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ABSTRACT 

We describe the situations which give rise to small os­
cillator strengths, particularly those which are unusually 
small as a result of some form of cancellation. We discuss 
through specific examples the type of calculation which 
is needed to give accurate results. 

INTRODUCTION 

The importance of weak absorption lines in the determi­
nation of stellar and interstellar abundances has been 
described by Keenan et al. (1989) in these proceed­
ings. We discnss in this article the theoretical sitnations 
which give rise to weak lines and the calculation of the 
corresponding small oscillator strengths (or alternatively 
transition probabilities). 

The most obvious division which separates transi­
tion probabilities into "large" and "small" is between 
"allowed" (i.e. electric dipole or El) transitions and 
"forbidden" (i.e. electric quadrupole (E2) or higher mul­
tipole (E.~) and magnetic multipDIe (M~» transitions. 
The formula for transition probabilities of E~ or M(~-l) 
transitions contains the factor (}2Hl where (} (~ 1/137) 
is the fine structure constant. The presence of this fac­
tor implies that for "forbidden" transitions, the transi­
tion probabilities are normally several orders of magni­
tude smaller than for "allowed" transitions. A discussion 
of "forbidden" transitions is given by Zeippen(1989) in 
these proceedings, so we shall not eonsider them in this 
article. Instead, we shall investigate situations in which 
oscillator strengths of "allowed" transitions are small -
that is, smaller than the norm for "allowed" transitions. 

METHOD OF CALCULATION 

In principle, the oscillator strength of a transition can be 
expressed in an infinite number of different but (for exact 
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calculations) equivalent forms. In practice, at most two 
forms are caleulated: 

length :/, = 2AEI < .llrl.2 > 12 (1) 
39 

(2) 

where AE is the transition energy (in atomie units), .1 
and .2 are the initial and final state wave functions and 
9 is the multiplicity of the state with lower energy (either 
(2L+1)(2S+1) in LS coupling or (21+1) in intermediate 
coupling). Of course, neither .1 nor .2 is known exactly, 
so in general the two forms /, and /v give different values. 
The extent of the agreement gives .. ome measure of the 
accuracy of the results, even though complete agreement 
bet ween them does not in itse1f gnarantee their correct­
ness. Some eonvergenee of that agreement as the wave 
functions are improved is also necessary. 

For atomie systems with more than one electron, the 
wave functions cannot be determined exactly. In prac­
tice, they are usually expanded in infinite series of basis 
functions. For systems with several electrons, the most 
common expansion method is known as configuration in­
teraction (Cl) of which MCHF (Multi-Configurational 
Hartree-Fock) and SOC (Superposition Of Configura­
tions) are specific, important classes. In this method, 
we expand 

(3) 

(4) 

so that, for example, 

Each of {4>i}, {tP;} is a configurotiorutate function. For 
many transitions for which" ~ 0.1, al > ai(i = 2,3, .. . ) 
and bI > b;(j = 2,3, ... ) where 4>t and tPl refer to the 
Hartree-Fock (HF) configurations of the two states (i.e. 
those associated with the normallabelling of the states). 
In such cases, the expansions (3) and (4) can be trun­
cated af ter a fairly small number of terms and still result 
in quite accurate values for /, ( and similarly for /v). In 
the next section, we shall consider situations where /, is, 
for a nnmber of different reasons, much smaller than 0.1. 
In these cases, the expansions (3) and (4) have to he 
much longer and the configurationa chOllen much more 
carefully in order to achieve a level of a.ccuracy wbich 
gets even the fint significant figure in " correct. 

CAUSES OF SMALL OSCILLATOR STRENGTHS 

We mst discuss how abnormally small oscillator Itrengths 
occur. 



Concellation in tM tromition integral 

The dipole matrix element < 4>ilrl,pj > in (5) contains 
the radia.l integra.l 

(6) 

as a factor. In certain cases, this integra.l is approxi­
mately zero because the positive and negative pa.rts of 
the integrand almost cancel. If a.lso the coefficients of 4>i 
and ,pj are close to unity in the expansions (3) and (4) 
respectively, sa that a.ll others are sma.ll, then the entire 
oscillator strength will be sma.ll. 

Two specific instances of this situation are the 2s 2S 
- 3p 2po transition in Li (Weiss 1963) and the 3s 2S -
4p 2po transition in Mg n (Ribbert et al. 1983). The 
states of these alkali-like iona are well represented by the 
HF approximation sa that the expansions (3) and (4) are 
each dominated by a single term. For both ions, the ra.­
dia.l integra.l is close to zero. Although that mea.ns that 
the oscillator strength will be close to zero, it a.lso mea.ns 
that the contributions from other terms in (3) and (4), 
while being sma.ll in absolute terms, are of comparabie 
magnitude to the HF contribution. We sha.ll discuss the 
Mg 11 transition in some deta.illater. 

Concellation due U> Cl 

In the examples of the previous section, a.ll the states 
are nearly 100% pure; in many other cases, the states 
are at least 90% pure (i.e. one coefficient in (3), say Oh 

dominates the rest, with o~ ~ 0.9). But in same states, 
there is strong Cl mixing sa that a.lthough one coefficient 
is larger in magnitude than the rest, there are two and 
sometimes more which are fairly large, say with 01 ~ 0.2. 
We have investigated astrophysica.lly important transi­
tions invOlving such states for a number of singly ionised 
species of second rowelements. For example, in the case 
of the 3s23p2 3p _ 3s3p3 3po tra.nsition in P D (Ribbert 
1986), the ground state 3p is over 90% pure, but the 3po 
state has an expa.nsion (4) of the form 

sa that b~ = 0.66, bJ = 0.25 and the rema.ining terms are 
each fairly sma.ll. 

This is a widely occurring situation. Other instances 
include the 2s22p 2po - 2s2p2 2D tra.nsitionin C n (Weiss 
1967) where there is strong mixing between 2s2p2 2D and 
2s2Jd 2D; a.lso the 3s3p 1 po - 3p2 1 D tra.nsitions in Mg­
like ions (Froese Fischer and Godefroid 1982, Taya.l and 
Ribbert 1984, Ba.luja and Ribbert 1985); the 3s23p3 4So 
- 3s3p4 4p in S 11 (Ojha and Ribbert 1989); the 3s23p 2po 
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- 3s3p2 2D transition in Si 11 (Dufton et al. 1983); the 
3s23p5 2po _ 3s3p6 2S transition in AI n (Ribbert and 
Hansen 1987). In a.ll these transitions of the form 3s23pD 
- 3s3pD +J, the upper state exhibits strong Cl mixing of 
the form 

with bh b2 > bi, (i ~ 3), (Bauche et al. 1987). Moreover, 
as Bauche et al. discuss, the Cl mixing (7) leads to sma.ll 
oscillator strengths beca.use 

Neither of the two matrix elements in (8) is sma.ll, but 
the combination (8) Î8. The two contributions almost 
cancel each other out. 

When this cancellation due to Cl occurs, the con tri­
butions from the remaining configurations play propor­
tiona.lly a more significant róle than they would in the 
absence of such cancellation. We sha.ll discuss specific 
cases later. 

Intercombination line8 

The situations described above assumed LS coupling of 
angular momentum. The selection rules for transitions 
in LS coupling require AS = 0 and AL = 0 or 1 with 
L = 0 -+ L' = 0 excluded. In that approximation, El 
transitions of the form IS - 3po are forbidden; i.e. their 
oscillator strengths are identica.lly zero. If the fine stroc­
ture of the 3po state is taken into account, then a.lthough 
the oscillator strength of the lSO - 3Pg, 3p~ El transitions 
remain zero, that of the lSO - 3p~ transition becomes 
non-zero. Even in the approximation of one conJigura.­
tion per LS symmetry, we C&Il write 

.leSo) = ol4>teSo) + 02t!>2(3PO) (9) 

.2epn = b11Ptepn + ~~e~) (10) 

sa that 

< .llrl.2 >= 01b2 < 4>tlrl~ > +02bt < t!>2lrl1Pt > 
(11) 

Although 02 and ~ are genera.lly sma.ll, they are non-zero 
sa that the oscillator strength is non-zero, but norma.lly 
sma.ll. We sha.ll discuss important special cases in the 
next section. 

EXAMPLES OF SMALL OSCILLATOR STRENGTHS 

In this section, we discuss the ca.lculation of a number 
of oscillator strengths in which we have used the genera.l 
Cl code CIV3 (Ribbert 1975, Glass and Ribbert 1978), 
which is of SOC type. 



3s 25 - 4p 2po in Mg 11 

An extensive Cl calculation of the oscillator strength of 
this transition was undertaken by Ribbert et al. (1983) . 
R.esults were presented at different levels of approxima­
tion which we display in Table 1. 

Table 1. Oscillator strengths of the 3s 25 - 4p 2po 
transition in Mg 11. 

Ribbert et al. (1983) Other calculations 

I, Iv I, Iv 
A: 0.00028 0.00033 0.00033· 
B: 0.00123 0.00101 0.00097b 0.00095 
C: 0.00038 0.00037 

Notes - a : Biémont (1975); b : Froese Fischer (1976) 

. The single configuration (HF) approximation gives oscil­
lator strengths (calculation A) in close agreement with 
the work of Biémont (1975): the values are small, and 
length and velocity forms agree quite closely. The in­
troduction of configurations describing the polarisation 
of the core - partieularly 2pS3d4p 25 and 2ps3d3s 2po 
- increa.se the oscillator strength by a factor of three or 
four (calculation B). Again the values of Ribbert et al. 
are in general agreement with an MCHF calculation of 
Froese Fischer (1976) which similarly includes the effect 
of core polarisation. Again the length and veloàty values 
agree satisfactorily. This shows that agreement hetween 
length and velocity forms ia DOt in itself a guarantee of 
accuracy. 

It is interesting to consider how nch a lubstantial 
change arises. If we consider the expression 

(2t..E)~ Fij = 39 o.;"j < I/Iilrl~j > (12) 

then (5) becomes 

(13) 

In the velocity form, the equivalent Fij associated with 
the two core polarising configurations given above are 
-0.052 and 0.060. Their combined effect is itself only 
0.008, but because the interactionFn between the HF 
configurations is only 0.018, the proportionate effect is 
substantial. Other Fij al80 contribute to the considerabie 
increa.se in I,. 

Ribberi et al. went further than thia, and added 
other configurations, the most significant of which were 
2psns 25 and 2psnp 2po, especially 2ps4s 25 (calculation 
Cl. The effect was to reduce once again the oscillator 
strength to around 0.0004. It is pariieularly interesting 
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that the inclusion of 2ps4s 25 should he 80 striking. In 
the approximation which includes only 2ptlns 25 configu­
rations in the ground state wave function, its coefIicient 
ai would be zero, (Brillouin'a theorem): the Hamiltonian 
matrix element hetween 3s 25 and ns 25 ia zero. These 
matrix elements remain zero as more configurations are 
added, but the expansion coefIicients 0.; change to alOOt 
small non-zero values and the Fij associated with the 4s 
25 and 4p 2po configurations has the value -0.017. 

For this transition, all these values of F;j are small. 
For an oscillator strength in the range 0.1 to 1.0, such 
as for the 3s 25 - 3p 2po transition, the non-HF con­
tributions F;j have only a small influence on the value 
obtained. In many calculations, the corresponding con­
figurations could probably he omitted. But because the 
oscillator strength is 80 small in this case, it is crucial 
that they are included, and an extensive Cl calculation 
be undertaken, if accurate resuIts are to he achieved . 

The implications for interstellar magnesium abun­
dances using these accurate results are discused by Mur­
ray et al. (1984). 
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3s23p2 3p _ 3a3r Spo in PH 

We remarked earlier that the spo atate ia dominated not 
jut by the 3s3ps configuration but by a linar combi­
nation of 3s3p3 and 3s23pld, as in (7). It ia important 
to realise that the variationallyoptimum ld function fot 
this linear combination is not the same as that lor the 
3s23p3d Spo atate. In fact, the 3s3ps configuration in­
teracts strongly with the 3s23pnd Rydberg series: the 
wave function for each member containa a lubstantial 
contribution of 3s3ps, (though decreasing with nl. Al­
ternatively, if spectroscopie radial functions p",,(r) are 
used in the configurations in the expansion of the 3s3ps 
state: 

9(3a3p3) = "1~1(3a3p3) + I)n~n(3a23pnd) (14) 
n 

then the summation will need to contain many terms. 
Even then it will not be complete : it should also in­
clude the continuum (Hansen 1977). This problem can 
be overcome by replacing (14) by 

in which the radial function Pair) is optimised on the 
lowest energy eigenvalue of the Hamiltonian matrix 
< l/IilHll/lj >, using the variational principle directly as 
in the 50C method (e.g. Ribbert 1975) or via MCHF 
equations (e.g. Froese Fischer 1978). 
Ribbert(1986) discussed a set of calculations of the os­
cillator atrength for this transition, with different levels 
of approximation. In all cases the oscillator strength ia 
amall. 1t is aufticient to look at the simplest ofhis calcula-



Table 2. Oscillator strengths of the 3s'3p';sP - 3s3p3 
3po transition in P U. 

A 0.0255 0.0304 0.1401 
B 0.0192 0.0221 0.1282 
C O.OllO 0.Oll3 0.1221 

Expt 0.011 ± 0.005· 0.1221 
Notes - a : Livingstone et al. (1915) ; energies in atomic 
units. 

tions to see how the smallness arises. In terms of (12) and 
(IS), Fn = 0.440, F12 = -0.280. The sum is 0.160. Bence 
by (13) an oscillator strength which would he 0.194 with­
out the Cl in (IS) has been reduced to 0.026, a change of 
almost an order of magnitude (lee calculation A of Table 
2). The addition of further CODfigurations reduced the 
oscillator strength atill more (calcalation B). 
Although we noted above that Pii cWrera conaiderably 
from the 3d radial function appropriate to the 3s'3p3d 
3po state, it transpires that it ia important that at least 
the 3s'3p3d 3po state is as aceurately repreaented as is 
3s3p3 3po, if the 3s'3p' 3p _ 3s3p3 3po oscillator atrength 
is to be calcu1ated aceurately. Thè two atate. interact 
strongly, over and above (15), ad the extent of their 
mixing influencea the coefIi.clenta 'i for each atate and 
thence the oscillator atrength. A ~cial measure of how 
accurately the mixing has been caiculated ia the energy 
splitting ÓE(3s3p3 - 3s'3p3d). It can he leen from Table 
2 that in this regard calcu1ation B represents a substan­
tial improvement over calculation A, ~ut the splitting 
is still not small enough (80 the mixing is not strong 
enough). Calculation B is an extensive Cl calculation, 
and a final refinement can be made by making 8mall ad­
justments to the diagonal Bamiltonian matrix elements, 
80 that the eigenvalue separation correponds to the as­
sociated experimental energy separation. A justification 
for this process has been given by Brage and Bibbert 
(1989). It is necessarily approximate, but this fine tuning 
generally leads to results which are more accurate than 
the 116 initia results from which they are derived. We give 
the resulting values as calculation C in Table 2. They 
are in good agreement with the best and most recent ex­
perimenta! values obtained using beam-foilspectroscopy. 
The results of calcu1ation C were used by Dufton et al. 
(1986) to determine the abundance ofphosphorus in the 
interstel1ar medium. 

Again, as in our fint example, an extensive Cl cal­
culation is necessary to obtain reaults which are at all 
accurate. It is worth pointing out that reaults based 
on Cl expansions such as (14), where "spectroscopic or­
bitals" or "real state orbitals" are used, may indeed ex­
hibit cance1lation dects, but they will normally not be 
re1iable because they do not treat the interaction with 
the continuum. Indeed, a finite Cl treatment necessi-
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tates a proper variational treatment of the form of (15). 
Semi-empirical methods for handling auch cases wi1l not 
normally be adequate. 

This transition was discussed by Ojha et al. (1988) fol­
lowing a similar calculation for Al 11 by Bibbert and 
Keenan (1981). This intercombination llne has a non­
zero oscillator strength because of the fine-atructure mix­
ing ~f 3s3p 3Pî and lPî, and to a lesaer extent 3s' lSO, 
3p' lSo and 3p' 3po. To get that mixing right, it ia nec­
essary to obtain wave functions for all these statea which 
give accurately the energy aeparations. 

We compare in Table 3 the value of the associated 
emission transition probability calculated by Ojha et aL 
with that from experiment and those obtained by other 
theorists. All three calculations lie within a few per 
cent of the experimental value. Each involves extensive 
Cl though the details of the calculations are cWrerent. 
Nussbaumer (1986) used the SUPERSTRUCTURE code 
(Eissner et al. 1914) whichiaofSOC typewith the radial 
functions obtained uaing a scaled-Thomas-Fermi poten­
tial. Laughlin and Victor (1919) used a model poten­
tial approach which incorporates core polarisation (see 
Laughlin 1989 - these proceedings - for further disCU8sion 
of this method). Ojha et al. (1988) used CIV3, together 
with the fine-tuning which we discussed above. 

Table 3. Transition probabilities of the 3s' lSO - 3s3p 
3 Py transi tion in Si III : 
Comparison of results. 

Source Nature of Work A-value (s-l) 

a Cl with 1.18 X 10· 
model potential 

b Large-scale Cl 1.8 x lO-C 

c Large-scale Cl 1.612 x 10· 
with core polarisation 

d Lifetime measurement 1.61 x 10· 
uaing ion-trap 

Notes - a: Laughlin and Victor (1919); b : Nussbaumer 
(1986); c : Ojha et al. (1988); d : Kwong et al. (1983) . 

It is this fine-tuning which leads to such good agree­
ment with experiment. We display in Table 4 a series of 
calculations using CIV3, both in ab initia form ("uncor­
rected") and with the fine-tuning added ("corrected"). 
The three calculations conaisted of : 

A : valence-shel1 correlation only 
B : A + core polarisation treated by model poten­

tials (similar to the scheme of Laughlin and 
Victor) 



C : A + extra configuratioru to allow for the ex­
plicit polarisation of the core 

Table 4. Transition probabilities of the 3a' lSo - 3s3p 
3Py transition in Si In: 
Convergence of calculationa. (Ojha et oL 1988) 

Calculation Uncorrected 
Aa 1.368 X U)4 
B 1.799 xl()4 
C 1.649 xl()4 

Note - a : lee text. 

Corrected 
1.642 xl()'1 
1.683 xl()4 
1.672 xl()4 

The "uncorrected" transition probabilities vazy quite sub­
atantially. This is mainly because the 3Pî - tPy energy 
splitting is over-estimated by 5% in calculation A, under­
estimated by 3% in calculation B, whereas in calcula.­
tion C it ia correct to within 0.2%. On the other hand, 
the "corrected" results, obtained by adjusting diagonal 
matrix elements 80 that the eigenvalue differencea agree 
with the experiment al energy differences, are much more 
consistent. This demonstrates that this process of fine­
tuning an already good calculation can lead to rather 
accurate transition probabilities, especially for intercom­
bination linea. 

CONCLUSIONS 

We have deacribed in this artide a variety of situations 
which give riae to small oscillator atrengths . Their com­
mon feature is that, for a reliable value to be obtained 
theoretically, a careful and extensive calculation ia nec­
esaary, and preferably one which givea special attention 
to those particular transitions. Values of amalI oscillator 
atrengths which arise from simpier calculations, or from 
calculations which consider simultaneously a wide range 
of transitions, must be treated with caution, because it is 
unlikely that the values 80 obtained wil! have .converged 
with respect to the addition of further configurationa. 
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