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Stability of Shielded Vortex Dipoles 

Abstract 

In this study we consider a Lamb dipole and a shielded dipole with the same 
linear relationship between the vorticity wand the stream function 'P. In the 
second case the vorticity distribution is that of a Lamb dipole surrounded by an 
oppositely-signed vorticity layer. Direct simulations for moderate values of the 
Reynolds number have shown th at the Lamb dipole maintains its structure 
while the shielded dipole breaks down. A numerical study of the evolution of 
small vorticity perturbations has shown that in the Lamb dipole the disturbance 
is convected far from the main structure, whereas in the shielded dipole the dis­
turbance remains trapped within the vortical structure and grows in time. 

Introduction 

Vortex dipoles are common features of geophysical flows, and they are believed 
to play an important role in the general large-scale circulation, since they 
provide an important mechanism in the transport of various physical properties. 
In the ocean, dipolar vortices may be generated as a result of shedding from 
unstable coastal currents or due to localized wind forcing. In the atmosphere, 
dipolar flow structures may occur in the form of blocking systems which tend to 
have a stabilizing influence on the local weather. Within the context of the 
stability of such flow structures it is of importance to know whether the struc­
ture, once perturbed, relaxes towards its initia I (stable ) state. It is easy to show 
that any functional relationship w = f( 'P) between the vorticity wand the stream 
function 'P satisfies J( w, 'P) = 0 and thus represents a stationary solution of the 
Euler equations. An interesting query is whether this functional relationship 
indicates stability or not. 

In a previous study (Cavazza et al., 1992) we considered the behaviour of a 
Lamb dipole (with w = k 2 'P, see Lamb 1932) when subjected to different types 
of small perturbations (here we refer to the vortex structure as 'Lamb dipole', 
although the name 'Chaplygin-Lamb dipole' might be more appropriate, see 
Meleshko & van Heijst, 1994). In the numerical simulations it was observed that 
during the first stages of the flow evolution the dipole generally ejects patches of 
vorticity, while the finally remaining dipole attained a structure with the same 
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linear relationship but with a slope k' = k /a' , with a' the radius of the new 
dipole. 

In the present study we address the question whether the linear relationship 
is the only condition necessary to show that the dipole has reached a stabie 
state. To this purpose we have considered both the Lamb dipole and the 
shielded dipole, i.e. a Lamb dipole surrounded by an oppositely-signed vorticity 
layer. The stream functions IJl and IJls of the Lamb dipole and the shielded 
dipole, respectively, are given by 

J ,(kr) . 
IJl = - 2U k k sm (J, 

Jo( a) 

J .(kr) . 
IJIs = -2U k kb sm (J, 

Jo( ) 

(1) 

(2) 

with U the translation velocity of the Lamb dipole, Jo and J, the zeroth and first 
order Bessel functions of the first kind, respectively, and ka = 3.832 and 
kb = 7.016 the first and second zeros of J" respectively. The 'shield' of the 
shielded dipole lies in the ring a ~ r ~ b, and contains a dipolar vorticity dis­
tribution of polarity opposite to th at of the dipole core 0 ~ r ~ a. Although th is 
shielded dipole is a solution of the stationary Euler equation, the numerical 
simulations to be described below indicate that this structure is unstable. 

Numerical simulation 

The stability of these vortex structures has been studied numerically by sol ving 
the vorticity equation 

aw I -a + J(w, IJl) = - V 2w 
t Re 

(3) 

where J is the Jacobian operator and Re is the Reynolds number based on the 
dipole radius a and translation speed U. The numerical finite differences scheme 
has been described in Orlandi (1990) and Orlandi & van Heijst (1992), and its 
performance has been tested both by grid-refinement checks and by changing 
the location of the symmetry boundary conditions. Here it suffices to briefly 
describe the main characteristics of the numerical method. The system of equa­
tions is second order accurate in time and space, and the convective terms have 
been discretized by the Arakawa scheme (Arakawa, 1966) that conserves, in the 
inviscid limit, total energy and enstrophy, and maintains the skew symmetry of 
the Jacobian. This conservation property ensures not only the stability of the 
calculation but also the correct energy transfer. The advancement in time of the 
solution has been obtained by a third-order Runge-Kutta scheme calculating the 
nonlinear terms explicitly and the viscous terms implicitly. The large stability 
limit CFL ~ j3 allows a large At. Periodic boundary conditions in one direction 
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permit the use of wr's and thus the stream function is obtained by a direct 
solver. 

The calculations presented here were performed on a uniform 193 x 193 grid 
on the half-plane - 4.6 < x < 4.6, 0 < y < 7 (in view of the flow symmetry about 
y = 0), with periodic boundary conditions in the x-direction. 

Apart from the numerical simulations of the regular and shielded Lamb 
dipoles given by (1) and (2), respectively, additional simulations were performed 
in which the dipolar vortex structures were locally perturbed in the area of maxi­
mum vorticity gradients, i.e. in a narrow band along the radius r = a. This vor­
ticity perturbation, that is superimposed on the basic vorticity distribution, was 
taken as 

{ 
(l-r/a)2} . 

(O'(r, 0) = e exp - a 2 sm 40, (4) 

with e the perturbation amplitude and a a parameter that controls the width of 
the perturbation band around r = a. The amplitude e was set at a nondimen­
sional value e = 0.05, which is small compared to the peak value 11.08 of the 
unperturbed Lamb dipole, whereas the width parameter was set at a = 0.15. The 
structure of the vorticity perturbations of the unshielded and shie1ded dipoles 
are shown in Figure 1. 

Results 

The numerical solution of (3) for the Lamb dipole with the initial stream func­
tion (1) revealed that the dipole maintains its shape for a long time and that, 

Fig. 1. Graphs showing the distribution of the initial perturbation vorticity (-- positive, 
....... negative) for (a) the regular and (b) the shielded Lamb dipole (only the upper halves 0 ~ (J ~ 1t 

are shown). The structure of the dipoles is shown by the unperturbed separatrices and a few 
neighbouring streamlines. 
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t=O t=5 

Fig. 2. The evolution of the unperturbed Lamb dipole for Re = !OOO from t = 0 to t = 5 (in non­
dimensional time units) shown by vorticity contours AO) = 0.5; only the upper half-plane is shown. 

depending on the Reynolds number, the peak vorticity decreases in time. Some 
results for Re = 1000 are shown in Figure 2: at t = 5 (the time is scaled with U 
and 2a) has travelled approximately 5 dipole diameters and the cusp-shaped 
vorticity contour indicates a distortion of the initial dipole structure in the wake, 
i.e. near the rear stagnation point. In contrast, the shielded vortex loses its 
original shape very quickly, see Figure 3. In comparison with the unshielded 
dipole, the structure shows an initial tendency to move in opposite direction. 
This may be surprising at first glance, but in fact it is explicitly given by the 
solutions (1) and (2) which have different signs since Jo (ka) = -0.4027 ... and 
Jo(kb) = +0.3001... 

The other vorticity patch is seen to be split into two parts, one being left 
behind near the symmetry axis, while the other pairs with the original positive 
core patch in order to form an asymmetrie dipole that slowly moves away from 
the symmetry axis. This behaviour may be understood from the fact that the net 
negative vorticity contained in the shell is larger than that in the positive core. 
Besides, the position of extreme negative vorticity in the shell lies closer to the 
vorticity maximum in the positive core half than that of the negative core half. 
Apparently, the combination of these effects leads to a redistribution of the vor­
ticity in the outer band and a separation of both inner core halves. From these 
simulations it thus appears that the outer band of oppositely-signed vorticity is 

t=O t = 1 t=2 

t=3 t = 4 t=5 

Fig. 3. The evolution of the unperturbed shielded dipole for Re = !OOO from t = 0 to t = 5 shown 
by vorticity con tours AO) = ± 0.5 (- positive, .. ..... negative); only the upper half-plane is shown. 
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not just a passive shield around the dipolar core: the outer vorticity shell is 
dynamically important and affects the behaviour of the dipole core to a high 
degree. 

In order to gain some insight in the behaviour of the shielded dipole in com­
parison with that of the regular dipole, we studied the evolution of the vorticity 
perturbation (4) by numerically solving the 'linearized' vorticity equation 

ow' (' ITI) ( '1") 1 V2 , ---at + J w , :r 0 + J wo, = Re w (5) 

in which the prime denotes perturbation quantities, whereas the subscript 0 
refers to the nonperturbed dipole solutions (1) and (2). The calculations have 
been performed for Re = 5000, so for the case of slight viscosity. The distribu­
tions of the perturbation vorticity after 15 time units for both the regular and 
the shielded dipole are shown in Figure 4. For the Lamb dipole, a considerable 
portion of the perturbation vorticity is expelled, and thus dissipated in the wake, 
while only some weak effects of the perturbation remain in the dipole's interior. 
In contrast, in the case of the shielded dipole most of the perturbation vorticity 
remains trapped within the structure, see Figure 4b, while only a negligible 
amount is left behind in the wake. Moreover, one observes the formation of 
larger regions of positive and negative w' within the two recirculation regions of 
the shielded dipole half, thus resulting in an increased distorting effect. This 
remarkable difference in the evolution of the perturbation vorticity may give a 
clue to the observed instability of the shielded dipole, see Figure 3. 

Fig. 4. The distribution of the perturbation vorticity at t = 15 for (a) the regular dipole and (b) 
the shielded dipole. The structure of the unperturbed dipole is shown by the unperturbed 
streamlines as in Figure 1. 
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Discussion 

The numerical simulations of the regular and shielded dipo1es have shown 
remarkable differences in their evolution. In order to gain insight in the flow 
evolution it is useful to consider the topological flow structure of both dipoles. 
As schematically shown in Figure 5, the topological structure of the Lamb 
dipole is characterized by a circular separatrix 'Pa and two stagnation points (i.e. 
hyperbolic points) at the intersections of the separatrix and the symmetry 
streamline 'Po. TC' The shielded dipole has an outer separatrix 'Pb with two 
stagnation points Sbl and Sb2' and an inner separatrix 'Pa with stagnation points 
Sal and S a2' It is known from previous studies on a perturbed point-vortex 
dipole, which has the same topology, that small perturbations introduced inside 
or at the separatrix generally result in the 'opening' of the dipole atmosphere at 
the rear stagnation point, here Sa, (cf Rom-Kedar et al. 1990 and Velasco Fuen­
tes & van Heijst 1994). In generäl this results in fluid exchange between the 
dipole interior and the exterior, i.e. in detrainment and entrainment at the 
dipole's rear. Most likely this mechanism is responsible for the effective 'Ieaking' 
of the perturbation vorticity w' from the Lamb dipole interior, as observed in 
the numerical simulation (see Figure 4a). As indicated in Figure 5b, the 
topological structure of the shielded dipole is essentially different: any small per­
turbations introduced near the inner separatrix 'Pa will quickly leak into the 
outer shell (near the inner stagnation point Sal) according to the same 
mechanism as described above. The recirculation in the outer shell results in a 
quick spreading of the perturbation vorticity over the entire vortex domain (see 
Figure 4b), while initially hardly any mass exchange between the dipole and its 
exterior occurs. Obviously, internal perturbations remain trapped within the 
shielded dipole, thus leading to changes in the internal vorticity structure. This 
internal redistribution mechanism is most likely the reason for the break-up of 
the shielded dipole as observed in the simulations (Figure 3). Although these 
simulations were carried out for an unperturbed shielded dipole, it may be 
expected that diffusion of vorticity (being most effective at locations of maxi­
mum vorticity gradients, i.e. at both separatrices) results in a similar perturba­
tion vorticity field as described artificially by (4). 

s 

+ 

la ) (h) ~ u 

Fig. 5. Schema tic drawing of the topological inviscid flow structure of (a) the Lamb dipole and 
(b) the shielded dipole, seen in a frame co-moving with velocity U. 

174 Stability of shielded vortex dipoles 



In view of their different evolutions, the question arises whether the regular 
Lamb dipole and the shielded dipole possibly contain different amounts of 
enstrophy. The enstrophy is here 

(6) 

with R the dipole radius and 'P the stream function given by (l) or (2). The 
integrals are easily evaluated, and one derives (with the index S referring to the 
shielded dipole): 

(7) 

Although the total enstrophy of the shielded dipole is larger than the total 
enstrophy of the Lamb dipole by a factor of (b ja)2 ~ 3.37, the enstrophy per unit 
area is the same for both vortex structures: 

G' = Gs =k2 U2 
s nb2 . (7) 

Apparently, this does not provide any further clues. Figure 6 shows the evolu­
tion of G' and G~ as calculated numerically for Re = 1000 (the corresponding 
evolutions of the spatial vorticity distribution are presented in Figures 2 and 3). 
Both G' and G~ show a gradual decrease, although G~ decreases at a higher 
rate. The dec rea se of the enstrophy is entirely due to the removal of weak, small­
scale low-amplitude vorticity (less than 10 - 6) in the exterior flow field during 
the numerical simulations. The different decay rates indicate that the slightly 
viscous Lamb dipole shows only little 'leaking' of vorticity in comparison with 
the shielded dipole, which by breaking up soon loses its coherent character. 

1.0 

O.50~-~---=-2---:3---4':---~5 

Fig. 6. Evolution of the enstrophies G' and G~ calculated numerically for Re = 1000. The dotted 
curve represents the Lamb dipole (G'), while the solid curve represents the shielded dipole (G~). 
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Conclusions 

In this numerical study we have provided evidence that the shielded Lamb 
dipole, although governed by the same linear relationship between the vorticity 
and the stream function as the regular Lamb dipole, is unstable for moderate 
values of the Reynolds number. It is believed that the explanation for this 
instability lies in the flow topology of the vortex structure: small internal vor­
ticity perturbations (either artificially generated or arising from diffusion of vor­
ticity) are seen to remain trapped within the shielded dipole, whereas they are 
quickly detrained in the case of a regular Lamb dipole. 
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