Alan Hibbert

Calculation of weak lines

ABSTRACT

We describe the situations which give rise to small os-
cillator strengths, particularly those which are unusually
small as a result of some form of cancellation. We discuss
through specific examples the type of calculation which
is needed to give accurate results.

INTRODUCTION

The importance of weak absorption lines in the determi-
nation of stellar and interstellar abundances has been
described by Keenan et al. (1989) in these proceed-
ings. We discuss in this article the theoretical situations
which give rise to weak lines and the calculation of the
corresponding small oscillator strengths (or alternatively
transition probabilities).

The most obvious division which separates transi-
tion probabilities into “large” and “small” is between
“allowed” (i.e. electric dipole or E1) transitions and
“forbidden” (i.e. electric quadrupole (E2) or higher mul-
tipole (EX) and magnetic multipole (M))) transitions.
The formula for transition probabilities of EA or M(A-1)
transitions contains the factor a?**1 where a (~ 1/137)
is the fine structure constant. The presence of this fac-
tor implies that for “forbidden” transitions, the transi-
tion probabilities are normally several orders of magni-
tude smaller than for “allowed” transitions. A discussion
of “forbidden” transitions is given by Zeippen(1989) in
these proceedings, so we shall not consider them in this
article. Instead, we shall investigate situations in which
oscillator strengths of “allowed” transitions are small -
that is, smaller than the norm for “allowed” transitions.

METHOD OF CALCULATION

In principle, the oscillator strength of a transition can be
expressed in an infinite number of different but (for exact
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calculations) equivalent forms. In practice, at most two
forms are calculated:

2AE
length : f; = v| < ¥y|r|¥2 > |2 (1)
2
ity : f, = —— v 2 2
velocity : f, 3gAEI < |V|¥ > | (2)

where AE is the transition energy (in atomic units), ¥,
and ¥, are the initial and final state wave functions and
g is the multiplicity of the state with lower energy (either
(2L+1)(2S+1) in LS coupling or (2J41) in intermediate
coupling). Of course, neither ¥; nor ¥; is known exactly,
so in general the two forms f; and f, give different values.
The extent of the agreement gives some measure of the
accuracy of the results, even though complete agreement
between them does not in itself guarantee their correct-
ness. Some convergence of that agreement as the wave
functions are improved is also necessary.

For atomic systems with more than one electron, the
wave functions cannot be determined exactly. In prac-
tice, they are usually expanded in infinite series of basis
functions. For systems with several electrons, the most
common expansion method is known as configuration in-
teraction (CI) of which MCHF (Multi-Configurational
Hartree-Fock) and SOC (Superposition Of Configura-
tions) are specific, important classes. In this method,

we expand
¥ =) aidi 3)
i
U2 =3 bivs O
J
so that, for example,
2AE )

fi= vl 33 aib; < gilrly; > 2
i
Each of {¢;}, {#;} is a configuration state function. For
many transitions for which f; > 0.1,a; 3 ai(i = 2,3,...)
and b, » bj(j = 2,3,...) where ¢; and ¥, refer to the
Hartree-Fock (HF) configurations of the two states (i.e.
those associated with the normal labelling of the states).
In such cases, the expansions (3) and (4) can be trun-
cated after a fairly small number of terms and still result
in quite accurate values for fj ( and similarly for f,). In
the next section, we shall consider situations where f; is,
for a number of different reasons, much smaller than 0.1.
In these cases, the expansions (3) and (4) have to be
much longer and the configurations chosen much more
carefully in order to achieve a level of accuracy which
gets even the first significant figure in f correct.

CAUSES OF SMALL OSCILLATOR STRENGTHS

We first discuss how abnormally small oscillator strengths
occur.



Cancellation in the transition integral

The dipole matrix element < ¢;|r|h; > in (5) contains
the radial integral

[ rPaa P (r)ar ®)

as a factor. In certain cases, this integral is approxi-
mately zero because the positive and negative parts of
the integrand almost cancel. If also the coefficients of ¢;
and t; are close to unity in the expansions (3) and (4)
respectively, so that all others are small, then the entire
oscillator strength will be small.

Two specific instances of this situation are the 2s 2S
- 3p 2P° transition in Li (Weiss 1963) and the 3s 2S -
4p 2P° transition in Mg II (Hibbert et al. 1983). The
states of these alkali-like ions are well represented by the
HF approximation so that the expansions (3) and (4) are
each dominated by a single term. For both ions, the ra-
dial integral is close to zero. Although that means that
the oscillator strength will be close to zero, it also means
that the contributions from other terms in (3) and (4),
while being small in absolute terms, are of comparable
magnitude to the HF contribution. We shall discuss the
Mg II transition in some detail later.

Cancellation due to CI

In the examples of the previous section, all the states
are nearly 100% pure; in many other cases, the states
are at least 90% pure (i.e. one coefficient in (3), say a,,
dominates the rest, with a3 > 0.9). But in some states,
there is strong CI mixing so that although one coefficient
is larger in magnitude than the rest, there are two and
sometimes more which are fairly large, say with a? > 0.2.
We have investigated astrophysically important transi-
tions involving such states for a number of singly ionised
species of second row elements. For example, in the case
of the 3s23p? 3P - 3s3p3 3P° transition in P II (Hibbert
1986), the ground state 3P is over 90% pure, but the 3P°
state has an expansion (4) of the form

¥(3P°) = 0.81 1,(353p®) + 0.50 t5(3s23p3d) + ...

so that b = 0.66, b3 = 0.25 and the remaining terms are
each fairly small.

This is a widely occurring situation. Other instances
include the 2s22p 2P° - 252p? 2D transition in C IT (Weiss
1967) where there is strong mixing between 2s2p? 2D and
2523d 2D; also the 3s3p 1P° - 3p? 1D transitions in Mg-
like ions (Froese Fischer and Godefroid 1982, Tayal and
Hibbert 1984, Baluja and Hibbert 1985); the 3s23p® 4S°
- 3s3p* P in S I1 (Ojha and Hibbert 1989); the 3s23p 2P°
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- 3s3p? 2D transition in Si II (Dufton et al. 1983); the
3s523p5 2P° - 353p® 2S tramsition in Ar IT (Hibbert and
Hansen 1987). In all these transitions of the form 3s23p®
- 3s3p™t1, the upper state exhibits strong CI mixing of
the form

byt (3s3p™+) + batpa(3s73p7713d) (7

with by,b2 3> b;, (i > 3), (Bauche et al. 1987). Moreover,
as Bauche et al. discuss, the CI mixing (7) leads to small
oscillator strengths because

b1 < | > +b2 < d|r|tp2 >0 (8

Neither of the two matrix elements in (8) is small, but
the combination (8) is. The two contributions almost
cancel each other out.

When this cancellation due to CI occurs, the contri-
butions from the remaining configurations play propor-
tionally a more significant réle than they would in the
absence of such cancellation. We shall discuss specific
cases later.

Intercombination lines

The situations described above assumed LS coupling of
angular momentum. The selection rules for transitions
in LS coupling require AS =0 and AL = 0 or 1 with
L =0 — L' = 0 excluded. In that approximation, E1
transitions of the form 1S - 3P° are forbidden; i.e. their
oscillator strengths are identically zero. If the fine struc-
ture of the 3P° state is taken into account, then although
the oscillator strength of the 1Sg - 3Pg, 3P$ E1 transitions
remain zero, that of the 1Sy - 3P¢ transition becomes
non-zero. Even in the approximation of one configura-
tion per LS symmetry, we can write

¥,(*So) = a1¢1(*So) + a262(*Po) ()]
¥,(°P3) = b1 (°P3) + batha(*PY) (10)
so that
< U |r|¥2 >= arba < dr|r|9h2 > +azby < dalrlvh (> ;
11

Although a; and b, are generally small, they are non-zero
so that the oscillator strength is non-zero, but normally
small. We shall discuss important special cases in the
next section.

EXAMPLES OF SMALL OSCILLATOR STRENGTHS

In this section, we discuss the calculation of a number
of oscillator strengths in which we have used the general
CI code CIV3 (Hibbert 1975, Glass and Hibbert 1978),
which is of SOC type.



3525 —-4p?P° in Mg II

An extensive CI calculation of the oscillator strength of
this transition was undertaken by Hibbert et al. (1983).
Results were presented at different levels of approxima-
tion which we display in Table 1.

Table 1. Oscillator strengths of the 3s 2S - 4p 2P°
transition in Mg II.

Hibbert et al. (1983) Other calculations
fl fu fl fv
A: 0.00028 0.00033 0.00033*
B: 0.00123 0.00101 0.00097°> 0.00095
C: 0.00038 0.00037

Notes - a : Biémont (1975); b : Froese Fischer (1976)

The single configuration (HF) approximation gives oscil-
lator strengths (calculation A) in close agreement with
the work of Biémont (1975): the values are small, and
length and velocity forms agree quite closely. The in-
troduction of configurations describing the polarisation
of the core - particularly 2p®3d4p 2S and 2p®3d3s 2P°
- increase the oscillator strength by a factor of three or
four (calculation B). Again the values of Hibbert et al.
are in general agreement with an MCHF calculation of
Froese Fischer (1976) which similarly includes the effect
of core polarisation. Again the length and velocity values
agree satisfactorily. This shows that agreement between
length and velocity forms is not in itself a guarantee of
accuracy.

1t is interesting to consider how such a substantial
change arises. If we consider the expression

AE\}
F;= (23—gE-) a;b; < ¢ilrlv; > (12)

then (5) becomes

2

fi= (ZZ F,-,-) (13)
i

In the velocity form, the equivalent F;; associated with
the two core polarising configurations given above are
-0.052 and 0.060. Their combined effect is itself only
0.008, but because the interactionFy; between the HF
configurations is only 0.018, the proportionate effect is
substantial. Other F;; also contribute to the considerable
increase in fj.

Hibbert et al. went further than this, and added
other configurations, the most significant of which were
2p8ns 25 and 2pfnp 2P, especially 2p®4s 2S (calculation
C). The effect was to reduce once again the oscillator
strength to around 0.0004. It is particularly interesting
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that the inclusion of 2p®4s 2S should be so striking. In
the approximation which includes only 2p®ns ?S configu-
rations in the ground state wave function, its coefficient
a; would be zero, (Brillouin’s theorem) : the Hamiltonian
matrix element between 3s 2S and ns 2S is zero. These
matrix elements remain zero as more configurations are
added, but the expansion coefficients a; change to albeit
small non-zero values and the F;; associated with the 4s
2§ and 4p 2P° configurations has the value -0.017.

For this transition, all these values of F;; are small.
For an oscillator strength in the range 0.1 to 1.0, such
as for the 3s 2S - 3p 2P° transition, the non-HF con-
tributions F;; have only a small influence on the value
obtained. In many calculations, the corresponding con-
figurations could probably be omitted. But because the
oscillator strength is so small in this case, it is crucial
that they are included, and an extensive CI calculation
be undertaken, if accurate results are to be achieved.

The implications for interstellar magnesium abun-
dances using these accurate results are discussed by Mur-
ray et al. (1984).

3s23p? 3P - 3s3p°3P° in P II

We remarked earlier that the 3P° state is dominated not
just by the 3s3p® configuration but by a linear combi-
nation of 3s3p® and 3s23p3d, as in (7). It is important
to realise that the variationally optimum 3d function for
this linear combination is not the same as that for the
3523p3d 3P° state. In fact, the 3s3p® configuration in-
teracts strongly with the 3s?3pnd Rydberg : the
wave function for each member contains a substantial
contribution of 3s3p3, (though decreasing with n). Al-
ternatively, if spectroscopic radial functions Pnd(r) are
used in the configurations in the expansion of the 3s3p®
state :

¥(33p°) = b¥1(3839%) + Y bnta(3s73pnd)  (14)

then the summation will need to contain many terms.
Even then it will not be complete : it should also in-
clude the continuum (Hansen 1977). This problem can
be overcome by replacing (14) by

¥(3s3p°) = b1 (353p%) + batha(3s73p3d)  (15)

in which the radial function Pg(r) is optimised on the
lowest energy eigenvalue of the Hamiltonian matrix
< ¢i|H|¢; >, using the variational principle directly as
in the SOC method (e.g. Hibbert 1975) or via MCHF
equations (e.g. Froese Fischer 1978).

Hibbert(1986) discussed a set of calculations of the os-
cillator strength for this transition, with different levels
of approximation. In all cases the oscillator strength is
small. It is sufficient to look at the simplest of his calcula-



Table 2. Oscillator strengths of the 3s?3p? 3P - 3s3p®

SP° transitionin P II.
f fo  AE(3s3p® - 3s23p3d)
A 0.0255 0.0304 0.1407
B 0.0192 0.0227 0.1282
C 0.0110 0.0113 0.1227
Expt 0.017 £ 0.005* 0.1227

Notes - a : Livingstone et al. (1975) ; energies in atomic
units.

tions to see how the smallness arises. In terms of (12) and
(15), F1; = 0.440, Fy; = -0.280. The sum is 0.160. Hence
by (13) an oscillator strength which would be 0.194 with-
out the CIin (15) has been reduced to 0.026, a change of
almost an order of magnitude (see calculation A of Table
2). The addition of further configurations reduced the
oscillator strength still more (calculation B).

Although we noted above that Pg; differs considerably
from the 3d radial function appropriate to the 3s23p3d
3Po gtate, it transpires that it is important that at least
the 3523p3d 3P° state is as accurately represented as is
3s3p3 3P°, if the 3523p2 3P - 3s3p3 3P oscillator strength
is to be calculated accurately. The two states interact
strongly, over and above (15), and the extent of their
mixing influences the coefficients b; for each state and
thence the oscillator strength. A crucial measure of how
accurately the mixing has been calculated is the energy
splitting A E(3s3p3 - 3523p3d). It can be seen from Table
2 that in this regard calculation B represents a substan-
tial improvement over calculation A, but the splitting
is still not small enough (so the mixing is not strong
enough). Calculation B is an extensive CI calculation,
and a final refinement can be made by making small ad-
justments to the diagonal Hamiltonian matrix elements,
so that the eigenvalue separation correponds to the as-
sociated experimental energy separation. A justification
for this process has been given by Brage and Hibbert
(1989). It is necessarily approximate, but this fine tuning
generally leads to results which are more accurate than
the ab initio results from which they are derived. We give
the resulting values as calculation C in Table 2. They
are in good agreement with the best and most recent ex-
perimental values obtained using beam-foil spectroscopy.
The results of calculation C were used by Dufton et al.
(1986) to determine the abundance of phosphorus in the
interstellar medium.

Again, as in our first example, an extensive CI cal-
culation is necessary to obtain results which are at all
accurate. It is worth pointing out that results based
on CI expansions such as (14), where “spectroscopic or-
bitals” or “real state orbitals” are used, may indeed ex-
hibit cancellation effects, but they will normally not be
reliable because they do not treat the interaction with
the continuum. Indeed, a finite CI treatment necessi-
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tates a proper variational treatment of the form of (15).
Semi-empirical methods for handling such cases will not
normally be adequate.

3s2 15y — 3s3p 3P, in Si Il

This transition was discussed by Ojha et al. (1988) fol-
lowing a similar calculation for Al II by Hibbert and
Keenan (1987). This intercombination line has a non-
zero oscillator strength because of the fine-structure mix-
ing of 3s3p 3P¢ and 1P§, and to a lesser extent 3s? 1Sy,
3p? 1S, and 3p? 3Py. To get that mixing right, it is nec-
essary to obtain wave functions for all these states which
give accurately the energy separations.

We compare in Table 3 the value of the associated
emission transition probability calculated by Ojha et al.
with that from experiment and those obtained by other
theorists. All three calculations lie within a few per
cent of the experimental value. Each involves extensive
CI though the details of the calculations are different.
Nussbaumer (1986) used the SUPERSTRUCTURE code
(Eissner et al. 1974) which is of SOC type with the radial
functions obtained using a scaled-Thomas-Fermi poten-
tial. Laughlin and Victor (1979) used a model poten-
tial approach which incorporates core polarisation (see
Laughlin 1989 - these proceedings - for further discussion
of this method). Ojha et al. (1988) used CIV3, together
with the fine-tuning which we discussed above.

Table 3. Transition probabilities of the 3s? 1S - 3s3p
3P$ transition in Si III :
Comparison of results.

Source Nature of Work A-value (s71)
a CI with 1.78 x 104
model potential
b Large-scale CI 1.8 x 10*
c Large-scale CI 1.672 x 104
with core polarisation
d Lifetime measurement 1.67 X 10*

using ion-trap
Notes - a : Laughlin and Victor (1979); b : Nussbaumer
(1986); c : Ojha et al. (1988); d : Kwong et al. (1983).

It is this fine-tuning which leads to such good agree-
ment with experiment. We display in Table 4 a series of
calculations using CIV3, both in ab initio form (“uncor-
rected”) and with the fine-tuning added (“corrected”).
The three calculations consisted of :

A : valence-shell correlation only

B : A + core polarisation treated by model poten-

tials (similar to the scheme of Laughlin and
Victor)



C: A + extra configurations to allow for the ex-
plicit polarisation of the core

Table 4. Transition probabilities of the 352 !Sq - 3s3p
3P$ transition in Si III:
Convergence of calculations. (Ojha et al. 1988)

Calculation Uncorrected Corrected
A° 1.368 x 104 1.642 x104
B 1.799 x10* 1.683 x104
C 1.649 x10* 1.672 x10*

Note - a : see text.

The “uncorrected” transition probabilities vary quite sub-
stantially. This is mainly because the 3P§ - 1P{ energy
splitting is over-estimated by 5% in calculation A, under-
estimated by 3% in calculation B, whereas in calcula-
tion C it is correct to within 0.2%. On the other hand,
the “corrected” results, obtained by adjusting diagonal
matrix elements so that the eigenvalue differences agree
with the experimental energy differences, are much more
consistent. This demonstrates that this process of fine-
tuning an already good calculation can lead to rather
accurate transition probabilities, especially for intercom-
bination lines.

CONCLUSIONS

We have described in this article a variety of situations
which give rise to small oscillator strengths . Their com-
mon feature is that, for a reliable value to be obtained
theoretically, a careful and extensive calculation is nec-
essary, and preferably one which gives special attention
to those particular transitions. Values of small oscillator
strengths which arise from simpler calculations, or from
calculations which consider simultaneously a wide range
of transitions, must be treated with caution, because it is
unlikely that the values so obtained will have converged
with respect to the addition of further configurations.
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