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define ergodic stationary processes on the probability space (M, P). Here the index 
n ranges over I = Z if T is invertible and over I = N otherwise. 

Sometimes it is possible to recover the process (Xn)nEI from the label process 
(Çn)nEI via a functional <I> : {I, .. . ,f}I --t M for which there are real constants C > 0 
and Q E (0,1) such that for P-a.e. W 

(10) 

whenever ki = Çn+i(W) for all i E I with lil::; m. In particular, <I>((Çn+i(W))iEI) = 
Xn(w). 

In such a situation good mixing properties of the process (Çn)nEI guarantee the 
asymptotic normality of UN(r.,f). In particular it suffices that the process (Çn)nEI is 
absolutely regular with mixing coefficients f3n decreasing at a rate of n-(2+Ó) or faster. 
In the language of ergodic theory this means that Z is a weak Bernoulli partition for 
(T, P) with mixing rate f3n. 

The asymptotic normality of the IRP -valued process U N (r., D and the structure and 
estimability of its limiting covariance matrix are discussed in [12, 9] . Indeed, besides 
the absolute regularity and property (10) a mild regularity assumption on the measure 
Pis needed, see [12, Theorem 1] . For our particular U-statistic UN(r.,D it is not hard 
to show that condition (3.6) of [12] is satisfied if the functions r t-+ C(r, f) are Hölder 
continuous, a very reasonable assumption in the context of dimension estimation. 

Absolute regularity (with even exponentially decreasing f3n) and property (10) are 
known since long for many uniformly hyperbolic or uniformly expanding systems such 
as mixing torus automorphisms, Axiom-A-diffeomorphisms [5], piecewise expanding 
interval maps [16] and others. For non-uniformly hyperbolic dynamical systems the 
situation is much more complicated, but results for two prototype systems indicate 
that also for such systems the statistical approach to dimension estimation via U­
statistics is justified: For Collet-Eckmann maps (i.e. quadratic interval maps where 
the critical point has a positive Lyapunov exponent) it was essentially proved in [8] 
that there exists an absolutely continuous i-invariant probability measure J.L on [0,1] . 
Without essential loss of generality one mayassurne that (I, J.L) is mixing, cf. [4] . 
The exponential weak Bernoulli property of the partition ([0, �~�]�,� �(�~�,� 1]) for the system 
(I, J.L) is proved in [9] (building on results from [19]), and the approximation property 
(10) is an immediate consequence of [20]. In view of the work of Benedicks and 
Carleson [1] one might hope that the Collet-Eckmann property is in a sense typical 
for unimodal maps which have no stabie attractor. In the case of the Hénon family 
there is not yet a complete theoretical justification for the statistical approach, but the 
relevant results obtained during the last years are nevertheless impressive: For a set 
of parameters of positive Lebesgue measure in the Hénon family Benedicks and Young 
[3] proved (building on results from [2]) the existence of a SBR-measure (that is a 
physically observable invariant measure), and more recently they proved exponential 
decay of correlations and a Central Limit Theorem for Hölder continuous observables 
of these systems 3. Finally we mention the work of Chernov [7] who offers a kind of 
tooI-box to investigate mixing properties of a broad class of dynamical systems. 

3Reported at the Banach Center Symposium on Ergodic Theory and Dynamical Systems at 
Warsaw, June 1995 
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