
W.T.M. Verkley 

A Contour Dynamics Approach to Large-Scale Atmospheric Flow I 

Abstract 

A simple model of the large-scale atmospheric circulation is studied. The model 
is based on the observation that the potential vorticity changes rapidly at the 
tropopause. We idealize the potential vorticity distribution on an isentropic sur­
face (cutting through the tropopause) by taking it to be piecewise uniform with 
a discontinuity at the tropopause. If it is assumed th at the time evolution of the 
atmosphere can be described by the equivalent barotropic vorticity equation, a 
dynamical system is obtained which can be formulated entirely in terms of the 
discontinuity. We first discuss a zonally symmetric flow to demonstrate th at the 
model leads to quite realistic zonal velocity profiles. We then consider 
infinitesimal-amplitude (Iinear) waves superimposed on the basic zonal flow. ft 
is found that these waves are neutral and move westward with respect to the 
basic zonal flow like Rossby-Haurwitz waves on a solid-body background flow. 
Using a numerical iteration procedure we also construct families of finite­
amplitude (nonlinear) waves. The possible use of stationary waves of th is kind 
as models for atmospheric blocking is discussed. 

Introduction 

The tropopause, the boundary between troposphere and stratosphere. is tradi­
tionally defined as the surface where the vertical gradient of potential tem­
perature undergoes a large, discontinuous, change. ft has been stressed by 
Shapiro (1980) that also the potential vorticity undergoes a large change at the 
tropopause. In fact he proposes to replace the traditional thermodynamic defini­
tion of the tropopause by Reed's ( 1955) dynamic definition in which the 
tropopause is identified with a surface of constant potential vorticity with a 
value in the range of rapid change. The fact that stratospheric va lues of potential 
vorticity are indeed much larger than tropospheric ones is iIIustrated by Fig. Ia. 
This figure shows a meridional cross-section through the atmosphere at the 45° 
east meridian. The dashed lines are isolines of potential temperature, the solid 

I This contribution is an extended summary or the author's paper 'Tropopause dynamics and 
planetary waves', which will be published in the Journalor the Atmospheric Sciences. 
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Fig. 1. (a) Meridional cross-section of the atmosphere at the 45° east meridian at January 27 
1987,12.00 GMT. Solid curves are isolines ofpotential vorticity in units of 1O-6 m2 s- 1 Kkg- I 

(pvv), dashed curves are isolines of potential temperature in K. The contour interval for potential 
vorticity is 1 PVV, the contour interval for potential temperature is 10 K. The region where poten­
tial vorticity is negative is shaded. (b) The same meridional cross-section but now with zonal 
velocity (in ms -I) and potential temperature (in K). The contour interval for the zonal velocity 
is 10 ms - I, the contour interval for potential temperature is 10K. Regions with negative zonal 
velocity are shaded. (c) Isolines of potential vorticlty on the 310 K isentropic surf ace for the same 
date and time as the cross-sections of (a) and (b). The contour interval for the potential vorticity 
is 1 pvv. Figs. la and lb were prepared by dr. P. Berrisford, Fig. Ic by dr. T. Davies, both using 
archived meteorological fields from the European Centre for Medium Range Weather Forecasts 
(ECMWF). 
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lines are isolines of potential vorticity. The tropopause could, in Reed's defini­
tion, be placed at the + 2 pvv level in the Northern Hemisphere and at the 
-2 pvv level in the Southern Hemisphere. (For the definition of one unit of 
potential vorticity (pvv) see the caption of Fig. Ia.) The potential vorticity 
involves both the vertical temperature gradient and the absolute vorticity, and 
usually both are involved in any change of its value. As a consequence one also 
finds the maximum velocities (the center of the jet stream) in the neighbourhood 
of the tropopause. This is illustrated by Fig. I b, which shows the same 
meridional cross-section with isolines of potential temperature and zonal 
velocity. 

Due to the large change in potential vorticity at the tropopause, its position 
deternlines, to a large extent, the structure of the potential vorticity distribution 
in the atmosphere. lts position therefore largely determines the state of the 
atmosphere as a consequence of the invertibility principle (assuming balanced 
flow and given the distribution of potential temperature at the ground, see 
Hoskins et al., 1985). In this paper we wish to explore this fact to devise and 
study a simple model of the atmospheric large-scale circulation. Our first 
assumption is that we can limit ourselves to a single surface of constant potential 
temperature (isentropic surface ) at a representative height in the atmosphere 
and such that it intersects the tropopause. Viewed from this perspective the 
tropopause emerges as a small band of closely packed isolines of potential vor­
ticity, as illustrated by Fig. Ic. Our next assumption is that the large change at 
the tropopause is indeed the dominant feature of the potential vorticity distribu­
tion and that, on the isentropic surface, it can be assumed to be piecewise 
uniform. We then assume that large-scale atmospheric flow is adiabatic and fric­
tionless, which means that both potential vorticity and potential temperature are 
conserved following the motion of fluid particles. This implies that the dynamics 
of potential vorticity is given by advection within each isentropic surface. To 
close the system we finally assume that the dynamics of potential vorticity is 
governed by the equivalent barotropic vorticity equation on a rotating sphere. 
Because potential vorticity only changes by advection, the dynamics reduces to 
the dynamics of a single line or contour. For this type of system a new theoreti­
cal and numerical technique has been developed recently which is called contour 
dynamics (see the review by Dritschel, 1989). 

The model 

As announced in the Introduction, we will consider the evolution of potential 
vorticity on a single isentropic surface, say the 310 K surface in Fig. 1. It is 
assumed that th is surface does not intersect the earth and that the surface can 
be approximated by a sphere with radius a = 6.371 x 106 m, rotating with the 
earth's angular velocity Q = 7.292 x 10 -5 S -I. Distances will be expressed in 
units a, time in units Q -I, and points r on the sphere will be denoted by their 
geographical coordinates (À, t/J). 
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We assume that the potential vorticity on an isentropic surface can be 
approximated by 

q = , + 1 - Ft/!. (1) 

Here ' is the relative vorticity, given by the vertical component of the curl of v, 
where v is the velocity field. The velocity field has components u and v along the 
unit vectors i and j and is assumed to be nondivergent. Therefore, v can be writ­
ten in terms of the stream function t/! , 

v=k x Vt/! , 

where k is a unit vector pointing vertically upwards. This implies that the 
relative vorticity can be written as 

(2 ) 

(3) 

The second contribution to the potential vorticity is the planetary vorticity 1 
which, in the unit Q , can be expressed as 

1=2 sin cp. (4) 

The last contribution to q is the 'stretching term' - Ft/!. This term is an 
approximate way of taking into account the effects of vertical stratification. For 
the factor F in the stretching term we write 

(5) 

where LR is the Rossby radius in units of a. We will take LR = 1/ 10 which 
amounts to a Rossby radius of 637.1 km. (For a discussion of this particular 
choice we refer to the next section.) The fact th at potential vorticity is conserved 
following the fluid motion thus leads to a single c\osed system in terms of the 
potential vorticity q 

aq 
- +v·Vq=O at ' 

This equation is the equivalent barotropic vorticity equation. 

(6) 

Matters are simplified further by assuming that the q-field is piecewise 
uniform. We will thus assume that q has the constant value ql in a region RI 
(around the north pole) and another constant value qo in the rest of the sphere, 
denoted by Ro. The boundary between RI and Ro is assumed to be a single 
c\osed curve B, see Fig. 2. 
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Fig. 2. Schema tic picture (inspired by Fig. Ic) of the idealized potential vorticity distribution on 
an isentropic surface: The potential vorticity q has the constant value ql in the region RI and con­
stant value qo in the region Ro . The region RI is to be associated with the stratosphere. the region 
Ro with the troposphere and the boundary B with the tropopause. 

So the potential vorticity q is assumed to be of the form 

It can th en be demonstrated th at the gradient of the stream function (from 
which the velocity follows according to (2)) is given by 

Vf(r) f Vt/I(r) = --2 + (ql - qo) dl'[ D' . T(r; r')] G(r; r') . 
F+ B 

(7) 

(8) 

where dl' is a line element along the boundary Band D' is a unit vector locally 
perpendicular to the boundary and to k and pointing away from RI ' In this 
expression T is a tensor defined by 

T(r; r') == - cos t/J' j'j + sin t/J' sin(À - À') j'j - cos(À - À') j'j. (9) 
cos t/J 

and G is the Green's function of the Helmholtz operator for a sphere, 

G(r; r') = - [4 cosh(rrK)] - I x P~ 1/2 + iK( -cos (}"), ( 10) 

where p~J(x) is a Legendre function with integer order m, realor complex degree 
v and real argument x. The order m of the Legendre function is 0 whereas the 
degree v is given by -1 /2 + iK. The parameter K is related to F by 

(11 ) 

The argument x is -cos ()" where ()" is the angular distance between the points 
rand r' for which we have 

cos ()" = sin t/J sin t/J' + cos t/J cos t/J' cos( À - À'). (12) 
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It is also possible to derive an analogous expression for the stream function. We 
have 

where V is a scalar defined by 

with 

V(r; r') == G(r; r') - H(r; r'), 

H(r; r') ==~ In sin 2(8" j2). 
4n 

(14 ) 

(15) 

By A I we mean the area of Rl' These expressions give the stream function and 
its gradient (and therefore the velocity ) in terms of the boundary B. The expres­
sion for the velocity allows us to determine the evolution of B in terms of B 
itself. Each point of Bis advected by the velocity field at the corresponding point 
and this velocity is determined by the gradient of the planetary vorticity (the 
first term on the right-hand si de of (8)) and a line integral over B (the second 
term on the right-hand side of (8)). This is the essence of what is called contour 
dynamics. 

The material presented in this section is a straightforward application of 
known techniques in contour dynamics to the equivalent barotropic vorticity 
equation on a rotating sphere. Expression (8) was derived by Kimura and 
Okamoto (1987) for the barotropic vorticity equation on a sphere. A new ele­
ment, according to the author's knowiedge, is expression (13) for the stream 
function in terms of a line integral. Details of the derivations can be found in 
Verkley (1993). 

Zonal flow 

In order to check whether our model is capable of reproducing flows that resem­
bie the global atmospheric circulation, we first discuss the flow resulting from a 
discontinuity in the q-field that coincides with a latitude circle. In other words, 
we first consider the case in which the region R I is separated from the rest of 
the sphere Ro by a boundary B which is given by 

(16 ) 

We note th at although this is a highly idealized case, the corresponding velocity 
profile will serve as a first approximation of the velocity field associated with a 
contour of arbitrary shape. 
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Fig. 3. An example of zonal flow profile, resulting fr om a piecewise uniform potential vorticity 
distribution. The value of rP B is 50° and the value of q 1 - qo is 2.99. The value of qo is O. The 
cusped line is the zonal velocity ij (in ms - I, values below the horizontal axis), the smooth line is 
the nondimensional stream function t/J (multiplied by 1000, values above the horizontal axis). 
Note the sharp maximum of u at the tropopause rP(}.· ) = rPB . 

The velocity and stream function corresponding with a zonal contour can be 
calculated using (8) and (13). We used an alternative (simpIer) way and the 
result of an example is given in Fig. 3. The value of ifJ B is 50° and the value of 
qo is O. For the difTerence in potential vorticity, ql - qo, we have taken the value 
2.99. This value is chosen such that a linear wave with zonal wavenumber 3 is 
stationary for this zonal flow, as will be seen in the next section. The figure shows 
the zonal velocity u (the cusped lines) and the zonal stream function '" (the 
smooth lines) as a function of the latitude ifJ. The numbers bel ow the horizontal 
axes are velocity in ms -I, the numbers above the horizontal axis are nondimen­
sional stream function values muItiplied by 1000. The figure shows that the zonal 
velocity u has a sharp maximum at the tropopause. Around its maximum the 
wind is westerly and further away it is weakly easterly. The value of the velocity 
at the tropopause is in this case 63.09 ms - I. It can be shown that the velocity 
at the tropopause depends mainly on the difTerence in potential vorticity 
between troposphere and stratosphere. The velocity at the tropopause is nearly 
independent of the latitude of the tropopause except when the tropopause lies 
close to the north pole. We remark that, in choosing the value of F, we were 
guided by the corresponding zonal velocity profiles. As can be se en from expres­
sion (8), the contribution of the Coriolis parameter to the velocity field is inver­
sely proportional to F + 2. This means th at if F becomes sm all this contribution 
becomes large. For F = 0, this contribution is so large that it is impossible to 
obtain a zonal flow profile th at behaves realistically at all points on the sphere. 
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The barotropic vorticity equation, i.e., equation (6) without the 'stretching term' 
- Ft/! in the expression for q, would therefore be quite unacceptable as a basis 
for our contour dynamics model of the atmosphere. 

Linear waves 

In this section we consider linear waves, i.e., waves with infinitesimal amplitude 
on the basic zonal flows discussed in the previous boundary B. In the case of 
linear waves on a zonal background the contour B is written as 

4>(2) = 4> B + <54>(2) (17) 

with 

<54>(À) = Re[c exp im(À -cot)] , (18) 

where Re denotes the real part, c is a number with infinitesimally sm all absolute 
value, m is a nonnegative integer and co is the angular velocity of the wave 
propagating along the basic zonal flow. Note that c as weil as co can be complex. 

It can be shown th at wave solutions of the form above can indeed be found. 
It follows th at for positive ql - qo the waves move westward with respect to the 
basic zonal flow. This can be understood qualitatively as follows. Fig. 4 shows, 
in addition to the perturbed contour, the corresponding stream function for 
ql - qo and c equal to 1. eells with positive values are marked with H, cells with 
negative values are marked with L. The arrows give the direction of maximum 
meridional velocity associated with the perturbation stream function. These 
arrows show that the perturbation stream function is such as to induce a 
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Fig. 4_ The stream function associated with a linear wave. Both q\ - qo and e are given the value 
1. eells with positive values are marked by H, cells with negative va lues by L. The outer isoline 
of each eell has value ± 0.01, the next isoline denotes a value of ± 0.02 and the third isoline has 
value ± 0.03. The arrows denote the direction of the largest meridional velocity. The figure 
illustrates that the perturbed contour induces a westward phase velocity of the perturbation pat­
tem. 
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westward motion of the wave pattern. In fact, the wave propagation mechanism 
encountered here is a specific example of the more general case discussed by 
Hoskins et al. (1985, p. 919). 

Nonlinear waves 

In this section we will investigate whether a system consisting of a single discon­
tinuity in potential vorticity supports finite amplitude waves around an average 
zonal flow. We will restrict ourselves to stationary waves, i.e., waves of which the 
contours coincide with an isoline of the corresponding stream function. The 
approach of this issue is numerical and we therefore introduce a discrete label 
i, ranging from I to N, which labels the different points r; by which we represent 
any contour B. We then define the following functional K, 

(19 ) 

where 1/1 av denotes the ave rage value of 1/1 over B, which is defined as 

(20) 

The functional K is nonnegative, and zero if and only if 1/1 is constant along the 
contour, i.e. , if and only if the contour is stationary. If con tours exist for which 
K is indeed zero we might expect to find them from appropriate first guesses by 
an adjustment process in which Kis minimized. This is the basic idea of the 
method. For the minimization we used the routine E04KAF from the NAG For­
tran Library, Mark 13, in double precision implementation, which is based on 
a quasi-Newton algorithm. We applied the numerical procedure to obtain 
families of stationary nonlinear waves on the basic zonal contour of which the 
velocity and stream function profiles are given in Fig. 3. We recall that the 
latitude of this basic zonal contour is if> B = 50° and that the value of q 1 - qo is 
chosen such that this contour supports a stationary linear wave with zonal 
wavenumber m = 3. 

We will denote the positions of the k-th member of a family of stationary con­
tours by (À.7, if>7), where i runs from 1 to N and the first guess from which each 
member is obtained by (1'7, fIJn. Then the O-th member of the family is the basic 
zonal contour represented by 

W.T.M. Verkley 

À.?= -7r+ (i-I) (~). 
if>? = if>B' 

(2Ia) 

(2Ib) 
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The first guess for contour (À.:, q,:) is of the form of a linear wave with a small 
but fmite amplitude, i.e., 

1: = -1t+ (i-I) (~). (22a) 

~: = q, B + e cos(m1:), (22b) 
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Fig. 5. (a) Families of stationary nonlinear waves on the basic zonal contour of which the stream 
function and velocity profiles are given in Fig. 3. In (a) we show the con tours with k = 0, 2, 4, ... , 22 
resulting from the numerical procedure described in the text. In (b) a representative member 
(k = 14) is shown. In (c) we show the stream function corresponding with the contour of (b). The 
nondimensional values of the stream function are multiplied by 1000 and the contour interval is 
5. The stream function is calculated on a regular grid of 144 x 72 points using a numerical dis­
cretization of expression (13). 
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where e = 2°. We build up a family of contours by using as a first guess for any 
new contour a linear extrapolation of the two previous con tours. For the 
stationary contour (À-;, cP;) the first guess is thus taken to be 

,{k=À-k - 1 + [À- k - I _À- k - 2 ] , 
I I I I 

QJ; = cP; - I + [cP; - I - cP; - 2 ]. 

For the number of points N we take N = m x 30, i.e. , 30 points for each 
wavelength. 

(23a) 

(23b) 

For the basic zonal flow of Fig. 3 and m = 3 we could continue the process of 
finding stationary con tours until k = 22. After this the obtained contours did not 
change appreciably but feil back to their predecessors. The ave rage of the intial 
value of K for these 22 cases was 2.91 x 10 - 10, the ave rage of the fin al value of 
K was 8.63 x 10 - 13. In Fig. Sa we show the con tours for k = 0, 2, 4, ... , 22. In Fig. 
Sb we show the contour for k = 14 from the family in Fig. Sa in isolation. The 
corresponding stream function , calculated by using a numerical discretization of 
(13), is shown in Fig. Sc. We observe th at the isolines of the stream function are 
closely packed around the contour which signifies, of course, that the velocity 
field is sharply peaked at the tropopause. We also note that in the ridges of the 
waves closed cells of the stream function have formed. 
We note that, although the procedure has brought us quite far into the realm 
of nonlinear stationary waves, it is quite likely that one can go much further. In 
the con tours shown in Fig. Sa there is a tendency for the con tours to touch upon 
themselves in the vicinity of the throughs, in much the same way as in the study 
of Pratt (1988). This suggests that, if the process were to be continued, a trans­
ition might occur in which the solution changes from a single contour into a 
combination of several isolated contours. 

Summary and discussion 

Our main finding is that the contour dynamics approach to large-scale 
atmospheric flow leads to a simple and concise picture of the atmosphere. First 
of all, the assumption of a single line of discontinuity representing the 
tropopause leads to areasonabie zonal flow profile. The velocity field is westerly 
and sharply peaked at the tropopause and falls ofT rapidly and becomes easterly 
away from the tropopause. Zonal flows of this form support linear neutral waves 
which, like Rossby-Haurwitz waves on a solid-body rotation, propagate 
westward with respect to the basic zonal flow. Also in analogy with Rossby­
Haurwitz waves there exist families of nonlinear waves, aIthough the form of the 
waves changes if the amplitudes increase. The nonlinear waves are obtained 
numerically using an iterative technique. 

The resuIts reported in the present paper only constitute a first step in the 
analysis of large-scale atmospheric phenomena from the viewpoint of the 
tropopause. In particular, the fini te-amplitude waves we obtain can probably be 
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extended much further into the nonlinear domain. It should also be possible, we 
believe, to construct finite amplitude waves with a localized character in much 
the same way as modon solutions can be found. These waves, if they exist, 
would be an appropriate model of atmospheric blocking. The advantage of such 
a model would be that it quite naturally incorporates the basic finding of Illari 
( 1984) and Crum and Stevens (1988), namely th at in the blocking region the 
potential vorticity is relatively low and uniform. 
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