










Discussion 

The numerical simulations of the regular and shielded dipo1es have shown 
remarkable differences in their evolution. In order to gain insight in the flow 
evolution it is useful to consider the topological flow structure of both dipoles. 
As schematically shown in Figure 5, the topological structure of the Lamb 
dipole is characterized by a circular separatrix 'Pa and two stagnation points (i.e. 
hyperbolic points) at the intersections of the separatrix and the symmetry 
streamline 'Po. TC' The shielded dipole has an outer separatrix 'Pb with two 
stagnation points Sbl and Sb2' and an inner separatrix 'Pa with stagnation points 
Sal and Sa2' It is known from previous studies on a perturbed point-vortex 
dipole, which has the same topology, that small perturbations introduced inside 
or at the separatrix generally result in the 'opening' of the dipole atmosphere at 
the rear stagnation point, here Sa, (cf Rom-Kedar et al. 1990 and Velasco Fuen­
tes & van Heijst 1994). In generäl this results in fluid exchange between the 
dipole interior and the exterior, i .e. in detrainment and entrainment at the 
dipole's rear. Most likely this mechanism is responsible for the effective 'Ieaking' 
of the perturbation vorticity w' from the Lamb dipole interior, as observed in 
the numerical simulation (see Figure 4a). As indicated in Figure 5b, the 
topological structure of the shielded dipole is essentially different: any small per­
turbations introduced near the inner separatrix 'Pa will quickly leak into the 
outer shell (near the inner stagnation point Sal) according to the same 
mechanism as described above. The recirculation in the outer shell results in a 
quick spreading of the perturbation vorticity over the entire vortex domain (see 
Figure 4b), while initially hardly any mass exchange between the dipole and its 
exterior occurs. Obviously, internal perturbations remain trapped within the 
shielded dipole, thus leading to changes in the internal vorticity structure. This 
internal redistribution mechanism is most likely the reason for the break-up of 
the shielded dipole as observed in the simulations (Figure 3). Although these 
simulations were carried out for an unperturbed shielded dipole, it may be 
expected that diffusion of vorticity (being most effective at locations of maxi­
mum vorticity gradients, i.e. at both separatrices) results in a similar perturba­
tion vorticity field as described artificially by (4). 
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Fig. 5. Schema tic drawing of the topological inviscid flow structure of (a) the Lamb dipole and 
(b) the shielded dipole, seen in a frame co-moving with velocity U. 
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In view of their different evolutions, the question arises whether the regular 
Lamb dipole and the shielded dipole possibly contain different amounts of 
enstrophy. The enstrophy is here 

(6) 

with R the dipole radius and 'P the stream function given by (l) or (2). The 
integrals are easily evaluated, and one derives (with the index S referring to the 
shielded dipole): 

(7) 

Although the total enstrophy of the shielded dipole is larger than the total 
enstrophy of the Lamb dipole by a factor of (b ja)2 ~ 3.37, the enstrophy per unit 
area is the same for both vortex structures: 

G' = Gs =k2 U2 
s nb2 . (7) 

Apparently, this does not provide any further clues. Figure 6 shows the evolu­
tion of G' and G~ as calculated numerically for Re = 1000 (the corresponding 
evolutions of the spatial vorticity distribution are presented in Figures 2 and 3). 
Both G' and G~ show a gradual decrease, although G~ decreases at a higher 
rate. The dec rea se of the enstrophy is entirely due to the removal of weak, small­
scale low-amplitude vorticity (less than 10 - 6) in the exterior flow field during 
the numerical simulations. The different decay rates indicate that the slightly 
viscous Lamb dipole shows only little 'leaking' of vorticity in comparison with 
the shielded dipole, which by breaking up soon loses its coherent character. 
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Fig. 6. Evolution of the enstrophies G' and G~ calculated numerically for Re = 1000. The dotted 
curve represents the Lamb dipole (G'), while the solid curve represents the shielded dipole (G~). 
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Conclusions 

In this numerical study we have provided evidence that the shielded Lamb 
dipole, although governed by the same linear relationship between the vorticity 
and the stream function as the regular Lamb dipole, is unstable for moderate 
values of the Reynolds number. It is believed that the explanation for this 
instability lies in the flow topology of the vortex structure: small internal vor­
ticity perturbations (either artificially generated or arising from diffusion of vor­
ticity) are seen to remain trapped within the shielded dipole, whereas they are 
quickly detrained in the case of a regular Lamb dipole. 
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