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Stability of Isolated Compound Vortices 

Abstract 

The stability of the members of a dass of isolated vortices is discussed. Two 
well-known examples of sta bie isolated flows are the dipole and tripole. The 
existence of an even more complicated stabie isolated flow is demonstrated here. 
Like the dipole and tripole, it is also a compound vortex and consists of a core 
vortex surrounded by three satellite vortices of opposite sign. The core of this 
'quadrupole' is triangular in shape and the satellites are semicircular. The 
stability of th is flow is inferred from high-resolution numerical simulations and 
analysis of point-vortex modeis. Further consideration suggests th at all higher 
order n-poles will be unstable to merger of the satellite vortices. 

Introduction 

Isolated two-dimensional vortices are models for the localized flow structures 
that are prevalent in geophysical flows. By isolated we mean a vortex whose net 
circulation is zero so that the velocity field induced by the vortex falls ofT faster 
than l lr in the far field , where r is the di stance measured from the center of the 
vortex. Such vortices are created, for example, by topographic forcing of islands 
or mountains, instabilities of major current systems such as the Gulf Stream, 
and strong localized wind forcing on the ocean surface. Two-dimensional models 
provide a first approximation to such vortices and have been extensively studied. 

A simp Ie model for circularly symmetric isolated flows consists of a core of 
single-signed vorticity surrounded by an annulus of vorticity of opposite sign, 
with amplitudes such that the total circulation vanishes. There have been 
numerous studies of the stability and evolution of such vortices. If the annulus 
is sufficiently narrow, so th at the fall ofT of vorticity from its maximum to mini
mum value is sufficiently steep, then the flow is unstable. Numerical simulations 
and laboratory experiments (cf., Carton & McWilliams 1989, Kloosterziel & van 
Heijst 1991 , Carnevale & Kloosterziel 1994) show that under these conditions 
the vorticity regions can break up and reassemble into more complex, yet more 
stabie, structures. One common scenario is the formation of a tripole. In that 
case the core becomes elliptical in shape while the annulus dumps and separates 
into two distinct vortices th at remain as satellites of the core. The entire com-
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pound vortex simply rotates, as in solid-body rotation, at a constant angular rate 
about the centre of the core. Another common scenario, called dipole splitting, 
results if the initial profile is even steeper than for the case which produces the tri
pole. The instability then proceeds initially as in the case of tripole formation, but 
eventually the satellites shear apart the core, which then rolls up into two new vor
tices. This results in two dipoles that propagate away from each other. 

The dipole consists of two oppositely-signed vortices that adv eet each other, 
and it appears to be a very stabie structure. The well-known analytic model for 
this flow was given by Lamb (1932), and many writers, therefore, refer to it as 
the Lamb dipole. Recently, reference to an earlier publication (Chaplygin, 1903) 
of this analytic model has been made, but we have not yet seen a copy of this 
work. t This dipole model has been of considerable interest since it can be used 
to represent various geophysical phenomena such as mushroom vortices (cf., 
Federov 1989 j . Furthermore, this dipole has a generalization to a similar 
isolated flow on the p-plane, called the modon, and as such has generated con
siderable interest due to its possible relevanee in the phenomenon of 
atmospheric blocking (cf. , Stern 1975, McWilliams 1980). In numerical simula
tions and laboratory experiments, the dipole appears to be very stabie. 
Diagrams summarizing the stability of the modon to various types of perturba
tions have been published by Me Williams et al. (1981) and Carnevale et al. 
( 1988a). It is hard to give a precise stability range because much depends on the 
exact form of the perturbation, but it seems th at modons are most sensitive to 
forcing on length-scales comparable to their own diameter and th at perturba
tions of greater than 10%, relative to its unperturbed strength , are necessary for 
destruction. The usual instability by which the modon is destroyed involves a 
separation of the two regions of oppositely-signed vorticity (Carnevale et al. 
1988b). Similar studies of the Lamb dipole show essentially the same results as 
in the modon case (unpublished). Although there have been many attempts at 
proving the stability of dipoles, an uncontested proof remains elusive (cf., Car
nevale et al. 1988c, Nycander 1992). 

An even more complicated isolated flow is the tripole. It consists of a central 
core of vorticity of one sign and two satellites of opposite sign, all co-linear and 
all rotating at constant rate about the center. Although this compound vortex 
appeared in a published numerical simulation of turbulence (Sadourny, 1985), it 
was not noted in th at paper or any other, to our knowiedge, until the work of 
Legras et al. (1988), in which the tripole was c\early pointed out as being a very 
stabie element in an otherwise turbulent flow. Publications of laboratory work 
which also showed this tripole quickly followed (van Heijst & Kloosterziel, 
1989). In that work, the tripole was produced as a result of the breakdown of 
a circularly symmetrie flow as discussed above. Oceanic observations of a tripole 
were reported by Pingree & LeCann (1992). Laboratory studies (van Heijst et 
al. 1991) and numerical simulations (Polvani & Carton 1990) attest to the 

t Note added in proof: Chaplygin's work is described in a recent paper by Meleshko & van Heijst 
(1994), J. Fluid Mech . 272,157- 182. 
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stability of these structures. Unfortunately, there is no analytic model of tripoles 
with continuous vorticity. Models using three point vortices have been successful 
at simulating many of the properties of the tripole under external perturbations, 
and nonlinear stability of this three point model with respect to displacements 
of the satellites can be proven (Kloosterziel, 1990). 

At this point, it is natural to consider whether there may be a hierarchy of 
more complicated sta bie n-poles consisting of a core vortex surrounded by 
ns = n - 1 satellites of opposite sign. In fact , laboratory experiments on the 
instabilities of circularly symmetric vortices in a rotating tank (Kloosterziel & 
van Heijst 1991) have shown the natural evolution of a quadrupole consisting 
of a triangular core vortex surrounded by three semi-circular satellites of vor
ticity of opposite sign. Although never observed in other than a transitory state 
in the laboratory, subsequent numerical simulations and point vortex mode Is led 
us to believe that this kind of structure can also be stabie if prepared in a suf
ficiently symmetric way. This is further discussed in the next section. 

As for the existence of compound vortices even more complicated than the 
quadrupole, our investigations indicate th at there are none. The instability of the 
higher-order structures is discussed in a separate section below. 

The quadrupole or triangle vortex 

In rotating-tank experiments, the quadrupole is observed to break apart rather 
rapidly af ter it has formed (see Kloosterziel & van Heijst 1991 , Carnevale & 
Kloosterziel 1994). The instability begins with two of the satellites moving closer 
together. One of these satellites moves in between the other satellite and the 
core. The two satellites are then close enough together to merge into a single 
vortex in the same way that two like-signed vortices merge in isolation (cf. 
Melander et al. 1988). This results in a transitory tripole stage, which then 
proceeds to double-dipole splitting as described above. Orlandi & Van Heijst 
(1992) we re able to capture this formation and transitory existence of the quad
rupole in numerical simulations. This encouraged us to explore more fully the 
mechanisms involved in this evolution, using spectral simulations and point-vor
tex modeIs. 

Orlandi & van Heijst (1992) used the following vorticity profile as their 
unperturbed basic state: 

(1) 

where r is the radial di stance from the centre of the vortex. Distances have been 
non-dimensionalized by L , the horizontal length-scale of the vortex, and 
velocities by V. This is the same profile as used in several earlier studies (e.g., 
Carton & McWilliams, 1989). Note th at increasing iX. makes the vorticity in the 
core more uniform, the width of the annulus smaller, and the slope of the vor-
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Fig. 1. Vorticity contour plot of a quadrupole vortex. Thick (thin) contours indicate positive 
(negative) relative vorticity. The contour level values are chosen to have increments of 
AC = 0.2 S - I. The dimensional velocity and length scales used in the initialization were U = 20 cm/s 
and L = 11 cm, and the length of a side of the computational domain was 90 cm (although here 
we have only plotted the field over an inner square of 54 cm on a side). 

ticity as a function of r steeper between the core and annulus. We will refer to 
ex as the steepness parameter. This family of profiles is a reasonable model for the 
types of isolated vortices created in the tank. Orlandi & van Heijst (1992) used 
an initial condition in which the basic state in equation (1), with ex = 5, is pertur
bed with a randomly generated vorticity field defined by 

, (-(exr" -2)2) 
, = 'I exp 2a2 - c. (2) 

Here '1( x , y) is a random number unifonnly generated on the range ( -'10,110) 
for each grid-point, and c isa constant chosen to ensure that the spatially 
integrated value of ç (i.e. the circulation of the perturbation) vanishes. This per
turbation is concentrated at the radius where the unperturbed vorticity field 
changes sign, and a can be adjusted to make the perturbation penetrate the core 
and annulus to any desired degree. 

In Camevale & Kloosterziel (1994), we examined the stability of the vorticity 
distribution (1) for a range of ex-values, subject to perturbations of single 
azimuthal modes given by 

( 
-(exr" - 2)2) 

ç = p cos(mO) exp 2a2 ' (3) 

where p is a constant amplitude and m is the mode number. The results of a 
linear stability analysis showed that the behaviour observed in the laboratory 
experiments and the random initial condition simulations could be understood 
as a combination of the simultaneous growth of both azimuthal modes m = 2 
and m = 3. Furthennore, setting ex = 6, we found that if modes other than mode 
3 are sufficiently weak initially, a symmetric quadrupole can fonn and persist. 

In a simulation with an initially pure mode-3 perturbation and with viscosity 
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appropriate to the rotating-tank conditions used in the laboratory experiments, 
we found that a fairly symmetric triangular core forms by the end of the first 
rotation. It also takes about one rotation for the triangle to form in the purely 
inviscid case but the rotation period is about 15% shorter. Figure I shows the 
triangle structure in the viscous simulation after about two full rotations. The 
fact that it is not perfectly three-fold symmetric is due to asymmetries associated 
with the finite resolution of the grid which have amplified during the evolution. 
This quadrupole persisted unchanged in form although becoming somewhat 
broader in scale due to the ellect of the Laplacian diffusion. During the course 
of the simulation the amplitude of the vorticity field decayed by three orders of 
magnitude under the influence of Ekman drag and molecular diffusion. This 
indicates that it should be possible to create a triangle vortex in the laboratory 
which would simply decay in amplitude. 

To test the inviscid stability of the quadrupole, we began with the quadrupole 
shown in figure I as an initial condition and simulated forward in time with no 
viscosity. In figure 2, we show the initial stream function in the reference frame 
co-rotating with the quadrupole. If the state were perfectly stationary, then these 
streamlines would be aligned with those of the vorticity. Since there is some dif
ference, this quadrupole deviates from an ideally symmetric one that would be 
steadily rotating; nevertheless, we followed the inviscid evolution of this vortex 
for over twenty of its rotations without observing any evidence th at it would 
break down. This was verified at both resolutions 64 x 64 and 128 x 128. 
Although there was some variation of its form over that long period, the basic 
structure did not change significantly. Thus it appears possible that, for inviscid 
flow, the symmetric quadrupole is a stabIe structure. The difficulty in finding a 
stabIe triangle vortex experimentally or in the corresponding random-perturba
tion simulations must be due to the fact th at it is only sta bIe for perturbations 
with amplitude below some small threshold value. 

To examine how large the tolerance for perturbations is, we performed two 
different kinds of stability tests. In the first , we perturbed the strength of the 

Fig. 2. Stream function contour plot of quadrupole vortex. The stream function is evaluated in 
the co-rotating frame with rotation period 81 s. The contour increment was taken as A tp = k 2 A( , 
where k = j: /a with j: = 3.83 and where a = 12 cm is approximately the radius of the semicircular 
satellites. 
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satellite vortices while leaving the inner triangular core unperturbed. This type 
of perturbation was suggested by an analysis of point-vortex models and by 
experience from the experiments and simulations. It seemed that the triangle is 
sensitive to variations in the strengths of the outer satellites. Such asymmetries 
would lead to variations in the rate of revolution of the satellites about the core 
and thus permit a collision of a pair of satellites. The perturbation was prepared 
by taking the state shown in figure 1 and multiplying the vorticity field of the 
satellites by the factors 1 + b, 1 - b, I, respectively, in one set of experiments, 
and by factors 1 + b, 1 - b/2, 1 - b/2, in a second series. All of the stability 
simulations were run with no bottom drag and no Laplacian viscosity; however, 
in order to avoid the build up of enstrophy in the smalle st scales during the long 
runs, hyperviscosity was used. 

In figure 3, we plot the time it takes until a merger occurs between two of the 
satellites in each of these series of experiments. The time is given in units of the 
rotation period of the unperturbed vortex and the simulations were terminated 
after 20 rotation periods even if no breakdown had occurred. For perturbations 
less than 2 percent, the triangle remains intact for more than 20 rotation periods. 
There is a steep fall off of the time to merger or breakdown between perturba
tions of 2 and 4 percent. Defining a stability boundary based on simulations 
requires some arbitrary choice of how to define the sta bie regime since numerical 
noise will eventually contaminate the results. For practical purposes, we can 
take our stability boundary to be approximately where the lifetime, as a function 
of the perturbation amplitude, becomes very large. Thus the stability boundary 
is around 3 percent. This is much smaller than the rough estimate of about 10% 
for dipoles as mentioned above. 
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Fig. 3. Stability plot for the quadrupole. We show the time to merger of two of the satelIites for 
the perturbed triangle vortex as a function of the strength of the perturbation. The data points 
marked by asterisks (circles) correspond to the case in which the initial satellite vortex strengths 
are multiplied by 1+15, 1-15, I (1 +15 ,1-15/2, 1-15/2). The merger time is expressed in units of 
the unperturbed vortex rotation period (81 s). 
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In the second kind of stability study, we added a randomly generated 
homogeneous isotropic vorticity field to the vortex shown in figure 1. This per
turbation field was created by adding contributions from all wavevectors with 
wavenumbers between two fixed limits, ko ~ k l , in such a way that the energy 
spectrum of the perturbation was independent of wavenumber in that band. The 
real and imaginary parts of the complex amplitude for each wave number were 
generated from a Gaussian distribution. The perturbation amplitude is measured 
as the ratio of the rms velocity of the perturbation to the rms velocity of the tri
angular vortex. The rms averages are taken only over the area within an 
imaginary boundary of an idealized structure consisting of the triangle surroun
ded by three semicircles. The length scale of the perturbation is defined as 
À. == LB!(L,iZ), where L B is the size of the periodic computational box, L,j = 2a 
is the length of one side of the triangle vortex, and f = (k I + ko)!2. Thus the 
value À. = 1 corresponds approximately to the scale of the triangular vortex. The 
circles on the plot in figure 4 indicate the simulations in which the triangle vor
tex survives for more than ten rota ti on periods, and the asterisks indicate the 
simulations in which the triangle breaks up before that time limit is reached. 
Again the definition of a stability boundary is somewhat fuzzy. But we may con
clude that the triangle vortex is most unstable to perturbations of length scale 
close to its own, and the minimum strength of the perturbation needed to 
destabilize it is about 3 percent measured in rms velocity. The structure appears 
very stabIe to large-scale perturbations, which for the most part simply advect 
it, and also to small-scale perturbations, which are quickly sheared out to even 
smaller scales to be eventually dissipated by hyperviscosity. 
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Fig. 4. Stability plot for the quadrupole. The graph shows the results from a stability study in 
which a random velocity field of length scale À. and amplitude V rms was added to the triangle vor
tex. Asterisks mark the experiments in which merger occurred between two of the three satellites 
before ten rotations periods of the unperturbed structure had elapsed. Circles mark those simula
tions in which the vortex system was still intact after ten rotation periods. The perturbation 
amplitude V rms is given in multiples of the rms velocity of the triangle vortex, and À. is defined so 
that À. = I corresponds to the size of one side of the triangle vortex (see text). 
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Higher order n-poles 

Since the mode 3 instability of the initially circularly symmetric vortex leads 
through nonlinear saturation to the triangular vortex, we went on to test 
whether the mode 4 instability would lead to a square vortex. We performed a 
series of experiments with values of ex running from 3 to 8, both with and 
without viscosity. To the unperturbed state we added a perturbation as defined 
by equation (3) with azimuthal wavenumber 4 only, with amplitudes varying 
from Ji = 0.1 to 0.5 and with a length-scale (J = 1 in the initial condition. A 
further exploration of the parameter space was not performed since we found 
that these somewhat arbitrary choices did lead to the formation of square vor
tices for ex> 5. For example, in figures 5 and 6, we show the vorticity and stream 
function plots of a square vortex which formed for a steepness parameter ex = 8. 
The simulation which produced this vortex was run with Ekman decay time and 
molecular viscosity set to the values that agreed with our laboratory experiment 
that produced quadrupoles ( i.e., TE = 132 s and v = .01 cm 2/ S). The basic struc
ture developed by time t = lOs and by time 72 s, the structure reached the state 
shown in the figure. The vorticity distribution is shown in figure 5 and the 
stream function, in the co-rotating frame of the vortex system, is given in 
figure 6. 

In all the simulations in which the square vortex formed, the structure broke 
down before at most 3.5 rotations were completed. The longest-lived square vor
tex was achieved for ex = 8, starting with a perturbation amplitude of Ji = 0.5, 
with only hyperviscosity dissipation acting. In all cases, these square vortices, 
which have satellites of equal strength, broke down through the simultaneous 
merger of their satellites in two pairs on opposite sides of the square core. 

In figure 7, we show the instability that destroys the square vortex. The condi
tions for the simulation were again set to match those in our rotating tank 
experiments. The initial vortex in this simulation was created with ex = 8, and a 

Fig. 5. Vorticity contour plot of a square vortex. Thick (thin) contours indicate positive 
(negative) relative vorticity. The contour level values are chosen to have increments of A' = 0.3 S - I (other parameters are as in figure I). 
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Fig. 6. Stream function contour plots of a square vortex. The stream function is evaluated in the 
co-rotating frame with rotation period 44.8 s. Beyond a certain value, the high level con tours were 
not drawn because of 'bleeding' between the Iines. The contour increment was taken as 
.1 lP = k 2 .1(. where ka = J: and u = 8.3 cm is approximately the radius of the semicircular satellites 
(other parameters are as in figure I). 

o 

Fig. 7. Vorticity contour plot showing the evolution of the square vortex. For this simulation we 
used a kinematic viscosity and bottom drag with an Ekman decay time typical of the values 
corresponding to our rotating tank experiments. Thus this simulation demonstrates the possibility 
of producing a transitory square vortex in the rotating-tank under conditions similar to those in 
which the triangle was produced. The dimensional velocity and length scales and box size are as 
in figure I. Thick (thin) Iines represent positive (negative) contour levels. Panels are ordered from 
left to right, top to bottom, corresponding to times t = 0,80,130, and 140 s, and they have contour 
value increments of .1( = 0.8, 0.4, 0.12, and 0.11 s - 1, respectively. 

G.F. Carnevale and R.C. Kloosterziel 225 



wavenumber 4 perturbation of amplitude J.1 = 0.125. The square vortex formed 
after about 10 seconds. Unlike the triangle vortex which lasted indefinitely under 
the same conditions, th is square vortex broke down after about two and a half 
rotations. The double satellite merger begins in the lower left panel. This led to 
an intermediate tripole state (lower right panel) which then broke down through 
the familiar double dipole instability. We also performed simulations in which 
the square vortex shown in figure 5 was perturbed by strengthening one satellite 
while correspondingly weakening another to preserve the total circulation. In 
those cases, only two satellites merged at first , leading to a temporary triangle 
vortex. Then another merger took pi ace leading to the tripole state, and then 
finally the double-dipo1e instability took over. From these results , we conclude 
that it should be possible to observe a square vortex emerge from a nearly cir
cularly symmetric vortex in rotating-tank experiments if the initial perturbation 
is made sufficiently close to a pure mode-4 perturbation. However, it is also 
clear that it would only appear as a transitory state. 

We have also been able to create a pentagon vortex in a numerical simulation 
by a wavenumber-5 perturbation on an ex = 8 profile. Although strong satellites 
do form rapidly, the structure breaks down af ter executing only about half a 
rotation. The breakdown began with the nearly simultaneous merger of two 
pairs of satellites which produced a roughly triangular system. Another merger 
followed , producing a tripo1e state. The tripole finally broke up into a dipole 
and monopole. 

Point - vortex models 

Finally, we turn to the stability of the higher-order geometrical vortices, the 
square, the pentagon, etc., from the point of view of point-vortex modeis. 
Specifically, we consider here only the zero-circulation , steadily-rotating con
figurations , consisting of n , = n - 1 equal strength point vortices symmetrically 
placed on a circle centred on a point vortex of opposite sign. It can be shown 
that the case n = 3, a model for the tripole, is nonlinearly stabie to displacements 
(Kloosterziel 1990), and in Eckhardt (1988) it is shown th at the case n = 4, the 
model of the triangular vortex, is also nonlinearly stabie. Morikawa & Swenson 
(1971) performed a linear stability analysis on these models for all n. The pertur
bations they considered were sm all displacements in the initial positions. Consis
tent with the later nonlinear stability results, they found that the cases n = 3 and 
n = 4 are linearly stabie, but more importantly, they proved that for all cases 
n ~ 5 the configurations are linearly unstable. For the cases n = 5 and n = 6, the 
models of the pentapole and hexapole, we have performed simulations that show 
th at a I % or less perturbation in the radial position of the satellites away from 
symmetry will result in the close approach of two of the satellites within one 
rotation period. This is the same form of instability th at led to the close 
approach and merger of satellites in our simulations of the continuo us pentapale 
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and hexapole vortices. This should be contrasted with the case of the point-vor
tex model of the triangle, where perturbations of even 20% in the positions of 
the satellites can still be sta bie (Carnevale & Kloosterziel , 1994). In view of the 
results of Morikawa & Swenson (1971), we anticipate that all higher-order 
coherent continuous vortices are also unstable. 

Conclusion 

We have considered a hierarchy of isolated compound vortices in which the 
Lamb dipole and the tripole are the first two elements. The stability of these two 
structures is well known from experiments and simulations. Here we have 
reviewed evidence that the next element in this hierarchy, the quadrupole, is also 
stabie, but with a much smaller instability threshold than the two lower-order 
structures. It seems that these three elements, dipole, tripole and quadrupole, are 
the only sta bIe ones in the whole hierarchy. All of the higher-order compound 
vortices are expected to show the close approach and merger of two of the 
satellites, and subsequent break up of the whole structure. 

All of our simulations we re performed with continuous vorticity profiles on a 
doubly periodic domain using a spectral code. Morel & Carton (1994) have per
formed a similar study based on contour dynamics, that is, simulations involving 
regions of piecewise constant vorticity. They also have found that the quad
rupole is stabIe while higher order n-poles are not, thus adding to the weight of 
evidence for our conclusion. 

Acknowledgements 

This research has been supported in part by National Science Foundation grant 
OCE 91-21998 and Office of Naval Research grant NOOOI4-93-1-0459. The 
numerical simulations were performed at the San Diego Super Computer Cen
ter. The laboratory experiments were performed in the Applied Mechanics and 
Engineering Sciences department at the University of California, San Diego. 

References 

Carnevale, G. F., M. Briscolini, R. Purini, & G.K. Vallis, 1988a - Numerical 
experiments on modon stability to topographic perturbations. Phys. Fluids 31 , 
2562-2566. 

Carnevale, G. F., Vallis, G.K., Purini, R., & Briscolini, M. 1988b Propagation 
of barotropic modons over topography. Geophys. Astrophys. F/uid Dyn. 41 , 
45-101. 

G.F. Carnevale and R.C. Kloosterziel 227 



Carnevale, G.F., G.K. Vallis, R. Purini, & M. Briscolini, 1988c - The role of 
initial conditions in flow stability with applications to modons. Phys. F/uids 
31, 2567-2572. 

Carnevale, G.F., J.C McWilliams, Y. Pomeau, J.B. Weiss, & W.R. Young, 
1991 - Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. 
Letters 64, 2735- 2737. 

Carnevale, G.F., & R.C Kloosterziel, 1994 - Emergence and evolution of tri
angular vortices. 1. F/uid Mech. 259, 305- 331. 

Carton, X.l., & J.C McWilliams, 1989 - Barotropic and baroclinic instabilities of 
axisymmetric vortices in a quasi-geostrophic model. In: Mesosca/ej Synoptic 
Coherent Structures in Geophysica/ Turhu/ence (eds. J.C.l. Nihoul & B.M. 
Jamart), pp. 225- 244, Elsevier. 

Carton, X.l., G.R. Flierl, & L.M. Polvani , 1989 - The generation of tripoles from 
unstable axisymmetric isolated vortex structures. Europhys. Lett. 9, 339-344. 

Eckhardt, B., 1988 - Integrable four vortex motion. Phys. F/uids 31, 2796-2801. 
Federov, K.N., & A.I. Ginsburg, 1989 - Mushroom-like currents (vortex 

dipoles): one of the most widespread forms of non-stationary coherent 
motions in the ocean. In: Mesosca/ej Synoptic Coherent Structures in 
Geophysica/ Turbu/ence (eds. J.C.l . Nihoul & B.M. Jamart), pp. 1-14, Elsevier. 

van Heijst, G.l.F., & R.C Kloosterziel, 1989 - Tripolar vortices in a rotating 
fluid . Nature 338, 569-561. 

van Heijst, G.l.F., R.C Kloosterziel , & CW.M. Williams, 1991 - Laboratory 
experiments on the tripolar vortex in a rotating fluid. J. F/uid Mech. 225, 
301-332. 

Kloosterziel, R.C, 1990 - Barotropic Vortices in a Rotating F/uid. PhD thesis, 
University of Utrecht, The Netherlands (209 pp.) 

Kloosterziel, R.C, & G.l.F. van Heijst, 1991 - An experimental study of unstable 
barotropic vortices in a rotating fluid. J. F/uid Mech. 223, 1-24. 

Lamb, H., 1932 - Hydrodynamics . Cambridge University Press, 738 pp. 
Legras, B., P. Santangelo, & R. Benzi, 1988 - High-resolution numerical 

experiments for forced two-dimensional turbulence. Europhys. Lett. 5, 37-42. 
McWilliams, J.C, 1980 - An application of equivalent modons to atmospheric 

blocking. Dyn. Atmos. Oceans 5, 43- 66. 
McWilliams, J.C, G.R. Flierl, V.D. Larichev & G.M. Reznik, 1981 - Numerical 

studies of barotropic modons. Dyn. A tmos. Oceans 5, 219-238. 
Melander, M.V., N.l. Zabusky, & J.C McWilliams, 1988 - Symmetric vortex 

merger in two-dimensions: causes and conditions. J. F/uid Mech. 195, 303-340. 
Morel, Y.G., & X.l. Carton, 1994 - Multipolar vortices in two-dimensional 

incompressible flows. J. F/uid Mech . 267, 23-51. 
Morikawa, G.K., & E.V. Swenson, 1971 - Interacting motion of rectilinear 

geostrophic vortices. Phys. F/uids 14, 1058- 1073. 
Nycander, J., 1992 - Refutation of stability proofs for dipole vortices. Phys. 

F/uids A 4, 467-476. 
Orlandi, P., & G.l.F. van Heijst, 1992 - Numerical simulation of tripolar vortices 

in 20 flow. F/uid Dyn. Res. 9, 170- 206. 

228 Stability of isolated compound vortices 



Pingree, R.D., & B. LeCann, 1992 - Three anticyc10nic Slope Water Oceanic 
eDDIES (SWODDIES) in the Southern Bay of Biscay in 1990. Deep Sea Res. 39, 
1147- 1175. 

Polvani, L.M., & XJ. Carton, 1990 - The tripole: a new coherent vortex struc
ture of incompressible two-dimensional flows. Geophys. Astrophys. F/uid Dyn. 
51 , 87-102. 

Sadourny, S., 1985 - Quasi-geostrophic turbulence: an introduction. In: Tur
bu/ence and Predictability in Geophysical F/uid Dynamics and Climate 
Dynamics (M. Ghil ed.), North Holland, Amsterdam, pp. 133-158. 

Stern, M.E. , 1975 - Minimal properties of planetary eddies. J. Mar. Res. 33, 
1- 13. 

+ Scripps Institution of Oceanography 
La Jolla, CA 92093, USA 

o University of Hawaii 
School of Ocean and Earth Science and Technology 
Department of Oceanography 
Honolulu, Hawaii 96822, USA 

G.F. Carnevale and R.C. Kloosterziel 229 




