
Remarks on the linear regression approach 
to dimension estimation 

Gerhard Keller and Ralph Sporer 

Abstract 
We discuss some statistical theory of the simultaneous estimation of corre­

lation integrals from dynamical data with varying radii and embedding dim en­
sions. Thereby we focus on the estimation of the covariance matrix of these 
estimators taking into account the finite sample size and the correlation time 
effects observed by Theiler [23]. As applications we discuss linear model statis­
tics like linear regression estimates of correlation dimension and entropy and the 
detection of noise. 

1 Introd uction 

Let Xl, X 2 , X 3 ,,,. be a real-valued stationary time series that is mixing in a sense 
to be made precise later. Typical examples would be a) independent identically 
distributed (ij.d.) random observations, b) observation on a "chaotic" dynamical 
system, c) observations on a noisy system. In particular there may be some interesting 
dep enden ce between consecutive observations that can be studied by looking at the 
distribution I1-l of blocks 

Y/ := (Xi, ... , XiH-d E lRi 
. 

The length l of the blocks is called the embedding dimension, and for fixed l the 
sequence Y/, y2

l , y3
l , • • • is again stationary and mixing. 

Some aspects of the geometry of the distribution I1-l can be described by means of 
the correlation integrals 

C(r, l) := J J l{IIY-Y'II<r} dl1-i(Y) dl1-l(Y/) 

where Ily - y'l! denotes the euclidean (or any other suitable) distance of y and y' . 
Grassberger and Procaccia [14] used the functional dep enden ce of log C(r, l) on rand 
l to describe quantitative features of deterministic chaotic systems. They observed 
that in many cases there are real numbers v > 0 and h > 0 such that 

I C( n) = { V ·logr + o(logr) 
og r,~ -l. h + o(l) 

as r ---t 0 when l is large, 
as l ---t 00 wh en r is smalI. 

(1) 

v is called the correlation dimension and h is an entropy like quantity. Cutler [10] 
gives a rather comprehensive review of much of the underlying theory. 

If, on the other hand, the Xi are ij.d. observations and if I!y - y'l! denotes the 
maximum norm of y - y' , then C (r, l) = (C (r, 1)) i such that the following model 
assumption makes sen se 

logC(r,l) = l · Vl' (logr + o(logr)) as r ---t 0, (2) 
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where Vl denotes the correlation dimension of the distribution J.ll of the Xi, see [6]. 
The two model assumptions (1) and (2) differ drastically in the sense that (1) describes 
a finite entropy situation whereas (2) reflects the in gener al infinite entropy of true 
random observations. 

The above considerations motivate the following decomposition of log C(r, f) into 
a linear part with constant term and a (hopefully small) nonlinear remainder 8(r, f) : 

log C (r, f) = v . log r - h . f + Vl . f . log r + C + 8 (r, f) . (3) 

This model , although appropriate if Ily - y'll denotes the maximum norm, can be 
improved if the euclidean distance is used by replacing log r with log Jt, i. e by using 

dimension scaled distances, see [13] . 
In practice the unknown coefficients v, h, Vl, C must be estimated from a finite 

number of observations Xl, . . . , X N . Therefore (3) (or any other linear or nonlinear 
model describing logC(r,f)) can be fitted only on finitely many parameter pairs 
(rl,fd, ... , (rp,fp) the appropriate choice of which depends on the sample size and 
the nature of the observed data. In particular we make no attempt to calculate limits 
as r -t 0 or f -t 00. Using the notation 

( rl f l ) ( logC(r"l,) ) ( 'hJ') ) 
(r,f) = Z(r,~) = : ' 8= 

rp fp log C(rp, fp) 8(rp,fp) 

we write our model (3) as 
Z(r, ~) = M(3 + 8 (4) 

where M is a matrix involving only the controlled parameters log r and ~ and where 
(3 = (v, h, VI, C)t is that coefficient vector that yields the best fit in (4) in the least 
squares sense, i.e. 

Our aim is to estimate this coefficient vector (3 from observed data. 
Suppose now that Z = Z(XI , . . . ,XN) E IRP is a "suitable" estimator for the 

p-vector Z(r, f) of logarithms of correlation integrals, suitable in the following sense: 

Z = Z(r, f) + ( = M (3 + 8 + ( 

where ( is approximately N(Q, V)-distributed (approximately in the sen se of a central 
limit theorem), and there is a reliable (i.e. "consistent" in statistical terms) estimate 

V = V (X I , .. . , X N) of V. Then ~ = B Z is the least squares estimator for (3 and 

Ê = Z - M ~ = (1 - M B)Z are the corresponding residues. The distributions of ~ 
and Ê are known, namely ~ ",N((3,BVB t ) and Ê ",N(8,SVS t ) where S = 1- MB. 
All this is well known, see e.g. [24]. Replacing V by the consistent estimate V we 
can e.g. calculate confidence bounds for f3, test the hypothesis "VI = 0" , i.e. the 
absence of true randomness on the scale of radii rl, ... , r p, or discriminate between 
the systematic error 8 of our linear model (3) and the statistical error (. In section 3 
we illustrate this by the results of some numerical simulations. Beforehand we turn 
to the problem of how to obtain good estimates Z of Z(r,f) and V of V. 
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2 Covariance estimates 

2.1 The covariance matrix of the correlation integrals 

Recall that C(r, I) = J J h(y,y') dJl-l(Y) dJl-l(y') where h(y, y') = 1{IIY-Y'II<r}' Quanti­
ties represented by integrals in this way are usually estimated by a so called U-statistic 

1 N N 

N(N -1) L L h(Y;, Yj) . 
1=1 ]=1 

Ni 

In the case of i.i.d. observations Y; the U-statistic is an asymptotically normal unbiased 
minimal variance estimator of C(r, I), see [15] . These properties essentially persist if 
the observations are mixing with exponentially decaying correlations. The concept 
of mixing which is most useful in this context is that of absolute regularity, see [25] 
for a purely probabilistic treatment and [12] for its applicability to chaotic dynamical 
systems. Although strong mixing properties like this one are difficult to verify on a 
theoretically level in the case of non-uniformly hyperbolic systems, one can expect 
that many chaotic systems show the same centrallimit behaviour. In the last section 
of this note we discuss this aspect in some more detail. 

For computational purposes we assume that the observations Y/ are t-dependent, 
i.e. Y/ and Y/ are independent, if li - il > t. For a given data set t should be carefully 
chosen. In our Hénon example in the next section t = 10 seems to be a good choice. 
We modify the U-statistic estimator of C(r, l) accordingly: 

1 N N 

UN(r, I) = 7r(N, t) L L h(Y;' , Y/) . 
.=1 ,~1 

(5) 

Ij-i l>2t 

Here 7r(N, t) = (N - 2t)(N - 2t - 1) is the nu mb er of pairs in the sumo The min­
imal index distance 2t (instead of t) will help to avoid some dependencies when we 
calculate the varianee of U N (r, I). As we are going to estimate C (rl, II ), ... , C (r p, lp) 
simultaneously, we have indeed to calculate the covariance matrix of the JRP -valued 
estimator 

( 

UN(~l,ld ) 
UN(r:A) = : . 

UN(rp, lp) 

A tedious, though elementary calculation yields the following expres sion for the co­
varianee matrix K of U N (r, ~): 

(6) 

where P, Q and Rare pxp-matrices, that can be described as follows: For u = 1, ... ,p 
let 
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h~u)(y) 

h~u) (y, y') 
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J J heu)(y,y')d/-Llu(y)d/-Llu(y') (= C(ru,lu)) 

J h(u)(y,y')d/-Llu(y') 

heul (y, y') _ h~u) (y) _ hiu
) (y') + h~u) 

Thenforu,v=l, ... ,p 

t 

Pu,v L (E[hiu)(1/;tU).hiv)(~~k) ] _h~u).h~V») (iarbitrary) 
k=-t 

t 

Qu,v = " " (E [h(U) (ylu ylu) . h(v) (ylu ylu)] _ heul . h(v») L... L... t , J t+p' J+q 0 0 
p=-t q=-t 

(where li - jl > 3t) 
t 

Ru,v L Ikl · (E [hiU)(~lu) . hiV)(~~k)] - h~u). h~V») (i arbitrary) 
k=-t 

Remarks: 

(i) In the case of a single radius and embedding dimension the formula for K 
reduces to that of Theiler [23] if t = 0, i. e. if the Y; are independent, namely 
K=4(N-lP+N-2(~Q-P)). 1 

(ii) As we assume Y; and Yi+k to be independent for Ikl > t, we have the following re­

lation between Pu,u and Theiler's correlation time T: Pu,u = T' E [(hiU
) (~lu))2] 

(iii) Asymptotically (as N -+ 00) the N-l - term in the decomposition of K domi­
nates. However, for small radii ru, Pu,u tends to be much smaller than Qu,u such 
that the N-2-term may be comparable in size to the N-1-term even for N = 

10000. In the case of independent observations the statistic UN(ru,lu) - h~u) 
can be decomposed into a sum of two random variables in analogy to the de­
composition of its variance into an N-l - and N-2-term. The first part is 
asymptotically normal, the second one is a weighted sum of squares of norm al 
random variables, see [11, Example 2.2 .7]. Therefore, if the N- 2-term is not 

neglectable, UN(ru,lu) - h~u) is not close to an exact normal but to a slightly 
skewed normal distribution. It seems impossible, however, to estimate the size 
of this effect from the data. 

As U N(~, !J - C(~,~) is approximately N(O, K)-distributed, standard results from 
probability theory guarantee that log U N(~,~) -log C(~,!J is approximately N(O, V)­
distributed where Vu,v = Ku,v/(C(ru,lu)C(rv,lv)), u,v = l , ... ,p. Higher order 
correct ion terms which occur also in this approximation are small compared to the 
leading term and can be neglected. 

1 Theiler gives (!Q + !P) instead of (!Q - P), but as P occurs also at the order of N- 1 , this is 
practically meaningless. 
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2.2 An estimator for the covarianee matrix 

An unbiased and consistent estimator for Pu,v is 

t N - k 

" _1_ " (h(U)(ylU). h(v) (ylv ) _ h(u) . h(V)) 
~ N _ k ~ 1 1 1 1+k 0 0 

k=-t i = 1 

As the h~u) and h~u\y/u) = J h(u) (y/u, y') dJ.Llu (y') are not explicitly known (they 
are defined in terms of the unknown distribution J.LlJ, we replace them through 
estimators 

and H(U).= 1 
1,1· N - 2t-1 

N 

L 
i=l 

Ij-il>t 

and denote 

min{N,N-k} 

1 " (H(U) . H(v) _ H(u) . H(v)) 
N _ k ~ 1 ,1 1 ,1+k 0 0 

k=-t i = max{I,I-k} 

t 

L 

Another tedious but elementary calculation shows that 

4 · (N- 1 P + N- 2 (Q - R - 5(1 + 2t)P) + O(N-3
)) 

K + 2N- 2Q - 16(1 + 2t)N-2 P + O(N-3
) , 

(7) 

(8) 

i.e . 4N- 1 P is not an unbiased estimator for P . As a matter of fact, the correct ion 
term can be both, negative or positive, depending on the particular situation . An 
unbiased estimator for Q is easily found: 

A 1 
Qu,v := ir(N, t) 

t 
" (h(U)(ylu ylu). h(v) (ylv ylv) _ H(u) . H(V)) 
~ 1 , J 1+P ' J+q 0 0 

i , j=l p ,q= -t 

N 

L (9) 

Ij-il >3t 

where ir(N, t) = (N - 3t)(N - 3t - 1). The importance of the "p = q" - terms in Qu,v 
for deterministic data is obvious: If ~lu is close to y/u (because the system returned 

close to a previously attained state), also ~l+p and y;~P are likely to be close to each 

other for smal! p. The "p i- q" - terms contribute to Qu,v if the system spends some 
time near a fix point or a periodic orbit of smal! period. 

To summarize: K := 4N- 1 (1 + 4(1 + 2t)N- 1)P - 2N-2Q is an estimator for the 
covariance matrix K of UN(r.,D which is unbiased up to terms of order O(N-3

). It 
is defined by (8) and (9) . 

As the computation of Q involves about p2(2t+1)2 N 2 terms, we determine only the 
diagonal terms Qu,u and use the fol!owing modified estimator K' for K: Decompose 
4N- 1 P = DI /2CDI /2 where D is the diagonal matrix made up from the diagonal 
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elements of 4N-l F. Thus C is the correlation matrix corresponding to 4N- l F. We 
modify D by subtracting the diagonal elements of 2N- 2Q: D~,u := Du,u -2N- 2Qu,u, 

and obtain the estimator K' := DI1/2CD,l/2 for K. The diagonal of K' coincides 
with that of K whereas its correlation structure is that of the leading term 4N- l F 
of K. This leads us finally to the following estimator V for the covariance matrix of 
log C (r., g): 

3 Simulations 

We tested the reliability of the statistical procedures described in the previous sec-
tions on Hénon time series. More exactly: Xl, ...... ,XN are the x-coordinates of N 
consecutive iterates of a Hénon system with parameters a = 1.4 and b = 0.3. (In some 

. cases noise was added, see below.) We always used a set of radii ro, ... , r20 ranging 
from ro = 0.01 to r20 = 0.41. Instead of working with the maximum-norm distance 
we used dimension scaled euclidean distances, see [13]. Based on the observed decay 

of correlations for the random variables Hi~) from (7) we assumed that Xi and X j 

are independent if li - jl > t = 10. 

(i) Fixed embedding dimension f = 4; no noise; N = 1000 and N = 10000: 
We performed 100 independent runs recording for the j-th run the estimated 
logarithms of the correlation integrals Zj(ri) = logCj(ri) and their estimated 
standard deviations 0' j (r i). The averages of these quantities over all runs are 
denoted Z(ri) and ä(ri), respectively. The sample standard deviation of the 
Zj(ri) is denoted by Si. The comparison of ä(r;) and Si in Figure 1, where we 
give both, the values of äi we obtained using the uncorrected variance estimator 
Fu ,u and those using the corrected estimator Qu,u, shows that, at least for 
small radii the corrected estimates for the standard deviation are on the average 
closer to the sample standard deviation than the uncorrected values. As to be 
expected, this effect is much stronger for N = 1000 than for N = 10000. We 
remark that for N = 1000 there were 4 runs where the corrected estimator for 
O'J(ri) took negative values for some radii . As this estimator is the difference of 
two values, it is not surprising that this happened a few times. For our further 
calculations we set these values to o. 
From the same data we calculated 100 estimates Vj for the correlation dimension 
and their estimated standard deviations O'j and denoted their 95%-confidence 
intervals by J j = [Vj - 1.960'j,vj + 1.960'j] . As the true value of v is not 
known we could not simply count the number of runs where the true value is 
inside the confidence interval. Instead we counted the number of runs where 
iJ = l~O L:~~Ol Vj is in this interval 2. As long as the distribution of the O'J is close 

2The average correlation dimension was iJ = 1.19330±O.00111 for TO-TIO and iJ = 1.20881±O.00078 
for TIO - T20 
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to normal one can approximately calculate the expected number of successes. 
The observed success probabilities with the expected ones in brackets are: 

N = 1000 

uncorrected 0.99 (0.934) 
corrected 0.93 

0.95 (0.930) 
0.93 

N = 10000 

0.98 (0.945) 
0.96 (0.941) 

0.98 (0.945) 
0.96 (0.945) 

(The corrected a; for N = 1000 were so non-normal that no useful expected 
value of the success probabilities could be calculated.) So, except for large radii 
and small numbers of observations, the uncorrected values seem to give too 
pessimistic confidence intervals whereas the corrected ones work very well for 
N = 10000 but tend to give slightly too small confidence intervals for N = 1000. 
Compared to other approaches that provide confidence intervals for correlation 
integrals or the correlation dimension (e.g. [21, 17]) we neither need parametric 
assumptions on the dynamical system producing the data nor very large sample 
sizes in order to produce reasonable estimates. 

0.001 

0.0001 

o 

stand.dev. 

4 8 12 16 20 
radius 

N = 1000 

0.0001 

o 

stand.dev. 

4 8 12 16 20 
radius 

N = 10000 

Figure 1: Comparison of the average estimated standard deviation a(ri) to the sample 
standard deviation Si for time series of length 1000 and 10000. Logarithmic plot. 
Lines: Si with 95%- confidence intervals. Crosses: uncorrected variance estimator. 
Circles: corrected variance estimator. 

(ii) Simultaneous estimation of v, h, and Vi; f = 4, ... ,7; N = 10000: 
We performed single runs on estimating v, h, and Vi from the linear model 
(3) using the radii ro = 0.01, ... ,rlO = 0.064. In all cases we calculated 95%­
confidence intervals: 
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(a) No noise: As VI was not significantly different from 0 (interpretation: 
no noise!) we excluded the variabie VI from the model and estimated V 

and h again: 

VI included 
VI excluded 

V 

[1.035,1.172] 
[1.077, 1.188] 

h 
[0.241,0.387] 
[0.277,0.313] 

[-0.013,0.025] 

(b) 1 % noise in the system: As V was not significantly different from 0 we 
excluded the variabie V from the model and estimated hand VI again: 

V h 
V included [-0.050,0.441] [2.471,2.992] 
V excluded [2.789,2.963] 

[0.445,0.560] 
[0.520,0.553] 

(c) 1 % measurement noise: As V was not significantly different from 0 we 
excluded the variabie V from the model and estimated hand VI again: 

V h 
V included [-0.216,0.224] [2.717,3.167] 
V excluded [2.868,3.022] 

[0.531,0.631] 
[0.567,0.596] 

(iii) Discrimination between systematic and statistical errorsi fixed embedding di­
mension f = 4i ro, . . . , rlOi N = 10000: 
Recall from the introduction that the residues € = Z - MiJ are normally dis­
tributed with mean 8 (= the systematic error) and a degenerate covariance 
matrix SV st (representing the statistical error) that can be estimated from the 
data. In particular, the euclidean length of the difference vector € - 8 has a 
distribution that can approximately be determined by simulations with norm al 
random numbers. This distribution can be compared to the actually observed 
length I€I of €. In our numerical example we found I€I = 0.0533. At the same 
time a 95%- confidence interval for I€ - 81 was [0,0.0129] . Indeed, the largest 
among 500 simulated values of I€ - 81 was 0.0210. So more than 2/3 of the 
length of the observed residue vector is due to the nonlinearity of the function 
log r f-t log C (r) and only a smaller part of it can be explained by statistical 
fiuctuations. 

4 Remarks on mixing in chaotic systems 

In [12,9, 22] the following framework for statistics on data from dynamical system was 
considered: Let T : M -t M describe a time-discrete, deterministic dynamical system 
on a metric space (M, d). Suppose there is an ergodic, T-invariant Bore! probability 
measure P on M, and fix a finite partition Z = (ZI, . .. , Zt) of M. Then 

.- Tn(w) and 

.- j if Xn(w) E Zj (w E M) 
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define ergodic stationary processes on the probability space (M, P). Here the index 
n ranges over I = Z if T is invertible and over I = N otherwise. 

Sometimes it is possible to recover the process (Xn)nEI from the label process 
(Çn)nEI via a functional <I> : {I, .. . ,f}I --t M for which there are real constants C > 0 
and Q E (0,1) such that for P-a.e. W 

(10) 

whenever ki = Çn+i(W) for all i E I with lil::; m. In particular, <I>((Çn+i(W))iEI) = 
Xn(w). 

In such a situation good mixing properties of the process (Çn)nEI guarantee the 
asymptotic normality of UN(r.,f). In particular it suffices that the process (Çn)nEI is 
absolutely regular with mixing coefficients f3n decreasing at a rate of n-(2+Ó) or faster . 
In the language of ergodic theory this means that Z is a weak Bernoulli partition for 
(T, P) with mixing rate f3n. 

The asymptotic normality of the IRP -valued process U N (r., D and the structure and 
estimability of its limiting covariance matrix are discussed in [12, 9] . Indeed, besides 
the absolute regularity and property (10) a mild regularity assumption on the measure 
Pis needed, see [12, Theorem 1] . For our particular U-statistic UN(r.,D it is not hard 
to show that condition (3.6) of [12] is satisfied if the functions r t-+ C(r, f) are Hölder 
continuous, a very reasonable assumption in the context of dimension estimation. 

Absolute regularity (with even exponentially decreasing f3n) and property (10) are 
known since long for many uniformly hyperbolic or uniformly expanding systems such 
as mixing torus automorphisms, Axiom-A-diffeomorphisms [5], piecewise expanding 
interval maps [16] and others. For non-uniformly hyperbolic dynamical systems the 
situation is much more complicated, but results for two prototype systems indicate 
that also for such systems the statistical approach to dimension estimation via U­
statistics is justified: For Collet-Eckmann maps (i.e . quadratic interval maps where 
the critical point has a positive Lyapunov exponent) it was essentially proved in [8] 
that there exists an absolutely continuous i-invariant probability measure J.L on [0,1] . 
Without essential loss of generality one mayassurne that (I, J.L) is mixing, cf. [4] . 
The exponential weak Bernoulli property of the partition ([0, ~], (~, 1]) for the system 
(I, J.L) is proved in [9] (building on results from [19]), and the approximation property 
(10) is an immediate consequence of [20]. In view of the work of Benedicks and 
Carleson [1] one might hope that the Collet-Eckmann property is in a sense typical 
for unimodal maps which have no stabie attractor. In the case of the Hénon family 
there is not yet a complete theoretical justification for the statistical approach, but the 
relevant results obtained during the last years are nevertheless impressive: For a set 
of parameters of positive Lebesgue measure in the Hénon family Benedicks and Young 
[3] proved (building on results from [2]) the existence of a SBR-measure (that is a 
physically observable invariant measure), and more recently they proved exponential 
decay of correlations and a Central Limit Theorem for Hölder continuous observables 
of these systems 3. Finally we mention the work of Chernov [7] who offers a kind of 
tooI-box to investigate mixing properties of a broad class of dynamical systems. 

3Reported at the Banach Center Symposium on Ergodic Theory and Dynamical Systems at 
Warsaw, June 1995 
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