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Binary-Pulsar Tests of Strong-Field Gravity 

Abstract 

This talk is based on my work in collaboration with Thibault Damour since 1991. 
Unified theories, like superstrings, predict the existence of scalar partners to the 
graviton. Such theories of gravity can be very close to general relativity in weak-field 
conditions (solar-system experiments), but can deviate significantly from it in the 
strong-field regime (near compact bodies, like neutron stars). Binary pulsars are thus 
the best tools available for testing these theories. This talk presents the four main 
binary-pulsar experiments, and discusses the constraints they impose on a generic class 
of tensor-scalar theories. It is shown notably that they mie out some models which are 
strictly indistinguishable from general relativity in the solar system. This illustrates 
the qualitative difference between binary-pulsar and solar-system tests of relativistic 
gravity. 

I Introduction 

The usual meaning of "testing a theory" is rather negative: one compares its predictions 
with experimental data, and a single inconsistency suffices to mie it out. On the other 
hand, it is difficult to determine what features of the theory are correct when it passes a 
given test. In order to extract some positive information from experiment, it is useful to 
embed the theory into a class of alternatives. Indeed, by contrasting their predictions, it 
is easier to understand in what way they differ, and to determine the common features 
which make them pass or not the available tests . Moreover, this approach can suggest 
new experiments to test the other features of the theories. 

The best known example of such an embedding of general relativity into a space 
of alternatives is the so-called Parametrized Post-Newtonian (PPN) formalism, which 
is extremely useful for studying gravity in weak-field conditions, at order 1/c2 with 
respect to the Newtonian interaction. The original idea was formulated by Eddington 
(1923), who wrote the usual Schwarzschild metric in isotropic coordinates, but 
introduced some phenomenological parameters {JPPN, ,PPN, in front of the different 



powers of the dimensionless ratio Gm/rc2 : 

-gOD Gm PPN (Gm) 2 ( 1 ) 1-2-. +2{3 - +0 -
rc2 rc2 c6 

(la) 

(l b) 

General relativity, which corresponds to {3PPN = ,PPN = 1, is thus embedded into 
a two-dimensional space of theories parametrized by all real values of {3PPN, ,PPN. 

(The third parameter that one may introduce in front of 2Gm/rc2 in gOD can be 
reabsorbed in the definition of the mass m.) The constraints imposed in this space by 
solar-system experiments are displayed in Figure I, and give the following I a limits on 
the Eddington parameters: 

I{3PPN - 11 
IIPP N 

- 11 
< 6 X 10-4 , 

< 2 X 10- 3 . 

(2a) 

(2b) 

The PPN forrnalism has been further developed by Schiff, Baierlin, Nordtvedt and 
Will to describe any possible relativistic theory of gravity at order 1/ c2

. In iIarticular, 
Will & Nordtvedt (1972) introduced up to 8 extra parameters (besides (3P N and 
,PPN), each of them describing a particular violation of the symmetries of general 
relativity, Iike local Lorentz invariance, or the conservation of energy and momentum. 
Since these 8 parameters do not have any really natural field-theoretic motivation (as 
opposed to (3PP N and ,PPN ; see below), we will not consider them any longer in this 
pa~er. Let us ju st mention that they are even more constrained than ({3PPN - 1) and 
h P N - 1) by solar-system experiments. (See the contribution of J. Bell to the present 
Proceedings for a discussion of the tight bounds on some of these parameters imposed 
by binary-pulsar data.) In the IO-dimensional space of all these PPN parameters ({3PPN, 

,PP N, and the 8 others), only a tiny neighborhood of Einstein 's theory is thus allowed 
by solar-system experiments: the intersection of the three strips of Fig. land a very 
thin 8-dimensional slice parallel to the plane of this figure. One can therefore conclude 
that general relativity is essentially the only theory which passes all these tests, and one 
may naturally ask the question: is it worth testing it any further ? 

The reason why solar-system tests do not suffice is the extreme weakness of the 
gravitational field in these conditions. Indeed, the largest deviation from the flat metric 
is found at the surface of the Sun, and is proportional to its gravitational binding energy 
(Gm/ Rc2b ~ 2 x 10- 6 (where R denotes the radius of the considered body). In 
the vicinity of the Earth, the gravitational field is of order (Gm/ RC2 )fB ~ 7 X 10- 10 . 

This explains why only the first terrns of the expansion (I) are tested by solar-system 
experiments. Two theories which are extremely close in weak-field conditions can 
differ significantly in the strong-field regime. For instance, the typical self-energy of 
a neutron star is Gm/ Rc2 ~ 0.2, and therefore one cannot justify any more the PPN 
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Figure 1. Solar-system constraints on the PPN parameters. The widths of the strips have 
been enlarged by a factor 100. The allowed region is shaded. 

truncation of the theory at order 1/ c2 . (A more rigorous definition of the binding 
energy is -olnm/olnG. This expression takes its maximum value, 0.5, for black 
holes. The value ::::: 0.2 found for neutron stars should therefore be understood as a 
rather large number.) Binary pulsars are thus ideal tools for testing relativistic theories 
of gravity in strong-field conditions. 

Before embedding general relativity into a class of contrasting altematives, and 
comparing their predictions with experimental data, let us first describe the four main 
binary-pulsar tests presently available. 

11 Binary-pulsar tests 

The aim of this talk is not to explain what is a pulsar to specialists of the question. For 
our purpose, it is sufficient to note that an isolated pulsar is essentially a (very stabie) 
clock. A binary pulsar (a pulsar and a companion orbiting around each other) is thus a 
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Figure 2. General relativity passes the b-W-Pb)19l3+16 test. 

moving doek, the best tooI that one could dream of to test a relativistic theory. Indeed, 
the frequency of the pulses is modified by the motion of the pulsar (DoppIer effect), 
and one can extract from the Times Of Arrival many information conceming the orbit. 
For instance, the orbital period Pb can be obtained from the time between two maxima 
of the pulse frequency. One can also measure several other Keplerian parameters, Iike 
the eccentricity e of the orbit, the angular position w of the periastron, etc. 

In the case of PSR B 1913+ 16, which has been continuously observed since its 
discovery in 1974 (Hulse & Taylor 1975), the data are so precise that one can even 
measure three relativistic effects with great accuracy. (i) The redshift due to the 
companion1 ex Gm8/rA8c2 and the second-order DoppIer effect ex vÄ/2c2 are 
combined in an observable which has been denoted ,Timing . (The index "Timing" 
is written to avoid a confusion with the Eddington parameter ,PPN introduced in 

1 A denotes the pulsar, B the companion, and TAB the di stance bet ween them. 
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Figure 3. General relativity passes the (')'-w-s h 534+ 12 test. 

Eq. (I b).) Since the Keplerian parameters Pb and w have been measured accurately 
during two decades, their time derivatives are also available: (ii) w gives the periastron 
advance .(a relativistic effect of order v2 jc2 ), and (iii) the variation of the orbital 
period, Pb , can be interpreted as a consequence of the energy loss due to the emission 
of gravitational waves (an effect of order v5 jc5 in general relativity, but generically 
of order v3 jc3 in altemative theories; see below). The th ree "post-Keplerian" 
observables ,Timing, W, Pb can thus be compared with the predictions of a given theory, 
which depend on the unknown masses mA, mB of the pulsar and its companion. 
However, 3 observables minus 2 unknown quantities is still 1 test. The equations 
,th(mA , mB) = ,obs, wth(mA , mB) = wobs , p~h(mA , mB) = Pbo

bS, define three 
curves (in fact three strips) in the two-dimensional plane of the masses (mA , mB) . If 
the three strips meet in a small region, there exists a pair of masses (mA, mB) which 
is consistent with all three observables, and therefore the theory is consistent with the 
binary-pulsar data. If they do not meet, the theory is ruled out. Figure 2 displays these 
strips !n the case of general relativity, which passes the test with flying colors. (We will 
see below that some other theories can also pass this test.) 
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The binary pulsar PSR B1534+12 has been observed only since 1991 (Wolszczan 
1991) but it is much closer to the Earth than PSR B 1913+ 16, and three post -Keplerian 
observables have already been measured with good precision: ÎTiming, w, and a new 
parameter denoted s . It is involved in the shape of the Shapiro time delay (an effect 
ex lje3 due to the propagation of light in the curved spacetime around the companion), 
and it can be interpreted as the sine s = sin i of the angle between the orbit and the 
plane of the sky. (The range r of this Shapiro time delay is also measured but with less 
precision .) Here again, the three strips "predietions(mA, mB) = observed values" can 
be plotted for a given theory, and if they meet each other, the test is passed. Figure 3 
displays the case of general relativity, which passes the test at the 1 a level (Taylor et al. 
1992). 

As shown in §III bel ow, generic theories of gravity predict a large dipolar emission of 
gravitational waves (of order v3 je3 ) when the masses of the pulsar and its companion 
are very different, whereas the prediction of general relativity starts at the much 
weaker quadrupolar order (ex v5 je5 ). Several dissymmetrical systems, like the neutron 
s~ar-white dwarf binary PSR B0655+64, happen to have very sm all observed values of 
Pb, consistent with general relativity but not with a typical dipolar radiation. This is the 
third binary-pulsar test that we will use to constrain the space of gravity theories . 

We will also see in §III below that in generic theories of gravity, the acceleration of 
a neutron star towards the center of the Galaxy is not the same as the acceleration of a 
white dwarf. This violation of the strong equivalence principle causes a "gravitational 
Stark effect" on the orbit of a neutron star-white dwarf system: its periastron is 
polarized towards the center of the Galaxy. (This is similar to the effects discussed 
in J. Bell's contribution to the present Proceedings.) More precisely, the eccentricity 
vector e of the orbit is the sum of a fixed vector eF directed towards the Galaxy 
center (proportional to the difference of the accelerations of the bodies), and of a 
rotating vector eR (t) corresponding to the usual periastron advance at angular velocity 
w R. Several dissymmetrical systems of this kind (such as PSRs 1855+09, 1953+29, 
1800-27) happen to have a very small eccentricity. The only explanation would be 
th at the rotating vector eR(t) is precisely canceling the fixed contribution eF at the 
time of our observation: eF + eR(t) ;:::: o. However, this is very improbable, and one 
can use a statistical argument to constrain the space of theories (Damour & Schäfer 
1991). Moreover, by considering several such systems, the probability that they have 
simultaneously a sm all eccentricity is the product of the already small individual 
probabilities. This idea has been used by Wex (1997) to derive a very tight bound on 
the difference of the accelerations of the bodies. This is the fourth binary-pulsar test 
that we will use in the following. Of course, general relativity passes this test, since it 
does satisfy the strong equivalence principle (universality of free fall of self-gravitating 
objects). 

These four tests are presently the most precise of all those which are available. It 
should be noted that many other tests are a priori possible: Damour & Taylor (1992) 
have shown that 15 tests are in principle possible for each binary pulsar, if the pulses 
are measured precisely enough. 
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111 Tensor-scalar theories of gravity 

Introduction and action 

We saw in the previous section that several tests of gravity can be perfonned in 
the strong-field regime, and that general relativity passes all of them. As discussed 
in §I, our aim is now to embed Einstein's theory into a class of alternatives, in order 
to detennine what features have been tested, and what can be further tested. A 
generalization of the PPN fonnalism to all orders in I/en would need an infinite 
number of parameters (cf. Eq. (I)). We will instead focus on the most natural class 
of alternatives to general relativity: "tensor-scalar" theories, in which gravity is 
mediated by a tensor field (9J1.v) and one or several scalar fields (<p) . Here are the 
main reasons why this class is privileged. (i) Scalar partners to the graviton arise 
naturally in theoretical attempts at quantizing gravity or at unifying it with other 
interactions (superstrings, Kaluza-Klein). (ii) They are the only consistent massless 
field theories able to satisfy the weak equivalence principle (universality of free fall of 
laboratory-size objects). (iii) They are the only known theories satisfying "extended 
Lorentz invariance" (Nordtvedt 1985), i.e., such that the physics of subsystems, 
influenced by extemal masses, exhibit Lorentz invariance. (iv) They explain the key 
role played by f3 PP N and ,PPN in the PPN fonnalism (the extra 8 parameters quoted 
in the Introduction vanish identically in tensor-scalar theories). (v) They are general 
enough to describe many different deviations from general relativity, but simple enough 
for their predictions to be fully worked out (Damour & Esposito-Farèse 1992). 

Like in general relativity, the action of matter is given by a functional Sm ["pm , 9J1.v] 
of some matter fields "pm (including gauge bosons) and one second-rank symmetrie 
tensor2 9J1.v, The difference with general relativity lies in the kinetic tenn of 9J1.v , 
Instead of being a pure spin-2 field, it is here a mixing of spin-2 and spin-O excitations. 
More precisely, it can be written as 9J1.v = exp[2a(<p)]9J1.v , where a(<p) is a function of 
a scalar field <p, and 9J1.v is the Einstein (spin 2) metric. The action of the theory reads 
thus 

S 

(3) 

(Our signature is -+++, R is the scalar curvature of 9J1.v , and 9 its detenninant.) 

Our discussion will now be focused on the function a (<p), which characterizes the 
coupling of matter to the scalar field. It will be convenient to expand it around the 

2To simplify, we will consider here only theories which satisfy exactly the weak equivalence principle, 
and we will restrict our discussion to a single scalar field ex cept in §IY. 
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background value CPo of the scalar field (i.e., its value far from any massive body): 

1 2 1 I 3 
a(cp) = 0.0 (cp - CPO) + "2f30(CP - CPO) + 3!f30(CP - CPO) + ... , (4) 

where 0.0, f30, f3b, ... are constants defining the theory. General relativity corresponds 
to a vanishing function a(cp) = 0, and Jordan-Fierz-Brans-Dicke theory to a linear 
function a(cp) = o.o(cp - CPO). We will see in §V below th at interesting strong-field 
effects occur when f30 i 0, i.e., when a(cp) has a nonvanishing curvature. 

Weak-field constraints 

Before studying the behavior of these theories in strong-field conditions, it is 
necessary to take into account the solar-system constraints (2). A simple diagrammatic 
argument (Damour & Esposito-Farèse I 996a) allows us to derive the expressions of 
the effective gravitational constant between two bodies, and of the Eddington PPN 
parameters in tensor-scalar theories: 

aeff G(1 + 0.6) , (Sa) 

,PPN _ 1 -20.6/(1 + 0.6) , (Sb) 

f3PPN - 1 1 0.0 f30 0.0 
(Sc) 

"2 (1 + 0.6}2 . 

(The factor 0.6 comes from the exchange of a scalar particIe between two bodies, 
whereas 0.0f300.0 comes from a scalar exchange between three bodies.) The bounds (2) 
can therefore be rewritten as 

10- 3 , 
1.2 X 10-3 . 

(6a) 

(6b) 

The first equation tells us that the slope of the function a(cp) cannot be too large: the 
sc al ar field is linearly weakly coupled to matter. The second equation does not teil us 
much, since we already know that 0.6 is smal\. In particular, it does not teil us if f30 is 
positive (a( cp) convex) or negative (a( cp) concave). 

The same diagrammatic argument can also be used to show that any deviation from 
general relativity at order l/cn (n 2: 2) involves at least two factors 0.0, and has the 
schematic form 

deviation 2 [ Gm ( Gm) 2 1 
from G.R. = 0.0 x Ào + À1 Rc2 + À2 Rc2 + ... , (7) 

where Gm/ Rc2 is the compactness of a body, and Ào, À1, ... are constants built from 
the coefficients 0.0, f30, f3b, ... of expansion (4). Since 0.6 is known to be smalI, we 
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thus expect the theory to be close to general relativity at any order. (We do not wish to 
consider models involving unnaturally large dimensionless numbers in the expansions 
(4) or (7).) However, in two different cases that will be discussed in §IV and V, the 
theory can exhibit significant strong-field deviations from general relativity: (i) If the 
theory involves more than one scalar field, Eq. (6a) does not necessarily imply that the 
slope of a( (jI) is smal\. (ii) Some nonperturbative effects can develop in strong-field 
conditions, and the sum of the series in the square brackets of Eq. (7) can be large 
enough to compensate even a vanishingly small 06. 

Strong-field predictions 

The predictions of tensor-scalar theories in strong-field conditions have been derived 
in Damour & Esposito-Farèse (1992). They mimic the weak-field predictions with the 
important difference that the constants 00, {Jo must be replaced by body-dependent 
parameters 0A == 8 In mAl 8(j1o, {JA == 80A/8(j10 (and similarly for the companion 
B). These parameters can be interpreted essentially as the slope and the curvature of 
a((jI) at the center of body A (or body B). (In the weak-field regime, one has (jI ::::; (jIo, 
therefore OA ::::; 00, {JA ::::; (Jo.) In particular, the effective gravitational constant 
between two self-gravitating bodies A and B reads 

(8) 

instead of (Sa). The acceleration of a neutron star A towards the center C of the Galaxy 
is thus proportional to (1 + 0A oe), whereas a white dwarf B is accelerated with a 
force ex (1 + OBOe). Since 0A 1= OB in general, there is a violation of the strong 
equivalence principle which causes the "gravitational Stark effect" discussed in §II. 

The strong-field analogues of .. t PN and (JPPN are given by formulas similar to 
(Sb), (Sc), but 06 is replaced by OAOB and oo{Jooo by a combination of oA(3BoA 

and OB{JAOB. The prediction for the periastron advance w can thus be written 
straightforwardly. 

The expression of the observable parameter ITiming involves again the body
dependent parameters 0A, OB, but also a subtIe contribution proportional to 
OB x 8 In h /O(jlO, where h is the inertia moment of the pulsar. This term is due to 
the modification of the equilibrium configuration of the pulsar due to the presence of 
its companion at a varying di stance. We have shown in Damour & Esposito-Farèse 
(1992b) how to compute this effect, which happens to be particularly large in some 
models (see §V below). 

The energy flux carried out by gravitational waves has been computed in Damour & 
Esposito-Farèse (1992). It is of the form 

Energy flux = {Quadr5u
pole + 0 (!-r)} .. 

C C hehclty 2 
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+ { Monopole + Dip30le + Quadr5upole + 0 (:!-r) } . . . 
C C C C hellcl ty 0 

(9) 

The first curly brackets contain the prediction of general relativity. The second ones 
contain the extra terms predicted in tensor-scalar theories. The powers of l/c give the 
orders of magnitude of the different terms. In particular, the monopolar and dipolar 
helicity-O waves are generically expected to be much larger that the usual quadrupole 
of general relativity. However, the scalar monopole has the form 

Monopole = G {O(m ACl:A ) + o(mBaB) + 0 (~)} 2 , (10) 
c c ot ot . c2 

and it reduces to order O(1/c5 ) ifthe stars A and B are at equilibrium (Ot(mAaA) = 0), 
which is the case for all binary pulsars quoted in §II. (It should be noted, however, th at 
this monopole would be huge in the case of a collapsing star, for instance.) The dipole 
has the form 

(11 ) 

and is usually much larger than a quadrupole which is of order 1/c5 (see the third test 
discussed in §II). However, when the two stars A and Bare very similar (e.g., two 
neutron stars), one has aA ;::::: aB and this dipolar contribution almost vanishes. (A 
dipole is a vector in space; two identical stars do not define a preferred orientation.) 

IV Tensor-multi-scalar theories 

In order to sati sfy the weak-field constraints (6) but still predict significant deviations 
from general relativity in the strong-field regime, the first possibility is to consider 
tensor-scalar theories involving at least two scalar fields (Damour & Esposito-Farèse 
1992). Indeed, there can exist an exact compensation between the two fields in the solar 
system, although both of them can be strongly coupled to matter. If the kinetie terms of 
the sealar fields read -(o/-l 'Pd 2 + (O/-l 'P2)2, Eq. (6a) becomes laI - a~ 1 < 10-3, and 
none of the coupling constants al, a2 needs to be smal!. However, one of the fields 
(here 'P2) must carry negative energy for this compensation to occur. Therefore, these 
tensor-bi-scalar theories ean be considered only as phenomenological modeis, useful as 
contrasting altematives to general relativity but with no fundamental significanee. 

We have constructed in the above reference the simplest tensor-bi-scalar model 
which has the followingJroperties : (i) It has the same post-Newtonian limit as general 
relativity (BPPN = ')'PP = 1), and therefore passes all solar-system tests. (ii) It does 
not predict any dipolar radiation ex: 1/c3 (VA, VB, (aA - aBf = 0), and therefore 
passes the third binary-pulsar test discussed in §II. Moreover, it depends on two 
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Figure 4. Constraints imposed by the four binary-pulsar tests of §II on the tensor-bi
scalar model of §IV The two dotted strips illustrate how the precision of the "Stark" 
test is increased when several binary pulsars are considered simultaneously. The region 
allowed by all tests is the small shaded diamond around general relativity ({3' = (3" = 
0). ' 

parameters {3' , {3", and general relativity corresponds to {3' = {3" = O. Figure 4 displays 
the constraints imposed by the three other binary-pulsar tests of §II in the plane of 
the parameters ({3' , (3"). The theories passing the 1913+ 16 test are inside the long 
strip plotted in solid Iines. Note that theories which are very different from general 
relativity can pass this test. For instance, Figure 5 displays the mass plane (mA, mB) 
for the (fine-tuned) model {3' = 8, {3" = 69. The three strips are significantly different 
from those of Fig. 2, but they still meet each other in a sm all region (corresponding 
to values of the masses mA, mB different from those found in general relativity). To 
illustrate how much the theory differs from general relativity, let us ju st mention that 
the effective gravitational constant G~ffB between the pulsar and its companion is 1. 7 
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Figure 5. The tensor-bi-scalar model {3' = 8, {3" = 69, passes the b-W-Fbh913+16 test, 
although the three curves are significantly different from those of Fig. 2. 

times larger than the bare Newtonian constant G. We have thus exhibited a model 
which deviates by 70 % from Einstein's theory, but passes (i) all solar-system tests, 
(i i) the "no-dipolar-radiation" test of PSR 0655+64, and (iii) the ",Timing-W-Fb" test of 
PSR 1913+ 16. Before our work, this 1913+16 test was usually considered as enough 
to rule out any theory but general relativity. We have proven that other binary-pulsar 
tests are also necessary. In particular, Fig. 4 shows cJearly that the ",Timing-W-S" test 
of PSR 1534+ 12 and the "Stark" test complement it usefully. For instance, the model 
of Fig. 5 is easily ruled out by the 1534+ 12 test: the ,Timing and S curves do not even 
meet each other (so that the observable W is not even useful here). 

Thanks to the four binary-pulsar tests discussed in §II, this cJass of tensor-bi-scalar 
models is now essentially ruled out. We have achieved a similar result as in the 
weak-field regime of Fig. I: only a tiny neighborhood of general relativity is still 
allowed. This is a much stronger result than just verifying that Einstein's theory passes 
these four tests. 
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V Nonperturbative strong-field etTects 

We now discuss the second way to satisfy the constraints (6) while predicting 
significant deviations from general relativity in the strong-field regime. As opposed 
to the models of the previous section, we consider here well-behaved theories, with 
only positive-energy excitations (of the type th at is predicted by superstrings and 
extra-dimensional theories). To simplify, we will also restrict our discussion to the case 
of a single scalar field <po 

The simplest tensor-scalar theory, Jordan-Fierz-Brans-Dicke theory, cannot give rise 
to nonperturbative effects for an obvious reason. It corresponds to a Iinear coupling 
function a( <p) = ao (<p - <po), and even if the field <PA at the center of body A is very 
different from the background <Po, one has anyway aA ~ a'(<PA) = ao . Therefore, the 
deviations from general relativity, proportional to aAaB ~ a5, are constrained by the 
solar-system limit (6a) to be ;:; 0.1 % even in the vicinity of neutron stars. 

On the contrary, if we consider aquadratic coupling function a( <p) = ~ (JO<p2, the field 
equation for <P in a body of constant density p is of the form d2 (r<p) / dr2 ~ {Jop . (r<p). 
Therefore, the solution involves a sinh if {Jo > 0, and a sin if {Jo < O. More precisely, 
one finds 

aA ~ ao/ cosh .J3{JoGm/ Rc2 

aA ~ ao/ cos .J31{JoIGm/ Rc2 

if {Jo > 0 , 

if (Jo < 0 . 

(l2a) 

(12b) 

In the case of a convex coupling function a( <p) (i .e., (Jo > 0), the deviations from 
general relativity are thus smaller in strong-field conditions than in the weak-field 
regime: aA aB < a5 < 10-3 . On the other hand, a concave a( <p) can give rise to 
significant deviations: if {Jo ~ -4, the argument of the cosine function is close to 7r /2 
for a typical neutron star (Gm/ Rc2 ~ 0.2), and aA can thus be large even if ao is 
vanishingly smal!. To understand intuitively what happens when ao = 0 strictly (i.e., 
when the theory is strictly equivalent to general relativity in weak-field conditions), it is 
instructive to compute the energy of a typical configuration of the scalar field, starting 
from a value <PA at the center of body A and tending towards 0 as l/r outside. One 
gets a result of the form 

(13) 

When {Jo < 0, this is the sum of a parabola and a Gaussian, and if the compactness 
Gm / Rc2 is large enough, the function Energy (<p A) has the shape of a Mexican hat; 
the value <PA = 0 now corresponds to a local maximum of the energy. It is therefore 
energetically favorable for the star to create a nonvanishing scalar field <PA, and thereby 
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Figure 6. Scalar charge aA versus baryonic mass mA, for the model a(cp) = -3cp2 
(i.e., (Jo = -6). The solid line corresponds to the maximum value of ao allowed by 
solar-system experiments, and the dashed lines to ao = 0 ("zero-mode"). The dotted 
lines correspond to unstable configurations of the star. 

a 'nonvanishing "scalar charge" aA ;::::: {JOCPA. ; This phenomenon is analogous to the 
spontaneous magnetization of ferromagnets. 

We have verified the above heuristic arguments by explicit numerical calculations, 
taking into account the coup led differential equations of the metric and the scalar field, 
and using arealistic equation of state to describe nuclear matter inside a neutron star. 
We found that there is indeed a "spontaneous scalarization" above a critical mass, 
whose value depends on {Jo. Figure 6 displays the scalar charge aA for the model 
{Jo = -6. Note that the deviations from general relativity are of order aAaB ;::::: 35 % 
for a wide range of masses from ;::::: 1.25 M0 to the maximum mass; therefore, no 
fine tuning is necessary to get large deviations in a particular binary pulsar. Note also 
th at the nonperturbative effects do not vanish with ao: even if the theory is strictly 
equivalent to general relativity in the solar system, it deviates significantly from it near 
compact bodies. In fact, an even more surprising phenomenon occurs for the term 
aBä In hl äcpo involved in the observable 'YTiming (see §II): this term blows up as 
ao -+ O. In other words, a theory which is closer to general relativity in weak-field 
conditions predicts larger deviations in the strong-field regime! 

The "'YTiming-W-Pb" test of PSR 1913+ 16 is displayed in Figure 7 for the model 
{Jo = -6 and the maximum value of ao allowed by solar-system experiments. (The 
"'YTiming-W-S" test of PSR 1534+ 12 gives curves similar to those of Fig. 7 for the first 
two observables, while the S strip is only slightly deviated from th at of Fig. 3.) The 
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Figure 7. The model a(cp) = -3cp2 does not pass the (r-w-Pb)19l3+ 16 test. 

great deformation of the Pb curve, as compared to the general relativistic prediction, 
Fig. 2, is due to the emission of dipolar waves in tensor-scalar theories. The fact that 
this dipolar radiation vanishes on the diagonal mA = ms explains the shape of this 
curve. As expected, the 1'Timing curve is also very deformed because of the contribution 
Cis8InIA/8cpo. When f30 is not too negative (e.g., f30 ~ -4), a smaller value of Cio 
allows the test to be passed: the three curves finally meet in one point. On the contrary, 
when f30 < -5, we find that the test is never passed even for a vanishingly small Cio 
(because the term CiS 8 In h /8cpo blows up). In other words, this binary pulsar rules 
out all the theories f30 < -5, Cio = 0, although they are strictly equivalent to general 
relativity in weak-field conditions. This illustrates the qualitative difference between 
binary-pulsar and solar-system tests. 

Generic tensor-scalar theories can be parametrized by the first two derivatives, 
Cio and f3o, of their coupling function a(cp), cf. Eq. (4). It is instructive to plot the 
constraints imposed by all kinds of tests in the plane (Cio , f3o). Figure 8 shows th at 
solar-system experiments do not constrain at all the curvature f30 of a( cp) if its slope Cio 
is sm all enough. On the contrary, binary pulsars impose f30 > -5, independently of Cio. 
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Figure 8. Constraints imposed by solar-system and binary-pulsar experiments in the 
plane (0:0 , .60). In view of the reftection symmetry 0:0 ~ -0:0, only the upper half 
plane is plotted. The allowed regions are below and on the right of the different curves. 
The shaded region is allowed by all the tests. 

Using Eg. (Sb), (Sc), this bound can be expressed in terms ofthe Eddington parameters: 

.6PPN 
- 1 

PPN < 1.3. 
T -1 

(14) 

The singular (0/0) nature of this ratio vividly expresses why such aconclusion could 
not be obtained in weak-field experiments. 

Recent cosmological studies, notably Damour & Nordtvedt (1993), have shown th at 
theories with a positive .60 are easily consistent with observational data, whereas some 
fine-tuning would be reguired if.6o < O. It is fortunate th at binary pulsars precisely 
privilege the positive values of this parameter. 
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VI Conclusions 

Tensor-scalar theories of gravity are the most natural alternatives to general relativity. 
They are useful as contrasting alternatives, and can suggest new experimental tests. 
For instance, the tensor-bi-scalar model of §IV proved that a single binary-pulsar 
test does not suffice. Well-behaved tensor-scalar theories (with no negative energy, 
no large dimensionless parameters, and no fine tuning) can develop nonperturbative 
strong-field effects analogous to the spontaneous magnetization of ferromagnets. Their 
study illustrates the qualitative difference between binary-pulsar and solar-system 
experiments: binary pulsars have the capability of testing theories which are strictly 
equivalent to general relativity in the solar system. 
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