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Abstract 

We study the asymptotic distribution of the cross-validatory estimate of the 
delay co-ordinates in a stochastic dynamical system. By studying the tail prob­
abilities of under-fitting and over-fitting, we obtain an estimate of the sample 
size requirement under realistic conditions. 

1 Introd uction 

For the analysis of deterministic dynamical systems, the delay co-ordinates approach 
due to Takens (1981) is now firmly established and is one of the most frequently 
employed techniques in the dynamical systems literature. Although the actual me­
chanics of delay co-ordinates construction was pre-dated by the statistical literature 
(notably Yule, 1927), it is only through the celebrated embedding theorem of Takens 
that we understand the full impact of such a construction. 

Nowadays, delay co-ordinates are so widely used in the dynamical systems litera­
ture that they are often applied even when the system noise (also called the intrinsic 
noise or the dynamic noise) is present. Strictly speaking, this situation is beyond 
the scope of Takens' theorem. The primary motivation of Takens' delay co-ordinates 
construction is the recruitment of a finite and minimally sufficient set of past ob­
servations with which we analyse the dynamical system (e.g. the attractors) and 
Takens' embedding theorem assures us of the existence of such sets which preserve 
all the essential features of the deterministic dynamical system under generic con di­
tions . The recruitment process can also be likened to an information condens at ion 
process: the recruitment of redundant past observations provides no additional infor­
mation. It is pertinent to discuss the purpose and the methodology of a similar delay 
co-ordinates construction within the wider context of stochastic dynamical systems, 
in which system noise (or noise for short) is present. 

2 Delay Co-ordinates 

Let {Xt} be a discrete-time stationary time series with EX; < 00. The conditional 
expectation of X t given (Xt- 1, .. . , X t- d) will be denoted by E[XtIXt- 1, .. . , Xt-dl. 
Define the prediction error variance by 

a2 (d) = E[Xt - E[XtIXt-1,,,,,Xt-dW, d ~ 1. (1) 

Define the generalized partial autocorrelation function (PACF) by 

(2) 
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Definition 2.1 {Xt} is said to be generated by a stochast ic dynamical system with 
do delay co-ordinates, in short SDS(do), if:3 a non-negative integer do < 00 such that 
4>(do - 1) f 0 and 4>(d) = 0 for all d 2: do . If no such finite do exists, then {Xt} is 
said to be generated by a stochastic dynamical system with infinite nu mb er of delay 
co-ordinates, or S D S ( 00 ). 

The underlying idea is the recruitment of past observations for the purpose of 
one-step-ahead prediction by the least-square method. The function 4>2 (d) measures 
the percentage reduction in the prediction error variance in adding X t - d - l to the 
recruitment set consisting of Xt-I, ... ,Xt- d. Clearly, an SDS(do) may be modelled 
as 

(3) 

where 
(4) 

A more general idea is to identify do as the minimum integer such that the vector 
time series {X1 do )} is a Markov chain on IRdo. Here, x1do ) = (Xt- l , ... , Xt_do)T. We 
shall pursue this more general idea elsewhere. 

Example 2.1 Consider the stochast ic logistic map 

X t = AtX t- l (l- X t- l ) + 7]tg(Xt- I ), X o E (0,1), 

where {'fit} is a sequence of independent and identically distributed random variables, 
each with zero mean, finite variance and finite support, g(.) is any suitable function 
which ensures that X t E (0,1), Vt 2: 1, and 'fit is independent of X s , s < t. Moreover, 
At is a random variabie with mean a, (0 ::; a ::; 4), finite variance and compact 
support and is independent of X s , s < t. Clearly, 

4>(d) = 0, (d 2: 1). (5) 

Therefore, we have an SDS(l). Note that we have incorporated a non-additive system 
noise process as weil as parameter uncertainty in the above map. Further, we note 
that (FI (Xl), XI)T traces a parabola in IR2, whilst (Fd(Xd, .. . , xd, Xd, ... , xdT traces a 
parabolic cylinder in IRd+1 for each d 2: 2. It is clear that the cylindrical structure 
will prevail even if we consider general maps (of possibly higher dimensions and with 
more exotic "shape".) 0 

The fact that redundancy is characterized by a cylindrical structure suggests that 
cylinder hunters will reap great rewards in the face of noisy data. 

3 Distance Function 
(d) (d) . (d) 

Recall that X t = (Xt- l , ... , X t- d) and that E[XtlXt lIS denoted by Fd(Xt ). Let 
L2 (IRd

) denote the set of all square-integrable measurable functions on IRd . Obviously, 
L 2 (IRI

) c L2 (IR2
) C ... C L2 (IRd

) c .... 
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Denote 

(6) 

Then 

( (1)) ((2)) ( (d)) L2 X t C L2 X t C ... C L2 X t C ... (7) 

and Fd(Xid)) is the orthogonal projection of X t in L2(Xid)). For integers 0 < dl :::; d2, 
we have 

and 

Our objective is to define a suitable distance function on Nx N which enables us to 
determine do . Clearly, the Euclidean distance is not appropriate for many "discrete" 
problems such as ours. For example, Akaike (1974) has used instead the Kullback­
Leibier information to construct a suitable distance function for linear autoregressive 
order determination . For our purpose, it turns out that a feasible non-Euclidean 
distance emerges if we consider the Euclidean distance between two cylinder sets of 
dimensions say dl and d2 (dl:::; d2 ) in the space of square-integrable functions on 
]Rd2 • This motivates the following definition of the function Ll( ., .) on N x N, which 
will serve as our choice of a non-Euclidean (squared) distance on N x N. 

(8) 

where the expectation is taken with respect to the distribution of Xi d2
). Note that 

Fd is uniquely determined on ce d is defined. Thus, Ll(.,.) is weIl defined. 

Definition 3.1 The time series {Xt} is an SDS(do), (do ~ 1), if and only if 

(i) Ll(d,do)=FO 

(ii) t.(d, do) = 0 

Proposition 3.1 

for all d < do, and 

for all d ~ do. 

(i) t. 1
/

2 is a properly defined distance lunction on N x N, i.e. t. l / 2 (d l ,d2 ) = 
t. l /2(d2,dd, t. l /2(d,d) = 0, t. l / 2(d l ,d3 ) :::; Ll l / 2(dl , d2) + t. l /2(d2,d3 ) . 

(ii) 11 lor each d ~ 1, Fd has bounded first partial derivatives on ]Rd, then t. (d2, dl) :::; 
cld2 - dil, where c is a constant. 

(iii) For dl:::; d2 :::; d3 , t.(d2 ,d3 ) :::; t.(dl ,d3 ) . That is lor fixed d3 , t.(d,d3 ) ~s a 
decreasing lunction in d. 
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(iv) For any dl ~ d2, we have Ll(dl ,d2) = (T2(dd - (T2(d2). 

(v) L:~l Ll(d, d + 1) < 00. 
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(vi) There are infinitely many d lor which Ll(d, d + 1) ~ "'Id, where '" is a constant. 

(vii) Vd ~ D < 00, 3"'D, 0 < "'D < 00, such that Ll(d, d + 1) ~ "'Dld. 

The proofs are given in Cheng and Tong (1994). 
Note that the bound in (vi) is almost sharp because, for example, 

00 00 

d=2 d=l 

where f > O. 
Note also that for continuous parameters such as the bandwidth parameters in 

kemel smoothing, we may use the Euclidean distance as an appropriate distance 
function for parameter (e.g. bandwidth) choice. However, as mentioned earlier, for 
many discrete cases, the Euclidean distance is found to be inappropriate. For our case, 
we have obtained an appropriate non-Euclidean distance function, namely Lll/2(.,.) 
on N x N, based on the projection of the skeleton from a low dimensional space to a 
high dimensional space as des cri bed earlier. Proposition 3.1 (ii) reveals the relation 
between Ll(.,.) and the Euclidean distance. 

4 Estimation 

Henceforth we suppose that {Xt} is a bounded time series (Cf. Chan and Tong, 
1994). Let B; (X) denote the sigma algebra generated by (X., ... , X t ) and suppose 
that the following conditions are satisfied: 

(a) E[ftlB~-c! (X)] = 0, almost surely. 

(b) E[f~IB~-c! (X)] = (T2, a strictly positive constant, almost surely. 

(c) For each d, E[XtlXt-l, ... ,Xt- d ] is Hölder continuous. 

(d) Let the probability density function of (Xt , . . . , X t - d ) be strictly positive and 
Lipschitz continuous on a compact set in IRd . 

(e) Let k denote a probability density function with compact support on IRl
, and 

Vx, y E IRl
, Ik(x) - k(y)1 ~ c31x - yl. 

(f) For every t, s, T, t', s', T' E N, thejoint probability density function of (Xt , X. , X T, 
Xtl, X.I, XTI) is bounded. 

(g) Let lip + 11q = 1. For some p > 2 and 8 > 0 such that 8 < 21q - 1, 
Elf.1 2p(1+c5) < 00 and E!F(XdI 2p(1+c5) < 00 . 

(h) For each d, Fd has bounded first partial derivative. 
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(i) 

sup(E[ sup {IP(AllRl (X)) - P(A) I})) = O(f3i), 0 < f3 < l. 
iEN AEB?';.j (X) 

Without loss of generality, let d2 ~ dl . Let M be a pre-specified maximum lag in 
the delay co-ordinate construction. Equation (9) suggests that a natural estimate of 
l:l(d1, d2) is 

(9) 

where 
N 

RSS(d) = (N - M + 1)-1 L {Xt - Fd,N(xid))}2, (10) 
t=M 

with Fd ,N being the N adaraya-Watson kemel estimate of Fd based on the observations 
X 1 , ... ,XN , namely 

Here, h == hd,N E [aN-(1/(2d+1))-{, bN-(1/(2d+1))Hj, with a and b being arbitrary 
real positive constants and ç any real positive constant strictly less than 
{2(d + 1)(2d + I)} -1 . Cheng and Tong (1992) have proved the following theorem. 

Theorem 4.1 Under the above conditions, 

where 
N 

a;"'(d) = (N - M + 1)-1 L {Xt - Fd(xid))}2, 
t=M 

Now, using this theorem, we may easily deduce that for each d ~ do and 
hd,N = N- 1/(2dH) 

(11) 

Ii(d, d + 1) = RSS(d) - RSS(d + 1) (12) 
a;'" (do){2o:(d + 1) - f3(d + I)}N-(d+2)/(2d+3) (13) 

+op(N-(d+2)/(2d+3)). (14) 

This analysis shows that if we use Ii(d, d + 1) to obtain an estimate of do, we have to 
decide where the former cuts off. Recall that l:l(d, d+ 1) = 0 for d ~ do . (Cf. equation 
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(9) .) Thus, we are facing a statistical problem of the same type as described in Akaike 
(1974) . A conventional statistical approach prior to Akaike's innovation would be 
along the line of testing a class of nul! hypotheses: L'1(d, d + 1) = 0, dE {I, 2, ... , M}. 
In the present setting of a nonparametric autoregression, Robinson (1989) has adopted 
the convent ion al approach by considering the problem of testing the nul! hypothesis 
that d takes a specified value say d versus the alternatives d > d. Presumably, one 
would then have to "scan" dover the set say {I, 2, ... , M} in a suitable manner, which 
has to be specified. Recently, Cheng and Tong (1992, 1994) have adopted an approach 
in the spirit of Akaike (1974). Specifical!y, they have proposed a cross-validatory 

method: replace Fd,N(X;d)) in equation (11) by an estimate which is obtained from 

the observed sample but with X t deleted. Let Fd,N,\t(Xt(d)) denote this delete-one 
estimate and 

N 

CV(d) = (N - M + 1)-1 L {Xt - Fd,N,\t(X;d))}2. (15) 
t=M 

Effectively the "delete-one" device penalizes model complexity and Cheng and Tong 
(1992) have shown that argminl5,d5,MCV(d), or dcv for short, yields a consistent 
estimate of do provided do ::; M , i.e. Pr{dcv = do} -+ 1 as N -+ 00. Briefl.y, from 
Cheng and Tong (op. cit.) we can easily deduce that for bounded time series, (i.e. 
X t is bounded.) 

CV(d) - CV(do) = a'Jv(d) - a'Jv(do) + a'Jv(d*)f3(d*)N-(d'+l) / (2d'+l) (16) 
+op(N-(d'+1)/(2d'+1)), (17) 

where d* = max{d,do}. Note that a'Jv(d) = a'Jv(do) for d 2: do and that for 
1 ::; d ::; M, a'Jv(d) -+ a2(d) almost surely as N -+ 00. Consistency then fol!ows. 

5 Tail Probabilities 

It would be pertinent to investigate the limiting distribution of dcv further. 
First we notice th at 

p({dcv = do}) = P({CV(do) ::; CV(d), 1::; d::; M}) 

= P( {CV(do) ::; CV(d), 1 ::; d < do}) + P( {CV(do) ::; CV(d), do ::; d::; M}) 

-P( {CV(do) ::; CV(d), 1 ::; d < do} n{CV(do) ::; CV(d), do ::; d::; M}). 

Now, let B(d) = (2d + l)j(d + 1). 

Case 1: (d < do) 
We have 

CV(d) - CV(do) 
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t::.(d, do) - f1(d, do) + f1(d, do) 

- RSS(do) x 2a.N-O- 1(dol + op(N-O-1(dOl ). 

Since 
e-1(d ) _ do + 1 _ 1 1 

o - 2do + 1 - 2 - 1/ (do + 1) > 2' 
the above is equal to 

This implies that 

vN(CV(d) - CV(do)) "'asym N(vN f1(d , do), E). 

So, for 1 :::; d < do, 

P({CV(do) :::; CV(d)}) = P( {vN(CV(do) - CV(d)) < O}) 

=asym P(Çd :::; 0), 

35 

where Çd "'asym N( -VN f1(d, do) , E) . Hence, we have the formula P(Çd :::; 0) 1 - tu 

for d < do , where tu is the tail probability of underfitting. 

Case 2: (d> do) 
We have f~dl = f~d), a.s., Using formula (16), we have for d> do 

CV(d) - CV(do) = aFv(do)(3N-O-1(dl + op(N-O-1(d)), 

h 2 (d ) - 1 ",N [(dl]2 w ere a N 0 - N ~i=l ft . 

By the standard Cent ral Limit Theorem, we have 

and by a high-order expansion, we may obtain 

where \} is a constant. Therefore, 

P({CV(do):::; CV(d)}) = P({vNNO-1(dl(CV(do) - CV(d)):::; Ol) "'aymp P(l1d:::; 0), 

where l1d "'asym N(-VNa2 (d)(3 + \}, t). 
Putting the two results together, we have th at 

p(dcv = do) < max{(l - tail prob of underfitting), 

(1 - tail prob of overfitting)} 

max{l - t u , 1 - tol, 
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where tu = P(Çd ~ 0) and ta = P(TJd ~ 0). Now, we show that by using the above tail 
probabilities, we obtain a similar formula for the sample requirement as that reported 
in Cheng and Tong (1994). First, we need a simple lemma. 

Lemma Let Z be a normal random variabie with mean -M (M > 0) and varianee 
(72. Then 

Now, for the tail probability of underfitting, tu, M = .JJii !1(d, do) and for the 
tail probability of overfitting, ta , M = .JJii (3,,/(72 (do). To control the tail probabilities 
at level f > 0, we need to have 

Me -! M
2 

:::; f asymptotically. 

Since (3 = (3(do) has a complicated form, the tail probability of overfitting is not so 
helpful. However, for the tail probability of underfitting, since M = .JJii !1(d, do), it 
is easy to see that 

1 
N ~ !1- 2 (d, do)log(-). 

f 

In particular, choosing d = do - 1, we readily have !1(do - 1, do) 
as in Cheng and Tong (1994). Therefore, we obtain 

6 Conclusion 

N = N(do) ~ ePolog(l/f) 
(74 (do) 

Using an argument based on controlling the tail probabilities, we have arrived at the 
same sample si ze requirement under realistic conditions as that obtained in Cheng 
and Tong (1994) for the construction of delay co-ordinates in a stochast ic dynamical 
system. 
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