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ABSTRACT

Model-potential methods which include long-range polari-
sation terms are briefly reviewed. Transition
wavelengths and oscillator strengths for dipole allowed
transitions in some one- and two-valence-electron ions
are presented. An alternative form of the dipole operator
for use with the Coulomb approximation is introduced.
Fine-structure splittings and intercombination transitions
are also considered.

INTRODUCTION

Transition wavelengths and oscillator strengths are funda-
mental quantities in atomic spectroscopy and are essential
for the interpretation of solar and stellar spectra and for
diagnostic spectroscopy of fusion plasmas. Accurate
experimental measurements of oscillator strengths are not
usually available, and thus there is a great need for pre-
cise theoretical values.

Model-potential methods, in which the effects of the
core electrons of an atomic system are represented by
effective operators, present an attractive approach for
describing the valence-electron properties (such as energy
spectra and transition rates) of few-valence-electron sys-
tems. By explicitly including only the optical electrons
in the calculations they simplify the computational tasks
dramatically and, in favourable cases, they provide highly
accurate results. They also provide a simple physical pic-
ture of the system.

An extensive number of model-potential approaches
have been employed and it is not our intention to review
these here (see Hibbert (1982) and Laughlin and Victor
(1988) for recent reviews). Instead we concentrate on our
approach to the problems of predicting transition
wavelengths and oscillator strengths in alkali- and
alkaline-earth-like systems and illustrate the high accu-
racy that may be achieved. But first we revisit the sim-
plest model-potential method, the Coulomb approxima-
tion, which has been widely used to calculate oscillator
strengths since the early applications to lithium and
sodium by Trumpy (1930) and to a variety of one- and
two-electron systems by Bates and Damgaard (1948).
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THE COULOMB APPROXIMATION FOR OSCILLA-
TOR STRENGTHS

For a one-valence-electron ion consisting of a nucleus of
charge Z and N+1 electrons, the optical electron is con-
sidered to move in the Coulomb potential (Z-N)/r with
energy E, where —E is the experimental ionisation poten-
tial. Because the wave functions thus determined are
irregular at the origin, they are set equal to zero close to
the nucleus, say 0 < r < r., and the length form r of the
electric dipole operator is used to emphasise the asymp-
totic region far from the nucleus where the approximation
should be good. For the method to be successful in prac-
tice it is clear that dipole matrix elements should not be
sensitive to the choice of r.. An interesting question is:
can we find a form of the electric dipole operator which
has longer range than the length form r? One such form
may be derived quite simply from the commutator

[H,rr] = —2r—rVr—2rir

5 1)
r
which gives (Laughlin, 1989a)
(wilrlyz) = (rya Iblrys), ()
where
b= -}[(E,—E,)r+v+2i%]. 3)

When y,; and y, are approximate wave functions,
(vilr|w,) will not be equal to (ry;|b|ry,) and the
latter expression apparently provides an attractive alterna-
tive long-range form of the dipole operator for use with
Coulomb wave functions. In practice, however, no real
advantage seems to be gained with this formulation. In
fig. 1 we show how the 3d-4p transition matrix element
for the sodium atom varies with r.. Generally, there is
little to choose between r and rbr as far as sensitivity to
r. is concerned. A problem with rbr is that it is not Her-
mitian and, in fact, the mean of (ry,|b|ry,) and
(ryz|blry,)" is {y;|r|y,), even for approximate (dif-
ferentiable) wave functions y; and y,.

FORM OF THE MODEL POTENTIAL

Many forms of model potential have been used in practice
(see, for example, Hibbert (1982) and Szasz (1985), and
references therein). Our formulation (Laughlin et al,
1978, Fairley and Laughlin, 1984) is based on a core
potential derived from Hartree-Fock orbitals plus long-
range polarisation terms. For a 1-valence-electron system

the model Schrddinger equation is

(-4V2+Vy) = Exbur, 4)
where, in atomic units,
Z Q
Vi = —;+VHF——2—r%Wl(rL)+U(r). 5)
c

Here, @4 is the static dipole polarisability of the core
(quadrupole and dynamical correction terms may also be
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Fig. 1. Variation of the sodium atom 3d-4p transition
matrix element (vertical axis) with the cut-off radius r,
for the Coulomb wave functions (horizontal axis) calcu-
lated with various dipole operators
——————— rbr; rb'r.

included; see, for example, Peach (1983)) and the polari-
sation potential a@y/2r* is cut off for small r by the func-
tion Wy(r/r.), where r. is an effective core radius. U(r)
is a short-range correction chosen empirically so that the
eigenvalues &,, of equation (1) give very precise values
for the observed ionisation energies. If the Hartree-Fock
core potential Vyp contains only the static interactions
with the fixed Hartree-Fock core orbitals then Vy is a
local potential, whereas if exchange terms are included in
Vup then Vi will be non-local. Higher accuracy is
achieved when a non-local potential is employed.

For a 2-valence-electron system we adopt the equation

[- IVZ- 3V V(1) +Viu(2) + 1
2

- _i_Pl(rl rz)wz(r :2)] ¥Y=E¥ (6)
C c

where the final term in the square brackets is the so-
called “dielectric” term (Chisholm and Opik, 1964)
modified by a cut-off function W,. The eigenfunctions ¥
and eigenvalues E of equation (6) are calculated varia-
tionally by expanding ¥ in terms of properly anti-
symmetrised and angular-momentum coupled products of
the 1-electron functions ¢,;, of equation (4).

POLARISATION CORRECTIONS TO THE DIPOLE
OPERATOR

Consider an electric dipole transition between 2 states
with model-potential wave functions ¥, and ¥,, each of
which satisfy equation (6). In lowest order in the valence
electron—core electron interaction, the dipole matrix ele-
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ment is (¥,|r,+r;|¥,). Since a dipole moment is
induced on the core by the valence electrons a corrected
dipole operator d, +d, replaces r,+r,, where

d= r(l - a_,:(!@)’ )
a4(w) being the dipole polarisability of the core at the
transition frequency = |E,—E,| (Bersuker, 1957;
Hameed et al, 1968). It has recently been shown (Laugh-
lin, 1989b) that the next correction to r is of order r~
and can be written in terms of the dipole-quadrupole

interaction V%-VVl. This latter correction has not yet
r
been included in any actual calculations.

OSCILLATOR STRENGTH RESULTS

Rather few oscillator strengths are known to high accu-
racy, even for the relatively simple alkali-like systems.
For Li and Na, however, Gaupp et al (1982) have carried
out precise beam-laser measurements on the resonance
transitions and we can use these experimental values as a
check on the accuracy of the model-potential calculations.
Some comparisons are presented in Table 1. It may be
observed that the model-potential values calculated with
the corrected form of the dipole operator (equation (7))
are very close to the measured values, though they fall
outside the experimental error bars of Gaupp et al (1982).
We note that this discrepancy also exists for other recent
theoretical values (Froese Fischer, 1988). The Coulomb
approximation also provides reliable values.

Accurate data are also available in the helium isoelec-
tronic sequence of ions (Schiff er al, 1971; Kono and
Hattori, 1984). The excited states of these systems may
be treated in the model-potential framework by construct-
ing an effective potential to represent the K-shell electron
and it has been found that model-potential oscillator
strengths for triplet transitions in ions up to NeIX agree
to better than 1% with the very extensive ab initio calcu-
lations of Schiff et al (1971) and Kono and Hattori
(1984), even for weak transitions. Some specimen results
are also included in Table 1.

Turning now to 2-valence-electron systems, where
accurate solution of equation (6) is more difficult, the
situation is less favourable. However, the evidence sug-
gests that reliable oscillator strength values can be
obtained with model-potential methods without undue
computational effort. As examples, we present some
specimen results for beryllium sequence ions in Table 2.
Results are also available for the magnesium sequence
(Victor et al, 1976a), the calcium sequence (Victor et al,
1976b) and the copper and zinc sequences (Victor and
Taylor, 1983).

In the case of the 2s2'S—2s2p 'P° resonance transi-
tions in the beryllium sequence, agreement between the
model-potential values and the results of Reistad and
Martinson (1986), obtained by an isoelectronic smoothing
of available reliable experimental data, is good. The larg-
est discrepancy (5%) occurs for BII and only for this ion
does the predicted value lie outside the error bars derived



Table 1. Comparison of model-potential oscillator strengths with other values.

Oscillator strength

Model potential*

Coulomb
System Transition (1) ) Other approximation
Li 25 25 - 2p %p° 0.7536 0.7471 0.7416+0.00122,0.7480% 0.763
Na 3s 35 - 3p 3p° 0.9784 0.9572 0.9536+0.0016%,0.9714° 0.981
Li* 2s35-2p%P°  0.3091 0.3083 0.3080°¢ 0.303
Li* 2p3P°-3d3D  0.6258 0.6241 0.6247¢ 0.618
Be?* 2s 35 - 3p 3p° 0.2505 0.2517 0.2526° 0.248
c* 2p3P°-3s 38 0.06730 0.06789 0.06784°¢ 0.0671
c4* 2p3P°-453s 0.01377 0.01395 0.01396¢ 0.0144

tColumn (1) is calculated with the dipole length operator r; column (2) includes a core polarisation
correction (see equation (7) of text).
%Gaupp et al (1982); ® Froese Fischer (1988); °Schiff et al. (1971) ; Kono and Hattori (1984).

Table 2. Wavelengths and oscillator strengths for beryllium-like ions.

Oscillator strength

Ion Transition Wavelength (A) Model potential Experiment
Bel 2s? 's-2s2p 'P° 2349.3 1.372 1.341+0.047*
BII 25 'S-2s2p 'p° 1362.5 1.012 0.965+0.020*
cuI 25 1S-252p 'P° 977.0 0.764 0.754+0.014*
2s2p 'P°-253s 'S 690.5 0.021 0.022+0.002°
NIV 2s? 1s-2s2p 'p° 765.1 0.614 0.620+0.014*
2s2p 3P°-2s3d 3D 283.5 0.625 0.602+0.060°
2s3p 3P°-2s3d °D 7117.0 0.143 0.12740.041°¢
2s2p 'P°-2s3d 'D 335.1 0.541 0.477+0.052°
2s3s 35-2s3p 3P° 3481.0 0.578 0.125+0.048°
oV 25 's-2s2p 'P° 629.7 0.513 0.527+0.014*
2s? 1S-2s3p 'P° 172.2 0.406 0.373+0.041°¢
2s2p 3p°-253d °D 192.9 0.657 0.576+0.075°
2s3p 'P°-2s3d 'D 3144.7 0.227 0.469+0.122°¢
2s2p 'P°-253d 'D 220.4 0.544 0.510+0.066°
2s3s 'S-2s3p 'P° 5114.1 0.210 0.318+0.079°¢
Ne VII 2s3s 35-2s3p 3P° 1987.0 0.380 0.781+0.063°

*Reistad and Martinson (1986); ®Ishii et al (1985); °Lang et al (1987).
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by Reistad and Martinson (1986). We observe that the
model-potential and configuration-interaction (Hibbert
(1974), Serrao (1986)) oscillator strengths for this transi-
tion are in harmony and are discrepant with Reistad and
Martinson’s value.

A comparison of our NIV, OV and Ne VII results
with the experimental results of Lang et al (1987) reveals
some puzzling features. For some transitions there is
good agreement, whilst for others there are large
discrepancies. The experimental method measured
branching ratios and employed beam-foil lifetime meas-
urements of the common upper level to deduce transition
probabilities. Errors in the lifetime measurements would
clearly lead to unreliable transition probabilities, and this
may partly explain some of the discrepancies. However,
there are situations where experimental and theoretical
branching ratios differ significantly, for example, the
experimental and theoretical branching ratios for the
2s3p 'P°-2s3d 'D and 2s2p 'P°-253d !D transitions in
OV are, respectively, 4.41.10~> and 2.05.1072. The
discrepancy here does not arise from cancellation effects
in the dipole matrix elements (neither oscillator strength
is small) and, in fact, all recent theoretical calculations
are in good accord.

Relative oscillator strengths for lines of neutral cal-
cium absorbed from the 4sdp 'P° level have recently been
measured by Smith (1988) and in Table 3 we compare
these with the model-potential values. The agreement
between the two sets of results is, on the whole, reason-
able. A large discrepancy occurs for the weak
4s4p 'P°—4s6s 'S transition which is severely affected
by cancellation effects in the dipole matrix element. This
transition has also been studied by Froese Fischer and
Hansen (1985) and their oscillator strength, 0.001, does
not agree with either of the values in Table 3, though it is
intermediate between them.

Table 3. Absorption oscillator strengths from the level
4s4p 'P° of neutral calciums

Oscillator strength

Upper level Model potential Experiment?
4s5s 'S 0.143 0.160

4s6s 'S 0.0003 0.0089

4p2 s 0.113 0.115

4s7s 1S 0.0152 0.0133
4s4d 'D 0.254 0.207

4p?2 'D 0.594 0.580

4s5d 'D 0.353 0.281

2 Smith (1988).
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QUARTET LEVELS OF LITHIUM-LIKE IONS

Core-excited 1s2snl L and 1s2pnl “L levels of 3-electron
ions have been actively investigated by both experimental
and theoretical groups in recent years. These levels are
readily populated by foil excitation and, as they are meta-
stable against Coulomb autoionisation, optical emission
spectra can readily be observed and radiative lifetime
measurements may be performed. Various theoretical
approaches have been employed, including model-
potential (see, for example, Laughlin (1988) and refer-
ences therein). The quartet term system of NV has
recently been investigated by beam-foil spectroscopy
(Blanke et al, 1987; Garnir et al, 1988) and by charge
exchange in a gas cell (Bouchama et al, 1988) but there
is a paucity of theoretical data, so we now present some
results in Table 4 for this system.

The identifications proposed by Blanke et al (1987),
Garnir et al (1988) and Bouchama et al (1988) for
wavelengths shorter than 230A are confirmed by the
present model-potential calculations and the wavelength
predictions of Chung (Baudinet-Robinet et al, 1986).
Garnir et al (1988) observed a line at 633.18 A which
they assigned to the 1s2p3d *F°—1s2p4f *G transition in
NV. However, our wavelength for this transition is
675.01A, and we would therefore propose that the
observed line arises from 1s2p3p “D- 1s2p4d “F°. Garnir
et al (1988) also observed a line of medium intensity at
672.88 A which they assigned to 152p3d “F°—1s2p4f “F,
and a weak blended line at 673.90 A which they assigned
to 1s2s3d “D-1s2s4f *F°. Our results (Table 4) suggest
that these assignments should be interchanged. If this
suggestion is correct then it is puzzling that the
1s2p3d “F°- 1s2p4f “G line has not been observed in the
beam-foil spectrum. The model-potential transition pro-
babilities indicate that the 445.60 A line should probably
be assigned to 1s2s3p 4P°_152s5d *D, rather than to
1s2p3p *D-1s2p5d “D°.

FINE-STRUCTURE SPLITTINGS AND INTERCOMBI-
NATION TRANSITIONS

We parameterise the spin-orbit interaction V. as

VY = 4o’z 3, @®
where @ is the fine-structure constant and Z, is deter-
mined empirically so that V! reproduces the observed
fine-structure splittings of the j = I+ % levels of the 1-
electron ion. The effective nuclear charge Z, depends on
the angular momentum [/ but, for fixed I, it varies very
little with the principal quantum number n (Weisheit and
Dalgarno, 1971). For 2-valence-electron ions we also
include the spin-own-orbit and spin-spin interactions
(Bethe and Salpeter, 1971) in the fine-structure Hamil-
tonian H,. For ions near the neutral end of an isoelec-
tronic sequence, H, is small and may be treated as a per-
turbation. Some calculated and observed fine-structure
splittings for triplet terms of 2-valence-electron ions are
presented in Table 5. It may be observed that the errors



Table 4. Wavelengths and transition probabilities in the quartet spectrum of N'V.

Wavelength (A)
Transition
Model Garnir Blanke Bouchama  probability
Transition potential Chung er al (1988) et al (1987) et al (1988) (107%s71)
1s2s2p “P°-1s254d D 1514 15143 151.50 151.58 151.5 238.4
1s2p? *P-1s2p4d “D° 160.0  159.84 159.84 159.82 159.7 293.8
1s2s2p “P°-1s253d D 193.4  193.52 193.54 193.50 193.6 760.9
1s2p? “P-1s2p3d “P° 202.5  202.38 202.40 202.41 202.4 412.1
1s2s2p “P°-1s2s3s *S 211.0 21113 211.10 211.11 211.1 177.5
1s2p3p “D-1s2p5d “D° 4454 445.60 5.6
1s2s3p “P°-152s5d D 445.6 21.8
1s2s3s “S—1s2s4p “P° 555.1 555.4 17.1
1s2p3s “P°-1s2pdp D 595.0 594.96 18.4
1s2s3p “P°-152s4d ‘D  626.0  625.43 626.01 45.1
1s2p3p “D-1s2p4d ‘F°  633.7 46.4
15253d “D-1s2s4f ‘F° 673.1  673.01 673.90 92.8
1s2p3d ‘F°-1s2p4f “F 673.5  672.61 672.88 14.4
1s2p3d ‘F°-1s2pdf ‘G 675.0 633.18 84.9

in the predicted values are usually less than 5%, thus
validating our representation of H,.

Table 5. Calculated (4°) and observed (A°) fine-structure
splittings (cm™') for triplet terms of 2-valence-electron
ions.

0—1 1—2
Ion Term A° A° A° A°
cml  2p3s3p° 334 33.3 68.1 68.6
CIl 2p3d3p° -143 -145 -254 -263
ov  2p?3 159.8 1557  279.6  268.8
Mgl 3s3p3P° 203 20.1 413 40.7
Mgl  3sdp 3P° 3.46 3.30 7.03 6.75
Sim  3s3p%P° 1321 1286 2672 2617
sim  3p?3p 1320 1335 2615  258.5
SV 3p?3% 3830 3620 7750  767.0
Cal 4s4p ’P° 532 522 1066 1059
Cal  4s4d °p° 414 3.67 6.24 5.58

Intercombination transitions, such as 3s2 'Sy-—
3s3p *P{ in magnesium-like ions, arise from the mixing
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of singlet and triplet levels, for example, 3s3p 2P§ with
3s3p 'P{ and 3s? 'S, with 3p? 3Py, by the fine-structure
Hamiltonian H;. The model-potential results for
3s2 1S,-3s3p *P¢ transitions in selected ions of the
magnesium sequence (Laughlin and Victor, 1979) are
compared with recent theoretical and experimental values
in Table 6.

Table 6. 3s2 !'Sy—3s3p P{ intercombination transition
wavelengths (1) and oscillator strengths (f) for magnesi-
um sequence ions.

£(107%)

Model Other
Ion AA) potential  theory  Experiment
Mgl 45724 0.211 0.206+0.029°
Alll  2669.2 1.10 1.12%  1.07+0.07¢
Sil  1892.0 2.85 2.67% 2.67+0.16*
SV 1204.4 10.6 11.17

SKwong et al (1982); ®Hibbert and Keenan (1987);
< Johnson et al (1986); ¢Ojha et al (1988); *Kwong et al
(1983); /Dufton et al (1986).

The agreement obtained is most satisfactory. For SiIll,



the model-potential value lies just outside the experimen-
tal error bars of Kwong et al (1983). It has been pointed
out by Ojha er al (1988) that our oscillator strength is
probably too large by approximately 4.6% since we
overestimate the fine-structure splitting in this case by
about 2.3%. We have used experimental singlet-triplet
energy separations in our perturbation calculations of
3p3-'P§ and 'S,- P, mixings, but have preferred to
use without modification the prescription given by equa-
tion (8) for V3’, with Z, determined as described previ-
ously.
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