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Stability of 2-0 Circular Vortices 

Abstract 

The second variation of a linear combination of energy and angular momentum 
is used to investigate the stability of circular vortices. For the simplest model of 
an isolated vortex the linear stability regime is found to coincide with the formal 
stability regime. The method uses Lagrangian displacements of vorticity con­
tours and can be applied to vortices consisting of several nested rings of 
piecewise constant vorticity. 

Introduction 

With regard to the stability of planar circular vortices in an ideal, incom­
pressible and unbounded fluid, Rayleigh's inflection-point theorem (Drazin & 
Reid, 1981) states that a sufficient condition for Iinear stability is th at the vor­
ticity gradient does not change sign anywhere, i.e. no inflection-point in the 
azimuthal velocity profile. Rayleigh's theorem is of little use when one considers 
isolated vortices, i.e. vortices with zero circulation and finite energy. Such vor­
tices always have at least one inflection-point, but this does not guarantee 
instability, and the question arises whether in some cases they are actually 
stabie. Linear stability, i.e. stability with respect to vanishingly sm all perturba­
tions, can be established with normal-modes analysis, but here, however, a 
method is discussed to establish a stronger form of stability, i.e. formal stability. 
A stationary flow is called formally sta bie if there is a conserved quantity such 
that the first variation of this quantity (i.e. the lowest order change due to 
arbitrary infinitesimal perturbations) is zero while the second variation is sign­
definite. In finite dimensional systems formal stability implies nonlinear stability 
whereas in infinite dimensions it is a necessary prerequisite for nonlinear 
stability. 

The present method was developed after it was noted th at Arnol'd's (1966) 
method cannot be applied to isolated vortices. ft is applied here to the simplest 
possible model of an isolated vortex and the single, circular vortex patch 
(Rankine vortex) . Details can be found in Kloosterziel & Carnevale (1992). 
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Variations of conserved quantities 

For an ideal incompressible fluid, the area enclosed by a material curve r is a 
constant of the motion, as weil as the kinetic energy E and angular momentum 
L. The dependence of E and L on the vorticity distribution q(x,y) is 

E = ~ f f qljl dx dy, 
2 ~ 

(I) 

(2) 

where the stream function Ijl is 

IjI(r) = --2
1 f f q(r') loglr - r'l dx' dy'. 
11: ~ 

(3) 

Consider the case of a circular vortex, which is a steady state. In particular, 
the models to which our analysis are most easily applied are circular vortices 
with piecewise constant vorticity, i.e. vortices with (in polar coordinates (r, 0)) 

(O<r<dd, 

(d2<r<d2), 

(dj < r < dj + 1 ), etc. 

At each radial position r = d; the vorticity jumps by 6q; = q;+ 1- q;. The vortex 
is perturbed by slightly deforming the circular vorticity con tours without break­
ing or folding them. Energy, angular momentum and area enclosed byeach con­
tour are conserved during the subsequent evolution. It appears plausible there­
fore that the flow cannot develop towards a radically different state if it can be 
shown that a further growth of the perturbation amplitude would violate a con­
servation law. Such is the case if at O(e), with e some measure for the perturba­
tion amplitude, energy and angular momentum are unchanged while the second 
order varia ti on of some combination of them is sign-definite, in other words, in 
the case that the particular functional has a maximum/minimum at the station­
ary state with respect to area preserving perturbations. 

In order to apply c1assical calculus of variations, one expands all functionals 
involved in a power series in e. First, however, one has to prescribe the perturba­
tion. For instance, in polar coordinates a perturbed circular contour could be 
written as d;+eJr;(O), with d; the radius ofthe circle and eJr; the perturbation 
(with IJr;1 at most 0(1)). The index i labels the particular contour under con­
sideration here. The change in area is e g71 d;Jr;( 0) dO + ~ e2 g71 Jr;( 0)2 dO, and 
although at 0 ( e) area conservation can be satisfied, it cannot at 0( e2

). A more 
general perturbation is introduced 

r;(O)=d;+eJr;. dO)+~e2Jri.2(O)+ .. " 
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and for given Jr i, I area can now be conserved at orders higher than one also by 
an appropriate choice of the Jr i, m (m = 2,3, ... ). The area enclosed by the 
perturbed circle is 

A(T + JT) = A · 0 + eA · I + -21 e2 A · 2 + 1 1 I, I, I, 

where A i , 0 = nd7 and 

f
2" f2" A 1 = d .Jr . I dO= dA 1(0) 

" I I , I , ' o 0 

f
2" f2" 

Ai,2= (Jr7.l+ diJr i,2)dO= dA i,2(O). 
o 0 

Area conservation means A i, I = A i, 2 = . . . = O. In a similar vein changes in 
st re am function, energy and angular momentum are expanded 

lirst variations 

l/I = l/Io + el/l l + 4 e2
l/12 + 

E=Eo+eEI +!e2E2+ 

L = Lo + eLI + ! e2L2 + 

(4) 

Af ter some calculations (see Kloosterziel & Carnevale, 1992) the following first 
variations are found: 

The unperturbed vortex is a steady flow and therefore the stream function l/I 0 is 
constant on each contour rio It is thus seen that under area preserving perturba­
tions, i.e. J dA i, I = 0, the first variations of energy and angular momentum are 
zero. It can be shown more gene rally that the first variation of energy is zero for 
any stationary flow, while for angular momentum it is zero only when the flow 
is circularly symmetric. 

second variations 

For the second variations it is convenient to introduce the variabIe ifJi defined as 
ifJi( 0) = diJri, 1(0). First order area conservation is then equal to J ifJidO = O. Also 
the real inner product on L 2[ 0, 2n] is introduced < /, g> = n" Ig dO, and the 
norm 11 .. . 11 in L 2, i.e. 11I11 = </,1> 1/ 2. If one imposes second order area con-
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servation, one finds , using the notation introduced above, the following expres­
sions for the second varia ti ons 

L 2 = -2 L 6q;II4J ;112
, 

" 2vo(d;) 2" " A. E 2 = ~ d 6q; 114J;11 - ~ ~ 6q;6q/ !l' ;.j'P;' 4Jj ) . 
I I I J 

Here Vo is the azimuthal velocity of the unperturbed vortex at the indicated 
radial position and !l' ;.j is an integral operator 

!l' ;. j4J( 0) =! f 21< logldjeill 
- d;e iO'j 4J( O') dO'. 

. rr 0 

It can be shown that the eigenvalues of !l';.j are 

(n = 1, 2, . . ' ), 

with 

and eigenfunctions cos nO and sin nO. 

Rankine vortex 

(5) 

(6) 

(7) 

(8) 

(9) 

The Rankine vortex is a single circular 'patch' of constant vorticity q I' For this 
case the second variation of angular momentum is according to (5) simply 
(there is only one contour r = dd 

f
21< 

L 2 =2ql 0 4J~dO. (10) 

This expression is sign-definite for any perturbation 4J1 (0) = dl ór l . 1(0), and it is 
seen th at the Rankine vortex minimizes angular momentum when q I is positive, 
and is therefore formally stabie. 

Moreover, equation (5) shows that a vortex with, say, maximum positive vor­
ticity at the centre, which decays monotonically with increasing radius (all 
6 q; < 0), is also formally stabie. Nonlinear stability for this case has been 
proven by Dritschel (1988), also by essentially using the angular momentum 
invariant and the area constraint. Similar vortices with smooth, monotonically 
decreasing vorticity can be shown to be nonlinearly sta bie with Arnol'd's 
method (Carnevale & Shepherd, 1990). 
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For vorticity distributions that have both positive and negative 6.q; (this 
corresponds to vortices with inflection points), it appears necessary to use 
energy in addition to angular momentum. Before turning to this more com­
plicated case, it is first shown here that formal stability of the Rankine vortex 
can also be inferred from a consideration of the energy. For this the perturbation 
is expanded in the eigenfunctions of the operator fe 

00 

6rdB) = L ak cos kB + bk sin kB, 
k = I 

where no k = 0 component has been allowed so th at area conservation at (D (e) 
is not violated. After substitution in (6) one gets 

z z ~ (k - 1) {z z } Ez=-nqldlk-:-I -k- ak+b k , ( 11 ) 

where we have used vo(dd = ~ql dl . It is seen that Ez is sign-definite except for 
the case of a pure wavenumber 1 perturbation (in polar coordinates the pertur­
bations are proportional to exp(ikB), where k is the wavenumber). Such a per­
turbation corresponds to a displacement of the vortex, and as expected this does 
not change the energy. This proves that the Rankine vortex with, say, positive 
vorticity, is a local maximum in energy with respect to all area preserving per­
turbations (modulo translations ). 

An isolated vortex 

A simple example of an isolated vortex is one for which the azimuthal velocity 
increases monotonically from the centre until it reaches a maximum at some 
finite radius, and then falls ofT to zero monotonically. A velocity profile is then 
called 'steeper' than another, similar one, when the velocity falls ofT to zero faster 
in this outer region. Laboratory observations (Kloosterziel & van Heijst, 1991), 
numerical analysis (Gent & McWilliams, 1986; Carton & McWilliams, 1989) 
and analytical studies (Flierl, 1988) indicate th at an isolated vortex of this type 
is unstable if steep enough. The simplest model for such vortices consists of a 
core of constant vorticity q I = 1 within the non-dimensional radius r = 1 plus an 
annulus of oppositely-signed vorticity qz = - q < 0 between r = 1 and r = d. 
These vortices all have vanishing circulation at r = d if one takes q = 1 /(~ - 1). 
A steeper vortex corresponds here to larger q and correspondingly smaller d. 

Normal-modes analysis shows (Flierl, 1988) th at for large enough d (small q) 
they are linearly sta bie to all wavenumber perturbations. In the notation intro­
duced above one has dl = 1, dz = d, 6.QI = -( 1+ Q) and 6.q2 = q. Substitution 
in (5) and (6) yields 

( 12) 
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E2 = -(1 +q)II4>.11 2-(1 +q)2(21,14>., 4>.) 
-q2(22,24>2' 4>2) -2q(1 +q)(21,24>., 4>2) ' (13 ) 

It is clear from (12) that angular momentum is not sign-definite, and stability 
can no longer be inferred from it alone. 

As an aside it may be noted here that the structure of unstable normal-modes 
can be uncovered using these expressions. The reason for this is the following. 
It tums out that the linearized equations of motion, from which the normal­
modes equations follow, conserve both L 2 and E 2 • This implies that unstable 
modes can only correspond to those cases for which L 2 = E 2 = 0, because a 
growing normal-mode would otherwise violate the conservation law (E2 and L 2 

are proportional to the square of the amplitude of the mode). So, by putting 
(12) and (13) equal to zero, one has two equations in two unknowns: the ratio 
of the perturbation amplitudes on the inner and outer boundary, and the phase 
difTerence between the two (see Kloosterziel & Camevaie, 1992). For a normal­
mode one has 

4>.(0)=d.6r • .(O)=r.cosmO 

4>2(0) = d26r2 • (0) = r2cos(mO + mOo), 

where 00 is the phase difTerence between the perturbation on the inner and outer 
circle. 

F or instance, for m = 2 one has, af ter using (12) to eliminate the occurrence 
of 114>.11 in E2' 

E 2, m = 2 = q 114> 211 2 { - ~ + q-q J 1 ! q cos 200 } . 

Depending on the choice of 00 , E2. m = 2 varies between 

It follows that if the upper and lower bound are of the same sign, the vortex is 
linearly stabie to wavenumber 2 perturbations. This happens only for q 
q < qcrit = 1/3, and then E2 is negative definite. The situation can be interpreted 
as that all small m = 2 perturbations lead to an increase in energy. This critical 
value was previously found by Flierl (1988) by means of a normal-modes 
analysis of the linearized equations of motion. With q above the critical value 
the phase difTerence for a possible unstable, wavenumber-2 mode is determined 
by the relation 

20 
(q-4) Jl+Q 

cos 0= q Jq , 
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while (12) determines the ratio of the amplitudes of the normal mode on the 
inner and outer boundary, i.e. 

q 

1 +q' 

Formal stability is proven if one can show that along the manifold defined by 
L 2 = 0, E2 is sign definite, or vice versa. The same is accomplished in an elegant 
fashion if one can find a Lagrange multiplier J1 such that the quadratic form 
E2 + ~ J1L2 is sign definite. The calculations are rather involved, and the reader 
is referred to Kloosterziel & Carnevale (1992) where it is shown that such a J1 
exists whenever 0 ~ q ~ 1/3. This is exactly the linear stability range as found 
with normal-modes analysis, but with wavenumber 1 perturbations excluded. 
Such perturbations correspond to imparting linear impulse to the system and 
lead to a translating vortex (see Stern, 1987). Modulo translations, it is th us 
concluded that the isolated vortex with 0 ~ q ~ 1/3 is formally stabie. 

Final remarks 

In this paper only two cases have been discussed, i.e. the Rankine vortex and the 
simplest possible model of an isolated vortex, but clearly with (5) and (6) formal 
stability of other cases can also be investigated. Furthermore, by taking the limit 
of ever smaller vorticity jumps and closer and closer jump positions, one can 
derive the equivalent expressions for continuous vorticity distributions too. 

A major question to be answered in the future is whether if formal stability 
is found for an isolated vortex, one can also find a proof of normed, nonlinear 
stability. For this the remainder of the Taylor series expansion has to be 
estimated and many technical complications surface. But, in view of many obser­
vations of long-lived, stabie isolated vortices such a pro of appears not 
impossible. It has been found th at the above analysis proceeds along exactly the 
same lines when, instead of the variabie r(O), the variabie y(O) = r(0)2/2 is intro­
duced. Angular momentum is then exactly quadratic in this variabie, and the 
remainder of the functional E + ~ J1L beyond second order sterns from just the 
energy functional. Unlike in Arnol'd stability, th is remainder can be of both 
signs, depending on the amplitude of the perturbation, for instance, and the type 
of stability to be expected can only be conditional, i.e. stability with respect to 
perturbations that are 'small enough' initially. Arnol'd stability is unconditional, 
i.e. applies to perturbations of any size. It is similar to the finite-dimensional case 
of a marbie in an infinitely-deep weil. The case of conditional stability, however, 
is similar to that of a marbie in a weil of finite depth, surrounded by more 'holes' 
or planes. In this case a large-enough perturbation may take the marbie far from 
its original location. 
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