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ABSTRACT

Operator valued Carathéodory functions and Nevanlinna functions with x negative squares have oper-
ator representations involving unitary or selfadjoint relations in Pontryagin spaces. When «x = 0 they
reduce to the classical integral representations of the Nevanlinna-Riesz-Herglotz type by means of the
spectral representation of the unitary or selfadjoint relations involved. In this paper it is shown that
these operator representations can be obtained systematically by means of the realization of Schur
tunctions with x negative squares.

1. Introduction

Let L(F) be the algebra of all bounded linear operators on a Hilbert space F with inner product [., .].
An L(F) valued function K(z, w) defined for z and w in some set €2 is said to have x negative squares,
where x € N, if K(z, w)* = K(w, 2) for all z w € Q and if, moreover, for every choice of n € N,
of elements fy,...,f, € F and of points z;,...,2, € Q, the n x n heritian matrix with ij-th entry
[K(zi, z))fi, ;] has at most x negative eigenvalues and exactly x negative eigenvalues for some choice
Of’l,f],...,f,, and Ly o s Ons

A function ® : D — L(F), where D is the unit disc in C, belongs to the class C (F) of all (generalized)
Carathéodory functions, if it is meromorphic on D, holomorphic at O and if the kernel

D(z) + P(w)"
l-zw
has x negative squares. Here and elsewhere in this paper D(®) denotes the domain of holomorphy of
the function ® in D, which contains 0. Functions of this class have operator representations involving
unitary operators in Pontryagin spaces. When « = 0O they reduce to the classical integral representations
of the Nevanlinna-Riesz-Herglotz type by means of the spectral representation of the unitary operator
involved. These operator representations were first proved by Krein and Langer in [18], [19], [20].
They used a construction, to which we refer as the e-method and which goes back to Krein (see [17]),
to obtain a Pontryagin space and a unitary operator to represent the function ®.

zwe D),

In this paper we prove the operator representation of functions belonging to the class C (F) in a
different way, namely via the realization of (generalized) Schur functions. A function © : D — L(F)
belongs to the class S ,(F) of all (generalized) Schur functions if it is meromorphic on D, holomorphic
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at 0 and if the kernel

/ —G(W)‘_@(:)’ %, & DO
l-zw

has x negative squares. Such functions turn out to be characteristic functions of unitary colligations in

which the state space is a Pontryagin space of index x. This has been proved by a number of authors

in different ways, including the e-method; see [2] for a list of references. In [3] it is shown that

in particular the theory of reproducing kernels, which goes back to Aronszjan (see [4]), leads to the

construction of unitary colligations with concrete state spaces, consisting of meromorphic functions.

We show that the class C,(F) of all Carathéodory functions corresponds to the subclass of all functions
© in the Schur class S (F) for which /- ©(0) is invertible. The realization of ® as a characteristic
function then leads to the operator representation of Carathéodory functions announced above. In the
scalar case Krein and Langer have traversed the opposite route: using the operator representation of
matrix valued Carathéodory functions they constructed a unitary colligation for matrix valued Schur
functions; see [20] and [21].

The results for Carathéodory functions carry over immediately to Nevanlinna functions. A function
N : €* — L(F), where C* denotes the upper halfplane in C, belongs to the class N (F) of all
(generalized) Nevanlinna functions if it is meromorphic in C* and if the kernel

N(l)-NQ)*

-1

has x negative squares. Now D(N) stands for the domain of holomorphy of the function N in C*.

Such functions have operator representations involving selfadjoint relations in Pontryagin spaces. In

the positive definite case this representation has been proved directly by Langer and Textorius in [22],

using the e-method. In the indefinite case a representation with a reproducing kernel Pontryagin space

was obtained in [1] (see also [14]), by a reduction to the smethod. An integral representation for
matrix functions of the class N (F) was obtained by Daho and Langer in [8].

¢, A€ D(N),

In Section 2 we prove some simple facts about unitary colligations and their characteristic functions.
The isometric part of the basic operator of the colligation in the state space and its characteristic
function is studied in Section 3. The representation of Carathéodory functions is considered in Section
4 and that of Nevanlinna functions in Section 5.

We use the following notation. If K is a Banach space and T € L(K), the set of bounded linear
operators on X, then o(7T) denotes the resolvent set of T and o(T) denotes the spectrum of 7, whereas
pi(T) stands for

piND={ze D|z=00r 1/ze o1}

If K is a Pontryagin space of index x and T is a contraction in L(K), then p;i(T) is equal to D with
the exception of at most x nonzero points, which are poles of the resolvent operator z = (/- DL
For basic facts about Pontryagin spaces and operators in Pontryagin spaces we refer to [S], [6], [16].

2. Schur functions

Let F be a Hilbert space and let K be a Pontryagin space of index x Let
_ (T F\ . (K K
v= (6 n)(3)~ (%)
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be a bounded operator, acting in the orthogonal direct sum F @ K. The collection (U;K, F) =
(T, F. G, H;K F) is called a colligation with state spacc K and inner space F. We will assume that
the colligation is unitary, i.e., we assume that the operator U is unitary. The characteristic function
© = Oy of the colligation is defined by

O@) = H+:GU-zD'F, ze p(D).

Clearly, © is a meromorphic function on B with values in L(F). In fact, it is holomorphic on pi(7),
and in particular at 0. The following identities are straightforward to check:
I-O(w)" O(2)

2.1) —— = FU-wD*(U-zT)'E zwe p(D),
2.2) ﬂ(f)iﬂ = GU-D'U-wD"G", zwe p(D.

Hence each of the kernels on the lefthand side has at most x negative squares. If k=0, then T is a
Hilbert space contraction, © is holomorphic on D and for each z € D the operator O(z) € L(F) is a
contraction. The unitary colligation U is called closely connected if

K=cls{(U-zD'Ff+U-wT")'G'g|fgeF, ze p(T), we p(T))}.

Here c.l.s. stands for closed linear span. Hence, if the unitary colligation U is closely connected, then
© belongs to the class S (F). Let K be a Pontryagin space and let

g'= [T F')_ K'Y (K
“\G" H')J'\F F
be a unitary operator. Then the unitary colligation (U ;K ', F) is called isomorphic to the unitary
colligation (U; K, F) if there exists a unitary operator Z from K " to K such that

506G RED-G 5

It then follows that Z°TZ=T ', ZF=F ,GZ=G and H = H'. Hence the characteristic function
of (U ;K ', F) coincides with the characteristic function Oy of (U; K, F). We recall the following
well-known theorem, see [3], [12].

THEOREM 2.1. Let © be a Schur function of class S,(F). Then there exist a Pontryagin space K of
index x and a unitary colligation (U; K, F) = (T, F, G, H; K, F), such that © is the characteristic function
of (U; K, F) and D(®) = pi(T). The colligation can be chosen closely connected. in which case it is
uniquely determined, up to isomorphisms.

In particular, if ® : B — F is holomorpic on D and ©(z) is a contraction for each z € D, then O
belongs to So(F) and is the characteristic function of a unitary colligation in which the state space is
a Hilbert space; see [7, Theorems 3.2, 3.3], [23].

If O is the characteristic function of the unitary colligation (U; K, F), then it is straightforward to show
that

(2.3) PpU-zU) M =U-20@)7, ze piU) A pi(D).

Here Pg stands for the orthogonal projection onto F. The lefthand side is commonly called the
compressed resolvent of U to F.
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In the rest of this section we assume that K is a Pontryagin space, F is a Hilbert space and (U; K. F)
is a unitary colligation with matrix representation U= < (T_ ;) With (U; K, F) we associate the linear
relation V in K defined by

V={{Pkh PkUh} e K&K |he KDF, (I-U)h e K}.

For h e K®F with (/-U)h € K we have Pgh = PpUh, and hence for { Pxh, PxUh}, { Pxk PxUk} € V,
[Pxh, Pxk] — [Px Uh, PgUk] =
= [h, k] — [Prh, Prk] — [Pk Uh, Px Uk]
= [h, k] — [PrUh, PgUk] — [Px Uh, Px Uk]
= [h, k] = [Uh, Uk] = 0.
It follows that V is an isometric relation.
LEMMA 2.2. If I - H is invertible, then
(i) V=T+F(-H)"'G and is unitary,
(ii) VG*(I-H)™ =F(I-H)", V'FU-H)"' =G*(I-H)™,
(i)  (=-V)'FU-H'I-©@)=U-I)'F,  ze p(V)npD),
(iv) (I-0@)U-HY'GU-zV)'=GU-I)".  ze pi(V)npu(D.
Proof. Straightforward calculations show (i) and (ii). Now we prove (iii):
FU-H)'U-06(2) =
= F(I-H)'\(I-H-2GU - ZI)"'F)
=(I-2FUI-H)'GU-ZD)F
=(I-2T-2F(I-H'G)U-2I)'F
=(I-V)U-I)'F.
A similar calculation yields (iv):
I-0@)U-H"'G=
=(I-H-GU-D)"'F(I-H)'G
=G -2~y FU-H)"'G)
=G -z U-T-F(I-H)'G)
=G -zD)'U- V).
This completes the proof of the lemma.

A contraction K € L(K) is called completely nonunitary if the only subspace Ko of K such that
KKo = Ko and the restriction K]g, of K to K, is isometric, is the trivial subspace. Since the
colligation (U; K, F) is unitary and F is a Hilbert space, the operators T and T* in L(K) are contractions.
It is known that the unitary colligation (U; K, F) is closely connected if and only if T is completely
nonunitary, and if and only if " is completely nonunitary; see [12]. Let R be a closed linear subspace
of K. The unitary operator V is said to be R-minimal, if

K=cls{(/-zV)'h |he R, z€ pi(V)}.

The following lemma can be found in [7].
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LEMMA 2.3. If I - H is invertible, the following statements are equivalent:

(i) (U; K, F) is closely connected.
(ii) V is ran F- minimal.
(iif) V* is ran G* -minimal.

Proof. The equivalence of (i) and (ii) follows from the formulas
(I-W'FU-EB)' = (- FU-0@)™,

which is valid for small values of |z|, and
U=V 'FU-H" =

(12U - 1V W F(I - HY™

-1/ - ARTY G (I-0(1R)") ",

which is valid for large values of |z|. The equivalence of (ii) and (iii) follows from Lemma 2.2 (ii).

If /- H is invertible, then the following expressions are all equal:

@ (U-B*+U-H"-1,
b (- U-HH(I-H",
(0 U-E'U-HH)I-H)™.

In particular, / — H*H is invertible if and only if /— HH" is invertible. It is straightforward to verify
the following observation.

LEMMA 2.4. Let H € L(F) be such that I — H is invertible, and let Q e L(F, K) be such that
Q'Q=(U-H"*+(U-H'-1I Then

Q Q\ _[(1-Qu-mQ QU-H
"(—1)“"”(—1) ( u-me  H )

is unitary. If V is a unitary operator in K, then

I-QU-HQYW QU-H)\ (K N K
I-HQ'vV H "\ F F/’

VI-QU-HQ") VQUI-H)\ (K 5 K
u-mnQ* H ‘\F \F/’
are unitary colligations. When these colligations are written in the form
T F
U= s
(@ &)

then in each case T+ F(I- H)"'G is equal to the given unitary operator V. These colligations are
closely connected if and only if V is ran Q- minimal.

and
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3. The isometric operator

We assume that K is a Pontryagin space, F is a Hilbert space and that (U; K, F) =(T. F, G, H; K F) is
an operator colligation.

LEMMA 3.1. If U* is isometric. the following statements are equivalent:

(i) I— HH" is invertible.
(ii) ran G* is nondegenerate and closed. ker G* = {0}.

If U is isometric. the following statements are equivalent:

(iii) I—-H"H is invertible.
(iv) ran F is nondegenerate and closed, ker F = {0}.

Proof. Since U* is isometric, (i) is equivalent to GG* is invertible. Assume that GG* is invertible.
Then ker G* < kerGG*™ = {0}, and (G*x, G’y] = O for all y € F implies x = 0, which proves that
ran G* is nondegenerate. Since G*(GG*)™'G = [ on ran G*, ranG* is closed. Indeed, if y € ranG*
and G*x, — y for some sequence x, € F, then also G*x, = G*(GG*)'GG*x, —» G*(GG*)"'Gy,
which implies that y = G*(GG*)"!Gy € ranG*. Therefore (ii) follows. Conversely, if ranG* is
nondegenerate and closed, then ran G* is a regular subspace of K, i.e., ranG" is a Pontryagin space
by itself, and therefore K = ran G* @ ker G, see [6, [X,Theorem 2.2]. Therefore ranG = ran GG*, and
hence ker GG* = ker G* = {0}, if we also assume that ker G* = {0}. Since ran G" is closed, we obtain
by [6, VI, Theorem 2.9], that ranG and also ran GG* is closed, and thus ran GG* = K. Hence GG" is
invertible and (i) follows. The equivalence of (iii) and (iv) follows from (i) and (ii) applied to U".

COROLLARY 3.2. Assume that U is unitary and that [- H is invertible. Then the following statements
are equivalent:

(i) (I- H)Y™+ (- H)™" -1 is invertible.
(ii) ran G* is nondegenerate and closed, ker G* = {0}.
(iii) ran F is nondegenerate and closed, ker F = {0}.

Also the following statements are equivalent:

(iv) (I-H)™ + (- H)™" -1 is positive definite.
(v) ranG* is a Hilbert space.
(vi) ran F is a Hilbert space.

From now on in this section we assume that (7, F, G, H; K F) is a unitary colligation. It follows
from T"T + G*G = I, that the operator T € L(K) is a contraction, and from similar identities that its
restriction Tl is a bounded isometric operator, mapping ker G onto ker F*. If /— H is invertible,
then the identity V = T+ F(I = H)™'G shows that Vlyer 6 = TlkerG» SO that V is a unitary extension in
K of the isometric operator Tlyer . If, in addition, (/ — H)™* + (I — H)™' — I is invertible, then ker G
and ker F* are regular subspaces of K. Hence, in this case, also the defect spaces (ker GY* = ran G*
and (ker F*)* = ran F of Tl are regular subspaces of K. Clearly, ['g- = G*(/ - H)™ is a bounded
invertible mapping from F onto ran G* and ['r = F(/ — H)™! is a bounded invertible mapping from F
onto ran F. Associated with Tl ¢ is the unitary colligation

TPyeg I . K N K
Pag 0) \ranF ranG* )’
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The characteristic function X : D — L(ran F, ran G*) of this colligation is given by
X(z) = Pran-(I = ZTPkerG)—llran F.

It is holomorphic in a neighborhood of 0. It follows from the general formulas (2.1) and (2.2) that

[ZXOXQ) _ p o ol = WPy 6" U = TTPier ) han o

1 —zw
- X(2)X(w)" _ i
_IT"—'W—— = Pung*(I = 2TPxer ) l(]_ WTPker 6)™ lran G

for z w € pi(T). If, in addition, ran F, or equivalently, ran G* is a Hilbert space, then TPy G is a
contraction in the Pontryagin space K and, hence, the function X is meromorphic on D.

THEOREM 3.3. Assume that (U; K, F) = (T, F, G, H; K. F) is a closely connected unitary colligation and
that the operators I — H and (I- H™ +{I— H)™' — I are invertible. Then
(.1) (T) ' X@TF = AT = V) ' Tg) T (U= 2V) ' T,
for z in a small neighborhood of 0. If, in addition, (I - H)™ + (I— H)~' — I is positive definite, then the
characteristic function X belongs to S {ran E ran G*).
Proof. From Lemma 2.2 (ii) and V*TPyer G = Pker 6 (@S Tlker 6 = Vlker ), it follows that
VI-N'U- X)Wl =
= (V' =-7(V' - X()VT g
= V' =" (V'U - ZTPkec6) = 2Pran* ) — 2TPxec ) ' T'F
= AV =NV = 2P G — 2Pran ) = ZTPrerG) ' TF
= 2= 2TPxerc) 'TF
= z(Pran G+ Pker G)(I— ZTPkch)-lrF
= X@TF+ 2Prer U = 2TPier) ' Tr.
From the definition of [¢, it follows that I't.. Pyerg = (I— H)'GPyecc = 0, and therefore the above
identity leads to
(3.2) T2V - V) (- X(V)T- = TG X(@)TE.
This leads to
U= 2V) ' Tr =TI - 2V) ' X@TF,
and so (3.1) follows.

Next we assume that (/- H)™ +(I-H)™! -1 is positive definite, and we prove that the unitary colligation
of which X is the characteristic function is closely connected. For this it suffices to prove that the
operator TPy ¢ is completely nonunitary. Let Ko be a closed subspace of K, such that

TPy Ko = Ko, TPieclK, is isometric.
Then for all x, y € Ko we have

[Pker GX% Pker GY) = [TPier 6% TPrer Y] = [X, Y.
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Therefore [(/= PkerG)X. (I= Pyerg)y] =0 for all x, y € K. This leads to (/= Pyerg)x = 0 for all x e K,
since ran G* is a Hilbert space. Hence K, < ker G. Therefore K, has the properties

TK, = Ko, Tk, is isometric.

As we assume that the colligation (U; K, F) is closely connected, the operator T € L(K) is com-
pletely nonunitary and we conclude that Ky is the trivial subspace. In particular, we obtain X €
S (ran F,ran G*). This completes the proof.

In the case that the operators /— H and (/- H)™ + (/- H)™' — I are invertible, it also follows from the
relation (3.2) that

Coe I+ U = V)N = X(WTge = Ti-(I+ XV TG

Note that in a small neighborhood of 0, the operator I'L.‘.(I— X(:)WTIi;- is invertible, and that
(T = XV = T (I = X(@Vlean )™ TG

Therefore, we obtain

(3.3) T5:U+X@WVU = X(@Van ) ' T = Tl + VU = ) Tge,

for z in a small neighborhood of 0.

4. Carathéodory functions

In this section we show that each (generalized) Carathéodory function of class C,(F) has a representa-
tion in terms of a unitary operator in a Pontryagin space K with index x We derive this representation
by proving that there is a one-to-one correspondence between C(F) and all (generalized) Schur func-
tions O of class S (F) for which /- ©(0) is invertible.

We first prove a preliminary result concerning generalized Carathéodory functions. A corresponding
result for generalized Schur functions can be found in [11]. Recall that if T is a bounded linear operator
in a Banach space X, a number z € C is a normal eigenvalue of 7, if its algebraic multiplicity is finite
and if the space X is the direct sum of the root subspace of T corresponding to z and an invariant
subspace of T, in which T- z is invertible.

LEMMA 4.1. Let the function ® belong to the class C (F). Then for each z € D(®) the set AP(2)) N
{{ e C|Re <0} consists of an at most discrete set of normal eigenvalues.

Proof. Let z € D(®). As the Carathéodory kernel of ® has x negative squares, it follows that the
dimension of the subspace H(z) — F on which the selfadjoint operator ®(z) + ®(z)* is negative is at
most x Therefore ®(z) has the decomposition

P(2) = A(z) - B(2),

where A(z) € L(F) withRe A(z) 2 0, and B(z) € L(F) is finite dimensional with B(z) 2 0. A result from
perturbation theory (cf. [15, Chapter 1, Lemma 5.2]) shows that for each z € D(®) the open lefthand
plane consists of points in the resolvent set of ®(z) or of normal eigenvalues, whose accumulation
points are on the imaginary axis. This completes the proof.
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THEOREM 4.2. Let © e S, (F) have the property that I-©(0) is invertible. Let (U; K, F)=(T, F, G, H; K. F)
with K a Pontryagin space of index «. be a closely connected unitary colligation whose characteristic
function is ©. Then I - ©(z) is invertible for all z € pi(V) N p(T). For any e e C with Re @> 0 the
tunction

4.1) )= U-0@) (a+a0@), ze p(V)N p(T).

belongs to C«(F) and ®(z) + a is invertible for all z € p(V) N pi(T). Moreover, V is a ran A-minimal
unitary operator, and ® has the representation

(42) () =-PO)" +A"U-ZV)'A, ze pu(V),

when A is given by A = (2Re @) F(I- H)™" or by A = (2Re )1 G"( - H)™.

Conversely, let ® : D — L(F) be a function with the representation (4.2), where F is a Hilbert space.
K is a Pontryagin space of index «, A € L(F, K) and V is a unitary operator in the Pontryagin space
K. which is ran A-minimal. Then ® € C(F), and there exists an @ € C with Re a > 0, such that

( (/- A(®0)+ 2 'A")V  (2Re a)éA(CD(O) +a)! >
(2Re @)1 (D(0) + )™ AV (D(0) - OO+t )’

( VI - A@©0)+ ) 'A*)  V(2Re a)’EA(CD(O) +a)!
(2Re a)%(d’(O) +a A (PO)-)@O0)+ )" )]

are closely connected unitary colligations in F @ K, whose characteristic function © belong to S (F)
and give rise to the function ® via (4.1).

Proof. For the closely connected unitary colligation (7, F, G, H; K, F) with /- H invertible and any
ae C with Re @> 0, we put Tr = (2Re @) F(/~ H)~' and T G* = (2Re @)*G"(I—- Hy™. We define the

function ® : D — L(F) by
43) ®@) = (I~ H ™" (a+ @) + (T U-V"'Tr  ze pV).
It follows that
D) +a=QRe ) -H)*(-H' + FF(I-zV)'FU-H)™), ze p(V),

and hence from H*G = —F'T and Lemma 2.2 (iii) we obtain
(44) 2Re )™ (I- H)*(D(2) + a)(I - ©(2)) =
= (-H'+F(I-zV)'FU - H)(I - 0(2)
= -H'(I-H-2G(I~-)"'F)+FI-2V)"' FU- B (I - 6()
= -H'(U-H)-2ZF'TU-I)'F+FU-z)'F
= (I-H)" ze p(V)np(D).
As (I-zV)' = V(I - zV)"'V* we can also rewrite (4.3) as

(4.5) D@) =~ H " (a+aH)+[T G-V TG, ze pV).
It follows that

®@2) + a=(Re )(-H" + (- H)'GU-V'GYI-H)", ze p(V),
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so that from FH* = -TG* and Lemma 2.2 (iv) we obtain
(4.6) (2Re @)™ (I - O D(2) + (I - H)" =
= (I-OQ@)-H" +(U-H)'GUI-V)'G")
= —(I-H-GU-IV'PH +(-0@)I-H)'GU-V'C
= —(I-HH -GUI-D)'TG* +GU-D'G"
= (I-H)" ze p(V)np(D).
The identities (4.4) and (4.6) show that ®(z) + « is invertible and
®(z) + a= (2Re a)(/ - &(2)) ",
which gives (4.1). From this it follows that
¢(z)+¢fw) - (- Ow)~ I-0Ow) _@(z)
l-zw l1-7w
for all zz w e pi(V) N pi(T), which shows that ® € C(F). From the definition of ® it follows that

®(0) = (a+ aH)(I - Hy"!. Hence (4.3) and (4.5) lead to (4.2) with A given by A =Tr or by A =g,
respectively.

(2Re )™ I-0@)™,

Conversely, assume that @ is given by (4.2). Itis clear from this representation that ®(0)+®(0)* = A*A,
and therefore that
D(2) + P(w)*
l-zw

=NU-IT-wO)A,

for all z w € pi(V). Hence, the function ® belongs to the class C(F). According to Lemma 4.1,
there exists an ¢ € C with Re a> 0, such that ®(0) + « is invertible. We put

H=(®0)-a)(®0)+ )", Q=2Rea)2A

Then /- H is invertible and Q*Q = (I - H)™( - H*'H)(I - H)"!. Therefore, by Lemma 2.4, the
colligations in the proposition have all the indicated properties.

THEOREM 4.3. Let ® in C(F). There exists an € C with Re @ > 0 such that (P(z)+ a)~! € L(F) for
all z € D, where the set Dy is equal to D(®), the domain of holomorphy in D, with the exception
of at most x nonzero points. The function © : D — L(F) defined by

4.7) 0(2) = (P@)- PR+, ze€ Dq,

is a Schur function of class S (K) with the additional property that I-©(z) is invertible for all z € D 4.
Consequently, there exist a Pontryagin space K of index x, a mapping A € L(F, K) and a unitary
operator V in K, which is ran A-minimal, such that (4.2) holds.

Proof. According to Lemma 4.1 there exists an @ e C with Re a> 0, such that (&(0) + 2)~! € L(F).
A Neumann series argument shows that (®(z) + @)~! € L(F) for all z in a small disk around O.
We claim that there are at most x non-zero points z in D(P) for which (®(z) + @)~! /& L(F). To

prove this claim, we assume that there are x+ 1 non-zero points zy,...,Zw1 € D(®) for which
(@) + ) /e L(F),i=1,..., x+ 1. Then, according to Lemma 4.1, —a is necessarily a normal
eigenvalue of ®(z;), and hence there are non-zero vectors f; € F such that ®(z))f; = -of;,i=1, ..., x+1,
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and therefore

([(D(a) + (D(Zj)-fi,fj]) — oy ( e £} )
1-2z3 ij=1,2, K41 1=35) et

As the Schur product of two positive matrices is again positive (cf. [2]), the matrix on the lefthand
side has x+ 1 negative eigenvalues, a contradiction, which substantiates our claim. The function
©: D — L(F) in (4.3) is well-defined. It is clear that /- O(z) = (2Re a)(P(z) + @)~} for z € D,. From
the identity

I- G)(w)‘_@(z) = (2Re a)(@(W) + &)~ O(2) + <I>-(w)‘

l-ow 1-zw

for z, w in a neighborhood of 0, it follows that ® is a Schur function of class S (K). Let U =
(T.F, G, H;K F) be a closely connected unitary colligation whose characteristic function is ©. As
I-©(0) is invertible, the function ® has the representation (4.2).

@@+ )7,

The two previous theorems show in a precise sense that the formulas (4.1) and (4.7) give a one-to-one
correspondence between © e S(F) with /- ©(0) invertible, and ® € C(F) with ®(0) +  invertible.
Now let @ : D — L(F) be a holomorphic function, such that for all z e D, Re ®(z) = 0. It is clear
that for any a with Re @ > 0 the function © : D — F, defined by (4.7) is holomorphic on D and that
©O(z) is a contraction for each z € D. Hence © is a Schur function of class So(F), and therefore & is
a Carathéodory function of class Co(F).

COROLLARY 4.4. Let © € S(F) and ® € C(F), be connected via (4.1) and (4.7). Let {U;F, K} =
{T, F, G, H;F, K} be the corresponding closely connected unitary colligation. Then the compressed
resolvent of U is given by

"1+ Ry (@) + ),
—-Z

_ 1
4.8) Pp(I-zU)7 g = 1—_,(¢’(z)+
tor z € pi(V) n pi(T) N pi(U).
Proof. By means of the bilinear transformation (4.7) we obtain
a+a

@@+, ze a) A,

On account of (2.3) this leads to (4.8).

(I-20(2)) = (1 - 2)(P(2) +

For a (generalized) Carathéodory function @ of class C(F) with corresponding closely connected
unitary colligation (7, F, G, H; K, F) we introduce the meromorphic functions Ag- and Ar: D — L(F, K)
given by

Ac(@ = QReiU-ZV)"G'U-H)™, ze p(V),

AM?) = QRe@i(I-VY'FU-HY', ze p(V).
Clearly, the function ® satisfies,

d(w)* » *
(D(Zi ': zﬁ(;W) =Ag (D) A (W) = AF(W) AR(2),

for z, w € pi(V). Conversely, this equation uniquely determines ® up to i times a constant selfadjoint
operator in L(F), and if the colligation (U; K, F) is closely connected, then @ belongs to C(F).

When ®(0)+®(0)* or, equivalently, (1—1‘1)"+(1—H).‘l —I is invertible, then @ is called the Q-function of
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the closed, isometric operator Tl ¢ With respect to the unitary extension V of Tk ¢ and the bounded,
invertible mapping G*(/ - H)™ from F onto the regular subspace dom (Tlker )+ = ran G". Similarly,
under the same condition ® could be called the Q-function of the closed, isometric operator T*|yer &~
with respect to the unitary extension V* of T*|y ~ and the bounded, invertible mapping F(/ — H)™!
from F onto dom (T" |ger ~)* = ran F.

THEOREM 4.5. Let ® € C(F), and assume that ®(0) + ®(0)* is invertible. Then
4.9) (G- H)*)Y"'X()F(I - H)™" = (D(z) + DO0)*)" (D(2) — D(0)),

for all z in a small neighborhood of 0. If ®(0) + ®(0)* is positive, then (4.9) holds for all z € D(®)
with the exception of at most x non-zero points.

Proof. We assume that ®(0) + ®(0)* is invertible. We recall the definition (4.3) of the function ®:

D) +P0) =T U-W'Tr ze pV),
which leads to

D(2)-DO0) = «Tp)" U=V 'Te, ze pi(V).
Hence (4.9) follows from Theorem 3.3.
Now assume that ®(0) + ®(0)* is positive. As we have seen in the proof of Lemma 4.1, for each
z € D(P) the operator ®(z) has the decomposition

P(2) = A(z) - B(2),
where A(z) € L(F) with Re A(z) 2 0, and B(z) € L(F) is finite dimensional with B(z) > 0. Hence the
operator ®(z) + ®(0)* has the decomposition

D(2) + B0)" = A(z) + A(0)* - (B(2) + B(O)"),

where Re (A(z) + A(0)*) 2 0, and B(z) + B(0)* is finite dimensional with (B(z) + B(0)*) 2 0. A result
from perturbation theory (cf. [15, Chapter 1, Lemma 5.2]) shows that for each z € D(®) the open
lefthand plane consists of points in the resolvent set of ®(z) or of an at most discrete set of normal
eigenvalues. Since ®(0) + ®(0)* is invertible, a Neumann series argument shows that ®(z) + ®(0)* is
invertible for all z in a small disk around 0. Now assume that ®(0) + ®(0)* is positive. We claim that
there are at most x non-zero points z in D(®) for which ®(z) + ®(0)* is not invertible. To prove this
claim, we assume that there are x+ 1 non-zero points zy, . .., Z € D(®) for which &(z;) + ®(0)* is
not invertible, i= 1, ..., x+ 1. Then O is necessarily a normal eigenvalue of ®(z;) + ®(0)*, and hence
there are non-zero vectors f; € F such that ®(z,)f; = —®(0)*f;, i=1,..., x+ 1, and therefore

D)+ O()" __([e©@+20y .
([ 1-z7 ﬁ'ﬂ})ml....,m ([ 1-23 ﬁ’ﬁ])x‘.ﬁl.....m‘

As the Schur product of positive matrices is again positive (cf. [2]), the matrix on the lefthand side
has x+ 1 negative eigenvalues, a contradiction, which substantiates our claim.
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5. Nevanlinna functions

In this section we derive a representation for a (generalized) Nevanlinna function of class N (F)
in terms of a selfadjoint relation in a Pontryagin space K with index x. In order to formulate the
following results we define for any 4 e C* the bijective mapping z: C* — D by z(¢) = (¢ —w/¢ - f),
¢ e C*, and for any S e C* the mapping w : C* — C by
Bl -m-BE-p ¢
H-i C
THEOREM 5.1. Let N e NF), and let N be holomorphic at 4 € C*. Then there exists a fe C* such
that N(¢)+ 3 is invertible for all ¢ € Dg, where the set Dy is equal to D(N), the domain of holomorphy
of N in C*, with the exception of at most x points. different from p. The function © : D — L(F)
defined by

w(l) = e C*.

O@z(6)) = (N(€) + BNE) + B, € e Dy,

is of class S (F) and has the additional property that [ — ©(z(¢)) is invertible for all ¢ € Dg. Conse-
quently, depending on f3, there exist a Pontryagin space K of index «, a selfadjoint relation A in K&F
with nonempty resolvent set p(A) and a mapping A € L(F, K) such that

(5.1) B={{fPkg}|{fgteA feK}

is a ran A-minimal selfadjoint relation in K with nonempty resolvent set p(B) and

(52) C={{PxfPrs}l{fgleA g-fecK} peC\R,

is a maximal dissipative relation with nonempty resolvent set p(C). The function N has the following
representations

(5.3) N(&)=Nw" +( ~DA U+ —p)(B-€)HA
torall ¢ € p(B)~C*, and

B-B
HU—=p
for all ¢ € C* in p(A) N p(B) N p(O).

(54 N +w()™ ==Pr(A-€)'|f

When we may take f = u (which is the case, for instance, when x = 0), then w(¢) = ¢ and (5.4)
reduces to
N+ €)™ = -PpA-€) g
Proof of Theorem 5.1. Define the function @ : D — L(F) by
O(z(€)) = N (u-m), € e DWN).
Then

D(z(€)) + P(z(A)" _ (,1— ﬁ) * N(¢)-NW* (e -I
l-2€)zh)  \u-E& t-1  \u-p

which implies that ® belongs to the class C,(F). Hence, by Theorem 4.3, there is an @ € C with
Re @ > 0 such that ®(z) + a is invertible for all z € D,. By defining = (u- ), we obtain e C*
such that N(¢) + B is invertible for all { € Dg. By Theorem 4.3 the function © : D — L(F) defined

), ¢, A€ D(N),
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by ©(z) = (®(2) - a)(P(z) + @)~! belongs to the class S (F). The function O can be directly expressed
in terms of the function N:

O(z(€)) = (N() + BNE) + B!
and
[-0(z(0)) = (B-PINE)+ P!

for £ € Dy. Note that
-0 O@?)) _

1-2(8)z(D)
_ B-B (N(A)+ﬁ)"N(€)—N(l)‘ (N(e>+ﬁ)“
T ou-a\ A-h 6-1 t-p /) °

which again shows that © belongs to the class S (F). The function © is the characteristic function of
a unitary colligation (7, F, G, H; K, F) as in Theorem 4.2. With z € C* we consider the inverse Cayley
transforms A = F,(U), B = F,(V) and C = F,(T) of the unitary operators U, V and the contraction 7,
respectively. In K@ F we define the relation A by

A={{(U=Dh (uU-h} |he KSF },
and in K we define the relations B and C by
B={{(V-Dh (u-mh} | he K}
and
C={{(T-Dh (uT-mh}|he K}

[t turns out that A and B are selfadjoint relations, and that their resolvent sets are non-empty (see
[9],[101]) and that the relation C is maximal dissipative (Im C < 0) with non-empty resolvent set. From
the definition of V it follows that

B={ {Pxk(U-Dh Px(uU-h} |he K®F, (I-U)he K},
which implies that (5.1) is valid. From the definition of T, i.e., T = PxUlk, it follows that
C={ {Px(U-Dh Px(uU-Dh} | he K },
which implies that (5.2) is valid. According to Theorem 4.3 the function ® has the representation:
D(2) =-PO) + A I-N'A ze p(V),
Now we use the identity
U=V = =2 @ - B - )

to obtain (5.3). We use the identity (4.8) valid for z € p;(V) N pi(T) N pi(U) to obtain

.
Pet-zy e = -=2 -2 i ﬁ(e — N + W)™,
Therefore
ﬁ ﬂ(N(e)+w(6»' ! BB (iU,

C-pn C-wl-p
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which shows (5.4). This completes the proof.

A consequence of the representation (5.3) in Theorem 5.1 is that

N(p) = N(w)*
u-p

(5.5) =A"A

The representation (5.3) can be found in [18], [20] under additional conditions on the asymptotic
behaviour of N in order to make sure that the selfadjoint relation in the representation is an operator.
If x = 0 these asymptotic conditions were dropped in [22]. In all these papers there is the extra
condition that the operator A*A in (5.5) is positive. Note that if N : C* — L(F) is a holomorphic
function, such that Im N(¢) >0 when ¢ € C*, then N belongs to the class No(F).

To facilitate the statement of the next theorem we introduce the following notation. For e C* we
define () by
—Bu + B — (u- HN)

B-B '
THEOREM 5.2. Let F be a Hilbert space and let K be a Pontryagin space of index x. Let A € L(F, K),
and let B be a selfadjoint relation in the Pontryagin space K, which is ran A-minimal. Then the function
N : C* — L(F) with representation (5.3) belongs to N (F), and is holomorphic at u. Moreover, there
exists a fe C*, such that

_ f-Ak 8 — uhk
(5.6) A—{ {( " )'(A‘(g—[tf)+r(ﬂ)k )}I{ﬁg}e B, ke F}

is a selfadjoint relation in F @ K as in Theorem 5.1, for which (5.4) holds.

rB) =

Again, when we may take S= y, then w(€) = ¢, n(f) = —N(u) and (5.6) reduces to

[ r-m e
A—{{< k )’(A‘(g—[lf)_N(#)k)}l{/:g}EB.kEF}.

Any N € N(F) which is holomorphic at u € C* has a representation (5.3). Using (5.5), we obtain
for {,le p(B)nC*

N()-NA)' =
=AL-A+(€ - -DB-0)" -(A-wA-BB-1)" 1A
For u e C we define the function A, : C* — L(K) by
Au€)=U+(€ -mB-E) ™A
Then, by means of the resolvent identity
B-0)"'-B-D'=-DB-0)'B-", ¢,1e p(B),
we obtain
(€ = DA AL(E) =
=A'[C-A+ (- -pB-0)" -(A-w-BHB-1" 1A
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Hence we have shown that
N(O)-NQ)* _

(-1 *
for (,Ae (BN C*.

(A" Bu(E),

THEOREM 5.3. Let Ne N{F) and y e C*. Assume that N“‘—}_Z“‘—’ is invertible. Then the selfadjoint
relation B has a symimetric restriction By, such that the subspaces ran (Bo — ) and ran (Bo — 1) are
closed and nondegenerate. The corresponding defect spaces are given by

ker (By— ) =ran A, ker(By—f) =ran(I+ (2—u)(B—- ) ")A.
The characteristic function of the closed symmetric relation B, and the selfadjoint extension B satisfies
(5.7) Y(O)A =+ (- p)(B - 1) IAWNE) = N@w)N(E) - N@)y™,

for ¢ in a small neighborhood of u. If M"L’_# is positive, then (5.7) holds for all ¢ € D(N), with
the exception of at most x points, different from p.

By the characteristic function Y(¢) we mean the function X(z(¢)), the characteristic function of the
Cayley transform C,(Bo), u€ C*; see [13]."
Proof of Theorem 5.3. The selfadjoint relation B in K is the Cayley transform of the unitary operator
V. It has a symmetric restriction By corresponding to the isometric restriction Vie g of V:

Bo={ {(V=Dh, (uV-h} | h e kerG }.

Clearly, ran(Bo — 1) = ker G and ran (Bo — 1) = Vker G = ker F~. If M%L’ is invertible, then these
spaces are closed and nondegenerate, and hence the symmetric relation B, has defect spaces, given
by

ker (By — i) = (ker F*)t =ran F, ker(Bj— 1) = (ker G)* =ran G,

which are equal to ran A and ran (/ + (z — u)(B — 1) ")A, respectively.
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