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Abstract 

A variational characterization is given for coherent vortices in plane fluid flows. 
We characterize isolated vortices, such as mono-, di- and tripolar vortices, as 
(relative) equilibrium states of the dynamical equation. To calculate the vortices 
numerically, an iteration scheme is constructed to solve the variational 
problems. The Lagrange multipliers and the free boundary are solved implicitly 
in the iteration process, which makes it possible to calculate the complex vor
ticity configurations with distributed vorticity. 

Confined vortices in two-dimensional fluid flow 

The Euler equations which give the evolution equations for incompressible, 
homogeneous and inviscid fluid flow, are a dynamical system with a special 
structure, called a Poisson structure. In vorticity formulation the Euler equa
tions for purely two-dimensional flow are given by: 

{
81W + Vw · .lVI/! = 0. 
w = -AI/! 

( 1 ) 

which are the vorticity equation and the Poisson equation; here w denotes the 
scalar vorticity, I/! the stream function and J the skew-symmetric matrix 
J=( ~ l 6)· 

For this dynamical system there exists a natural invariant functional, the 
Hamiltonian H , which is the kinetic energy of the system: 

H( w) = ~ f I/!w dx dy (2) 

Together with other invariant functionals the Hamiltonian determines special 
solutions of the evolution equation. Critical points of the Hamiltonian on level 
sets of the invariant integrals are ca lied relative equilibria. They are equilibrium 
solutions of the equation (I). 
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For an arbitrary function f of w, the invariant functional: 

C(w) = f f(w) dx dy (3) 

is a Casimir integral, ca lied the generalized enstrophy. A special case is given by 
the circulation or total vorticity: 

r( w) = f w dx dy (4) 

which is indeed a constant of the motion , as was shown by Kelvin. Besides the 
invariants given by the Casimirs C, the system admits constants of the motion 
given by the momentum integrals (linear and angular momentum), if the flow 
domain is translationally or rotationally symmetric. 

We can find time-independent solutions by looking for relative equilibria, 
solving variational problems of the following type: 

extr {H(w) I C(w) = y} 
WE L z 

The Lagrange multiplier rule supplies a constant À. such th at an extremizing 
solution w (depending on y ) satisfies: 

JH(w) = MC(w) 

or similarly: 

tf;=À.f'(w) 

(5) 

(6) 

(7) 

This yields an explicit functional relationship between stream function and vor
ticity, which is directly related to the choice of integral constraints C( w ) in the 
variational principle. 

Denoting by M a momentum integral (either Iinear or angular momentum), 
steadily translating or rotating solutions can be found from the variational prin
ciples: 

extr {H(w) I C(w) = y; M(w) =m } 
WE L z 

(8) 

We are interested in finding confined vortices, i.e. vorticity distributions with 
compact support, surrounded by irrotational flow. To find confined solutions, 
the functionf'(w) in (7) must be multivalued in w=O. To achieve this multi
valuedness, we use non-difTerentiable constraints given by the positive and 
negative circulations: 

r + (w ) = f (w) + and r - ( w ) = f (w )_ 

where (w) + =max(w, 0), (wL. =min (w, 0). 

(9) 
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Related to the confinement of the vorticity distributions is the free boundary 
of the vortex support. The vorticity distribution and consequently the domain of 
non-zero vorticity have to be found from the variational inequalities for the vor
ticity. 

We look at an algorithm th at solves the variational inequality for the vor
ticity. The algorithm is able to find the multipliers and to adapt the free bound
ary within the process. First it is observed that the Lagrange multipliers satisfy 
a variational characterization (see also Eydeland and Van Groesen, 1989). 
Secondly the method by Eydeland et al. (1988, 1990) for non-convex optimiza
tion is applied, by linearizing the non-convex part of the functionals around the 
previous iteration step. 

Instead of the variational inequality that has to be satisfied outside the vortex 
support, we use the Laplace equation for the stream function, with AI/! = 0 and 
I/! sufficiently smooth over the boundary of the vortex domain. 

The iteration scheme and some calculations are shown for mono-, di-, tri- and 
quadrupolar vortices. 

Varia/ional principle for Lagrange multipliers 

Suppose a family of equilibrium solutions is parametrized by the value of y in 
the following variational problem for the energy: 

extr {H(w) I C(w) = y} (lO) 
w 

If Hand Care sufficiently smooth, there exists a constant À E IR such that: 

JH(w) -ÀJC(w) =0 (11 ) 

The value of À depends on the specified value of the constraint, À = À( y), and the 
variational problem can be written as: extr w H( w) - ÀC( w). The multiplier À can 
be found from the following variational principle: 

extr extr H( w ) - À( C( w ) - y) 
). w 

( 12) 

The extremum for w, denoted by w( À), satisfies (11) and the remaining critical 
value problem for À yields the value for À for which C(w(À)) = y. In this way the 
constrained variational problem is transformed to an unconstrained problem. 
Without any restriction this can be generalized to variational problems with a 
family of constraints. After substitution of the extremizer w( À) into (12), the 
finite dimensional optimization problem for the multiplier( s) can be solved by a 
steepest descent method. The optimization for w in (12) is infinite dimensional 
and the functional H(w)-À(C(w)-y) might be non-convex in w. We impIe
ment a numerical optimization method for non-convex functionals by Eydeland 
et al. (1988, 1990). 
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The iteration process 

An iteration scheme is constructed, combining the non-convex optimization and 
the optimization for the Lagrange multipliers. Consider the variational principle 
(10). Choose a starting value for the vorticity Wo with corresponding stream 
function t/J o· At iteration step k, with stream function t/J k, the Iinearization of the 
energy functional is given by: lJH( wd w = 11/1 kW. If we define for each iteration 
step the functional: 

fI! d w, À) = f t/J kW - À( C( W ) - y) (13 ) 

the iteration process is given by: 

{

Wk + J (À) = arg extr fI! dw, À) 
w 

Àk + J = argeyr fI! dWk + J (À), À) 
(14) 

From Wk + J one finds t/J k + J by application of a Laplace sol ver for the Poisson 
equation: 

(15) 

with suitable boundary conditions for t/J k + J' At each iteration step the multi
pliers are found such th at the constraints are satisfied. This means th at no dis
traction takes place from the level sets of the integrals. 

The method is applied to steadily rotating vortices in the plane and to dipolar 
vortices in a bounded domain with periodic boundary conditions. 

Calculation of confined vortices 

Rotating vortices in the plane, with continuous and distributed vorticity, can be 
found from the following variational problem: 

extr {H( W ) - exP( W ) } 
WES 

(16) 

with the constrained set S given by: 

(17) 

The fixed value of ex corresponds to the rotation ra te of the vortices. Here 
H = H t/Jw denotes the kinetic energy, P = H r 2w the angular momentum, 
W = H w 2 the enstrophy or squared vorticity and r + and r _ the positive and 
negative circulations (9). 
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We simulate the vortices in the plane by considering a numerical spatial 
domain D, with boundary condition imposed upon the stream function given by 
either t/J( x) = 0 or: 

r(w) 
t/J(x) = - -- logJxJ , 

2n 
xE8D 

The variational inequality for a maximizer of ( 16) reads: 

f" if w>o - ï ocr = I1W + (J + , 

t/J - locr 2 = I1W + (J if w<o , - , 

(J _ ~ t/J - 4ocr2 ~ (J +, if w=o 

(18 ) 

(19) 

Here 11 , (J +, (J _ are the multipliers associated to W, r + , r _ respectively. We 
linearize the energy (with the correction for the rotation), and define the func
tional Y k at iteration step k by: 

Y d w, 11 , (J + , (J _ ) = f ( t/J k - ~ocr2 ) w - 11 Gf w 2 
- w) 

- (J + (f (w) + - Y + ) - (J - (f (w) _ - y _ ) (20 ) 

Given t/J k at step k , the next iteration step reads with 11 > 0: 

(21 ) 

Substitution of Wk + I into Y k Y!.elds 11 k+ 1= arg extrp Y dWk + 1, 11, (J +, (J _ ) and 
af ter substitution of 11k + I into Y k the problem reduces to a convex minimiza
tion, of a function .!l k ((J + , (J _ ) . 

Numerical results 

We chose the numerical domain D = [ -1 , 1] x [ -1 , 1]. The calculations are 
performed on a 64x64 equidistant grid. 

Monopolar vortices: 

By taking y _ = 0 in the variational principle (16), the extrema are positive 
monopolar vortices surrounded by irrotational flow. Figures 1 and 2 show typi
cal vorticity distributions for maximization and minimization , respectively. The 
parameter values are: w = 20, y + = 4, y _ = 0 for the calculations on the 
monopolar vortices. 
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Fig. I. Spatial plot of the vorticity soIution of (16) for w = 20, )' + = 4, )' _ = 0, a. = 7. 

Fig. 2. Spatial plot of the vorticity soIution of (16) for w = 20, )' + = 4, )' _ = 0, a. = -7. 
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0 
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Fig. 3. Contour plot of the vorticity solution of (16) with w = 3.2, )' + = 1.6, )' _ = -1.6, a. = O.O. 
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Fig. 4. Contour and spatial plots of the vorticity solution of (16) with w = 3.2, )' + = 1.6, 
)' _ = -1.3, a. = O.O. 
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Fig. 5. Contour plot of the vorticity solution of (16) with w = 3.2, Y + = 1.6, Y _ = -1.15, ex = O.O. 

Non-symmetrie dipolar vortiees: 

By taking oc = 0 in the variational principle (16) and '" = 0 on aD we find a 
eharaeterization of dipolar vortices on aperiodie domaiil. We chose parameter 
values w = 3.2 and y + = 1.6 and different values for y _ in the neighbourhood of 
y _ = -1.6. Figure 3 shows the vortieity in a contour plot for y _ = -1.6. For 
this ehoice of parameter values there exists a solution whieh is a eonfined and 
symmetrie dipolar vortex. The multipliers a + and a _ satisfy a + = - a _ . 

There exists a branch of eonfined dipolar solutions, parametrized by the value 
of y _. In a neighbourhood of y _ = - y + non-symmetrie, eonfmed solutions of 
(16) are found. In figure 4 a non-symmetrie dipole is shown for y _ = -1.3. In 
figure 5 we show the result of the ealculations with y _ = -1.15. For this value 
of y _ the value of the multiplier a _ has beeome positive, sueh that the vortieity 
solution is not confined. 

Tripolar and quadrupolar vortices: 

For special choices of the parameter values we find tripolar and even quad
ropolar vortical structures. The structures rotate as a whole around the center 
of vorticity (the origin). We chose parameter values w = 10, y + = 1, y _ in the 
neighbourhood of y _ = - 1 and oc in IR. 

We show the vorticity at different stages in the iteration process in figures 6 
and 7. It is observed that the symmetries of the initial vortex eonfiguration are 
not necessarily conserved. The succeeding iterates form no approximation of any 
real dynamics. 

In the experiments by Van Heijst and Kloosterziel (1989, 1990) only tripolar 
vortices have been observed with positive core and negative satellites rotating 
eounter-clockwise (corresponding to oc negative). The sign of rota ti on 
corresponds with the sign of vorticity of the vortex eore. For most confined tri
poles that are found by our numerical calculations, the rotation corresponds to 
the vorticity in the core. However, also tripoles are found that rotate in the 
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Fig. 6. Contour plots or the vorticity at different stages in the iteration. The calculation is perfor
med with 1\'= 10. l'+ = I. )' _ = -I. IX= -0.04. 

other direction. In fact, tripolar and quadrupolar vortices are found with rota
tion rates positive, negative or even zero. Also in numerical simulations by 
Polvani and Carton (1990) tripolar vortices have been found with positive, 
negative or no rotational velocity. 

With the chosen parameter values, the regions of vorticity are not far from the 
boundary of the numerical domain. This means that the imposed boundary con
dition on the square domain has a large influence on the solutions. It might be 
possible to find vorticity distributions that are confined to a small 
neighbourhood of the origin , by changing the parameter values for \1.', y +, Y _ , 
pand ex. This however needs further investigation. 
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Fig. 7. Contour plots of the vorticity at different stages in the iteration. The calculation is perfor-
med with 1\' = 10. )' + = I. )' _ = - I. IX = -0.08. 
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