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ABSTRACT 

The prediction of the lifetime of one excited state may re
quire the calculation of many transition probabilities and 
possibly also autoionization rates. Some of the important 
concepts for performing multiconfiguration Hartree-Fock 
calculations for a portion of a spectrum and for highly 
accurate results for few electron systems are reviewed. 
Transitions in C I are used as an example as weil as the 
ls2s2r 5 P - ls2p3 5 S transition in Li- . 

INTRODUCTION 

There are many challenges to the theoretical prediction 
of oscillator strengths and lifetimes. 

As interest shifts from resonance transitions to transi
tion probabilities for excited states, the amount of needed 
information increases rapidly. The challenge, in effect, is 
to p~rf?rm a calculation for a portion of the spectrum, 
predlctmg many transition probabilities along with life
times in a single calculation. Such calculations are not 
"fine tuned" calculations for transitions between aspecific 
pair of levels, but they can provide large amounts of rea
sonably accurate information. Among the ab initio meth
ods, the Energy..Average..Level (EAL) calculations of the 
General Relativistic Atomic Structure Package (GRASP) 
(Dyall et al., 1989) can be used to provide such informa
tion, but the restriction of a single orthonormal basis for 
the initial and final state, in effect, limit the code to a 
stu~y ofionized systems. In this paper, the multiconfigu
ration Hartree-Fock method with Breit-Pauli corrections 
for the relativistic effects will be applied to the study of 
excited state transitions in Carbon. 

Another challenge is the prediction of lifetimes for the 
levels of a Ryd berg series. In an unperturbed Rydberg se
ries, the ~fetimes increase smoothly as (no)3 , where n° is 
the effectlve quantum number, but the presence of a per
turber may cause an irregular behaviour (Brage et al., 
1987). In some instances, the mixing with the perturber 
causes cance1lation in the transition matrix element, re
sulting in a minimum in the lifetime trend. The correct 
prediction of the minimum is sensitive to both correla
tion and re1ativistic shift effects. Intuitively, one would 
not think of relativistic effects as being important in Ry-

c. Froese Fischer 97 

dberg series, but they may shift the perturber relative to 
the Rydberg series, thereby affecting the mixing of the 
perturber with the series and hence the transition prob
abili ties that define the lifetime. 

With the availability of supercomputers, it is also a 
challenge to improve on the accuracy of f-vaIue predic
tions. Johnson et &1.(1988) have applied many-body per
turbation theory (MBPT) to third order to the study of 
transitions in a1kali atoms: five hours of Cray X-MP /24 
time were required for the calculations they describe. 

Many other difficult problems remain. In core excited 
states, a level may decay by a variety of mechanisms, in
cluding autoionization to the continuum, as was the case , 
for the core excited 2p53s3d 4L states of Na I (Froese 
Fischer, 1986). An accurate prediction of the lifetime re
quires not only accurate radiative transition probabilities, 
but also reliable autoionization rates. Transition proba
bility calculations are rarely performed for the transition 
metaIs where the open d-she1ls greatly magnify the cor
relation problem. Even correlation studies have not' yet 
been performed in all atomie systems. For example, the 
ground configuration of UH is 5P. A relativistic MCDF 
(EAL) calculation produces results for which a number of 
levels are inverted. As in Pr+3 (Morrison and Rajnak, 
1971), important correlation contributions are expected 
to arise fro,m the interaction of 5d10 5P with 5,JS 5r. 
With only those two non-relativistic configurations in the 
wave function expansion, the tota! number of j - j cou
pled configuration states is 123, 297, 482, 555, 611, 561, 
and 505 for J=O to J= 6, respectively, or 3134 configu
ration states for an EOL calculation. For many ab initio 
approaches, atomie structure codes need to be revised to 
deal with wave function expansions 10 - 100 times larger 
than those presently employed. 

Let me now describe how the MCHF Atomie Structure 
Program has been used to meet some of these challenges. 

SPECTRUM CALCULATIONS 

Consider the problem of predicting transition data for 
38 -+ 3p, 4p, 3p -+ 3d, 48, and 4d, and 3d -+ 4p tran
sitions in C I, transitions of interest in astrophysics. In 
this case, the remaining electrons are in the configura
tion ls22s22p; in the description of the calculation we 
will omit reference to the ls2 she1l and treat the problem 
as a four electron problem. Our calculation will be one in 
which a basis of radial functions is obtained from a series 
of MCHF calculations, and the total energies and wave 
function expansions will be obtained from a Breit-Pauli 
interaction matrix. Thus our calculation is essentially 
non-relativistic but with relativistic corrections that in
clude spin-orbit interaction and non fine-structure effects 
such as the mass correction, one- and two-body Darwin 
terms, and spin-spin contact. 

For an ab initio calculation, several principles need to 
be kept in mind. 

The Complex 
The set of configuration states of the same parity, the 
same LS term, and for which the orbitals all have the 
same set of principal quantum numbers, form a com
plex. In non-relativistic theory, these are the configu-



ration states which may exhibit substantial configuration 
mixing in the expansion of a wave function. In a calcu
lation !ike the one for C I, where all terms are of inter
est , one mó.y simply classify the configuration states into 
odd and even configuration states. For example, for the 
2s22p31 states, the odd and even configurations are the 
following: 

~ 2822p3s, 2p338 , 2s22p3d, 2p33d, 2s2~3p 
Even 2s22p3p, 2~3p,2s2~3s, 2s2p23d 

A similar set defines the 2s22p41 complex. For the Car
bon problem under consideration, the two sets should be 
combined. 

The Upper Bound Principle 
Experience with many calculations has shown that re
sults are more reliable when the lower lying complex is 
also included in a wave function expansion. Then, by the 
Hylleraas-Undheim-MacDonaid (1930,1933) theorem, the 
n th eigenvalue of the interaction matrix for a given LS 
term is an up per bound to n th exact energy for that term. 
.For Carbon, this required the inclusion of the following 
configuration states: 

Odd 2s2~ 
~ 2s22~, 2p4 

In neutral atoms, not all of the levels of the lower 
complex !ie below those of the excited complex. In Car
bon, the 2s2~ LS levels lie above those of the 2s22p3s 
levels, except for 2s2~ 5S, and play an important role in 
the interactions. 

Term Dependenee 
The radial functions of orbitals in a given configuration 
may exhibit considerable LS term dependence, as was 
shown by Hansen (1973). 'Such term dependence can 
readily be checked by performing a series of Hartree-Fock 
calculations for each term. Table 1. shows the mean 
radü of 31 orbitals for different terms of the same config
uration. Note that term dependence is negligible for 3s 
and 3d (though not all terms were checked), but consider
able for 3p. The term dependence here, to a large extent, 

Table 1: Term Dependence of 31 orbitals for the configu
rations 2s22p31 in Carbon. 

31 Term < r31 > 31 Term < r31 > 
3s 3p 5.941 3d 3p 10.597 

lp 6.213 lp 10.770 
3p 3D 7.338 3p ID 9.041 

lp 7.135 3p 8.500 
3S 7.651 IS 9.581 

can be classified according to whether the corresponding 
2s22~ configuration state is allowed. When the state is 
not allowed, the mean radius of 3p is more contracted 
than when it is allowed. 
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Optimization of Orbitals 
If no term dependence were present, radial functions could 
be determined from an MCHF calculation for any term, 
but when term dependence is present, the LS terms need 
to be chosen carefully. Term dependence can be incor
porated into a calculation like the one being described, 
by including additional configurations in the expansion 
to represent this dependence and by carefully selecting 
the LS term (or calculation) that determines a particular 
radial function, Pn/(LSj r). For example, we could define 

p3"e S) = aP3"e P) + bPn"e S), < 3plnp >= o. 
Clearly the radial basis could be defined in a number of 
ways. Generally, the radial basis should include the most 
contracted orbital as weil as a more diffuse orbital so that 
the term dependence can be represented by alinear com
bination of these orbitals. In the present case, since the 
calculations include the 2s22p4p configuration states, we 
will allow the 4p orbital to play the role of the diffuse 
orbitaI. This keeps the size of the interaction matrix to 
a minimum, but may not provide the best possible re
sults. In particular, since there is no radial basis for the 
represen tation of the diffuse 4p, the configuration states 
for the lat ter will not be represented weil. This will be 
shown to be the case later. 

A limitation in the prediction of transition probabili
ties and lifetimes by the MCHF Atomic Structure Package 
(MCHF .ASP) that needs to be kept in mind, is the fact 
that the codes for performing the angular integrations 
for the transition operator can deal only with a limited 
amount of non-orthogonality between the initial and final 
state. Most anguiar momentum theories for operators as
sume a common, orthonormal basis for the initial and fi
nal state. The MCHF multipole program (Godefroid et al. 
1989) allows for some non-orthogonality but restricts the 
non-orthogonality in such a way that the number of over
lap integrals arising from non-orthogonality be at most 
two. In the present calculation, it is desirabie to have 
the {Is, 2s, 2p} set of orbitals be the same in the initial 
and final state. Because of the strong interaction between 
2s22p 2 Pand 2p3 2 P , these orbitals were obtained from 
a 2x2 MCHF calculation for C+ with a wave expansion 
over these two configuration states. 

Separate calculations were performed for the odd and 
even configurations states. 

For the odd configuration states, the 3s , 4s, 3d and 
4d orbitaIs were obtained from MCHF calculations for 

{2s22p31, 2p331} 3 P. 

The 3p correlation orbital was obtained from an MCHF 
calculation for the 2p3s 3 P state with an expansion over 
the n = 3 odd complex plus the 2s2~ and 2s2~3p con
figuration state. In this calculation, only the 3p orbital 
was varied. A siInilar calculation was performed for the 
4p correlation orbitaI, replacing the n = 3 complex by the 
n = 4 complex. 

For the even configuration states, the 3p, 3s, and 3d 
orbitals were obtained from an MCHF calculation for the 
2p3p I P state with a wave function expansion over 

{2s22p3p, 2s2~3s, 2s2p23d} lp. 



Table 2: Theoretical total energies (in au) and energies 
relative to 2s22y 3 P (in cm-I) along with lifetimes for 
levels from part of the spectrum of Carbon. 

Dl L5 J Enllrgy 
(a . u .) (cm-t) 

Tau 
(na) 

--------------------------------------------
3. 3P 0 -37.48573433 48373.1 3.0811+00 

1 -37.48564648 48392.3 3.0711+00 
2 -37.48546322 48432.6 3.0711+00 

lP 1 -37.47725779 50233.4 3 . 0111+00 

3p lP 1 -37.44554150 57194.0 1.1111+02 

30 1 -37.44182530 58009.5 4.9211+01 
2 -37.44173242 58029.9 4.9211+01 
3 -37.44158809 58061.6 4.9211+01 

35 1 -37.43676923 59119.2 3.7811+01 

3p 3P 0 -37.42830544 60976.7 2.3811+01 
1 -37 . 42825069 60988.7 2.3811+01 
2 -37.42815282 61010.2 2.3811+01 

102 -37.41684581 63491.6 2.4011+01 

15 0 -37.41074219 64831.2 2.7811+01 

3d 102 -37.40530094 66025.3 1.3811+01 

4. 3P 0 -37.40521870 66043.4 6.8411+00 
1 -37.40514206 66060.2 6.7511+00 
2 -37.40496105 66099.9 6 . 5711+00 

lP 1 -37.40361248 66395.9 7.5811+00 

3d 3F 2 -37.40355209 66409.1 7.4411+00 
3 -37.40350664 66419.1 5.9011+00 
4 -37.40328547 66467.7 3.7311+01 

30 1 -37.40347043 66427.1 3.4111+00 
2 -37.40339878 66442.8 4.6911+00 
3 -37.40332174 66459.7 5.5611+00 

The n = 4 orbitals were obtained from a similar calcula
tion for the 21'4p 1 P state, but now both the n = 4 and 
n = 3 complexes were included in the wave function ex
pansion, though only the n = 4 orbitals were varied. The 
3p and 4p orbitals had mean radii of 6.843 and 15.231, 
respectively. If bet ter accuracy is desired, more porbitals 
should be introduced and optimized on the IS state. 

Once the radial functions have been determined, a 
configuration interaction, Breit-Pauli calculation can be 
performed for each of the odd and even configuration 
states, for a series of J values, and El transition prob
abilities computed for all p08sible transitions. Table 2. 
summarizes some of the energy levels and lifetime data 
from this calculation. 

Table 2. i=ediateiy shows that there is not agreat 
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Table 3: Comparison of LSJ-averaged, MCHF+BP term 
energies with similarly averaged observed values, relative 
to the 2p3s 3 P energy, in cm-I. 

-------------------------
DlLS Enllrgy (cm-l) Oiff 

thllory Ob •. 
-------------------------
3. 3P 0 0 0 

lP 1820 1609 211 

3p lP 8782 8485 297 
30 9628 9349 279 
35 10707 10371 336 
3P 12587 11002 1585 
10 15079 12238 2841 
15 16418 13603 2816 

3d 10 17614 17307 307 

4. 3P 17668 17760 -91 
lP 17986 17965 21 

3d 30 18022 17937 85 
3F 18035 17853 182 
lF 18279 18158 121 
lP 18462 18355 107 
3P 18721 18942 -221 

4p lP 20223 20190 33 
30 20489 19829 661 
35 20880 20732 148 
3P 21993 20961 1032 

4d 10 23285 23127 158 
3F 23443 23388 55 
30 23451 23467 -16 
lF 23573 23576 -3 
lP 23606 23689 -83 
3P 23667 23733 -66 

4p 10 25915 21397 4518 
15 31987 21879 10108 

deal of J -dependence in the lifetimes, the only exception 
being the levels of the 2pnd 3 F states and to a lesser 
extent also the 3 D state. For the 3 F states there is con
siderable mixing with the 3 D states, and in the 3 Dl case, 
also with 2s221'4s 1 Pl. Thus for most of this spectrum, a 
non reiativistic calculation is expected to be adequate. 

Table 3. compares the theoretical term energies rei
ative to the 2p3s 3 P term with similar observed values, 
where the observed terms energies are obtained from sta
tistically weighted LSJ levels. With the exception of the 
of the 2p3p and 21'4p 1 D, 3 P, 1 S LS terms the predicted 
and observed levels are in reasonably good agreement. 

But such braad brush calculations, unIess consider
ably refined, can only present the general picture. To con
firm the accuracy of some of the transition probabilities, 



Table 4: Comparison of theoretical Breit-Pauli (LSJ) and 
MCHF (LS) wavelengths (in air) and line strengths with 
critically evaluated data. 

.qX) S, S. 
3s 3p -+ 3p 3D 

LSJ 10383 168.0 
LS 10873 170.0 173.9 
NBSl) 10695 160.0 

3p 3D -+ 4s 3p 

LSJ 12434 107.0 
LS 12059 67.4 67.1 
NBS 11886 85. 

non-relativistic MCHF calculations using non-orthogonal 
orbitals were performed for three states over all couplings 
of the configurations as indicated below: 

3s 3 P {2s22P13slt 2~3slt 2s22P33d3, 2p~3d2, 
2S23dl 4/h 2n3dl4h, 2s2p~, 2s2P13P1} 

3p 3 D {2S22P13P1, 2~3P1, 2s2Pï3dlt 

2s2n3sh 2s23d24d2, 2n3d24d2'} 

4s 3 P {2s22P14sl, 2~4slt 2s22P33d3 , 2p~3d2, 
2S23dl 4h, 2n3dl4h, 282~, 2s2P13P1} 

Thus, in the calculation for 48 3p, for example, the 3d 
orbitals are correlation orbitals. Table 4. compares the 
LSJ averaged data for two multipiets, the LS values from 
the non-orthogonal, non-relativistic calculation, and the 
compiled data included in the NBS publication, derived 
from both theory and experiment. In order to separate 
the energy prediction from the prediction of the transi
tion matrix element, the line strength, S, is compared 
rather than the oscillator strength. Clearly evident is the 
fact that the non-relativistie MCHF calculations, which 
have included more correlation eft'ects, yield the better 
wavelengths: indeed, relativistie shift eft'ects would im
prove agreement with observation. In the non-relativistie 
scheme, the length and velocity values of the line strenrh 
are also compared. In the case of the 38 3 P -+ 3p D 
transition, the line strength is essentially unchanged, yet 
for the 3p 3 D -+ 48 3 P transition it has reduced sub
stantially, with length and velocity values coming into 
good agreement. In this case there is extensive mixing 
of 2s22p48 and 2822p3d, mixing which is more accurately 
represented in the variational MCHF calculation. 

ACCURATE FEW-ELECTRON CALCULATIONS 

Unlike MBPT, where open shell cases may pose difficult 
problems, the MCHF method can be used in such cases 
and, with sufficient CPU time and memory, some ac
curate results can be obtained for few-electron systems. 
This was demonstrated by Brage and Froese Fischer (1988) 
who predicted the wavelengths of the ls2s2p2 5 P -+ 

ls2p3 5 S transition in Be I-like ions to spectroscopie ac
curacy. In such calculations, systematieally larger and 
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larger expansions are used until "convergence" is obtained. 
Several concepts are used in generating the expansions. 

1. reference set 
Configurations for which a configuration state forms 
a major component in the wave function expansion 
define the reference set. 

2. active set 
In a combinatorial approach in which all configu
ration states are generated that can be constructed 
from orbitaIs for a given set of electrons, the latter 
is called the "active set" . 

3. single and double replacements 
Configurations will interact with some members of 
the reference set only if they dift'er by no more 
than two electrons from some member. The sin
gle and/or double replacement procedure system
atieally replaces one and/or two electrons in each 
configuration of the reference set. 

4. virtual set 
The electrons that are used in the single and double 
replacement of electrons are electrons from a virtual 
set. 

In the Be I-like calculations, the initial active set con
sisted of 18, 28, 2p, 38, 3p, 3d and 4/ electrons. Orbitals 
for the first three were obtained from a Hartree-Fock cal
culation, and the others from a variational calculation for 
an expansion over the configuration states generated by 
the active set. Then 48, 4p and 4d orbitals were obtained 
by adding to the expansion those configuration states that 
were obtained by single and double replacements from the 
previous set. Finally, all electrons were placed in the ac
tive set and a Cl calculation performed with and without 
relativistie shift eft'ects. 

Since these calculations have been performed, it has 
been found that better accuracy can be obtained by vary
ing all (or almost all) orbitals rather than only the new 
orbitals. This was done in the study of the binding en
ergies of negative alkaline earths. However, with an ac
tive set, a rotation of the radial basis is a trans forma
tion that does not change the total energy and so, for 
uniqueness and stability, it is desirabie to delete certain 
configurations. The best candidates are those for which 
Brillouin's theorem should hold. Table 5. reports the 
results from a study of the ls2s2y 5 P -+ 1s2]J" 5S tran
sition of Li- , a case not included in the earlier study. The 
first part of the table shows the convergence of the total 
energies for the two states, the wavelength (in air) for the 
transition, and the length and velocity values of the line 
strength (the observed transition energy was used for the 
computation of the lat ter) for ' a calculation that ignores 
correlation with the ls electron; Note that the converged 
wavelength deviates from the observed by 42 À. The next 
set of calculations, is for a fully correlated wave function. 
It was found that the 8-orbitals play a much more impor
tant role in the 5 P state, that the contribution of the Ss 
was considerably larger than the contribution from the 
highest nl for other l-values, and so a 6s was added to 
the active set for the 5 P state. The resulting wavelength 



Table 5: Convergence of total energy (in a.u.) , wave
length, length and velocity forms of the line strength for 
the Is2s2p2 sp -+ Is2p3 Ss transition in Li- as the ac
tive set is increased. The lat ter consists of all electrons 
with n ~ N. The symbols s and pare used to indicate an 
additional s or pelectron, respectively. 

N E(5p) E(5S) .\(À) SI, Sv 
Outer Correlation Only 

3 -5.381345 - 5.248208 3421.6 39.2,40.0 
4 -5.383501 -5.251369 3447.6 37.2,38.9 
5 -5.383820 -5.251675 3447.2 36.7,39.1 

Full correlation 
3,p -5.382850 -5.251602 3470.8 
4,p -5.385691 -5.255043 3486.8 
5,p -5.386225 -5.255744 3491.2 

5,sp -5.386251 3491.5 

With relativist ie shift effects 3489.4 

Bunge (1980) 
Non-relativistic 3491.1 
With empirical corrections 3489.8 ± 0.9 

Exp. (Bromander et al. 1973) 3489.7 ± 0.2 

from the final energies, when corrected for a relativistic 
shift effect is 3489.4 A, which deviates from the observed 
value by ab out 0.3 A. The results are also compared with 
those reported by Bunge (1980). 

It should be mentioned that, at each stage, new or
bitals for outer correlation were determined and those 
configuration states retained with a mixing coefficient 
larger than 0.00005 in magnitude. A subset with mixing 
coefficients greater than 0.0005 was used as a zero-order 
set for a first -order perturbation like calculation for the 
many remaining configuration states. Again, the new or
bitals were varied and the new configuration states with 
mixing coefficients larger than 0.00005 added to the ear
lier set. Finally, a variational calculation was performed. 
In this way, very large calculations could be avoided. In 
the case of the first-order MCHF calculation, where only a 
few percent of the matrix elements are non-zero, a sparse 
version of MCHF was used. The expansion lengths of 
the final wave functions were 604 and 345 configuration 
states, respectively, for Sp and Ss refiecting the greater 
difficulty of the calculation for the Sp state. 

CONCLUSION 

For few electron systems, MCHF calculations for some 
transition energies can be performed that are close to ex
perimental accuracy. But many challenges remain. One 
problem that is of particular concern in the MCHF ap
proach is the evaluation of matrix elements bet ween dif
ferent states. In the MCHF method, orbitals are opti
mized for a given state and though they may be orthonor
mal within a state, they are not orthonormal between 
states. Thus the evaluation of the transition operator 
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becomes more difficult and no general solution to this 
problem has been developed. 
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