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ABSTRACT 

We give the recurrence relations, interpolating properties and convergence results for a sequence 

of orthogonal rational functions of increasing order that have fixed poles in some region 0 of the 

complex plane. They are orthogonalized with respect to a measure supported on the boundary 

S of O. We give formulations of the results which are valid for S equal to the unit circle or 

the real line. The corresponding reg ion 0 is then the exterior of the unit disk or the lower half 

plane. 

Introduction 

In [9], a three term recurrence relation and in [2] a Szegö type of recurrence was obtained for 

the functions orthogonal with respect to a linear functional and where the poles were cyclically 

repeated. Also, the converse, a Favard type theorem was formulated. In [3, I] we derived 

recurrence relations and interpolating properties for rational functions orthogonal with respect 

to a measure supported on the complex unit circle T and in [4] a Favard theorem was obtained 

without the repetition of the poles. In this paper we shall reformulate the results of [3] so that 

they are valid for both measures on the unit circle and on the real line. We followan approach 

similar to [8] . Most of the proofs for the unit circle need only minor adaptations, so that a 

careful formulation of the results is sufficient to adapt the proofs of the circle case by yourself. 

Due to page limitations we do not include any proof. Some of them can be found in [5] . 

We use the notational conventions given in the table bel ow. it will help you to specify the 

general formulations to the circle or real line case. We quickly skim through this tabIe. 

It can be easily checked that Scan be described by the equation (iJz(z) = O. 
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Ir we set for some ai E C (iJ;( Z) = (iJa;(Z), then we have for the exceptional point ao 

{
I for T 

~(ao) = 2i ror R 

TIle sets I and 0 (inside and outside) are dellned by 

So 

I = {ZE C : (iJz(Z) >o} 
~(ao) 

and 0 = { Z E C : ~(Z) < o} . 
~(ao) 

S 

Z 

(iJa(Z) 

ao 

I 

0 

dÀ.{t) 

Zk 

(k(Z) 

DU, z) 

P(I, z) 

1= { D ror T 
U for R 

T R 

liz z refkction in S 

I- az z -(ï 

0 i exceptional point 

D U inside 

E L outside 
dl dl 

Lebesgue measure - -
2nil TC 

li'k I1 + arl convergence factor - -
1+ % IlXk l 

Z - lXk z -
Blaschke factor Zk-- Zk-_-

I -li'kz Z - lXk 
1+ Z I 1+ Iz 

Carathéodory kemel - ---
I- Z i 1- Z 

1-lz12 3 z 
Poisson kemel 

(t - z)(! - z) (t - z)(t - z) 

O { 
E t'or T 

and = 
L for R 

TIle notation dJ.. refers to the normalized Lebesgue measure on S. We shall also use the notation 

- dÀ.{l) {dÀ.{t) for T 
dÀ.{t) = Ilqj(I)12 = ~ for R 

More generally, for any measure j1 on S, (not necessarily finite) we set djl(t) = Ilqj(t)I- 2dj1(t). 

By Hp := Hp(l) we denote the classical Hardy spaces Hp(D) for the unit disk when I = D. For 

I = U, these spaces consist of the functions f for which r TE Hp(D) where T is the Cayley 

transform of the upper hal f plane U to the unit disk D : 1(z) = (i - z)/ (i + z). Note that these are 

not the Hardy spaces for U (except for p = 00). The latter can be defined for 0 < p < 00 as (see 

e.g., [7, 10)) 

Hp(U) = {(z + i)- vPftz) : fE Hp(U)}. 

We consider the inner product in the space Lz.(jf) (f. g)ji = J ftz)g(z)djl(z) where jl is a finite 

posilive measure on S. Without loss of generality, we shall usually assume that J djl = 1. 
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We also define the substar conjugate of a function to mean f.(z) = ft}.). It is clear that for 

Z ES :f.(z) =j{z), so that we have immediately (f,g)j1= (g.,f.)j1= ffg.djl. The (generalized) 

Poisson kemel is defined as 

P(t, z) = 1üz(z)/~(ao) 
(t - z)(t - z). 

(substar w.r.l t). 

For t E S, this reduces to the classical Poisson kemels. Furthermore, we introduce the kemels 

{ 

I+ z for T 
D(t, z) = ;-~+lZ for R 

T (-Z 

One can check that ~(t)~.(t)P(t, z) = ![D(t, z) + D(t, z).) (substar w.r.l t) . 

Let jl be a probability measure on S (f djl = I), then 

n(z) = Îc + J D(t, z)djl(t), zEI, eER 

defines a function analytic in I (.Q E H(I» and with a positive real part since the real part of 

n is given by 9t.Q(z) = f9tD(t, z)djl(t) = f P(t, z)dJl(t), Jl = 1~12jl (note that Jl need not be 

finite for S = R). We say that.Q belongs to p, the c1ass of positive real functions for I. Since 

D(t, ao) = I, we find that .Q(ao) = 1 + Îc. lf we require .Q(~) > 0, then we should taJce C = 0. 

In that case .Q(ao) = I. The relation between Jl with f 1~(t)1-2dJl(t) = I and .Q with .Q(ao) = 1 

is one to one. We shall sometimes indicate this by writing .Q" for.Q. By Fatou's theorem, we 

know that if Jl is finite on S, and has the Lebesgue decomposition dJl(t) = oi.t)d).,(t) + dJlit) into 

an absolutely continuous and a singular part, then 9t.Q,,(z) has a nontangential limit to S and it 

is equal to oi.t). 

2 The spaces Ln 

We define here the spaces of rational functions of degree n for which we shall construct an 

orthogonal basis later on. 

We define a Blaschke factor for ~ E I as (;(z) = ziCU;(Z)lwi(Z) . The denominator is 

{ 
1- äiZ for T 

Wi(Z) = wa; (z) = 
z- äi for R 

The numerator introduces the superstar for a polynomial. In general, the superstar of a polyno

mial Pn E nn of degree n is a transformation of a polynomial into another polynomial : 

p~(z) = {znpn.(z) for T 
Pn.(Z) for R 

Thus here CU; (z) = z - a; in both cases. The constant factors Zi E T are equal to 1 if ai = ao and 
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otherwise they are given by 

{ 
-aiJ1ail for T 

Zi = Ie?; + W(e?; + I) for R 

These factors are needed to make 0:1 (;(z) converge iff the Blaschke condition is satisfied. 

That is iff 

{ 

Lk~ 1 (I -Illkl) < 00 for T 

Lk~ 1 1~:12 < 00 for R 

With the Blaschke factors, we define the finile Blaschke produets Bo = I, Bn = Bn-I (n, n ~ I. 

The spaces Ln are now defined by 

Ln = span{Bk:k=O,I , . .. , n} 

= {I'n, I'n E nn, n,,(z) = ft Ci7i(Z)} . 
n" j=1 

For functions in Ln' we also define a superstar conjugate namely.r" = BJ.. One can easily 

check that for In E Ln 

In = I'n =>fn = TJnl'~, 
n" n" 

n 

TJn = rr Zj E T. 
j=1 

Also, because IBnl = I on S and Bn. = 1IBn, we have (J, g)ji= (J., g')ji= (f', g')p; f, g E Ln. If 

1" E LlI equalslll = ao+alB I + . . . +akBk+· . . +anBn, then.r" = ZïoBn+ZïIBn\ I + .. . +ZïkBn\k+· . . +Zïn 
where BnV = B,/Bk and therefore an = !;,(a,,). We call an the leading coefficient of In (w.r.t. the 

basis Bd. 

Using the Gram-Schmidt procedure, we can orthogonalize the basis Bo, ... , Bn in ~(j1) 10 find 

the orthonormal basis functions tPo, ... , tPn . We fix them uniquely by choosing their leading 

coefficient positive: /(n = tP~(a,,) > 0. 'Throughout this paper we shall assume that the measure 

guarantees the existence of all orthogonal functions tPn E Ln \ Ln-I' n = 0, 1,2, .... 

Note that if tPn E Ln is orthogonallo Ln-I' then tP~ will be orthogonal 10 (nLn, that is (tP~,j)ji = ° 
for all IE Ln which vanish at Z = an. 

llle kemels 
n 

kll (z, w) = L iPk(z)iPk(w) (2.1) 
k=ü 

are reproducing in Ln in the sense thaI (Jn(Z), kn(z, w»)ji = In(w), '<:fIn E Ln, WEI. For these 

kemels, the following properties hold: 

Theorem 2.1 If kn(z, w) is the reproducing kemel lor Ln and tPk(Z), k = 0, ... , n represent the 

orthonormal basis functions, then 

J. kn(z, w) = kn(w, z) (sesqui-analytic) 
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2. k~(z, w) = k;;(w, z) (superstar W.r.t. first argument) 

3. kn(z, a,,) = KntP~(Z) (Kn = tP;;(a,,) > 0 ) 

4. kn(a", a,,) = ç 

Proof. (1) follows from the formula (2.1). For (2) we refer to [5]. (3) follows from (2) and (4) 

follows from (3), by setting w = an . o 

Corollary 2.2 Setting J.1.;j = (B;, Bj}p; we get the foLLowing determinant expressions: ~ = 
det Gn- I/ det Gn and 

tPn(Z) = (det Gn- I det Gn)-112 det 
J.1.n-I,O J.1.n-I,n 

Bo(z) Bn(Z) 

Proof. This is a classical result. The proof is the same as in [3] . o 

We have the Christoffel-Darboux type of relations. 

Theorem 2.3 Let kn(z, w) be the reproducing kemel for an and tPk, k = 0, I, ... , n the orthonor-

mal basis functions, then 

kn(z, w) = 

= 

tP~+1 (Z)tP~+1 (w) - tPn+1 (Z)tPn+1 (w) 

I - Sn+1 (Z)Sn+1 (w) 

tP~(z)tP~(w) - Sn(Z)Sn(w)tPn(Z)tPn(w) 

I - Sn(Z)Sn(w) 

Proof. The result is as in the case S = T. The proof of [3] needs only minor adaptations. 0 

An immediate consequence of these relations is that (note ISn+11 < I in I) 

n 

0< kn(z, z) = L 14>k(z)12 ~ 0 < ItP:+1 (z)12 -ltPn+1 (z)12
, ZEI 

k=ü 

Thus tP~+1 (z) is not zero in I. Consequently we also have that 

tPn+I(Z) 
-.-- E D (T, E) when Z E I(S, 0) 
tPn+ I (z) 

because the same holds for Sn+1 (z). 

3 Recurrence for the orthonormal basis functions 

The basis functions satisfy the following recurrence relation. 
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Theorem 3.1 Let ifJk, k = 0, . . . , n be the arthanarmal basis functians with pasitive leading 

coefficieTlt. Then 

[ 
tPn(z) ] = N" cu,,-I (z) [ 1 
~~(z) cu,,(z) Àn 

Je" ] [ (,,-I (z) 0] [ tPn-1 (z) ] . 
1 0 1 ~~_I(Z) 

The matrix N" has the farm N" = e" diag(1/~, 1/~), 1/~, 1/~ E T where 1/~ is chasen ta make 

K" = ~~(a,,) > 0 and 1/~ is related ta 1/~ by 1/~ = f7~Z,,-1 Z", The parameter Àn is given by 

1 tPn(a,,-I) D ·th "'1,=1/ E WI 
~(a,,-I ) 

cu,,-I (a,,) _ 
1/= ( )Z"Z"-I E T. 

cu" a,,-I 

Proof. This proof is much like in the case of the unit circle, see [3]. For a uniform approach 

to the circ\e and the Hne, see [5] . 0 

The orthogonal functions in the previous recurrence were computed using the parameters À-". 

However, these Àn were defined in tenns of the tPn themselves. Therefore we give now another 

expression for these, as well as for the e". 

Theorem 3.2 The parameter Àn in the previaus recurrence relatian is alsa given by 

_ (ifJk, ~tPn-1 };r 
Àn=Z"-I( ~J(Z) * }_ foranyk,O~k~n-1 

ifJk, ~(Z) ~,,-I P-

and the values af e" > 0 are given by 

2 _ cu" (a,,) 
e" - -----:---,- -:-----:-,....-:::-

lü,,_1 (a,,-I) 1 -IÀnF ' 

Proof. The expression for Àn follows easily from ~" 1- ifJk for any k = 0, 1, .. . , n - 1. So 

replacing tPn by the recurrence in (tPn, ifJk};r= 0 gives the result. 

For the derivation of the expression for e~ = Id,,12 we refer to [5]. o 

As for the circ\e case, we can avoid the factor N" in the recurrence by rotating the orthononnal 

functions . We have to de fine in general 

Eo = I and d" 2 
E" = E"-IZ"ld,,1 = E"1/,, for Tl ~ I (3.2) 

and then we get for <1>" = E"tPn the following recurrence relation 

[ 
<I>,,(z) ] = e" cu,,-I (Z) [ 1 
<I>~(Z) cu,,(z) A" 

Ä
1
" ] [z,,0-1 0] [ <1>"-1 (z) ] 

1 <I>~_I (z) 

wilt. 

A =-;). - 1 =-;). cu,,-I(a,,) <I>,,(a,,-I) 
" c,,-I Z"Z,,-I "n c,,-I ( ) <1>*( ) 

cu" a,,-I "a,,-I 
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4 Functions of the second kind and interpolation 

In this section we define the functions of the second kind, prove their recurrence relation and 

derive some interpolating properties. 

Let the kemel D(t, z) be as defined in section land introduce E(t, z) = D(t, z) + l. Note that 

when tE S, D(z. t) = -D(t, z) and thus also E(z, t) = I - D(t, z). We now give some equivalent 

definitions of the functions of the second kind: 

'l'n(Z) = J [E(t, z)~(t) - D(t, z)~(z)]dj1(t) 

= J D(t, z)[~(t) - ~(z)]dj1(t) + J ~(t)dj1(t) 
= { I if n = 0 

f D(t, z)[ ~(t) - ~(z) ]dj1(t) if n 2: l. 

The following properties were proved in [3] for the unit drcle, but the proofs are independent 

of the choke of S, so we state without proof the following results. 

Theorem 4.1 For the functions of the second kind 'l'n, are in Ln . Moreover 

1. we have for 0 $ k < n 

J ~(t) ~(z) 
= D(t, z)[ Bk(t) - Bk(Z) ]dj1(t) 

J ~(t) ~(z)_ 
= [E(t, z) Bk(t) - D(t, z) Bk(Z) ]dJ1(t). 

This also holds for n = 0 ij you set then Bk = I. 

2. Denote Bn\k = B"IBk (k $ n), then 

= J D(z, t) [ tfJ~(t) - tfJ~(Z)] dj1(t) 
Bn\k(t) Bn\k(Z) 

= J [E(Z, t) tfJ~(t) - D(z, t) tfJ~(z) ] dj1(t) 
Bn\k(t) Bn\k(z) 

for 0 $ k < n. The second relation also holds for n = 0 ij you set B n\k = 1. 

3. Define B_I = I, Bo = (0, Bk = (oBk. k 2: l. Ij n = f D(t, z)djl, then 

~n. + 'l'n 
gE H(I), n2:0 

Bn-I 
= 

tfJ~n. - vi" 
Bn 

= hE H(I), n2:0 

Also the recurrence relation for these functions can be found to be 

[ 
'l'n(z)] = N

n 
liJ,,-1 (z) [1 ~] [ (n-I (z) 0] [ 'l'n-l (z) ] 

-vI,,(z) liJ,,(z) Àn I 0 1 -vI,,-1 (z) 
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where all the quantities are defined before. lts proof is an easy adaptation of the corresponding 

proof in [3]. The adaptations needed are similar to the ones used in the proof of the recurrence 

for the orthogonal functions. 

We conclude this section with the following: 

Theorem 4.2 Let th. be the or/honomzal basis functions lor L n with respect to jl Define the 

absolutely continuous measure J.1n by 

where P is the Poisson kemel. Then on Ln' the inner product with respect to J.1n and ji is the 

same: C -)/40 = C ' )ii' 

Proof. One fust proves that IltPnll~ = IltPnll~= I, which is obvious. Next, show that (I/Jn, th.)/40 = 
(tPn, th.) ii = 0 for 0 ::; k < n. Thus tPn is an orthononnal function both W.r.t. ji and W.r.t. J.1n. 

Since Àn is completely defined by I/Jn, and thus also I/Jn-l by inverting the recurrence formula 

etc. (recall that all th. had a positive leading coefficient). Thus because tPn is orthonormal W.r.t. 

J.1n, also all the previous I/Jk> 0::; k < n will be orthononnal w.r.t. J.1n . Hence (-. ')/40 = (-, ')ii in 

o 

5 J-inner matrices and determinant formula 

To derive the determinant formula, we use the notation of a J-inner matrix [6, 8]. 

Let fi be a 2 x 2 matrix whose entries are functions in the Nevanlinna class N for I [10]. 

We consider the indefinite metric J = diag(l, -I). We shall say that 0 is J-unitary for S iff 

fII Jfi = J on S. The substar conjugate of a matrix is the elementary substar conjugate of the 

transposed matrix. Thus 

0
12 ]=[ 

fh2 • 

Then the previous relation expressing J-unitarity on Scan now be generalised to C by writing 

fJ.Jfi = J in C since these 0 matrices have pseudomeromorphic extensions accross S [6]. 

A matrix of a previous fonn is J-contractive in I, iff (/I JO::; J zEI where inequality means 

that J - fII JO is positive semi definite. We cal I 0 J-inner in I iff it is both J-unitary and 

J-contractive in I. The class of J-inner matrices for S is denoted by BJ . 

The following properties for J-contractive matrices were given in [6] for the unit circle, but the 

same holds for the real line. 

Theorem 5.1 B J is closed under multiplication and moreover, lor 0 E B J it holds that 

2. fIIJO~JinO 
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i-inner matrices appear in the recurrenee relation as shown in the following: 

Lemma 5.2 Defille 

- N Cü,,-I(Z) [I ~I] [Çn-ol(Z) o}] 
t" - n Cü,,(z) À" 

with uil the parameters defined in Theorem 3 .. /. Set Tn = tntn-I " .tl. Then 

Moreover, there exists a positive constant Cn such that 

Cü,,(Z) 
8,,(z) = --(-) Tn(z) 

cn~ Z 

is i-inner. 

Proof. See (5). 

lllis lemma now gives the following result. 

Theorem 5.3 With the notations of the previous lemma, we have 

/ . The detenninantfonnula ![lJIn(/\". + lJIn.(/\,,] = ~(z)~.(z)P(z, a,,), thus 

I [lJIn tin] P(z, a,,) 
2 (/\" + I//" = (/\"(z)(/\,,.(z) ~(Z)~.(Z) 

with P lhe PoissOIl kemel. 

o 

2. t1,,1t/J~ = lJIn./(/\". E P. The measure corresponding to this positive real function is given 

in 

tIn(Z) J 
I//,,(z) = D(t, z)d/1n(t) 

Proof. See [5). 

with 
pet, a,,) 

d/1n(t) = 11//,,(t)12 d).(t). 

6 Interpolation algorithm for the orthogonal functions 

o 

In trus section we give a Pick-Nevanlinna type of a1gorithm to compute the parameters Ik It 

is hased on successive interpolation of a function that is in the Schur c1ass 13. lllis c1ass is the 
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dass of holomorphic functions in I , which are bounded by I. B = {f E H(I) : j(z) E D, 'rj zEI}. 

In facl, il will be difficult to compute the Ak directly because of the factors TJ! and TJ~ in the 

recurrence of the orthogonal functions tPk and the functions of the second kind 'l'k. To avoid 

these factors, we shall work with the rotated functions <1>k = Ekl/lk and 'l'k = Ek'l'k> where En is 

defined in (3.2). 

We define remainder functions Rnl and Rn2 by 

[ 
ii~_ IR"1 (z) ] = [ <1>:(Z) ] n(z) + [ 'I' n;Z) ] 
B"R"2(Z) <1>n(Z) -'I' n(Z) 

where U = UI' is the function of class P corresponding to the measure j.1, and the Bk as in 

llleorem 4 .. 1. The functions <1>k are orthogonal with respect 10 p = 1~1-2 j.1 . The functions Rnl 

and Rn2 are rotated versions of the functions g and h appearing in Theorem 4 .. 1. When applying 

Ihe recurrence relation we get after some compulations, the following recurrence. 

Theorem 6.1 The remainder functions rnl = z"R"1 and r,,2 = Rn2 satisfy 

[ 
r,,1 ] [I 0] [I 4,] [ r,,_1 I ] liJ" = en liJn-1 ' 
r,,2 0 1/(n L" I r,,-I ,2 

with 

. rn-I,2(Z) 
L" = z"A" = - hm ; 

Z4a" r,,_l,I (z) 

Proof. See [51. o 

llle previous theorem now gives directly the Pick-Nevanlinna type a1gorithm for the functions 

r ( ) _ R,dz) _ rn2(Z) 
"Z-Zn - . 

R"I(z) r"I(Z) 

Note Ihal ro(z) = ~[U(z)-ll!lQ(z)+ I] E B is a Schur function . We have the following relation. 

Theorem 6.2 Define the Junctiofl r n as above, then 

r _ ~ ( L" + r"_1 ) 
,,- (" 1 + L"rn- I 

with L" = -r"_1 (a,,). They are all in the Schur class B. 

Proof. The recurrence follows immediately from the previous theorem. All the functions are in 

dass B because ro is and the Moebius transformation between the brackets generates another 

Schur function (since L" E D) which is zero in a". Therefore, dividing oul (n gives again a 

Schur function. 0 
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7 Convergence results 

The proofs of the convergence resuIts in [3] do not make use of the fact that the functions are 

related to T specifically. They can be used without change when the appropriate domains are 

replaced . So we can restate them without proof. 

Recall that the Blascllke products B"" will diverge iff the Blaschke condition is not satisfied, i.e. 

iff 

{ 

~(\ -Illkl) = 00 

"" 3llk 
L I + Illkl2 = 00 

k=1 

for T 

for R 

Theorem 7.1 Let t/J" and 'lfn be the orthonormal functions and the second kind functions for .c n 

with respect to the measure jL Define nn = "''/tP~ E Pand let nEP be the function associated 

with J.1 = IliJol2jI: n(z) = f DU, z)djI(t) with f djI = 1 and n(ao) = l. Then nn converges to n 
unifnrmly on compact subsets of I if the Blaschke product diverges. 

8 Conclusion 

We have studied orthogonal rational functions on the unit circle and on the real line. In [6], 

recurrenee relations for the reproducing kemels were fully exploited and its connection with the 

Pick-Nevanlinna interpolation problem was established, while solving the prediction problem 

of a stationary stochastic process. In this paper we obtained similar results not for the kernels, 

but for the orthogonal functions themselves. 
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