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The Time-Varying Two-Sided Nudelman
Interpolation Problem and Its Solution

ABSTRACT

This paper concerns the time-varying analogue of the two-sided Nudelman interpolation prob-
lem. Generalizations to the time-varying case of the results for rational matrix functions are
presented in both the discrete and continuous time setting.

0. Introduction

For rational matrix functions the two-sided Nudelman interpolation problem can be stated as
follows (cf., [6], Section 18.4). Let A denote the open right half plane IT* or the open unit disk
D, and consider the following interpolation data:

(0 1) w= (C-H C—r Alt; AC' B+y B—; D-

Here A, and A, are square matrices of sizes n. X n, and ng X ng, respectively, which have all
their eigenvalues in A, the matrix B, has size n;x m and the pair (A, B,) is a full range pair,
which means that

Im (B, A, ... AF 'B,)=C%

the matrix C- has size r x n, and the pair (C_, A,) is a null kernel pair, i.e.,

Ny

ﬂ Ker C_AI! = {0},

l
the items C. and B_ are matrices of sizes m X n, and n¢ X r, respectively, and I' is an n; X n,
matrix. The rational matrix version of the two-sided Nudelman interpolation problem asks to
find all rational mXxr matrix functions F that do not have poles in A, that satisfy the interpolation
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conditions

2 _z0e & R€Sz=7,F(2)C_ (21 - Ayt =C,,

0.2)

ZZ()E aReS;—;, (21 — Ag)_l B.F(z) =-B_,

S roe s R€Ss=50 (21 = A BLF(z)C_(z1 - Ay =T,

and that meet the following norm constraint:

(0.3)

€A

sup||F(2)|| < 1.

As usual, Res,-,,W(z) stands for the residue of the rational matrix function W(z) at zo. The

norm in (0.2) is the usual operator norm for a matrix. If there is a solution of the problem

(0.2)-(0.3), then necessarily I' satisfies the Sylvester equation

0.4)

TA,-AT =B_C_+B,C,,

and therefore in what follows we assume that (0.4) holds.

To state the solution of the Nudelman problem (0.2)-(0.3), we need to introduce the Pick matrix

A(w) associated with the data  in (0.1), namely

S F‘)
r s,/’

(0.5) M@:(

where S; and S, are the unique (necessarily Hermitian) solutions of the Lyapunov equations

S]A,(+ A;Sl =

SzAZ + A;Sz =

cC_—-

GG

B.B - B_B*

for the case A =IT*, or where §; and S, are the unique (necessarily Hermitian) solutions of the

Stein equations

Si—AS\A,

S~ ASAY =

i R A

B.B' - B_B*

if A =D. Now assume that A = A(w) is invertible and introduce an auxiliary matrix function

_c
_] +
)M@ (&

O(z), by setting

C, -B; — A
ao=u( +>(w Ar) 0
cC. B 0 (z!+A2)"
it A=TII*, or
—_R* — =1
N G,
Cc. B

where, fixing any @ e C with |of =1,

1):1—<C+ BT
C. -BA}!
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if A=D and both A, and A, are nonsingular, or

C. -B} (d-An)" 0
Ok = I+(z- .
() +(z 20)( c B ) ( " (I- Ay )

Ad@)! ( (I-2AY)7'C, ~(I-2AY'C )
(Ag— zol)' B, (Ag— z2oD)'B-
where gy is a chosen point on the unit circle, if A =D and at least one of A; and A, is singular.
We shall refer to © as the matrix function determined from the data .

We are now ready to state the main result (from [6]) on the two-sided Nudelman interpolation
problem.

THEOREM 0.1. The two-sided Nudelman interpolation problem (0.2) — (0.3) has a solution if
and only if the Pick matrix A(w) is positive definite. In this case, the set of all solutions F is
given by

F=(011G+02)(02G+0y) ",

where G is an arbitrary m X r rational matrix function with no poles on A satisfying the norm
constraint sup,¢ 5 ||G(z)|| < 1 and

011(2) @lz(z))
021(7) On(d

is the matrix function associated with the interpolation data .

O(2) = (

The main aim of this paper is to present the generalization of Theorem 0.1 to the time-varying
case. In the discrete time setting (A = D) this means that the role of rational matrix functions is
taken over by doubly infinite lower triangular matrices which appear as input-output operators
of finite dimensional time-varying discrete time linear systems. In the continuous time case the
rational matrix functions are replaced by integral operators of the second kind of Volterra type,
which also appear as input-output operators, but now of time-varying continuous time systems.
The method which we employ to solve the time-varying two sided Nudelman interpolation
problem is based on ideas similar to those used in [6] for the time-invariant case.

The present paper has the character of a survey paper. It consists of two chapters. The
first introduces the discrete time version of the time-varying two sided Nudelman interpolation
problem and presents its solution. The second chapter gives the solution of the same problem
in the continuous time setting. Both chapters start with a section of preliminary character in
which the time-varying analogue of the residue calculus of complex function theory is developed
further.

I. Discrete Time Nudelman Interpolation
I.1. Residue calculus and generalized point evaluation in discrete time

In this section we present some preliminaries on shift expansions and time-varying residue
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calculus. Throughout this paper m and r are given positive integers. We let B™" denote the
set of all doubly infinite block matrices F = [l"“,-j],°~"’j=_m with each block F;; a matrix of size mxr
over C such that matrix multiplication by F on the left defines a bounded linear operator from
% into €. Here ¢ is the space of norm square summable sequences (x,);_., with entries in
C* written as column vectors. We will have use of the following subspaces:

mer

lower triangular elements of B™ = {F = [F;] € B™" | F;; =0 for i < j};
U™ = upper triangular elements of B™ = {F = [F;;] € B™" | F;; =0 for i > j};
Drxr diagonal elements of B™" = L™ ™,

Our interest is to develop further the time-varying analogue of the function theory on the unit
disc started in [1], [2]. The time-invariant case corresponds to the restriction to block Toeplitz
matrices F = [F ,-_j],?_j-z_w, which are associated to the Laurent series of functions F(z) = 2;_,, JF i
on the unit circle. A key tool in the function theory analysis is the coefficient F_; of z! in the
Laurent series. Assuming that the function F(z) = Zj‘;_.,, sz/ is meromorphic in the open unit

disk D we have by elementary complex analysis that
1
Fa=o [ F@dz= Y ResF@)

2m T 20€D
where Res,-,,F(z) is the residue of F(z) at the point zo in D. For the time-varying case, where
F=[F;]isa gelieral block matrix representing a bounded operator form ¢5 into ¢4, there are
two analogues of the Laurent series of interest, namely
(1.1) F= ZSVF|V|= ZF{V}SV.
Here S stands for the block lower triangular forward shift on ¢, of the appropriate dimension,
and the coefficients F,) and F(,y are block diagonal operators from D™ of which the main
diagonal entries are given by

(1.2) (Fin)jj = Fisvjp (F))jj = Fij-v

The convergence in (1.1) has to be understood entrywise. The coefficients Fy,) and F,, are
uniquely determined by the entrywise convergence of the series and the fact that F,) and Fy,)
are block diagonal operators. We call the series expansions in (1.1) the left and right shift
expansions of F, respectively.

We define the left and right nonstationary total D-residue maps Res; and Resg from B™" into
Dmxr b)’

(1.3) Resy(F) = F_y), Resg(F) = F_yy,

where Fi-) and F(_;, are the block diagonal operators in D™ arising, respectively, from the
left and right shift expansions of F as in (1.1). In general, note that

F= (SFyS™Ss"
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and SYF},)S™" belongs to D™, Thus, from the uniqueness mentioned above, it follows that
F(,, = §'F,)S™" for each integer v. In particular, we have the following simple relation between

the two residue maps:

(1.4) Resg(F) = S'Res.(F)S.

If F(z) = Z}Zo szj is a scalar function which is analytic on the closure of the open unit disc D
and zp € D, then the value F(zp) at the point z is also given by

1 . "
Fa) = - [ -2 Fode= 3 Resez =20 F@

we D

In terms of the Toeplitz matrix F = [F,_;] associated with the function F(-) we have therefore
F(zo)l = Res (S — z0D) ™' F) = Resg(F(S — 20D ™).

In this form the point evaluation carries over to the time-varying case.

Let F = [F,-j];’,‘}z_m be a general element of L™, and let A € D™ be a diagonal matrix such
that the spectral radius p(S~'A) of S7'A is strictly less than 1. We may then define F*#(A) (the
right point evaluation of F at A) by

(1.5) FR(A) = Resg(F(S—-A)™).

Note that the condition p(SA~') < 1 guarantees that S— A = S(/ — S™'A) is invertible as an
operator on ¢5. Similarly, if Z € D™ is such that o(ZS™!) < 1, then we may define the left
point evaluation of F at Z by

(1.6) F(Z) = Res (S - 2)'F).

More explicitly,

FR(A) Yo Fy¥SAY if F = Y2, Fps,
FM(Z) = Ti@S'YSFy if F = Tio9F;.

The following proposition (cf., [2], Proposition 1.1) characterizes the right and left point eval-

uations.

PROPOSITION 1.1. Let Fe L™, A e D™ and Z € D™, and assume that the spectral
radii of SA™' and ZS™' are strictly less than 1. Then F**(A) and F.(Z) are the unique elements
of D™ such that

(F=FRANS-A)' e £™r, (S-27(F-F(2) e L™

I.2. The time-varying two-sided Nudelman interpolation problem in discrete time
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For the discrete time time-varying two-sided Nudelman interpolation problem the given inter-
polation data form a set

2.1 w=(C,, C_A;Z B, B_;T)

consisting of diagonal block matrices with the following properties. The diagonal block matrices
A and Z belong to D™ and D**, respectively, and the spectral radii of S™'A and ZS™! are strictly
less than one. Here, as before, S is the block forward shift on ¢, of the appropriate dimension.
The diagonal block matrix C- belongs to D™, and the pair (C-, A) is required to be uniforily
observable which means that the diagonal block matrix

(2.2) Y @rsycics'ay
J=0

acts as a positive definite operator on ¢4. The diagonal block matrix B, belongs to D¥*, and
the pair (Z, B, ) is required to be uniformly controllable, i.c.,

(2.3) > (ZS'YB.B(SZ'Y

j=0
is a positive definite operator on 4. Finally, C,, B_ and T are assumed to be in D™, Dkxr
and D respectively.

The time-varying two-sided Nudelman interpolation problem asks to find all F € £ "™ such that

(2.4) ResgFC_(S-A)"' =C,,
(2.5) Res; (S—2)'B,F =-B_,
(2.6) Res [(S—2Z)'B,FC_(S-A)'|=T,

and F meets the following norm constraint:

2.7) ||F|| < 1.
Since F is required to be lower triangular, FC_ and B,F must also be lower triangular, and

hence the left hand side of (2.4) is equal to (FC-)"%(A) and that of (2.5) is equal to (B,F_)":(2Z).
But then it follows that from Proposition 1.1 that (2.5) and (2.6) may be reformulated as

2.5) (FC_=C,)(S-A)y"'e £m

(2.6)) (S-2)7"(B,F+B.) e LF,
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One can show that if the interpolation problem (2.4)-(2.6) has a solution F € L™, then
necessarily I must satisfy the equation

(2.8) TA-ZS'I'S=B.C, + B_C_.

In more detail, if I' = diag (T',), A = diag (A,), Z = diag (Z,), B+ = diag (B+,) and C+ =
diag (C%,,), then (2.8) means that the sequence (T",) satisfies the time-varying Sylvester equation

ra,-zr.,=8,,C,v+B_.C_, vel
We are now ready to state our main theorem for the discrete case.

THEOREM 2.1. Assume we have given interpolation date w as in (2.1) such that (2.8) is
satistied. Let Hg € D™ and H; € D** be the unique solutions of the respective time-varying

Stein equations

(2.9) ST HgS—A*HgA = C*C_ - CiC,,

(2.10) H, - Z(S'H,S)Z = B,B - B_B",

and consider the 2 X 2 operator matrix

B T ,
2.11) A:( “ ):/2@/5-%@/5.
r /) *7 % 772772

Then there exists a solution F € L™ of the interpolation problem (2.4) — (2.6) satistying the
norm constraint (2.7) if and only if A is a positive detinite operator on (4**, and in this case all
F e £ satistying (2.4) — (2.7) are given by

(2.12) F=(0,1G+02)(0,G+0y)",

where G is any element in L™ such that ||G|| < 1 and the operator matrix

O 912)
e= DS D
<@21 O P T
is given by
O=656+KS-A)"' gV +IBU-52)"' S5

Here c I o
y:<C*), B=(B, B_), .Iz(() _l):f'z"®/§—>(”2"®£§,
and § € Dlmerximen  G1) g Prximen) and f2) e DEXm+r) are arbitrary solutions of
* * ﬂ"z)
< r\‘+| _A\'HR, v )f;‘l> ﬂl) =0
ZVHI,, w _rv ﬁn (;l
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and
HI, w1 0 0 ﬂ(pz)

([;VZ)‘l ﬂvl)* 5:) O HR.V 0 ﬂvl) =‘l’
0 0 J oy
where v runs over Z.

If A and Z are boundedly invertible, then the formula for ® can be given more explicitly as
~ (S-A)"! 0 (AT ~

O=5+ z* < > A ( ) 8

(r BZ7) 0 (S—Z*y! 5

where §e DU™0Xm+n jg any solution of the congruence relation
A~ yJ >
5 .

Instead of the suboptimal norm constraint (2.7) we may also look for solutions that are just

§*Is=J-(JyA"' Z*)A! (

contractions, i.e., solutions that satisfy
(2.13) |F|| € 1.

One can prove that the interpolation problem (2.4)-(2.6) has a solution satisfying (2.13) if
and only if A in (2.11) is positive semi-definite. Furthermore, if A is assumed to be positive
definite, then all contractive solutions of (2.4)-(2.6) are obtained by formula (2.11) where the
free parameter now runs over all G € L™ that are contractive.

If in (2.1) the block diagonal matrices C,, C_, A and I" are vacuous, then the two-sided Nudelman
problem reduces to the one-sided problem (2.5), (2.7), and in this case Theorem 2.1 follows
from the results in Section 4 of [2]. (see also [10], where the doubly infinite block matrices
F= [F,-j],f‘}:_m are allowed to have operator entries). A full proof of Theorem 2.1 will be given
in [4].

I1. Continuous Time Nudelman Interpolation
II.1. Generalized point evaluation in continuous time

In the continuous time setting (generalized) points are square matrix functions with entries from
L..(R), the space of essentially bounded measurable functions on R, and the role of the shift
operator is taken over by the operator of differentiation %{, which will be denoted by A. The
domain D(A) of A = % is the set of all functions f € L5(R) (where p may be any positive
integer) such that f is absolutely continuous on finite intervals and Af=f" € L5(R). Here L5(R)

stands for the space of all square (Lebesgue) integrable vector functions with values in C?.

Let A € LZ¥(R). We shall use the symbol A also for the operator of multiplication on L’Z’(R) by
A. Thus Af = A(-)f. It follows that A — A is a well-defined unbounded operator on L’Z’(R) with
domain equal to the domain of A. By 74(t, s) we denote the transition matrix associated with
the differential equation

(1.1) x (1) = A()x(1), —o0 < [ < oo,
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We call A an anti-stable time-varying point if there exists constants M >0 and 0 < a < 1 such
that

(1.2) l7at, 9)|| < Ma™", s>t

In this case the differential operator A — A is boundedly invertible, and for ¢ € L’Z’(R) we have
(1.3) @-a7"00 == [ awords reR
!

Generalized point evaluations will be defined for operators F : L7'(R) — L;(R) that belong to
the nonstationary m x r Wiener algebra YW™<, that is, operators F that admit a representation of
the form

(1.4) (Fo)(t) = D)) + / B fit, s)s)ds, te R

where D is an m X r matrix function whose entries are in L.(R) and the kernel function f is an
m X r matrix function whose entries are measurable functions on R X R such that

sup |[fit, 9)|| < €da),

—-s=a
for some ¢; € L;(R). An operator Fe W™ is called lower triangular (notation: F e LW™")
if the kernel function fin (1.4) is zero a.e. on s > ¢. In this case

t
(1.5) (qu)(t)=D(t)(p(t)+/ fit, s)p(s)ds, te R
By UW™" we denote the upper triangular F’s in W™, i.e., those F € W™ for which the
kernel function f is zero a.e. on s < t. Note that (A—A)~! in (1.3) belongs to UWP*P.

Now, let A € LZ'(R) be an anti-stable time varying point with associated transition matrix
4(t, 8), and let F € LW™ be given by (1.5). We define the right point evaluation of F at A
to be the function

0
FARA)(D) = D(1) + / ft+du+adds teR

Similarly, for an anti-stable time varying point Z € L"™*(R) with associated transition matrix
177(t, s) we define the left point evaluation of F at Z to be the function

oo

F(Z)(1) == D(p) +/0 zt t+ )ft+ ¢ )dey, te R

It turns out that both F*®(A) and F"L(Z) are mxr matrix functions with entries from L.(R). The
following proposition (cf., [3], Proposition 1.4) characterizes the left and right point evaluations.

PROPOSITION 2.1. Let Fe LW™, and let A € LZ(R) and Z € L™™(R) be anti-stable
time varying points. Then F~R(A) and F~L(Z) are the unique elements in L>"(R) such that

(F=-F*QA))A-A)"e W™, (A-Zy\(F-F(2) e LW™,
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In analogy with the time invariant case, if K is an integral operator in W with kernel function
k(t, s), it is natural to define the nonstationary total right half plane residue of K to be the function

1 0
Res*(K)(1) :=lim—— k(t+ a t)de
hlo h Jop

In this terminology we have

F*®(A) = Rest(F(A=A)"), FM(Z)=Res*(A-2Z)'F).

I1.2. Rational input-output operators

In this section we give the definition of a rational input-output operator from L5(R) into L(R).
Consider a time-varying system of the form

5 {x'(r) =A(Ox(t) + BOu(t), te R
¥ =C)x(r) + D(u(r),

where A € L(R), B € L(R), C € L™(R) and D € L™ (R). We also assume that the
differential equation

2.1) xX()= Ax(1), te R

has a dichotomy. The latter means (see [9], [11], [8]) that there exists a projection P of the
state space C" and constants M > (), 0 < a < 1 such that

(2.2a) [[7a(t, O)P7A(0, 5)|| £ Md"™*, 125,

(2.2b) |74(t, O)I = P)74(0, 8)|| € Md*™, s21

Here 74(¢, s) is the transition matrix function associated with (2.1). In [7] it is proved that (2.1)
admits a dichotomy if and only if (A— A)~! exists as a bounded operator on L5(R), and in this

case N
(A— M) o)1) =/ n(t, s)(s)ds, te R
where
TA(1, O)P14(0, 5), 1>,
(2.3) Wl s) =
—74(t, 0)(I = P)14(0, 5), t<s.

Note that A is an anti-stable time varying point if and only if (2.1) has dichotomy P = 0.

In the system equations £ we impose the condition that x € L5(R). Then for each u € Lj(R)
we can solve uniquely for x(f), namely, x = (A — A)~'Bu, and hence the output y is uniquely
determined from the input u by the formula y = Tsu, where Ty : L3(R) — L}(R) is given by

(2.4) Ts=D+CA-A)'B
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In (2.4) we see A, B, C and D as operators of multiplication defined by the corresponding

functions. In other words,
(TZGD)(I)=D(I)(/)(I)+/ C(Hm(, s)B(s)p(s)ds, te R

From the dichotomy inequalities (2.2a,b) and formula (2.3) one sees that Ty € W™, Formula
(2.4) is the analogue of the realization formula for a rational matrix function with no poles on
the extended imaginary axis in the time-invariant case.

Any operator from L5(R) into LY'(R) of the form (2.4) will be called a rational input-output
operator. The class consisting of these operators, which was introduced in [3], will be denoted
by R™. We write T € LR™" if Te R™ and T is lower triangular, i.e., the kernel function
of T is zero a.e. on s ¢, and hence, LR™" < LW™,

I1.3. The time-varying two-sided Nudelman interpolation problem in continuous time

For the continuous time time-varying two-sided Nudelman interpolation problem the given
interpolation data form a set

3.1 w=(C;, C_A;Z B, B_;T).

consisting of matrix functions with entries from L.(R) that have the following properties. The
matrix functions A and Z are anti-stable time-varying points of sizes MxM and NxN, respectively.
The matrix functions C, and B, have sizes rxM and N X m, respectively, and the pairs (C-, A)
and (Z, B, ) satisfy the following uniform controllability/observability requirements:

s
(3.2) / (@ 1 C(@)* C()Ta(cs 1) dex > Sly,

—oc0

(3.3) / - (1, @)B.(a)B. ()" (1, @) dox = 8y,
4

with > 0 a positive number independent of . Here 74 and 7z are the transition matrix functions
associated with the anti-stable time varying points A and Z, respectively, and I, stands for the
p X p identity matrix. The matrix functions C,, B_ and T" in (3.1) are assumed to have sizes
mxM,N xr, and N x M, respectively.

The time-varying continuous time two-sided Nudelman interpolation problem asks to find all
F e LW™ such that

(3.4) RestFC_(A-A)"' =C,,
(3.5) Rest(A-Z)'B,F=-B._,
(3.6) Res*[(A- 2 'B,FC_(A-A)'] =T,

55



and
(3.7) [|F|| < 1.

In (3.4)-(3.6) we view the data from (3.1) as multiplication operators defined by the correspond-
ing functions.

One can show that in order for the problem (3.4)-(3.6) to have a solution F € LW™ it is
necessary that the matrix function I is absolutely continuous on compact intervals and satisfies
the following time-varying Sylvester equation:

d
(3.8) Er(t) +T(Z() + AT () = B,()C. (1) + B_.())C_(1), te R, ae.
We are now ready to state our main theorem for the continuous time case.

THEOREM 2.1. Assume we have given interpolation data @ as in (3.1) such that (3.8) is
satistied. Let Ai(t) and A,(t) be the unique solutions of the time-varying Sylvester equations

(3.9) %Al([) + A (DA + AW A1) = C_()*C_() - C.(1)*C(1), te R

(3.10) %/\2(1‘) + Aa(DZ(0)" + Z()A2 (1) = BL()BL(0)* = B_(DB_(1)*, te R

and consider the 2 x 2 block matrix function

Ai(0) F(t)‘)
T A/’

(3.11) Ar) = ( e R

Then there exists a solution F € LW™ of the interpolation problem (3.4)— (3.6) satisfying the
norm constraint (3.7) if and only if there is a positive number § > 0 (independent of t) such that

3.12) A 2 8lysn, te R

In this case all lower triangular rational input-output operators F € LR ™ satisfying (3.4)—(3.7)
are given by

(3.13) F=(011G+012)(03,G+0y)

where G is an arbitrary element of LR™" with ||G|| < 1 and the operator matrix
0, ©6
e:( a '2> : L'(R) ® Ly(R) - L7(R) ® Li(R)
O O

is the rational input-output operator © given by

In 0 C, -B'\ ((A-2)" 0 -t
o=(5 )+(c &) (7 )7 (5 &)
0 I c. B 0 (A+A%! B: B
where A~ stands for the operator of multiplication by A(-)™!.
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One can show that the interpolation problem (3.4)-(3.6) has a contractive solution F e LW ™"
if and only if the matrix A(f) defined by (3.11) is positive semi-definite for each r € R.
Furthermore, if (3.12) holds, then all contractive solutions F € LR ™ of (3.4)-(3.6) are obtained
by formula (3.13) provided the free parameter runs over all contractions G € LR™.

If the matrix functions C,,C_,A and T in (3.1) are vacuous, then the two-sided Nudelman
problem reduces to the one-side problem (3.5) and (3.7), and in this case Theorem 3.1 follows
from the results in Section 5.1 of [3]. The full proof of Theorem 3.1 will appear in [S].
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