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ABSTRACT

An algorithm is presented to calculate a state space representation of the anti-causal part of the
inverse of a causal, discrete, time-varying system. The state space representation given of the
latter system has the same number of inputs and the same number of outputs. Furthermore, we
assume the state dimension to be constant. The results of the algorithm may play an essential
role in calculating the solutions of time-variant sensitivity minimization problems by reduction
to a Nevanlinna-Pick interpolation problem, see [1] (cf. [3]). The algorithm is characterized by
three recursive equations, one of which is a Riccati equation. In an example, we illustrate the
calculation of the initial conditions of these recursive equations when the plant changes from
one time-invariant condition to another one.

1. Introduction

Nevanlinna-Pick interpolation theory constitutes- one of the approaches in solving H. control
problems for time-invariant systems, see e.g. [2]. One possible way to formulate a Nevanlinna-
Pick interpolation problem for the prototype H. control problem, namely the sensitivity min-
imization problem, is based on the decomposition of the inverse of the plant to be controlled
into a stable and anti-stable part. For time-invariant systems this is generally a trivial matter.

It is known (see [2]) that also in the time-variant case, the sensitivity minimization problem
may be reformulated as a Nevanlinna-Pick type interpolation problem. For this reformulation
to be effective one needs to know explicitly the anticausal part of the inverse of the plant P.
In [3] this part is assumed to be given. The present paper makes the next step and provides
a computational procedure to determine the anticausal part of P! (if it exists) in terms of a
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time-variant realization of the given plant P. We restrict to the class of systems with constant

state dimensions and m inputs and m outputs.

The algorithm to calculate the anticausal part of P~! consists of three major steps:

ii.

iii.

(23]

. Let I, denote the (block-)diagonal operator with the identity matrix /,, as it diagonal

entries, then the first step of the algorithm is to embed the given system P into a J-unitary

system ©, with J = [ Lom ] such that,
-
o=|on %]
and
eJe" =J e'Je=J
In the second step we calculate the unitary system Z that is related to © as follows,

5 _ [ Zn I } _ [ 011 -012P 'O, -0O,P!
0 I PO, P!

The left hand side is the time-variant analogue of the Redheffer transform of ©, defined
in the invariant case in [2]. Figure 1 represents the input-output relationship between X
and O.

The final step is the calculation of the anti-causal part of Z,,.

Oy 42 4 X a2

bl

Figure 1: The J-unitary © section and corresponding unitary X section.

The key step of the algorithm is the first step and it is shown that a solution to this step exists

when:
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that is there exists an £> 0 such that for all (row) sequences u in ¢;:
lu(P*P = Du’||2 < d|uu’]|2

This condition can always be satisfied by scaling the plant P by some scalar parameter o > 1
when P*P >> (. In that case, we obtain the anticausal part of P~! by scaling the system obtained
in the third step of the algorithm applied to &P by (—‘1

The outline of the paper is as follows. In section 2, we describe some basic concepts about
the spaces and state space realizations that occur in this paper. The next two sections state the
sensitivity minimization problem and outline how it can be transformed into a Nevanlinna-Pick
interplation problem. These sections only serve as a motivation to the main contribution of
this paper covered in section 5. In the latter section we present the algorithm to calculate the
anticausal part of the inverse of the given plant. Section 6 illustrates the results of section 5 by
means of a numerical simulation and finally section 7 concludes this paper with some remarks.

2. Some basic concepts about spaces and realizations

Spaces

The sequences analyzed in this paper are l?’z’ sequences. Here 1?’2’ denotes the space of all row
sequences u = ()7, for which 3°7 _ ||uj||* < . The zero-th element in the sequence must
be distinguished, which we do by surrounding it with a square.

An operator T acting from 6’2’ - K’z’ can be represented by a block matrix (operator) [Tij] o< jceo,
where each block T;; has size p x p. The central (0, 0) block is surrounded by a square. The
action of T on a sequence ¢ € ¢ is represented by the (vector-matrix) product ¢T. The space
of bounded linear operators on ¢, is denoted by V7 or simply " when no confusion exists
on the dimension. The subclass of lower triangular operators and upper triangular operators is
denoted respectively by £ and UP*¥. The class of block diagonla operators DP? is defined
as the intersection DP¥ = LPP A UP?P.

A key element of (/P*¥ is the bilateral (forward) shift operator Z. Its action on a sequence x € (‘2’
is given as:
[ g [ = ]z: [ xR o ]

We also need a diagonal shift operator: the k-th diagonal shift of A € X is A® = Z**AZ* and
will shift the entries of A over k positions into the South-East direction: (A®),; = Aj_y j«.
Realizations

The state space realizations analyzed in this paper are defined by means of diagonal operators [4].
Herefore, we assemble the matrices {A(k)}, {B(k)} etc. as operators on spaces of sequences
of appropriate dimensions, by defining A = diag(A(k)), B = diag(B(k)), C = diag(C(k)) and
D = diag(D(k)). Let ¢ be the space of input sequences, ¢3 the space of output sequences, and
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let ¢} be the space of the state sequences. If all operators {A(k)}, {B(k)}, etc. are uniformly
bounded over k, then A, B, etc. may be viewed as bounded diagonal operators which together
define a realization T of the map T between the input u and the output y,

xZ' = xA+uB
y = xC+uD

For short we will use the notation
T = A C
B D
to represent the state space representation of a realization of T. Let the spectral radius of the
operator AZ be strictly smaller than 1, then
T=D+BZ(I-AZ)'C

exist as a bounded upper operator. This class of systems will be members of the class of causal
systems. Similarly, when the spectral radius of Z*A is smaller than 1, then

T=D+B(I-ZA)'Z'C

exists as a bounded lower operator. As such these systems are members of the class of anti-
causal systems. Generally, if the spectral radius of both A|Z and Z*A, are strictly smaller then 1,
then the class of mixed causal and anti-causal systems treated in this paper have a representation

as,

T=D+B Z(I-AZ)"'C\+B(I-Z'A)"'Z°C;
; - A C - ;
For a system T € U, with realization s ol the controllability operator M, satisfies:

MY = A*M.A + B*B
and for this system the observability operator M, satisfies
M, =AMSVA + CC*

The system is defined to be minimal if both M.>>0 and M, >> 0.

3. The sensitivity minimization problem

Assume the feedback configuration in figure 2. Here the plant P and the controller K are input-
output maps in X', The plant P is assumed to be causal and given by the following finite
dimensional linear, time-varying, state space representation:

A C A e DVN C e pNxm
P=
B D Be D™N D e pmxm
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u + €1

(%) u

Figure 2:

and the task is to find a time-varying state space representation for the controller K.

The closed-loop system in figure 2 is described by the systems of equations:

er = uj+ek
ey = uy—e P

The overall closed-loop system is assumed to be well-posed, that is we can solve the above
system of equations for the internal signals [e; , e,] in terms of the input respectively disturbance
signals [u; , uz]. This is indeed the case when the operator (/ + PK) has a bounded inverse and
then the map H from [u;, uz] to [e;, ez] is in X'™ and given by:

(+PK)y' —PU+KP)"
KU +PKy'  (I+KP)!

An important notion of the closed-loop system is internal stability. This is defined next.

Definition 1: The system P in figure 2 is internally stabilized by the controller K if and only
if H is causal, that is H € /™", O

The sensitivity map S is defined as the map from u; to e,, that is is:
S=+KP)"! (1)

We are now in a position to state the sensitivity minimization problem: For a given tolerance
level T € D, with T*T > 0 and an outer (i.e. stable and with stable inverse) weighting map
W e U find a compensator K (if any exist) such that:

i. the closed-loop system H is internally stable,

ii. [lWST Y| <1 )

Here ||WST™!|| is the norm of WST! as a bounded operator on €%
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4. The sensitivity minimization problem as a Nevanlinna-Pick interpolation problem

In the time-varying context, the Youla parametrization of all internally stabilizing controllers
remains valid. This is stated in the first theorem.

Theorem 1 Let the plant P € U, then for any controller K internally stabilizing H there exists
a Q € U such that,

K=U-0P "0 3)
Conversely, for any such Q the controller given by Eq. (3) internally stabilizes H.

Proof: The proof can be found in [1]. O

With the parametrization of K in (3), the sensitivity map S becomes:
S=1-QP )

Suppose that in addition to the stability of P, its inverse P~! € .\’ and decomposed as:

P! = D;+BZU-A12)7'Ci+B,(I-ZAy) ' Z° C,
eU eLZ)
= I),'+P,‘u+P,'[ (5)

then we have from Eq. (4):
U-8)=0P eU (6)
Using the expression for P~! in Eq. (5), we can state that:
QPP' = QP(D; + P+ Py) €U
and hence,
QPP, €U
or with Eq. (6),

U=-SPy €U )

I, 0
With the expression for Py in Eq. (5) and the definition of J € V" as ( 0"' ! ) the
Lo

Hermitian transpose of this last expression can be denoted as:
. _ I‘—#Sll
CZ(I - A3Z)™! [ B B ]J[ 7 ] e L ®)

Based on this outline, the task in the sensitivity minimization problem can be stated more
precisely as: Find the sensitivity map (ST™') € U such that it satisfies the interpolation condition
in (8) and the norm condition in (2) for W = L.
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A completely analogous interpolation problem results when using an inner-outer factorization
of P. The solution to this interpolation problem for W#/ is treated in [1]. In the present paper
we focus on a computational procedure to calculate the anti-causal part of P!

A similar reduction of the time-variant sensitivity minimization problem to a Nevanlinna-Pick
interpolation problem was given in [3]. The reduction in [3] does however not rely on the
Youla parametrization and in addition requires the inverse of the plant P to be given in a special
(diagonal) series representation. The sensitivity minimization problem in Eq. (8) only requires a
state space realization of the anti-causal part of P~'. In the next section we present an algorithm
to calculate such a realization starting from a given state space realization of P. The calculations
are completely performed in a state space framework.

5. Determination of the anti-causal part of P!
S.1. Embedding of a system P in a J-unitary system ©

5.1.1. The embedding problem

Let the system P € U™ be represented by the rational transfer function operator D + BZ(I —
AZ)"'C. Then the embedding problem is to find the diagonal operators (of appropriate dimen-
sion) Cy, By, D1y, Dy and D) in combination with the similarity transformation X, the state
signature Jx and the signature operator J,, such that:

x-en A* B} B X Jx
1 coDYoDE 1 I
|| c by, D I -1
X A ¢ C X0 £H
I B, Dy, Dp 1 = A )
I B Dy D I I

Here X~V denotes (X~')1 and J, represents a signature operator, with signature to be deter-
mined in section 5.2.4, see Remark 1.

5.1.2. Relationships to be satisfied

From Eq. (9) we derive,

A*X*JxX B} -B* A ¢ C X0 DxeD
CiX*JxX D, -Dj By Dy Dp | = J2
C*X*JxX D}, -D* B Dy D -1
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Let X*JxX be denoted by M, then we derive the following two sets of equations from the last

expression:
A*MA + B}B, - B*B = M~V (10)
A*MC + BiD\,-B*D =0 (11)
C*MC + D,D, —D*D =] (12)
and,
A*M B -B* “ B
oM oD, D Dy | =0 (13)
Dy,
CiMC\ + D},Dy, = D3, Dy, = J, (14)

Denote Egs. (12) and (11) respectively as,
DDy, =D*D-1-C*MC (15)
BiD;; =B"D-A"MC (16)
The question is when can this set of equations (10)-(15)- (16)-(13)-(14) be solved for the
unknowns?
5.1.3. A sufficient condition
In this section we assert that when:
P'P>>1

the operator M defined in the previous subsection can be computed as the solution of a Riccati
difference equation. This assertion can be proved using the extension of the positive real lemma
to the present time varying context, such as presented in [7]. We state this lemma next without
proof. For a proof we refer to [7].

Lemma 2 (The time-varying positive real lemma)
Let T € U be given as,

T=L+GZ(I-FZ'K

F K
with [ G L ] a minimal realization of T, and let (T* + T)*' € X, then T* + T >> 0 if and

only if there exists diagonal operators R, Q, B with R >> 0 and Q >> 0 satisfying the following

relationships:

RV = F*RF + B*QB 17
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B*Q=G"-F'RK (18)
Q=L+L" -K'RK (19)

To apply this Lemma, we first derive a state space representation for P*P — I in terms of the
minimal realization of P. This is done in the next Lemma.

Lemma 3 Let P € U be given as:

P=D+BZ(I-AZ)"'C

A C
with [ _ ] a minimal realization of P, and let M . be the controllability operator satisfying:

MY = A*M A+ B*B (20)
then,

P*P—I=D*D-I+C*M.C+C*(I-Z*A*)"' Z*(B*D+A*M . O)+(D*B+C*M.A)Z(I-AZ)"' C(21)
Proof: The proof is straightforward and directly follows from Lemma 1 of [7]. a

Although the given realization of P is minimal, this does not necessary hold for the realization
A C
. When the latter system indeed is not minimal, Lemma
D'B+CMA D*D-I1+CM.C
1 cannot be applied. However, as shown in [7], Lemma 1 can be extended for non-uniformly

controllable systems. In that case the solution R to Egs. (17- 19) can only be guaranteed to be
positive semidefinite.

Hence, based on the last two Lemma’s we have the following theorem.

Theorem 4 Let P*P—1>>0, let P € U4 be given as:

P=D+BZ(I-AZ)'C

with [ 2 5 } a minimal realization of P, let (P*P—D*' € X, then there exists R € D and
2 0 satisfying:

RV = A*RA+ (B*'D=A*(R-M.)C)YD*D - I- C*(R-M)CY " (D*'B-C*(R-M,)A) (22)
with

D'D-I1-C'(R-M.)C>>0 (23)
and M. satisfying Eq. (20).
Proof: From Lemma 2, we can take the state space representation [F, G, K, L] in Lemma 1 as:

F=A G=D'B+CMA K=C L+L"=D'D-1+C'M.C
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Hence by Lemma 1| there exists an R satistfying the conditions stipulated in the theorem. By
the same Lemma the condition in Eq. (23) is also satisfied. O

Corollary 5§ Let the conditions of Theorem 2 be satisfied, and let the operator M € D be
defined as:

M=R-M, (24)
then, M satisfies the Riccati equation:

A"MA + (B*D-A"MC)(D'D—1-C'MC) (D*'B- C*MA)- B*B= M™" (25)
as well as Eqs. (10-12).
Proof: With M defined as in Eq. (24), Eq. (23) and Eq. (15) show that:

Di,D12 >> 0

Hence D},D;; € D™ is invertible.

To prove the second part, subtract Eq. (20) from Eq. (22) to see that M defined in Eq. (24)
satisfies Eq. (25). That the latter Riccati equation results from Eq. (10-12) can easily be seen,
using the fact that:

D12(D3D12) ' Dy = L
in Eq. (10) as follows,
A*MA + B} D2(D},D12)"'D\3B, — B*B = M™D

Hence with Eqgs. (15-16), the latter equation precisely becomes the Riccati equation in Eq. (25).
o

The solution M to Eq. (25) determines the similarity transformation X, the state signature J y
and the operators Dj, and B up to an orthogonal transformation on the left. In this paper, we
will assume that the solution M derived in Corollary 1 is invertible. In that case, the similarity
transformation X is invertible and we can define the quantities:

XAX—D XC
B]X_(_” D,
BXD D

5.1.4. Completing the embedding problem

In section 5.3 we will explicitly show that the only quantities necessary in the calculation of the
anti-causal part of P~! are those obtained at the end of the previous section. Hence, completing
the embedding problem is not necessary. Nevertheless, in this section we discuss the completion
of the embedding problem. This discussion is held on a local time scale. That is we look for a
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series of matrices V (of appropriate dimensions) with independent columns such that:

(26)

A* * B* Mk
E R ] By Vi=0
G Diy Di
I
Cik
and then set the remaining unknown matrix triplet | Dy, | equal to VU, with the matrix Uy
Dy
and J, determined from:
My
Vi I Vi = Ug i U

_[m

(27)

We now study the existence of the matrices Vi, Uy and J,. Since, M, are invertible for Vk,

we can easily deduce from the relationship:

M; Ag Cy

A; 1+ B M,
v e ] Iy Bix D | = [ ! }
G Diy Di el
Iy By Dy
N
. . . . . Ay
derived from Eq. (9) using the equality M = X*JxX, that the columns of the matrix "
m 1,k
m By
My
are independent. Therefore, since the matrix I is a square invertible matrix,
_Im
the same holds for the columns of the matrix,
My Ay G
I Bix Dz

-1 m Bk D, k

Hence we can select m column vectors that form the matrix Vi, such that Eq. (26) is satisfied.

With V; determined, it is always possible to determine form Eq. (27) a non-singular square

matrix Uy and a signature matrix J,x with possibly +1's, —1's and zeros on the diagonal. In the

next lemma it is shown that no zeros can be present in the signature J; .
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Lemma 6 Let V, € R Ne+2mNeNeatm ywish independent columns, satisfy the following relation-

Ship:
A; Bl B M A Ci M
Vi I Bixg Vi Dy | = Jok (28)
Gy Dl Dy - By Dy -1,
Ax Ci
and let the matrices My be invertible for Yk, then the matrix | Byy Vi Dy | is square
By Dy

und invertible.

Proof: Suppose invertibility does not hold, hence:

X1 Ag Ck X
3 X2 #0: B[,k Vi D12.k X2 =0 (29)
X3 By Dy X3

However, from Eq. (28) we derive that:

My Ag Ck X1
Ay Bl B; I Bix Vi Dz X2 | = Mpax;
_lm Bk Dk X3

Since, My, is non-singular x; = 0. In the same way, we can prove that x3 = 0. Hence (29)
holds if,

Vixa =0
However, since the columns of Vi are independent x, = O and the proof of the lemma is
completed. a
The result of the above lemma show that the signature matrix J,; cannot have zeros on the
diagonal.
Remark 7 Let #.(My) denote the number of +1’s in the inertia of My and similarly #_(M;)
denoting the number of —1's, then we derive fromEq. (28) and the result of Lemma 3 that,

#. (M) +m # (Myyr) +#.(J2 )

# (M) +m = K (M) +#- (o) +m (30)

In [8] it was shown that when the state dimension is constant for ¥k and when the transition
matrix of P~' is non-singular, #_(My) remains constant. Therefore, the last relationship shows
that,

#.(J24) =0 (€2

and hence #,.(Jpx) = m.
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5.2. The calculation of the corresponding unitary I system

With the help of figure 2, the state representation of the J-unitary system © determined in the
previous subsection can be denoted as:

XAX-Y xc, XC
x a, b B]X_(_l) Dy, Dy =| xZ! a, b, (32)
BX~b Dy, D

Let us consider, similar to the exposure given in [4], a more general form of this state repre-
sentation. Namely, the same set of equations hold when the input, output and state quantities
belong to ;7" U and ¥ respectively.

According to the signature operator Jy, the state space sequence 5 decomposes into two com-
plementary space sequences () = ﬂg’* @ 172' Let any state sequence x € XV be partitioned
accordingly into x = [ X, X ] with x, € U™ and x= € ), then the state space
representation of © can be written as:

a2 N M2

o

Xy X- A b|] . % n e = X+Z_l X_Z_l az hz
Bit Pz S b2
B B 1 62

Using the J-unitary property of this state space realization, it is shown in [4] that the corre-
sponding unitary system X always exists and that the following block-diagonal operators are
well-defined:

-1

Fi Hn] _ [an Ni }_[0112 7‘12} [0122 Y2 [a'zl »%1
| G K B on B2 612 B o B &
- =

Fi Hjp ] _ _[ ar N2 ] [ 2 P2 ]
| G2 K2 Bz o2 B o
_ =

Fy1 Hy ] _ [ 2 Y2 [ o Pl ]

Gy Ky B2 622 B 6
_ -1

Fy Hp _ o 2

ng K22 B ﬂZZ 522

The latter operators define the state representation of the corresponding unitary X section as:

] Fy1 Fyp Hy Hy

[x+ xZ' ay b = xZ' x a b (33)
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5.3. Calculating a realization of the anti-causal part of P!

The final step in the calculation of the anti-causal part of P~! is the calculation of the anti-causal
part of Z;;. For this we borrow a result from [4].

Let the input quantity b, € .\, be decomposed as by = by, + byy, with by, =P 7.1(by) € L2Z7!
the "past’ part of the signal (with reference to its O-th diagonal) and byr = P(b2) € U, the 'future’
part, and similarly let the other input and output quantities of X be decomposed in a "past’ and
"future’, then the anti-causal part is the transfer from by, to by,. A realization of this transfer
has been determined in [4]. This result is summarized in the following proposition. Here we
make use of the additional notation that x4 denotes the k-th diagonal above the O-th diagonal
of the operator x € 15.

Proposition 8 Let the operators S and R define the following mapping:
X_|0|S = X4[0] and X_“|S = X4(1) for a.,, = bzp =0and ajjo) = b2|()| =0
X+|0|R = X—0] for a = bzf =0

then both S and R are contractive and determined by the following recursions:
STV = Fp 4 Fy(I- SF1p) ' SFyy
R = Fi+Fu(-R™F) 'Ry

A state space realization for the strictly lower (anti-causal) part of £, is given as:
xqo = XAz +byoBa
by = x|C2
with the diagonal operators (A,, By, C3) given as:
Ay = Fp(-SFp)”!
C; = Hyp+Fy(l-SF1)'SHy,
By = (Gp+ Gy RV = Fy ROV Fop)(1 - SR)™!

6. An Example

In the present example, the following Single-Input Single-Output (SISO) system P is considered:

[wn = [ ]| 70 o] 10
w o= [xx] [ _([;';kk;;f"‘) ] + K (35)

Here «is a scalar, constant scaling parameter, used to guarantee that the condition P*P >> |
holds. This was the case when x was chosen equal to 5. The other parameter values are fixed

in the following way:
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-1.5 k<0

dik = 0.0005k2 + 0.022k — 1.5 0<k<10
-1.2 k> 10
0.7 k<O
drk = 0.02k + 0.7 0<k<10
0.9 k> 10
1.5 k<0
by = 0.2k + 1.5 0<k<10
1.7 k> 10
bay = 0.7 —o0 < k < oo

With this model, the solution to Eq. (20) and Eq. (22) are computed. Since these are both
recursive equations we pay some attention to the calculation of the initial conditions. The
system is assumed to be constant for k < 0, hence, the matrix M., satisfies the (classical)
Lyapunov equation:

Mo = AGM.0Ao + BBy
Similarly the matrix R, satisfies the algebraic Riccati equation:
Ro = AGRoAo + (BoDo — Ag(Ro — M,0)Co)(DyDo — I — Co(Ro — M0)Co)™ (DgBo — Co(Ro — Mc,0)Ao)
The solution to this algebraic Riccati equation can be obtained via the solution of a generalized
eigenvalue problem, see [10].
With the solutions to Eq. (20) and Eq. (22), the solution to Eq. (25) is given as in Corollary 1.
0

. . - 1
The signature matrix Jy in this case was equal to 0 and the calculated state space

1,

-1,

representation of the © sections was (= J)- unitary up to machine

-1,

precision.

Using the obtained state space realization of the J -unitary ©-sections, the second major step
was the calculation of a state space realization of the corresponding unitary X-section. Again
these realizations were unitary up to machine precision. The calculations are performed for k
running from 1 until some upper bound ko when the calculations have converged. In the present
example ko was taken equal to 100.

Finally, the strictly anti-causal part of P~! is calculated as described in Proposition 1. Again
we pay attention to the calculation of the initial conditions to the recursions for the S and R
operators.
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The matrix S defined in Proposition 1 satisfies the following the following recursion:
Sket = Faix + Faor( = ScF o)™ SeF 1k

Since for k < 0, the matrices Fyx, Fiox, Fa1x and Fpy 4 are constant, S remains constant for
k < 0. Denote this quantity by So. Then S, satisfies the algebraic equation:

So = Fa1,0 + Fao,0( = SoF12,0) ' SoF 11,0

Using the contractivity property of S, the solution to this equation is obtained by calculating
S;, according to the following recursive equation:

Sker = Far,0+ Fazoll = Sy F120) " StF110

using the initial conditions S, = 0. The recursions with the above equation are stopped when

for some tolerance level &, ||S,,; = S;ll2 < &

In the same way the recursion that determines Ry is initiated now starting from the other end
k = ko. The constancy of the matrices Fy1x, Fizk, F214 and Fax for k = ko is thereby crucial.

Using the results of the previous two steps the operators A,, C; and B, were calculated again
as outlined in Proposition 1. To check the obtained results, we calculated the impulse response
at time instant O of the system,

(P = Py) (36)

using the causal (non-stable) state space realization of both operators. Though the system
matrices are bounded in both realizations, this need not to be the case in general.

According to the decomposition of P~! as given in Eq. (5), this is equal to the impulse response
of D; + Ps, with D; € D and P; € U, and hence has to be a stable causal impulse response.
Let the impulse response of P~! be denoted by y and that of P; as w, then indeed the quantity
' | ylw', not shown here for the sake of brevity, corresponds to the impulse response of a causal
(stable) system.

7. Concluding remarks

In this paper an algorithm is derived to calculate a state space representation for the strictly
anti-causal part of the inverse of a causal system P. A state space realization of the latter system
is assumed to be known. It is assumed that the plant P is square and that the state dimension
of the given state representation of P is constant.

The usc of the algorithm is shown in formulating the prototype problem of robust control,
namely sensitivity minimization, as a Nevanlinna-Pick interpolation problem.

Another decomposition of the system that leads to a similar interpolation problem is the outer-
inner factorization. This is discussed in [1]. When using the recent strategy in [9] to do
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outer-inner factorization the key equation to be solved is a Lyapunov type of equation in stead
of a Riccati equation, as is the case in the present paper.
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