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Preface 

This workshop is the fifth in an informal series of workshops held in Geldrop, Netherlands 
(1984), Eureka, Missouri (1985), Paterswolde, Netherlands (1986), and La Jolla, California 
(1988) . It was planned to recognize and further stimulate the evolution of understanding 
of formal and technical issues in asynchronous system and circuit design towards a mat ure 
methodology for specification and design of high-performance information-processing sys­
tems. Toward this end, participants were chosen to represent a span of interests ranging 
from university researchers in abstract process algebras to industrial designers and builders 
of major asynchronous computer systems. An unusual feature of our workshop plan was 
to disallow the presentation of formal papers, that tend to emphasize results. Instead, a 
number of session topics focussed on issues, methods, and current challenges were chosen, 
and a discussion leader was selected and charged with initiating and provoking discussion 
of this topic. This approach, though regarded with concern and scepticism by some of 
the invitees, succeeded rat her well. In the words of one of the sceptical participants in his 
report to his home organization: 

I was a little worried that the format would lead to lots of gyrations on minor 
points, which tends to happen with large, free-format meetings. I think the 
subject matter and seriousness of the participants made it work. The provoca­
teurs were also well chosen, in that they were aware of the important issues in 
their areas and saw that they came up in the discussion. 

The unusual approach in turn raised unusual problems in developing this report of the 
workshop. Since there were no formal presentations, they could not simply be collected 
and bound together. No formal mechanisms were used to generate and validate conclusions 
that could be presented as a formal consensus. Vet the sessions generated much intense 
discussion and most participants seemed to share at least a sen se of where the important 
issues critical to progress in research and exploitation were to be foundj in many cases they 
even agreed on the steps to be taken. 

This proceedings should be looked at as a serious journalistic attempt to capture the 
flavor and major contents of the discussions that took place. Despite the occasional attri­
bution of points and comments to individuals, this document should not be interpreted as a 
reliable indicator of the individual origin or advocacy of ideas. Nor should the anonymously 
reported discussions be taken as necessarily reflecting agreement among the participants. 
The report also contains some clarifications and extensions of workshop discussions outside 
of the formal workshop sessions. 
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PREFACE 

Taken with these caveats, I find that the following report, as a whoIe, reflects very weIl 
the spirit of the workshop and the high enthusiasm of its participants about the future 
of the area. Most of the credit for this report should go to the designated reporters, Ad 
Peeters, Huub Schols and Michiel van der Korst, who were specifically charged with making 
detailed notes throughout the workshop sessions. The refinement of their initial drafts of 
session summaries was assisted by the comments from workshop participants in response 
to first and second drafts of the report. The reader should find the selective bibliography 
a particularly valuable complement to the reports on the session discussion. 

The enthusiasm and flexibility of the Royal Netherlands Academy of Arts and Sciences 
and Eindhoven University of Technology in their sponsorship of this somewhat unusual 
program are hereby gratefully acknowledged, as is the willingness of the participants to 
engage in this workshop with its occasional 'free-for-aIl' exchanges of opinion. 

Charles E. Molnar 

co-organizer 
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Opening Speech 

Opening speech by Professor dr. P. J. D. Drenth , president of the KNAW. 

On behalf of the Royal Netherlands Academy of Art,s and Sciences I extend a hearty 
welcome to all participants of the Workshop on the Design and Implementation of Asyn­
chronous Circuits. 

The subject of asynchronolls circuits has been stlldied for almost as long as digital com­
puters exist. Many of the participants to th is workshop have been instrumental in shaping 
the subject into what it now is: achallenging and promising technology, but one that 
has thus far been hardly applied in commercial applications. Recently, however, we have 
witnessed a revived interest in this type of circuits. This was , for instance, very visible 
in Professor Sutherland 's speech, which he delivered when he received the Turing Award 
in 1989. One of the questions that this workshop faces is how the international research 
community should react to this upSUl·ge in attention for asynchronous circuits. 

There are a number of research grollps in the world that work on asynchronous circuits. 
I am very glad that most of these groups, from different continents, are represented at 
the workshop. I am also pleased that this workshop brings together research ers both from 
academic institutions and from indllstry. In that sense I see this workshop as a collabora­
tive effort among the researchers in t.he world to push the subject of asynchronous circuits 
further towards maturity. 

This workshop is the fifth in a sequence. The other four were held in Eindhoven, Saint 
Louis, Groningen, and La Jolla (California) . They were all aimed at fostering the scientific 
development of asynchronous circuits. This fifth one is also aiming at giving new impulses 
to their industrial application . The time seems ripe for it. 

I wish you all a prodllctive workshop. 
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Session 1 

Goals and Expectations 

Session chair: Martin Rem 

Rationale, goals, and expectations of the workshop. 
Assertion of positions, conjectures, and condusions. 

1.1 Asynchronous 

The adjective asynchronous is used very loosely. Circuits have been called asynchronous 
(to distinguish from synchronous) whenever they didn't contain a global doek. As a 
consequence, the area to which the term asynchronous applies is very large; applications 
vary from interfaces bet ween systems with different docks to dock-free designs. Although 
it may be possible to use asynchronous circuits wherever docked circuits have been used 
traditionally, in general, they will be employed in more specific, restricted areas. 

It is hard to pinpoint the most promising aspect of asynchronous circuits. Probably, 
some aspects are more important in some cases, whereas ot her aspects are very inter­
esting in other cases. We list the possible advantages and disadvantages of (the use of) 
asynchronous circuits compared to (the use of) synchronous circuits. 

+ Rapid design. 

+ Better composability of parts. There exists no implicit synchronization due to the 
absence of docks. As a consequence, there are less constraints for the composition. 

+ Reliability of design process. Recent experiences with the design of asynchronous 
circuits (especially delay-insensitive circuits) indicate that very few design errors are 
made. As a consequence, less debugging is needed. 

+ Low power dissipation. A doek may dissipate up to 80% of the power of a circuit. 
Power consumption (dissipation of energy) tends to become much more expensive 
than area due to the costs of packaging for high energy dissipation. 

+ Design by non-experts (silicon compilation). 
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SESSION 1. GOALS AND EXPECTATIONS 

+ Performance improvement easier to achieve. The performance of a system can be 
improved by performance improvement of a subsystem. When the global dock has 
to be speeded up, in general, all parts have to be adjusted to this. 

+ Speed of the circuit. Asynchronous circuits tend to reflect average case behavior 
rather than worst case behavior (the only thing a dock can do is to slow down 
a computation) . However, the choice of a particular design style may slow down 
the circuit. For example four-phase handshake protocols, which are frequently used 
in asynchronous design, usually yield a lower speed of the circuit than two-phase 
handshake protocols, due to the doubling of the communication protocol. 

+ Robustness of design. Properly designed asynchronous circuits can be more robust, 
that is, less sensitive to variations in, for example, power supply and temperature. 
Mostly, such reports reflect the point that variations of timing due to variations 
of circuit parameters and conditions cause changes in system speed without loss of 
functional correctness. 

o Concurrency. In asynchronous circuits it is easier to achieve concurrency due to 
the absence of implicit synchronization. On the other hand, reasoning about asyn­
chronous concurrency is harder than reasoning about sequential designs, due to the 
absence of the guaranteed existence of a global state of an asynchronous circuit. 

o Testability. Detection of fabrication errors tends to be easier, since an asynchronous 
circuit that contains a product ion error usually comes to an effective halt, viz. a 
deadlock. 

- Area. Asynchronous circuits typically have more transistors than synchronous cir­
cuits. The amount of area needed for a circuit is mainly determined by the amount 
of wiring, not by the number of transistors. Nevertheless, since asynchronous circuits 
tend to be more irr'egular than synchronous circuits, they need more wiring. 

With respect to testability we would like to make some more remarks. To do a scan 
test one needs to be able to stop a circuit. Without additional test-circuitry it is practi­
cally impossible to stop asynchronous circuits. Difficulty of testing also depends upon the 
encoding of data: dual rail allows for easy tests, whereas data bundling complicates testing 
considerably. 

Synchronous circuits are state-based; asynchronous circuits are parallel transition ori­
ented. From a state-based point of view, asynchronous components form a special case 
of the synchronous components: no state is a successor to itself. From a transition-based 
point of view, synchronous components form a special case of the asynchronous compo­
nents: some transitions are dock signais. Statements like these probably are of academic 
interest only. They may say more about the background of the author than about the 
problem that is addressed . 
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SESSION 1. GOALS AND EXPECTATIONS 

We condude that we need to establish a consensus between people that work in the 
area of asynchronous design about a definition of this area and its advantages. Such a 
consensus might enable us to advocate successfully the design of asynchronous circuits. 

1.2 Challenges 

In order to get asynchronous design techniques accepted by mainstream designers, the 
research community should elaborate its potential. Several suggestions have been made: 

• Design an asynchronous chip that is pin-compatible with an existing docked chip. 

• Make something challenging to get people interested. 

• Solve a yet unsolved problem in order to impress industry. 

• Solve a hard problem within the constraint system of industry before a synchronous 
solution is found. 

All suggestions seem very hard to achieve, since a lot of knowledge and experience has 
been accumulated in traditional docked design. It seems to be more promising to predict 
the fut ure needs and have solutions ready in time; industry will take care of today's needs. 

We should not aim at providing an alternative for synchronous design: synchronous 
design will stay. We have to address the problems in synchronous design, for example the 
mixing dock problem. In this way the separation between asynchronous and synchronous 
designs will disappear. Mixed (asynchronous and synchronous) designs have the future. 
Asynchronous communication bet ween locally synchronous parts is an example of such 
a mixed design, cf. Macro-Modules [CM74] and Self-Timed design [Sei80]. The goal is 
to establish one complete design space in which synchronous and asynchronous parts are 
integrated. 

1.3 Design Style and Management 

Design of asynchronous circuits is very weil suited for a modular approach, in which a 
system is designed as an interconnection of modules. Reliable modules can be designed by 
hardware designers, who have detailed knowledge of the implementation technology. The 
system can be designed by persons who best understand the function of the system. This 
modular approach is facilitated by the asynchrony of the circuits: performance and correct­
ness aspects of time are separated. The modular approach enables design of asynchonous 
circuits that are correct by construction. 

The issues above actually are management issues. The design of a concurrent system 
can be hierarchically factorized into the concurrent design of modules. This requires an 
early specification of the interfaces bet ween the modules. This will give rise to changes of 
specifications of interfaces. Design management is a key issue here. Concurrency is also a 
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SESSION 1. GOALS AND EXPECTATIONS 

management issuej overspecification is a problem, for example in unnecessary ordering of 
events (reducing concurrency). 

The similarity between hardware design and software design is increasing every week. 
However, it is misleading to view circuits as programs, since circuits are more general 
than programs. In order to reason about parallel systems at a low level, a language with 
suflicient expressive power is needed. We might want to develop one language that can be 
used at all design stages. 

1.4 University and Industry 

There are several ways in which universities advocating asynchronous design can improve 
their contacts with industry. Joint projects form a direct way to do so. In general, uni­
versities should refrain from preaching revolution, since the turn-over is too expensivej 
furthermore, convincing people is too hard, since industry is way ahead of universities 
in solving today's problems. Finally, the large gap between algebraic formalisms (traces, 
lattices) and differential equations has to be bridged. 

It is the responsibility of universities to educate. In this way, people will get to use 
new methods and concepts, and they will accept formal structures. Universities should 
not only present theories and modeis, but also put effort into interpreting the theoretical 
results and formalisms . The scope of the problems that are studied at universities has to be 
broadened. Industry is not interested in partial solutions: the combinatorics of integrating 
them always gets you. 

1.5 Theory 

We should find ways to convince ourselves -and others- of the integrity of our formal 
models. If there are fundamental properties that a formal model fails to capture, the 
predictions made on basis of such a model should be approached with caution (or suspicion) . 
We should pinpoint the theoretical challenges (or obstacles) with respect to asynchronous 
circuits that are the most important at this moment. Maybe, the state of the art is such 
that the challenges and obstacles lie primarily in the exploitation of the theoretical results. 

1.6 Tools 

A lot of tools (for example RISC, SPICE) have been designed at universities. Af ter they 
have become accepted, companies took them over and developed them further to the si ze 
they have now. Universities should build tools that support their ideas about asynchronous 
design. There is no need for developing a commercial toolj just a prototype will do, if it 
solves the problem. Once it is accepted by industry, industry will commercialize and 
standardize it. 
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Session 2 

Physical and Abstract Models 

Session chair: Charles Molnar 

Relation bet ween physical models and abstract modeis. 
Motivation for playing formal games. 
Interpretation of the results . 

When a formal model is used for discussing asynchronous circuits, the question arises what 
the relation is bet ween the formal model and the VLSI-circuit. What is the real world 
equivalent of a transition, and up to what level should one go? Should we go down from 
the gate level through the transistor to quantum physics? 

The level of abstract ion depends on the question that is to be answered. If one considers 
the problem of metastability, modelling a circuit as a dynamical system will be effective. 
In the design of systems one would, however, prefer to work with a model of circuits on 
the level of boolean functions. These higher levels of abstraction introduce the danger that 
the underlying physics are forgotten, and that problems like metastability are disregarded. 

The concept of Delay-Insensitivity (DI) is more an engineering method than a real 
world model. It provides a way to separate concerns (especially timing problems). But DI 
does seem to have a meaning, in the sen se that several different definitions turned out to 
be equivalent. 

2.1 Uniform Definitions 

In order to stimulate research and education in the field of asynchronous circuits consistent 
definitions should be formulated that are as precise as possible. Some basic concepts are: 

• primitives: 

- components, 

- wires, and 

- events. 
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• speed independence: the functional correctness of the network is independent of the 
variations in the response time of the components . 

• delay insensitivity: speed independent and independent of delays in the wires. 

2.2 Computational Models and the Real World 

When a computational model or formalism is used as an abstract ion for real world objects 
the relation between these two must be understood thoroughly if conclusions about the 
model are to be reliable statements about the real world. In this relation dynamical systems 
can be used as an intermediate mathematical model: 

M 
Computational Modéls +---+ Dynamical Systems +---+ ... +---+ Real World 

Relationship M would not solve the ultimate problem of relating the computational model 
and the real world, but could be a useful step. It is rat her amazing that this has not 
already been done in an adequate, rigorous, general, and elegant way. This is a way of 
confessing that we do not know what the real world is; the relationship toward the center 
and the right hand si de of the diagram have been the object of the study of physics for 
centuries. We should use that and not throw it away. 

2.3 Phase Diagrams and Transitions 

An example of a modeljrepresentation that provides a link between between dynamical 
systems and formal models is the ph ase diagram, as used in [Br089]. This diagram captures 
a lot of issues concerning transitions in signals that carry the communication between a 
component and its environment. 

UDd.rmed 

o 

Figure 2.1: Phase diagram (left) and timing diagram (right) for a valid transition 

In Figure 2.1 the phase diagram on the left represents the relation between the voltage 
level, V, and the first time derivative, dd~' of the voltage transition in the timing diagram 
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on the right. In the phase diagram the gray area represents a useful restriction on the 
behavior of the signal. When the voltage level is in one of the two voltage areas logically 
defined as 0 or 1, the voltage rate-of-change may be zero, whereas in the undefined area 
the voltage change must always be directed consistently towards one of the two voltage 
levels, out of the undefined area. 

In such a phase diagram an event can be defined as the passing of the ~~ -axis, when 
the voltage level is zero. 

The definition of the valid area in the ph ase diagram captures a lot of issues concerning 
the integrity of transitions. Two of these issues are: 

1. the transition must be monotonic, and 

2. the derivative is bounded. 

The inner border of the valid area of the phase diagram forces the transition to have a 
minimum speed when the voltage level is in the undefined area, thus forcing the transition 
to be monotonic. If an event is defined as the passing of the ~~ -axis, the monotonicity 
restriction will keep the number of events per transition down to one. An example of an 
non-monotonic transition and the corresponding path in the ph ase diagram are shown in 
Figure 2.2. 

Figure 2.2: Non-monotonic transition 

The borders of the valid area of the phase diagram define the upper and lower limit 
on the speed of transitions. An upper limit on the speed of transitions is needed, because 
when the transition is too steep this may lead to inappropriate reactions, such as non­
monotonic transitions later in the network. A lower limit on the speed of transitions is also 
needed, because when a transition is too slow this may provide problems when different 
components use different thresholds, or when noise is present. 

These cases are presented in Figures 2.3 and 2.4 respectively. 
The phase diagram can be used for both synchronous and asynchronous circuits. In the 

case of synchronous circuits only discrete points in the trajectory, as defined by the dock, 
are considered. Synchronous and asynchronous circuits can be seen as different forms of 
abstract ion of the picture. The phase diagram is a mathematical model in the sense that we 
are looking at sets of trajectories, that can be used to restrict the allowed behaviors in such 
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Figure 2.3: Transition too slow 

dV 
dl 

v 

Figure 2.4: Transition too steep 

a way that a rigorous definition of the relationship of continuous behavior and models that 
use abstractions such as events or discrete states can be unambiguously defined. Making 
such a relation exact and formal may h~lp to illuminate the role of time in modeling at the 
more abstract levels. 
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Session 3 

Formal Models 

Session chair: Jan Tijmen Udding 

Specification of asynchronous circuits. 
Expressive power of formal modeIs. 
Distinction between modeIs. 

3.1 Time 

With respect to time we can distinguish two concerns, viz. correctness and performance. In 
the interior of the modules one needs to be concerned with time in order to avoid hazards, 
critical races, etc. This is the correctness aspect of time, also called order and sequence. 
On the other hand, one can be concerned with performance (speed), which in a sense is 
also a correctness criterion. 

In an asynchronous setting, one can make a network of modules faster by speeding up 
modules that are in the critical path. In a clocked circuit timing analysis of the network 
has to be done before the clock can be adjusted. This requires a vast amount of extra work. 
In asynchronous circuits, the performance and correctness aspects of time are separated 
by keeping timing problems inside the modules. 

3.2 Specification Languages 

Problems with inherent (asynchronous) concurrency are of ten specified by means of esp­
like programs. In contrast to esp [Hoa85], which is a well-established term, the notion of 
eSP-like programs is confusing, since many variants with sub tie differences exist. It would 
be good to have a standard notation like e.g. Occam, which in itself is a eSP-like language. 
Programs written in Occam can be easily understood and are bet ter suited for specification 
purposes than, e.g., I-nets. It would be hard to express and understand one page of Occam 
text using I-nets. As a standard notation, however, Occam has some drawbacks, mainly 
caused by the close link to its target hardware: Transputers (see e.g. Section 3.4) . 
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Some participants of the workshop argued that transformations and design-steps should 
be expressible inside one specification language. It is not yet possible to use one notation 
for the whole design trajectory. Although a uniform notation may be a nice goal, there are 
some things that plead against it. The design process involves decisions at different levels of 
abstraction, as far apart as system architecture and transistor lay-out. We do not expect 
to encompass everything in a single language, but want to have different languages for 
different levels, and a way of relating these levels. esp and Petri-Net based notations are 
candidate languages for describing input/output behavior of circuits in terms of voltage­
level transitions or handshakes. 

3.3 Specification Models 

In asynchronous circuit design, a lot of different specification models are used. Some 
(most?) of them are listed below. All specification techniques listed here are free of a time 
metric. 

Petri nets 

Petri nets occur in many different forms, which all have slightly different interpretations. 
Some established terms are I-nets, signal-transition graphs, and sequence nets. All these 
nets have in common that they are networks of places, transitions, and labels. In I-nets, 
labels represent transitions. 

Petri nets are well suited for specification purposes, because the problem of combina­
torial explosion is avoided by its inherent high degree of concurrency. Moreover, Petri nets 
can be simulated, which can be helpful in validating specifications, or at least in building 
confidence. As long as there is a gap bet ween the formalisms used for specification and 
those used for design, we can only argue informally about the correctness of a design. 

A trace set can be regarded as a set of firing sequences and thus as a canonical rep­
resentation of nets. In this sense, a disadvantage of Petri nets is that representation is 
not unique. An important issue therefore is the relation bet ween firing sequences and net 
equivalence. 

Trace Sets 

The term tra ce sets is used to denote a variety of modeis. Symbols in traces can be 
interpreted in different ways, ranging from voltage transitions to handshake events. There 
are also many different ways to define trace sets. Some people use commands, which 
are a generalization of regular expressions. Others base their syntax on DI-algebra (see 
Section 3.7), or on I-nets. The syntax that is used to define trace sets does not matter 
much, but subtle differences may occur in the expressive power. 

Semantics based on trace sets differ considerably in expressive power. One of the 
simplest semantic domains is that of non-empty prefix-closed trace sets. In this domain, 

16 



SESSION 3. FORMAL MODELS 

safety properties can be expressed. Refusals can be added to deal properly with non­
determinism. Other extensions include divergences (to deal with interference or infinite 
chatter), and complete and infinite traces (to deal with progress and fairness). 

Tree-like 

Alternative terms for tree-like techniques are state transition diagrams and state graphs. 
CCS [Mi180] is an example of a tree-like specification technique. CCS is not widely appJi­
cable in the design process. An example of a problem with CCS is the design of a 3-way 
four-phase signaling arbiter. In CCS, the 'well-known' implementation using three 2-way 
arbiters is not an implementation that satisfies the 3-way arbiter specification, because 
internal communications are retained as "tau" actions. 

Other models 

Other specification modeIs that are used include partially orde red multisets and product ion 
rules. 

3.4 Nonputs 

Occam has no symmetricsynchronization primitive. The main reason for this is to facilitate 
implementation on Transputer hardware. For the implementation of general symmetrie 
synchronization, arbitration is needed. In Occam, arbitration is avoided by forcing the 
program mer to distinguish between input and output, thereby breaking the symmetry. 
The programmer thus indicates which party has the initiative in case choice is involved. 

When Occam is used as a specification language for VLSI programs, specifications might 
have too high a degree of implementation detail. In data-communication, the distinction 
between input and output is important in order to express causality. Sometimes we also 
need a more symmetrie form of pure synchronization, in which it does not make sense to 
break the symmetry. In that case we could call these channels nonputs. 

3.5 Liveness 

Fairness is rarely a correctness issue in circuit design. Circuits simply make certain types 
of progress. Primitive components do not deadlock. Deadlock may be introduced however 
by composing circuit components. Therefore, end results of designs should be analyzed or 
a proof should be given that deadlock will not occur. 

In the asynchronous world, the main issue is avoiding interference, whereas in . the 
synchronous world, deadlock is the main concern. 
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3.6 Aspects of Formal Models 

• Expressiveness, including performance requirements. 

• Full abstraction. refinement. 

• TooI support. 

• Tractability. (Suitability for (formal) manipulation.) 

• Data representation. 

Most formalisms that are used in asynchronous-circuit design are bad at data-abstraction. 
The main reason for this is that the theory in this field is still quite young, and up till now 
is focussed on concurrency control, which is a hard job in itself. Clearly, a smooth theory 
of data representation and abstraction is needed in a further formalization of the design 
process. 

We can distinguish at least two kinds of tools, viz. tools that support transformations 
by a designer, and tools that verify properties of a design, for example correctness. The 
problem with tools for asynchronous formalisms is that tools are available for various 
formalisms, and support manipulations within that formalism, but these tools are not 
hooked up to each other in a smooth way. 

With today's tools, we can verify certain design steps, but are far away from an auto­
matic compilation from high-level specifications to silicon. 

3.7 DI-Algebra 

Joint work of Mark Josephs and Jan Tijmen Udding [JU91]. 

Example: C-element. In DI-algebra, aC-element can be specified as the least fix-point 
of the following equation: 

C = a?j b?j clj C 

Characteristic for DI-algebra is the fact that there is only one unary operator: prefixing, 
denoted by a semicolon with a communication. For a process term P, a?j P does not 
specify that this process will refuse inputs other than a. It specifies that it will not change 
into process P until input a is receivedj other inputs are 'buffered' so to speak. 

The main difference between DI-algebra and e.g. Ebergen's commands [Ebe89] is in the 
way trace sets are used. In the semantics of DI-algebra, inputs are always allowed. So, 
a a is in the trace set of the C-element. Af ter a a, however, any behavior is possible. The 
process then changes into chaos (which is a constant in DI-algebra), expressing that the 
environment should not send two inputs in a row. 

An example of a law in this algebra is that symbols of the same type commute. In the 
example of the C-element, this law results in: 

a?j b?j clj C = b?j a?j clj C 
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On account of this property, 
C=b?;a?;d;C 

defines the same C-element as the specification above. 
Yet another specification of the C-element is the following 

C = a?; [a? --t 1.. 0 b? --t d; Cl, 

in which 1.. represents chaos, that is, any possible behavior. 
Values can also be included in the algebra. A process that communicates values might 

look like a?x; Px . As an example we give the specification of an adder. 

A = a?x; b?y; d(x + y) ; A 

In DI-algebra, combinatorial explosion because of parallelism is nicely avoided by leav­
ing the parallelism implicit. Some people prefer explicit parallelism. When using com­
mands, for example, for specifications, the specification of aC-element would look like 

C = pref * [(a? , b?); d] 

Commands are a richer domain for specifying systems, because non-delay-insensitive ele­
ments can also be specified. 

A disadvantage of the explicit parallelism in commands is illustrated by the following 
example. Con si der CIIF, where 

Ca?; b?; d; C 

F = c?;d!;e!;F 

We can specify all possible behaviors using commands, but this requires the use of at least 
one choice construct: 

pref(a?,b?; *[(d!;a?), (e! ; b?) I (e!;a?),(d!;b?)]) 

Note that the problem is that either a? or b? may occur as soon as either d! or e! has 
occurred. A typical trace that illustrates the problem is abc e. Af ter this trace either a 
or b is allowed, but not both. Specification of all pos si bie behaviors is straightforward in 
DI-algebra. By using some laws from DI-algebra, we can easily deduce that 

(CIIF) = a?; b?; dl; el; (CIIF). 

The specification of aC-element by means of I-nets can be depicted as follows. 
This specification in a way corresponds to a specification with synchronization on com­

mon symbols, as for example the weave of two commands: 

pref * [a? ; d] , pref * tb?; d] 
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e! 

Figure 3.1: I-net specification of C-element 

The C-element can also be specified by means of production rules. This specification 
reads as follows 

al\.b --+ ei 
""'a I\.....,b --+ e 1 

One might argue that commands are bet ter suited for designing circuits, whereas DI­
algebra seems better suited for analyzing designs. DI-algebra, however, actually suggests 
designs. It hel ps identify the important states of the system, for example. The differences 
in the approaches are, that (1) in the DI-algebra many behaviors are implicit but can be 
exposed by algebraic manipulation, whereas in commands all behaviors are explicit but we 
have to check for delay-insensitivity and, (2) in the DI-algebra designs can be verified by 
algebraic manipulation, whereas in commands one has to follow design heuristics that are 
known to be correct. 

DI-algebra can be used for non-trivial designs. This was demonstrated in the design of 
Martin's D- and Q-elements, non-blocking arbiters, a routing chip [JMV91], and a delay­
insensitive stack withconstant response-time [JU90]. 
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Transformation Methods 

Session chair: Kees van Berkel 

Transformation of specifications to asynchronous circuits. 
Transformation methods and heuristics. 

4.1 Motivation 

The subject of this session is the transformation of specifications to asynchronous circuits. 
The approach that is used as an example in this session is the Tangram compiler for 
automatic translation of specifications to asynchronous circuits, which is being developed 
at Philips Research Laboratories. The aim of the project is to provide a system for fast 
and cheap design of digital circuits. 

Some challenging areas for the applications of asynchronous circuits lie in the field of 
consumer electronics, e.g.: 

• Compact Disc, control & data processing; 

• Digital Compact Cassette; both play and record, considerable data processing (l06 
transistors) ; 

• Digital Audio Broadcast; 

• Mobile Telephone; 

• High Definition Television, data rate two orders of magnitude higher than audio 
applications. 

For these applications it is not yet clear which architectures, algorithms and communi­
cation protocols are best suited, in contrast to, for example, micro-processors. Therefore 
the designer has more freedom, which opens the way for the application of asynchronous 
circuits. The two main motivations for using asynchronous circuits are: 
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1. ease of design, and 

2. low power consumption. 

Applications as listed above require fast development of new ICs with limited resources 
(i.e. fast and cheap). Especially when products are in the beginning of their life cycle, 
several generations of the product must be developed in a short time span. A silicon 
compiler can reduce the development time. The use of asynchronous components also 
makes the design of systems in this area easier, because they of ten contain components 
with different data rates . 

The low power consumption of asynchronous circuits is very useful for the portable 
versions of the products. A current version of the portable CD-player can play only a few 
CDs on one set of batteries. For the DCC the power consumption is assumed to be even 
worse. A major part of the power is used by the ICs, so if the power consumption of the 
ICs can be reduced, the products will be more attractive. The need for reduction of power 
consumption has also led to an increasing interest in the use of analog circuits. 

4.2 Architecture 

One of Kees van Berkel's propositions is that in every silicon compilation approach three 
levels of abstraction can be distinguished, viz. : 

1. VLSI programming language, 

2. intermediate architect ure, and 

3. asynchronous circuits. 

The VLSI programming language must provide primitives (communication, synchro­
nization, control, data storage and computation), structuring mechanisms (procedures and 
functions), and a way to express sharing of resources. On this level the following topics 
are dealt with: 

• functional correctness of the program (and hence of the compiled circuit); 

• area, speed, and dissipation of the resulting circuit. 

The intermediate architect ure must provide an interface between the VLSI program 
and its implementation. This level must establish a separation of concerns bet ween the 
two other levels. 

On the circuit level the following topics are relevant: 

• handshake protocol; 

• data encoding; 
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• aggregation level of timing issues (DI/SI); 

• technology (CMOS, MOS). 

This level also introduces the problems of testing (diagnostic & production), adaptors 
(external communication, synchronous components) and initialization of the circuit. 

Kees van Berkel uses Tangram, a language based on CSP (and Occam), as the VLSI­
programming language. The intermediate architecture is represented by handshake circuits. 
For the implementation the following decisions were made: 

• 4-phase handshake protocol; 

• dual-rail encodingj 

• delay-insensitive up to gate level and isochronie forkj 

• statie CMOS technology. 

The language and the translation method are discussed in [vBS88] and [vBKR+91]. 

4.3 Transparency 

An important principle in the Tangram compiler is transparency. The compilation is trans­
parent in the sen se that the cost/performance of the circuit corresponding to a program 
can easily be deduced from the program text. There is a simple relation between the 
cost/performance of the program and the cost/performance of the program primitives. 
This allows the designer to reason about the cost/performance of the result on the level 
of thè program. The designer can experiment with variations that optimize some aspect 
(speed, area etc.) and adjust the program in order to meet some constraint. Current 
mainstream high-level synthesis lacks transparency, which results in poor control by the 
designer over the cost/performance of the results. 

4.4 Performance of the Tangram Compiler 

The Tangram compiler is intended to be used by system designers who are not VLSI­
engineers but experts in their application fields. These users must be able to produce 
relatively efficient ICs within a limited amount of time using limited resources. This means 
that users are willing to accept the system if the overhead in area and speed with respect 
to the existing methods is not too big. The current Tangram compiler yields circuits that 
are up to a factor two worse than synchronous circuits in both area and speed. However, if 
we look at a complete chip, the degradation need not be that bad. A typical chip consists 
of a processing part (30-40%), an 1/0 part (20-30%), and memory (30-50%). (See Figure 
4.1.) 
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VOpart 

memory 

processing 

Figure 4.1: Generalized architect ure of a chip 

If the memory and 1/0 part are implemented with standard components the overall 
performance will be better. Once the degradation in size and speed has been reduced to 
25% the Tangram compiler becomes a serious alternative for the existing methods. 

It should be noted that asynchronous circuits stand at the beginning of the learning 
curve, in contrast to synchronous circuits with a respectable tradition of a few decades. 
As asynchronous circuits proceed along the learning curve, improvement of area efficiency 
inay be expected. 

4.5 Discussion 

The discussion was started by the question whether sharing of resources is equivalent to 
asserting non-concurrency. In the Tangram compiler, sharing is indeed only allowed in the 
case of sequential use. Sharing can be profitable if: 

• the si ze in hardware of the shared function is large enough, 

• the same argument is used, which will reduce the required infrastructure, or 

• the result is sent to the same variable (see the previous point). 

In Tangram, definition of components that repeatedly compute a certain fixed func­
tion introduces seemingly unnecessary slaek. Consider for example component F that 
repeatedly computes function f, as expressed by the following piece of Tangram text: 

#[a?x; b!f(x)) 

In this case first the handshake along a is completed and then the communication along 
b is performed (see Figure 4.2.a) . A more area-efficient solution (but not equivalent, thus 
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not necessarily better) would be to complete the handshake when the data transfer has 
been completed (see Figure 4.2.b) . This could be denoted as follows: 

#[a?x. b!f(x)] 

F b ( .... - :::::::::::i:::::::::::: .....'\ 

: y 

A B 

Figure 4.2: Two possible paths for completing handshake 

The bullet, which denotes interwoven handshakes, would be an extension of the syntax. 
This resem bles the reshufHing as used by Martin [Mar90]. It would, however, introduce 
implementation issues of the asynchronous circuit level in the language that lie outside 
the expressive power of the language. The problem is semantical, that is , the underlying 
model (CSP jtrace theory) does not all ow simultaneity of atomic actions. 

Robert Sproull remarked that this problem does not exist when 2-phase signalling is 
used . Ris motivation for using 2-phase signalling is: 

1. no meaningless transitions (economy)j 

2. natural for CMOSj 

3. symmetry between up and down going transitionsj 

4. acknowledgement can be provided via the environmentj 

5. simple implementation of sequence of events by wiring togetherj 

6. Ivan (Sutherland) loves it. 

With 2-phase signalling, communication may be simpier than with 4-phase .signalling, but 
in general the number of states per component is larger. Especially for data communication 
this can become inefficient. In the Tangram compiler both protocols could be used (2-phase 
for control and 4-phase for data). This, however, introduces the need for adaptors when the 
two protocols meet. Also the 2-phase is not always more efficient for con trol components. 
The sequencer is just a bundie of wires in 2-phase. But the mix-component becomes larger 
when 2-phase is used instead of 4-phase. The conclusion is that there is no simple rule for 
deciding between 2-phase and 4-phase handshake components. For the Tangram compiler 
the 4-phase handshake for all components seems to be a good decision, whereas for bundled 
data 2-phase may be better. 
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Synchronousand Asynchronous 

Session chair: J ohn Brzozowski 

Integration of synchronous and asynchronous design techniques, 
tools, and designs. 

5.1 Pedagogical Tools 

One of the objectives of this session is to discuss how the use of asynchronous circuits 
could be increased. One way to do this is through bet ter education. In this connection it is 
useful to examine how asynchronous circuit theory is taught and how it should be taught, 
and how it relates to synchronous circuit theory. 

Charles Molnar made the point that asynchronous circuits operating in fundament al 
mode are essentially synchronous. They do not have a dock, but it is possible to predict 
the sequence of states of such a circuit (if it is weIl behaved), because the environment 
waits long enough for the circuit to reach a stabIe state. Charles proposed the use of the 
term sequenator (cf. Section 7.5) , meaning that a mechanism exists in fundament al-mode 
circuits that permits the states to be indexed sequentially, even though there is no clock. 

It is also possible to have a somewhat different view, namely, that synchronous circuits 
are asynchronous circuits operated under some restrictions. John Brzozowski illustrated 
this point of view by some examples. 

Consider two NOR gates, one with inputs S and Q and output (J, and the ot her with 
inputs Rand Q and output Q. The operation of the circuit constructed from two such 
NOR gates is governed by the following equations: 

Q = (S + Q)' 
Q = (R + Q)' 

This circuit has three stabIe gate states, viz. QQ = 00,10, Ol. The table below shows 
the state transitions computed using the Boolean equations. The non-stable states of the 
circuit are labeled with an asterisk (*) . 
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SR 
QQ 00 01 10 11 
01 01 01* 10 00* 
10 10 01 10* 00* 
00 ?? 01* 10* 00 

When both inputs are made 1 and kept at that value for a sufficiently long time, the 
gates reach the stabie state 00. When both inputs then change to 0, both gates become 
unstable, and there is a "race" bet ween them. If the gate delays are unequal, stabie state 
01 or 10 may be reached. If they are equal, the circuit may oscillate in the states 00 and 11. 
Since it is unlikely that the gate responses remain perfectly matched for a long time, the 
circuit eventually reaches one of the two stabie states 01 or 10, upon leaving the oscillation. 
In a very cru de sense, this can be viewed as a representation of the metastable-state (glitch) 
phenomenon. 

The behavior described above is normally considered undesirable since the final state 
af ter the complet ion of the transition cannot be uniquely predicted. To make sure that 
the circuit will not reach the state that causes this uncertainty, we restrict its mode of 
operation. Different modes of operation indude: 

• Unrestricted mode: unrestricted changes on inputs. This may result in unpredictable 
results, as above. 

• Fundamental mode: the next input change may not occur until the circuit has settled 
af ter the previous input change. In a way, this mode of operation is adopted in 
synchronous circuit design, where the dock speed is adjusted to assure that the 
circuit setties properly. 

• No double input changes, meaning that change of multiple inputs is not allowed. 
This is even more restricted than fundamental mode. 

• S = R = 1 not allowed. This results in the behavior of the standard Set-Reset latch. 
Under this restriction, output Q is always equal to the negation of output Q; hence 
it can be removed. 

• Input-output mode: an input change can occur only if the circuit has provided an 
appropriate output in response to a previous input change. 

• According to some specification that restricts both the environment and the circuit. 
For example, one may use a trace structure to specify such a restriction. Input-output 
mode is a special case of this mode of operation. 

Synchronous circuits can now be treated as special cases of asynchronous circuits. Con­
sider for example the circuit depicted in Figure 5.1. 

The non-stable states of this circuit are labeled with an asterisk (*) in the following 
tabie. 
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D 

Y).-~- "ij 

Y).--'---- Q 

Figure 5.1: D flip-flop 

CD 
QQ 00 01 10 11 
01 01 01 01 10* 
10 10 10 01* 10 

A safe way to operate this circuit is not to change D when C = 1. Clearly, C can be a 
clock input and can be eliminated from the description of the circuit if we adopt the above 
rule. Note furthermore that Q and Q are always complementary. Therefore, we might as 
weU omit Q from the specification. We thus end up with the following diagram. 

D 
Q 0 1 
o 0 1 
1 0 1 

Notice that in the above discussion we analyzed a clocked circuit in the same way as we 
have analyzed an unclocked, that is, asynchronous circuit. 

5.2 Closing the Gap 

One way to get designers of synchronous circuits to design asynchronous circuits is to 
offer them minimal change. One could try to design asynchronous circuits by applying 
synchronous methodologies down to the bottom of the design, and subsequently change 
to asynchronous methods at this lowest level. This would probably be appreciated by the 
engineers, since they do not want to do proofs about self-timed properties. However, some 
aspects of asynchronous circuit design differ significantly from synchronous circuit design. 

5.3 Design 

Does the classical design methodology that uses fundament al-mode flow tables and race 
and hazard theory still have a role to play in modern asynchronous design methodologies? 

Small components can be designed using flow tables. Depending on the mode of operation 
we consider, very few circuits can be designed without adding delays. Small components 
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can be thought of as having a state, independent of whether the components are used 
in a synchronous or an asynchronous environment. For larger asynchronous components, 
however, the not ion of state is very artificial, because of the high degree of concurrency. 
So, for larger systems, we do not think in terms of the state of the overall system, but in 
terms of the states of the parts (components) of the system. (See also the discussion in the 
next section. A number of people were rat her surprised by the extent to which classical 
asynchronous design techniques were used in Al Davis' project.) 

One can specify components by I-nets, rather than flow tables, and this type of specifi­
cation has many advantages. However, in the final step, the concept of state and Boolean 
algebra are used in order to co me up with a circuit, much as they are used in Huffman's 
method. 

Process algebra can also be used to design small components. Starting with the specifi­
cation of aC-element for example, we can derive a decomposition into a majority element 
and a feedback wire. While some participants liked this approach, there were ot hers who 
found it rat her involved. 

Design of sm all components is necessary, but they do not rep re sent the biggest challenge 
in asynchronous circuit design. The main problem is how to overcome the complexity of 
large components and systems. 

5.4 Al Davis's Design Methodology 

As an example, Al Davis discussed the design of a Post-Office Box (POB) for communica­
tion between process elements and a communication chip. 

The first activity is trying to find out what has to be built. This is done by behavioral 
mode/ing, using Common Lisp as a specification language. There is no formal way of 
proving that the environment satisfies its specification, so all that can be done is to build 
confidence. 

The second step is the transformation of the Common Lisp specification into a design 
expressed using I-nets. For the POB-chip, the I-net was enormous, accounting for 50 Mbyte 
of disk space. Since tools do not hook up nicely, there is no way to relate the I-nets to the 
Common Lisp specification. The I-nets can be simulated using some Meta Software Inc. 
tools. 

At the next level, the design is expressed as a data path controlled by some finite state 
machines (FSMs). At this level, as well as at later levels, the hierarchy in the I-net is 
pretty weB reflected; there may be additional hierarchy. Designing the data path is very 
much like synchronous design. At this level we can deal with the delay analysis. For the 
POB-chip, about 200 FSMs were designed, each of about 100 states. 

For communication and encoding of data, various forms are used. Bu.ndled data, dual 
rail, handshakes, 2-phase, 4-phase: it is all there. 

The FSM descriptions and equations are analyzed using a so-called MEAT tooI (Most 
Excellent Asynchronous TooI). Designing the FSMs is a standard problem, though hard. It 
amounts to using flow tables (Unger's method), applying state minimization, combinatorial 
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functions, and covering redundancy to prevent races. The final design consists of a set of 
CMOS-functions. No latches or dynamic circuit elements are used. Of course, feedbacks 
are needed. 

There are some very good models about how fast signals and transistors are. These 
models are very important in the final design stages. 

A modified version of Dill's verifier is used to check the CMOS schematics produced by 
MEAT. Dill's verifier picked out some serious errors, also in designs that had already been 
completed and in which the potential error had never occurred (yet). 

The reason why so many FSMs have to be designed is related to performance. The 
larger the modules, the bet ter the final performance, because inside the modules the design 
can be fine-tuned. There is, however, a practical limit on the number of states for an FSM, 
because of the analysis tools that are being used and the computation time involved. Larger 
FSMs would require Crays to do the computations. 

In the design, there are two levels of concurrency. One is the organizational concurrency 
between the FSMs, which is very high. The concurrency inside the FSMs is very modest. 

There still is a lack of linkage bet ween the different representations of the design. To 
date, there is no connection between Common Lisp, I-nets, and the architecture. It should 
be a doable job to connect these things. On November 1,1991, ajoint project with Stanford 
has been started. 

5.5 Software Tools 

Some available tools are listed below: 

Asynchronous tools For Tangram, used by Kees van Berkel, there is a compiler and 
a software environment to analyze Tangram programs and circuits generated with 
Tangram. 

Furthermore, Dill's verifier is available. This tooI has of ten prove~ to be very valuable 
in tracing possible hazards in é\. design. 

Al Davis uses MEAT, which has ingredients for m"inimizing states, doing state as­
signments, doing logic minimization on the functions, and for generating CMOS. 

Synchronous tools FSM tools, static timing verifiers, automatic test pattern generators 
(ATPGs). 

Both Spice, Petri-net simulators, Event simulators (switch level), algebraic manipulators. 

5.6 Testing 

Two test problems can be distinguished, viz. testing for fabrication errors and functional 
testing. An important problem is testing for fabrication errors. Testing asynchronous 
circuits is hard, because not every wire can be controlled. 
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To get asynchronous circuits accepted, Automatic Test-Pattern Generators will defi­
nitely be needed. Scan-path testing, as of ten applied in synchronous circuits, is not directly 
applicable to asynchronous circuits, since there is no dock that can be paused to scan out 
a state. 

For testing, controllability is the main problem, because of the relative delays in different 
paths. Observability is not a main issue, since internal malfunctioning of ten leads to 
deadlock or premature externaloutputs. For testing asynchronous circuits a separate test 
mode is likely to be needed. 
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Science and Industry 

Session chair: Robert Sproull 

Interaction between science and industry 
in the field of asynchronous design. 

6.1 Cooperation 

Probably academies wish industry would simply send money, and industry wis hes that 
academies would solve 'real' problems. The interest in asynchronous systems is growing, 
both in industry and academia, as is the cooperation among groups. NotabIe examples are 
the group at Stanford working with Hewlett-Packard and the cooperation among Philips 
and Eindhoven University. 

One of the barriers to wider industrial acceptance of asynchronous design techniques is 
that of credibility: engineers need to understand how some of these circuits are designed 
before they believe they can design them too. To date, we lack a catalogue of design 
and engineering experience in asynchronous designs. A collection of 'rea!' designs and 
design experience would be a very useful tooI to teach and explain to ot hers wh at the 
asynchronous world has done. It is important to build experimental systems to grow the 
body of experience, and to report on it carefully. 

A barrier for industry to cooperate with universities is that cooperation can be time 
consuming. Moreover, universities generally fee! no need to use the newest available tech­
nologies. From a theoretic or scientific point of view, cooperation is not always interesting, 
because the problems from industry lie far aside their field of interest. 

6.2 Educational Problem 

The promotion of asynchronous design techniques requires a serious education project . For 
synchronous design, Mead and Conway did a very good job by the combination of their 
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book and some courses in VLSI design. In that way they expanded by orders of magnitude 
the number of people that weIl understood the basic topics involved in VLSI design. 

It would be nice if industry and universities would organize a course together, and if a 
good text book or some good survey papers would be available. A problem for industry 
is that good people are of ten taken away from their project to manage larger and harder 
projects. 

To get the work out to a lot of people, we need some consensus on terminology. It 
would therefore be good to accept a few conventions. In general, conventions will be set 
by whoever makes the best tools for it. 

An interesting idea is to have summer workshops during which people do a design, 
going through each step at least once. For something like this good teachers are needed. 
To make su re that the knowledge gained during the course will not be lost, one also has to 
make sure that the tools available at the workshop are available afterwards, so participants 
can play with them when they come back home. 

6.3 Different Views 

In industry the correctness of designs is almost never proven. For most designs confidence 
is built by simulation. Formal proofs are not really interesting for designers. Something 
that would help a great deal is a synthesis tooi that yields designs that are in some sense 
correct by construction. The formal proofs may help in proving the synthesis method 
correct. 

There is quite a large gap between designers from industry and theorists from universi­
ties. Some people are worried about scientists who never did any engineering and who even 
seem to be quite happyabout it. The ot her way round can also be a problem: designers 
who never have seen any formal framework for what they are doing. It might therefore 
be a good idea to have summer schools in which people from industry are taught some 
formalisms . On the ot her hand, PhD students should get their hands dirty on real designs 
in industry. 

6.4 Contact 

In order to establish more intense contact between industry and universities, a mailing 
list and a joint bibliography would be nice things to have. Another thing that might help 
would be some good survey papers in which one does not only advertise his own work. 

We should moreover accept a few common problems and solve them. This should yield 
designs that are elaborated in all their details. A list of these problems could, for example, 
start with the distributed mutual exclusion element of Alain Martin and the nacking (non­
blocking) arbiter of Al Davis. 
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6.5 Uniform Notation 

In today's theory on asynchronous circuits a broad-scope notation for different levels of 
abstraction is lacking. Progressive refinements cannot be expressed in a single notation. 
The ultimate notation should also be able to deal with peephole optimizations, which are 
usually far away from the source notation. 

In Tangram it is possible to prove equivalence of descriptions at various levels. This 
demonstration is done for Tangram and its compilation scheme. In this approach, however, 
various formalisms and notations are used. 

Some desirabie properties (requirements) of a uniform notation are formulated below. 

• Granularity: control of grain size. Maybe we would like to specify C-elements and 
maybe even below that level. Events can be interpreted in different ways, for example 
as voltage changes and as handshakes. 

• Data representation and format . 

• Sequence constraints must be expressible. Examples of sequence constraints include 
before, af ter, mutual exclusive, and non-ordered. 

• Functions (input/output relations), both on modules and environment. 

• Performance. 

One can distinguish four levels of abstraction, viz. (i) transistor, gate, wire, (ii) speed­
independent, (iii) delay-insensitive, and (iv) CSP. The basic notion at all these levels of 
abstraction is that of an event, which may have a different interpretation at each level of 
abstraction. For all levels of abstraction, traces can be used. Different levels use different 
rules for composition etc. One way to go from one level to another is by means of action 
refinement . 

In some cases, theorists like to deal with fairness. Most models deal adequately with 
safety, some models deal adequately with deadlock, but there are no models yet th at deal 
adequately with fairness or livelock. According to designers, fairness is a non-issue in real 
designs. Analysis of (absence of) deadlock, however, is considered to be quite useful. 
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Concluding Remarks 

Session chair: Martin Rem 

Turning the problems that we face into a 
challenging plan of action for the future. 

7.1 Present and Future 

In this session a short review of the previous sessions has been given, see Sections 7.2 to 
7.6. Furthermore, we have tried to outline the actions and interactions for the near future, 
see Sections 7.7 to 7.9. 

7.2 Conclusions from Session 2 

Whereas there seems to be little consensus about the interpretation of the notion asyn­
chronous, the notions speed-independent, delay-insensitive, and self-timed seem to be 
agreed upon. Speed-independent is said to be defined by Muller, see [MiI65], and Dill, see 
[DiI89]. Udding has defined delay-insensitive, see [Udd84]. Self-timed has been introduced 
by Seitz, see [Sei80] . We need to set up formal definitions of the notions speed-independent, 
delay-insensitive, self-timed, and asynchronous. These definitions have to be given in one 
formalism. In this way we are able to compare and relate them. Such a formalism will 
probably be based upon some basic notions: e.g. component, wire, and event. 

In relating the notion delay-insensitive to phase diagrams, see Chapter 2, Charles Mol­
nar suggested that for delay-insensitive circuits the exact place of the boundary for fixing an 
event in a phase diagram is not important. In Figure 7.1 we illustrate Molnar's conj ect ure. 

7.3 Conclusions from Session 3 

Trace theory has been developed at Eindhoven University of Technology to describe the 
interaction of processes, see [vdS85] and [KaI86]. The central notion in trace theory is 
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the concept of a trace structure. Trace structures form a basis to which we can relate 
ot her modeIs, e.g. CSP, trace theory programs, Petri-nets, I-nets, definitions of speed­
independent and delay-insensitive. Trace structures may be part of the formalism men­
tioned in Section 7.2. 

In order to prevent overspecification we need - in addition to the notions input and 
output- the not ion nonput. A nonput models a symmetrie synchronization between 
processes. The name non put was coined by Kees van Berkel. 

7.4 Conclusions from Session 4 

In the development of tools for the translation of programs into circuits , transparency seems 
to be an important notion . It enables the designer to control at the program level general 
implementation aspects like area, performance, and energy dissipation. Nevertheless, the 
designer need not look at these aspects in all detail: he controls them, but he does not 
have to implement them. 
, When using handshake protocols we have the option to use either a 2-phase (transition­

signaling) handsbake protocol or a 4-phase (return-to-zero signaling) protocol. We need to 
study the merits of these protocols and the areas where they can be applied. 

In many design strategies sub-processes are introduced to conquer the design task and 
enable parallelism. Sproull suggests to model the start and stop of sub-processes as two 
asynchronous actions. 

7.5 Conclusions from Session 5 

It is important to distinguish between an object (circuit) and its mode of operation. A 
particular circuit can be operated in many different ways, see Chapter 5. For this reason 
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it is very hard to design a component, when one does not make any assumptions with 
respect to its interaction with the environment. Therefore, one prefers to use as many 
assumptions about the component/environment interaction as possible. Of course, one 
has to be aware of the bot tom line: putting too many constraints on the environment may 
lead to the non-existence of any interesting environment that is able to interact with the 
resulting circuit. 

In comparing synchronous and asynchronous circuits, we noticed that in asynchronous 
circuits there exists a possibility to get rid of the probabilistic results that are due to races 
in which dock signals are involved. On the other hand, it is impossible to do an exhaustive 
test of asynchronous circuits, since there is no way to test for all possible delay-values - if 
it were even possible to control all delays at test-time. 

In order to separate the sequencing aspects from the timing aspects of docks Charles 
Molnar has coined the name sequenator. A sequenator is a mapping from a physical model 
to the set of integers, that preserves temporal ordering and justifies the use of sequential 
models to reason about the object represented by the physical model. Examples: 

1. Consecutive positive transitions of a dock signal mapped onto consecutive integers; 

2. Consecutive input changes (transitions) in a circuit used in a way that satisfies the 
fundamental mode conditions, mapped onto consecutive integers. 

7.6 Conclusions from Session 6 

At different design stages the designer has different concerns (different problems to solve). 
In order to go from one stage in a design to the next we need one notation for several stages 
in the design. Therefore we have to enrich the notation by creating bigger vocabularies. In 
this way, one deals within one notational framework with the object that is manipulated 
at all design stages. Transparency, cf. Chapter 4, will not be sufficient to deal with these 
problems. 

In the design of circuits we may want to distinguish four levels of abstraction, viz. 

• transistor, gate, wire, 

• speed-independent, 

• delay-insensitive, and 

• CSP. 

(See Chapter 6.) 
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7.7 Interaction between Research Groups 

The participants of the workshop feel the need for a next workshop, to be held in 1993. 
From March 23 to 26, 1993, Steve Furber will organize a working conference on asyn­
chronous logic in Manchester. This working conference will include technical papers, pre­
sentations, and open meetings. 

The next workshop could be held in the fall of 1993. It may be helpful to distribute 
some problems to all participants to work on just before the workshop in order to be able 
to get into elaborate technical discussions and comparisons of methods. 

The Amsterdam 1991 workshop consisted of 7 discussion sessions. We suggest that in 
a future workshop some (parts of) sessions are reserved for presentations. However, we 
strongly recommend to reserve plenty of time for discussions. 

We feel the need for creating a joint public library in the area of asynchronous circuits 
and design. Martin Rem will create such a library at Eindhoven University of Technology. 
All communication concerning this library can be addressed to e-mail address 

async-bib~win.tue.nl 

David Dill already started an mailing list for the asynchronous community. The address 
of the mailing list is: asynchronous~hohum. st anford . edu. Requests for information or 
additions to the list can be sent to asynchronous-request~hohum . stanford. edu. 

Al Davis (e-mail: adavis~hplabs.hp.com) will collect example problems that can be 
used to compare methods and their results. He will distribute some of these problems to 
the research community. 

7.8 Publications 

The research community interested in the design of asynchronous circuits seems not large 
enough (yet) to start a new journal. On the other hand, we should be able to prepare 
special issues of established journaIs, for example, by having a guest-editor for such a 
journal. Another suggestion is to appoint area editors for some journais, so that submission 
will be refereed by experts in asynchronous circuits. In this way it is possible to increase 
interest in asynchronous circuits and to avoid an isolated position of this field. In order to 
succeed we need to come to an agreement on terms and notation. Furthermore, we should 
publish a survey paper to present an overview of the research in this field. 

7.9 Technical Support 

We do not have tools available yet for all design stages. A good tooI that is available is 
Dill's verifier, cf. [DiI89]; it can be used to detect flaws in both the circuit and the synthesis 
algorithm. Several tools are still needed: 

• program to estimate area for wiring; 
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• statie timing verifier; 

• automatic test pattern generator. 

Once we have a good tooikit available we may want to organize a summer school on the 
design of asynchronous circuits. We feel that it is very important that such a tooikit is 
not only used at the summer school, but that it is also readily available to the participants 
af ter they have returned to their research sites. 
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Appendix B 

Asynchronous Bibliography 

All participants of the workshop agreed upon the need for a joint public bibliography on 
asynchronous circuits in a broad sense. Immediately af ter the workshop, such a bibliogra­
phy has been set up at Eindhoven University of Technology. In these proceedings, a first 
version of the bibliography is included. 

We have chosen the BIB'JEX format for the data-base, mainly because of the wide­
spread use of ~TEJX, the corresponding document preparation system. A compressed 
version of the bib-file is available for anonymous ftp on Internet from ftp. vin. tue. nl 
(address: [131.155.70 . 100]) as file async. bib.Z in directory pub/tex. 

We have not defined precise criteria that items of the bibliography should satisfy. In 
our opinion, at least two requirements should be met. First, the items in the list should be 
related to asynchronous circuits. Second, the referenced material must be accessible, that 
is, obtainable from, for example, the author(s). 

All communication concerning this library can be sent to the e-mail address: 

async-bib~vin.tue . nl 
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