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Decay of Monopolar Vortices in a Stratified Fluid 

Abstract 

This contribution describes some experimental observations of the decay of a 
monopolar vortex in a linearly stratified fluid. The vortex is generated by a 
rotating solid sphere, which is later removed. The observed decay of the planar 
flow in the disk-shaped vortical region is compared with three different theoreti
cal modeIs, and good agreement is obtained. 

1. Introduction 

Satellite observations have revealed the abundant occurrence of vortices in many 
parts of the world's oceans, see e.g. Robinson (1983 j . In addition to the surface 
vortices, which may be easily detected by satellite measurements of surface 
anomalies, oceanic vortex structures mayalso occur at some depth, and thus 
invisible for the eyes of satellites. Well-known examples of subsurface eddies are 
the 'Meddies' , vortex structures originating from the gravitational collapse of 
Mediterranean Sea water that spi lied over the sill in the Straits of Gibraltar. The 
existence of Meddies was first reported by McDowell and Rossby (1978) and 
later oceanographic measurements have yielded important information about 
the Meddies' dynamics (see e.g. Armi et al. 1989). In particular, it became c1ear 
th at the Meddies occupy a relatively thin, pancake-shaped region with horizon
tal and vertical scales of roughly 100 krn and 600 m, respectively. The relatively 
slow decay allows the Meddy to cross the Atlantic Ocean and reach the 
Bahamas af ter approximately one year. 

This paper reports on a laboratory study of a monopolar vortex in a non
rotating, linearly stratified fluid. The flow evolution has been measured by 
application of digital image analysis techniques, and a comparison is made with 
a few simple decay modeIs. 
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2. Generation and characteristics of monopolar vortices 

The laboratory experiments were performed in a square perspex tank of 
horizontal dimensions 100 cm x 100 cm and a working depth of 30 cm, which 
was filled with a linearly salt-stratified fluid. Monopolar vortices were generated 
by asolid sphere (diameter 2.5 CI1'/), placed in the fluid at mid-depth, rotating at 
constant speed Q about a vertical axis, as also described in Flór et al. ( 1993 ). 
In the experiments discussed here, the rotation speed measured 344 reu/min, and 
the forcing was applied during typically 30.1'. 

During the forcing, fluid is swept away from the sphere in radial direction , 
and shadowgraph visualizations have revealed that the motion in the vicinity of 
the sphere is definitely turbulent at th is stage. Then the rotation was stopped. 
and the sphere was removed by carefully Iifting it. During the subsequent 
gravitational collapse, the vertical motions are substantially suppressed and the 
flow soon becomes laminar: at this stage the flow takes on the appearance of a 
monopolar vortex confined to a thin horizontal pancake-shaped region. In most 
cases, this vortex was observed to be sta bIe, while gradually decaying owing to 
viscous efTects. 

The flow was visualized by seeding the fluid with small tracer particles. Special 
care was taken that their density exactly matched the fluid density at the mid
level of the vortex motion. The particIe motions were recorded by video, and 
quantitative information about the horizontal flow field was obtained by apply
ing a digital image analysis technique. After digitization the flow was charac
terized by a set of velocity vectors in the nodal points of a rectangular grid 
covering (part of) the flow domain. As a next step. the values of the vorticity 
w = ~ - ~, with v = (u , u ) the velocity components in (.\'. y )-directions, and the 
stream function Ijl (defined by v = V x kljl , with k the unit vector in vertical direc
tion ) are calculated in each grid point. Some typical results of this procedure are 
shown in Figure I for a monopolar vortex 180 s after the forcing was stopped. 
The graphs show (a) contours of w, (b) contours of Ijl, (c) the w, Ijl scatter plot 
and (d) cross-sectional distributions of wand the azimuthal velocity Uil ' respec
tively. Apparently, the core of the vortex is surrounded by a ring of very weak 
oppositely-signed vorticity. The scatter plot reveals a linear relationship between 
wand Ijl in the central part of the vortex, whereas w is almost zero for larger 
radii. These characteristic features of the w, ljI-relationship remain unchanged 
during the subsequent flow evolution, as can be seen in Figures 2a-c: although 
the maximum w-value decreases during the decay, the scatter plots indicate 
preservation of the linearity at least in the vortex core. For this reason it is 
assumed th at the monopolar vortex thus produced can in good approximation 
be characterized by alinear w, ljI-relationship. i.e. by 

(I) 

with k a proportionality constant. Because of the symmetry about the horizontal 
mid-depth level (z = 0), the flow can be considered as being 20, so that (I) 
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implies 

(2) 

The axisymmetric solution of this equation that is bounded in the origin r = 0 
is given by 
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Fig. 1. ExperimentaJly determined features of a characteristic monopolar vortex: (a) w contours; 
(b) '" contours; (c) w, '" scatter plot; (d) cross-sectional distributions of w (symbol .) and VIJ 

(symbol 0). The profiles are scaled with their maximum values W max = 0.28 S -I, V max = 0.30 ms- 1 

and R = 3.2 cm. The drawn lines represent the vortex model (4). These quantities were determined 
at mid-depth of a monopolar vortex created by a rotating sphere in a linearly stratified fluid with 
N = 1.98 rad s -I, at t = 180 s after the forcing was stopped. 
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Fig. 2. Sequence of w, l/I-plots measured at t = 90 s (a), 120 s (b) and 240 s (c) after the forcing 
was stopped (same experiment as in Figure 1). The experimental kR-values are shown graphically 
for two different experimental runs as a function of time in (d), with the horizontalline represent
ing the value kR = 1.8. 

where Jo is the zeroth-order Bessel function of the first kind, and A is a constant. 
The corresponding solutions of 0) and Vu are 

O)(r) = Ak2 Jo (kr), vu(r) = AkJ1 (kr), (4) 

where J I is the first-order Bessel function of the first kind. 
In view of the fact that the azimuthal motion is unidirectional, the vu-solution 

should be truncated at a radius al for which kal ~ 3.83171, this being the first 
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zero of J 1 • However, a single-signed vorticity distribution (as is approximately 
the case in thc experiments, compare with Figure ld), is obtained by truncating 
the solutions at the first zero of J", i.e. at ka 2 = 2.40483. By defining a potential 
(outer) flow uo(r)= 1 kJ 1 (ka 2 ) for r > a 2 only an unphysical discontinuity 
occurs in w at the radius r = a 2 . It is shown in Figure ld that this model gives 
at least areasonabie description of the flow in the central part of the vortex. The 
experimental kR values, k being determined from the slope of the scatter plot 
and R being the radius at which Uil = V"w n are presented for a typical vortex as 
a function of time in Figure 2d. According to the model, kR = 1.84118. Although 
some scatter is present in the data, the measured kR-values agree well with the 
value 1.8, at least within the experimental error. 

During the decay, the vorticity magnitude shows a considerable decrease (see 
Figures 2a-c), while k and R only show a marginal change: after t = 120s 
k decreases slowly and R increases somewhat, but in such a way th at the com
bination kR is approximately constant (Figure 2d). 

3. Decay models 

In an attempt to describe some characteristic features of the decaying 
monopolar pancake-shaped vortex in a linearly stratified fluid , we will now con
sider th ree approximative theoretical modeis, in order of increasing sophistica
tion. 

(i) purely 2D decay 

In the approximation that the decay of the plan ar vortex flow can be considered 
as purely 20, the flow evolution is governed by the vorticity equation 

(5) 

where v is the kinematic fluid viscosity, V;' the horizontal Laplacian, and J the 
Jacobian. Any axisymmetric vortex satisfies J( w, tf;) = 0, so th at for the case of 
a Bessel vortex, as discussed in section 2, equation (5) takes the following form 
(see also Batchelor, 1967): 

aw 2 2 - =vV w= -vk w at (6) 
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Apparently, the decaying vortex solution is 

(7) 

with W (I (r) the vorticity according to the 8essel vortex, (4), and 

(8) 

the 2D decay time. 

(ii) fhe 'constant-thickness' model 

The purely 2D decay model can be somewhat refined by taking into account the 
vertical structure of the plan ar vortex. Experiments have revealed th at the verti
cai distribution of the horizontal velocity field is c10sely approximated by a 
Gaussian profile of the form exp( - z2/ 2(

2
), with a a vertical scale. It is now 

assumed that the thickness 2a of the vertical region is constant during (at least) 
the first stages of the decay, so that in the region = ~ a the vorticity distribution 
can be approximated by 

(9) 

with h(t) a time-dependent amplitude function . Near the mid-Ievel of the vortex 
region, the vorticity is close to vertical , and its evolution is described by 

Substition of (9) into (10) yields 

with e = z/a and },2 = e + l /a 2
. Under the restriction lel ~ ( 1 + a 2k 2

) 1/2 one 
obtains 

with 

( 10) 

( 11 ) 

(13 ) 

The last term in (12) is negligible as t ~ a2/ve 2
, which is easily met in most 

experiments as long as e is smalI. Apparently, the decay is again exponential. 
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(iii) Ihe verlical difJusion model 

A more accurate model is obtained when the vertical diffusion of the (vertical) 
vorticity is allowed to result in an increasing thickness of the vertical region . 
Again limiting the validity of the model to a thin region around the midplane 
level z = 0, we put 

w(r, z, l, )= w ,, (r) y(.: , I) , 

with W " (r) again the Bessel-vortex solution. By substitution into (10), one 
obtains for the amplitude function )': 

ay , a2 y 
al = - vk -y + v

a
.:2 · 

(14 ) 

( 15) 

By the transformation y = ct>(.: , I) exp( - vel) one obtains a diffusion equation 
for ct> : 

act> a 2 ct> 
-=v-
al az 2

' 
( 16) 

Under the assumption that initially the vorticity is confined to a thin region at 
midplane depth, according to ct>(t = 0) = ct>vJ( z), the solution of (16) is 

ct> (J 2 
ct>( z, I) = Ji exp( - z /4vI) . ( 17) 

The solution for the vorticity is th en 

I 2 
w(r, z, t) =wt) (r) JiexP( -t/rd if ) exp( -.: /4vt) , (18 ) 

with the timescale 

( 19) 

and the constant ct> t) being incorporated in the amplitude of w o(r) . Note that this 
timescale r dij is identical to r 2D' see (8), as derived for the purely 2D decay. 

4. Comparison between experimental observations and decay models 

(i ) the constant-thickness model 

A useful quantity to characterize the decay of the vortex is the maximum 
velocity VfII(/' , which is proportional to the amplitude A, see (4) . Figure 3a 
shows the behaviour of Vm ax as a function of time for two different experiments. 
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was stopped was taken as I = O. The graph c1early shows that the model 
describes a similar decay trend as the experiments. The obtained decay times
caIes are 

I 
11 

440 ± 26 s 
357 ± 17 s 

'dir(WlI/ilX a ) 

759±185s 
450 ± 56 s 

while the decay value ' w = live obtained from scatter plots for experiments ] 
and 11 are 322 ± 60 s, and 280 ± 100 s, respectively. The deviation from the 
experimental decay values is probably due to the assumption W = w()Ó( z ) at 1 = 0 
and the fact that I = 0 is chosen af ter the forcing was stopped; in reality a vortex 
with a certain thickness has already been formed at th at time. Besides, the vortex 
slightly expands horizontally , an effect which is not incorporated in the model. 
Nevertheless, the decay timescales are of the same order of magnitude. Also, the 
model describes a trend in the decay that is very similar to that in the measured 
quantities. 
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