity 

The model here adopted for the study of quantum noise in VCSEL's with two mode compe­
tition is described in [4] and the basic equations are: 

d~l = [i(w - Wl) + HG - 'Y11)] Al - ~ hl2 - ign) A2 

dA2 

dt 
dN 
dt 
dn 
dt 
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where Ai are the field operators for the slowly varying amplitudes of the two modes, referred 
to the angular frequency Wj N and nare the number operators respectively for the total 
carriers and for the spin population difference in conduct ion bandj in fact the population spin 
difference is accounted for only in conduct ion band where the spin relaxation rate is known 
to be lower. The birefringence E and dichroism Ó of the system are related to the differences 
in the resonant frequencies Wi and losses 'Yii of the modes: E = Wl - W2, Ó = ~ ('"(22 - 'Y11). C = 
Cr +iCi is the complex intensity gain and the quantity gn = (gr +igi)n introduces a coupling 
between the modes connected to the spin population differencej both these quantities depend 
on N. Moreover, I is the injected useful current, Ris the recombination rate, which includes 
also the spontaneous emission, and 'Yn is the n relaxation constant. Finally, the L terrns are 
the Langevin noise sources. 

In order to simplify the problem, the direct mode couplings given by 'Yij are neglected and 
the San Miguel model is recovered, in which, for a given choice of the parameters, only one 
of the two modes is lasing while the other is noise and the stationary value of n is zero. The 
linearization of system (1) around the stationary solution leads to two mutually decoupled 
problems: one for the fluctuations of the lasing mode, for example Al! and total carriers (óAb 

óN), and one for the nonlasing mode and spin carrier difference (A2 , n). In the following 
we will focus on the latter problem. Reasonably neglecting the operator nature of Al above 
threshold (Al = ,.;n;h), the system for the non lasing mode A2 (henceforth indicated as A) 
reads: 

{ ~~ = (iE - ó) A - ~ign,.;n;h +LA 

~~ = -fn - iGr,.;n;h(A - A+) +Ln 

(2) 

where we set f = 'Yn + grnph. The diffusion coefficients of the Langevin noise terms have 
been rigorously computed in [4] starting from microscopic quantum equations for the fields, 
the carriers and the material polarization (the last quantity has already been adiabatically 
eliminated in system (1)) and the non-zero diffusion coefficients then are: 

2DA+A 'Y22nth + 8 
2DAA+ = 'Y22(1 + nth) + 8 - Cr 
2DnA 2D~+n = i,.;n;h8 (3) 
2DAn = 2D~A+ = i,.;n;h(8 - Cr) 

2Dnn = R + (28 - Cr )nph + 2'YnNo 

where No is the threshold carrier number, nth is the number of thermal photons, practically 
negligible at optical frequencies, and 8 is the spontaneous emission in the lasing mode. 

To compare our model with previous ones [2, 3] one must relate the field operator A to 
the operators of the Stokes parameters P2 and Pa naturally defined by: 

P2 = -(A + A+)/,.;n;h 
Pa = i(A - A+)/,.;n;h 

(4) 

The dynamical system in this way obtained is the same as the classical ones derived in 
[2, 3]. However, it must be observed that if the change of variables from the field to the 
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Stokes operators is . carried out before linearization, the quantum description leads to some 
additional terms, as shown in [5], which sligtly modify the stationary solution of the system. 
Since these terms are inversely proportional to nph and they do not influence the noise sources, 
here they will be neglected. The diffusion coefficients in the new variables are related to those 
defined in (3) through relations (4) and are: 

2Dp.,P2 2Dp3Pa (28 + 2ó)/nph 

2 Dp2 P3 2Dp3p., i2ó/nph (5) 
2Dp.,n 2D~P2 h11 
2DP3n 2DnP3 'Y11 - 28 

where we exploited the threshold condition Gr = 'Y11. These diffusion coefficients differ from 
those adopted in the previous models for the presence of the dichroism in 2Dp•p• and for the 
non-zero value of all the cross-correlations, in particular 2Dp•Pj ' 

An analytical solution of system (2) can be easily obtained in the frequency domain after 
adiabatic elimination of n. By introducing the analytical solution in the Fourier transform 
of (4) an explicit expression for the noise spectra of the Stokes parameters inside the cavity 
is found. For instanee for P3 one obtains: 

(P3 (n)P3+(n)) = [~22D~2P2 + lin + ÓI22D~"3P3 + ~ [(-in + Ó)2D~2P3 + 
(in + ó)2Dhp.,]] IDet(n)I-2 (6) 

where the system determinant is: Det(n) = nphGrr-l(gi~ - gró) - (~2 + ó2) + n 2 - in(2ó + 
nphgrGrr-1

) and the primed diffusion coefficients include the noise of n: 

2D~2p., 

2D~3Pa 
2D~2P3 

2Dp.,p., + glr-22Dnn 

2DPaP3 + (2DPan + 2DnP3) grr- 1 + g~r-22Dnn 
2D~3p., = 2Dp2P3 + r-1 (gr2DP2n - gi2DnPa) - gigr r - 22Dnn 

(7) 

It turns out that the noise spectra inside the cavity are not symmetrie with respect to the 
frequency as a consequence of the cross diffusion coefficients which are complex coniugatej 
the asymmetrie term is: 

(8) 

However, the asymmetry of the internal spectra is not a problem since these cannot be 
measuredj moreover, this result can find a theoretical foundation in [6] . 

3 Output noise spectra 

In order to evaluate the output field Ao (At Aa is the output photon flux) the reflected 
vacuum field fluctuations must be accounted for: 

Aa=~A-fe 
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Figure 1: Spectra of P2 (left) and P3 (right) inside the cavity (continous line) and of the radiated 
field (dashed line); ~ = 0.44 GHz, 6 = 0.007ns-1, r = 100ns-1 and P = 10. 

where 'Yo is the output mirror loss for the mode under analysis and Je is the operator which 
describes the incident vacuum field fluctuations; obviously the effect of Je has already been 
included in LA and therefore, in the evaluation of the output noise spectra, the interference 
term must be correctly considered. The presence of the interference term is in fact crucial to 
recover the symmetry of the output spectrum. For example, with reference to the spectrum 
of P3 , the interference term is: 

(9) 

where Ff\ = i(Je - JiV..;npï.. An explicit expression of (9) can be obtained with the same 
approximations as expression (6). If this is done, an asymmetric contribution with respect 
to n is deduced which exactly cancels the asymmetry (8) of the internal spectrum multiplied 
by 'Yo, that is, transported outside the cavity. 

4 Numerical examples 

The general behaviour of the results for the spectra outside the cavity is very similar to that 
already reported [2, 3]. The following examples have been computed with refrence to the 
structure already adopted in [4] to which we refer for the values of the parameters. The 
pump parameter P is defined as (1/ I th - 1). 

In Fig. 1 an example of the spectra of P3 and P2 inside the cavity (continous line) 
and outside (dashed line) is shown, computed by numerically solving the system (2). The 
asymmetry of the internal spectrum can be clearly seen and is particulary significant for P3• 

In Fig. 2 a comparison between the results obtained from the numerical solution of (2) and 
the analytical approach with adiabatic elimination of n is carried out for two values of r. 
As expected, when r is not large enough the adiabatic elimination is not correct and a non 
negligible difference is observed. In Fig. 3 , for two values of the pumping, the spectrum 
of P3 obtained from the numerical solution of system (2) is compared with that computed 
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Figure 3: Spectra of P3 outside the cavity for ~ = 0.44 GHz, 5 = 0.OO7ns-1 and r = IOOns-l . 

Solid lines, complete model; dashed lines, adiabatic elimination of n and cross diffusion coefficients 
neglected. 

with adiabatic elimination of n and by neglecting the cross diffusion coeflicients. This last 
approximation is the one adopted in [3]. The differences are more evident for higher values 
of pumping and a slight shift of the peaks is observed. 
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M.P. van Exter, M.B. Willemsen and J.P. Woerdman 

Polarization Modal Noise in Vertical-Cavity Semicon­
d lictor Lasers 

Abstract 

We have studied the polarization fluctuations and polarization modal noise in semiconductor 
VCSELs. The measurements include (polarization-resolved) optical spectra, intensity noise, 
correlated fluctuations in two polarization modes, and stochastic switching between these 
modes. Good agreement is found with a relatively simple model. 

1 Introduction 

The optical polarization of light emitted by Vertical Cavity Surface Emitting Lasers (VC­
SELs) is less stabie and shows more dynamics than that of most ot her lasers. This has two 
reasons: (i) the high degree of rotational symmetry (round for proton-implanted VCSELs, 
square for some oxidized VCSELs) makes the two in-plane polarization directions nominally 
equivalent, and (ii) their small size makes quantum noise, due to spontaneous emission, rela­
tively important. One striking consequence of this limited polarization stability is that many 
VCSELs switch their dominant polarization at a certain laser current. Furthermore, even 
at currents where only one polarization mode dominates the laser polarization is not stabie, 
as the intensity in the other (much weaker) polarization mode fluctuates wildly. We have 
studied these polarization fluctuations with several experiment al techniques and compared 
the results with a simple model. 

Our model is valid for VCSELs that operate in the fundament al transverse mode, so that 
the (slowly-varying component of the) emitted optical field can be specified in terms of four 
variables: the optical phase epi, the intensity I = IEI2, and two Poincaré angles <p and X that 
characterize the optical polarization, where <p (0 :-=; <p :-=; 'Ir) is the direction of the polarization 
ellipse and X (-'Ir / 4 :-=; X :-=; 'Ir / 4) is the ellipticity angle. For practical VCSELs the output 
polarization is approximately linear, in a direction that we define to be the x-axis, so that: 

(1) 

We study the polarization dynamics in VCSELs via the natural fluctuations in the po­
larization angles <p and X. The polarization dynamics is thus separated into a (stochastic) 
diffusion, due to noise, and a (deterministic) flow, due to possible polarization preferences. 
For VCSELs that operate not too close to the lasing threshold, the intensity I is relatively 
stabie, and the polarization and intensity dynamies are almost decoupled. 
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Figure 1: Optical spectra taken at: (a) the dominant x polarization, (b) close to the y polarization, 
showing the "nonlasing" peak Yl and a weak polarization-type of four-wave-mixing peak Y2 

2 Optical and intensity noise spectra 

One way to study the polarization dynamics is via the polarization-resolved optical spectrum. 
The upper part of Fig. 1 shows the optical spectrum at the dominant (x) polarization, the 
lower part shows the spectrum in the almost orthogonal polarization (in the same units), 
with as little as 5 x 10-4 of the dominant polarization mixed in on purpose. The y-polarized 
light, which depends on the complex variabie ifJ + iX, is concentrated in a spectralline (Yl) 
that is shifted and broadened with respect to the x-polarized line and that can be associated 
with the "non-Iasing" polarization mode. The shift or frequency difference between the two 
lines (~ 1.8 GHz in Fig. 1) is associated with birefringence. The broadening (~ 0.2 GHz 
in Fig. 1) is associated with a polarization-dependent gain difference of dichroism. Both 
comprise a linear and nonlinear part . The weak spectral line Y2 in Fig. 1 results from a 
polarization-type of four-wave-mixing. It can be used to quantify the mild preference for 
VCSELs to emit linearly polarized light, which results from (relatively fast) internal spin 
dynamics [1]. 

Another way to study the polarization dynamics is via the polarization-resolved intensity 
noise, as demonstrated in Fig. 2. The two curves denoted as ifJ and X show the intensity 
noise spectrum as measured behind a polarizer oriented at 45° with respect to the x-axis, 
either without or with an additional À/4-plate. These polarization projections mix x and 
y-polarized light and allows one to separately detect the dynamics of the polarization angles 
ifJ and x· The ifJ and X spectra peak around the birefringent frequency and have a width 
that is equal to the dichroism. The curves denote as x and y show the intensity noise after 
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Figure 2: Intensity noise spectra, as measured behind a polarizer (i) at 45° with respect to the laser 
polarization (curves </> and X (with additional >'/4-plate», and (ii) aligned with the x or y-axes as 
defined by the dominant laser polarization. 

projection on either one of the polarization modes. These noise spectra are almost identical, 
are strongly peaked around zero frequency, and have a width that is equal to the dichroism. 
The total intensity noise, as measured without any polarization projection, is generally small 
and peaks at the (relatively large) relaxation oscillation frequency. A tail of this peak is 
visible in the high-frequency intensity noise of the lasing mode (curve x). 

3 Polarization modal noise 

The noise spectra shown in Fig. 1 and 2 are a-typical in the sense that they belong to a VCSEL 
with relatively small birefringence. For the more common VCSELs, with a birefringence in 
the range of 10-20 GHz, the polarization evolution is fast enough to average out the nonlinear 
anisotropy, i.e., the intrinsic preference of VCSEL to emit linearly polarized. As aresuit, 
the four-wave mixing peak in Fig. 1 becomes too weak to observe (its magnitude scales 
with the inverse square of the birefringence), and the 4> and X spectra shown in Fig. 2 
become essentially identical. This allows one to separate the polarization dynamics into a 
fast oscillation between 4> and X, and a much slower (and more interesting) evolution of the 
mode fraction Y = 1,,/1, where 1" and 1 are the power in the nonlasing mode and the total 
power, respectively. For small mode fractions, Yexhibits "thermal-like" fluctuations [2] with 
an average amplitude 

I D 
(Y) = (-'I.) = (4)2 + X2

) = -. 
1 'Y 

(2) 

Typical values are D = 10 J.LS-l for the diffusion rate, and 'Y = 1 ns-1 for the dichroism, 
making the average mode fraction (Y) about 1 %. 

The birefringence and dichroism change with current. In many VCSELs an increase in 
current leads to a reduction in dichroism, to an increase in polarization fluctuations, and 
finally to a switch of the dominant polarization. Polarization switches that occur at large 
currents often show hysteresis, whereas switches at lower current are of a stochast ic nature 
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Figure 3: Distribution of average dweIl times in one polarization mode for a VCSEL that sponta­
neously switches polarization. 

(see inset of Fig. 3 for time trace of projected intensity). The random nature of this process 
is evident from the exponential probability distribution of the average dweIl times in one of 
the two states, as shown in the body of Fig. 3. For this case (current 6.4 mA, corresponding 
to Jl = 1.3 time above threshold) the average dweIl time was 1.0 Jls [3]. 

Figure 4 shows how the average dweIl-time for polarization switches changes by more than 
7 orders of magnitude as a function of switch current, where the switching point was adjusted 
by modification of the VCSEL with an intense heating laser positioned ± 40 Jlm away from 
the device. The solid line is calculated on the basis of a simple Kramer's hopping model, with 
no adjustable parameters; the key parameters in this model, being the noise strength and the 
shape of the double weIl potential weIl, could be determined from independent measurements 
that gave the related diffusion rate D and dichroism ,,/, respectively. 

4 Correlated modal fluctuations 

Finally we again consider the polarization flucutions of a VCSEL outside the (relatively 
narrow) regime of polarization switches and wonder to what extent the intensity fluctuations 
in the x and y polarized mode are correlated, as quantified by the (real-valued) frequency­
dependent correlation function 

_ Re ((Ïx(w)Ï,/(w))) 

Cxy(w) = (IÏx(w)l2)1/2 (IÏy(w) 12)1/2 

Figure 5 shows how the low-frequency component of Cxy changes with current, for a VC­
SEL that switches polarization around 8-8.5 mA [4]. The intensity fluctuations in the two 
polarization modes showastrong anti-correlation, with the deviation from prefect anticor­
relation (Cxy = -1) being proportional to the ratio of the low-frequency noise in the total 
intensity land the mode fraction Y. Close to the switching point, where the dichroism is 
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Figure 5: Low-frequency correlation Cxy as a function of current. Around a current of 8-8.5 
mA, where the dominant laser polarization switches, the dichroism is smallest, the polarization 
fluctuations are strongest, and the correlation between the modal intensity fluctuations is largest. 

small and the polarization fluctuations are large (large Y), the anti-correlation is strongest. 
The measurements presented in Fig. 5 support the earlier statement that the dynamics of 
the polarization mode fraction Y and the total intensity I are almost decoupled, as the 
squares and circles result from data analysis with and without the assumption of decoupling, 
respectively. A more quantitative discussion of this statement has allowed us to estimate the 
(limited) deteriorating effect of polarization mode partition noise on the possibility to obtain 
intensity squeezing. 
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o. Hess 

Quantum Optical Images in the Spatial Coherence Char­
acteristics of Mesoscopic Semiconductor Lasers 

1 Quantum optical images 

While spatially inhomogeneous stimulated coherent emission may very successfully be de­
scribed within a semiclassieal framework, by its very nature, the corresponding processes 
leading to spontaneous emission are a signature of the nonclassical, quantum properties of 
the light-matter interaction in semiconductor structures. It is this nonclassieal property of 
radiation which has recently received large interest. Particularly since the pioneering inves­
tigations of L. Lugiato et al. in systems of optical parametric oscillators (OPO), quantum 
optical images have revealed the nonclassieal correlations between entangled photons created 
by down-conversion in the OPO [1]. Recently, it has been predicted that it should be pos­
sible in the OPO to generate pairs of optie al images that are quantum entangled to each 
other[2]. While the OPO system allows a simplified level of description, the photonics of 
small semiconductor structures are considerably more complex. Most importantly, the light­
matter interactions are strongly determined by the presence and the particular properties of 
the charge carrier system forming the microscopie (interband-) dipoles - the source of the 
radiation. Very uniquely, the dipole system thus carries both, the nonclassieal properties of 
the carriers and the optical field [3]. 

In this contribution we will use a recently developed general theoretical model taking 
into account the spatiotemporal coherence of spontaneous emission. This is done on the 
basis of Quantum Maxwell-Bloch Equations [4] (QMBE) which describe the spatiotemporal 
dynamics of both, stimulated amplification and (amplified) spontaneous emission on equal 
footing in terms of expectation values of field-field correlations, dipole-field correlations, 
carrier densities, fields and dipoles. In partieular, the quantum dynamics of the interaction 
between the light field and the carrier system is formulated in terms of Wigner distributions 
for the carriers and of spatially continuous amplitudes for the light field. 

2 Spatial coherence characteristics of mesoscopic photonic semi­
cond uctor devices 

2.1 Spontaneous emission in photonic semiconductor devices 

In an optical semiconductor device, spontaneously emitted light may have significant influ­
ence on the spatiotemporal dynamies ofthe (coherent) light field. It is, in particular, a whole 
class of modern ultra bright resonant-cavity light emitting semi conductor diodes (Re-LED) 
which transform electric current with extreme efficiency (internal quantum efficiencies ap-
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proaching 100%) into spontaneously emitted light. The spatial coherence of spontaneous 
emission and amplified spontaneous emission is equally most important in semiconductor 
lasers close to threshold, ultra low threshold semiconductor lasers [5] or spatially distributed 
or coupled semiconductor lasers systems like arrays of vertical-cavity surface-emitting lasers 
[6] (VCSEL) or multi-stripe and broad area semiconductor lasers. There, the spontaneous 
emission factor is modified by the amplification and absorption of spontaneous emission into 
the non-Iasing modes and amplified spontaneous emission may be responsible for multi mode 
laser operation and for finite spatial coherence [6]. 

2.2 Optical quantum images in the far-field of a Re-LED 

Resonant cavity LEDs (RC-LED) are a particularly important example of a mesoscopic 
photonic semiconductor device in which spontaneous emission is the source of radiation. 
There the spatial coherence of amplified spontaneous emission defines an angular distribution 
of the emitted light in the far field. From the Quantum Maxwell-Bloch equations an analytic 
expression for this distribution may be derived [4] which contains both gain/absorption due 
to stimulated emission and spontaneous emission: 

arctan (fll-W(Sl) + arctan (weSl) 
= Wk r+1< r+1< 

o 1r(R+~) _ 2arctan (fll~:~Sl) - arctan (~~2)' 

with R = ~n/'i, m:,! + 7~ff and w(8) = wa8
2

• 

gal/aa meffmeff 2Er 

The parameter R represents the ratio between the cavity loss rate /'i, and the maximum 
amplification rate of the gain medium. go is the normalized dipole matrix element, m:j, 
the effective masses of electrons and holes, and rand 0, are the dephasing rate and Fermi 
frequency, respectively. 

The classical laser threshold is defined by the carrier density for which the denominator 
of [,(e, 8) is zero for a single specific frequency w(8). Consequently, the carrier density at 
which this occurs is pinned. Figure 1 shows the far field intensity dis tri but ion for different 
carrier densities below this pinning density. 

In Fig. 1 (a), intensity distribution is for carrier densities much lower than the pinning 
density largely due to amplified spontaneous emission. The intensity maximum is clearly 
centered around e = O. Figure l(b) shows the intensity distribution for carrier densities 
halfway towards threshold. Already, the intensity maxima move to angles of ±15°, corre­
sponding to the frequency at which the gain spectrum has its maximum. In the case of 
Fig. l(c), the threshold region is very close to the pinning density. The peaks in the far field 
pattern narrow as the laser intensity is increased. 

3 Conclusions 

Traces of Quantum Optical Pattems have been observed in spatially extended photonic semi­
conductor devices. An analytic expression derived from the Quantum Maxwell Bloch Equa­
tions shows images in the far-field which are a result of the spatial coherence of spontaneous 
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Figure 1: Fingerprints of the spatial coherence characteristics of quantum fluctuations in the forma­
tion of Quantum Optical Image: The cuts in the circularly symmetrie !ar field intensity distribution 
of a broad-area Re-LED structure show the increased degree of spatial coherence with increasing 
carrier density. 

and stimulated emission in a broad-area resonant-cavity light emitting diode (RC-LED). In 
the RC-LED the source of radiation is almost exclusively spontaneously emitted light and 
the far-field structures vanish if quantum-optical correlations are disregarded. Consequently, 
the far field pattern may indeed be regarded as a fingerprint of the quantum-optical spatial 
coherence - similar as the linewidth of the laser spectrum is a measure of temporal coherence. 
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C.L.A. Hooijer, K. All aart , D. Lenstra and G.X. Li 

Radiative Coherence Effects in Microstructures 

Abstract 

We consider a possible role of radiative coherence effects in light emission of semiconductor 
devices, in analogy to weIl known phenomena (non-exponential decay, dark line) in the decay 
of V-type atoms. 

In the spectrum of atoms with two close-Iying excited states, called V-type atoms, peculiar 
features may be observed when their separation in energy is comparable to the natural line 
width of these levels. The spectrum is then not just a superposition of two Lorentzians. The 
indirect coupling between the excited states via the radiative coupling to the ground state 
gives rise to interference between the two optical transitions. This results in a combined 
lineshape with zero intensity where the interference is completely destructive (dark line), 
while for a slightly different energy the interference becomes constructive, resulting in astrong 
peak of which the decay width may be smaller than that of the decay of each individuallevel 
(subnatural linewidth). Moreover the decay of the levels is no longer exponential. These 
phenomena were discussed at some length in [1]. When the energy separation between 
the excited levels is much larger than the natural linewidth, one may still generate similar 
phenomena by the application of a microwave field that couples the levels [2, 3]. 

The essential mechanism that gives rise to the aforementioned phenomena is interference 
due to the mutual coupling of the levels via the optical field. We investigate whether this 
coupling via the optical field could also play a role in light emitting devices, e.g. semicon­
ductors. As a theoretical framework we distinguish between the passive dielectric structure 
of the device, represented by a real dielectric constant due to bound charges, and the active 
charge carriers which couple to the optical field by the interaction Hamiltonian 

I 3 ~ • 
Hint = d r J . Aopt (1) 

This interaction gives rise to coupled equations for the optical field and the free charge 
carriers. The field may be expresed as 

Áopt(r, t) = Á!ree(r, t) + L I d3r' ä (r,r',wn'n)' j~n,(r', k, k')ê~k(t)ê..'k,(t), (2) 
n'#n,k'kact.reg. 

++ 
where G is the classical Greens tensor of the Helmholtz equation for the field of the (passive) 
dielectric structure and the transverse current density operator of the active charge carriers 
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is expressed in a basis with band index n and wave vector k. The polarization operator of 
the free charge carriers obeys the Heisenberg equations of mot ion 

ih! (ê~(t)ê" (t)) [~ ! d3r { ê~êoÁ(r, t) . Jy'o(r) - êlê.yÁ(r, t) . jay(r) }] 
el.e",t 

+(E-y' - E'Y)ê~(t)ê.y(t) (3) 

+ [ê~(t)ê.y(t), ~ t Vp~~j,ê1(t)ê1,(t)ê6'(t)ê6(t)l 
fJP'U' 

in which the band energies E'Y are the mean-field energies of the Bloch states and the prime 
on the summation sign in the last term indicates that Coulomb terms already included in 
these energies should be omitted. For the moment we shall focus on the optical coupling 
terms in the first line of this equation and ignore the Coulomb terms. Limiting ourselves 
further to the study ofpossible non-exponential decay in spontaneous emission, we may apply 
normal ordering of the operators, thereby avoiding Á!ree(r, t) [4, 5J, and obtain in rotating 
wave approximation 

(E-y' - E'Y)ê~(t)ê.y(t) (4) 

-* 2: Im {I(1, k, 2, k', 2, k 2 , 1, kt) 
k',kl,k2 

in which the integrals 

I(n, k, m,k',p,kp,q,kq) = ! ! d3rd3r'j~m(r,k,k')· ë (r,r',wqp) .j;q(r', kp, kq) (5) 

act. reg. 

embody the properties of the light emitting device in two respects. The electronic properties 
are represented in the current densities (and the band energies) of the free charge carriers, 
which are usually confined to only a tiny active region in the device. Therefore these integrals 
extend over this small region only. The optical properties that are reHected in the Greens 
tensor, on the other hand, are barely inHuenced by the small active region and rather dom­
inated by the dielectric constant(s) of the c1adding material and the structure of the device 
as a whoie. 80 these two aspects present two distinct mechanisms by which the properties 
of the emitted light may be manipulated. 

To obtain a first impression of the possible relevance of the induced two-body interaction, 
contained in (4), we studied the occurrence of non-exponential decay within a simple two­
band model with a conduction band 1 and a valence band 2 and one reciprocallattice vector 
K : 
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~eik.r sin(K . r) 

~eik'.r cos(K . r). 

(6) 

(7) 
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With the Greens function for bulk material 
. Ir/-rl 

, J.loeJWl2 
• 

G(r, r , W12) = I I 471" r' - r 
(8) 

the interaction integrals may the be calculated analytically: 

1(1, k, 2, k', 2, kp, 1, k q ) = Ó(kq + k' - kp - k) (9) 

xJ.lOe
2n2-(K2 _((k'-k).K?) 271" ( 1 _ 1 ) 

271"m2 V Ik' - kl2 Ik' - kl ~ - Ik' - kl + iO Ik' - kl + ~ + iO . 

From th is exercise one leams that in general these induced interaction matrix elements are 
much smaller than those of the static Coulomb potential: 

111 (nK)2 (k'-k)2 -5 (k'-k? 
IVGou11 ~ mc (k' - k)2 - w 2 ~ 10 (k' - k)2 - w 2 

(10) 

and therefore may be neglected in the calculation of electron ic properties such as band 
structure. 

As a further exercise within this schematic model we adopt aseparabie (quasiparticle) ap­
proximation for the density matrix elements in the conduction band: Plk,lk,(t) = AHt)Ak,(t) 
and a factorization of the two-body densities: 

< êtk(t)êlk,ê~kll(t)êkll,(t) >=< êtk(t)êlk, >< 4kll (t)êklll (t) > . 

Then an effective Schrödinger equation for the amplitudes Ak(t) is obtained: 

. d 
~n dtAk(t) = EkAk(t) + Lhk,k,Ak,(t) 

with effective potential matrix elements 

hkk, = Ókk' (.0.k - in'Yk) 

k' 

(11) 

(12) 

e
2 (nK) 2 1 ""' ( (A KA )2) (1 1) At A + 471"(;"0 mc V ~ 1 - q. q + !!!. + iO + q _ !!!. _ iO < C2,k,+q C

2,k+q > . 
q v v 

Neglecting the real parts (Lamb shifts), a maximal coherent effect (superradiance) is found 
if a constant mixing matrix element between all k-states is assumed: hw = -inT Then, 
for the case of a quantum wire, the spontaneous emission rate of the superradiant solution 
appears to be roughly proportional to the square of the length L of the wire. This would 
imply an increase of the decay rate by several orders of magnitude as compare to that for a 
pure k-state. Solutions orthogonal to the superradiant one, on the other hand, then become 
very long living, reminiscent of a dark line in the spectrum of a V-type atoID. Both the 
very fast and slow component are visible in the decay of the occupation probability for a 
state with an electron in the lowest, k = 0, state of the conduct ion band, as shown in the 
figures. It should be noted, however, that in this very crude model the coherence effects 
are strongly exaggerated by the assumed form of the effective coupling between the k-states. 
The long-living component is expected to be washed away in practice by the much faster 
relaxation phenomena. So it remains to be investigated to what extent any of these features 
may survive for more realistic model assumptions. 
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Figure 1: Decay of the amplitude n of the k = 0 state of the conduction band in a quantum wire, 
for the highly schematic model discussed in the text. Radiative coherence gives rise to a rapidly 
decaying component (life time inversely proportional to the length of the wire) as weil as components 
on a intermediate time Bcale and, due to omission ofrelaxation, a long-living component reminiscent 
of the "dark line" in the decay of V-type atoms. 
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e.M.J. Wijersand P.L. de Boeij 

Role of Wave Functions in Electromagnetism: RAS from 
GaAs (110) 

Abstract 

We have calculated the refiectance anisotropy for the GaAs (110) surface using the discrete 
cellular method. This method extends the range of application of standard discrete dipole 
calculations hy incorporating nonlocal polarizabilitites. The method adds a second quantum 
mechanical channel of nonlocality, which turns out to he necessary and yields very good 
agreement hetween theory and experiment. 

1 Introduction 

Photons, electrons and nuclei are the fundamental (quasi)-particles making up the world 
around us. Maxwell and Schrödinger equations govern their hehaviour. To he of any use 
photons need to interact with matter and that interaction is taken into account classically 
through the macroscopic Maxwell equations and some kind of dielectric function. It is an 
intriguing question whether the electrons, which are the most prominent actor in the interac­
tion, have a more exciting role than the linear homogeneneous, isotropic one they are forced 
to play in the classical treatment. Such behaviour seems to be confirmed by the success of 
the simple macroscopic theory in the classical optical regime. 

The reason of that success is cancellation. The simplest possible microscopic model for 
the dielectric function is Clausius-Mossotti (CM). This model represents a homogeneous 
continuum by an infinite simple cubic lattice of (independent) discrete dipoles. In this model 
all short range dipole-dipole interactions cancel on symmetry grounds. So the electromagnetic 
interaction, apart from some far field Lorentz contribution, has become mute as a source of 
more interesting behaviour 

The electromagnetic short range interaction can manifest itself only if CM-like conditions 
are absent, like in non-cu bic materiais. The spatial dispersion phenomena found experimen­
tally in cubic materials [1] also violate CM. At surfaces deviation from CM should be found 
in general, since symmetry gets broken there for geometry reasons. Especially there the short 
range electromagnetic interaction becomes manifest and can be tested directly. This makes 
these phenomena so exciting from the more fundamental point of view. 

The difficult rigorous treatment of a semi-infinite lattice of dipoles is made tractable by 
the double cell method [2, 3]. This method improves previous approaches by Ewald and 
Litzman [4, 5] by taking into account time dependency, retardation effects and existance of 
the surface. Currently the discrete and continuum treatment of opties have been compared 
[6, 7], elucidating the nature of boundary conditions. Despite the improved mathematical 
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treatment, the loeal discrete dipole model has not been particularly successful in the descrip­
tion and interpretation of surface optical experiments [8], apart from trivial physical systems 
(solid noble gases, alkali-halogenides). 

In these systems the assumption of independently polarizable entities, commonly made 
in dipole models, holds sufficiently weU. We state that the failure of dipole models for other 
systems is due to a poor handling of short-range interactions, especiaUy the fact that those 
short range interactions can be influenced directly by the wavefunction and require as a result 
explicit use of nonloeal polarizabilities. 

The study of anisotropic surface optical properties (RAS (Reflectance Anisotropy Spec­
troscopy), differences in perpendicular reflectance from surfaces of cu bic materials for differ­
ent polarization ) offers a unique opportunity to test this hypothesis. Mochán and Barrera 
[9) were already able to apply the loeal discrete dipole model successfully to the anisotropic 
reflectance of the Ge (110) surface, but at the expense of assigning two atoms to one dipole. 
To make the preferred assignment of one atom to one dipole work is only possible by invoking 
nonloeal polarisabilities, as we will show in this paper by focussing primarily on the correct 
prediction of (measured) intensities. We present the prescription how to calculate these non­
local polarisabilities from first principles. We investigated the reflectance anisotropy of the 
GaAs (110) surface because of its rich spectroscopic structure. 

2 Theory 

In classical electrodynamics the induced charge and current density are the source terms. 
The continuity equation allows both to be derived from a single polarization density P(r, t) 
without loss of generality. It can be obtained within first order linear-response theory from 

P(r,w) = f dr' x(r, r',w) . E(r', w). (1) 

Here E(r, w) is the self-consistent perturbing electric field and x(r, r', w) the nonlocal sus­
ceptibility. This kemel can be obtained within the scissors-operator approximation to the 
quasi-particle response theory [10, 11, 12) from LDA-type density-functional calculations. 
We define the susceptibility x(r, r', w) according to 

(2) 

where we corrected properly for the w = 0 singularity. We assumed adiabatic onset of 
the perturbation, and retained the conductivity sumrule. This induced polarization acts as 
source of electromagnetic radiation and contributes to the perturbing electric field, 

E(r,w) Ee%t(r, w) + f dr' f(r - r', w) . P(r', w), 

[k2ó " " ] exp(ikr) 
I'v+ v I' V

V 4 ' 1rfor 
(3) 
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where the transfer kernel f (r, w) describes the retarded electromagnetic interactions (J.L, 11 = 
X, y, z) and k = wie and r = Irl. Direct solution of the microscopic continuum equations is 
not tractable for surfaces. Discretisation, however, provides an appropriate way to reduce 
the effort. For the treatment of optical reflection, we model the microscopic polarization 
as a semi-infinite lattice of point-like dipoles. Each dipole represents the polarization in a 
particular cell Vi belonging to at om i. It is located at the at om ic nucleus ri with dipole 
strength Pi(W) = Iv; drP(r,w) . Assuming a uniform field Ei(W) within each cell Vi, the set 
of equations (1,3) becomes, 

Pi(W) ~aij(w). [Ejt(W) + ~hk(W). Pk(W)]. 

aij(w) = i. dr h dr' x(r, r ' , w) (4) 

where the traditional loeal polarizabilities correspond to the case i = j only. With the new 
nonloeal polarizabilities (i i- j), the perturbating field (the quantity between square brackets 
in eq. (4)), will not only polarize cell i, but also its neighbouring cells. It is the wavefunction 
itself which has to be set responsible for this quantum mechanical type of nonlocality and 
results from the requirement that the wavefunction needs to be continuous and differentiable 
across the cell boundary. This quantum induction vanishes if the wavefunction becomes 
negligible at the cell boundary, as is the case e.g. for alkali-halogenides and solid noble gas 
systems. This explains in a very transparent way the success of local dipole calculations in 
such systems and its failure in case of covalent systems and metals. 

The transfer tensors can be derived accordingly from eq. (3), 

(5) 

For ri = rj the point-dipole interaction becomes singular and we have to take the finite 
extent of the cells into account. We make use of the Lorentz field for a uniformly polarised 
medium with the same polarization density. This field is modified by the first two terms in 
the expression for fii, accounting for the deviation from the homogeneous system. The third 
term in the fii tensors accounts for the radiation losses and is called the Lorentz' dam ping 
term. Further V = Ei Vi is the volume of the primitive cell, fr(W) is the experimentally 
observed relative dielectric function, and the mean polarizability a (w) of the primitive cell 
is obtained from a(w) = EiEvJ a;j(w) 

The technical advantage of using this discretization scheme is that we can use the double 
cell method [2, 3], which obtains the response of a semi-infinite crystalline system of interact­
ing dipoles to a given incident field, Eix!(w) = Eo exp(ik· r;). The essence of the method is a 
decomposition of the system into a semi-infinite stack of dipole layers, each obeying parallel 
translational symmetry. To describe the response of the i th layer, it suffices to consider a 
single characteristic dipole Pi. For the first Ns layers of the surface the interaction between 
these characteristic dipoles is taken into account explicitly. All further layers can be treated 
by making use of just a few norm al modes, because of bulklike symmetry. Normal modes 
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have been introduced by Litzman and Dub [4, 5], starting from the regular arrangement of 
bulk sites as rwW = r~ + Ws3 , where S3 is a lattice vector controlling the stack sequence and 
r~ locates a dipole within the bulk unit cello The normal mode expansion is postulated as: 

M 

P . - "",,, u eiWkmS3 
wW - ~vm mw 

m=l 

(6) 

As for the local case the norm al mode propagation vector given by km = kil +qmn with n the 
inward surface normal, and normal mode polarization vector U mlJ follow from the condition 
that 

111 - ail l A(km) F(km ) III ui = 101 (7) 

This is the (square) bulk secular matrix. Fis the matrix of phase corrected sums of transfer 
tensors and A(km) is a matrix, having sums of nonlocal polarizabilities (4) as its matrix 
elements. Both matrices are not square, different from the local case. Since these sums also 
contain km dependent phase factors, the matrix A(km) is an explicit function of km, again 
different from the local case. Once the normal mode parameters are known, the free variables 
of the system, the normal mode strenght /Jm and the dipole strength's Pi for the surface layer 
follow from the double cell interaction matrix, 

(8) 

The components of this matrix are either the same as for the local case (BS and BB part) 
or constructed in a manner closely resembling the construction of (7). The S-part of the 
inhomogeneous vector now contains however an additional polarizability matrix A(k), due to 
a rearrangement of components, necessary because of nonlocality [2, 3]. Once the microscopic 
sources /Jm and Pi are found, the remote fields and connected observables, such as reflection 
coefficients, can be found in exactly the same way as for the local case. 

3 Results 

The GaAs bulk and surface polarizabilities have been obtained from the single particle ener­
gies and wavefunctions using accurate periodic DFT-LDA calculations [13, 14]. In the bulk 
calculation we used a lattice constant a = 5.613Á. The surface was modelled using a slab 
having 4 Ga and 4 As-Iayers, with the 1 As and 2 Ga-Iayers on top at surface reconstructed 
positions [15]. This slab has been made bulk terminated at the bottom by adding 2 H-Iayers 
and 2 Ga and 2 As-Iayers of frozen ion type to model the bulk Madelung potential. We 
used the scissors operator to fix the bulk(-like) band-gap to 1.52 eV. The cut-off range for 
the nonlocal polarizability was set to 7.93Á, resulting in eight shells of neighbouring atoms. 
The self correct ion given in (5) deviates only slightly from the Lorentz field contribution, 
indicating that the bulk dielecric function is reproduced accurately. Due to the limited slab 
thickness, we used bulk values for aij(w) throughout the system except for i,j both top-Iayer 
atoms. 
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Figure 1: Zero-contours of real and imaginary part ofthe secular determinant at 1iw = 2.0e V. 

The first step in the dipole calculation is to obtain the normal modes. Fig. (1) shows the 
roots qm of the secular determinant (7), at the intersections of the zero-contours of its real 
and imaginary parts. The figure has inversion symmetry and is periodic along the real axis, 
with period 211"/83' n. The search can be restricted along the imaginary axis to some suitably 
chosen cutoff value for the damping. Very close to the origin (see inset) 4 solutions are found 
almost coinciding with the Fresnel values in addition to the two poles at ±kz . But there 
are also 4 other solutions for which damping is too small to be ignored. Since for surface 
ca1culations only modes with positive imaginary part are physically acceptable, we included 
4 normal modes in the calculation. 

We have examined in some detail the behaviour of the extra (non-Fresnel) normal modes. 
For very low frequencies the extra normal modes are exactly at the boundary of the Brillouin 
zone, but have enough damping to be ignored. Starting from 1.1 eV two definitely different 
extra norm al modes move from the zone boundary towards the imaginary axis. They start 
as being perfectly transparent, one being purely transverse (u· km = 0), the other having 
also astrong longitudinal component (u . km =f. 0). So th is mode has to affect also the 
bulk behaviour. All modes start to show a nonzero imaginary component starting from 
the bandgap at 1.5 eV. The extra modes preserve their transverse/longitudinal character, 
but they continue to move towards the imaginary axis, meanwhile getting more and more 
absorbing. Their influence can be discarded above 2.6 eV. 

The extra normal modes are indispensible for the optical properties, both of surface and 
bulk. Good surface optical results require close to perfect matching of dipole strength's 
between surface and normal mode region. For;u..; = 1.geV we show in fig. (2) the individual 
dipole strength's for polarization parallel to the (110) direction. The dipole strength varies 
clearly from a Ga to an As site, a variation controlled already by the Fresnel-type of normal 
mode. But there is also a weak modulation in dipole strength of both the Ga and As sites. 
This modulation extends further than the depth ofthe surface layer (indicated by the arrow), 
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Expt LDA fLDA GW faw DsC fv.c 

PI (max) 0.00142 -- -- 0.0019 1.34 0.00100 0.70 

S (max) 0.00522 0.0045 0.86 0.0044 0.84 0.00525 1.01 

P2 (max) 0.00656 0.0103 1.57 0.0141 2.15 0.00561 0.86 

E~ (max) 0.00569 0.0117 2.05 0.0144 2.53 0.00502 0.88 

El (min) 0.00131 -0.004 -3.05 -0.0022 -1.68 0.00314 2.40 

e; (min) 0.00067 0.0013 1.94 0.0044 6.57 0.00269 4.01 

Table 1: Anisotropic reflectances ll.R/R. LDA- and GW-type results from [16], DsC-type present 
results. Experimental data from [17] . I-factor = Theory /Experiment 

into the bulk normal mode region, but almost vanishes at the right of the figure. This is the 
influence of the extra normal modes. Artificial removal of these modes stronlgy affects the 
anisotropic reflectance. 

Reflectance anisotropy spectra have been measured recently very accurately by Esser et 
al. [17]. We have calculated the theoretical reflectance anisotropy for GaAs (110), using the 
previously outlined discrete cellular (DsC) method and used the convention 

t1R/ R = (t1R/ R)[IIO] - (t1R/ R)[OOl]' (9) 

Results of experiment and calculation are shown in table 1, comparing our results and the 
ones obtained by Pulci et al. [16]. We have used a background subtraction (bulk terminated 
GaAs) to account for the calibration of the experimental setup. The selected peak heights 
and minima have been labelled as in [16], but two prominent maxima have been labelled by 
us (PI at 1.7 eV and P2 at 3.4 eV). The intensities of the three main maxima (8, g and 
Eo) are much better replicated by the DsC method, than by the continuum method used 
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in [16] . Also the negative value for the minimum at El is positive in the Dse approach in 
agreement with experiment. The other features are too weak to be conclusive. Although 
the Dse calculations use a conventional energy shift of 0.40 e V for the bulk, the comparison 
with experiment suggests an additional shift of -0.3 eV for the surface. This means that the 
surface contribution is almost LDA-like. Pulci et al. found an additional surface shift of 
+0.3 eV. We emphasize that our results are ab-initio, except for the scissors energy shift and 
the self term hi in (5), which have been tuned using bulk optical data. 

The calculated Dse spectra have the right sign and magnitude and reproduce remarkably 
weIl the spectral structure. In that aspect DsC-type of calculations are superior to LDA/GW 
schemes of calculation. It is our conclusion that the good agreement of the present calcula­
tions with experiment is sufficiently demonstrated. As such the main statement ofthis paper, 
that inclusion of (real space) local field effects in surface opties requires explicit inclusion of 
nonlocality in the polarizabilities. This conclusion should hold in general for the opties of 
inhomogeneous systems. 
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H. Mack, S. Meneghini, and W.P. Schleich 

Atom Opties and the Discreteness of Photons 

Abstract 

The deflection of atoms in a quantized light field brings out the granular structure of the 
photon field. 

1 The Marriage of Atom Opties and Cavity QED 

In the year 1933 P.L. Kapitza and P.A.M. Dirac calculated the deflection of an electron from 
a standing light wave [1]. They found a cross section too small to be measured experimentally 
in the near future: 

"We see, therefore, that the experiment could scarcely be made with ordinary 
continuous sources of light, and it seems to us that the only possibility would 
be to produce the illumination by using an intense spark discharge instead of a 
mercuryarc." 

Indeed, only recently experiments with ultra short pulses from high power lasers have 
provided the first indirect evidence of this phenomenon [2]. 

The reason for the smallness of this effect lies in the absence of the internal structure 
of the electron and, in particular, in the absence of aresonant enhancement. In contrast, 
atoms have internal structures and we can have a resonance between the frequencies of an 
atomie transition and of the light field. (See, for example, [3, 4]). This has led to the 
pioneering experiments by Moskowitz et al. [5] observing the defiection of atoms due to a 
laser field. Here, the center of mass mot ion of the atom is treated quantum mechanically 
and the atom displays wave features. This has suggested the name atom opties for th is 
field . In the meantime interferometers, mirrors and cavities for atoms have been realized 
experimentally. (For a review we refer to [6, 7, 8, 9, 10]. This field has blossomed over the 
last years and many interesting branches of atom optics have developed. Space does not 
allow us to elaborate more on the physics of Bose-Einstein condensates or atom optics as 
a testing ground of quantum chaos [11] nor can we but mention atom opties as a tooI for 
nanotechnology [12]. 

Another exciting field of quantum optics is the area of cavity QED. The development of 
high-Q cavities for mierowave fields in combination with Rydberg atoms has lead to unique 
light sources sueh as the mieromaser. Moreover, the use of gyroseope mirrors has resulted in 
high-Q cavities in the optical regime. 

It is therefore an interesting enterprise to combine both fields and consider atom opties 
in quantized light fields [13, 14] . In partieular, we can consider the deflection of atoms from 
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a quantized light field [15, 16]. This phenomenon allows us to measure the photon statistics 
and the discreteness of the electromagnetic field [17, 18, 19, 20]. 

A hundred years ago M. Planck proposed the quantization of the energy of a material 
harmonic oscillator in order to derive the correct black body radiation law [21]. In the 
context of the micromaser Rempe et al. [22] showed by measuring quantum revivals [23] 
that the maser field consists of discrete photons. Recently, Brune et al. [24] has used the 
time evolution of an atom in a high-Q cavity to prove the discreteness of the photon field. 
Moreover, Varcoe et al. [25] have realized for the first time in acontrolled way Planck 
oscillators, that is electromagnetic fields of one or two photons. Despite this impressive 
progress, it is still interesting to see the granular structure of photons in a direct way. The 
deflection of atoms is such a method. 

In this context it is interesting to note that the Paris group has made a similar sugges­
tion using the whispering gallery mode of a microcavity [26]. However, no experiment has 
been made so faro In contrast, K.A.H. van Leeuwen reports in these proceedings the first 
experiments on the way towards the deflection of atoms from a quantum field (see also [27]). 

Our paper is organized as follows. We first briefly summarize our model. We then derive 
the generalized Rabi equations for the probability amplitudes describing the state vector of 
the total system consisting of the center of mass motion, internal states of the atom and the 
states of the electromagnetic field . We re duce the problem to a one-dimensional scattering 
problem and solve the resulting equations in the Raman-Nath approximation. This allows 
us to obtain analytical expressions for the momentum distribution of the scattered atoms. 

We consider various scat tering situations: In the joint measurement scheme we make use 
of the entanglement between the center of mass motion and the cavity field. Here, we only 
retain those atoms that have not changed the phase of the field . This allows us a perfect read 
out of the photon statisties of the cavity field without extracting the field. (For a deflection 
experiment, making use of the entanglement between the center of mass motion and intern al 
states see [28]. 

In the averaged momentum distribution we ignore the information contained in the field 
since we do not measure the field. Therefore the momentum distribution does not contain 
the full information about the initial photon statistics of the field. However, there are still 
some imprints of the field statistics left. In both cases we consider the so-called Kapitza­
Dirac regime in which the initial wave packet is broad compared to the period of the standing 
wave. 

The other extreme is the so-called Stern-Gerlach regime. Here the width of the wave 
packet is small compared to the period of the grating provided by the light field . The name 
originates from the analogy to the deflection of atoms in an inhomogeneous magnetic field 
[29]. 

In order to focus on the main ideas we do not present detailed derivations but still give 
enough steps to follow the calculations. For more information we refer to the literature. 

2 Formulation of the Problem 

Throughout this article we consider the scat tering situation shown in Fig. 1. An atomie wave 
of a two-level atom with dipole moment ppropagates through a resonator and interacts res-
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standing light field 

x atomie wave paeket 

Figure 1: An atomie wave propagates through a cavity and interacts resonantly with a single mode 
of the standing light field. Here we consider the case where the atomie wave packet covers many 
wavelengths of the light field. The atomie wave packet is a plane wave in z-direction. Therefore we 
only show a cut through the probability distribution for one value of z . 

onantly with a single mode of the radiation field. In the interaction picture the Hamiltonian 
for this process takes the form 

Îl = :~ + p. u(P) Eo (aat + ata) . (1) 

Here p2j(2M) describes the kinetic energy of the center of mass motion, u(P) and Eo are 
the mode function at the position r of the atom and the vacuum electric field of this mode, 
respectively. 

Since we are now treating the center of mass mot ion quantum mechanically the position 
rand the momentum pare conjugate operators and obey the commutation relation 

h,Pml = iMlm . 

Moreover, a and at denote the annihilation and creation operators of the field and the Pauli 
spin matrices a and at destroy and create an atom in the excited state. 

The dynamics of the state vector 

Iq,(t)) = f ! d3r' [q,a,m-l (r', t) la, m - 1) + q,b,m(r', t) Ib, m) 1 Ir'), (2) 
m=O 

describing the combined system of center of mass motion, internal states of the atom and 
the states of the electromagnetic field follows from the Schrödinger equation 

in a:) = Îllq,). (3) 

Here q,a,m-l (r, t) or q,b,m(r, t) denote the probability amplitudes to find the atom at time 
tand position rand in the internal state la) with m-1 photons in the field or in the internal 
state Ib) with m photons in the field, respectively. 
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When we substi~ute this ansatz into the Schrödinger equation (3) we find with the Hamil­
tonian (1) the generalized Rabi equations 

. 8<1>a,n-l (r, t) p2 () () r.:: ( ) zn at = 2M <1>a,n-l r, t + p' u r Eov n <1>b,n r, t 

and 

We can decouple these two equations by introducing the linear combinations 

<1>~±) == <1>b,n ± <1>a,n-l' 

In this case the generalized Rabi equations read 

where we have introduced the potentials 

(4) 

(5) 

(6) 

(7) 

(8) 

Hence the probability amplitudes <1>~±) satisfy a Schrödinger equation corresponding to a 
particle of mass Mmoving in a potential U~±). This potential is formed by the scalar 
product of the dipole moment pand the mode function u(r). Moreover, it scales with the 
vacuum electric field strength Eo and the square root of the photon number. Since the nodes 
of the potential are independent of the photon number and the amplitude of the modulation 
in space is proportional to vin, the potentials U~±) get steeper as n increases. The potential 
U~-) is just the negative of U~+). 

The initia) condition for 1<1» at time t = 0, that is, before the interaction, is a direct 
product 

1<1>(t = 0)) = Ib) ® f: 7/lnln) ® ! d3r' F(r')lr') 
n=O 

of the atomic state which we take to be the ground state, the field state in a superposition 
of photon number states with probability amplitudes 7/ln and the initial distribution F of the 
atom in space. 

When we compare this initial condition with the ansatz Eq. (2) we find 

(9) 

Hence the dynamics ofthe state vector 1<1» ofthe combined system follows from the dynamics 
of the wave functions <1>~±) moving in the potentials U~±) subject to the initial condition 
Eq. (9). Note that since in general the potential is three-dimensional and can be rather 
complicated it is a non-trivial task to solve the Schrödinger equation (7) for <1>~±). 
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3 Reduction to One-Dimensional Scattering 

We now consider a situation in wbich tbe atomie beam propagates initially ortbogonal to 
tbe wave vector of tbe field in tbe cavity. In tbe remainder of tbis article we call this tbe 
x-direction, or tbe transverse direction. Tbe motion along tbe z-axis, tbat is tbe longitudinal 
motion, we treat classically since we assume tbat tbe initial kinetic energy M v~ /2 in z­
direction is much larger tban tbe cbange of tbe longitudinal momentum due to the interaction 
witb tbe ligbt field. 

In tbis case tbe equations reduce to a one-dimensional Schrödinger equation of tbe form 

a\ll(±} (t) [-2 ] in nat x, = JiJ ± pêoVn sin(7rv.tjL.) sin(kx) \lI~±}(x, t). (10) 

Here we bave also assumed for the sake of simplicity tbe specific mode function 

u(r) = el/ sin(kx) sin(7rz/ L.) 

of a box-sbaped resonator of lengtb Lz in the z-direction. Moreover , k denotes tbe wave 
number along the x-axis and p = p . el/. 

We bave therefore reduced tbe tbree-dimensional scattering problem to tbe problem of 
sol ving a one-dimensional time dependent Schrödinger equation. We empbasize, bowever, 
tbat even tbis problem is non-trivial, since due to tbe motion of tbe atom tbrough tbe 
resonator-tbe interaction switches on and switches off via the mode function sin( 7rVzt/ L.}­
the potential is explicitly time dependent. Moreover, tbe potential in x-direction is periodic 
and can allow for rather complicated solutions. 

4 State Vector in Raman-Nath Approximation 

In tbe present discussion we confine ourselves to an approximate but analytical analysis of 
Eq. (10). For this purpose we recall that tbe atomie beam enters tbe resonator orthogonal to 
tbe wave vector of tbe electromagnetic field. Tberefore its classic al kinetic energy along the 
standing wave initially vanisbes. Consequently tbe kinetic energy gained by the atom is due 
to the interaction witb tbe ligbt field. When tbe displacement caused by tbe electromagnetic 
field is smaller tban its wavelengtb we can neglect the transverse kinetic energy term. 

In tbis Raman-Natb approximation we can solve tbe Scbrödinger equation (10) in an 
exact way and find 

1\lI(t)) f 1/Jn J dx' f(x') {cos[~Vn sin(kx)llb, n) 
n=O 

-i sin[~Vn sin(kx)lla, n - I)} Ix'). (11) 

Here we have introduced the dimensionless interaction parameter 
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We note that the position dependent interaction of the atom with the quantized light field 
has created a st rong entanglement between the transverse motion, the field and the energy 
levels of the atom. 

In order to discuss the momentum transfer from the electromagnetic field to the atom we 
express the state vector 

Iw(t)) = f 1/;n j dp' [Cn(p') Ib, n) - isn(p') la, n - l)llp') 
n=O 

in the momentum representation where 

and 

Cn(P) == ~ jdx f(x) cos [Kvnsin(kx)] e-ipx
/

Tl 

v27rh 

Sn(P) == . ~ jdX f(x) sin [Kvnsin(kx)] e-ipx
/". 

v 27r1i 

(12) 

(13) 

(14) 

The state vector of the combined system allows us to answer questions concerning the mo­
mentum distribution of the scattered atoms, especially when we consider joint measurements 
between the transverse motion and the quantum field in the cavity. 

5 Deflection of Atoms 

In the present section we consider the deflection of the atom in the Raman-Nath approxima­
tion. In this regime the field does not displace the atom significantly but still changes the 
momentum. 

One of the initial conditions in the scattering process is the transverse position amplitude 
f(x) of the atoms. According to Eqs. (13) and (14) the probability amplitudes Cn and Sn for 
finding the momentum pare Fourier transforms of the product of the initial position ampli­
tude f(x) and trigonometrie functions of the mode function sin(kx) of the electromagnetic 
field. We can therefore distinguish two characteristic cases for these Fourier integrals: (ij In 
the Kapitza-Dirac regime the initial position distribution If(x)12 ofthe atoms is broad com­
pared to the period of the standing wave, or (iij in the Stern-Gerlach regime the distribution 
is narrow. 

Throughout the paper we focus on the Kapitza-Dirac regime. However, we emphasize 
that the case of the Kapitza-Dirac scat tering with a mask reduces in the limit of a single slit 
to the Stern-Gerlach regime. 

5.1 Measurement Schemes 

The three degrees of freedom of this quantum system, the center of mass motion, the field and 
the internal degrees of freedom are entangled. We can therefore make joint measurements of 
these variables. In principle we can use all three of them. However, in the present discussion 
we confine ourselves to the motion and the field only. 
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Joint Measurements 

In th is situation the atom traverses the cavity prepared in a given field state l'ljIfield), interacts 
with it and as a consequence gets detlected. After the atom has left the cavity we observe the 
field and measure the momenturn. We reprepare the complete at om-field system and repeat 
the experiment. 

Quantum mechanics predicts the conditional probability distribution 

to find the momentum p given that the field is in the reference state 

00 

l."bfield) == L ."bnln) (15) 
n=O 

and the probability that the vector 1\l1) contains this reference state reads 

Since we do not make a measurement of the internal states Ij) = la)orlb) we take the trace 
over them. 

When we substitute the photon number representation Eq. (15) of the reference state 
into the above expression for W we find 

(16) 

and consequently the probability distribution originates from the coherent sum, that is the 
interference of many probability amplitudes. 

We now make use of the explicit expression Eq. (12) for the state vector 1\l1) and the 
probability distribution reads 

(17) 

Indeed, the two internal levels contribute in an incoherent way. In contrast, the field 
states represented by the probability amplitudes ;j;~ and 'ljIn enter in a coherent way. 

Averaged Measurements 

We now consider a completely different experiment. The atom traverses the cavity and we 
only measure the momentum of the atom. We therefore ignore the change of the field due to 
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the atom. In this case we have to take the trace over the cavity state. When we use photon 
number states to perform this trace, the resulting probability reads 

00 

W(p) = L L IUI(PI(nl\ll)12
• 

j=a,bn=O 

In contrast to Eq. (16) here we first square and then take the sum. The resulting probability 
distribution therefore originates from an incoherent sum, that is a sum of probabilities. 

When we substitute the explicit representation Eq. (12) of the state vector into the above 
expression for the averaged momentum distribution we arrive at 

00 

W(P) = L l?j;nl 2 [len(PW + ISn(P) 12] . (18) 
n=O 

Indeed, here we only sum probabilities. 

5.2 K apitza-Dirac Regime 

We now consider the case where the initial atomÏc position distribution of width L reaches 
over N periods .À of the standing wave. For the sake of simplicity we assume it to be constant. 

Momentum Quantization 

In this case we can evaluate the amplitudes en and Sn explicitly and find 

and analogously 

We notice th at the function 

N-l 

c5~/2)(ç) == _1_ L exp( -271'içv) 
,fN 11=0 

(19) 

(20) 

is periodic and has maxima at integer values of ç. Indeed, at these positions the phase factors 
are integer multiples of 271' and each term in the sum is unity giving the value ,fN for the 
function c5~/2}. Hence, as N -+ 00 the maxima of c5W2) approach infinity. For non integer 
values ç the individual terms cancel each other. 

This behavior suggests that c5~/2} acts as a comb of c5-functions at integer values of 
ç. However, we can show that only the square of c5~/2} displays this behavior. Since we 
are interested in momentum distributions and hence probabilities the function c5~/2} only 
appears as a square. The argument of c5~/2} is pj(Tik). Consequently the momentum of the 
atom can take on only multiple integers of the momentum Tik. 
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We therefore find a quantization of the atomie momentum in multiples of the photon 
momenturn. However, the association with the momentum of the light field is slightly mis­
leading. This quantization does not arise from the quantization of the radiation field. It 
rat her emerges from the periodicity of the potential, namely the mode function of the elec­
tromagnetic field . 

Moreover, we recognize from Eqs. (19) and (20) that the probability amplitude c,,(P) is 
only nonzero for even integer multiples of hk. In contrast, sn(P) only takes on nonzero values 
for odd integer multiples of hk. We recall that c,,(p) and sn(P) are associated with the atom 
leaving the cavity in the ground or excited state, respectively when it has entered the cavity 
in the ground state. Therefore, in order to leave it in the ground state it has to undergo 
an even number of Rabi cycles and thus exchanges an even number of photon momenta. 
Likewise, an atom leaving in the excited state needs an odd number of momenta exchange in 
order to make the transition from its initial ground state. This is just another manifestation 
of the entanglement of the field variables with the moment urn of the atom. 

Momentum Distnbution 

We are now in a position to derive explicit expressions for the moment urn distributions 
discussed in the preceding section. We start our analysis with the averaged momentum 
distribution, Eq. (18). 

We can combine the contributions from the atoms leaving the cavity in the ground state 
or in the excited state coresponding to the probabilities 1c,,(p)12 and ISn(P)12 when we note 
that due to the special form Eqs. (19) and (20) of c" and Sn the first sum only contains 
the even multiples of hk whereas the second contribution only contains the odd multipies. 
However, in both cases the probability is given by the square of the Bessel function. Hence, 
we arrive at 

00 

W(P) = L c5(p - phk)Wp (21) 
p=-oo 

where we have introduced the dimensionless and discrete momentum distribution 

00 

Wp [lV!field)] == L Wn [lV!field)] J;(K,Vn) . (22) 
n=O 

We note that this averaged moment urn distribution Wp involves only the photon statistics 
Wn == lV!nl 2 of the cavity field. In particular, it does not bring in the probability amplitudes 
V!n. In Figs. 2, 3 and 4 we depiet the averaged momentum distributions for a number state 
In), a coherent state la) and a highly squeezed state lV!sq) in the cavity. All three momentum 
distributions are different . For the number state we find oscillations and a dominant maxi­
mum at p = K,yfI,. The oscillations are very reminiscent of the Franck-Condon oscillations in 
molecules. Indeed, we can show, that both oscillations have a common origin: Interference 
in phase space. For the coherent and the squeezed state the oscillations for small momenta 
have been averaged out but the dominant maximum at P = K,yfI, remains. Moreover, for the 
case of the squeezed state we note, that the oscillatory photon statistics manifests itself in 
the decay of the right side of the maximum. 
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40 

Figure 2: Momentum distribution of atoms scattered oif a single mode of a cavity field in a number 
state n = n = 9 photons for an interaction parameter K, = 10. The distribution shows a dominant 
peak at fp = K,.,ffi = 30 and astrong decay for moment a larger than this critical value. For fp smaller 
than K,.,ffi the distribution is oscillatory. These oscillations result from quantum interference of 
translational motion. The envelope follows the classical cross section. 

Joint Measu.rements 

We now turn to the case of a joint measurement between the momentum of the atom and 
the field. When we substitute the explicit expressions Eqs. (19) and (20) for Sn and Cr. into 
the expression for the joint momentum distribution Eq. (17) we arrive at 

00 

W [p, l",bfield)] = L 8(p - plik)Wp(l",bfield), ItPfield)) (23) 
p=-oo 

where we have introduced the dimensionless and discrete momentum distribution 

(24) 

and 

W(l~"",)) ~ ,t I~ ~~",.J,(KVni I' 
denotes the probability to find the reference field state l",bfield} after the interaction. 

Nowhere clearer than in the comparison between the averaged and the joint momentum 

distributions Wp [ltPfield)] and Wp [I",bfield}, ItPfield}] do we recognize the power of entanglement: 

In the averaged distribution we sum the squares of Bessel functions. In the joint distribution 
we first sum the Bessel functions and then square the result. Since the Bessel functions 
oscillate between positive and negative values cancellations can occur in the summation over 
Bessel functions. No sueb cancellation arises in the averaged distribution. 
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Figure 3: Influence of the photon distribution of a coherent state of average number of photons 
Ti = 9 on the momentum distribution. The Poissonian photon distribution (dashed curve) creates 
a smooth momentum distribution. The maximum of Wn governs the maximum of Wp . The right 
edge of Wn controls the right edge of Wp . 

Bessel functions enjoy a dominant maximum when the index is equal to the argument. 
When we assume that the product .(fi~'!f;n is slowly varying on the scale of the oscillations in 
the Bessel function the main contribution to the sum arises for p = "'Vn, that is n = (pi"'? 
This yields the approximate expression 

where N denotes a normalization constant. 
This expression clearly shows that in this case the joint momentum distribution follows 

precisely the photon statistics of the field state in the cavity. This is very different from the 
case of the averaged momentum distribution where we have to average the photon statistics 
with respect to the square of the Bessel function. 

We illustrate this for the example of a highly squeezed state as the initial state in the 
cavity and a phase state 

_ 1 00 

j'!f;field) == jrp = 0) == tn= L jn) 
v 27r n=O 

as a reference state. We note, that this reference state satisfies the requirement that the 
product .(fi~wn is slowly varying since .(fi~ = const. Indeed, we find that the momentum 
distribution follows precisely the oscillatory photon statistics. 

In this context it is interesting to understand why there is such a close connection between 
the momentum and photon distributions. We note, that this is not true if the reference state 
is a single photon number state or, likewise, if the initial field state is a photon number state. 
In both cases the summation over the photon number states reduces to a single term and 
the cancellation due to the oscillatory behavior of the Bessel function does not occur. We 
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Figure 4: The photon statistics of a squeezed, displaced state of squeezing parameter s = 50 and 
displacement parameter a = 10 (lower curve) and its read out via the momentum distribution of 
deflected atoms. The curve Wp([lcp = a}, l1/Jsq}] corresponds to a joint measurement of the atomie 
momentum and the field phase whereas the distribution Wp[l1/Jsq}] ignores the field phase. The top 

curve W~mask) gives the momentum distribution of atoms filtered by a mask of slit width d = >"/10 
placed at the nodes of the standing wave. The joint measurement strategy gives an adequate 
readout while ignoring the field phase results in a less effective readout as weil as in additional 
rapid oscillations. We note that there is a modulation on the left side of the fust maximum of 
Wp[lcp = a}, l1/Jsq}] and the period of the osciilations is slightly different from Wn. Here we have 
chosen "" = 110. 

obviously need an initial and a reference field state that have broad photon distributions. In 
the case of the squeezed state and the ph ase state this condition is satisfied. 

There is a simple explanation for this phenomenon of exact read out of photon statistics 
from momentum statistics. Since we are performing joint measurements, we are selecting 
from our ensemble very specific atoms. The squeezed state we have choosen has a phase 
distribution that is centered around the origin. Likewise, the phase state corresponds to the 
phase cp = O. Hence, the joint measurement selects atoms that have not changed the phase of 
the field. These are the atoms that have traversed the cavity at the no des where the electric 
field vanishes. However, at the nodes the gradient of the field is nonzero. Consequently the 
atoms obtain a momentum. The steepness of the gradient depends on the photon number and 
therefore the momentum transfer depends on the photon number. Since photon numbers are 
discrete the momentum transfer is discrete. Moreover, the probability for a given deflection 
angle is determined by the probability to find the corresponding electric field gradient, that 
is to find the corresponding photon number. Hence, there is a one-to-one correspondence 
between the momentum distribution and the photon number distribution. 
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5.3 Kapitza-Dirac Scattering with a Mask 

In the preceding section we have found that a joint measurement selecting only those atoms 
that pass the resonator at the no des provides a perfect readout of the photon statistics. 
This suggests to replace the joint measurement strategy by a simple mask with narrow slits 
around the nodes of the field. These slits are then separated by half of the period À of the 
standing wave and have to be narrower than À/2. In the optica! regime it is impossible to 
obtain such mechanical slits. However, it is possible to obtain such a grating by using an 
extra light field and absorption. 

We therefore assume a DeBroglie wave 

1 N-1 

f(x) = .jN ~ g(x - vÀ/2), (25) 

that is a coherent superposition of N Gaussian wave packets g(x) located at the no des of 
the field and with a width d « À/2. The case of a single narrow wave packet corresponds to 
the Stern-Gerlach regime. 

We substitute this form f(x) of the DeBroglie wave into the definition Eqs. (13) and (14) 
of en (p) and Sn (p) and perform the integration. Here we make use of the fact that the slits 
are much narrower than the period, that is dk = 27rd/ À « 1. This allows us to linearize the 
sine function and we can immediately perform the remaining Gauss integrais. We arrive at 

en(P) = Ó~/2} [2~k] ~ [g(p - K.y'nnk) + g(p + K.y'nlik)] 

wh ere g(P) is a Gaussian in momentum space of width tl.p == li/d. 
We first note that the period À/2 of the grating instead of À as in the first example has 

produced a discreteness of the scattered momenta of integer multiples of 2lik rather than 
lik. Moreover, we note that the initial momentum distribution 9 gets displaced to momenta 
±K.y'nlik. Hence, every number state in the cavity gives rise to a momentum transfer by 
±K.y'nlik. When the width tl.p of the initial momentum distribution is smaller than the 
separation 

Óp == K.( vn+ï - y'n)lik ~ K.~lik 
2y n 

of neighboring momentum peaks caused by neighboring number states the discreteness of 
the number states manifests itself in discrete peaks in the momentum distribution of the 
deftected atoms. 

Similarly we find the probability amplitude 

) (1/2) [p 1] 1 [- r.:: - r.::)] sn(P =óN 2lik -"2 2i g(p-K.ynlik)-g(p+K.ynlik . 

We note that the antisymmetry of the sine function together with the period À/2 has created 
odd integer multiples of lik. 

When we substitute these expressions for en and Sn into the formula Eq. (18) for the 
averaged momentum distribution we arrive at 

00 

W(P) = L ó(p - p1ik)w~m8Bk} 
1'=-00 
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where 

wJmask) [/1/Jfield)] == f Wn [/1/Jfield)] ~ [W(p - KVn) + W(p + KVn)] . 
n=O 

Here W(p) == Ig(p)1 2 is the initial momentum distribution. 
According to this result the momentum is again quantized in units of hk. This is a 

manifest at ion of the coherence of the initial atomie distribution Eq. (25) over many periods 
of the standing wave. Moreover, the distribution consists of symmetrically located copies of 
the initial momentum distribution W(P). They are located at p = ±VnK. The envelope of 
these peaks is the photon statistics Wn of the cavity field. 
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J.M. Raimond 

Atoms and Cavities: 
Fundamental Quantum Mechanies Studies 

Abstract 

Circular Rydberg atoms in a superconducting cavity make it possible to realize a situation 
very close to the ideal one of a two-Ievel atom interacting with a single field mode. The 
coherent coupling of the atom with the mode overwhelms couplings to the environment 
causing dissipation, an exceptional situation in opties. This prototype system can be used 
to test our understanding of intimate features of the quantum world, such as entanglement 
and non-Iocality. 

1 Introduction 

Quantum opties techniques make it now possible to work on isolated quantum systems and to 
realize some of the gedankenexperiments used by the founders of quantum mechanies to assess 
their interpretation of the formalism. The most intimate features of the quantum world, such 
as entanglement and non- locality are directly accessibie. Besides their fundamental interest, 
these situations could be used to implement new types of quantum information processing 
functions [1]. Quantum non-Iocality is at the heart of the quantum cryptography techniques 
[2, 3], allowing to share secure information. More complex information processing systems, 
involving entangled states of many qubits (two-Ievel systems used as information carriers) 
have also been proposed [4]. 

Rydberg atom-microwave cavity-QED experiments [5] realize an ideal situation where 
two-Ievel atoms are coupled, one af ter the other, with a single field mode containing a 
few photons in a well-defined quantum state. This textbook situation makes it possible 
to demonstrate fundamental light-matter interaction effects and to perform various tests of 
quantum theory. The quantum Rabi nutation [6] , resulting from the resonant coupling of 
the atom with the cavity mode, pro duces or processes entangled atoms-cavity states. A 
complete control of the transformations applied to a string of atoms crossing successively the 
cavity allows us to engineer complex entangled states and to perform elementary quant urn 
information processing operations. 

We recall briefly the main components of the experiment al set-up. We describe then 
the quantum Rabi nutation and recent experiments on entangled states: generation of an 
EPR pair of atoms [7], quantum non demolition detection of a single photon [8], preliminary 
evidences of three-atoms entangled states. 
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Figure 1: (a) Scheme of the Rydberg atom-cavity experiment. Relevant energy levels in the insert. 
(b) Typical Ramsey fringes signal on the 9 ~ i transition. 

2 The cavity-QED set-up 

The general scheme of our experiments [6, 7, 8, 9, lOJ is depicted in Fig. l(a). Rubidium 
atoms effusing from oven 0 are promoted to circular Rydberg states in region B [11J. These 
states, with a high principal quantum number n and maximum orbital and magnetic quantum 
numbers, combine a great lifetime (30 ms for n = 50) and an extremely strong coupling to the 
millimeter-wave radiation, with an efficient state-selective detection by field ionization. The 
atoms are velocity--selected by laser optical pumping and prepared at a given time. Their 
position is known at any time within ±1 mmo This precise control of the timing is essential 
to apply selective transformations to successive atoms crossing the apparatus. In order to 
operate with single atoms, we prepare much less than one (0.2) atom on the average in each 
sample. When one atom is detected, the probability of an unwanted two-atoms event is low 
enough. 

The atoms interact with the superconducting cavity C, made of two niobium mirrors in 
a Fabry Perot configuration. It is close to resonance with the transit ion between circular 
states n = 51 (e in the following) and n = 50 (g) at 51.1 GHz. The gaussian mode has a 
w = 6 mm waist. The cavity damping time (single photon lifetime) reaches values up to 1 
ms. This is much longer than the typical atom.....çavity interaction time, about 20 j.Ls. 

A small electric field is applied across the mirrors to stabilize the anisotropic circular states 
orbit. The same field can be used to Stark-shift the atomic line in and out of resonance, 
enabling us to control precisely the effective atom.....çavity interaction time. The atoms are 
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finally detected in the state-selective field-ionization detector D (efficiency about 40%). 
Before they inter act with the cavity mode, the atoms can be prepared in a state super­

position by a classical microwave pulse Rb resonant either on the e -t 9 transition or on the 
transition from 9 to i (circular state n = 49) at 54.3 GHz. The three relevant energy levels e, 
9 and i are shown in the inset of Fig. l(a). Af ter C and before D, the atomic superposition 
may be probed by another pulse R2 driven by the same source S' as Rl , These two inter­
actions with S' realize a Ramsey interferometer [12]. An atom prepared in 9 and detected 
in i, for instance, may undergo the transition either in Rl or in R2• Two indistinguishable 
quantum paths lead to the same final quantum state and thus interfere. When scanning 
the frequency 1/ of S', the probability of detecting the atom in 9 or i oscillates. Typical 
experimental "Ramsey fringes" are represented in figure l(b). They provide a very sensitive 
probe of the atom--cavity interaction, as wen as a convenient handle to tailor atom--cavity 
entangled states. 

The whole set-up is cooled to 0.6 or 1.3 K by a Helium cryostat. Residual thermal 
fields or photons left by a previous experimental sequence can be removed by a "photon 
erasing" procedure [8]. A few samples with 3 to 9 atoms in level 9 are sent through C before 
the experimental sequence. They efficiently absorb any residual field in C. The complete 
experiment (timing, velo city selection, Ramsey pulses timing and frequencies, detection) are 
under fun computer control. 

3 Quantum Rabi nutation 

The basic tooi for entanglement processing is the quantum Rabi nutation [6] of a single atom 
in an empty cavity. This oscillation between the coupled levels Ie, 0) and 19,1) (atom in e 
in an empty cavity or atom in 9 with one photon) is an oscillatory spontaneous emission 
process, typical of the strong coupling regime of cavity-QED. In order to observe it, we send 
atoms prepared in e and detect their final state af ter they have crossed C. The Ramsey zones 
are not active in this case. We repeat the experiment many times, for various atom-cavity 
interaction times t, and reconstruct the probability Pe(t) to detect the atom in e downstream. 
Figure 2 shows the vacuum Rabi oscillation signal obtained when C is initially empty. The 
Rabi frequency O/27r is 47 kHz, which corresponds to a period of about 20 p,s, shorter than 
the cavity and atomic damping times. The damping of the observed oscillations is due to 
various perturbations (inhomogeneous electric aild magnetic fields in C, variation ofthe Rabi 
coupling across the transverse profile of the atomic beam, effect of residual thermal fields ... ). 
The arrows in the figure indicate three important interaction times, corresponding to 7r /2, 7r 
and 27f Rabi pulses. 

If the Ot = 7f /2 condition is satisfied, the atom--cavity system ideally ends up in the 
maximally entangled state: 

IW"/2) = (l/h)(le, 0) + 19,1») (1) 

where the first and the second symbol in each ket represent the atom state and the photon 
number, respectively. For Ot = 7r the system, initially in state le,O), ends up in 19,1): the 
atom and the field exchange with unit probability their excitation. We have used this process 
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Figure 2: Quantum Rabi oscillation on the e -+ 9 transition. 

to generate a single photon Fock state in the cavity and to demonstrate the operation of a 
quantum memory [10]. 

When Ot = 27r, the atom undergoes a fuU Rabi cycle of absorption and emission and 
the field comes back in the initial state. Such complete Rabi cycles play an essential role 
in the physics of micro maser trapping states [13] . Let us focus here on a subtie effect of 
this 27r pulse: af ter its completion, the atom-cavity quantum state has undergone a 7r-phase 
shift, Ie, 0) ~ -Ie, 0). In the same way, if the atom-cavity system starts in state Ig, 1), it 
becomes -Ig, 1) af ter a 27r Rabi pulse. Note that Ig,O) is not affected by the coupling: this 
ph ase shift, analogous to the sign change of the wave function of a spin 1/2 undergoing a 27r 
rotation [14, 15], is conditioned to the presence of one photon in the cavity. It has been used 
to perform the non-destructive detection of a single photon. 

The 7r /2, 7r and 27r Rabi pulses are the basic bricks used in the following experiments to 
build complex entangled states. 

4 Generation of an EPR pair of atoms 

The basic entanglement processing features of the quantum Rabi nutation can be used to 
prepare an entangled pair of atoms [7] of the EPR type [16]. The first atom undergoes in 
the cavity a 7r /2 Rabi pulse, preparing the atom-cavity entangled state described by Eq. (1). 
Since the cavity field cannot be detected, this entanglement cannot be directly revealed. We 
thus "copy" the state of the cavity onto a second atom. This atom, prepared in g, undergoes 
a 7r Rabi pulse in the field of one photon. It absorbs with unit probability the photon left by 
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the first atom. Theatoms are then in the entangled state (11 V2) (Iel, 92) -191> e2)), equivalent 
to a singlet state for the two fictitious spins 1/2 associated with the atomic transitions. The 
cavity ends up empty, playing the role of a catalyst for the entanglement of the two atoms. 

An essential feature of the singlet state is that the projections of the two spins along an 
arbitrary axis are always anti-correlated. This basis-independent correlation, which cannot 
be explained in classical terms, is at the heart of the EPR paradox. We have first tested 
the energy correlation (equivalent to a detection of the spin along the z axis). We have also 
studied the correlations along an arbitrary axis in the xOy plane. Measurements along this 
axis are performed with a 7f 12 pulse R2 , resonant on the e -t 9 transition, equivalent to a 
spin rotation, followed by an energy measurement. The detection of the first atom creates, 
through the quantum correlations at a distance (1.5 cm), an el9 coherence in the second 
atom. This coherence is analyzed later by another R2 pulse. We thus obtain Ramsey fringes, 
where the two pulses are applied to different atoms, after their common interaction with the 
cavity mode. The coherence is transferred between the atoms via the non-Iocal quantum 
correlations. 

Analyzing the imperfections of the set-up, we determined that an EPR pair is prepared 
in about 65% of the two-atoms experimental sequences. Some improvements would be 
required to increase this figure of merit to the point where tests of Bell's inequalities would 
become possible. Note that, at variance with most previous experiments, we prepare a 
pair of entangled matter particles instead of a pair of photons. Moreover, this preparation is 
completely deterministic, since all the weights and phases of the final state are under control. 

5 Measuring a single photon without destroying it 

The conditional 7f ph ase shift undergone by level 9 in the field of one photon during a 27f 
Rabi pulse can be used to detect the presence of this single photon without absorbing it 
[8]. Such an absorption-free detection amounts to a Quantum Non Demolition measurement 
[17] of the field intensity, restricted to the subspace spanned by the zero and one photon 
states (single photon QND or SP--QND). Many optical intensity Quantum Non Demolition 
measurements have been realized [18]. They rely on the coupling between two light beams 
(a "signai" and a "meter") in a non-linear crystal. Based on non-linear effects, they operate 
only on beams with macroscopie photon fiuxes. The huge coupling of Rydberg atoms with 
the field makes it possible to detect in a QND way a single photon. 

We record Ramsey fringes on the 9 -t i transition, while the cavity, on resonance with the 
e -t 9 transition, contains 0 or 1 photon. The atom, initially in level 9, has a velocity of 503 
mis, corresponding to the 27f Rabi pulse condition. If there is 1 photon in C, we expect the 
probability amplitude associated with the atom entering C in level 9 to be 7f- phase shifted 
with respect to the zero photon case, resulting in a Ramsey fringes inversion: the fringe 
maxima at zero photon become minima for one photon in C. For such v values, the state of 
the outgoing atom is directly correlated to the presence of the photon. 

In order to observe this effect, we first send a "source" atom across C to generate a single 
photon. It undergoes a 7f/2 pulse in C (Rl and R2 are off). The reduction of the effective 
atom- field interaction time needed to fulfill the 7f 12 pulse condition is obtained by using 
the Stark tuning method described above (all atoms have the same 503 mis velocity). The 
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Figure 3: Ramsey fringes on the 9 -+ i transit ion conditioned on the souree atom state. Setting 
the interferometer frequency at a fringe extremum provides a SP-QND measurement. 

source atom + field system ends up in the state described by Eq. (1). Detecting the source 
atom in e (g) thus projects the field to the 0 (1) photon state. We then send the "meter" 
atom across the interferometer. Here, the Ramsey fields are switched on and the nt = 27r 
condition is restored. We repeat the sequence many times and register, as a function of IJ, 

the correlations between the outcomes of the source and the meter detection signais. Figure 
3 shows the conditional probabilities P(gdel) (squares) and P(gdgl) (diamonds) for finding 
the meter in g, provided the source has been found in e and 9 respectively. Ideally, P(gdel) 
and P(g2/g1) are equal to the conditional probabilities P(g/O) and P(g/l) for finding the 
meter in 9 if there is 0 or 1 photon in C. 

We dearly observe two sets of fringes with opposite phases. The signal contrast is reduced 
below 100% by known imperfections of our apparatus (limited contrast of the Ramsey and 
Rabi pulses, residu al thermal fields ... ). The lines in Fig. 3 are results of numerical simulations 
taking these imperfections into account. By setting the interferometer to a fringe extremum, 
we have a maximum correlation between the atom output (g or i) and the photon number 
(0 or 1). 

An additional experiment showed that the photon is not destroyed during this measure­
ment process. We have measured again the field af ter this first "QND" measurement. We 
have observed that the probability for finding a photon in C in the second measurement is 
considerably increased when the meter atom has already determined that C contains one 
photon (ideally, this probability should be one, as required by the projection postulate). The 
fact that the measurement by the meter atom leaves a photon with a great probability in 
C after detecting it is a dear indication of the non-destructive nature of the meter-field 
interaction. 

This resonant method does not apply to larger fields since the Rabi angle becomes 
ntVN = 27rVN for N photons, which makes it impossible to suppress photon absorption for 
arbitrary photon numbers. It is therefore non-destructive only in the subspace spanned by 
the zero and one photon states. We proposed, however, an unrestricted QND scheme which 
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consists in slightly detuning the cavity frequency and the Ie) ---t Ig) transit ion (atom-cavity 
detuning 8) [19]. Photon absorption can be thereby almost completely suppressed. In that 
case, the AC-Stark effect results in a phase shift of the atomie coherence equal to fJ.2tN/48 
(n being the photon number) that could again be measured by Ramsey interferometry. We 
plan to demonstrate this method in the future. 

6 A conditional phase gate with a photon and an atom 

The photon and the atom in these experiments can be viewed as quantum bits (qubits) which 
carry binary information and which inter act in the cavity following conditional dynamics. 
Applying this terminology, the resonant 271" Rabi pulse is a quantum ph ase gate (QPG) 
[20, 21], which transforms the four combined photon-atom states according to the simple 
mIe: 10, i) ---t 10, i), 10, g) ---t 10, g), 11, i) ---t 11, i), 11, g) ---t ei4>ll, g), with ,p = 71". This gate, 
combined with unitary rotations acting on each qubit, can produce any unitary two-qubit 
operation. For example, with the Ramsey interferometer, we perform 71"/2 rotations on the 
atomie qubit before and after the QPG. The resulting SP-QND measurement obeys to the 
conditional dynamies of a controlled-not (C-NOT) gate [22] . Such gates have already been 
demonstrated on ot her simple systems [23, 24]. 

The phase ,p of the cavity-QED QPG is equal to 71" when the cavity mode and the e ---t 9 
atomie transition are exactly resonant. However, we can adjust ,p to any value by tuning 
the difference 8 between the cavity and the e ---t 9 transition frequencies, while leaving the 
atom-cavity interaction time set to the value corresponding to a 271" Rabi pulse at resonanee. 
If the atom is initially in 9 with 1 photon in C, numerical simulations show that the tip of 
the Bloch vector representing the 11, g), Ie, 0) system evolves on an almost closed trajectory 
on the Bloch sphere and ends up in the initial state, af ter having undergone a phase shift 
which varies between ° and 271" when 8 is swept across 0. The theoretical residual absorption 
rate is below 3% for all detuning values. At resonance, photon absorption is forbidden by the 
271" pulse condition or by energy conservation far from resonance. Finally, for intermediate 
8 values, the slow variation of the atom-field coupling during cavity mode crossing plays an 
important role to keep the absorption rate low. Note that this theoretical absorption could 
be avoided by slightly adjusting the atomie velo city for each 8 value. 

To demonstrate the phase-tuning of the QPG, we have measured, for various detunings 
8, the relative phase-shift between levels i and 9 wh en C contains ° or 1 photon prepared 
by a first souree atom. The phase difference between the same conditional fringes as in 
Fig. 3 when the souree atom is in e (0 photon) or in 9 (1 photon) directly yields ,p. Figure 
4 shows the measured ph ase shift as a function of 8 (experimental points), along with the 
corresponding theoretical curve. The agreement between experiment and theory is very good. 
The measured residual absorption rate, of the order of 20%, is well understood when taking 
into account the presence of a residual thermal field in C. 

The QPG is symmetrical. The photon in state 1 can be viewed either as the control qubit 
which produces a phase shift ofthe atom in state gor, conversely, the atom in gis the control 
qubit which dephases the 1 photon state. The QPG properties are verified by comparing 
the atom or field qubit state phases to each other af ter the gate operation. The Ramsey 
interferometer, which mixes 9 and i, provides a way to compare the phases of the atomic 
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Figure 4: Conditional phasEHIhift of the QPG as a function of the atom-cavity detuning 

levels. In order to make a field phase measurement, we prepare and probe in the eavity a 
superposition of ° and 1 photon states. Sueh states, of the form CoIO) + C111), are, to a 
very good approximation, produced by injecting, with the source S, a very small coherent 
field in C, with an average photon number much smaller than 1. After the gate operation, 
a "homodyning" field is injected in C and the resulting field is absorbed with a probe atom. 
This phase measurement shows that our QPG gate operates in a symmetrical and coherent 
way, ereating and preserving qubit entanglement throughout the two-qubit evolution. We 
note that a QPG based on somewhat different principles has already been demonstrated in 
an optical eavity-QED experiment [21]. The present QPG has a wider </r-tuning range and 
exhibits directly qubit entanglement. 

7 Three atoms entanglement 

We have combined our SP-QND seheme with the preparation of an EPR pair of atoms to 
pro duce an entangled state of three atoms [25, 26]. A first atom enters the empty cavity 
in state e and undergoes a 7r /2 Rabi rotation, preparing the entangled atom-cavity state of 
Eq. (1). A second atom then performs a SP-QND detection of the field left in C. Being 
coherent, this process entangles the second atom and the cavity. We thus get an entangled 
state of the form (lelJ i 2 , 0) + Ig1,g2,1))/V2, assuming that the SP-QND is set so that i 
corresponds to zero photon and 9 to one. FinaIly, a third atom, prepared in g, undergoes 
a 7r Rabi pulse in one photon. lts state copies the state of C as weIl its entanglement 
with the other two atoms. The cavity ends up empty, and the three atoms are in the state 
(Iel, i2, g3) -lglJ g2, e3) )/v'2. This is a triplet of entangled systems of the Greenberger Horne 
and Zeilinger type. Such triplets could be used to get a vivid demonstration of the non-local 
properties of quantum meehanics. At least in principle, a single measurement could vindicate 
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Figure 5: Histograms displaying energy correlations of the three detected atomsj in black: experi­
ment, in grey: numerical simulation 

quantum mechanics against the "local" hidden variables theories [25]. 
As for the EPR pair, we have checked the produced state by two kinds of experiments. 

We have first checked that the energy stat es of the three atoms are correlated in the predicted 
way. Figure 5 presents (dark bars) the probabilities of detection of the eight possible energy 
configurations. The two expected ones (e, i, 9 and g, g, e) clearly dominate the other channels 
filled by spurious effects. The gray bars present a simulation of the experiment taking into 
account the known experimental imperfections. The analysis of the results show that we 
prepare the required state in about 50% of the cases. We have also checked the correlations 
of "transverse" atomic observables, using the Ramsey pulse R2 to analyze the fictitious spins 
1/2 along a direction in the xOy plane. 

8 Conclusion 

The Rydberg atom-cavity experiment is now a mature system to test fundamental quan­
tum behaviors. The quantum Rabi nutation [6] provides us with tools to generate complex 
entangled stat es of a string of atoms. The methods described above to generate triplets 
of entangled atoms could in principle be generalized to larger number of atoms. The non­
resonant, dispersive, atom-cavity interaction provides other tools. It can be used first to 
perform an unrestricted QND measurement of the cavity field intensity [19] applicable to 
arbitrary photon numbers. In the same conditions, it leads to a direct measurement of the 
cavity field Wigner function at any point in the phase space [27]. More importantly, it allows 
the quantum control of the ph ase of a mesoscopic coherent field stored in the cavity. It 
is possible to generate, through this interaction, quantum mesoscopic superposition states, 
reminiscent of the famous Schrödinger cat, and to study the dynamics of their decoherence 
due to cavity dam ping [9]. We are planning experiments with two microwave cavities, aiming 
at the preparation of non-Iocal mesoscopic quantum states [28]. Studies of the decoherence 
of such complex mesoscopic entangled states could lead to a better understanding of the 
subtie quantum/classical boundary. 
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K.A.H. van Leeuwen, A.E.A. KooIen, M.J. de Koning, H.C.W. Bei­
jerinck and W.P. Schleich 

Quantum Opties with MetastabIe Helium Atoms 

Abstract 

We have constructed a setup which produces a highly collimated, monochromatie (single axial 
velocity) and intense beam of metastabIe helium atoms. This beam can, for many purposes, 
be considered as aplane, monochromatic atomie wave. It is the highest resolution atomic 
beam diffraction setup presently available and will be used for a variety of experiments in the 
field of quantum opties and cavity QED, as weIl as for atom opties and atom interferometry 
experiments. One of these experiments is the direct demonstration of the quantization of 
the electromagnetic field in a high-finesse optical cavity. Another experiment entails the 
construction of a true single-atom laser. The setup has been tested by studying Bragg 
scattering ofthe atoms by a (classical) standing light wave. This has resulted in an adjustable 
coherent atomic beamsplitter which leads to true macroscopic (> 10 mm) separation between 
the split halves of the atomic wavepackets on the detector. 

1 Single-atom cavity QED 

In single-atom cavity quantum-electrodynamies (SC-QED) the interaction of a single atom 
with the quantized radiation field in a cavity is studied. Conceptually, this constitutes 
perhaps the simplest system in the field of quantum optics. This simplicity is also the 
strength of this research field. It allows comparisons between theory and experiments to be 
made on a very basic level. Often, these experiments are of the kind which have formerly only 
been considered as "thought experiments". They allow us to illustrate and check assumptions 
on fundamental subjects such as quantum measurement and entanglement. Thus, it is not 
surprising that SC-QED has of ten stimulated discussions on the interpretation of quantum 
mechanics. However, SC-QED has also been the primary instigator of the recent upsurge in 
interest in the field of quantum computing. Thus, this very fundamental field in physics may 
have a large impact on applications - albeit in the long term. 

Even in this simple system, a variety of subjects can be studied. The atom can be used 
simply as a probe for the electromagnetie field in the cavity, studying field properties such 
as photon number statisties [1]. To use the atom as a probe, either the internal electronie 
state or the extern al motional state of the atom may be used. 

By preparing the atom in an excited state before it interacts with the cavity, it can also 
be used as the so'Urce of the field in the cavity. This is exploited in single-atom laser [2, 3] 
and -maser [4, 5, 6] experiments. 

In experiments on, e.g., optieal bistability of a cavity the atom is used as a field modifier. 
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In these experiments, the transmission of light through the cavity is studied. The fact that 
the resonant frequency of the cavity is changed by the presence of atoms in the cavity leads 
to the bistability [7]. 

Finally, the delicate entanglement between the quantized field state and the state of the 
atom can beo explored in experiments in the field of "quantum information" [8, 9, 10, 11] . 

2 Experimental approaches 

Connected to the variety of subjects to be studied, also a variety of experimental approaches 
is used. In "traditional" cavity QED experiments, atoms in a thermal atomic beam interact 
with the cavity field. Thus, the atoms are relatively fast (500 - 2000 mis) and the inter­
action time of each individual atom with the field correspondingly short. In one approach, 
microwave cavities are used [4, 5, 6, 12, 13]. Superconducting microwave cavities can have a 
very high quality factor, leading to photon storage times much longer than the interaction 
time. This is very important for quantum information type experiments, where the infor­
mation is not supposed to "leak out" during the experiment. Other advantages are that the 
spontaneous decay of the atomic Rydberg states used to interact with the microwaves can 
be neglected, and that the interaction strength is very large. Therefore, the strong coupling 
limit is easily achieved and a simple Jaynes-Cummings model can be used. A disadvantage 
of the microwave regime is that individual microwave photons cannot be detected. AIso, 
the effect of the field on the mot ion of the atom cannot be studied due to the small recoil 
momentum of the microwave photons. Thus, the only source of atomic information which 
can be used is the electronic state. 

With optical cavities, these two disadvantages do not exist. Both the deflection of the 
atoms by the cavity field and the light transmitted through or emitted by the cavity can 
be detected [2, 3, 7]. Unfortunately, the strong coupling limit is much more difficult to 
achieve and the maximum quality factor (or finesse in optical terminology) of optical cavities 
is limited to ~ 106 . Consequently, the photon storage time of the cavity is generally on the 
order of the interaction time or short er . 

A new category of cavity QED experiments uses slow atoms, increasing the interaction 
time. Atoms can be launched or dropped from a magneto-optic trap [14, 15] or can even be 
trapped inside the cavity [16] to obtain essentially infinite interaction times. Future possibili­
ties include using the beam from an atom laser or trapping a Bose-Einstein condensate inside 
a cavity, thus making the transition from single-atom cavity QED to coherent multi-atom 
cavity QED. 

3 Time scale ordering 

The choice for using fast or slow atoms depends on the requirements imposed by the specific 
subject to be studied. These requirements can generally be expressed in terms offour different 
rates (or time scales) characterizing the experiment: 

• 9 Vacuum Rabi frequency 

• r cavity Cavity decay rate 
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• r atom Spontaneous emission rate 

• r transit Inverse of interaction time 

All cavity QED experiments should ideally be performed in the strong-coupling limit, defined 
by 9 » ratom, r cavitu. However, the place whieh r transit should have in the time scale ordering 
(and hence the choiee for slow or fast atoms) depends on what is studied. For slow or trapped 
atoms, r transit « ratom, r cavitll. The decay of the upper electronie state and the deeay of the 
field in the cavity during the measurement time cannot be neglected. Experiments with slow 
atoms are ideal to study the stationary state of the atom-light system in the cavity (e.g., in 
cavity transmission and for single-atom lasers). 

For "fast" atoms and high-finesse eavities, the interaction time can be shorter than the 
photon storage time: r transit> r cavitu. A steady state is not reached during the measurement. 
This allows experiments whieh take a "snapshot" of the field properties, such as photon 
number statisties analyzed via atomic diffraction measurements [1, 17, 18]. 

4 Eindhoven setup 

In the framework of a research project on single-atom cavity QED and atom optics, we have 
eonstructed a setup optimized for experiments whieh use the diffraction of an atomic beam as 
the main source of information. The original motivation is a planned experiment on photon 
number measurement [18], which is still a primary experiment al goal. This experiment also 
dietated the use of an atomie beam instead of trapped atoms. However, the setup is designed 
to function as an atomie beam faeility for a variety of experiments, including researeh on 
single atom lasers and atomie interferometry. 

In order to effectively use atomie diffraetion as a souree of information for cavity QED 
experiments, the ehoiee for an optical cavity and for light atoms is natural, as the reeoil 
velocity associated with the emission or absorption of a single photon should be large. We 
have chosen metastabIe helium atoms and a cavity resonant with the 23S1 -+ 23P2 optical 
two-Ievel transit ion of helium, with a wavelength of 1083 nm. The recoil velocity is then 
0.092mjs. 

The practical demands, which the setup has to satisfy, pose many diffieulties to the design: 
• The analysis of the diffraetion of atoms by light fields requires the ability to detect changes 
in transverse momentum of the atom with a resolution smaller than the recoil momentum hk 
associated with the absorption or emission of a single photon with wavenumber k. In our case, 
this eorresponds to a required resolution in transverse velo city of the atoms t1VT < 0.092 mjs. 
For the photon number measurement seheme described in Ref. [18], t1VT has to be an order 
of magnitude smaller. The initial spread in transverse velo city of the atoms in the beam has 
to be eorrespondingly small. 
• To translate the deflection angle of an atom, as determined from the position at which 
the atom impacts on the detector, to a transverse veloeity change, the axial velocity of the 
atom has to be known. This ean be achieved by time-of-flight velo city measurements, or by 
producing a "monoehromatic" (single axial velocity) atomie beam by an axiallaser cooling 
technique such as "Zeeman slowing", whieh highly compresses the axial velocity distribution. 
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Figure 1: Overview of the helium beam line. The totallength of the setup is 9.5 m. 

• For a thermal helium beam (with an axial velo city v= ~ 2000 mis), the initial beam has 
to be collimated to an angular spread smaller than 5 JLrad in order to achieve l:!.Vr ~ 1 cm/s. 
The spatial detector resolution has to satisfy l:!.x ~ 5 JLm at a distance of 1 m from the 
interaction region. These are rat her extreme demands. Slowing the atoms to a lower axial 
velo city increases the allowed angular spread and detector resolution proportionally. At an 
axial velocity-of 250 mi s, the required angular spread of 40 JLrad can be achieved by 50 JLm 
apertures in the beam separated by 1.25 m, with a matching 50 JLm detector resolution. 
Slowing mayalso be required in order to increase the interaction time of the atoms with the 
light field. Preferably, the axial velocity should be adjustable over a wide range in order to 
provide control over the interaction time. 
• Perhaps trivial to state, but very difficult to realize in practice, is the demand that the 
collimated, single-axial-velocity atomie beam has sufficient flux to ensure a usabie count rate 
in the experiments. 
• For experiments with high-finesse optical cavities, maintaining a clean, hydrocarbon-free 
UHV environment is essential. At the present state-of-the-art, cavities with a finesse :F ~ 106 

are used. These are constructed with mirrors that have a reflectivity around 0.999995. Any 
contamination by oil from, e.g., diffusion pumps or roughing pumps will quiekly reduce the 
reflectivity and thus decrease the finesse. 
• High-finesse cavities are also extremely sensitive to vibrations. In order to keep the cavity 
resonant with laser light used to excite a cavity mode, the distance d between the mirrors has 
to be stabie to >'I:F. For the example above, this results in a required stability l:!.d ~ 10-12 m. 
Therefore care should be taken to avoid any source of vibration in the atomic beam setup 
that can excite cavity vibrations. 

5 Implementation 

The demands discussed above can be satisfied by making extensive use of laser cooling 
techniques to manipulate the atomie beam. A schematic view of the set up is shown in 
Fig. 1. Metastabie 23S1 helium atoms are produced in a liquid-nitrogen cooled discharge 
supersonic expansion source. A Zeeman-tuned laser decelerator is used to reduce the axial 
velocity of the atoms to a single, adjustable value from 50 to 500 mis. At 250 mis, the 
root-mean-square (rms) spread in axial velocity is 1.4 %. The final collimation is achieved 
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Figure 2: Artist's impression of the experiment al setup. 

by inserting apertures in the compressed beam. Using a 60/-Lm square aperture and a 25/-Lm 
diameter round aperture separated by 2 m, the geometrie rms transverse velocity spread at 
Va:>: = 250 mis is 2.5 mm/s. The measured transverse velo city spread is 10 mm/s. We assume 
that the in ere ase with respect to the geometrie value is caused by 8tern-Gerlach broadening 
in a small but strongly inhomogeneous magnetic field in the second aperture. 

If we would use only source, Zeeman slower, and apertures to pro duce the beam, numerical 
simulations show that the resulting atom flux in the collimated beam is below 10-3 S-l. 

Obviously this is unacceptable. In order to increase the flux, we apply various laser cooling 
techniques. 

First, we add a two-dimensionallaser cooling section directly behind the discharge souree. 
In this section we try to capture as many atoms as possible in a parallel beam. Then, the 
atoms pass the Zeeman slower. Here the axial velocity is decreased, which, together with 
the diffusion in the transverse velocity direction, causes an increase of the beam divergence. 
Next, the atoms pass two stages which compress the beam to a diameter of 0.25 mmo The 
first stage, a magneto-optic lens (MOL), focuses the beam; the second stage, a magneto-optic 
compressor (MOe), is positioned near the focus of the MOL and takes care of the final beam 
compression. The collimated beam intensity is now increased to 250 S-l. 

For all laser cooling stages we use the 2381 --t 23P2 optical two-Ievel transition of helium, 
with a transition wavelength of 1083 nm. The light is provided by DBR diode lasers. 

We have tried to eliminate as many sourees of vibrations as possible. Turbomolecular 
vacuum pumps with magnetie bearings, which pro duce roughly a factor of 10 less vibration 
than turbopumps with conventional bearings, are used exclusively in the setup. Other vibra­
tions can arise from the atomie beam souree and the water cooling of the Zeeman magnets. 
Therefore, we split the vacuum setup in two mechanically isolated parts mounted on sepa­
rate frames, only connected by bellows. An artist's impression of the experimental setup is 
shown in Fig. 2. On the first frame we find the souree, the Zeeman slower magnets and the 
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Figure 3: Schematic view ofthe Bragg scattering set up (not to scale). 

magneto-optic lens. On the second frame the magneto-optic compressor, the Doppier cooler, 
the interaction chamber and the detector are situated. The critical parts of the setup are 
thus isolated from possible vibration sources on the first frame. The second frame rests on 
airmounts for isolation of floor vibrations. 

The frames proper consist of PVC-foam and aluminum sandwich constructions, combining 
low weight and high rigidity with good vibration damping. The aluminum top plates of the 
frames serve double duty as optieal table tops. 

Contamination of the vacuum by hydrocarbons could deposit on the mirror surfaces and 
quickly decrease the finesse of the cavity. The use of turbomolecular pumps with magnetic 
bearings, backed by a "dry" scroll pump, allows us to construct a completely oil-free vacuum 
system. The design of the setup is described in more detail in Ref. [19]. 

6 Coherent atomie beam splitting by Bragg seattering 

In order to test the setup, we have studied Bragg scattering of the atoms in the collimated 
atomie beam by a "classical" standing light wave, strongly detuned with respect to the atomie 
resonanee. The standing light wave is tilted slightly with respect to a direction transverse to 
the atomie beam, introducing a small angle between the wavefront planes of the light wave 
and the propagation direction of the atoms. The interaction length is 2 mmo Two meter 
downstream of the interaction region, a position-sensitive metastabie atom detector allows 
us to register the deflection of each individu al atom by the interaction with the light wave. 
The setup is shown schematically in Fig. 3. The periodicity ofthe scattering medium imposes 
the usual grating diffraction condition, which can be expressed for atoms as !:l.Pt = 2nfik, 
with !:l.Pt the change in transverse momentum, n the scattering order and fik the single­
photon recoil momentum. As in Bragg scattering of X-rays by a crystal, the finite length of 
the scattering medium superimposes on this the condition of either unmodified transmission 
or specular reflection from the scattering planes rl/ntJl = ±p:nititJl. 

In general, individual atoms are partially transmitted and partially reflected. Thus, a 
Bragg scat tering region forms a coherent atomie beam splitter, with applications in atomie 
interferometry [20]. Furthermore, the splitting ratio can be adjusted from 0 to 1 simply by 
changing the intensity of the standing light wave. 

Bragg scattering of atoms has been extensively studied [21, 22, 23, 24, 25, 26]. The 
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oscillatory behavior of the splitting ratio as a function of either the intensity of the standing 
wave or the inter act ion time was studied for first and second order Bragg scattering by the 
group of Rempe [23, 24, 26] . Up to 6th order Bragg scattering has been observed for sodium 
atoms in condensates [25] and for neon atoms [22] in thermal beams. However, due to the 
spread in axial velocity of the atoms in the beam, the diffraction orders are beginning to 
overlap in diffraction angle and thus in position on the detector. 

7 Bragg scattering results 

By changing the angle between the light field and the atomie beam, we have studied Bragg 
scattering up to 8th order. This sets a new record for Bragg diffraction of atomie beams. 
As Bragg scattering of order n can be considered as a 2n-photon Raman transition, the 
required light intensity increases strongly with n. The available laser power (2.5 m W for the 
diffracting laser beam) thus forms the limiting factor for the order which can be reached. 

Figure 4 shows detector images for each diffraction order studied. Up to 5th order, the 
laser intensity was optimized for maximum reflection: for the higher orders, optimization 
was for equal reflection and transmission. The detuning of the laser light from the atomie 
resonance was around 200 MHz. At this detuning, spontaneous emission in the interaction 
region cannot be completely neglected. At the maximum laser power, 30% of the atoms 
undergo spontaneous emission. As the spontaneously emitting atoms obtain a moment urn 
recoil in a random direction, they do not appear in the bright spots in Fig. 4. From the 
detector image, we can therefore effectively discriminate between atoms which have and 
which have not spontaneously emitted a photon. 

The rms width of the peaks in Fig. 4 corresponds to 0.151ik in transverse momenturn. 
Figure 5 shows a one-dimensional cross-section through the 5th order data. In this figure not 
only the transmitted and reflected peaks are visible, but also the intermediate orders can be 
observed. This is caused by imperfections in the wavefronts of the standing light wave. All 
diffraction orders are clearly separated with no trace of overlap. 

For 5th order scattering we have studied the oscillatory behavior of the splitting ratio as 
a function of light intensity (the Pendellösuntreffect) in detail. The results demonstrate the 
expected highly nonlinear behavior of the oscillation, which is a consequence of the 10-photon 
transition involved. The results will be published in extenso elsewhere. 

8 Planned QED experiments 

8.1 Quantum (non)demolition photon number measurements 

The first cavity QED experiment to be performed with the beam setup is the quant urn 
(non)demolition photon number measurement scheme discussed in Ref. [18]. The basic setup 
is schematically shown in Fig. 6. The high-finesse cavity (:F = 650000, distanee between the 
mirrors d = 0.93 mm) is tuned on resonanee with the atomie transition. The atoms are 
diffracted by the quantized light field in the cavity. As the interaction region is now very 
short, we are now in the "thin grating" limit, with no Bragg condition imposed on the 
diffraction. 
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Figure 4: Detector images for oth up to gth order Bragg scattering. 

The experimental parameters can be chosen such, that the atoms are preferentially scat­
tered at an angle corresponding to a momentum change of of ±2nlik, with n proportional to 
the electric field amplitude of the cavity mode. With the 0.93 mm cavity, one photon in the 
cavity leads to n = 2, i.e., scattering at an angle of ±4lik. The quantization of the field in 
the cavity thus will be directly apparent in the absence of scattering at ±2lik. 

With resonant light in the cavity spontaneous emission cannot be eliminated, i.e., the 
interaction Hamiltonian describes a quantum demolition photon number measurement [17]. 
However, the ability to discriminate spontaneously emitting atoms from coherently scattered 
atoms allows us to select quantum nondemolition measurements from the data. 

In terms of the relevant timescales for cavity QED experiments discussed previously, the 
ordering for the planned experiment can be expressed (with the decay rate of the upper 
atomie level normalized to 1): 

9 = 3.6> r atom = 1> r transit = 0.25> rcavity = 0.15. 

8.2 lnversionless one-atom laser 

Another experiment to which the setup will be applied is the study of one-atom lasers. These 
consist of a single atom acting as a gain medium in a small, very high-Q cavity. They provide 
a wonderful testing ground for cavity QED and the quantum theory of measurement. We 
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Figure 5: One-dimensional cross-section through the detector images for 5th order Bragg scattering. 

Figure 6: Schematic view of the photon number measurement experiment. 

propose a novel type of one-atom laser, in which a single atom in the laser cavity is contin­
uously excited with a second (classical) light field perpendicular to the cavity mode. This 
two-Ievellaser operates truly without population inversion. The gain mechanism is based on 
the fundament al asymmetry between absorption and stimulated emission in a quantized light 
field at low photon numbers. Because there is not only just one atom present in the cavity 
at any time, but also because the laser action is obtained with a single atom contributing to 
each laser pulse, the system can be described as the first true one-atom, inversionless laser. 

The basics of the setup are shown in Fig. 7. The atoms are continuously excited on an 
effective two-Ievel transit ion by a laser beam perpendicular to both the cavity mode and the 
atomic beam axis. Avalanche photodiode detectors are used to detect the output beams of 
the single-atom laser. In a two-Ievel system, population inversion cannot be obtained with 
continuous pumping. However, calculations still show laser operation with several photons in 
the cavity on average! The origin of this 'lasing-without-inversion' effect is the fundamental 
asymmetry between absorption and stimulated emission in a quantum light field at low 
photon numbers. While the interaction matrix element for absorption scales with yn, with 
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Figure 8: Calculated average number of photons in the cavity for a one-atom laser with continuous 
coherent excitation, with the cavity initially in the vacuum state. Axial velocity lOOm/a. The 
center of the cavity mode is passed at t = O. Dotted lines include no damping, dashed lines include 
only cavity damping and fulllines include cavity damping and atomic decay. Time is given in units 
of the upper leval decay time Tat = r-1. 

n the photon number, for emission it scales with Vn+I. In a simple rate equation picture, 
where transit ion probabilities scale with the square of the matrix elements, this means that 
for zero population inversion there is a constant net "upward" transition rate for increasing 
the photon number equal to g2/2, with 9 the vacuum Rabi frequency of the cavity mode. 

Fig. 8 illustrates this effect. One atom traverses the cavity mode field at an axial velocity 
of 100 mis, with the pump field always turned on. The atom is initially in the lower (mes­
tastabie) level, the cavity in the vacuum mode. The dotted line is the result of a calculation 
without any dam ping: no spontaneous emission, no cavity decay. The expectation value of 
the number of photons in the cavity quickly rises out of range. The dashed line incorporates 
cavity damping, i.e., the finite finesse of the cavity. The caIculation assumes a realistic finesse 
of 106 . The photon number now reaches a maximum value around 4.5. The fuIlline includes 
the effects of spontaneous decay of the upper atomic level as weIl as of cavity damping. The 
maximum is reduced to 2.3, still weU above 1. This demonstrates that laser action can indeed 
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be obtained under realist ie experimental conditions. 

9 Conclusions 

The time (5 years), effort and money invested in the construct ion and testing ofthe set up was 
considerable. As a reward, we have now the highest resolution atomie beam diffraetion setup 
available. The collimated and slowed beam which is produced can, for most purposes, be 
considered as aplane, monochromatie atomie wave. The two planned experiments discussed 
in the preeeding text are just examples of a large variety of experiments in eavity QED and 
atom interferometry which are made possible by our setup. We have already demonstrated a 
large-angle coherent atomie beamsplitter, based on Bragg scattering. The separation between 
the two halves of the split atomie wavepacket is, at 8th order scattering, 10 mm on the 
detector. Using three Bragg seattering regions as beamsplitter, mirror and recombiner, this 
teehnique will allow us to construct the first Mach-Zehnder type atom interferometers with 
tru~ macroscopie separation between the interfering paths. By inserting a high-finesse optical 
eavity in either on or both of the arms of the interferometer, atom interferometry and cavity 
QED can be combined. This opens up a whole new range of possible experiments. As an 
example, the interaction of the atom with the quantized field ean be studied even when both 
momentum and energy of the atom are unmodified. 
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G. Harel and 1. Abram 

Spontaneous Emission in a Cavity: 
Quantum and Classica! Radiation-Reaction Viewpoint 

Abstract 

We derive the spontaneous emission rate of a two-Ievel atom coupled to the vacuum of a cavity 
electromagnetic field using the quantum mechanical radiation-reaction formalism, and relate 
it to the classical expression for the emission rate of an oscillating dipole in the cavity. 

1 Introduction 

The recent search for ways to control the spontaneous emission in condensed-matter sys­
tems has produced a large number of relatively complex constructs, such as semiconductor 
microcavities with distributed Bragg reflectors and 2- or 3-dimensional photonic bandgap 
structures, inside which the spontaneous emission of a light-emitting center is expected to be 
modified [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Quantum mechanical calculations of this modification 
have relied initiallyon a norm al mode analysis of the structure and considered the coupling 
of the point emitter with the field of each mode. This approach has an important conceptual 
advantage in that it deals with the eigenstates (modes) of the field in the structure and 
thus conforms to the traditional quantum mechanical viewpoint for spontaneous emission: 
the vacuum fluctuations in each mode initiate an emission into the mode. However, it is 
beset by the mathematical difficulties associated with the complete modal analysis of the 
complicated geometries of the suggested constructs. 

An alternative approach for carrying out quantum mechanical calculations on sponta­
neous emission is provided by the radiation-reaction viewpoint [11, 12, 13], which is ap­
plicable whenever the detection of the emission process is described in terms of normally 
ordered operators [11, 12, 13]. Since most optical experiments on spontaneous emission in­
volve photon detection techniques which are represented by normally ordered operators, the 
radiation-reaction viewpoint may be considered as the natural way to describe such experi­
ments. In this viewpoint, where the emitting dipole is driven by its own electric field (rather 
than by the vacuum fluctuations), which interferes with its emission. The main advantage 
of this viewpoint is that it concentrates on the electric field generated by the dipole at only 
one point, the dipole position, and thus does not require complete modal analysis of the sur­
rounding microstructure. In describing the field at the site of the dipole, the contributions of 
the different structural elements of the microstructure (such as the reflections of the cavity 
mirrors) can of ten be treated separately by use of standard procedures, such as the method 
of images or finite-element numerical analysis. 

In parallel to the quantum mechanical calculations, a classical approach to the modifica-
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tion of spontaneous emission by the cavity boundary conditions has been developed, based 
on the standard classical antenna theory [14], where the modification is obtained through the 
direct calculation of the reflected field at the site of the dipole, or by use of the dyadic Green 
function technique, and the results are subsequently given the correct quantum mechanical 
form by thé ad hoc introduction of appropriate constants. Although this approach is widely 
used in practical calculations of the spontaneous emission modification, the approximations 
associated with it and its domain of validity are not clear. 

In this paper we derive the expression for the quantum-mechanical emission rate of a 
point dipole inside a cavity through the radiation-reaction point of view, and relate it to 
the corresponding expression that is obtained in the classical approach, thus validating the 
classical approach and tracing out its approximations and limitations. 

2 Quantum mechanical radiation-reaction viewpoint 

2.1 EJJective hamiltonian 

As our model we consider a two-level atom interacting with the electromagnetic field of 
a cavity. To derive the Hamiltonian of this system we start with the minimal-coupling 
Hamiltonian of a bound spinless electron coupled to the cavity field, in Gaussian units [11, 
12, 15]: 

(1) 

Here re and P. are the electron coordinate and canonically conjugate momentum, with 
commutation relations [r.i,p.;] = iMij,q is the electron charge, IPn(r) is the electric potential 
ofthe nuclear charge, and A(r) is the vector potential ofthe field, taken in the Coulomb gauge 
(V· A = 0). The integration dr extends over the volume V of the cavity, with the transverse 
electric field defined as E.L(r) = -47rcI1(r) and the magnetic field as B(r) = V x A(r). The 
field I1(r) is the momentum canonically conjugated to the vector potential A(r), obeying 
the commutation relations [Ai(r), II;(r ')] = iM;](r, r '), with 8;](r, r ') the cavity transverse 
delta function [16]. 

We remark that the total electric field is given by E(r) = E.L(r) + EII(r), where EII(r) is 
the longitudinal electric field which depends, in the Coulomb gauge, only on the instant a­
neous Coulomb potential IP(r) of the atomic charges and the charges induced on the cavity 
mirrors, EII(r) = -VIP(r). The longitudinal electric field is thus a purely atomic operator. 
lts exact contribution to the atom-field Hamiltonian, namely 8~ Iv E~(r)dr, is adequately ap­
proximated by the term qIPn(r.) in Eq. (1), provided that the atom remains at a macroscopic 
distance from the mirrors, as we will be assuming here [15]. 

To describe the transverse field degrees of freedom we expand the vector potential and 
its canonical momentum in a set of cavity mode functions f>.(r), 

A(r) = L [2Û.U?] 1/2 (a>.f>.(r) + alf;: (r)) (2) 
>. w>. 

I1(r) -i~ [~~ f/2 (a>.f>.(r) - alf;:(r)), (3) 
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with mode frequencies w>. and annihilation and creation operators a>. and al obeying the 
commutation relations [a>., a>.,) = 0 and [a>., a~,) = 8).).,. The mode functions form a complete 
set of solutions to the Helmholtz equation 

(4) 

obeying the transversality (Coulomb gauge) condition V'. f>.(r) = 0 and the boundary condi­
tions of the cavity [6, 15). They are taken to be orthonormal, Iv f>.(r) . f;,(r) dr = 8>.>.' , and 
their completeness relation reads 

Lhi(r)!;j(r') = 8b(r,r'). (5) 
>. 

For example, for free space with periodie boundary conditions in a cubical box of volume 
V the modes are f>. (r) = [~] 1/2 E>. eik~.r, with wave vector k>. and polarization vector E>. 
orthogonal to it (two mutually orthogonal polarizations for each wave vector). Now we can 
express the magnetic and transverse-electric fields in terms of the field modes, 

[
2 h2] 1/2 

B(r) ~ :>. V'x(a>.f>.(r)+alf;(r)) (6) 

E.L(r) = i L [27rhw>.) 1/2 (a>.f>.(r) - alf;(r)) , (7) 
>. 

and we can write the field Hamiltonian in the simple form Hp = 8~ Iv(EHr) + B2(r)) dr = 
E>. hw>.(ala>. + 4)· 

For the atomie degrees of freedom we adopt a two-Ievel approximate description, where 
instead ofthe complete atomie Hamiltonian HA = 2~p;+q<l>(re) we take its rest riet ion to two 
levels HJtff = 4hS1(le) (el-Ig) (gl) = 4nr20"3, with Ie) and Ig) the upper and lower atomie levels, 
assumed to have definite parity, and n the atomie transition frequency. Here and in what 
follows we employ the operators 0"_ == Ig)(el = O"~, 0"3 == le)(el- Ig)(gl, 1 == le)(el + Ig)(gl 
as a complete set of operators for the two-Ievel atomie Hilbert space. 

Finally, to obtain a practieal interaction Hamiltonian, we first neglect the relativistie 
term (q2/2m2) A 2 in Eq. (1) and introduce the dipole approximation, evaluating the vector 
potential at the position of the nucleus, which we take to be the origin [17). This leaves 
us with Hl = -,;., Pe . A(O) = - i~C [qre, HA) . A(O) as the interaction term. We then 
restriet Hl to the two atomie levels Ie) and Ig), assuming for simplicity that they correspond 
to a ~m = 0 transition and that their phases are chosen such that the dipole moment 
matrix element j.L == j.Lp. == (elqrelg) is real. The resulting effective interaction Hamiltonian is 
~i(O"_ - 0"+)j.L • A(O). 

Thus we obtain an effective Hamiltonian for the atom-field system, composed of free and 
interaction parts, 

H eff = H8ff + H~ff = !hn0"3 + Lhw>.(ala>. +!) + i (0"_ - O"+)LhC>.a>. + hC~aL (8) 
2 >. 2 >. 

[ ]
1/2 

written here in terms of the interaction frequencies C>. == n ;:~ IJ. . f>.(O). 
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2.2 Dynamics 

We now proeeed to determine the dynamics of our system, using the Heisenberg picture. 
The atomie and field operators obey the equ.al-time eommutation relations [l1+(t), l1-(t)] = 
l13(t) , [l13(t),l1±(t)] = ±2l1±(t), [a.\(t),a.\,(t)] = 0, [a.\(t),a~,(t)] = Ó.\.\', [a.\(t),l13(t)] 
[a.\(t) , l1±(t)] = 0, whieh result in the following Heisenberg equations: 

(9) 

(10) 

(11) 

Assuming that the atom-field interaction is weak relative to the action of the free Hamil­
tonian Hrt, namely max.\ IC.\I «n and IC.\I« W.\, we ean account for the free dynamics 
by defining new variables, ü±(t) == l1±(t)e'fint and ä.\(t) == a.\(t)eiw~t, whose evolution is ex­
peeted to be slow on the time seale of n and w.\ [11, 12, 13]. In terms of these variables the 
Heisenberg equations (9-11) read 

8-_(t) = l13(t) L (C.\ä.\(t)e-iw",t + C~äl(t)eiw~t) eiOt (12) 
.\ 

G-3(t) -2 (ü_(t)e-int + ü+(t)eiOt ) L (C.\ä.\(t)e-iw~t + C~äl(t)eiw",t) (13) 
.\ 

a.\(t) C~ (ü_(t)e-iOt - ü+(t)eiOt ) eiw",t. (14) 

We now integrate Eq. (14) with the Markovian (adiabatic) approximation of taking the 
slowly varying ü±(t) outside the integral [11, 12, 17]: 

(ü_(t) l t 

ei(w~-n)t' dt' - ü+(t) lt 
ei(w~+n)t' dt') . (15) 

The resulting expression for the field ä.\ (t) is eomposed of a free part, ä.\ (0), and a souree part 
that depends on the dipole moment (through C>:) and the atomie variables ü±(t). This souree 
part is the quantum analog of the field indueed by the classical eurrent souree representing 
the dipole oscillations [11, 12] . On substituting ä.\(t) into the equivalent normally-ordered 
form of (12), 8-_(t) = E.\ [C.\ei(n-w~)tl13(t)ä.\(t) + qei(n+w~)t äl (t)l13(t)], and making use of 
the identities l13(t)Ü±(t) = -Ü±(t)l13(t) = ±ü±(t), the result we find is 

8-_(t) = L [C.\ei(n-w~)tl13(t)ä.\(0) + C~ei(n+w~)t äl(0)l13(t) 
.\ 

-IC.\12!ot (ei(n-w~)(t-t') + ei(n+w~)(t-t'»)dt' ü_(t) 

-IC.\12!ot (e-i(n-w~)(t-t') + e-i(n+w~)(t-t'»)dt'ei2nt ü+(t) ]. (16) 
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We now restrict our attention to the case where the field is initially in the vacuum 
state while the atom is in an arbitrary state: 11/1(0» = 10)(ale) + ,BIg». On taldng vacuum 
expectation values in Eq. (16) , which we denote by ( . ) == (1/1(0)1 . 11/1(0» , the contribution of 
the free field is eliminated via the identity äÀ(O)IO) = 0, and we obtain 

(cL(t» = - L ICÀ I2 t (ei(O-w>.}{t-t'J + ei(o+w>.}{t-t'J)dt'(ä_(t» , 
À Jo 

(17) 

where we have neglected the small contribution of the antiresonant term involving ei20t . This 
equation presents the reaction of the atomic radiation back on the atomic dynamics. 

To see the long-term behavior of Eq. (17), af ter many optical periods, we approximate 
the integrals on its right-hand side using Heitler's ( function, ( w) == -i limHOO I; eû.rr d'r = 
P~ - im5(w) (P denoting principal value) , which gives the simple rate equation 

(cL(t» = -i L ICÀ I2[(0 - wÀ) + (0 + wÀ»)(ä_(t» == (i~ - r /2)(ä_(t» , (18) 
À 

with real frequency shift (0 -+ 0 - ~) and positive decay rate: 

r = 27r L ICÀI2[ó(0 - wÀ) + ó(O + wÀ»)' (19) 
À 

Following a similar derivation, we can obtain from Eq. (13) an expression for the vacuum 
expectation value of the rate of change of the excited-state population: 1tW+(t)ä_(t» = 
-r(ä+(t)ä_(t». This allows us to identify r as the spontaneous emission rate ofthe atomic 
excitation. 

2.3 Emission in free space 

Let us check the above results in the well known case of a dipole radiating in free space. 
Taking the free-space mode functions with V -+ 00, we may approximate the summation 
over modes in Eqs. (19), which has the form LÀ ICÀI2F(wÀ), by integration over frequencies, 
EÀ ICÀI2F(wÀ) ~ Ia"" p(w)F(w)dw, with the smooth weight function p(w) = ;~~ w. Indeed, 
we find the expected frequency shift (Lamb shift, logarithmically divergent as it should be in 
a non relativistic calculation [11, 18)) and spontaneous emission rate (Einstein A coefficient), 

~=--P ----- dw 2J.L
2
02 100 (w w) 

37rlic3 0 w - 0 w + 0 
(20) 

3 Classical Radiation-Reaction Viewpoint 

3.1 Classical Green Function 

We now turn to relate the quantum spontaneous emission rate to the expression that is 
obtained by classical considerations. To begin, let us write the factor i~ - r /2 of Eq. (18) 
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in a more explicit form, using the identity ((w) = -i limHo+ Jooo ei(w+if)T dT = limHo+ wlif' 

Denoting ((w) = w+~o+ for short, we have 

We have approximated Ojw>. ~ 1, which is justifiable since only frequencies w>. nearly res­
onant with 0 are significant. This allows for interpretation in terms of the classical Green 
function, as we now show. 

The dyadic Green function for the classical electric field in the space enclosed by the 
cavity, assuming harmonic variation in time with the frequency 0, is defined as the solution 
of the equation 

(22) 

~l. 

obeying the boundary conditions of the cavity, where Ó (r,r') = L:J=lêiêjÓG(r,r') is 
the transverse-delta-function dyadic with êi the coordinate unit vectors [7]. Now the Green 
function can be expressed in terms of the mode functions as 

ë ( I ') = 2" f>.(r)f.x(r') 
n r r c 7w~- (0 + iO+)2 

(23) 

(see Appendix A), and therefore we can combine Eqs. (21) and (23) and write 

(24) 

~ 

Noting that the Green function Gn(r Ir') is essentially the transverse electric field produced 
at r by a point source at r', we see that the quantum frequency shift and decay rate of the 
atomic radiation are proportional to the radiated electric field at the site of the atom. In 
other words, they result from radiation reaction. 

3.2 Classical Radiation Reaction 

Now the classical derivation of the modified spontaneous emission rate of a point dipole inside 
a microcavity is based on the equation of motion of an oscillating dipole, I'(t) = {L{L(t), 
consisting of a harmonically bound electron that radiates in the presence of the reflecting 
boundaries of the cavity. This equation reads 

(25) 

where 0 is the undamped oscillation frequency, rO is the dam ping constant in the absence 
of mirrors, q and mare the electron charge and mass respectively, and ER(t) is the electric 
field that is reflected by the mirrors back to the site of the emitting dipole [14, 17]. To 
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solve Eq. (25) we assume that the reflected field depends linearlyon the instantaneous dipole 
magnitude, and take these two variables to be ofthe form J.L(t) = J.Lae-i8t and ER(t) = E~e-i8t, 
where J.Lo is the dipole amplitude, assumed real, and E~ is the complex amplitude of the 
reflected electric field. The complex frequency s == w - ir /2 thus determined is 

s ::: ± n (1 - q2 n 2 Re(p, . E~) - ~2) - i "fa (1 ± q~ Im(p, . E~)), (26) 
2J.Lam 8H 2 J.Lam "fa 

assuming n2» Iq2p,. E~/(J.Lom)I,"f~, and we take the root for which s::: n as the physical 
solution. 

Introducing the classical free-space radiative decay rate of the harmonically bound elec­
tron [17], "fa = ;Z, we can write the decay rate in the presence of the cavity mirrors 
as 

(27) 

which shows that the decay rate is modified by a quantity proportional to a quadrature of 
the reflected electric field, evaluated at the site of the emitting dipole. Thus, within this 
approach, the calculation of the decay-rate modification is reduced to the evaluation of the 
electric field at a single given point, a task which does not require the modal analysis of the 
cavity, but rather can be carried out through the direct-space methods that constitute the 
traditional arsenal of antenna theory. 

At this point we assume that the same proportionality that is found in Eq. (27) between 
the modification to the decay rate and the reflected field at the site of the dipole, E~, holds 
true also in the quantum regime, even though the field is calculated classically, and moreover, 
that i t extends to give the total (modified) decay rate as a function of the total transverse field 
at the dipole position, E.J..(O). We replace the free-space decay constant "fa by the quantum 
mechanical free-space spontaneous emission rate, ra of Eq. (20), and take the amplitude of 
the dipole oscillations to be equal to the quantum dipole moment transition matrix element, 
J.La = J.L. This gives a markedly simple expression for the decay rate: 

(28) 

We now show that this decay rate is equal to the quantum decay rate obtained above. 
Indeed, the transverse field is determined by the Coulomb-gauge vector potential A(r)e-i8t, 
to zeroth order in "f / n «: 1, as 

is in 
E.J..(r) = E(r) + V<I>(r) = -A(r) ::: -A(r). 

c c 
(29) 

Moreover, using the classical Green function to relate the vector potential to the current 
density contributed by the atomic dipole, J(r) = -isp,J.L6(r) ::: -inp,J.L6(r), we have 

A(r) = Gn(rlr') -J(r')+-V<I>(r') dr'=---Gn(rIO).J.L Iv 
++ [411" in ] 411"inJ.L ++ • 

vee c 
(30) 
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(see Appendix B). This allows us to write the transverse field as a function of the dipole 

amplitude and the cavity geometry (Green function), E.dO) = 4""~'1' Gn (010) . p" and we see 
that the resulting expression for the decay rate, 

871" ll?n
2 (fot ) 

"(= nc2 Im p, · Gn(OIO)·P, , (31) 

is exactly the same as the expression for the quantum decay rate r given in Eq. (24). 

4 Conclusion 

We have seen that the classica! radiation-reaction approach to the modification of sponta­
neous emission rate by cavity boundaries leads to the same result that is obtained by a sys­
tematic quantum mechanica! ca!culation through the radiation-reaction viewpoint. In both 
cases the transverse field plays a central role in determining the decay rate. The significance 
and domain of validity of the classical result can be inferred from the quantum derivation, 
namely, it is the decay rate of the atomic excitation vacuum-expectation-value, describing 
the long-term behavior af ter many optical periods, which is obtained from a nonrelativistic 
calculation ignoring spin effects, with the following assumptions and approximations: (i) 
two-Ievel approximation for the atomic dynamicsj (ii) atom located at macroscopic distance 
from cavity boundariesj (iii) weak, Markovian atom-field couplingj (iv) dipole approximationj 
and (v) rotating-wave approximation. 
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Appendix A 

W d h h h d ad· f . G
fot ( I') _2" fÀ(r)fi(r'). I t' f e nee to s ow t at t e y IC unctlOn n r r = c- L..).. w~-(n+io+)2 IS a so u Ion 0 

fot 
Eq. (22) obeying the boundary conditions ofthe cavity. Indeed, Gn(r Ir') satisfies the bound-
ary conditions as a function of r, being a linear superposition of the mode functions f)..(r) 
which have this property by definition. Moreover, in view of Eqs. (4) and (5) we have as 
required 

.-. 

" (w~ - n2)f)..(r)fHr') 
L: w~ - (0, + iO+)2 

.-.1-
Lf)..(r)fÁ(r') = 8 (r,r'). 

).. 

(32) 

We note that the definition of Gn(r Ir') with the term iO+ fixes its poles at the lower half 
complex plane, 0, = ±w).. - iO+, and therefore ensures that its inverse Fourier transform is 
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the causal Green function: 

B 

G(r,tlr' , t') ~ {oe dne-in(t-t')G (r Ir') 
27r Loo n 

{ ~2 L:À fÀ(r)(\(r')8in[w~~-tl )J t ~ t' 
t~t' 

[ 
1 82

] B Bl. 
V X V x + c2 at2 G(r, tir', t') = 6 (r, r ')6(t - t'). 

Appendix B 

(33) 

(34) 

The vector potential is related to the eurrent density and the sealar potential, assuming 
harmonie time variation e-int , through the Maxwell equation 

[ 
1 82

] 47r 1 8 
V x V x + c2 at2 A(r, t) = -ZJ(r, t) - -;; at V<I>(r, t), (35) 

or, assuming harmonie time variation e-int , through [V x V x -~] A(r) 4;J(r) + 

~V<I>(r) . With our ehoice of the Coulomb gauge, the vector potential A(r) and, conse­
quently, both sides of this equation are transverse. Therefore, we can solve this equation in 
the space of transverse functions obeying the eavity boundary eonditions, using the Green 

B 

funetion: A(r) = fvGn(rlr') [4;J(r')+ ~V<I>(r')] dr'. Now the term ~V<I>(r') is longi-
B 

tudinal and hence does not contribute to the integration, sin ce it is multiplied by Gn(r Ir') 
whieh is transverse in r'. The result for the dipole eurrent density J(r) = -injLJ-L6(r) is 

therefore A(r) = - 41r~nl' Gn(r 10)· jL. 
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M. Hentschel and J. U. N öckel 

The Sequential-Reflection Model in Deformed Dielectric 
Cavities 

Abstract 

The stationary states of a microlaser are related to the decaying quasibound states of the 
corresponding passive cavity. These are interpreted classically as originating from sequen­
tial escape attempts of an ensemble of rays obeying a curvature-corrected Fresnel formula. 
Polarization-dependent predictions of this model, and its limitations for stabie orbits in par­
tially chaotic systems are discussed. 

AB a mechanism for achieving mode confinement, waveguiding by total internal reBection 
is ubiquitous in optics. However, in dielectric microresonators where three-dimensionally 
confined mode volumes are desired, there is always leakage because the ray picture, in which 
Fresnel's formulas describe the outcoupling, acquires corrections. Leaky modes corresponding 
to classically confined rays can be found, e.g., in optical fibers as "spiral" modes [1], or in 
latterally structured cylindrical VCSELs [2) as weIl as in microdisk lasers [3). The classically 
forbidden loss in such modes is analogous to tunneling through an effective potential barrier 
[4). 

The highest Q is achieved for modes which semiclassically correspond to rays almost at 
grazing incidence. Resonators with a circular cross section are a particularly simple realiza­
tion of this requirement, because they exhibit whispering-gallery (WG) modes characterized 
by high intensity in an annular region near the surface. However, even Lord Rayleigh who 
first described the acoustic analog that gave the phenomenon its name, concluded [5) that 
it requires only an everywhere positive curvature, not necessarily rotational symmetry. A 
rigorous proof of this is difficult because in the short-wavelength limit, this "clinging" of 
waves to the walls has to carry over to the ray picture, in which a generic oval cavity exhibits 
a transition to chaos [6, 7). Notwithstanding, this problem is fundament al to microresonator 
design [8], because the availability of high-Q modes is the foremost select ion criterium in an 
otherwise unbounded space of potential resonator shapes [9). Chaos can in fact make WG 
modes more useful, and moreover create other types of modes with desirabie properties, such 
as the bowtie pattern whose confocal geometry points the way toward the strong-coupling 
regime in combination with focused emission [10, 11). 

The robustness of whispering-gallery type intensity patterns in the modes of convex res­
onators extends even to nonlinear media [12). However, in that case the distinction to the 
widely studied phenomenon of vortex formation [13) becomes washed out: a WG mode is 
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also a vortex with . a phase singularity at points of vanishing intensity; for a circular res­
onator where the field is proportional to a Bessel function Jm(kr) ~ r m near the center 
r = 0, the vorticity is simply the angular momentum quantum number m. Therefore, since 
our aim is to address the fundamental aspect of the shape dependence of high-Q modes in 
microresonators, we focus here on linear media where amplification is taken into account by 
a negative imaginary part of the refractive index n. 

The model considered here can be derived from a homogenous cylinder by deforming its 
cross section and considering only propagation transverse to its axis. In this case, TE and 
TM polarization are decoupled and one has to consider only a scalar wave equation 

(1) 

assuming a steady state time dependence so that k is realo Here, n == n - in' inside the 
resonator and n = 1 outside, giving rise to an exterior and interior field, '!/Jext and '!/Jint, both of 
which are connected by the proper matching conditions at the dielectric interface, depending 
on polarization. For TM modes, '!/J denotes the electric field, which is parallel to the cylinder 
axis . In this case one finds that '!/J and its normal derivative are continuous at the interface, 
in analogy to quantum mechanics. 

The system is open because it radiates energy into the environment via its modallosses. 
This openness increases as n -t 1, and the closed-resonator limit is approached for n -t 00. 

This can be understood from Fresnel's formulas which imply total internal reflection for all 
angles of incidence X satisfying sinX > l/n == sinXc (Xc is the critical angle). Equation (1) 
can be recast as 

(2) 

where n is the real part of n as defined above, and k == k - i k n' /n is a complex wavenumber 
inside the cavity but reduces to k = k outside. If instead of this we also had k = k - i k n' /n 
outside, the solutions of Eq. (2) would be the quasibound states of the passive resonator, 
as they arise when one assumes a decaying time dependence <X exp[ -ick t - l' t], where 
l' = ckn'/n. 

For a quasibound (or metastabie) state, the field at distances larger than ~ c/(2'Y) from 
the cavity grows epxonentially due to retardation, but within this physical range '!/Jext vanishes 
as l' -t 0, so that one can write '!/Jext(r) ~ 'Y((r). If one expands the dependence of '!/Jint and ( 
on l' in a Taylor series, then to linear order the 'Y-dependence of Ç, but not that of '!/Jint, can 
be dropped in the full solution. Therefore, the stationary state of the active medium and 
the metastabie decaying state are identical to first order in l' within an area of order 1'-2. 

This approximate equivalence establishes a connection to the study of S-matrÎx poles from 
which quasibound states arise, see [14], and to dissipation in quantum mechanics [15, 16]. 
The recent resurgence of interest in these problems is motivated to a significant extent by our 
lack of understanding of the quantum-to-classical transition, in particular in the presence of 
classical chaos. Precisely this constellation is also present in Eq. (2) when one considers its 
short-wavelength limit for the generic case of a deformed cavity. 

In the context of laser resonators, there are three main differences to previous work on 
open systems in the context of quantum chaos, see also [17, 18]: firstly, we are interested 
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in the properties of individual states of an open system, as opposed to a statistical ensem­
ble. Secondly, an important quantity that can be studied for such individual states is their 
emission directionality, which in other open systems of chemical or nuclear physics is av­
eraged out. Finally, the classical limits of quantum mechanics with smooth potentials and 
optics with discontinuous refractive indices are qualitatively different [19]: the first yields 
determinist ic Hamiltonian mechanicsj the second leads to the probabilistic Fresnel formulas 
which moreover depend on polarization. 

In principle, Eq. (2) can be solved numerically to find the discrete complex k and the 
corresponding modes. One approach is based on the Rayleigh hypothesis [20, 21] which in 
our implementation for quasibound states [7] assumes that the fields can be expanded in 
cylinder functions as 

(3) 
m 

m 

a where apolar coordinate system with suitably chosen origin is used. These expansions 
always work inside sorne circle of convergence for 'l/Jint and outside some ot her circle for 'l/Jext, 
and for a large range of resonator shapes both convergence domains contain the dielectric 
interface where the matching conditions are imposed to obtain equations for the unknown 
coefficients Am and Bm. 

Computational cost can be high here, especially at short wavelengths, and hence a semi­
classical approximation can lead to simplifications while preserving physical insight. The ray 
picture is a cornerstone of classical optics, but its value in the study of open resonators only 
unfolds when the ray dynamics is studied in phase spa ce [22, 7, 23, 24], because Fresnel's for­
mulas determine escape probabilities according to the angle of incidence X, not the position 
of impact. One can make use of the physical information contained in this picture in two 
ways: Either one starts from Eq. (2) and takes a short-wavelength limit [25]j or alternatively, 
one starts from the classical dynamics and makes classical approximations that allow one to 
irnpose simple quantization conditions and thus make the connection to the resonator modes 
[8]. The question whether these different routes meet "in the middle" is not straightforward 
because the problem of semiclassical quantization in a generic deformed resonator is not 
completely solved as yet, owing to the coexistence of both regular and chaotic motion in 
their classical phase space. 

Among the advantages of the ray-based approach [8] are its Hexibility and computational 
ease. However, in order for the prescription outlined in Ref. [8] to correctly describe the 
limiting case of a circular cylinder, one must include the tunneling which in the circle is the 
only lOBS mechanism. This can be done in the ray picture with a curvature- and wavelength 
dependent "rounding" of Fresnel's formulas which the simulation uses at each reHection along 
a ray path. The idea used in [8] was to interpret the resonance widths of a cirular cylinder 
in terms of a "sequential-tunneling" ansatz: if the intensity of a quasibound state decays 
as exp[ - 2, t], this can be interpreted in the ray picture as the result of 1/ sequential escape 
attempts with reHection probability Po, where 1/ is the number of reHections the ray undergoes 
during the time t. In a circle of radius R, a trajectory characterized by the angle of incidence 
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X has 1/ = ct/(nL) reflections during t (c/n is the speed of light in the passive medium and 
L = 2R cos X is the geometric path length between reflections). Therefore, one expects a 
decay law ex: Po = exp[ct Inpo/(nL)]. Comparison with the wave result yields 

Po = exp(-2nVy/c) (4) 

An analytic approximation for 'Y in the circle with TM polarization has been derived in [26], 

---In -- x c [n - 1] 
2nR n+ 1 

Jm(kR)Ym_1(kR) - Jm- 1(kR)Ym(kR) 
J;'(kR) + Y~(kR) 

Using the semiclassical expression 

m = nkR sinx 

(5) 

(6) 

for the angular momentum [7], one then obtains the reflecticity in terms of purely classical 
variables, po(kR, sin X). It reduces to Fresnel's formula in the limit of large radius of curvature 
R, and by construction reproduces the width of a mode in the circle if applied locally at each 
reflection in in our classical ray model. The latter does not hold uniformly for a similar 
correction derived in [27]. 

One drastic consequence of the different classical limits for smooth and discontinuous 
potentials is that in the latter, all resonances of the passive dielectric are narrower than a 
certain maximum width if we choose the polarization in which 'Ij; is continuosly differentiable 
as in quantum mechanics. But in quantum mechanics (or for smooth index profiles) one 
generally finds resonances of arbitrarily large width at increasing k. The classical argument 
for this statement will be given further below. 

From the classical limit, it follows that there exists an upper bound on resonance widths 
for dielectric cavities with stepped index profiles and "quantum-mechanical" continuity con­
ditions on 'Ij; , because the reflectivity Po, (for polarization perpendicular to the plane of 
incidence), is bounded away from zero. This minimum PO,min willlimit the width of reso­
nances in a cavity of characteristic size l to 'Ymax = -c Inpo,min/(2nl). Smooth index profiles 
can also appear discontinuous on the scale of the wavelength but are eventually resolved as 
k -t 00, allowing arbitrarily small reflectivities at perpendicular incidence. 

However, extending these arguments to TE polarization where the electric field is in 
the plane of incidence, we furthermore conclude that a similar upper bound on the widths 
does not exist even for sharp interfaces. The reason is that Fresnel's forrnula yields zero 
reflectivity at the Brewster angle XB at sin XB = (1 + n2)-1. The normal derivative of 'Ij; 
(which now represents the magnetic field) exhibits a jump proportional to n2 at the dielectric 
interface - reminding us that this is a situation unique to optics. These general considerations 
have important implications for microresonator design especially at the large n typical for 
semicondutors, because in that case sinXB -t l/n, i.e., the "hole" in the reflectivity for TE 
polarization approaches Xc for total internal reflection from below. Taldng tunneling due to 
finite curvature into account as in Eq. (4), the rounded Fresnel forrnula then exhibits reduced 
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Figure 1: Exact resonanee widths of a circle (radius R, refractive index n = 3.29) at 35 < kR < 35.5 
versus angular momentum m. Dashed !ine indicates Xc in Fresnel's law, using Eq. (6). Also shown 
are the TM widths. The Brewster angle is at m :::: 34 and causes a peak in the TE widths. 

refiectivity even for incidence somewhat above Xc. One can approximately obtain the TE 
widths of the circle from 'Y = -cIm[CT]/(nR), 

( 

H(l) (kR) m )-1 
CT ~ arctan[ n (Dl - kR (n - l/n) ] 

Hm (kR) 
(7) 

This is illustrated in Fig. 1, where refractive index and kR are chosen close to those of 
Ref. [10] . The reason is that the quantum-cascade material used there emits preferentially 
TM polarization, whereas the pioneering MQW micro disk lasers with sub-micron thickness 
permit guiding in the vertical direction only for TE modes [cf. McCaIl [3]; there, TE/TM 
must be interchanged to get from the slab-waveguide to our cylinder convention]. It is thus 
important to ascertain whether the identical ovallateral design of the quantum-cascade lasers 
in Ref. [10] would also permit a microdisk laser to operate in TE polarization. 

The lasing mode in Fig. 3D of [10] was identified as a bowtie-shaped pattem corresponding 
to a periodic ray path with angle of incidence given by sinx ~ l/n, i.e., directly at the 
critical angle. That this mode provides high Q can be seen by comparing to 'Y in Fig. 1: 
assuming that the width 'YB of a bowtie mode results from the sequential application of Po 
as determined for the circle, the argument leading to Eq. (4) implies that 'YB ~ 'Y L/l wh ere 
L/l ~ 1.13 is the ratio of the classical path lengths between refiections in the WG orbit and 
bowtie, respectively. One sees that the TM line intersects the critical angle (corresponding 
to m = kR) at a much smaller width than the TE curve, and this Q-spoiling due to Brewster 
transmission is borne out by the actua! TE resonanees as weIl. This leads to the prediction 
that conventional micro disk lasers with a shape designed to yield a bowtie pattern just at 
Xc as in Fig. 3D of [10] will not lase. 

These ray arguments are known to yield large deviations from the true resonanee widths 
when the modes under consideration are quantized on stabIe phase-space domains in a par­
tially chaotic system, cf. Ref. [8] where this was attributed to chaos-assisted tunneling. The 
latter yields enhanced outcoupling and hence the true widths are underestimated by the se­
quentia! ray picture. Therefore, the above Q-spoiling for TE modes is not counteracted by 
a correction of this nature. The prediction of an upper bound for TM widths is also not 
atfected by chaos-assisted tunneling because it cannot be faster than the fasted classical pro-

Hentschel and Nöckel 221 



Or-----r--...,..--'T"""-......, 
-0.5 

:ê' 
Bowtie reflects at r the critical angle 

cr: -1 
.2;: 
8' -1.5 

...J 

-2 

3 3.5 
n 

4 

Figure 2: Width of a TM bowtie mode vs. refractive index, from numerical and ray calculations. 

cess, which in turn is Iimited by Po at sin X = O. Beyond this, however, quantitative widths 
for stable-orbit modes in mixed phase spaces are not provided by the ray model. 

The disagreement is illustrated in Fig. 2 for a bowtie mode similar to the ones studied in 
[25], as a function of n, but at a deformation of f = 0.16 [defined as in [10]] and nkR ~ 119.8. 
Since nk is the wavenumber inside the resonator, it should remain approximately independent 
of n as long the outcoupIig can be taken into account in the form of a boundary phase shift 
intermediate between Dirichlet and Neumann. Indeed, for the state shown in Fig. 2, the 
change in nkR in the plotted range of n is only ~ 0.2. The length scale R here is the 
radius of curvature at the points of reflection. At small n where Xc is larger than the angle of 
incidence of the bowtie, escape is classically allowed in Fresnel's formula and hence curvature 
corrections are unimportant. At n > 3, the tunneIing correct ion in Eq. (5) does improve on 
the classical Fresnel prediction ('Y = 0) but clearly still underestimates the true width. As 
tunneIing in general is definable only with respect to a classical expectation, we could again 
label the discrepancy as chaos-assisted tunneIing. However, a semiclassical theory starting 
from Eq. (2) which repro duces the exact behavior in Fig. 2 very weIl [25] can shed more light 
on the physics of the phenomenon. 
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