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ABSTRACT 

lllis paper concerns the time-varying analogue of the two-sided Nudelman interpolation prob­

Iem. Generalizations to the time-varying case of the results for rational matrix functions are 

presented in both the discrete and continuous time setting. 

o. Introduction 

For rational matrix functions the two-sided Nudelman interpolation problem can be stated as 

follows (cf., [6], Section 18.4). Let Ll denote the open right half plane n+ or the open unit disk 

D, and con si der the following interpolation data: 

(0. 1) 

Here Air and A ç are square matrices of sizes nlr x nlr and nÇ x nÇ, respectively, which have all 

their eigenvalues in Ll, the matrix B+ has size nÇ x m and the pair (Aç, B+) is a full range pair, 

which means that 

Im (B+ AçB+ . .. A~rl B+) = CDç, 

the matrix C has size r x nlr and the pair (C, Air) is a null kemel pair, i.e., 

nK n Ker CAt"l = {Ol , 
j=1 

the items C+ and B_ are matrices of sizes m x n lr and nÇ x r , respectively, and r is an nÇ x n lr 

matrix. The rational matrix version of the two-sided NudeJman interpoJation probJem asks to 

find all rational mXr matrix functions F that do not have poles in Ll, that satisfy the interpolation 

45 



conditions 

L ZO E t. Resz=zo(zI - Aç)-I B+F(z)C_(zI - AJr)-1 = r , 

and that meet the following norm constraint: 

(0.3) sup /lF(z)11 < 1. 
ZE t. 

As usual, Resz=zo W(z) stands for the residue of the ratioDaJ matrix function W(z) at Zo. The 

norm in (0.2) is the usuaJ operator norm for a matrix. If there is a solution of the problem 

(0.2)-(0.3), then necessarily r satisfies the Sylvester equatioD 

(0.4) 

and therefore in what follows we assume that (0.4) holds . 

To state the solution of the Nudelman problem (0.2)-(0.3), we Deed to introduce the Piek matrix 

A( w) a<;sociated with the data win (0.1), narnely 

(0.5) (
SI 

A(w) = r 

where SI and S2 are the unique (necessarily Hermitian) solutions of the Lyapunov equations 

S2AÇ + AÇS2 = B+B: - B_B: 

for the case d = n+ , or where SI and S2 are the uDique (necessarily Hermitiao) solutions of the 

Stein equations 

ij' d = D. Now a<;sume that A = A(w) is invertible aod introduce an auxiliary matrix fuDction 

0(z), by setting 

0(z) = / + (c -B:) ((V-AJr)-1 

C B: 0 

ifd=n+ , or 

8(z) = D + (C -8:) ( (v - AJr)-1 0 
C B: 0 (1- zAç)-1 

where, fixing any a E C with lal = I , 

D=/- + + ç A(wr l Jr (
eB' A '-I ) ( (/- erA )-1 

C -B:Aç-1 0 
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if ~ = D and hoth Alf and Aç are nonsingular, or 

G(z) = ( 
C+ -B:) ( (zJ-Alfr

1 
0 ) 

1+ (z - zo) C B: 0 (/ _ zAç)-1 . 

. A(W)-l ((/-ZoA~)-:C: -(/-zoA~)~IC:), 
(A ç- zo/)- B+ (A ç- zo/)- B_ 

where ZO is a chosen point on the unit drcle, if ~ = D and at least one of Air and Aç is singular. 

We shall refer to G as !he matrix function delermined from /he data w. 

We are now ready to state the main resuIt (from [6]) on the two-sided Nudelman interpolation 

prohlem. 

THEOREM 0.1. The /wo-sided Nudelman interpolation problem (0.2)-(0.3) has a solution if 

and only if /he Piek matrix A(w) is positive definile. In /his case. /he set of all solutions F is 

given by 

w/Jere G is an arbitrary m x r rational matrix fune/ion wi/h no poles on ~ satisfying /he norm 

eonstrainl sUPzet.IIG(z)11 < I and 

is Ihe matrix function assoeialed wi/h /he in/erpolaûon data w. 

TIle main aim of this paper is to present the generalization of Theorem 0. 1 to the time-varying 

case. In the discrete time setting (~ = D) this means that the role of rational matrix functions is 

taken over hy douhly infinite lower triangular matrices which appear as input-output operators 

of tinite dimensional time-varying discrete time linear systems. In the continuous time case the 

rational matrix functions are replaced hy integral operators of the second kind of Volterra type, 

which also appear as input-output operators, hut now of time-varying continuous time systems. 

The method which we employ to solve the time-varying two sided Nudelman interpolation 

prohlem is hased on ideas similar to those used in [61 for the time-invariant case. 

The present paper has the character of a survey paper. It consists of two chapters. The 

tirst introduces the discrete time version of the time-varying two sided Nudelman interpolation 

prohlem and presents its solution. The second chapter gives the solution of the same prohlem 

in the continuous time setting. Both chapters start with a section of preliminary character in 

which the time-varying analogue of the residue calculus of complex function theory is developed 

further. 

I. Discrete Time Nudelman Interpolation 

I.1. Residue calculus and generalized point evaluation in discrete time 

In this section we present some prelirninaries on shift expansions and time-varying residue 
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calculus. Throughout this paper m and r are given positive integers. We let Bmxr denote the 

set of all doubly intinite block matrices F = [Fjj1i.j:-oo with each block F ij a matrix of size m x r 

over C such that matrix multiplication by F on the left detines a bounded Iinear operator from 

f2 into f'2. Here f~ is the space of norm square summabie sequences (xn);=-~ with entries in 

~ written as column vectors. We wil! have use of the following subspaces: 

[,mxr = lower triangular elements of Bmxr = {F= [Fij1 E Bmxr I Fij = 0 for i <j}; 

U mxr = upper triangular elements of Bmxr = {F = [Fij1 E Bmxr I Fjj = 0 for i> j}; 

V mxr = diagonal elements of Bmxr = [,mxr n U mxr. 

Our interest is to develop further the time-varying analogue of the function theory on the unit 

disc started in [1], [21. The time-invariant case corresponds to the restriction to block Toeplitz 

matrices F = [Fj-j1i.j=-~, which are associated to the Laurent series of functions F(z) = 2::}:-- z! Fj 

on the unit drcle. A key tooi in the function theory analysis is the coeffident F -lof Z-I in the 

Laurent series. Assuming that the function F(z) = 2::}:-- Fjz! is meromorphic in the open unit 

disk D we have by elementary complex analysis that 

F_I = _1_. r F(z) dz = L Resz=zoF(z) 
2m JT D <oE 

where Resz=zoF(z) is the residue of F(z) at the point Zo in D. For the time-varying case, where 

F = [Fjj J is a general block matrix representing a bounded operator form (2 into f'2, there are 

two analogues of the Laurent series of interest, namely 

(1.1 ) 
y:-oo v=-oo 

Here S stands for the block lower triangular forward shift on f 2 of the appropriate dimension, 

and the coeffidents FI vi and F{ v} are block diagonal operators from Dmxr of which the main 

diagonal entries are given by 

(1.2) 

The convergence in (1.1) has to be understood entrywise. The coeftidents FI v) and F{ v} are 

uniquely determined by the entrywise convergence of the series and the fact that Fiv) and F{v} 

are block diagonal operators. We call the series expansions in (1.1) the lefl and righl shift 

expansions of F, respectively. 

We detine the left and righl nonslalionary lolal D-residue maps ResL and ResR from Bmxr into 

v mxr , by 

(1.3) 

where Fi-ll and F{ -I} are the block diagonal operators in Dmxr arising, respectively, from the 

left and right shift expansions of F as in (1.1). In generaI, note thai 
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and SVF1v,S-v helongs to [>tnXr. Thus, from the uniqueness mentioned above, it follows that 

F{ v} = SVFlv'S-v for each integer v. In particular, we have the following simple relation hetween 

the two residue maps: 

(1.4) 

If F(z) = 2::):0 z} Fj is a scalar function which is analytic on the closure of the open unit disc D 

and Zo E D, then the value F(zo) at the point Zo is also given hy 

F(zo) = -2
1 

. r (z - zorl F(z) dz = L Resz=w(Z - zorl F(z) 
Ja JT weD 

In terms of the Toeplitz matrix F = [Fi- j 1 associated with the function F(-) we have therefore 

F(zo)! = ResL((S - zol)-I F) = ResR(F(S - zol)- I). 

In this form the point evaluation carries over to the time-varying ca 'ie. 

Let F = [FijJ0=-~ he a general element of cmx r , and let A E [>n<r he a diagonal matrix such 

thaI the spectral radius p(S-1 A) of S-I A is strictly less than I . We may then define F AR(A) (the 

right point evalua/ion of F at A) hy 

( 1.5) 

NOle that the condition p(SA - I) < 1 guarantees thaI S - A = SU - S-I A) is invertible as an 

operator on fz. Similarly, if Z E [>,nxm is such that P(ZS-I) < I, then we may define the lelt 

point eva/ua/ion of F at Z hy 

( 1.6) 

More explicitly, 

F"R(A) = 2::):0 F {j}Si(S-1 AY ij F = 2::):0 F {j }Si, 

F"L(Z) = 2::):o(ZS- IYSiF[j) ij F = 2::):0 SiFUJ' 

The following proposition (cf., [2], Proposition 1.1) characterizes the right and lef! point eval­

uations. 

PROPOSITION 1.1. Let FE C"lXr, A E [> n<r and Z E [>mxm, and assume /ha/ /he spectra/ 

radii of SA- I and zs-I are stric/ly less /han I. Then FAR(A) and F"L(Z) are /he unique elemen/s 

of [>mx r 8uch /hat 

1.2. The time-varying two-sided Nudelman interpolation problem in discrete time 
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For Ihe discrele time time-varying Iwo-sided Nudelman interpolation problem the given inter­

polation data form a sel 

(2.1 ) 

consisling of diagonal block matrkes with the following properties. The diagonal block matrkes 

A and Z belong 10 '[>"xtl and '[>kxk, respectively, and the spectral radii of S-I A and zs-I are striclly 

less tllan one. Here, as before, S is the block forward shift on f 2 of the appropriate dimension . 

llle diagonal hlock matrix C belongs 10 '[>""''' , and the pair (C, A) is required 10 be uniformly 

ohservah/e which means that the diagonal block matrix 

(2.2) L(A·Syc:.C(S-IAY 
j=O 

acts as a positive definite operator on fï. The diagonal block matrix B+ belongs 10 '[>kxtl, and 

the pair (z, B+) is required to be uniformly controllabIe, i.e., 

(2.3) L(ZS-I Y B+B:(SZ*Y 
j=O 

is a positive detinite operator on f~. Finally, C+, B_ and r are assumed 10 be in '[>mxtl, '[>kxr 

and '[>kxtl, respectively. 

llle tüne-varying two-sided Nudelman interpolation problem asks to find all FEL mXr such that 

(2.4) 

(2.5) 

(2.6) Resd(S - Z)-I BJC(S - A)-II = r , 

and F meets the following norm constraint: 

(2.7) IWII < I. 

Since F is required 10 be lower triangular, FC_ and B+F must a1so be lower triangular, and 

hence the left hand side of (2.4) is equal to (FCY'R(A) and thal of (2.5) is equal to (B+F_Y'L(Z). 

Bul then il follows thaI from Proposition 1.1 thaI (2.5) and (2.6) may be reformulated as 

(2.5') (FC - C)(S - A)- I E 12'/001, 
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One can show that if the interpolation prohlem (2.4)-(2.6) has a solution F E L nlx r , then 

necessarily r must satisfy the equation 

(2.X) 

In more detail, if r = diag (r v), A = diag (A ,,), Z = diag (Z,,), B± = diag (B±, v) and C± = 
diag (C±, ,,), then (2.l:l) means that the sequence (r v) satisfies the time-varying Sylvester equation 

We are now ready to state our main theorem for the discrete case. 

THEOREM 2.1. Assume we have given interpo!ation date {V as in (2.1) such that (2.l:l) is 

sutis/ied. Let Hl< E Tl/lXJI and HL E Tlkxk be the unique so!utions of the respective time-varying 

Stein equations 

(2.10) 

and consider the 2 x 2 operator matrix 

(2. 11 ) A= (7 r* ) k k . ( /I EB f ~ f /l EB f H . 2222' 
L 

Then there exists a so!ul.Ïon FE {nlx r of (he interpo!ation pmhlem (2.4) - (2.6) satisfying the 

norm constraint (2.7) if and on!y if A is a positive de/inite operator on f ï+k. and in this case all 

FE {'/l xr satisfying (2.4) - (2.7) are given hy 

(2. 12) 

where G is any element in {'/lx r such that IIGII < land the operator matrix 

is given hy 

Here 

y= (~:), 
:lIId DE Tl(m+r)x(nI+r). (fl) E Tl/lx (m+r) and (f2) E Tlk x(m+r) are arbitrary so!utions of 
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and 

where v runs over Z. 

o 
HR. v 

o 
0) (ff.,2

l
) ~ ~) =J, 

If A and Z are boundedly invertible, then the formula for e cao be given more explicitly as 

- (S-Ar l 

e = 8 + (y ;r Z-. ) 0 

where 7; E VCm+rlxCm+rl is any solution of the congruence relation 

Instead of the suboptimal norm constraint (2.7) we may also look for solutions that are just 

contraetions, i.e., solutions that satisfy 

(2.13) IWII ~ I. 
One can prove that the interpolation problem (2.4)-(2.6) has a solution satisfying (2.13) if 

and only if A in (2.1l) is positive seffiÎ-definite. Furthermore, if A is assumed to be positive 

definite, then all contractive solutions of (2.4)-(2 .6) are obtained by formula (2.11) where the 

free parameter now runs over all GE L mxr that are contractive. 

If in (2.1) the block diagonal matrices C+, C, A and rare vacuous, then the two-sided Nudelman 

problem reduces to the one-sided problem (2.5), (2.7), aod in thi s case Theorem 2. I follows 

from the resuIts in Section 4 of [2]. (see also [10], where the doubly infinite block matrices 

F = [Fij ]0~oo are allowed to have operator entries). A full proof of Theorem 2.1 will be given 

in [4]. 

11. Continuous Time Nudelman Interpolation 

11.1. Generalized point evaluation in continuous time 

In the continuous time setting (generalized) points are square matrix functions with entries from 

Lo,(R), the space of essentially bounded measurable functions on R, and the role of the shift 

operator is taken over by the operator of differentiation 1;, which wiII be denoted by d. The 

domain V(d) of d = 1; is the set of all functions f E Li(R) (where p may be aoy positive 

integer) such that fis absolutely continuous on finite intervals and dj = / E Li(R). Here Li(R) 

stands for the space of all square (Lebesgue) integrable vector functions with values in Cp. 

Let A E z.e,XP(R). We shall use the symbol A also for the operator of multiplication on Li(R) by 

A. Thus Af = A(·)[ It follows that d - A is a well-defined unbounded operator on Li(R) with 

domain equal to the domain of d . By TA(t, s) we denote the traosition matrix associated with 

the differential equation 

(I. I) x' (t) = A(t)x(t), -00 < t < 00. 
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We call A an anti-slab/e lime-varying point if there exists constants M > 0 and 0 < a < I such 

that 

( 1.2) 

In this case the differential operator ~ - A is boundedly invertible, and for ({J E Li(R) we have 

( 1.3) «~ -Ar l ((J)(t) = -l~ TA(t, s)f{i..s) ds, tER 

Generalized point evaluations will be defined for operators F : Li(R) ~ L2(R) that belong to 

the nonslalionary m x r Wiener algebra W mxr, that is, operators F that admit a representation of 

the form 

(l.4) (F ((J)(t) = D(t)f{i..t) + J~ fl...t, s)f{i..s) ds, tER, 

where D is an m x r matrix function who se entries are in L~(R) and the kemel function f is an 

m x r matrix function whose entries are measurable functions on R x R such that 

sup Il/{t, s)11 ~ efa), 
I-s=a 

for some Ef E LI (R). An operator FE W mxr is cal led lower triangular (notation: FE .cWmxr) 

if the kemel function fin (l.4) is zero a.e. on s ~ t. In this case 

( 1.5) (F({J)(t) = D(t)f{i..t) + J~fl...t, s)f{i..s) ds, tER 

By UWmxr we denote the upper triangular F's in W mxr, i.e., those FE W mxr for which the 

kemel function f is zero a.e. on s ~ t. Note that (~- A)-I in (1.3) belongs to UWPXP. 

Now, let A E L:;:r(R) be an anti-stable time varying point with associated transition matrix 

TA(t, s), and let FE .cWmxr be given by (1.5). We define the right point evaJuation of F at A 

to be the function 

F/\R(A)(t) = D(t) + J~fl...t, t + a)rA(t + a; t) da; tER 

Similarly, for an anti-stable time varying point Z E L:::x"'(R) with associated transition matrix 

TZ(t, s) we define the left point evaJuation of F at Z to be the function 

F"L(Z)(t) := D(t) + 1~ TZ(t, t + a)fl...t + a; t) da; tER 

It tums out that both F/\R(A) and F"L(Z) are mXr matrix functions with entries from L~(R). The 

following proposition (cf. , [3], Proposition 1.4) characterizes the left and right point evaluations. 

PROPOSITION 2.1. Let FE .cWmxr, and let A E .c:;:r(R) and Z E .c:::x"'(R) be anti-stable 

time varying points. Then F/\R(A) and F"L(Z) are the unique e/ements in L:xr(R) such that 

(F - F/\R(A»(~ - Ar l E .cWmxr, (~- Z)-I (F - F/\L(Z» E .cWmxr. 

53 



In analogy with Ule time invariant case, if Kis an integral operator in W mx , wiili kemel function 

k(t, 05) , it is natural to deline the nonstationary total right halF plane residue of K to be the function 

11° Res+(K)(1) := Iim - - k(t + a, t) do, 
1110 IJ - 11 

In this terminology we have 

11.2. Rational input-output operators 

In Ulis section we give the delinition of a rational input-output operator from L2(R) into Lï'(R). 

Consider a time-varying system of the form 

L {x' (I) =A(t)x(t) + B(t)u(t), 

y(t) =C(t)x(t) + D(t)u(l), 

tER 

where A E .c::,Xt'(R) , B E .c::,x'(R), C E .c:xn(R) and D E .c:X'(R). We a1so a<;sume that the 

differential equatjon 

(2.1) x' (I) = A(t)x(t), tER. 

has a dichotomy. The latter means (see [9], 111], [gl) that there exists a projection P of ilie 

state space en and constants M > 0, 0 < (j < I such iliat 

(2.2a) 

(2.2b) 

Here TA(t, s) is the transition matrix function associated wiili (2.1). In [7] it is proved that (2.1) 

admits a dichotomy if and only if (~- A) - I exists as a bounded operator on Lï(R), and in this 

case 

where 

t> 05, 
(2.3) 

t < o5. 

Note iliat A is an anti-stable time varying point if and only if (2.1) has dichotomy P = O. 

In the system equations L we impose Ule condition that x E Lï(R). Then for each u E L2(R) 

we can solve uniquely for x(t) , narnely, x = (~- A)-I Ru, and hence ilie output .y is uniquely 

determined from the input u by the formula y = hu, where Tr. : L2(R) ~ Li(R) is given by 

(2.4) Tr. = D+ C(~-ArIH. 
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In (2.4) we see A, H, C and D a'i operators of multiplication defined hy !he corresponding 

functions . In other words , 

(Tr,rp)(t) = D(t)rp(t) + J~ C(t)YA (t, s)B(s)rp(s) ds, tER. 

From !he dichotomy inequalities (2 .2a,h) and formula (2.3) one sees !hat Tr. E wmxr. Formula 

(2.4) is IJle analogue of !he realization formula for a rational matrix function wi!h no poles on 

the extended imaginary axis in !he time-invariant case. 

Any operator from L2(R) into L2'(R) of the form (2.4) wil\ he called a rationaJ input-output 

operator. The c1ass consisting of !hese operators, wtllch was introduced in [3], will be denoted 

hy n",xr. We write TE CR",xr if TE n mx r and T is lower triangular, i.e., !he kernel function 

of T is zero a.e. on s 2: t, and hence, cnmxr c CWmxr. 

11.3. The time-varying two-sided Nudelman interpolation problem in continuous time 

For !he continuous time time-varying two-sided Nudelman interpolation problem !he given 

interpolation data form a set 

(3.1 ) 

consisting of matrix functions wi!h entries from L~(R) !hat have !he following properties. The 

matrix functions A and Z are anti-stable time-varying points of sizes MxM and NxN, respectively. 

TIle matrix functions C+ and B+ have sizes rxM and N xm, respectively, and the pairs (C_, A) 

and (Z, H+) satisfy !he following uniform controllability/observability requirements: 

(3.2) J~ rA(l:~ t)*C(a)·C(a)rA(~ t)da2: 81M, 

(3.3) 

wi!h 8> 0 a posi tive number independent of t. Here rA and rz are !he transition matrix functions 

a<;sociated with the anti-stable time varying points A and Z, respectively, and lp stands for !he 

p x p identity matrix. The matrix functions C + , B_ and r in (3.1) are assumed to have si zes 

m x M, N x r, and N x M , respectively. 

The time-varying continuous time two-sided Nudelman interpolation problem asks to find all 

FE cwmxr such thaI 

(3.4) 

(3.5) 

(3.6) 
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and 

(3.7) IIFII < I. 

In (3.4)-(3 .6) we view the data from (3.1) as muItipIkation operators defined by the correspond­

ing functions. 

One can show that in order for the problem (3.4)-(3 .6) to have a solution F E [wm><r it is 

necessary that the matrix function r is absolutely continuous on compact intervaIs and satisfies 

the following time-varying Sylvester equation: 

d 
dl r(t) + r(t)Z(I) + A(t)r(t) = B+(t)C(t) + B_(t)C(t), IER a.e .. 

We are now ready to state our main theorem for the continuous time case. 

THEOREM 2.1. Assume we have given interpolation data ûJ as in (3.1) such that (3.8) is 

satistied. Let AI (I) and A2(t) be the unique solutions of the time-varying Sylvesler equalions 

(3.9) 

(3.10) 

and consider the 2 x 2 block matrix function 

(3. 11 ) 

TIjen there exists a solution FE [w mx r of the interpolation problem (3.4)- (3.6) salisfying the 

norm constraÏnt (3.7) if and only if there is a positive number 8> 0 (independent of t) such that 

(3.12) 

In this case all lower triangular rational input-output operators F E CR m><r satisfying (3.4)-(3.7) 

are given by 

(3. 13) 

where G is an arbitrary element of [Rm><r with IIGII < I and the operator matrix 

12 : L;(R) EB L2(R) ~ L;(R) EB L2(R) o ) 
0 22 

is the rational input-output operator 0 given by 

0= (/m 0) + (C -B:) (~ -Z)-I 
o Ir C B: 0 

where A- I stands for the operator of multiplication by AO-I . 
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One can show that the interpolation problem (3.4)-(3.6) has a contractive solution FE CW mxr 

if and only if the matrix A(t) defined by (3.11) is positive semi-definite for each tER. 

Furthermore, if (3.12) holds, then all contractive solutions FE CR mxr of (3.4)-(3.6) are obtained 

hy formula (3 .13) provided the free parameter runs over all contractions G E CRmxr. 

If the matrix functions C+, C , A and r in (3.1) are vacuous, then the two-sided Nudelman 

prohlem reduces to the one-side problem (3.5) and (3.7), and in this case Theorem 3.1 follows 

from the results in Section 5.1 of [3) . The full proof of Theorem 3.1 will appear in [5). 
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