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ABSTRACT 

Operator valued Caraméodory functions and Nevanlinna functions wim IC negative squares have oper­

ator representations involving unitary or selfadjoinuelations in Pontryagin spaces. When IC = 0 they 

reduce to me c1assical integral representations of the Nevanlinna-Riesz-Herglotz type hy means of the 

spectral representation of the unitary or selfadjoint relations involved. In this paper it is shown that 

these operator representations can be obtained systematically by means of the realization of Schur 

functions with IC negative squares. 

1. Introduction 

Let L(F) be me algebra of all bounded linear operators on a Hilbert space F with inner product [ ... ]. 

An L(F) valued function K(z. w) defined for zand w in some set n is said to have IC negative squares. 

where IC E N. if K(z. w)" = K(w. z) for all z. w E Q and if. moreover. for every choke of fl E N. 

of elements 11 . . .. Jn E F and of points Zl • . . .• Zn E Q. the fl x fl heritian matrix wim ij-th entry 

[K(zi. Zj)/;.jj] has at most IC negative eigenvalues and exactiy IC negative eigenvalues for some choke 

of flJI • .•. Jn and ZI • ..•• Zn. 

A function <I> : D ~ L(F). where D is the unit disc in C, belongs to the c1ass C.JF) of all (generalized) 

Carathéodory functions , if it is meromorphic on D, holomorphic at 0 and if me kemel 

<I>(z) + <I>(w)* 
z. W E V(<I». 

has IC negative squares. Here and elsewhere in this paper V(<I» denotes me domain of holomorphy of 

the function <I> in D. which contains O. Functions of this c1ass have operator representations involving 

unitary operators in Pontryagin spaces. When IC= 0 mey reduce to me c1assical integral representations 

of the Nevanlinna-Riesz-Herglotz type by means of me spectral representation of the unitary operator 

involved. These operator representations were first proved by Krein and Langer in [18], [19]. [201. 
They used a construction, to which we refer as the ë-method and which goes back to Krein (see [17]), 

to obtain a Pontryagin space and a unitary operator to represent the function <1>. 

In this paper we prove the operator representation of functions belonging to me dass C.JF) in a 

different way. narnely via the realization of (generali?;ed) Sc~ur functions. A function e : D ~ L(F) 

belongs to the dass S.JF) of all (generalized) Schur functions if it is meromorphic on D, holomorphic 
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at 0 and if !he kemel 

1- 8(wr8(z) 

I-zW 
z. W E D(8). 

ha.-; J( negative squares. Such functions turn out to be characteristic functions of unitary colligations in 

which !he state space is a Pontryagin space of iodex IC lllis has beeo proved by a number of au !hors 

in different ways, including !he ê-me!hod; see [21 for a list of refereoces. In [3] it is showo that 

in particular !he !heory of reproduciog kemels, which goes back to Arooszjan (see [4 D, leads to the 

coostructioo of unitary colligatioos with coocrete state spaces, consisting of meromorphic functions . 

We show !hat !he c1ass CJF) of all Carathéodory functions corresponds to the subclass of all functions 

8 in the Schur c1ass SJF) for which 1- 8(0) is iovertible. The realization of 8 as a characteristic 

fuoction !hen leads 10 !he operator represeotatioo of Carathéodory fuoctioos aooouoced above. 10 the 

scalar case Krelo aod Langer have traversed !he opposite route: usiog !he operator represeotatioo of 

matrix valued Carathéodory fuoctioos !hey constructed a unitary colligatioo for matrix valued Schur 

functioos; see [201 aod [211. 

The results for Cara!héodory functioos carry over immediately to Nevanlinna fuoctioos. A functioo 

N : c+ ~ L(F). where c+ deootes !he upper halfplaoe io C, belongs to !he c1ass N JF) of all 

(geoeralized) Nevanlinoa functioos if it is meromorphic io C + aod if the kemel 

N(e) - N()")" 

e-~ 
e.)" E D(N). 

has J( oegative squares. Now D(N) staods for !he domaio of holomorphy of !he function N in C + . 

Such functions have operator represeotatioos involving selfadjoint relations in Pootryagin spaces. In 

!he positive definite case this represeotatioo has beeo proved directJy by Langer aod Textorius io [22], 

using the ê-me!hod. 10 !he indefinite case a represeotatioo with a reproduciog kemel Pontryagin space 

was obtained in [I] (see a1so [14D, by a reductioo to !he ê-me!hod. An integral represeotatioo for 

matrix fuoctioos of the c1ass N JF) was obtaioed by Daho aod Langer in [8] . 

In Section 2 we prove some simple facts about unilary colligations and their characteristic functions. 

The isometric part of the basic operator of !he colligation in !he state space and its characteristic 

function is studied in Sectioo 3. The representation of Carathéodory functions is considered in Section 

4 and !hat of Nevanlinna functioos in Section 5. 

We use the following notation. lf K is a Banach space and T E L(K), !he set of bounded linear 

operators on X, then rJ..T) denotes the resolvent set of T and a(T) denotes the spectrum of T, whereas 

PieT) stands for 

PieT) = {z E 0 I z = 0 or lIz E rJ..T)} . 

If K is a Pootryagin space of index J( and T is a contractioo in L(K), !hen PieT) is equal to 0 with 

the exception of at most J( nonzero points, which are poles of the resolvent operator z ~ (1- zT)-I. 
For basic facts about Pontryagio spaces and operators in Pontryagin spaces we refer to [5], [6], [16]. 

2. Schur functions 

Let F be a Hilbert space and let K be a Pontryagin space of index IC Let 

u= (~ ~):(~)~(~) 
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he a hounded operator, acting in the orthogonal direct sum F E9 K. The collection (U; K. F) = 
(T. F. C, H ; K F) is called a colligaLion with state space K and inner space F. We will assume that 

the colligation is unilary, i.e ., we assume that the operator U is unitary. The characteristic function 

8 = 8 lf of the colligation is detined hy 

8(z) = H + ~G(/ - zn- I F. Z E PieT). 

Clearly, 8 is a meromorphic function on 0 with values in L(F). In fact, it is holomorphic on Pi(n, 

and in particular at O. The following identities are straightforward to check: 

(2.1) [-8(w)"8(z) = F*(I-wn~(l- zn-IF. Z,WE Pi(n. 
I-zW 

(2.2) [- 8(z)8(w)" = C(I- zn- I (1- wn~ C' , z, W E PieT). 
I-zw 

Hence each of the kemels on the lefthand side has at most K negative squares. If K = 0, then T is a 

Hilhert space contraction, 8 is holomorphic on 0 and for each Z E 0 the operator 8(z) E L (F) is a 

contraction. The unitary colligation U is called closely conneeled if 

Here c.l.s. stands for c10sed linear span. Hence, if the unitary colligation U is c10sely connected, then 

8 helongs to the c1ass S ..(F). Let K' be a Pontryagin space and let 

. (T ' F') (K ') (K ') 
U = C ' H ' : F ~ F 

he a unitary operator. Then the unitary colligation (U ' ; K ',F) is cal led isomorphic to the unitary 

colligation (U; K, F) if there exists a unitary operator Z from K ' to K such that 

It then follows that ZO 7Z = T ', ZO F = F " CZ = C ' and H = H '. Hence the characteristic function 

of (U '; K " F) coincides with the characteristic function 8u of (U; K F). We recall the following 

well-known theorem, see [3), [12). 

THEOREM 2.1. Let 8 be a Schur funclion of class S..(F). Then /here exist a Pontryagin space K of 

index K and a unitary colligation (U; K. F) = (T. F. C, H ; K F), such /hat 8 ;s /he characteristic function 

of (U; K. F) and '0(8) = PieT). The colligalion can be chosen close/y connected. in which case it is 

unique/y detennined. up to isomorphisms. 

In particular, if 8 : 0 ~ F is holomorpic on D and ecz) is acontraction for each z E D, then 8 
belongs to So(F) and is the characteristic function of a unitary colligation in which the state space is 

a Hilbert space; see [7, Theorems 3.2, 3.3). [23) . 

If 8 is the characteristic function of the unitary colligation (U; K. F), then it is straightforward to show 

that 

Here PF stands for the orthogonal projection onto F . The lefthand side is commonly called the 

compressed reso/vent of U to F. 
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In the rest of this seetion we assume that K is a Pontryagin spaee, F is a Hilbert spaee and (U; K. F) 

is a unitary colligation with matrix representation U= (~ ~). With (U; K. F) we assoeiate the linear 

relation V in K defined by 

V= {{PKh. PKUh} E K EB K I hEK EB F, (1- U)h EK}. 

For h E KEBF with (I-U)h E K we have PFh = PFUII, and henee for {PKh. PK Uil}, {PKk. PK Uk} E V, 

[PKh. PKk]- [PKUh. PKUkJ = 

= [11, k]- [PFII, PFk]- [PKUh, PKUkJ 

= [11, k]- [PFUII. PFUk]- [PKUII , PKUk] 

= [h, k]- [Uil. Uk] = O. 

It follows thal V is an isometrie relation . 

LEMMA 2.2. If 1- H is invertib/e. then 

(i) V = T + F(I- H)-I G and is unicary, 

(ii) VG·(I- H)-- = F(I- H)-I, V-F(I- H)-I = G·(I- H)--. 

(iij) (1- ZV)-I F(I- H)-I (1- 8(z» = (1- i7)-1 F. ZE Pi(V) n PieT). 

(i v) (1- 8(<.»(1- H)-I G(I- ZV)-I = G(I- z7)-I. z: E Pi(V) n Picn. 

Proo{ Straightforward ealculations show (i) and (ii). Now we prove (iii): 

F(I- H)-I (1- 8(z» = 

= F(I- H)-I(I- H - zG(I- z7)-1 F) 

= (1- zF(I- H)-I G(l- z7)-I)F 

= (1- zT - zF(I- H)-I G)(I- z7)-1 F 

= (1- zV)(I- z7)-1 F. 

A similar ealeulation yields (iv) : 

(1- 8(z»(1- H)-I G = 
= (1- H - zG(I- z7)-1 F)(I- H)-I G 

= G(l- z(l- z7)-1 F(I- H)-I G) 

= G(l- z7)-1 (1- zT - zF(I- H)-I G) 

= G(I- z7)-1 (1- zV). 

1bis eompletes the proof of the lemma. 

A eontraL'tÎon K E L(K) is ealled completely nonunitary if the only subspace Ko of K such that 

KKo = Ko and the restrietion KlKo of K to Ko is isometrie, is the trivia) subspace. Since the 

colligation (U; K, F) is unitary and F is a Hilbert space, the operators Tand r in L(K) are contractions. 

It is known that the unitary eolligation (U; K, F) is c\osely connected if and only if T is completely 

nonunitary, and if and only if r is completely nonunitary; see [12] . Let R be a c\osed linear subspace 

of K. The unitary operator V is said to be R-minimaJ, if 

K=c.l.s.{(l-zV)-lh IhER., ZEPi(V)}. 

The following lemma can be found in [7]. 
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LEMMA 2.3 . If 1- H is invertible. the fol/owing Slatements are equivalent: 

(i) (U; K. F) is closely connected. 

(ii) V is ran F- minima/. 

(iii) V" is ran C· -minima/. 

Proof The equivalence of (i) and (ii) follows from the formulas 

(1- ZV)-I F(I- H)-I = (1- zT)-1 F(I- 8(Z»-I . 

which is valid for smal I values of Izl. and 

(1- ZV)-I F(I- H)-I = 
= -(l/z)(I- (l/zw·rl V- F(I- H)-I 

= -(l/z)(I- (l/z)r)-lc·(I- 8(l/zn- ' • 

which is valid for large values of Izl. The equivalenee of (ii) and (iü) follows from Lemma 2.2 (ii) . 

If 1- H is invertible. then the following expressions are all equal: 

(a) (1- H)-* + (1- H)-I - I. 

(b) (1- H)-"(I- Fr H)(I- H)-I. 

(c) (1- H)-I(I- HEr)(I- H)-". 

In particular. 1- ErH is invertible if and only if 1- HEr is invertible. It is straightforward to verify 

the following observation. 

LEMMA 2.4. Lel H E L(F) be such thal 1- H is invertible. and let 0. E L(F. K) be such thaI 
non = (1- H)-* + (1- H)-I -I. Then 

1- ( 0. ) (I _ H) ( 0. ) 0 = (I - 0.(1- m.n· n(lH- H») 
~ ~ (I-H)n 

is unitary. Ir V is a unitary operator in K. then 

(
(1- 0.(1- H)n·w 0.(1- H») . (K) (K) 

(1- H)n· V H . F ~ F ' 

and 

( V(I ~l~(~:in·) vn(~ H») : (~) ~ ( ~) . 
are unitary colJigations. When these colligations are wntten in the form 

U= (T F) 
G H ' 

then in each case T + F(l- H)-IC is equal to the given unitary operator V. These colligations are 

c/osely connecled if and only if V is ran 0.- minimal. 
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3. The isometrie operator 

We assume that K is a Pontryagin space, F is a Hilhert space and that (U; K, F) = (T. F. G, H ; K F) is 

an operator colligation . 

L EMMA 3. 1. [{ (j is isometrie. !he following sUltements are equivalent: 

(ij 1- HEr is invertibie. 

(ii) ran G" is nondegenerate and closed. ker G" = {O} . 

[{ U is isometrie. !he folIowing statements are equivalent: 

(iii) 1- Er H is invertibie. 

(i v) ranF is nondegenerate and closed. kerF= {O} . 

Proof Since (j is isometrie, (i) is equivalent to GG" is invertible. Assume that GG" is invertible . 

Then kerG" c kerGG" = {O}, and [G"x, G"yJ = 0 for all y E F implies x = 0, which proves that 

ran G" is nondegenerate. Since G"(GG")-I G = I on ran G", ran G" is dosed. Indeed, if y E ran G" 

and G"xn ~ y for some sequenee Xn E F, then also G"xn = G"(GG")-IGG"Xn ~ G"(GG")-IGy, 

which implies that y = G"(GG")-I Gy E ran G". Therefore (ü) follows. Conversely, if ran G" is 

nondegenerate and dosed , then ran G" is a regular subspace of K, i.e., ran G" is a Pontryagin space 

hy itself, and therefore K = ran G" EB ker G, see [6, IX,Theorem 2.2 J. Therefore ran G = ran GG", and 

hence kerGG" = kerG" = {O}, if we also assurne that ker G" = {O} . Since ran G" is dosed, we obtain 

hy [6, VI, Theorem 2.9], that ranG and also ran GG" is dosed , and thus ran GG" = K. Hence GG" is 

invertible and (i) follows. The equivalenee of (üi) and (iv) follows from (i) and (ii) applied to U". 

COROLLARY 3.2. Assume !hat U is unitary and !hat 1- H is invertibie. Then !he [oJ]owing statements 

are equivalent: 

(i) (1- H)~ + (1- H)- I -I is invertible. 

(ii) ranG" is nondegenerate and closed. kerG" = {O} . 
(iii) ran F is nondegenemte and closed. ker F = {O}. 

AJso !he [olIowing statements are equivalent: 

(i v) (1- H)~ + (1- H)-I -I is posiCive definite. 

(v) ran G" is a HiJbert space. 

(vi) ran F is a Hilbert space. 

From now on in this section we assume that (T. F. G, H; K. F) is a unitary eolligation. It follows 

from rT + G"G = I, that the operator TE L(K) is a contraction, and from similar identities that its 

restriction 11ker G is a bounded isometric operator, mapping ker G onto ker r . If 1- H is invertible, 

then the identity V = T + F(I- H)-I G shows that VlkerG = 11ker G, SO that V is a unitary extension in 

K of the isometrie operator 11ker G. If, in addition, (1- H)- + (1- H)-I -I is invertible, then ker G 

and ker r are regular subspaces of K. Hence, in this case, also the defect spaces (kerGY- = ran G" 

and (ker r'f = ran F of 11kerG are regular subspaces of K. Clearly, r G" = G"(I- H)- is a bounded 

invertible mapping from F onto ran G" and r F = F(I- H)-I is a bounded invertible mapping from F 

oato ran F. Associated with 11ker G is the unitary colligation 

( 
TPker G I): ( K ) ~ ( K"). 
P ral! G" 0 ran F ran G 

166 



The characteristic function X: 0 ~ L(mn F, ran GO) of this colligation is given by 

X(z) = zP,.n c ·(I- zTPker c)-'I,.n F· 

It is holomorphic in a neighborhood of O. It follows from the general formulas (2.1) and (2.2) that 

1- X(w)" X(z) -"_, ---:--_-- = P'.DF(I- wTPkerc) (1- zTPkerc) IranF, 
I-zw 

for z, w E Pi(T) . If, in addition, ran F, or equivalently, ran GO is a Hilbert space, then TPker G is a 

contraction in the Pontryagin space K and, hence, the function X is meromorphic on O. 

THEUREM 3.3. Assume thaI (U; K, F) = (T. F, G, H; K F) is a c10se/y connecled unilary colligation and 

thal the opera/ars 1- H and (1- H)-" +{/- H)-' -I are invertibie. Then 

(3.1) (r G' r' X(z)r F = z(rc,.(1- z:vr'r G' r' rc,.(1- zV)-lr F, 

for z in a sma/I neighborhood of O. IJ, in addilion, (1- H)-" + (1- H)-l -I is positive detinile. then the 

characleristic function X be/ongs 10 S Jran F; ran GO). 

Proof From Lemma 2.2 (ti) and V-TPkerC = PkerC (as nker G = VlkerG), it follows that 

zV(l-zVr'(l-X( z) V)rG' = 
= z(V" - zr'(V' - X(z»vr C' 

= z(V' - zrl(V"(I- ZTPkerG) - zP ran G" )(1- ZTPkerGrl r F 

= Z(PranG• +PkerG)(I-ZTPkerG)-lrF 

= X(z)r F + zPkerG(I - ZTPkerGr' r F· 

From the definition of r G", it follows that r~,Pker G = (1- H)-l GPker G = 0, and therefore the above 

identity leads to 

This leads to 

and so (3.1) follows. 

Nex.t we assume that (I-H)-" +(l-H)-l-I is positive definite, and we prove that the unitary colligation 

of which X is the characteristic function is closely connected. For this it suffices to prove that the 

operator TPker G is completely nonunitary. Let Ko be a closed subspace of K, such that 

TPkerGKa = Ka, TP"erGIKo is isometric. 

Then for all x, Y E Ka we have 

[PkerCX, PkerGY) = [TP"erGx, TP"erGY) = [x,y) . 
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111erefore [(I-PkerG)x, (I-Pke,G)Y] = 0 for all x, Y E Ka. lllis leads to (I-Pke,G)X = 0 for all x E Ko, 
sinec ran C" is a Hilhert spaee. Henee Ka c ker C. 111erefore Ko has the properties 

TKo = Ko, l1Ko is isometrie. 

As we assume that the colligation (U; K. F) is d osely eonnected, the operator T E L(K) is com­

pletely nonunitary and we eondude that Ko is the trivial subspaee. In partie ul ar, we obtain X E 

S.~ran F. ran CO). lllis eompletes the proof. 

In the ease that the operators 1- H and (1- Hr" + (1- H)-I -I are invertible, it also follows from the 

relation (3.2) that 

r;;, (I + zV)(I - ZV)- I(I- X(;:)V)r G' = Ïc;,(1 + x(z)V)r C'· 

Note that in a small neighborhood of 0, the operator r (}.(1- X(;:)V)r C' is invertible, and that 

(rc~(I- XC;:) V)r G' ) -1 = rc~(I- X(z) VI,." G' )-1 r G' . 

There fore , we obtain 

(3.3) r~;,(1 + X(z)V)(I- X(z)V1,an G' r l r G' = TG,(I + zV)(I- ZV)- I r G', 

tor z in a small neighborhood of O. 

4, Carathéodory functions 

In this seetion we show that each (generalized) Carathéodory funetion of dass C..{F) has a representa­

tion in tenns of a unitary operator in a Pontryagin spaee K with index K. We derive this representation 

by proving that there is a one-to-one correspondenee between C..{F) and all (generalized) Sehur fune­

tions 8 of dass S ..(F) for whieh 1 - 8(0) is invertible. 

We tirst prove a preliminary result eoncerning generalized Carathéodory functions . A eorresponding 

result for generalized Schur functions can be found in [11] . Recall that if T is a bounded Iinear operator 

in a 8anaeh space X, a number ZEe is a nonnaJ eigenvalue of T, if its algebraic multiplicity is finite 

and if the space X is the direct sum of the root subspace of T corresponding to Z and an invariant 

subspace of T, in which T - z is invertible. 

LEMMA 4.1 . Let !he funccion <I> be/ong CO !he c1ass C ..(F). Then [or each Z E V(<I» !he set o(<I>(z)) n 

{ ç E C I Re ç < O} consists o[ an at most discrete set o[ nonnaJ eigen vaJues. 

Proof Let z E V(<I» . As the Carathéodory kemel of <I> has IC negative squares. it foUows that the 

dimension of the subspace H(z) c F on which the selfadjoint operator <I>(z) + <I>(z)" is negative is at 

most K. Therefore <I>(z) has the decomposition 

<I>(z) = A(z) - B(z). 

where A(z) E L(F) with Re A(z) ~ 0, and B(z) E L(F) is finite dimensional with B(z) ~ O. Aresult from 

perturbation theory (cf. [15, Chapter I, Lemma 5.2)) shows that for each ze V(<I» the open lefthand 

plane consists of points in the resolvent set of <I>(z) or of normal eigenvalues, whose accumulation 

points are on the imaginary ms. lllis completes the proof. 
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THEOREM 4.2. Lel 8 E S..{F) have lhe property lhall-8(0) is invertibie. Lel (U; K. F) = (T. F. G. H; K. F) 
wilh K a Ponlryagin space of index IC. be a c10se/y cannecled unilary coIligalion whose characlerislic 

tiJnclion is 8. Then 1- 8(z) is invertible [or all Z E Pi(V) 11 Pi(n. Far any a E C wilh Re a > 0 lhe 
tUnclion 

(4. 1) <1>(z) = (l-8(z»-'(ä+ a8(z» . ZE Pi(V)IlPi(7). 

be/ongs 10 C • .(F) and <1>(z) + a is invertible [or all Z E Pi(V) 11 Pi(7). Moreover. V is a ran A-minimal 

unilary opera lor. and <1> has lhe representalion 

(4.2) <1>(z) = -<1>(0)" + A·(I- zV)-' i\, ZE Pi(V). 

when A is given by A = (2Re a)! F(I- Ht' or by A = (2Re a)i G·(l- H)-- . 

Conver.~e/y. Iel <1> : 0 -t L(F) be a funclion wilh lhe representalion (4.2). where F is a HiJbert space. 

K is a Ponlryagin space o[ index IC. A E L(F. K) and V is a unilary opera LOr in lhe Panlryagin space 

K. which is ran A-minimal. Then <1> E C..{F). and lhere exisLS an a E C wilh Re a> O. such lhar 

( 
(l- A(<1>(O) + at1N)V (2Re a)!A(<I>(O) + a)-l) 

(2Re a) i (<1>(0) + a) ..... A· V (<1>(0) - ä)(<1>(O) + a)-l • 

( 
V(l- A~<1>(O) + at' A·) V(2Re a)i 1\(<1>(0) + at' ) . 

(2Re a) 1 (<1>(0) + a)-- A· (<1>(0) - ä)(<t>(O) + a)-' 

are c10se/y connecled unitary calligalians in FEB K. whose characrerislic funclian 8 belang LO S..{F) 

and give rise to lhe functian <t> via (4.1). 

Proof For the dosely connected unitacy colligation (T. F. G. H; K. F) with 1- H invenible and any 

a E C with Re a> O. we put rF = (2Re a)! F(l- H)-l aod r G· = (2Re a)!G·(I- H) ...... We define the 

function <t> : 0 -t L(F) by 

o 0 

(4.3) <t>(z) =-(l-H) ..... (a+ äFr) + (fF)·(l-zV)-lfF. ZE Pi(V). 

It follows that 

and hence from WG = -F"T and Lemma 2.2 (iii) we obtain 

(4.4) (2Re ar1 (1- H)·(<t>(z) + a)(l- 8(z» = 

= (-H"+r(l-zV)- IF(I-H)-I)(l-8(z» 

= -H"(I- H - zG(1 - (7)-1 F) + r(l- ZV)-l F(l- H)-l )(1- 8(z» 

= -H"(I- H) - üT(1 - (7)-1 F + r(l- (7)-1 F 

= (1- H).. ZE pj(V) 11 pj(7). 

As (1- ZV)-l = V(I- ZV)-l V- we cao also rewrite (4.3) as 
o 0 

(4.5) <t>(z)=-(/-H) ..... (a+äFr)+(fG·r(l-zV)-1 fG·. ZE pj(V). 

It follows that 

<t>(z) + a = (2Re a)( -H" + (1- H)-l G(I - ZV)-l G·)(I- H)...... Z E pj(V). 
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50 that from nf' = -TG· and Lemma 2.2 (iv) we obtain 

(4.6) (2Re a)-I (1- 8(z»(<1>(;:) + a)(I- H). = 
= (1- 8(z»(-l1 + (1- H)-IG(I- zVrIG·) 

= -(1- H - zG(l- zn- I F)l1 + (1- 8(z»(1- H)-I G(I- ZV)-I G· 

= -(1- H)l1 - zG(I- zn- I TG· + G(I- zn- I G· 

= (1- H). , ZE Pi(V) (\ PieT). 

The identities (4.4) and (4.6) show that <1>(z) + a is invertible and 

<1>(z) + a = (2Re a)(I- 8(z)r l
, 

which gives (4.1). From this it follows that 

(2Re a)- I <1>(z) + <1>:w)* = (1_ 8(w»--" 1- 8(w)*_8(z) (1_ 8(Z»-', 
I-zw I-zw 

tor all Zo W E Pi(V) (\ Pi(n, which shows that <1> E C..(F). From the definition of <1> it follows that 
o 0 

<1>(0) = (ä+ aH)(I_H)-I. Hence (4.3) and (4.5) lead to (4.2) with A given by A = fF or by A = fG" 
respecti vel y. 

Conversely, assume that <1> is given by (4.2). It is clear fiom this representation that <1>(0)+<1>(0)* = A· A, 

and therefore that 

<1>(z) + <1>(w)* = /\.(1- ZV)-I(I- wV)-· A. 
I-zw 

for all z, W E Pi(V) . Hence, the function <1> belongs to the class C..(F). According to Lemma 4.1, 
there exists an a E C with Re a> 0, such that <1>(0) + a is invertible. We put 

H = (<1>(0) - ä)(<1>(O) + a)-I, n = (2Re ar 'lZ A. 

Then 1- H is invertible and n·n = (1- H)-*(I- H* H)(I- H)-I . Therefore, by Lemma 2.4, the 
colligations in the proposition have all the indicated properties. 

THEOREM 4.3. Let <1> in C..(F). There exists an a E C with Re a> 0 such that (<1>(z) + a)-I E L(F) lor 

all z EVa, where the set Va is equaJ to V(<1», the domain of holomorphy in D, with the exception 

of at most IC nonzero points. The function 8 : D -+ L(F) delined by 

(4.7) 8(z) = (<1>(z) - ä)(<1>(z) + arl, ZE Va , 

is a Schur function of class S..(K) with the additional property thatl-8(z) is invertib/e for all Z EVa' 

Consequently, there exist a Pontryagin space K of index IC, a mapping A E L(F, K) and a unitary 

operator V in K, which is ran A-minimaJ, such that (4.2) holds. 

Proof. According to Lemma 4.1 there exists an a E C with Re a> 0, such that (ct>(O) + a)-I E L(F). 
A Neumann series argument shows that (<1>(z) + a)-I E L(F) for all z in a smal1 disk around O. 

We claim that there are at most IC non-zero points z in V(<1» for which (<1>(z) + a)-I IE L(F). To 
prove this claim, we assume that there are IC + 1 non-zero points z I, ... , Z .... I E V(<I» for which 
(<1>(Zi) + a)-I IE L(F), i = I, . .. , IC+ 1. Then, according to Lemma 4.1, -a is necessarily anormal 
eigenvalue of <1>(Zi), and hence there are non-zero vectors .ti E F such that <1>(zü!i = -af;, i = I, . .. , IC+ I, 
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antI therefore 

([
<1>(Z;) + <1>(Zj)" r. r.]) --2 ([t;,Jj] ') 

1- ., . )I,}, - a I _ ~ . - . 
Z,~, .. _ . '-IZ, .. _? 

1.'-1.2 .. ... • ~1 I .,-I.~ ....... +I 

As the Schur product of two positive matrices is again positive (cf. [2]), the matrix on the lefthand 

side has K+ I negative eigenvalues, a contradiction, which substantiates our daim. The function 

8 : D ~ L(F) in (4.3) is well-defined. It is clear that 1- 8(z) = (2Re a)(<1>(z) + arl for ;:: e D a. From 

the identity 

1- 8(w)*_8(z) = (2Re a)(<1>(w) + a)-- <1>(z) + <1>5wt (<1>(z) + a)-I, 
I-zw I-zw 

for z, w in a neighborhood of 0, it follows that 8 is a Schur function of dass S ..(K). Let U = 
(T. F. G. H; K F) be a dosely connected unitary colligation whose characteristic function is 8. As 
1- 8(0) is invertible, the function <1> has the representation (4.2). 

The two previous theorems show in a precise sense that the formulas (4.1) and (4.7) give a one-to-one 

correspondence between 8 e S..(F) with 1- 8(0) invertible, and <1> e C..(F) with <1>(0) + a invertible. 

Now let <1> : D ~ L(F) be a holomorphic function, such that for all z e D, Re <1>(z) 2! O. [t is dear 

tJlat for any a with Re a> 0 the function 8 : D ~ F, defined by (4.7) is holomorphic on 0 and that 
8(;::) is a contraction for each ze O. Hence 8 is a Schur function of class So(F), and therefore <1> is 

a Carathéodory function of dass Co(F). 

COROLLARY 4.4. Let 8 e S .. (F) and <1> e C..(F). be connected via (4.1) and (4.7). Let {U; F, K} = 
{T. F. G. H; F, K} be Lhe corresponding closely connected unitary colligation. Then Lhe compressed 

reso/vent of U is given by 

I a+ äz 
(4 . ~) PF(I- zU)-IIF = -(<1>(z) + __ )-1 (<1>(z) + a), 

I-z I-z 

liJr .: e p;( V) n PieT) n p;( U). 

Proot: By means of the bilinear transformation (4.7) we obtain 

a+ äz 
(1- z8(z» = (I - z)(<1>(z) + -1-)(<1>(z) + arl , z e Pi(V) n PieT). 

-z 
On account of (2.3) this leads to (4.8). 

For a (generalized) Carathéodory function <1> of class C..(F) with corresponding closely connected 

unitary colligation (T. F, G, H; K. F) we introduce the meromorphic functions tlG" and tlF: 0 ~ L(F, K) 

given by 
I .-.. -* t'" tlG"(z) = (2Re a)i (1- zV) G (1- H) , ze pj( Y ), 

tlFCz) = (2Re a)! (1- ZV)-l F(I- H)-l, Z e pj(V). 

Clearl y, the function <1> satisftes, 

<1>(z) + <1>5
w

)* = ~W· ~(w) = tlFCw)" tlFCz), 
I-zw 

for Zo w e pj(V). Conversely, this equation uniquely determines <1> up to i times a constant selfadjoint 
operator in L(F), and if the colligation (U; K. F) is closely connected, then <1> belongs to C..(F). 

When <1>(0)+<1>(0)* or, equivalently, (I-H)--+(I-H)-l-I is invertible, then <1> is called the Q-function of 
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tlle dosed, isometrie operator 11ke, G witll respect to tlle unitary extension V of 11k<r G and tlle bounded, 
invertihle mapping G'U- H)-' from F onto tlle regular subspace dom (11ke, G).i = ran G· . Similarly, 

under tlle same condition <I> could be cal led the Q-funetion of the closed, isometrie operator r Ike, F' 

witll respect (0 tlle unitary extension V' of T'lkt, F' and tlle bounded, invertible mapping FU- H)-I 

from F onto dom (T' Ike, F' f = ran F. 

THEOREM 4.5. Lel <I> E C..(F), and assume thaI <1>(0) + <1>(0)" is invertibIe. Then 

[ar all z in a small neighbarhood o[ O. IJ <1>(0) + <I>(O)" is positive, then (4.9) halds [or all z E V(<I» 

with the excepcian a[ at most K nan-zero points. 

Praat: We assume that <1>(0) + <1>(0)" is iovertible. We recall the definition (4.3) of tlle function <1> : 
o 0 

<1>(;:) + <1>(0)" = (rdU- ZV)-l rF, ,E pj(V), 

which leads to 
o 0 

<I>(z)-<I>(O)=z(rdU-,V)-l rG" '.E pj(V). 

Hence (4.9) follows from Theorem 3.3. 

Now assume tllat <1>(0) + <I>(Or is positive. As we have seen in tlle proof of Lemma 4.1, for each 
ZE V(<I» the operator <I>(z) has tlle deeomposition 

<1>(,) = A(,) - B(,), 

where A(,) E L(F) witll Re A(,) ~ 0, and B(,) E L(F) is finite dimensional witll B(z) ~ O. Hence tlle 
operator <I>(z) + <1>(0)" has tlle decomposition 

<I>(z) + <1>(0)' = A(z) + A(O)' - (B(,) + B(O)'), 

where Re (A(z) + A(On ~ 0, and B(, ) + B(O)" is finite dimensiooal witll (B(z) + B(O)") ~ O. Aresuit 
from perturbatioo tlleory (cf. [15, Chapter 1, Lemma 5.2]) shows that for each , E V(<I» the open 
lefthand plane consists of points in the resolvent set of <1>(,) or of an at most discrete set of nonnal 
eigenvalues. Since <1>(0) + <1>(0)" is invertible, a Neumann series argument shows that <I>(z) + <I>(O)' is 
invertible for all , in a small disk around O. Now assume that <1>(0) + <1>(0)' is positive. We claim that 

there are at most K non-zero points Z in V(<I» for which <I>(z) + <1>(0)" is not invertible. To prove this 
daim, we assume tllat there are K+ 1 non-zero points Zl, ... , Z .... I E V(<I» for which <I>(Zi) + <1>(0)" is 
not invertible, i = 1, ... , K+ 1. Then 0 is necessarily a nonnal eigenvalue of <I>(Zj) + <1>(0)", and hence 
tllere are non-zero vectors Ji E F such that <I>(zdfi = -<I>(0)"Ji. i = 1, ... , K+ 1, and therefore 

( [
<I>(Zi) + <l>5Zj )" Ji,/j]) = _ ([<1>(0) + <1>50)" Ji,/j]) . 

1 - ZiZj . . 1 - ZiZj .. 
~Fl. ·· · ..... 1 ~Fl.·· ...... l 

As the Schur product of positive matrices is again positive (cf. [2]), tlle matrix on the lefthand side 
has K+ 1 negative eigenvalues, a contradiction, which substantiates our claim. 
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5. Nevanlinna functions 

In this section we deri ve arepresentation for a (generalized) Nevanlinna function of c1ass N .~F) 

in terms of a selfadjoint relation in a Pontryagin space K with index K. In order to formulate the 
following resull~ we detlne for any jJ. E c+ the bijective mapping z : C+ ~ 0 hy z(f) = (f - jJ.)/( f - jl) , 

f E C+, and for any fJ E C+ the mapping w : C+ ~ C hy 

w(e) = f$..l - jl) - ï~J - jJ.), e E C . 
jJ.-jl 

THEoREM 5.1. Let N E N ~F), and let N be holomorphic at jJ. E C +. Then there exists a fJ E C + such 

that N( e )+ fJ is invertib/e for all e EVp, where the set V p is equalto VeN) , the domain of holomorphy 

of N in C+ . with the exception of at most". points. different [rom jJ.. The function 8 : 0 ~ L(F) 

detined tly 

8(z(0) = (N(n + ÏJ)(N(n + [3)-1, e EVp, 

is of c/ass S~F) and has the additional property that 1- 8(z(e» is invertib/e lor all e EVp. Conse­

quently. depending on fJ. there exist a Poncryagin space K of index ".. a selfadjoint relation A in K EB F 
with nonempty resalvent set P(A) and a mapping A E L(F, K) such that 

(5 .1) B={ {f,PKg}I {f,g}E A. JE K} 

is a ran A-minimal se/fadjoint relation in K with nanempty resalvent set P(B) and 

(5 .2) C= { {PKf.PKg} I {f,g} E A, g-JIfE K}, jJ.E C\R, 

is a maxim al dissipative re/atian with nanempty resolvent set P(C). The function N has the following 

representatians 

(5 .3) N(f)=N(jJ.)"+(e -jl)A·U+U-jJ.)(B-erl)A 

lor all e E P(B) Iî C+. and 

(5.4) fJ-~(N(n+w(l)-1 =-PF(A-l)-IIF 
jJ.-jJ. 

far all e E C+ in P(A) Iî P(B) Iî P(C). 

When we may take fJ = jJ. (which is the case, for instance, when K = 0), then w(l) = e and (5.4) 

reduces (Q 

Proof of Theorem 5.1. Define the function <11 : 0 ~ L(F) by 

<II(z(l) = N(ey(p.- j1), e E VeN). 

Then 

<II(z(l» + <II(z(À»" = (À-jl)' N(l)-N(À)" (l -jl), 
l-z(l)z(À) jJ.-j1 i-À jJ.-j1 

l, À E VeN), 

which imp lies that <11 belongs (Q the c1ass C ~F). Hence, by Theorem 4.3, there is an a E C with 
Re a > 0 such that <II(z) + a is invertible for all z EVa. By defining fJ = (p. - jl)a, we obtain fJ E c+ 

such that N(l) + fJ is invertible for all l EVp. By Theorem 4.3 the function 8 : 0 ~ L(F) defined 

173 

file:///n-ji
file:///n-ni'


hy 8(z) = (<I>(z) - ä)(<I>(Z) + a)- I belongs to the dass S ..{F). The function 8 can he directly expressed 

in terms of the function N: 

8(z(f) = (N(e) + ÏJ)(N(e) + /3)-1 

anti 

1- 8(z(f. » = (fJ- ÏJ)(N(f. ) + /3)-1 

for e E [lp. Note that 

1- 8(z(À.»"8(z(i » 
= 

1 - z( i )z(À.) 

= fJ-fi (N(À.)+fJ)-- N(e)-~(À.)" (N(e) +fJ)-1 
p-~ À.-~ i -À. i -~ 

which agaio shows that 8 heloogs to the c1ass S ,.(F). The fuoctioo 8 is the characteristic functioo of 

a unitafy colligatioo (T. F. G, H; K F) as io Theorem 4.2. With P E c+ we coosider the inverse Cayley 

transforms A = Fp(U), B = Fp(V) and C = F/D of the unitary operators U, Vand the contraction T, 

respectively. In K E!1 F we define the relation A by 

A = { {( U - I)h, (p.U - ~)h} I hEK E!1 F }, 

and io K we detlne the relations B and C by 

B = { { (V -I)h. (jiV - ~)h} I hEK} 

and 

C = { { (T - 1)11. (p.T - mh} I hEK } . 

It turos out that A and B are se lfadjoint relations, and that their resolvent sets are oon-empty (see 

[9],[ 10]) and that the relation C is maxima] dissipative (Im C ~ 0) with ooo-empty resolveot set. From 

the uetlnitioo of V it follows that 

B = { {PK(U -1)11, PK(p.U - ~)h} Ih E K E!1 F, (1- U)h EK}, 

which implies that (5 .1) is valid. From the definition of T, i.e., T = PK UlK , it follows that 

which implies that (5.2) is valid. According to Theorem 4.3 the fuoction <I> has the representation: 

<I>(z) = -<1>(0)" + A· (/ - ZV)- II\, Z E pj(V), 

Now we use the identity 

(/-Z(l)V)-1 = e -~(/+(e -ji)(B-er' ) 
J.I.-J.I. 

to obtain (5.3). We use the identity (4.8) valid for ZE Pi(V) î'\ Pi(D î'\ pj(U) to obtain 

PF(/-zU)-IIF = e -~(/_ fJ-~(e -p)(N(e) + W(l)-I). 
J.I.-J.I. J.I.-J.I. 

Therefore 

fJ-~(N(l)+w(l)-1 = -e 1 - (e p~: _/F(/-zU)-IIF, 
ji-ji -p -p-p 
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which shows (5.4). This completes the proof. 

A consequence of the representation (5.3) in Theorem 5.1 is that 

(5.5) N(IJ.)-~{IJ.r = A·A 
IJ.-IJ. 

The representation (5.3) can be found in [18], (20) under additional conditions on the asymptotic 

behaviour of N in order to make sure that the selfadjoint relation in the representation is an operator. 

If K = 0 these asymptotic conditions were dropped in [221. In all these papers there is the extra 

condition that the operator A 0 A in (5.5) is positive. Note that if N : c+ --7 L(F) is a holomorphic 

function, such that Im N( f.) 2: 0 when f. E C+, then N belongs to the dass No(F) . 

To fadlitate the statement of the next theorem we introduce the following notation. For f3 E C + we 

detlne riJf) by 

-pIJ. + f3jl- (j.J. - jl)N{j.J.) 
r<.jf) = f3 - p . 

THEOREM 5.2. Let F be a HiJbert space and Jet K be a Pontryagin space of index IC. Let A E L(F, K). 
and let B he a se/fadjoint relation in the Pantryagin space K. which is ran A-minima]. Then the function 

N : c+ --7 L(F) with represencation (5.3) be/ongs to N ,{F), and is ho[omorphic al IJ.. Moreover. there 

exisls a f3 E C + • such that 

(5.6) A= { {( I-kAk) , (AO(g~~;::"fJ)k)} I ij,g} E 8, kE F } 

is a se/fadjoinc relation in FEB K as in Theorem 5.1. for which (5.4) holds. 

Again, when we may take /3= IJ., then w(i) = e, r<.jf) = -N(IJ.) and (5.6) reduces to 

A - { {( 1- Ak) ( g - J.1.Nc ) } I ij, g} E 8 kEF} 
- k ' A" (g - jlf> - N(IJ.)k ' , . 

Any N E N.{F) which is holomorphic at IJ. E C+ has arepresentation (5.3). Using (5 .5), we obtain 

for f. , À- E {i..B) (Î c+ 

N( i) - N(À-)" = 
= AO

[ e - ~+ (e - IJ.)(e - jl)(B -0-1 - (~- IJ.)(~- jl)(B - ~rl IA 

For IJ. E C we define the function D./l : c+ --7 L(K) by 

D./l(e) = (l + (e - IJ.)(B - e )-I)A 

Then, by means of the resolvent identity 

we obtain 

(i - ~)D./l(À-)O D./l(l) = 
= AO

[ e - ~ + (i - p)(e - jl)(B -0-1 - (~- IJ.)(~- )i)(B - ~)-I IA 
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Hence we have shown that 

NU) - NU,')" = L1p(À)" L1p( n. 
f-l 

tor f . À E ~B) n c+ . 

THEOREM 5.3 . Let N E N..(F) and jJ. E C+. Assume thal N(p;~(p)' is inverlible. Then the sellàdjoint 

re/aLion B has asymmetric restricLion Ba, such !hal !he subspaces ran (Ba - jJ.) and ran (Ba - JJ.) are 
cJosed and nondegenerale. The corresponding defecl spaces are given by 

ker (B; - jJ.) = ran A.. ker (B; - JJ.) = ran (I + (JJ. - jJ.)(B - JJ.)-I)A. 

The characlerisLic limcLion of !he cJosed symmetric re/aLion Ba and !he se/fadjoinl exlension B salisfies 

(5 .7) Y( e )A = (I + (JJ. - jJ.)(B - JJ.)-I )A(N( e ) - N(ji.»(N( e) - N(JJ.»-I, 

for f in a small neighborhood of jJ. . If N(p)-t<..(p)' is posiLive. !hen (5. 7) holds lor all e E VeN). wi!h 
Jrp 

!he excepLion of al most K points, different tTom jJ.. 

By the characteristie function Y(n we mean the function X(z(f), the characteristic function of the 
Cayley transfonn Cp(Bo), jJ. E c+; see (13) .. 

Proof of Theorem 5.3. The selfadjoint relation B in K is the Cayley transform of the unitary operator 

V. It has a symmetrie restrietion Ba eorresponding to the isometric restriction VkerG of V: 

Ba = { {( V - f)1! , (ji. V - JJ.)h} I h E ker G }. 

Clearly, ran (Ba - jJ.) = ker G and ran (Ba - JJ.) = Vker G = ker r . If N(P;::'(p)' is invertible, then these 

spaees are dosed and nondegenerate, and hence the symmetrie relation Ba has defect spaces, given 

by 

ker (B; - jJ.) = (ker r')l. = ran F. ker (B; - JJ.) = (ker G)l. = ran GO, 

whieh are equal to ran A and ran (I + (JJ. - jJ.)(B - JJ.)-I )A, respeetively. 
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