
Design and Implementation of Asynchronous Circuits

Royal Netherlands Academy of Arts and Sciences
P.O. Box 19121,1000 GC Amsterdam, the Netherlands

Proceedings of the workshop,
Amsterdam, 10- 14 November 1991

Organization committee

Charles Molnar, Washington University, visiting at Eindhoven University of Technology
Martin Rem, Eindhoven University of Technology
Huub Schols, Eindhoven University of Technology

ISBN 0-444-85751-6

Koninklijke Nederlandse Akademie van Wetenschappen
Verhandelingen, Afd. Natuurkunde, Eerste Reeks, deel 37

Design and Implementation of
Asynchronous Circuits

M. van der Korst, A. Peeters and H. Schols

North-Holland, Amsterdam/Oxford/New York/Tokyo, 1992

Contents

Acknowledgement

Preface

Opening Speech

1 Goals and Expectations
1.1 Asynchronous.
1.2 Challenges
1.3 Design Style and Management
1.4 University and Industry
1.5 Theory
1.6 Tools

2 Physical and Abstract Models
2.1 Uniform Definitions
2.2 Computational Models and the Real World .
2.3 Phase Diagrams and Transitions

3 Formal Models
3.1 Time
3.2 Specification Languages
3.3 Specification Models
3.4 Nonputs
3.5 Liveness
3.6 Aspects of Formal Models
3.7 DI-Algebra

4 Transformation Methods
4.1 Motivation..
4.2 Architecture
4.3 Transparency
4.4 Performance of the Tangram Compiler
4.5 Discussion

3

4

6

7
7
9
9

10
10
10

11
11
12
12

15
15
15
16
17
17
18
18

21
21
22
23
23
24

CONTENTS

5 Synchronous and Asynchronous 26
5.1 Pedagogical Tools 26
5.2 Closing the Gap 28
5.3 Design 28
5.4 Al Davis's Design Methodology 29
5.5 Software Tools . 30
5.6 Testing 30

6 Science and Industry 32
6.1 Cooperation 32
6.2 Educational Problem 32
6.3 Different Views 33
6.4 Contact 33
6.5 Uniform Notation 34

7 Concluding Remarks 35
7.1 Present and Future 35
7.2 Conclusions from Session 2 . 35
7.3 Conclusions from Session 3 . 35
7.4 Conclusions from Session 4 . 36
7.5 Conclusions from Session 5 . 36
7.6 Conclusions from Session 6 . 37
7.7 Interaction between Research Groups 38
7.8 Publications 38
7.9 Technical Support . 38

Bibliography 41

A List of Participants 42

B Asynchronous Bibliography 45

2

Acknow ledgement

We would like to acknowledge the financial and organizational support of the Royal Nether­
lands Academy of Arts and Sciences and the Department of Mathematics and Computing
Science of Eindhoven University of Technology. Especially, the effort put forward by Manita
Kooy and Franka van Neerven constituted a firm basis on which this workshop has been
built . Furthermore, we are grateful to Michiel van der Korst and Ad Peeters, who did a
great job by preparing the major part of these proceedings in a short time.

On behalf of the organization committee,

Huub Schols

Preface

This workshop is the fifth in an informal series of workshops held in Geldrop, Netherlands
(1984), Eureka, Missouri (1985), Paterswolde, Netherlands (1986), and La Jolla, California
(1988) . It was planned to recognize and further stimulate the evolution of understanding
of formal and technical issues in asynchronous system and circuit design towards a mat ure
methodology for specification and design of high-performance information-processing sys­
tems. Toward this end, participants were chosen to represent a span of interests ranging
from university researchers in abstract process algebras to industrial designers and builders
of major asynchronous computer systems. An unusual feature of our workshop plan was
to disallow the presentation of formal papers, that tend to emphasize results. Instead, a
number of session topics focussed on issues, methods, and current challenges were chosen,
and a discussion leader was selected and charged with initiating and provoking discussion
of this topic. This approach, though regarded with concern and scepticism by some of
the invitees, succeeded rat her well. In the words of one of the sceptical participants in his
report to his home organization:

I was a little worried that the format would lead to lots of gyrations on minor
points, which tends to happen with large, free-format meetings. I think the
subject matter and seriousness of the participants made it work. The provoca­
teurs were also well chosen, in that they were aware of the important issues in
their areas and saw that they came up in the discussion.

The unusual approach in turn raised unusual problems in developing this report of the
workshop. Since there were no formal presentations, they could not simply be collected
and bound together. No formal mechanisms were used to generate and validate conclusions
that could be presented as a formal consensus. Vet the sessions generated much intense
discussion and most participants seemed to share at least a sen se of where the important
issues critical to progress in research and exploitation were to be foundj in many cases they
even agreed on the steps to be taken.

This proceedings should be looked at as a serious journalistic attempt to capture the
flavor and major contents of the discussions that took place. Despite the occasional attri­
bution of points and comments to individuals, this document should not be interpreted as a
reliable indicator of the individual origin or advocacy of ideas. Nor should the anonymously
reported discussions be taken as necessarily reflecting agreement among the participants.
The report also contains some clarifications and extensions of workshop discussions outside
of the formal workshop sessions.

4

PREFACE

Taken with these caveats, I find that the following report, as a whoIe, reflects very weIl
the spirit of the workshop and the high enthusiasm of its participants about the future
of the area. Most of the credit for this report should go to the designated reporters, Ad
Peeters, Huub Schols and Michiel van der Korst, who were specifically charged with making
detailed notes throughout the workshop sessions. The refinement of their initial drafts of
session summaries was assisted by the comments from workshop participants in response
to first and second drafts of the report. The reader should find the selective bibliography
a particularly valuable complement to the reports on the session discussion.

The enthusiasm and flexibility of the Royal Netherlands Academy of Arts and Sciences
and Eindhoven University of Technology in their sponsorship of this somewhat unusual
program are hereby gratefully acknowledged, as is the willingness of the participants to
engage in this workshop with its occasional 'free-for-aIl' exchanges of opinion.

Charles E. Molnar

co-organizer

5

Opening Speech

Opening speech by Professor dr. P. J. D. Drenth , president of the KNAW.

On behalf of the Royal Netherlands Academy of Art,s and Sciences I extend a hearty
welcome to all participants of the Workshop on the Design and Implementation of Asyn­
chronous Circuits.

The subject of asynchronolls circuits has been stlldied for almost as long as digital com­
puters exist. Many of the participants to th is workshop have been instrumental in shaping
the subject into what it now is: achallenging and promising technology, but one that
has thus far been hardly applied in commercial applications. Recently, however, we have
witnessed a revived interest in this type of circuits. This was , for instance, very visible
in Professor Sutherland 's speech, which he delivered when he received the Turing Award
in 1989. One of the questions that this workshop faces is how the international research
community should react to this upSUl·ge in attention for asynchronous circuits.

There are a number of research grollps in the world that work on asynchronous circuits.
I am very glad that most of these groups, from different continents, are represented at
the workshop. I am also pleased that this workshop brings together research ers both from
academic institutions and from indllstry. In that sense I see this workshop as a collabora­
tive effort among the researchers in t.he world to push the subject of asynchronous circuits
further towards maturity.

This workshop is the fifth in a sequence. The other four were held in Eindhoven, Saint
Louis, Groningen, and La Jolla (California) . They were all aimed at fostering the scientific
development of asynchronous circuits. This fifth one is also aiming at giving new impulses
to their industrial application . The time seems ripe for it.

I wish you all a prodllctive workshop.

6

Session 1

Goals and Expectations

Session chair: Martin Rem

Rationale, goals, and expectations of the workshop.
Assertion of positions, conjectures, and condusions.

1.1 Asynchronous

The adjective asynchronous is used very loosely. Circuits have been called asynchronous
(to distinguish from synchronous) whenever they didn't contain a global doek. As a
consequence, the area to which the term asynchronous applies is very large; applications
vary from interfaces bet ween systems with different docks to dock-free designs. Although
it may be possible to use asynchronous circuits wherever docked circuits have been used
traditionally, in general, they will be employed in more specific, restricted areas.

It is hard to pinpoint the most promising aspect of asynchronous circuits. Probably,
some aspects are more important in some cases, whereas ot her aspects are very inter­
esting in other cases. We list the possible advantages and disadvantages of (the use of)
asynchronous circuits compared to (the use of) synchronous circuits.

+ Rapid design.

+ Better composability of parts. There exists no implicit synchronization due to the
absence of docks. As a consequence, there are less constraints for the composition.

+ Reliability of design process. Recent experiences with the design of asynchronous
circuits (especially delay-insensitive circuits) indicate that very few design errors are
made. As a consequence, less debugging is needed.

+ Low power dissipation. A doek may dissipate up to 80% of the power of a circuit.
Power consumption (dissipation of energy) tends to become much more expensive
than area due to the costs of packaging for high energy dissipation.

+ Design by non-experts (silicon compilation).

7

SESSION 1. GOALS AND EXPECTATIONS

+ Performance improvement easier to achieve. The performance of a system can be
improved by performance improvement of a subsystem. When the global dock has
to be speeded up, in general, all parts have to be adjusted to this.

+ Speed of the circuit. Asynchronous circuits tend to reflect average case behavior
rather than worst case behavior (the only thing a dock can do is to slow down
a computation) . However, the choice of a particular design style may slow down
the circuit. For example four-phase handshake protocols, which are frequently used
in asynchronous design, usually yield a lower speed of the circuit than two-phase
handshake protocols, due to the doubling of the communication protocol.

+ Robustness of design. Properly designed asynchronous circuits can be more robust,
that is, less sensitive to variations in, for example, power supply and temperature.
Mostly, such reports reflect the point that variations of timing due to variations
of circuit parameters and conditions cause changes in system speed without loss of
functional correctness.

o Concurrency. In asynchronous circuits it is easier to achieve concurrency due to
the absence of implicit synchronization. On the other hand, reasoning about asyn­
chronous concurrency is harder than reasoning about sequential designs, due to the
absence of the guaranteed existence of a global state of an asynchronous circuit.

o Testability. Detection of fabrication errors tends to be easier, since an asynchronous
circuit that contains a product ion error usually comes to an effective halt, viz. a
deadlock.

- Area. Asynchronous circuits typically have more transistors than synchronous cir­
cuits. The amount of area needed for a circuit is mainly determined by the amount
of wiring, not by the number of transistors. Nevertheless, since asynchronous circuits
tend to be more irr'egular than synchronous circuits, they need more wiring.

With respect to testability we would like to make some more remarks. To do a scan
test one needs to be able to stop a circuit. Without additional test-circuitry it is practi­
cally impossible to stop asynchronous circuits. Difficulty of testing also depends upon the
encoding of data: dual rail allows for easy tests, whereas data bundling complicates testing
considerably.

Synchronous circuits are state-based; asynchronous circuits are parallel transition ori­
ented. From a state-based point of view, asynchronous components form a special case
of the synchronous components: no state is a successor to itself. From a transition-based
point of view, synchronous components form a special case of the asynchronous compo­
nents: some transitions are dock signais. Statements like these probably are of academic
interest only. They may say more about the background of the author than about the
problem that is addressed .

8

SESSION 1. GOALS AND EXPECTATIONS

We condude that we need to establish a consensus between people that work in the
area of asynchronous design about a definition of this area and its advantages. Such a
consensus might enable us to advocate successfully the design of asynchronous circuits.

1.2 Challenges

In order to get asynchronous design techniques accepted by mainstream designers, the
research community should elaborate its potential. Several suggestions have been made:

• Design an asynchronous chip that is pin-compatible with an existing docked chip.

• Make something challenging to get people interested.

• Solve a yet unsolved problem in order to impress industry.

• Solve a hard problem within the constraint system of industry before a synchronous
solution is found.

All suggestions seem very hard to achieve, since a lot of knowledge and experience has
been accumulated in traditional docked design. It seems to be more promising to predict
the fut ure needs and have solutions ready in time; industry will take care of today's needs.

We should not aim at providing an alternative for synchronous design: synchronous
design will stay. We have to address the problems in synchronous design, for example the
mixing dock problem. In this way the separation between asynchronous and synchronous
designs will disappear. Mixed (asynchronous and synchronous) designs have the future.
Asynchronous communication bet ween locally synchronous parts is an example of such
a mixed design, cf. Macro-Modules [CM74] and Self-Timed design [Sei80]. The goal is
to establish one complete design space in which synchronous and asynchronous parts are
integrated.

1.3 Design Style and Management

Design of asynchronous circuits is very weil suited for a modular approach, in which a
system is designed as an interconnection of modules. Reliable modules can be designed by
hardware designers, who have detailed knowledge of the implementation technology. The
system can be designed by persons who best understand the function of the system. This
modular approach is facilitated by the asynchrony of the circuits: performance and correct­
ness aspects of time are separated. The modular approach enables design of asynchonous
circuits that are correct by construction.

The issues above actually are management issues. The design of a concurrent system
can be hierarchically factorized into the concurrent design of modules. This requires an
early specification of the interfaces bet ween the modules. This will give rise to changes of
specifications of interfaces. Design management is a key issue here. Concurrency is also a

9

SESSION 1. GOALS AND EXPECTATIONS

management issuej overspecification is a problem, for example in unnecessary ordering of
events (reducing concurrency).

The similarity between hardware design and software design is increasing every week.
However, it is misleading to view circuits as programs, since circuits are more general
than programs. In order to reason about parallel systems at a low level, a language with
suflicient expressive power is needed. We might want to develop one language that can be
used at all design stages.

1.4 University and Industry

There are several ways in which universities advocating asynchronous design can improve
their contacts with industry. Joint projects form a direct way to do so. In general, uni­
versities should refrain from preaching revolution, since the turn-over is too expensivej
furthermore, convincing people is too hard, since industry is way ahead of universities
in solving today's problems. Finally, the large gap between algebraic formalisms (traces,
lattices) and differential equations has to be bridged.

It is the responsibility of universities to educate. In this way, people will get to use
new methods and concepts, and they will accept formal structures. Universities should
not only present theories and modeis, but also put effort into interpreting the theoretical
results and formalisms . The scope of the problems that are studied at universities has to be
broadened. Industry is not interested in partial solutions: the combinatorics of integrating
them always gets you.

1.5 Theory

We should find ways to convince ourselves -and others- of the integrity of our formal
models. If there are fundamental properties that a formal model fails to capture, the
predictions made on basis of such a model should be approached with caution (or suspicion) .
We should pinpoint the theoretical challenges (or obstacles) with respect to asynchronous
circuits that are the most important at this moment. Maybe, the state of the art is such
that the challenges and obstacles lie primarily in the exploitation of the theoretical results.

1.6 Tools

A lot of tools (for example RISC, SPICE) have been designed at universities. Af ter they
have become accepted, companies took them over and developed them further to the si ze
they have now. Universities should build tools that support their ideas about asynchronous
design. There is no need for developing a commercial toolj just a prototype will do, if it
solves the problem. Once it is accepted by industry, industry will commercialize and
standardize it.

10

Session 2

Physical and Abstract Models

Session chair: Charles Molnar

Relation bet ween physical models and abstract modeis.
Motivation for playing formal games.
Interpretation of the results .

When a formal model is used for discussing asynchronous circuits, the question arises what
the relation is bet ween the formal model and the VLSI-circuit. What is the real world
equivalent of a transition, and up to what level should one go? Should we go down from
the gate level through the transistor to quantum physics?

The level of abstract ion depends on the question that is to be answered. If one considers
the problem of metastability, modelling a circuit as a dynamical system will be effective.
In the design of systems one would, however, prefer to work with a model of circuits on
the level of boolean functions. These higher levels of abstraction introduce the danger that
the underlying physics are forgotten, and that problems like metastability are disregarded.

The concept of Delay-Insensitivity (DI) is more an engineering method than a real
world model. It provides a way to separate concerns (especially timing problems). But DI
does seem to have a meaning, in the sen se that several different definitions turned out to
be equivalent.

2.1 Uniform Definitions

In order to stimulate research and education in the field of asynchronous circuits consistent
definitions should be formulated that are as precise as possible. Some basic concepts are:

• primitives:

- components,

- wires, and

- events.

11

SESSION 2. PHYSICAL AND ABSTRACT MODELS

• speed independence: the functional correctness of the network is independent of the
variations in the response time of the components .

• delay insensitivity: speed independent and independent of delays in the wires.

2.2 Computational Models and the Real World

When a computational model or formalism is used as an abstract ion for real world objects
the relation between these two must be understood thoroughly if conclusions about the
model are to be reliable statements about the real world. In this relation dynamical systems
can be used as an intermediate mathematical model:

M
Computational Modéls +---+ Dynamical Systems +---+ ... +---+ Real World

Relationship M would not solve the ultimate problem of relating the computational model
and the real world, but could be a useful step. It is rat her amazing that this has not
already been done in an adequate, rigorous, general, and elegant way. This is a way of
confessing that we do not know what the real world is; the relationship toward the center
and the right hand si de of the diagram have been the object of the study of physics for
centuries. We should use that and not throw it away.

2.3 Phase Diagrams and Transitions

An example of a modeljrepresentation that provides a link between between dynamical
systems and formal models is the ph ase diagram, as used in [Br089]. This diagram captures
a lot of issues concerning transitions in signals that carry the communication between a
component and its environment.

UDd.rmed

o

Figure 2.1: Phase diagram (left) and timing diagram (right) for a valid transition

In Figure 2.1 the phase diagram on the left represents the relation between the voltage
level, V, and the first time derivative, dd~' of the voltage transition in the timing diagram

12

SESSION 2. PHYSICAL AND ABSTRACT MODELS

on the right. In the phase diagram the gray area represents a useful restriction on the
behavior of the signal. When the voltage level is in one of the two voltage areas logically
defined as 0 or 1, the voltage rate-of-change may be zero, whereas in the undefined area
the voltage change must always be directed consistently towards one of the two voltage
levels, out of the undefined area.

In such a phase diagram an event can be defined as the passing of the ~~ -axis, when
the voltage level is zero.

The definition of the valid area in the ph ase diagram captures a lot of issues concerning
the integrity of transitions. Two of these issues are:

1. the transition must be monotonic, and

2. the derivative is bounded.

The inner border of the valid area of the phase diagram forces the transition to have a
minimum speed when the voltage level is in the undefined area, thus forcing the transition
to be monotonic. If an event is defined as the passing of the ~~ -axis, the monotonicity
restriction will keep the number of events per transition down to one. An example of an
non-monotonic transition and the corresponding path in the ph ase diagram are shown in
Figure 2.2.

Figure 2.2: Non-monotonic transition

The borders of the valid area of the phase diagram define the upper and lower limit
on the speed of transitions. An upper limit on the speed of transitions is needed, because
when the transition is too steep this may lead to inappropriate reactions, such as non­
monotonic transitions later in the network. A lower limit on the speed of transitions is also
needed, because when a transition is too slow this may provide problems when different
components use different thresholds, or when noise is present.

These cases are presented in Figures 2.3 and 2.4 respectively.
The phase diagram can be used for both synchronous and asynchronous circuits. In the

case of synchronous circuits only discrete points in the trajectory, as defined by the dock,
are considered. Synchronous and asynchronous circuits can be seen as different forms of
abstract ion of the picture. The phase diagram is a mathematical model in the sense that we
are looking at sets of trajectories, that can be used to restrict the allowed behaviors in such

I3

SESSION 2. PHYSICAL AND ABSTRACT MODELS

Figure 2.3: Transition too slow

dV
dl

v

Figure 2.4: Transition too steep

a way that a rigorous definition of the relationship of continuous behavior and models that
use abstractions such as events or discrete states can be unambiguously defined. Making
such a relation exact and formal may h~lp to illuminate the role of time in modeling at the
more abstract levels.

14

Session 3

Formal Models

Session chair: Jan Tijmen Udding

Specification of asynchronous circuits.
Expressive power of formal modeIs.
Distinction between modeIs.

3.1 Time

With respect to time we can distinguish two concerns, viz. correctness and performance. In
the interior of the modules one needs to be concerned with time in order to avoid hazards,
critical races, etc. This is the correctness aspect of time, also called order and sequence.
On the other hand, one can be concerned with performance (speed), which in a sense is
also a correctness criterion.

In an asynchronous setting, one can make a network of modules faster by speeding up
modules that are in the critical path. In a clocked circuit timing analysis of the network
has to be done before the clock can be adjusted. This requires a vast amount of extra work.
In asynchronous circuits, the performance and correctness aspects of time are separated
by keeping timing problems inside the modules.

3.2 Specification Languages

Problems with inherent (asynchronous) concurrency are of ten specified by means of esp­
like programs. In contrast to esp [Hoa85], which is a well-established term, the notion of
eSP-like programs is confusing, since many variants with sub tie differences exist. It would
be good to have a standard notation like e.g. Occam, which in itself is a eSP-like language.
Programs written in Occam can be easily understood and are bet ter suited for specification
purposes than, e.g., I-nets. It would be hard to express and understand one page of Occam
text using I-nets. As a standard notation, however, Occam has some drawbacks, mainly
caused by the close link to its target hardware: Transputers (see e.g. Section 3.4) .

15

SESSION 3. FORMAL MODELS

Some participants of the workshop argued that transformations and design-steps should
be expressible inside one specification language. It is not yet possible to use one notation
for the whole design trajectory. Although a uniform notation may be a nice goal, there are
some things that plead against it. The design process involves decisions at different levels of
abstraction, as far apart as system architecture and transistor lay-out. We do not expect
to encompass everything in a single language, but want to have different languages for
different levels, and a way of relating these levels. esp and Petri-Net based notations are
candidate languages for describing input/output behavior of circuits in terms of voltage­
level transitions or handshakes.

3.3 Specification Models

In asynchronous circuit design, a lot of different specification models are used. Some
(most?) of them are listed below. All specification techniques listed here are free of a time
metric.

Petri nets

Petri nets occur in many different forms, which all have slightly different interpretations.
Some established terms are I-nets, signal-transition graphs, and sequence nets. All these
nets have in common that they are networks of places, transitions, and labels. In I-nets,
labels represent transitions.

Petri nets are well suited for specification purposes, because the problem of combina­
torial explosion is avoided by its inherent high degree of concurrency. Moreover, Petri nets
can be simulated, which can be helpful in validating specifications, or at least in building
confidence. As long as there is a gap bet ween the formalisms used for specification and
those used for design, we can only argue informally about the correctness of a design.

A trace set can be regarded as a set of firing sequences and thus as a canonical rep­
resentation of nets. In this sense, a disadvantage of Petri nets is that representation is
not unique. An important issue therefore is the relation bet ween firing sequences and net
equivalence.

Trace Sets

The term tra ce sets is used to denote a variety of modeis. Symbols in traces can be
interpreted in different ways, ranging from voltage transitions to handshake events. There
are also many different ways to define trace sets. Some people use commands, which
are a generalization of regular expressions. Others base their syntax on DI-algebra (see
Section 3.7), or on I-nets. The syntax that is used to define trace sets does not matter
much, but subtle differences may occur in the expressive power.

Semantics based on trace sets differ considerably in expressive power. One of the
simplest semantic domains is that of non-empty prefix-closed trace sets. In this domain,

16

SESSION 3. FORMAL MODELS

safety properties can be expressed. Refusals can be added to deal properly with non­
determinism. Other extensions include divergences (to deal with interference or infinite
chatter), and complete and infinite traces (to deal with progress and fairness).

Tree-like

Alternative terms for tree-like techniques are state transition diagrams and state graphs.
CCS [Mi180] is an example of a tree-like specification technique. CCS is not widely appJi­
cable in the design process. An example of a problem with CCS is the design of a 3-way
four-phase signaling arbiter. In CCS, the 'well-known' implementation using three 2-way
arbiters is not an implementation that satisfies the 3-way arbiter specification, because
internal communications are retained as "tau" actions.

Other models

Other specification modeIs that are used include partially orde red multisets and product ion
rules.

3.4 Nonputs

Occam has no symmetricsynchronization primitive. The main reason for this is to facilitate
implementation on Transputer hardware. For the implementation of general symmetrie
synchronization, arbitration is needed. In Occam, arbitration is avoided by forcing the
program mer to distinguish between input and output, thereby breaking the symmetry.
The programmer thus indicates which party has the initiative in case choice is involved.

When Occam is used as a specification language for VLSI programs, specifications might
have too high a degree of implementation detail. In data-communication, the distinction
between input and output is important in order to express causality. Sometimes we also
need a more symmetrie form of pure synchronization, in which it does not make sense to
break the symmetry. In that case we could call these channels nonputs.

3.5 Liveness

Fairness is rarely a correctness issue in circuit design. Circuits simply make certain types
of progress. Primitive components do not deadlock. Deadlock may be introduced however
by composing circuit components. Therefore, end results of designs should be analyzed or
a proof should be given that deadlock will not occur.

In the asynchronous world, the main issue is avoiding interference, whereas in . the
synchronous world, deadlock is the main concern.

17

SESSION 3. FORMAL MODELS

3.6 Aspects of Formal Models

• Expressiveness, including performance requirements.

• Full abstraction. refinement.

• TooI support.

• Tractability. (Suitability for (formal) manipulation.)

• Data representation.

Most formalisms that are used in asynchronous-circuit design are bad at data-abstraction.
The main reason for this is that the theory in this field is still quite young, and up till now
is focussed on concurrency control, which is a hard job in itself. Clearly, a smooth theory
of data representation and abstraction is needed in a further formalization of the design
process.

We can distinguish at least two kinds of tools, viz. tools that support transformations
by a designer, and tools that verify properties of a design, for example correctness. The
problem with tools for asynchronous formalisms is that tools are available for various
formalisms, and support manipulations within that formalism, but these tools are not
hooked up to each other in a smooth way.

With today's tools, we can verify certain design steps, but are far away from an auto­
matic compilation from high-level specifications to silicon.

3.7 DI-Algebra

Joint work of Mark Josephs and Jan Tijmen Udding [JU91].

Example: C-element. In DI-algebra, aC-element can be specified as the least fix-point
of the following equation:

C = a?j b?j clj C

Characteristic for DI-algebra is the fact that there is only one unary operator: prefixing,
denoted by a semicolon with a communication. For a process term P, a?j P does not
specify that this process will refuse inputs other than a. It specifies that it will not change
into process P until input a is receivedj other inputs are 'buffered' so to speak.

The main difference between DI-algebra and e.g. Ebergen's commands [Ebe89] is in the
way trace sets are used. In the semantics of DI-algebra, inputs are always allowed. So,
a a is in the trace set of the C-element. Af ter a a, however, any behavior is possible. The
process then changes into chaos (which is a constant in DI-algebra), expressing that the
environment should not send two inputs in a row.

An example of a law in this algebra is that symbols of the same type commute. In the
example of the C-element, this law results in:

a?j b?j clj C = b?j a?j clj C

18

SESSION 3. FORMAL MODELS

On account of this property,
C=b?;a?;d;C

defines the same C-element as the specification above.
Yet another specification of the C-element is the following

C = a?; [a? --t 1.. 0 b? --t d; Cl,

in which 1.. represents chaos, that is, any possible behavior.
Values can also be included in the algebra. A process that communicates values might

look like a?x; Px . As an example we give the specification of an adder.

A = a?x; b?y; d(x + y) ; A

In DI-algebra, combinatorial explosion because of parallelism is nicely avoided by leav­
ing the parallelism implicit. Some people prefer explicit parallelism. When using com­
mands, for example, for specifications, the specification of aC-element would look like

C = pref * [(a? , b?); d]

Commands are a richer domain for specifying systems, because non-delay-insensitive ele­
ments can also be specified.

A disadvantage of the explicit parallelism in commands is illustrated by the following
example. Con si der CIIF, where

Ca?; b?; d; C

F = c?;d!;e!;F

We can specify all possible behaviors using commands, but this requires the use of at least
one choice construct:

pref(a?,b?; *[(d!;a?), (e! ; b?) I (e!;a?),(d!;b?)])

Note that the problem is that either a? or b? may occur as soon as either d! or e! has
occurred. A typical trace that illustrates the problem is abc e. Af ter this trace either a
or b is allowed, but not both. Specification of all pos si bie behaviors is straightforward in
DI-algebra. By using some laws from DI-algebra, we can easily deduce that

(CIIF) = a?; b?; dl; el; (CIIF).

The specification of aC-element by means of I-nets can be depicted as follows.
This specification in a way corresponds to a specification with synchronization on com­

mon symbols, as for example the weave of two commands:

pref * [a? ; d] , pref * tb?; d]

19

SESSION 3. FORMAL MODELS

e!

Figure 3.1: I-net specification of C-element

The C-element can also be specified by means of production rules. This specification
reads as follows

al\.b --+ ei
""'a I\.....,b --+ e 1

One might argue that commands are bet ter suited for designing circuits, whereas DI­
algebra seems better suited for analyzing designs. DI-algebra, however, actually suggests
designs. It hel ps identify the important states of the system, for example. The differences
in the approaches are, that (1) in the DI-algebra many behaviors are implicit but can be
exposed by algebraic manipulation, whereas in commands all behaviors are explicit but we
have to check for delay-insensitivity and, (2) in the DI-algebra designs can be verified by
algebraic manipulation, whereas in commands one has to follow design heuristics that are
known to be correct.

DI-algebra can be used for non-trivial designs. This was demonstrated in the design of
Martin's D- and Q-elements, non-blocking arbiters, a routing chip [JMV91], and a delay­
insensitive stack withconstant response-time [JU90].

20

Session 4

Transformation Methods

Session chair: Kees van Berkel

Transformation of specifications to asynchronous circuits.
Transformation methods and heuristics.

4.1 Motivation

The subject of this session is the transformation of specifications to asynchronous circuits.
The approach that is used as an example in this session is the Tangram compiler for
automatic translation of specifications to asynchronous circuits, which is being developed
at Philips Research Laboratories. The aim of the project is to provide a system for fast
and cheap design of digital circuits.

Some challenging areas for the applications of asynchronous circuits lie in the field of
consumer electronics, e.g.:

• Compact Disc, control & data processing;

• Digital Compact Cassette; both play and record, considerable data processing (l06
transistors) ;

• Digital Audio Broadcast;

• Mobile Telephone;

• High Definition Television, data rate two orders of magnitude higher than audio
applications.

For these applications it is not yet clear which architectures, algorithms and communi­
cation protocols are best suited, in contrast to, for example, micro-processors. Therefore
the designer has more freedom, which opens the way for the application of asynchronous
circuits. The two main motivations for using asynchronous circuits are:

21

SESSION 4. TRANSFORMATION METHODS

1. ease of design, and

2. low power consumption.

Applications as listed above require fast development of new ICs with limited resources
(i.e. fast and cheap). Especially when products are in the beginning of their life cycle,
several generations of the product must be developed in a short time span. A silicon
compiler can reduce the development time. The use of asynchronous components also
makes the design of systems in this area easier, because they of ten contain components
with different data rates .

The low power consumption of asynchronous circuits is very useful for the portable
versions of the products. A current version of the portable CD-player can play only a few
CDs on one set of batteries. For the DCC the power consumption is assumed to be even
worse. A major part of the power is used by the ICs, so if the power consumption of the
ICs can be reduced, the products will be more attractive. The need for reduction of power
consumption has also led to an increasing interest in the use of analog circuits.

4.2 Architecture

One of Kees van Berkel's propositions is that in every silicon compilation approach three
levels of abstraction can be distinguished, viz. :

1. VLSI programming language,

2. intermediate architect ure, and

3. asynchronous circuits.

The VLSI programming language must provide primitives (communication, synchro­
nization, control, data storage and computation), structuring mechanisms (procedures and
functions), and a way to express sharing of resources. On this level the following topics
are dealt with:

• functional correctness of the program (and hence of the compiled circuit);

• area, speed, and dissipation of the resulting circuit.

The intermediate architect ure must provide an interface between the VLSI program
and its implementation. This level must establish a separation of concerns bet ween the
two other levels.

On the circuit level the following topics are relevant:

• handshake protocol;

• data encoding;

22

SESSION 4. TRANSFORMATION METHODS

• aggregation level of timing issues (DI/SI);

• technology (CMOS, MOS).

This level also introduces the problems of testing (diagnostic & production), adaptors
(external communication, synchronous components) and initialization of the circuit.

Kees van Berkel uses Tangram, a language based on CSP (and Occam), as the VLSI­
programming language. The intermediate architecture is represented by handshake circuits.
For the implementation the following decisions were made:

• 4-phase handshake protocol;

• dual-rail encodingj

• delay-insensitive up to gate level and isochronie forkj

• statie CMOS technology.

The language and the translation method are discussed in [vBS88] and [vBKR+91].

4.3 Transparency

An important principle in the Tangram compiler is transparency. The compilation is trans­
parent in the sen se that the cost/performance of the circuit corresponding to a program
can easily be deduced from the program text. There is a simple relation between the
cost/performance of the program and the cost/performance of the program primitives.
This allows the designer to reason about the cost/performance of the result on the level
of thè program. The designer can experiment with variations that optimize some aspect
(speed, area etc.) and adjust the program in order to meet some constraint. Current
mainstream high-level synthesis lacks transparency, which results in poor control by the
designer over the cost/performance of the results.

4.4 Performance of the Tangram Compiler

The Tangram compiler is intended to be used by system designers who are not VLSI­
engineers but experts in their application fields. These users must be able to produce
relatively efficient ICs within a limited amount of time using limited resources. This means
that users are willing to accept the system if the overhead in area and speed with respect
to the existing methods is not too big. The current Tangram compiler yields circuits that
are up to a factor two worse than synchronous circuits in both area and speed. However, if
we look at a complete chip, the degradation need not be that bad. A typical chip consists
of a processing part (30-40%), an 1/0 part (20-30%), and memory (30-50%). (See Figure
4.1.)

23

SESSION 4. TRANSFORMATION METHODS

VOpart

memory

processing

Figure 4.1: Generalized architect ure of a chip

If the memory and 1/0 part are implemented with standard components the overall
performance will be better. Once the degradation in size and speed has been reduced to
25% the Tangram compiler becomes a serious alternative for the existing methods.

It should be noted that asynchronous circuits stand at the beginning of the learning
curve, in contrast to synchronous circuits with a respectable tradition of a few decades.
As asynchronous circuits proceed along the learning curve, improvement of area efficiency
inay be expected.

4.5 Discussion

The discussion was started by the question whether sharing of resources is equivalent to
asserting non-concurrency. In the Tangram compiler, sharing is indeed only allowed in the
case of sequential use. Sharing can be profitable if:

• the si ze in hardware of the shared function is large enough,

• the same argument is used, which will reduce the required infrastructure, or

• the result is sent to the same variable (see the previous point).

In Tangram, definition of components that repeatedly compute a certain fixed func­
tion introduces seemingly unnecessary slaek. Consider for example component F that
repeatedly computes function f, as expressed by the following piece of Tangram text:

#[a?x; b!f(x))

In this case first the handshake along a is completed and then the communication along
b is performed (see Figure 4.2.a) . A more area-efficient solution (but not equivalent, thus

24

SESSION 4. TRANSFORMATION METHODS

not necessarily better) would be to complete the handshake when the data transfer has
been completed (see Figure 4.2.b) . This could be denoted as follows:

#[a?x. b!f(x)]

F b (.... - :::::::::::i::::::::::::'\

: y

A B

Figure 4.2: Two possible paths for completing handshake

The bullet, which denotes interwoven handshakes, would be an extension of the syntax.
This resem bles the reshufHing as used by Martin [Mar90]. It would, however, introduce
implementation issues of the asynchronous circuit level in the language that lie outside
the expressive power of the language. The problem is semantical, that is , the underlying
model (CSP jtrace theory) does not all ow simultaneity of atomic actions.

Robert Sproull remarked that this problem does not exist when 2-phase signalling is
used . Ris motivation for using 2-phase signalling is:

1. no meaningless transitions (economy)j

2. natural for CMOSj

3. symmetry between up and down going transitionsj

4. acknowledgement can be provided via the environmentj

5. simple implementation of sequence of events by wiring togetherj

6. Ivan (Sutherland) loves it.

With 2-phase signalling, communication may be simpier than with 4-phase .signalling, but
in general the number of states per component is larger. Especially for data communication
this can become inefficient. In the Tangram compiler both protocols could be used (2-phase
for control and 4-phase for data). This, however, introduces the need for adaptors when the
two protocols meet. Also the 2-phase is not always more efficient for con trol components.
The sequencer is just a bundie of wires in 2-phase. But the mix-component becomes larger
when 2-phase is used instead of 4-phase. The conclusion is that there is no simple rule for
deciding between 2-phase and 4-phase handshake components. For the Tangram compiler
the 4-phase handshake for all components seems to be a good decision, whereas for bundled
data 2-phase may be better.

25

Session 5

Synchronousand Asynchronous

Session chair: J ohn Brzozowski

Integration of synchronous and asynchronous design techniques,
tools, and designs.

5.1 Pedagogical Tools

One of the objectives of this session is to discuss how the use of asynchronous circuits
could be increased. One way to do this is through bet ter education. In this connection it is
useful to examine how asynchronous circuit theory is taught and how it should be taught,
and how it relates to synchronous circuit theory.

Charles Molnar made the point that asynchronous circuits operating in fundament al
mode are essentially synchronous. They do not have a dock, but it is possible to predict
the sequence of states of such a circuit (if it is weIl behaved), because the environment
waits long enough for the circuit to reach a stabIe state. Charles proposed the use of the
term sequenator (cf. Section 7.5) , meaning that a mechanism exists in fundament al-mode
circuits that permits the states to be indexed sequentially, even though there is no clock.

It is also possible to have a somewhat different view, namely, that synchronous circuits
are asynchronous circuits operated under some restrictions. John Brzozowski illustrated
this point of view by some examples.

Consider two NOR gates, one with inputs S and Q and output (J, and the ot her with
inputs Rand Q and output Q. The operation of the circuit constructed from two such
NOR gates is governed by the following equations:

Q = (S + Q)'
Q = (R + Q)'

This circuit has three stabIe gate states, viz. QQ = 00,10, Ol. The table below shows
the state transitions computed using the Boolean equations. The non-stable states of the
circuit are labeled with an asterisk (*) .

26

SESSION 5. SYNCHRONOUS AND ASYNCHRONOUS

SR
QQ 00 01 10 11
01 01 01* 10 00*
10 10 01 10* 00*
00 ?? 01* 10* 00

When both inputs are made 1 and kept at that value for a sufficiently long time, the
gates reach the stabie state 00. When both inputs then change to 0, both gates become
unstable, and there is a "race" bet ween them. If the gate delays are unequal, stabie state
01 or 10 may be reached. If they are equal, the circuit may oscillate in the states 00 and 11.
Since it is unlikely that the gate responses remain perfectly matched for a long time, the
circuit eventually reaches one of the two stabie states 01 or 10, upon leaving the oscillation.
In a very cru de sense, this can be viewed as a representation of the metastable-state (glitch)
phenomenon.

The behavior described above is normally considered undesirable since the final state
af ter the complet ion of the transition cannot be uniquely predicted. To make sure that
the circuit will not reach the state that causes this uncertainty, we restrict its mode of
operation. Different modes of operation indude:

• Unrestricted mode: unrestricted changes on inputs. This may result in unpredictable
results, as above.

• Fundamental mode: the next input change may not occur until the circuit has settled
af ter the previous input change. In a way, this mode of operation is adopted in
synchronous circuit design, where the dock speed is adjusted to assure that the
circuit setties properly.

• No double input changes, meaning that change of multiple inputs is not allowed.
This is even more restricted than fundamental mode.

• S = R = 1 not allowed. This results in the behavior of the standard Set-Reset latch.
Under this restriction, output Q is always equal to the negation of output Q; hence
it can be removed.

• Input-output mode: an input change can occur only if the circuit has provided an
appropriate output in response to a previous input change.

• According to some specification that restricts both the environment and the circuit.
For example, one may use a trace structure to specify such a restriction. Input-output
mode is a special case of this mode of operation.

Synchronous circuits can now be treated as special cases of asynchronous circuits. Con­
sider for example the circuit depicted in Figure 5.1.

The non-stable states of this circuit are labeled with an asterisk (*) in the following
tabie.

27

SESSION 5. SYNCHRONOUS AND ASYNCHRONOUS

D

Y).-~- "ij

Y).--'---- Q

Figure 5.1: D flip-flop

CD
QQ 00 01 10 11
01 01 01 01 10*
10 10 10 01* 10

A safe way to operate this circuit is not to change D when C = 1. Clearly, C can be a
clock input and can be eliminated from the description of the circuit if we adopt the above
rule. Note furthermore that Q and Q are always complementary. Therefore, we might as
weU omit Q from the specification. We thus end up with the following diagram.

D
Q 0 1
o 0 1
1 0 1

Notice that in the above discussion we analyzed a clocked circuit in the same way as we
have analyzed an unclocked, that is, asynchronous circuit.

5.2 Closing the Gap

One way to get designers of synchronous circuits to design asynchronous circuits is to
offer them minimal change. One could try to design asynchronous circuits by applying
synchronous methodologies down to the bottom of the design, and subsequently change
to asynchronous methods at this lowest level. This would probably be appreciated by the
engineers, since they do not want to do proofs about self-timed properties. However, some
aspects of asynchronous circuit design differ significantly from synchronous circuit design.

5.3 Design

Does the classical design methodology that uses fundament al-mode flow tables and race
and hazard theory still have a role to play in modern asynchronous design methodologies?

Small components can be designed using flow tables. Depending on the mode of operation
we consider, very few circuits can be designed without adding delays. Small components

28

SESSION 5. SYNCHRONOUS AND ASYNCHRONOUS

can be thought of as having a state, independent of whether the components are used
in a synchronous or an asynchronous environment. For larger asynchronous components,
however, the not ion of state is very artificial, because of the high degree of concurrency.
So, for larger systems, we do not think in terms of the state of the overall system, but in
terms of the states of the parts (components) of the system. (See also the discussion in the
next section. A number of people were rat her surprised by the extent to which classical
asynchronous design techniques were used in Al Davis' project.)

One can specify components by I-nets, rather than flow tables, and this type of specifi­
cation has many advantages. However, in the final step, the concept of state and Boolean
algebra are used in order to co me up with a circuit, much as they are used in Huffman's
method.

Process algebra can also be used to design small components. Starting with the specifi­
cation of aC-element for example, we can derive a decomposition into a majority element
and a feedback wire. While some participants liked this approach, there were ot hers who
found it rat her involved.

Design of sm all components is necessary, but they do not rep re sent the biggest challenge
in asynchronous circuit design. The main problem is how to overcome the complexity of
large components and systems.

5.4 Al Davis's Design Methodology

As an example, Al Davis discussed the design of a Post-Office Box (POB) for communica­
tion between process elements and a communication chip.

The first activity is trying to find out what has to be built. This is done by behavioral
mode/ing, using Common Lisp as a specification language. There is no formal way of
proving that the environment satisfies its specification, so all that can be done is to build
confidence.

The second step is the transformation of the Common Lisp specification into a design
expressed using I-nets. For the POB-chip, the I-net was enormous, accounting for 50 Mbyte
of disk space. Since tools do not hook up nicely, there is no way to relate the I-nets to the
Common Lisp specification. The I-nets can be simulated using some Meta Software Inc.
tools.

At the next level, the design is expressed as a data path controlled by some finite state
machines (FSMs). At this level, as well as at later levels, the hierarchy in the I-net is
pretty weB reflected; there may be additional hierarchy. Designing the data path is very
much like synchronous design. At this level we can deal with the delay analysis. For the
POB-chip, about 200 FSMs were designed, each of about 100 states.

For communication and encoding of data, various forms are used. Bu.ndled data, dual
rail, handshakes, 2-phase, 4-phase: it is all there.

The FSM descriptions and equations are analyzed using a so-called MEAT tooI (Most
Excellent Asynchronous TooI). Designing the FSMs is a standard problem, though hard. It
amounts to using flow tables (Unger's method), applying state minimization, combinatorial

29

SESSION 5. SYNCHRONOUS AND ASYNCHRONOUS

functions, and covering redundancy to prevent races. The final design consists of a set of
CMOS-functions. No latches or dynamic circuit elements are used. Of course, feedbacks
are needed.

There are some very good models about how fast signals and transistors are. These
models are very important in the final design stages.

A modified version of Dill's verifier is used to check the CMOS schematics produced by
MEAT. Dill's verifier picked out some serious errors, also in designs that had already been
completed and in which the potential error had never occurred (yet).

The reason why so many FSMs have to be designed is related to performance. The
larger the modules, the bet ter the final performance, because inside the modules the design
can be fine-tuned. There is, however, a practical limit on the number of states for an FSM,
because of the analysis tools that are being used and the computation time involved. Larger
FSMs would require Crays to do the computations.

In the design, there are two levels of concurrency. One is the organizational concurrency
between the FSMs, which is very high. The concurrency inside the FSMs is very modest.

There still is a lack of linkage bet ween the different representations of the design. To
date, there is no connection between Common Lisp, I-nets, and the architecture. It should
be a doable job to connect these things. On November 1,1991, ajoint project with Stanford
has been started.

5.5 Software Tools

Some available tools are listed below:

Asynchronous tools For Tangram, used by Kees van Berkel, there is a compiler and
a software environment to analyze Tangram programs and circuits generated with
Tangram.

Furthermore, Dill's verifier is available. This tooI has of ten prove~ to be very valuable
in tracing possible hazards in é\. design.

Al Davis uses MEAT, which has ingredients for m"inimizing states, doing state as­
signments, doing logic minimization on the functions, and for generating CMOS.

Synchronous tools FSM tools, static timing verifiers, automatic test pattern generators
(ATPGs).

Both Spice, Petri-net simulators, Event simulators (switch level), algebraic manipulators.

5.6 Testing

Two test problems can be distinguished, viz. testing for fabrication errors and functional
testing. An important problem is testing for fabrication errors. Testing asynchronous
circuits is hard, because not every wire can be controlled.

30

SESSION 5. SYNCHRONOUS AND ASYNCHRONOUS

To get asynchronous circuits accepted, Automatic Test-Pattern Generators will defi­
nitely be needed. Scan-path testing, as of ten applied in synchronous circuits, is not directly
applicable to asynchronous circuits, since there is no dock that can be paused to scan out
a state.

For testing, controllability is the main problem, because of the relative delays in different
paths. Observability is not a main issue, since internal malfunctioning of ten leads to
deadlock or premature externaloutputs. For testing asynchronous circuits a separate test
mode is likely to be needed.

31

Session 6

Science and Industry

Session chair: Robert Sproull

Interaction between science and industry
in the field of asynchronous design.

6.1 Cooperation

Probably academies wish industry would simply send money, and industry wis hes that
academies would solve 'real' problems. The interest in asynchronous systems is growing,
both in industry and academia, as is the cooperation among groups. NotabIe examples are
the group at Stanford working with Hewlett-Packard and the cooperation among Philips
and Eindhoven University.

One of the barriers to wider industrial acceptance of asynchronous design techniques is
that of credibility: engineers need to understand how some of these circuits are designed
before they believe they can design them too. To date, we lack a catalogue of design
and engineering experience in asynchronous designs. A collection of 'rea!' designs and
design experience would be a very useful tooI to teach and explain to ot hers wh at the
asynchronous world has done. It is important to build experimental systems to grow the
body of experience, and to report on it carefully.

A barrier for industry to cooperate with universities is that cooperation can be time
consuming. Moreover, universities generally fee! no need to use the newest available tech­
nologies. From a theoretic or scientific point of view, cooperation is not always interesting,
because the problems from industry lie far aside their field of interest.

6.2 Educational Problem

The promotion of asynchronous design techniques requires a serious education project . For
synchronous design, Mead and Conway did a very good job by the combination of their

32

SESSION 6. SCIENCE AND INDUSTRY

book and some courses in VLSI design. In that way they expanded by orders of magnitude
the number of people that weIl understood the basic topics involved in VLSI design.

It would be nice if industry and universities would organize a course together, and if a
good text book or some good survey papers would be available. A problem for industry
is that good people are of ten taken away from their project to manage larger and harder
projects.

To get the work out to a lot of people, we need some consensus on terminology. It
would therefore be good to accept a few conventions. In general, conventions will be set
by whoever makes the best tools for it.

An interesting idea is to have summer workshops during which people do a design,
going through each step at least once. For something like this good teachers are needed.
To make su re that the knowledge gained during the course will not be lost, one also has to
make sure that the tools available at the workshop are available afterwards, so participants
can play with them when they come back home.

6.3 Different Views

In industry the correctness of designs is almost never proven. For most designs confidence
is built by simulation. Formal proofs are not really interesting for designers. Something
that would help a great deal is a synthesis tooi that yields designs that are in some sense
correct by construction. The formal proofs may help in proving the synthesis method
correct.

There is quite a large gap between designers from industry and theorists from universi­
ties. Some people are worried about scientists who never did any engineering and who even
seem to be quite happyabout it. The ot her way round can also be a problem: designers
who never have seen any formal framework for what they are doing. It might therefore
be a good idea to have summer schools in which people from industry are taught some
formalisms . On the ot her hand, PhD students should get their hands dirty on real designs
in industry.

6.4 Contact

In order to establish more intense contact between industry and universities, a mailing
list and a joint bibliography would be nice things to have. Another thing that might help
would be some good survey papers in which one does not only advertise his own work.

We should moreover accept a few common problems and solve them. This should yield
designs that are elaborated in all their details. A list of these problems could, for example,
start with the distributed mutual exclusion element of Alain Martin and the nacking (non­
blocking) arbiter of Al Davis.

33

SESSION 6. SCIENCE AND INDUSTRY

6.5 Uniform Notation

In today's theory on asynchronous circuits a broad-scope notation for different levels of
abstraction is lacking. Progressive refinements cannot be expressed in a single notation.
The ultimate notation should also be able to deal with peephole optimizations, which are
usually far away from the source notation.

In Tangram it is possible to prove equivalence of descriptions at various levels. This
demonstration is done for Tangram and its compilation scheme. In this approach, however,
various formalisms and notations are used.

Some desirabie properties (requirements) of a uniform notation are formulated below.

• Granularity: control of grain size. Maybe we would like to specify C-elements and
maybe even below that level. Events can be interpreted in different ways, for example
as voltage changes and as handshakes.

• Data representation and format .

• Sequence constraints must be expressible. Examples of sequence constraints include
before, af ter, mutual exclusive, and non-ordered.

• Functions (input/output relations), both on modules and environment.

• Performance.

One can distinguish four levels of abstraction, viz. (i) transistor, gate, wire, (ii) speed­
independent, (iii) delay-insensitive, and (iv) CSP. The basic notion at all these levels of
abstraction is that of an event, which may have a different interpretation at each level of
abstraction. For all levels of abstraction, traces can be used. Different levels use different
rules for composition etc. One way to go from one level to another is by means of action
refinement .

In some cases, theorists like to deal with fairness. Most models deal adequately with
safety, some models deal adequately with deadlock, but there are no models yet th at deal
adequately with fairness or livelock. According to designers, fairness is a non-issue in real
designs. Analysis of (absence of) deadlock, however, is considered to be quite useful.

34

Session 7

Concluding Remarks

Session chair: Martin Rem

Turning the problems that we face into a
challenging plan of action for the future.

7.1 Present and Future

In this session a short review of the previous sessions has been given, see Sections 7.2 to
7.6. Furthermore, we have tried to outline the actions and interactions for the near future,
see Sections 7.7 to 7.9.

7.2 Conclusions from Session 2

Whereas there seems to be little consensus about the interpretation of the notion asyn­
chronous, the notions speed-independent, delay-insensitive, and self-timed seem to be
agreed upon. Speed-independent is said to be defined by Muller, see [MiI65], and Dill, see
[DiI89]. Udding has defined delay-insensitive, see [Udd84]. Self-timed has been introduced
by Seitz, see [Sei80] . We need to set up formal definitions of the notions speed-independent,
delay-insensitive, self-timed, and asynchronous. These definitions have to be given in one
formalism. In this way we are able to compare and relate them. Such a formalism will
probably be based upon some basic notions: e.g. component, wire, and event.

In relating the notion delay-insensitive to phase diagrams, see Chapter 2, Charles Mol­
nar suggested that for delay-insensitive circuits the exact place of the boundary for fixing an
event in a phase diagram is not important. In Figure 7.1 we illustrate Molnar's conj ect ure.

7.3 Conclusions from Session 3

Trace theory has been developed at Eindhoven University of Technology to describe the
interaction of processes, see [vdS85] and [KaI86]. The central notion in trace theory is

35

SESSION 7. CONCLUDING REMARKS

evenl
boundary

dl 1t-HIt-
dV

v

Figure 7.1: Two different boundaries in a ph ase diagram

dV
dl

event
boundary

the concept of a trace structure. Trace structures form a basis to which we can relate
ot her modeIs, e.g. CSP, trace theory programs, Petri-nets, I-nets, definitions of speed­
independent and delay-insensitive. Trace structures may be part of the formalism men­
tioned in Section 7.2.

In order to prevent overspecification we need - in addition to the notions input and
output- the not ion nonput. A nonput models a symmetrie synchronization between
processes. The name non put was coined by Kees van Berkel.

7.4 Conclusions from Session 4

In the development of tools for the translation of programs into circuits , transparency seems
to be an important notion . It enables the designer to control at the program level general
implementation aspects like area, performance, and energy dissipation. Nevertheless, the
designer need not look at these aspects in all detail: he controls them, but he does not
have to implement them.
, When using handshake protocols we have the option to use either a 2-phase (transition­

signaling) handsbake protocol or a 4-phase (return-to-zero signaling) protocol. We need to
study the merits of these protocols and the areas where they can be applied.

In many design strategies sub-processes are introduced to conquer the design task and
enable parallelism. Sproull suggests to model the start and stop of sub-processes as two
asynchronous actions.

7.5 Conclusions from Session 5

It is important to distinguish between an object (circuit) and its mode of operation. A
particular circuit can be operated in many different ways, see Chapter 5. For this reason

36

SESSION 7. CONCLUDING REMARKS

it is very hard to design a component, when one does not make any assumptions with
respect to its interaction with the environment. Therefore, one prefers to use as many
assumptions about the component/environment interaction as possible. Of course, one
has to be aware of the bot tom line: putting too many constraints on the environment may
lead to the non-existence of any interesting environment that is able to interact with the
resulting circuit.

In comparing synchronous and asynchronous circuits, we noticed that in asynchronous
circuits there exists a possibility to get rid of the probabilistic results that are due to races
in which dock signals are involved. On the other hand, it is impossible to do an exhaustive
test of asynchronous circuits, since there is no way to test for all possible delay-values - if
it were even possible to control all delays at test-time.

In order to separate the sequencing aspects from the timing aspects of docks Charles
Molnar has coined the name sequenator. A sequenator is a mapping from a physical model
to the set of integers, that preserves temporal ordering and justifies the use of sequential
models to reason about the object represented by the physical model. Examples:

1. Consecutive positive transitions of a dock signal mapped onto consecutive integers;

2. Consecutive input changes (transitions) in a circuit used in a way that satisfies the
fundamental mode conditions, mapped onto consecutive integers.

7.6 Conclusions from Session 6

At different design stages the designer has different concerns (different problems to solve).
In order to go from one stage in a design to the next we need one notation for several stages
in the design. Therefore we have to enrich the notation by creating bigger vocabularies. In
this way, one deals within one notational framework with the object that is manipulated
at all design stages. Transparency, cf. Chapter 4, will not be sufficient to deal with these
problems.

In the design of circuits we may want to distinguish four levels of abstraction, viz.

• transistor, gate, wire,

• speed-independent,

• delay-insensitive, and

• CSP.

(See Chapter 6.)

37

SESSION 7. CONCLUDING REMARKS

7.7 Interaction between Research Groups

The participants of the workshop feel the need for a next workshop, to be held in 1993.
From March 23 to 26, 1993, Steve Furber will organize a working conference on asyn­
chronous logic in Manchester. This working conference will include technical papers, pre­
sentations, and open meetings.

The next workshop could be held in the fall of 1993. It may be helpful to distribute
some problems to all participants to work on just before the workshop in order to be able
to get into elaborate technical discussions and comparisons of methods.

The Amsterdam 1991 workshop consisted of 7 discussion sessions. We suggest that in
a future workshop some (parts of) sessions are reserved for presentations. However, we
strongly recommend to reserve plenty of time for discussions.

We feel the need for creating a joint public library in the area of asynchronous circuits
and design. Martin Rem will create such a library at Eindhoven University of Technology.
All communication concerning this library can be addressed to e-mail address

async-bib~win.tue.nl

David Dill already started an mailing list for the asynchronous community. The address
of the mailing list is: asynchronous~hohum. st anford . edu. Requests for information or
additions to the list can be sent to asynchronous-request~hohum . stanford. edu.

Al Davis (e-mail: adavis~hplabs.hp.com) will collect example problems that can be
used to compare methods and their results. He will distribute some of these problems to
the research community.

7.8 Publications

The research community interested in the design of asynchronous circuits seems not large
enough (yet) to start a new journal. On the other hand, we should be able to prepare
special issues of established journaIs, for example, by having a guest-editor for such a
journal. Another suggestion is to appoint area editors for some journais, so that submission
will be refereed by experts in asynchronous circuits. In this way it is possible to increase
interest in asynchronous circuits and to avoid an isolated position of this field. In order to
succeed we need to come to an agreement on terms and notation. Furthermore, we should
publish a survey paper to present an overview of the research in this field.

7.9 Technical Support

We do not have tools available yet for all design stages. A good tooI that is available is
Dill's verifier, cf. [DiI89]; it can be used to detect flaws in both the circuit and the synthesis
algorithm. Several tools are still needed:

• program to estimate area for wiring;

38

http://stanford.edu
http://asynchronous-requestflhohum.staiiford.edu
http://adavisfflhplabs.hp.com

SESSION 7. CONCLUDING REMARKS

• statie timing verifier;

• automatic test pattern generator.

Once we have a good tooikit available we may want to organize a summer school on the
design of asynchronous circuits. We feel that it is very important that such a tooikit is
not only used at the summer school, but that it is also readily available to the participants
af ter they have returned to their research sites.

39

Bibliography

[Br089]

[CM74]

[DiI89]

[Ebe89]

[Hoa85]

[JMV91]

[JU90]

[JU91]

[KaI86]

40

R. W. Brockett. Smooth dynamical systems which realize arithmetical and
logicaloperations. In Hendrik Nijmeijer and Johannes M. Schumacher, editors,
Three Decades of Mathematical Systems Theory: A Collection of Surveys at the
Occasion of the 50th Birthday of J. c. Willems, volume 135 of Lecture Notes
in Control and Information Sciences, pages 19-30. Springer-Verlag, 1989.

Wesley A. Clark and Charles E. Molnar. Macromodular computer systems.
In Ralph W. Stacy and Bruce D. Waxman, editors, Computers in Biomedical
Research, volume IV, chapter 3. Academic Press, 1974.

David L. Dill. Trace Theory for Automatic Hierachical Verification of Speed­
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits, vol­
ume 56 of CWI Tra ct. Centre for Mathemathics and Computer Science, 1989.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

Mark B. Josephs, Rudolf H. Mak, and Tom Verhoeff. Asynchronous design of a
router. In J. P. Veen, editor, Proceedings ofthe IEEE/ProRISC Symposium on
Circuits, Systems and Signal Processing, pages 173- 179, Utrecht, Netherlands,
1991. Stichting voor de Technische Wetenschappen.

Mark B. Josephs and Jan Tijmen Udding. The design of a delay-insensitive
stack. In G. Jones and M. Sheeran, editors, Designing Correct Circuits, pages
132-152. Springer-Verlag, 1990.

Mark B. Josephs and Jan Tijmen Udding. An algebra for delay-insensitive cir­
cuits. In DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, volume 3, pages 147-175. AMS-ACM, 1991.

Anne Kaldewaij. A Formalism for Concurrent Processes. PhD thesis, Dept.
of Math. and C.S., Eindhoven Univ. of Technology, 1986.

BIBLIOGRAPHY

[Mar90]

[MiI65]

[MiI80]

[Sei80]

[Udd84]

Alain J. Martin. Programming in VLSI: From communicating processes to
delay-insensitive circuits. In C. A. R. Hoare, editor, Deve/opments in Concur­
rency and Communication. Addison-Wesley, 1990. UT Year of Programming
Institute on Concurrent Programming.

R. E. Miller. Sequential Circuits and Machines, volume 2 of Switching Theory.
Wiley, 1965.

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

Charles L. Seitz. System timing. In Carver A. Mead and Lynn A. Conway,
editors, Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

Jan Tijmen Udding. Classification and Composit ion of De/ay-Insensitive Cir­
cuits. PhD thesis, Dept. of Math. and C.S., Eindhoven Univ. of Technology,
1984.

[vBKR+91] Kees van Berkel, Joep Kessels, Marly Roncken, RonaId Saeijs, and Frits
Schalij . The VLSI-programming language Tangram and its translation into
handshake circuits. In Proceedings of the European Design Automation Con­
ference, pages 384-389, 1991.

[vBS88] C. H. (Kees) van Berkel and RonaId W. J. J. Saeijs. Compilation of communi­
cating processes into delay-insensitive circuits. In Proc. of the 1988 IEEE Int.
Conf. on Computer Design: VLSI in Computers f3 Processors, pages 157-162,
1988.

[vdS85] Jan L. A. van de Snepscheut. Trace Theory and VLSI Design, volume 200 of
Leciure Notes in Computer Science. Springer-Verlag, 1985.

41

Appendix A

List of Participants

Kees van Berkel
Philips Research Laboratories
P.O. Box 80.000
5600 JA Eindhoven
The Netherlands
berkel~prl.philips . nl

Raymond T. Boute
Department of Computer
and Communications Systems
University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen
The Netherlands
raymond~cs.kun.nl

Al Davis
HP Laboratories
Building 3L
P.O. Box 10490
Palo Alto
CA 94303-0969
USA
adavis~hplabs.hp.com

42

Walter Bosch
Institute for Biomedical Computing
Campus Box 8036
Washington University
School of Medicine
660 South Euclid Avenue
St. Louis MO 63110 USA
walter~wusbl . wustl.edu

John A. Brzozowski
Department of Computer Science
University of Waterloo
Waterloo
Ontario N2L 3G 1
Canada
brzozo~watmath . waterloo . edu

Jo Ebergen
Computer Science Department
University of Waterloo
Waterloo
Ontario N2L 3G1
Canada
jebergen~maytag . waterloo.edu

http://berkelfflprl.philips.nl
http://jebergenfflmaytag.waterloo.edu

APPENDIX A . LIST OF PARTICIPANTS

Ting-Pien Fang
Institute for Biomedical Computing
Campus Box 8036
Washington University
School of Medicine
660 South Euclid Avenue
St. Louis MO 63110 USA
tingCwuibc.wustl.edu

Ran Ginosar
Department of Elect ri cal Engineering
Technion
Haifa 32000
Israel
ranCee.technion.ac . il

Mark B. Josephs
Oxford University Computing Labora­
tory
Programming Research Group
11 Keble Road
Oxford OX1 3QD
UK
Mark. JosephsCcomlab . ox.ac.uk

Wilbert Körver
Department of Mathematics
and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands

Charles Molnar
Department of Mathematics
and Computing Science
Eindhoven U niversity of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands
wsincemCwin.tue.nl

Steve Furber
Department of Computer Science
Universityof Manchester
Oxford Road
Manchester M13 9PL
UK
sfurberCcs.mau.ac.uk

Corry Huijs
Faculty of Computing Science
University of Twente
KGT Building H428
P.O. Box 217
7500 AE Enschede
The Netherlands
chuijsCcs .utwente.nl

Michiel van der Korst
Department of Mathematics
and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands
wsinmvdkCwin.tue.nl

Steven Molnar
Department of Computer Science
Sitterson Hall C.B. # 3175
University of North Carolina
Chapel HilI
NC 27599-3175
USA
molnarCcs.unc.edu

Charles Molnar visiting from
Institute for Biomedical Computing
Campus Box 8036
Washington University
School of Medicine
660 South Euclid Avenue
St. Louis MO 63110 USA
cemCwuibc.wustl . edu

43

http://sfurberfflcs.mau.ac.uk
http://ranfflee.technion.ac.il
http://tue.nl

APPENDIX A . LIST OF PARTIeIPANTS

44

Ad Peet ers
Department of Mathematics
and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands
wsinap~win.tue.nl

Fred U. Rosenberger
Institute for Biomedical Computing
Campus Box 8036
Washington University
School of Medicine
660 South Euclid Avenue
St. Louis MO 63110 USA
fred~wuibc.wustl.edu

Carl J. Seger
Department of Computer Science
University of British Columbia
6356 Agricultural Road
Vancouver
B.C. Canada V6T 1Z2
seger~cs.ubc.ca

Jan Tijrnen U dding
Department of Computer Science
University of Groningen
P.O. Box 800
9700 AV Groningen
The Netherlands
jtu~cs.rug.nl

Martin Rem
Department of Mathematics
and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The N etherlands
rem~win.tue . nl

Huub Schols
Department of Mathematics
and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands
wsinhuub~win.tue.nl

Robert F. Sproull
Sun Microcystems Laboratories
2 Federal St.
Billerica
MA 01821 USA
rsproull~east . sun.com

Tom Verhoeff
Department of Mathematics
and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands
wstomv~win.tue.nl

http://wsinapfflwin.tue.nl
http://remfflwin.tue.nl
http://rsproullffleast.sun.com

Appendix B

Asynchronous Bibliography

All participants of the workshop agreed upon the need for a joint public bibliography on
asynchronous circuits in a broad sense. Immediately af ter the workshop, such a bibliogra­
phy has been set up at Eindhoven University of Technology. In these proceedings, a first
version of the bibliography is included.

We have chosen the BIB'JEX format for the data-base, mainly because of the wide­
spread use of ~TEJX, the corresponding document preparation system. A compressed
version of the bib-file is available for anonymous ftp on Internet from ftp. vin. tue. nl
(address: [131.155.70 . 100]) as file async. bib.Z in directory pub/tex.

We have not defined precise criteria that items of the bibliography should satisfy. In
our opinion, at least two requirements should be met. First, the items in the list should be
related to asynchronous circuits. Second, the referenced material must be accessible, that
is, obtainable from, for example, the author(s).

All communication concerning this library can be sent to the e-mail address:

async-bib~vin.tue . nl

45

ftp://ftp.win.tue.nl

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

References

[1] Anonymous. Science and the citizen. Scientific American, 228:43-44, 1973.

[2] Douglas B: Armstrong, Arthur D. Friedman, and Premachandran R. Menon. Design
of asynchronous circuits assuming unbounded gate delays. IEEE Transactions on
Computers, 18(12):1110-1120, December 1969.

[3] J. C. M. Baeten. Applications of Process Algebra. Cambridge University Press, 1990.

[4] J . C. M. Baeten and F. W. Vaan drager. Specification and verification of a circuit
in ACP (revised version). Report P8821, Universityof Amsterdam, Programming
Research Group, October 1988.

[5] Marek A. Bednarczyk. Categories of Asynchronous Systems. PhD thesis, University
of Sussex, October 1987.

[6] Peter Beerel and Teresa Meng. Semi-modularity and self-diagnostic asynchronous
control circuits. In Carlo H. Séquin, editor, Advanced Research in VLSI: Proceedings
ofthe 1991 UC Santa Cruz Conference, pages 103-117. MIT Press, 1991.

[7] J. A. Bergstra, J. W. Klop, and J. V. Tucker. Process algebra with asynchronous
communication mechanisms. In G. Winskel, editor, Seminar on Concurrency, volume
197 of Lecture Notes in Computer Science, pages 76-95. Springer-Verlag, 1985.

[8] Christian Berthet and Eduard Cerny. An algebraic model for asynchronous circuits
verification. IEEE Transactions on Computers, 37(7):835-847, July 1988.

[9] Hans Bisseling, Henk Eemers, Michiel Kamps, and Ad Peeters. Designing Delay­
lnsensitive Circuits. IVO, Eindhoven University of Technology, September 1990.

[10] David L. Black. On the existence of delay-insensitive fair arbiters: Trace theory and
its limitations. Distributed Computing, 1:205- 225, 1986.

[11] Gregor v. Bochmann. Distributed synchronization and regularity. Computer Net­
works, 3:36-43, 1979.

[12] Gregor v. Bochmann. Delay-independent design for distributed systems. IEEE Trans­
actions on Software Engineering, SE-14(8):1229-1237, August 1988.

[13] R. W. Brockett. Smooth dynamical systems which realize arithmetical and logi­
caloperations. In Hendrik Nijmeijer and Johannes M. Schumacher, editors, Three
Decades of Mathematical Systems Theory: A Col/ection of Surveys at the Occasion
of the 50th Birthday of J. C. Willems, volume 135 of Lecture Notes in Control and
lnformation Sciences, pages 19-30. Springer-Verlag, 1989.

46

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

[14] Geoffrey M. Brown. Towards truly delay-insensitive circuit realizations of process
algebras. In Geraint Jones and Mary Sheeran, editors, Proceedings of the Workshop
on Designing Correct Circuits, pages 120-131. Springer-Verlag, 1990.

[15] E. K. Brunvand and M. Starkey. An integrated environmen.t for the design and
simulation of self timed systems. In A. Halaas and P. B. Denyer, editors, VLSI91,
page 4a.2, August 1991.

[16] Erik Brunvand. Parts-R-Us: A chip aparts... Technical Report CMU-CS-87-119,
Carnegie Mellon University, May 1987.

[17] Erik Brunvand. A cell set for self-timed design using Actel FPGAs. Technical Report
UUCS-91-013, Dept . of Comp. Science, Univ. of Utah, Salt Lake City, August 1991.

[18] Erik Brunvand. Translating Concurrent Communicating Programs into Asyn-
chronous Circuits. PhD thesis, Carnegie Mellon University, 1991.

[19] Erik Brunvand and Robert F . Sproull. Translating concurrent programs into delay­
insensitive circuits. In Proceedings of ICCAD-89, pages 262-265. IEEE Computer
Society Press, November 1989.

[20] J. A. Brzozowski. Detection of timing problems in VLSI circuits. In CongresS'Us
Num erantium, Vol. 56, pages 7-18, 1986. Conference held in Winnipeg, Manitoba,
October 1986.

[21] J. A. Brzozowski and J. C. Ebergen. Recent developments in the design of asyn­
chronous circuits. In J. Csirik, J . Demetrovics, and F. Gécseg, editors, Fundamentals
of Computation Theory, FCT '89, volume 380 of Lecture Notes in Computer Science,
pages 78- 94, FCT'89, Szeged, Hungary, 1989. Springer-Verlag.

[22] J . A. Brzozowski and J. C. Ebergen. On the delay-sensitivity of gate networks. Com­
puting Science Notes 90/5, Dept. of Math. and C.S., Eindhoven Univ. of Technology,
July 1990. To appear in IEEE Trans. on Computers.

[23] J . A. Brzozowski and C.-J. Seger. A characterization of ternary simulation of gate
networks. IEEE Transactions on Computers, C-36(1l):1318-1327, November 1987.

[24] J. A. Brzozowski and C.-J . Seger. A unified theory of asynchronous networks. Re­
search Report CS-87-24, Computer Science Dept., Univ. of Waterloo, Cananda,
March 1987.

[25] J. A. Brzozowski and C.-J. Seger. A unified framework for race analysis of asyn­
chronous networks. Journalof the ACM, 36(1):20-45, January 1989.

[26] J. A. Brzozowski and C.-J. H. Seger. Advances in asynchronous circuit theorYi part
I: Gate and unbounded inertial delay models. Bull. EATCS, (42):198-249, October
1990.

47

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

[27] J. A. Brzozowski and C.-J. H. Seger. Advances in asynchronous circuit theory; part
11: Bounded inertial delay models, MOS circuit design techniques. Bull. EATCS,
(43):199-263, February 1991.

[28] J.A. Brzozowski and S. Singh. Definite asynchronous sequential circuits. IEEE Trans .
on Computers, C-17(1):18- 26, January 1968.

[29] J.A. Brzozowski and M. Yoeli. Practical approach to asynchronous gate networks.
Proc. lEE, 123(6):495-498, June 1976.

[30] J.A. Brzozowski and M. Yoeli . On a ternary model of gate networks. IEEE Trans.
on Computers, C-28(3):178-184, March 1979.

[31] Steven M. Burns. Performance Analysis and Optimization of Asynchronous Circuits.
PhD thesis, California Institute of Technology, 1991.

[32] Steven M. Burns and Alain J. Martin. Syntax-directed translation of concurrent
programs into self-timed circuits. In J. Allen and F. Leighton, editors, Proceedings of
the Fifth MIT Conference on Advanced Research in VLSI, pages 35-50. MIT Press,
1988.

[33] Steven M. Burns and Alain J. Martin. Synthesis of self-timed circuits by program
transformation. In G. J. Milne, editor, The Fusion of Hardware Design and Verifi­
cation, pages 99-116. Elsevier Science Publishers, 1988.

[34] Steven M. Burns and Alain J . Martin. Performance analysis and optimization of
asynchronous circuits. In Carlo H. Séquin, editor, Advanced Research in VLSI: Pro­
ceedings of the 1991 UC Santa Cruz Conference, pages 71-86. MIT Press, 1991.

[35] J. Calvo, J. I Acha, and M. Valencia. Asynchronous modular arbiter. IEEE Trans­
actions on Computers, C-37(1), January 1986.

[36] I. Catt. Time loss through gating of asynchronous logic signal pulses. IEEE Trans­
actions on Electronic Computers, EC-15:108-111, February 1966.

[37] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and arbiter
circuits. IEEE Transactions on Computers, C-22(4):421-422, April 1973.

[38] Wei Chen, Jan Tijmen Udding, and Tom Verhoeff. Networks of communicating
processes and their (de)-composition. In Jan L. A. van de Snepscheut, editor, The
Mathematics of Program Construction, volume 375 of Lecture Notes in Computer
Science, pages 174-196. Springer-Verlag, 1989.

[39] Tam-Anh Chu. On the models for designing VLSI asynchronous digital circuits.
Integration, the VLSI journal, 4(2):99-113, June 1986.

48

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

[40] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoreiic Speci­
jications. PhD thesis, MIT Laboratory for Computer Science, June 1987.

[41] Tam-Anh Chu. Synthesis of self-timed VLSI circuits from graph-theoretic specifi­
cations. In Proceedings ICCD '87, pages 220-223. IEEE Computer Society Press,
1987.

[42] Y. H. Chuang. Transition logic circuits and a synthesis method. IEEE Transactions
on Computers, C-18(2):154-168, February 1969.

[43] Wesley A. Clark. Macromodular computer systems. In AFIPS Conference Proceed­
ings: 1967 Spring Joint Computer Conference, volume 30, pages 335-336, Atlantic
City, NJ, 1967. Academic Press.

[44] Wesley A. Clark and Charles E. Molnar. Macromodular computer systems. In
Ralph W. Stacy and Bruce D. Waxman, editors, Computers in Biomedical Research,
volume IV, chapter 3. Academic Press, 1974.

[45] William J . Dally and Paul Song. Design of a se\f-timed VLSI multicomputer com­
munication controller. In Proceedings ICCD '87, pages 230- 234. IEEE Computer
Society Press, 1987.

[46] Ilana David, Ran Ginosar, and Michae\ Yoe\i . An efficient implementation of boolean
functions and finite state machines as se\f-timed circuits. ACMjSigarch Computer
Architeciure News, December 1989.

[47] Ilana David, Ran Ginosar, and Michael Yoeli. Self-timed FIFO buffer. Technical
Report EE PUB No. 731, Department of Electrical Engineering, Technion, October
1989.

[48] Ilana David, Ran Ginosar, and Michael Yoeli. Se\f-timed reduced instruction set
computer. Technical Report EE PUB No. 732, Department of Electrical Engineering,
Technion, October 1989.

[49] Ilana David, Ran Ginosar, and Michael Yoe\i. Self-timed is self-diagnostic. Technical
Report EE PUB No. 758, Department of Electrical Engineering, Technion, November
1990.

[50] Ilana David, Ran Ginosar, and Michael Yoeli. An efficient implementation of boolean
functions as self-timed circuits. IEEE Transactions on Computers, January 1992.

[51] Ilana David, Ran Ginosar, and Michael Yoe\i. Implementing sequential machines as
self-timed circuits. IEEE Transactions on Computers, January 1992.

[52] Mark Dean, Ted Williams, and David Dill. Efficient self-timing with leve\-encoded
2-phase dual-rail (LEDR). In Carlo H. Séquin, editor, Advanced Research in VLSI:
Proceedings of the 1991 UC Santa Cruz Conference, pages 55-70. MIT Press, 1991.

49

APPENDIX B . ASYNCHRONOUS BIBLIOGRAPHY

[53] Peter J. Denning. The science of computing: The arbitration problem. American
Scientist, 73:516-518, December 1985.

[54] David L. Dill. Trace theory for automatic hierarchical verification of speed­
independent circuits. In Jonathan Allen and F. Thomson Leighton, editors, Advanced
Research in VLSI: Proceedings ofthe Fifth MIT Conference, pages 51-65. MIT Press,
1988.

[55] David L. Dill. Trace Theory for Automatic Hierachical Verification of Speed­
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[56] David L. Dill and Edmund M. Clarke. Automatic verification of asynchronous circuits
using temporallogic. rn Henry Fuchs, editor, 1985 Chapel Hill Conference on VLSI,
pages 127-143. Computer Science Press, 1985.

[57] David L. Dill, Steven M. Nowick, and Robert F. Sproull. Automatic verification of
speed-independent circuits with Petri net specifications. In 1989 IEEE International
Conference on Computer Design: VLSI in Computers and Processors, pages 212-216.
IEEE Computer Society, 1989. (ICCD-89).

[58] Jo C. Ebergen. From functional specification to a delay-insensitive circuit. Technical
Report CS-89-44, University of Waterloo, October 1989.

[59] Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits, volume 56 of
CWI Tract. Centre for Mathemathics and Computer Science, 1989.

[60] Jo C. Ebergen. Arbiters: An exercise in specifying and decomposing asynchronously
communicating components. Research Report CS-90-29, Computer Science Dept.,
Univ. of Waterloo, Canada, July 1990.

[61] Jo C. Ebergen. A formal approach to designing delay-insensitive circuits. Distributed
Computing, 5(3):107-119, 1991.

[62] Jo C. Ebergen. Parallel computations and delay-insensitive circuits. In Graham
Birtwistle, editor, IV Higher Order Workshop, Banff 1990, pages 85-104. Springer­
Verlag, 1991.

[63] Jo C. Ebergen and Ad M. G. Peeters. Modulo-N counters: Design and analysis of
delay-insensitive circuits. In J~rgen Staunstrup and Robin Sharp, editors, 2nd Work­
shop on Designing Correct Circuits, Lyngby, pages 27-46. Elsevier, North Holland,
1992.

[64] Ting-Pien Fang. An extension of Q-module realization. Technical Memorandum 317,
Computer Systems Laboratory, ·Washington Univ., St. Louis, MO, November 1986.

50

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

[65] Ting-Pien Fang. On decomposition of delay-insensitive modules by factoring. Techni­
cal Memorandum 314, Computer Systems Laboratory, Washington Univ., St. Louis,
MO, July 1986.

[66] Ting-Pien Fang and Charles E. Molnar. Synthesis of reliable speed-independent
circuit modules: 11. circuit and delay conditions to ensure operation free of problems
from races and hazards. Technical Memorandum 298, Computer Systems Laboratory,
Institute for Biomedical Computing, Washington Univ., St. Louis, MO, 1983.

[67] Edward H. Frank and Robert F. Sproull. A self-timed static RAM. In Randal Bryant,
editor, Third Caltech Conference on VLSI, pages 275-285, 1983.

[68] Anders Gammelgaard. Implementation conditions for delay-insensitive circuits. In
E. Odijk, M. Rem, and J .-C. Syre, editors, PARLE '89: Parallel Architectures and
Languages Europe, volume 365 of Lecture Notes in Computer Science, pages 341-355.
Springer-Verlag, 1989.

[69] Rodney M. Goodman and Anthony J. McAuley. An efficient asynchronous multiplier.
In K. Bromley, S.-Y. Kung, and E. Swartzlander, editors, Proceedings of the Second
International Conference on Systolic Arrays. Computer Society Press (IEEE), 1988.

[70] Ganesh Gopalakrishnan and Prabhat Jain. Some recent asynchronous system design
methodologies. Technical Report UU-CS-TR-90-016, Dept. of C.S., Univ. of Utah,
October 1990.

[71] M. R. Greenstreet, T . E. Williams, and J. Staunstrup. Self-timed iteration. In
Carlo H. Séquin, editor, VLSI '87. VLSI Design of Digital Systems, pages 309-322.
North-Holland, August 1987.

[72] Mark R. Greenstreet and Kenneth Steiglitz. Bubbles can make self-timed pipelines
fast . Journalof VLSI Signal Processing, 2(3):139- 148, November 1990.

[73] Alan B. Hayes. Stored state asynchronous sequential circuits. IEEE Transactions on
Computers, 1981.

[74] Matthew Hennessy. Synchronous and asynchronous experiments on processes. In­
form. and Control, 59:36-83, 1983.

[75] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[76] Lee A. Hollaar. Direct implementation of asynchronous control units. IEEÈ Trans­
actions on Computers, C-31(12):1133-1141, December 1982 .

. [77] Jens U. Horstmann, Hans W. Eichel, and Robert L. Coates. Metastability behavior
of CM OS ASIC flip-flops in theory and test. IEEE Journalof Solid-State Circuits,
24(1):146-157, February 1989.

51

APPENDIX B . ASYNCHRONOUS BIBLIOGRAPHY

[78] D. A. Huffman. The synthesis of sequential switching circuits. In E. F. Moore, editor,
Sequential Machines: Selected Papers. Addison-Wesley, 1964.

[79] M. Hurtado and D. 1. Elliott. Ambiguous behavior of logic bistable systems. In
Proceedings of the 13th Annual Allerton Conference on Circuit & System Theory,
pages 605-611, October 1975.

[80] Marco Hurtado. Structure and Performance of Asymptotically Bistable Dynamical
Systems. PhD thesis, Sever Institute of Technology, Washington Univ., St. Louis,
MO,1975.

[81] G. Jacobs and R. Brodersen. Self-timed integrated circuits for digital signal pro­
cessing applications. In Proceedings of Third Workshop on VLSI Signal Processing,
Monterey, California, September 1988.

[82] Bengt Jonsson. A model and proof system for asynchronous networks. In Proceedings
of the 4th ACM Symposium on Principles of Distributed Computing, pages 49-58,
1985.

[83] Bengt Jonsson. A fully abstract trace model for dataflow networks. Research Report
SICS R88016, Swedish Institute of Computer Science, November 1988 .

. [84] Mark B. Josephs. Receptive process theory. Computing Science Notes 90j8, Dept.
of Math. and C.S., Eindhoven Univ. of Technology, September 1990.

[85] Mark B. Josephs, C. A. R. Hoare, and He Jifeng. A theory of asynchronous processes.
Journalof the ACM, (submitted), 1989.

[86] Mark B. Josephs, Rudolf H. Mak, Jan Tijmen Udding, Tom Verhoeff, and Jelio T.
Yantchev. High-level design of an asynchronous packet-routing chip. In JliSrgen
Staunstrup and Robin Sharp, editors, 2nd Workshop on Designing Correct Circuits,
Lyngby, pages 261-274. Elsevier, North Holland, 1992.

[87] Mark B. Josephs, Rudolf H. Mak, and Tom Verhoeff. Asynchronous design of a
rou ter. In J. P. Veen, editor, Proceedings of the IEEE/ProRISC Symposium on
Circuits, Systems and Signal Processing, pages 173-179, Utrecht, Netherlands, 1991.
Stichting voor de Technische Wetenschappen.

[88] Mark B. Josephs and Jan Tijmen Udding. Delay-insensitive circuits: An algebraic
approach to their design. In J. C. M. Baeten and J. W. Klop, editors, CONCUR '90,
Theories of Concurrency: Unification and Extension, volume 458 of Lecture Notes
in Computer Science, pages 342-366. Springer-Verlag, August 1990.

[89] Mark B. Josephs and Jan Tijmen Udding. The design of a delay-insensitive stack.

52

In G. Jones and M. Sheeran, editors, Designing Correct Circuits, pages 132-152.
Springer-Verlag, 1990.

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

[90] Mark B. Josephs and Jan Tijmen Udding. An algebra for delay-insensitive circuits.
In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol­
ume 3, pages 147- 175. AMS-ACM, 1991.

[91] Anne Kaldewaij . A Formalism for Concurrent Processes. PhD thesis, Dept. of Math.
and C.S., Eindhoven Univ. of Technology, 1986.

[92] Robert M. KeIler. Towards a theory of universal speed-independent modules. IEEE
Transactions on Computers, C-23(1):21-33, January 1974.

[93] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Analysis and iden­
tification of self-timed circuits. In J91rgen Staunstrup and Robin Sharp, editors, 2nd
Workshop on Designing Correct Circuits, Lyngby, pages 275-287. Elsevier, North
Holland, 1992.

[94] Lindsay Kleeman and Antonio Cantoni. Metastabie behavior in digital systems.
IEEE Design & Test of Computers, 4:4-19, December 1987.

[95] Lindsay Kleeman and Antonio Cantoni. On the unavoidability of metastabie behavior
in digital systems. IEEE Transactions on Computers, C-36(1):109-112, January
1987.

[96] Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill, 1978.

[97] Shinji Kpmori, Hidehiro Takata, Toshiyuki Tamura, Fumiyasu Asai, Takio Ohno,
Osamu Tomisawa, Tetsuo Yamasaki, Kenji Shima, Katsuhiko Asada, and Hiroaki
Terada. An elastic pipeline mechanism by self-timed circuits. IEEE Joumal of
Solid-State Circuits, 23(1) :111-117, February 1988.

[98] Shinji Komori, Hidehiro Takata, Toshiyuki Tamura, Fumiyasu Asai, Takio Ohno,
Osamu Tomisawa, Tetsuo Yamasaki, Kenji Shima, Hiroaki Nishikawa, and Hiroaki
Terada. A 40-MFLOPS 32-bit floating-point processor with elastic pipeline scheme.
IEEE Joumal of Solid-State Circuits, 24(5):1341-1347, October 1989.

[99] P. N. Lam and H. F. Li. Hierarchical design of delay-insensitive systems. lEE
Proceedings, E-137(1), January 1990.

[100] Luciano Lavagno, Kurt Keutzer, and Alberto Sangiovanni-Vincentelli. Synthesis
of verifiably hazard-free asynchronous control circuits. In Carlo H. Séquin, editor,
Advanced Research in VLSI: Proceedings of the 1991 UC Santa Cruz Conference,
pages 87-102. MIT Press, 1991.

[101] C. N. Liu. A state variabie assignment method for asynchronous sequential switching
circuits. Joumal of the ACM, 10:209-216, 1963.

[102] S. Lubkin. Asynchronous circuits in digital computers. Mathematical Tables and
other Aids to Computation, pages 238-241, October 1952.

53

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

[103] Yonatan Malachi and Susan S. Owicki. Temporal specifications of self-timed sys­
tems. In H. T. Kung, Bob Sproull, and Guy Steele, editors, VLSI Systems and
Computations, pages 203-212. Computer Science Press, 1981.

[104] Leonard R. Marino. General theory of metastabie operation. IEEE Transactions on
Computers, C-30(2):107-115, February 1981.

[105] Alain J. Martin. A delay-insensitive fair arbiter. Technical Report 5193:TR:85,
California Institute of Technology, 1985.

[106] Alain J . Martin. The design of a self-timed circuit for distributed mutual exclusion.
In Henry Fuchs, editor, Proceedings of the 1985 Chapel HilI Conference on VLSI,
pages 245-260. Computer Science Press, 1985.

[107] Alain J. Martin. Thc probe: An addition to communication primitives. Information
Processing Letters, 20(3):125-130, 1985. Erratum: IPL 21(2):107, 1985.

[108] Alain J. Martin. Compiling communicating processes into delay-insensitive VLSI
circuits. Distributed Computing, 1(4):226-234, 1986.

[109] Alain J. Martin. On Seitz 's arbiter. Technical Report 5212:TR:86, Caltech Computer
Science, 1986.

[110] Alain J. Martin. A synthesis method for self-timed VLSI circuits. In Proceedings
ICCD '87, pages 224-229, Rye Brook, NY, 1987. IEEE Computer Society Press.

[111] Alain J. Martin. The design of a delay-insensitive microprocessor: An example of
circuit synthesis by program transformation. In M. Leeser and G. Brown, editors,
Hardware Specification, Verification and Synthesis: Mathematical Aspects, volume
408 of Lecture Notes in Computer Science, pages 244-259. Springer-Verlag, 1989.

[112] Alain J. Martin. Formal program transformations for VLSI circuit synthesis. In
Edsger W. Dijkstra, editor, Formal Development of Programs and Proofs, pages 59-
80. Addison-Wesley, 1989.

[113] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
William J. Dally, editor, Sixth MIT Conference on Advanced Research in VLSI, pages
263-278. MIT Press, 1990.

[114] Alain J. Martin. Programming in VLSI: From communicating processes to delay­
insensitive circuits. In C. A. R. Hoare, editor, Developments in Concurrency and
Communication. Addison-Wesley, 1990. UT Year of Programming Institute on Con­
current Programming.

[115] Alain J. Martin. Synthesis of asynchronous VLSI circuits. In J. Straunstrup, editor,
Formal Methods for VLSI Design, pages 237- 283. North-Holland, 1990.

54

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

[116] Alain J. Martin. Synthesis of asynchronous VLSI circuits. Course Notes, VLSI 91,
Edinburgh, August 1991.

[117] Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J.
Hazewindus. The design of an asynchronous microprocessor. In Seitz [153], pages
351-373.

[118] Alain J. Martin and Pieter J. Hazewindus. Testing delay-insensitive circuits. In
Carlo H. Séquin, editor, Advanced Research in VLSI: Proceedings of the 1991 UC
Santa Cruz Conference, pages 118-132. MIT Press, 1991.

[119] Carver A. Mead and Lynn A. Conway. Introduction to VLSISystems. Addison­
Wesley, 1980.

[120] Teresa H.-Y. Meng. Asynchronous Design for Digital Signal Processing Architectures.
PhD thesis, UC Berkely, 1988.

[121] Teresa H.-Y. Meng. Synchronization Design for Digital Systems. Kluwer Academic
Publishers, 1991. Contributions by David Messerschmitt, Steven Nowick, and David
Dill.

[122] Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt . Automatic
synthesis of asynchronous circuits from high-level specifications. IEEE Trans. on
CAD, 8(11):1185-1205, November 1989.

[123] Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt. A clock-free
chip set for high-sampling rate adaptive filters. Journalof VLSISignal Processing,
1(4):345-365, 1990.

[124] Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt. Asyn­
chronous design for programmabie digital signal processors. IEEE Transactions on
Signal Processing, 39(4):939-952, April 1991.

[125] R. E. Miller. Combinational Circuits, volume 1 of Switching Theory. Wiley, 1965.

[126] R. E. Miller. Sequential Circuits and Machines, volume 2 of Switching Theory. Wiley,
1965.

[127] Peter H. Mills and 1. Dean Brock. A partial order characterization of delay-insensitive
circuits. In D. A. Edwards, editor, Proceedings of the IPIP TC-10 Conference on
Design Methodologies for VLSI and Computer Architecture, Pisa, Italy, Sept. 1988,
1989. North-Holland.

[128] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[129] David Misunas. Pet ri nets and speed independent design. Communications of the
ACM, 16(8):474-481, August 1973.

55

APPENDIX B. ASYNCHRONOUS BIBLIOCRAPHY

[130] Charles E. Molnar. Introduction to asynchronous systems. In Proceedings New Fron­
tiers in Computer Science Conference, pages 83-93, Santa Monica: Citicorp/TTI,
March 1986.

[131] Charles E. Molnar and Ting-Pien Fang. Synthesis of reliable speed-independent cir­
cuit modules: I. general method for specification of module-environment interaction
and derivation of a circuit realization. Technical Memorandum 297, Computer Sys­
tems Laboratory, Institute for Biomedical Computing, Washington Univ., St. Louis,
MO,1983.

[132] Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis of
delay-insensitive modules. In Henry Fuchs, editor, 1985 Chapel Hili Conference on
Very Large Scale Integration, pages 67-86. Computer Science Press, 1985.

[133] D. E. Muller. The general synthesis problem for asynchronous digital networks. In
8th Symposium on Switching and Automata Theory, New Vork, 1967.

[134] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceedings
of an International Symposium on the Theory of Switching, pages 204-243. Harvard
University Press, April 1957.

[135] C. D. Nielsen, J. Staunstrup, and S. R. Jones. Potential performance advantages of
delay insensitivity. In Proceedings of Workshop on Silicon Architectures for Neural
Nets, St. Paul-de-Vence, France, November 1990.

[136] Steven M. Nowick and David L. Dill. Practicality of state-machine verification of
speed-independent circuits. In Proceedings of ICCAD-89, pages 266-269. IEEE,
November 1989.

[137] Fredrik Orava. Verifying safety and deadlock properties of networks of asyn­
chronously communicating processes. In Ed Brinksma, Guiseppe Scollo, and Chris A.
Vissers, editors, Protocol Specification, Testing and Verification: Proceedings of the
9th International IFIP WC 6.1 Workshop, 1989.

[138] Ad Peeters. Decomposition of delay-insensitive circuits. Computing Science Notes
90/04, Dept. of Math. and C.S., Eindhoven Univ. of Technology, April 1990.

[139] Christian Piguet. Logic synthesis of race-free asynchronous CMOS circuits. IEEE
Journalof Solid-State Circuits, 26(3):371-380, March 1991.

[140] David K. Probst and Hon F. Li. Abstract specification, composition and proof of
correctness of delay-insensitive circuits and systems. Technical Report CS-VLSI-88-2,
Dept. of C.S., Concordia Univ., Montreal, Canada, April 1988.

[141] S. Purushothaman and P. A. Subrahmanyam. An algebraic basis for specifying and
reasoning about protocols for designing self timed circuits. In F. Anceau and E. J .

56

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

Aas, editors, VLSI 83: VLSI Design of Digital Systems, pages 133-144. Elsevier
Science Publishers, August 1983.

[142] Martin Rem. Trace theory and systolic computations. In J . W. de Bakker, A. J.
Nijman, and P. C. Treleaven, editors, PARLE: Parallel Architectures and Languages
Europe, Vol. I, volume 258 of Lecture Notes in Computer Science, pages 14-33.
Springer-Verlag, 1987.

[143] Martin Rem. The nature of delay-insensitive computing. In Graham Birtwistle, edi­
tor, IV Higher Order Workshop, Banff 1990, pages 105-122. Springer-Verlag, 1991.

[144] Fred U. Rosenberger and Charles E. Molnar. Comments on 'metastabilityof CM OS
latchjflip-flop'. IEEE journalof Solid-State Circuits, 27(1):128-130, January 1992.
Reply by Robert W. Dutton pages 131-132 of same issue.

[145] Fred U. Rosenberger, Charles E. Molnar, Thomas J . Chaney, and Ting-Pien Fang.
Q-modules: Internally clocked delay-insensitive modules. IEEE Transactions on
Computers, C-37(9):1005-1018, September 1988.

[146] Huub M. J. 1. Schols. A formalisation of the foam rubber wrapper principle. Master's
thesis, Dept. of Math. and C.S., Eindhoven Univ. of Technology, 1985.

[147] C.-J. Seger. On the existence of speed-independent circuits. Research Report CS-
87-63, Computer Science Dept., Univ. of Waterloo, Canada, November 1987.

[148] C.-J. Seger. Models and algorithms for race analysis in asynchrnonous circuits. Re­
search Report (PhD thesis) CS-88-22, Computer Science Dept., Univ. of Waterloo,
Canada, May 1988.

[149] C-J. Seger and J.A. Brzozowski. An optimist ic ternary simulation of gate races.
Theoretical Computer Science, 61 (1):49-66, October 1988.

[150] Charles L. Seitz. Self-timed VLSI systems. In Charles L. Seitz, editor, Proceedings of
the lst Caltech Conference on Very Large Scale Integration, pages 345-355, Pasadena,
CA, January 1979. Caltech C.S. Dept.

[151] Charles L. Seitz. Ideas about arbiters. Lambda, 1(1, First Quarter):10-14, 1980.

[152] Charles 1. Seitz. System timing. In Mead and Conway [119], chapter 7.

[153] Charles L. Seitz, editor. Advanced Research in VLSI: Proceedings of the Decennial
Caltech Conference on VLSI. MIT Press, 1989.

[154] Scott F. Smith and Amy E. Zwarico. Provably correct synthesis of asynchronous
circuits. In J!Ilrgen Staunstrup and Robin Sharp, editors, 2nd Workshop on Designing
Correct Circuits, Lyngby, pages 237-260. Elsevier, North Holland, 1992.

57

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

(155) J~rgen Staunstrup, S. Garland, and J. Guttag. Localized verification of circuit de­
scriptions. In Proceedings of the Workshop on Automatic Verification Methods for
Finite State Systems, volume 407 of Lecture Notes in Computer Science. Springer­
Verlag, 1989.

(156) H. J. Stucki and Jr. J . R. Cox. Synchronization strategies. In Charles 1. Seitz, editor,
Proceedings of the First Caltech Conference on Very Large Scale Integration, pages
375-393, 1979.

(157) Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-738,
January 1989.

(158) Ivan E. Sutherland, Charles E. Molnar, Robert F. Sproull, and J. Craig Mudge. The
trirnosbus. In Charles 1. Seitz, editor, Proceedings of the First Caltech Conference
on Very Large Scale Integration, pages 395-427, 1979.

[159] Hidehiro Takata, Shinji Komori, Toshiyuki Tamura, Fumiyasu Asai, Hisakazu Satoh,
Takio Ohno, Takeshi Tokuda, Hiroaki Nishikawa, and Hiroaki Terada. A 100-mega­
access per second matching memory for a data-driven microprocessor. IEEE Journal
of Solid-State Circuits, 25(1):95-99, February 1990.

(160) Jan Tijmen Udding. Classification and Composition of Delay-Insensitive Circuits.
PhD thesis, Dept. of Math. and C.S., Eindhoven Univ. of Technology, 1984.

(161) Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive
circuits. Distributed Computing, 1(4):197-204, 1986.

(162) Jan Tijmen Udding and Tom Verhoeff. The mathematics of directed specifications.
Technical Report WUCS-88-20, Dept. of C.S., Washington Univ., St. Louis, MO,
June 1988.

(163) S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley-Interscience, John
Wiley & Sons, Inc., New York, 1969.

[164] Stephen H. Unger. Asynchronous sequential switching circuits with unrestricted
input changes. IEEE Transactions on Computers, 20(12):1437-1444, December 1971.

[165] C. H. van Berkel. Beware the isochronie fork. Nat. Lab. Unclassified Report UR
003/91, Philips Research Lab., Eindhoven, The Netherlands, 1991.

(166) C. H. (Kees) van Berkel, Cees Niessen, Martin Rem, and Ronaid W. J. J. Saeijs. VLSI
programming and silicon compilation. In Proceedings ICCD '88, pages 150-166, Rye
Brook, New York, 1988. IEEE Computer Society Press.

(167) Kees van Berkel, Joep Kessels, Marly Roneken, Ronaid Saeijs, and Frits Schalij. The
VLSI-programming language Tangram and its translation into handshake circuits.
In Proceedings of the European Design A utomation Conference, pages 384-389, 1991.

58

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

[168] Jan L. A. van de Snepscheut. Trace Theoryand VLSI Design, volume 200 of Lecture
Notes in Computer Science. Springer-Verlag, 1985.

[169] Victor I. Varshavsky. Hardware support of parallel asynchronous processes. Research
Reports Series A, No. 2, Digital Systems Laboratory, Helsinki Univ. of Technology,
Otaniemi, Otakaari 5 A, SF-02150 ESPOO 15, Finland, September 1987.

[170] Victor I. Varshavsky, editor. Self-Timed Control of Concurrent Processes: The De­
sign of Aperiodic Logical Circuits in Computers and Discrete Systems. Kluwer Aca­
demie, Dordrecht, The Netherlands, 1990.

[171] Harry J.M. Veendrick. The Behavior of Flip-Flops Used as Synchronizers and Pre­
diction of Their Failure Rate. IEEE Journalof Solid-State Circuits, 15(2):169- 176,
1980.

[172] Tom Verhoeff. Notes on delay-insensitivity. Master's thesis, Dept. of Math. and C.S.,
Eindhoven Univ. of Technology, 1985.

[173] Tom Verhoeff. Delay-insensitive codes-an overview. Distributed Computing, 3(1):1-
8, 1988.

[174] Tom Verhoeff. Characterizations of delay-insensitive communication protocols. Com­
puting Science Notes 89/06, Dept. of Math. and C.S., Eindhoven Univ. of Technology,
May 1989.

[175] Tom Verhoeff and Huub M. J. 1. Schols. Delay-insensitive directed trace structures
satisfy the foam rubber wrapper postulate. Computing Science Notes 85/04, Dept.
of Math. and C.S., Eindhoven Univ. of Technology, August 1985.

[176] Martin Waardenburg. Composition and classification of components. Master's thesis,
Dept. of Math. and C.S., Eindhoven Univ. of Technology, 1989.

[177] Sterling R. Whitaker and Gary K. Maki. Pass-transistor asynchronous sequential
circuits. IEEE Journalof Solid-State Circuits, 24(1):71-78, February 1989.

[178] T. E. Williams, M. Horowitz, R. L. Alverson, and T. S. Yang. A self-timed chip for
division. In Paul Losleben, editor, Advanced Research in VLSI: Proceedings of the
1987 Stanford Conference, pages 75-95. MIT Press, 1987.

[179] Ted E. Williams. Self- Timed Rings and their Application to Division. PhD thesis,
Stanford, 1991.

[180] Sheng-Fu Wu and P.David Fisher. Automating the design of asynchronous sequential
logic circuits. IEEE Journalof Solid-State Circuits, 26(3):364-370, March 1991.

[181] Alexandre Yakovlev. Designing self-timed systems. VLSI Systems Design, 6:70-90,
September 1985.

59

APPENDIX B. ASYNCHRONOUS BIBLIOGRAPHY

[182] Alexandre V. Yakovlev. A relation-based approach to analysing semantics of asyn­
chronous hardware specifications. Technical Report No. 286, University of Newcastle
up on Tyne, November 1989.

[183] Tetsuo Yamasaki, Kenji Shima, Shinji Komori, Hidehiro Takata, Toshiyuki Tamura,
Fumiyasu Asai, Takio Ohno, Osamu Tomisawa, and Hiroaki Terada. VLSI implemen­
tation of a variable-length pipeline scheme for data-driven processors. IEEE Journal
of Solid-State Circuits, 24(4):933-937, August 1989.

[184] Michael Yoeli. Specification and verification of asynchronous circuits using marked
graphs. In K. Voss, H. J. Genrich, and G. Rozenberg, editors, Concurrency and Nets,
Advances in Petri Nets, pages 605-622. Springer-Verlag, 1987.

60

	00001_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00001_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00002_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00003_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00004_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00005_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00006_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00007_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00008_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00009_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00010_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00011_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00012_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00013_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00014_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00015_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00016_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00017_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00018_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00019_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00020_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00021_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00022_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00023_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00024_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00025_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00026_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00027_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00028_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00029_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00030_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00031_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00032_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00033_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00034_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00035_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00036_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00037_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00038_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00039_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00040_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00041_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00042_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00043_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00044_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00045_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00046_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00047_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00048_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00049_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00050_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00051_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00052_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00053_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00054_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00055_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00056_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00057_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00058_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00059_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00060_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00061_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00062_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00063_Korst, M. van der, Peeters, A., Schols, H._722.pdf
	00064_Korst, M. van der, Peeters, A., Schols, H._722.pdf

