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Entropies tor 20 Viscous Flows 

Abstract 

Previously, two-dimensional Navier-Stokes (20 NS) flow was represented as the 
evolution of two non-negative vorticity fields whose difTerence is the physical 20 
vorticity, and whose overlap corresponds to the viscous dissipation of vorticity. 
Any physical state in 20 periodic geometry can be achieved as some rearrange­
ment of the (conserved) fluxes of these two fields. Oefining an entropy for the 
system is equivalent to assigning statistical weights to the possible 
rearrangements. Maximizing this "two fluid" entropy leads to satisfactory 
predictions for the turbulent decay of the embedded 20 NS flow, as indicated 
by numerical solutions of the two-fluid equations. The entropy defined is inde­
pendent of the absolute values of the fluxes. 

1. Introduction 

Recent spectral-method computations (Matthaeus et al., 1991 a; Matthaeus et 
al., 1991 b; Montgomery et al., 1992) of freely-decaying, two-dimensional, 
Navier-Stokes (20 NS) turbulence at high Reynolds numbers have been carried 
out for periodic boundary conditions. In a few hundred large-scale eddy turn­
over times, a two vortex final state has been achieved, and appears to decay 
stably thereafter. The decay is on the much slower energy decay time scale, typi­
cally more than 10,000 eddy turnover times. The dominant dynamical 
mechanism that achieves the two vortex state is like-sign vortex merger, 
repeated over and over again at increasingly larger spatial scales. 

A respectable fit (Montgomery et al., 1992) of the computed data to a much 
earl ier (Joyce and Montgomery, 1973; Montgomery and Joyce, 1974) statistical 
mechanical theory of many ideal parallel line vortices has been noted. In par­
ticular, there is an apparent hyperbolic-sinusoidal dependence of the vorticity w 
upon the stream function 1/1 (where V 2 1/1 = - w) that characterizes the two vortex 
final state and which requires a justification going beyond the mean-field theory 
for the discrete-particle Hamiltonian mechanics (Onsager, 1949; Kraichnan and 
Montgomery, 1980) that underlie the ideal line vortex model. 

Seeking a most-probable state for any system to evolve toward requires some 
kind of an entropy to maximize. Entropy for continua is still a controversial 
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topic. Here, we propose a two-fluid description, involving positive and negative 
vorticity fields, which contains embedded in it the 20 NS dynamics. The non­
negative fluxes associated with the two vorticities are conserved , and their inter­
penetration is equivalent to a decay of the physical vorticity. As conserved quan­
tities, the two non-negative fluxes adapt themselves to an information-theoretic 
(Jaynes, 1957) definition of entropy. 

The two-fluid model is summarized in Section 2, and some supporting 
numerical evidence is described in Section 3, along with some closing remarks. 

2. Two-tluid model 

The two vorticity fields, w ± , both non-negative, are taken to obey 

( la,b) 

where the physical vorticity field is the difTerence, w == w + - W - . The fluid 
velocity is v = Vt/J x ê=, where the stream function t/J = t/J (x, y, t) obeys the 
Poisson equation , V2 t/J = -wo The kinematic viscosity is v ~ l. For al1 fields, 
8/8::. == 0, and for simplicity we assume periodic boundary conditions in the (x, y) 
plane over a square box of edge 2n:. Subtracting Eq. (l b) from Eq. (Ia) gives the 
20 NS equation in the wel1 known vorticity representation. 

For reasons which are familiar (Kraichnan and Montgomery, 1980), the 
energy E = (1 /2) J (w + - W - ) t/Jd2x decays slowly, according to Eqs. (Ia,b), but 
the enstrophy Q = ( 1/2) J (w + - W - )2 d2x decays much more rapidly. The 
essence of the maximum entropy argument is to define an entropy, or measure 
of the likelihood of a particular state, then maximize that measure subject to the 
constancy of the conserved or nearly-conserved quantities th at may exist. If the 
system exhibits ordinary statistical-mechanical behaviour, or something close to 
it, its time evolution should typical1y lead it toward that maximum-entropy 
state. Previously (Montgomery et al .. 1992), the entropy proposed was 

the maximization of which leads to the "sinh-Poisson" equation , if only energy 
and fluxes are conserved , and positive-negative symmetry is assumed: 

where ),2 ( > 0) and p ( < 0) are real constants. 
An unfortunate feature of this definition of entropy is that it is dependent 
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upon the absolute value of the (conserved) fluxes, equal for periodic boundary 
conditions: 

f w ±d 2x = V( w ±) . 

where V is (2nf, the area of the periodic box. However, both Eqs. (I) and all 
the other dynamics are invariant to the addition of the same positive constant 
to w + and w - . 

There is a more subtIe way of counting states and assigning entropies that is 
invariant to the addition of constants to the two vorticity fields. For any pair of 
initial vorticities. w + and w - , we may define four auxiliary fields by the follow­
ing relations ( < > means a spatial average ): 

w ++ =w + -( w +) , if w + > ( w +), zero otherwise; 

w +- = -w + + ( w +), if w +«w +), zero otherwise; 

w - + = -w - + ( w - ) , if w - «w - ), zero otherwise; 

w -- =w - - ( w - ), if w - > ( w - ) , zero otherwise. 

Then any other spatial redistribution of these four non-negative fluxes associated 
with w + +, W + - , W - + , and w - - can account for all possible states into which 
the system might evolve, and do it in a way th at is invariant to the addition of 
constants to w + and w - . An entropy which measures the likelihood of any such 
redistribution may be taken to be 

s= -f (w ++ lnw ++ +w + - lnw + - +w - + lnw - + +w -- lnw -- )d2x.(2) 

Given the four auxiliary fields, w + may for example be written as 
w + = W + + - w + - + ( w + ) and similarly, w - = - w - + + w - - + ( w - ). 

Maximization of this S, subject to constant values of the fluxes of the four 
auxiliary fields and the nearly constant value of E yields, as most probable 
values, w ++ =exp[ -ex ++ -Pijl] , w +- =exp[ - ex +- + Pijl] , 
w - + = exp[ -ex - + - Pijl] , and w - - = exp[ -ex - - + pijl]. Here, the ex's and P 
are five Lagrange multipliers, to be determined from the conservation laws. If an 
assumption of complete symmetry is made among the four auxiliary fields, the 
four ex's may be taken to be equal, and a hyperbolic-sinusoidal connection 
between w = w + - W - = w + + - W + - + w - + - W - - and Ijl results. As will be 
seen in Section 3, this symmetry is not quite fulfilled by the computations, for 
reasons that are apparently rather specific to the system. 

3. Numerical results 

A 2D spectral-method periodic code has been written by Shan (Montgomery et 
al. , 1993 j to solve Eqs. (l a,b j. In the process, of course, a solution for the 
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2D NS equation is generated, but extra infonnation on the two-fluid system is 
provided. Interpreted in tenns of the 2D NS variables (w, v, t/I), the evolution 
is familiar (Matthaeus et al., 1991a, Matthaeus, 1991b; Montgomery et al., 
1992). For Reynolds numbers greater than about 1000, like-sign vortex mergers 
occur until only one vortex of either sign remains. Here R is the large scale 
Reynolds number defined from the initial nns velocity < v2 > 1/ 2 (typically = 1), 
unit length scale, and V - I which has ranged from 1000 to about 14,000 in recent 
runs. With these conventions, the Reynolds number is in effect v -I, and the 
characteristic energy decay time is also of the order of v -I. The vortex captures 
are typically completed in a time more than an order of magnitude less than the 
energy decay time. 

As illustrated in Fig. I, a scatter plot of the computed w + and w - vs. t/I at 
late times is typically weil fit by the maximum entropy predictions, which are the 
curves drawn through the scatter plots. The oc's and p for the curves are deter­
mined by a least squares fitting procedure. The symmetry requirements 
necessary to convert the exponentials into hyperbolic sines for ware typically 
not quite so weil fulfilled, for what seems to be the following rather specific 
reason. 

+ 
3 

I 
3 

11 
10 

9 
8 
7 
6 

/ 
j 

fP 

// 

~~ 
2 

11 

-2.5 -2 -1.5 -1 -0.5 0 0.5 
tp 

1~ \ 
~ 

8 \. 
7 
6 
5 
4 
3 

1 1.5 2 2.5 

2 L-~~~~ __ ~~~~~~ 

-2 .5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 
tp 

Fig.la,b. Scatter plots ofthe computed (J) + vs. '" and (J) - vs. '" at t=390 initiallarge-scale eddy 
tumover times at R = 10, 000. The dashed lines are the least-squares fit of the maximum entropy 
predictions (from Montgomery et al. (1993» . 
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In the vortex merger process, there is a conservation law that guarantees that 
the two final-state vortices should have equal absolute values of integrated vor­
ticity; but there is no corresponding reason why they should acquire equal 
energies. While a roughly equal distribution of energy might be expected, there 
is nothing in the dynamics of the sequence of like-sign vortex mergers leading to 
the final state that guarantees an equal sharing of energy. In the runs that have 
been done, it has been typical to have a ten percent difference in the kinetic 
energy associated with the half of the basic box containing the positive vortex, 
compared with the half containing the negative vortex, and this difference per­
sists. 

A consequence of this difference is th at the structure of the positive and 
negative vorticity· parts of the final state can be better fit separately by the two 
values of the reciprocal temperature P that differ by perhaps 15% than by a 
single common value of p. There are comparable differences in the (l'S, since they 
are not independent of the p. The mergers seem to lead to vortices that are 
individually maximum entropy structures more accurately than the whole 
system is fit by the overall maximum entropy prediction, somewhat in the man­
ner suggested by Smith (1991). However, the overall fit with a single maximum­
entropy sinh-Poisson prediction is not a bad fit to the computed data 
(Matthaeus et al. , 1991a; Matthaeus et al., 1991b; Montgomery et al. , 1992). 

Considerable work remains, in defining entropies precisely for the three­
dimensional case (Chorin, 1991). There has also been a suggestion that a maxi­
mum-entropy analysis can be made to fit the solutions of the Euler equations 
(v = 0), which appears somewhat more problematical (Robert and Sommeria, 
1992 ). 
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