

















In view of their different evolutions, the question arises whether the regular
Lamb dipole and the shielded dipole possibly contain different amounts of
enstrophy. The enstrophy is here

1

G=ff%w2dA=§k“LGLR Wy dr do, (6)

with R the dipole radius and ¥ the stream function given by (1) or (2). The
integrals are easily evaluated, and one derives (with the index S referring to the
shielded dipole):

G=na*k*V?  Gg=nb*kU™ (7)

Although the total enstrophy of the shielded dipole is larger than the total
enstrophy of the Lamb dipole by a factor of (b/a)? ~ 3.37, the enstrophy per unit
area is the same for both vortex structures:

G G
G'=—=KU%  Gs=—5=kU (7)

Apparently, this does not provide any further clues. Figure 6 shows the evolu-
tion of G’ and G as calculated numerically for Re = 1000 (the corresponding
evolutions of the spatial vorticity distribution are presented in Figures 2 and 3).
Both G’ and G5 show a gradual decrease, although G’ decreases at a higher
rate. The decrease of the enstrophy is entirely due to the removal of weak, small-
scale low-amplitude vorticity (less than 10 ~¢) in the exterior flow field during
the numerical simulations. The different decay rates indicate that the slightly
viscous Lamb dipole shows only little ‘leaking’ of vorticity in comparison with
the shielded dipole, which by breaking up soon loses its coherent character.

Fig. 6. Evolution of the enstrophies G’ and G calculated numerically for Re =1000. The dotted
curve represents the Lamb dipole (G’), while the solid curve represents the shielded dipole (GY%).
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Conclusions

In this numerical study we have provided evidence that the shielded Lamb
dipole, although governed by the same linear relationship between the vorticity
and the stream function as the regular Lamb dipole, is unstable for moderate
values of the Reynolds number. It is believed that the explanation for this
instability lies in the flow topology of the vortex structure: small internal vor-
ticity perturbations (either artificially generated or arising from diffusion of vor-
ticity) are seen to remain trapped within the shielded dipole, whereas they are
quickly detrained in the case of a regular Lamb dipole.
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