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Abstract 

We introduce some basic methods and results in the field of random differen­
tial equations. These methods and results center on the concepts of exponential 
dichotomy, Lyapounov type number, and rotation number . They are applied to 
two problems in random bifurcation theory. 

1 Introd uction 

The purpose of this paper is to discuss some basic methods and results in the field 
of "random differential equations" and to delineate in some detail an application of 
those methods to bifurcation theory. Despite the use of the word "random", and 
despite a certain formal similarity to the theory of stochastic differential equations, 
the techniques we introduce are only partly probabilistic in nature, and in fact we will 
not consider stochastic differential equations. This being the case, it seems natural 
to begin the paper by delimiting in broad outline the problems one does discuss in 
the field of random differential equations and the basic techniques used to deal with 
them. We will indicate several are as in which the methods of this field have found 
application. Then we will turn to the particular case of bifurcation theory and consider 
a bifurcation scenario intermediate between those considered in the well-developed 
fields of smooth quasi-periodic and stochastic bifurcation theory. 

This paper is a revised version of a talk given at the Colloquium entitled "Dynam­
ical Systems and their Applications in Science", sponsored by the Royal Netherlands 
Academy of Arts and Sciences and held in Amsterdam from 26- 28 January 1995. The 
author wishes to thank the Academy and the organizers, Prof. S. Verduyn-Lunel and 
Prof. S. van Strien for their invitation to speak and for their hospitality during the 
Colloquium. 

As promised, we begin by discussing what we mean by the term "random differen­
tial equation". These are non-autonomous linear or non-linear differential equations, 
viewed from a direction which permits the use of ideas of topological dynamics and 
ergodic theory in their study. As we will see, our point of view encompasses a very 
wide variety of time-dependent equations. The time dependence may be periodic, or 
"deterministically" chaotic, or "indeterministically" chaotic so long as it is bounded. 
Though we do not consider stochastic differential equations as these are usually de­
fined , the methods we discuss apply to all non-autonomous equations satisfying a 
boundedness condition with respect to the time variabie. 

Our starting point is, then, the non-autonomous differential equation 

X' = f(t, x) xE IRn
, tE IR (1.1) 

where the t-dependence is defined by a flow {Tt I t E IR} on a compact metric space Y. 
That is , {Tt} is a one-parameter group of homeomorphisms of Y [52) . This amounts 
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to viewing (1.1) as just one of a family of equations 

X' = f(Tt(y), x) y E Y, xE IRn (1.1)y 

where now f : Y x IRn -+ IRn is a jointly continuous function which is at least 
Lipschitz continuous in x, so that standard theorems about existence, uniqueness, 
and continuity of solutions with respect to y are valid. Frequently (but not always), 
Y will support a probability measure J.l which is ergodie with respect to the flow 
{Tt I tE IR}. That is to say 

(i) J.l is invariant: J.l(Tt(B)) = J.l(B) for each t E IR and each Borel set BeY; 

(ii) J.l is indecomposable: if BeY is a Bore! set such that Tt(B) = B for all t E IR, 
then J.l(B) = 0 or 1. 

The presence of a topological structure on Y tends to distinguish our approach 
to "random" differential equations from that of the Bremen school (see, e.g. [1] for 
a review) . Here the emphasis is on the measurable structure corresponding to an 
ergodic measure J.l . Stochastic differential equations can be studied in this framework 
and indeed these have been considered in detail by L. Arnold, F. Colonius, H. Crauel, 
W . Kliemann, and co-workers. In this art iele we will make considerable use of the 
compact metric structure on Y. It is this structure that will allow us to apply tools 
of topological dynamics. 

It is easiest to give examples of random ordinary differential equations when f is 
linear in x, and this is what we now do 

Example 1 Let 
x' = a(t)x (1.2) 

be a linear differential equation with bounded measurable coefficient matrix a( ·). 
We "randomize" equation (1.2) in the following way. Let LOO(IR, M n ) be the set of 
bounded measurable functions in the algebra M n of n x n real matrices. We introduce 
the weak-* topology in this space: an -+ a if and only if 

for every function <p E L1(IR). Then elosed norm-bounded subsets of LOO(IR, M n ) are 
compact. We define a flow in LOO(IR, M n ) by translation: 

This is the so-called Bebutov flow [38]; see also [36]. Returning to equation (1.2), 
define 

Y = els {Tt (a) I tE IR} c LOO(IR, Mn ). 

Then Y is compact, the set {Tt I t E IR} defines a flow on Y, and equation (1.2) is 
one of the family of equations 

x' = y(t)x Y E Y. (1.2)y 
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We have randomized equation (1.2). When convenient, we can fix an ergodic 
measure J1 on Y and discuss properties of equations (1.2)y which are valid for J1-
a.a. y (but not necessarily for the original equation (1.2)). This not infrequently 
leads to important insights which are not at all obvious if attention is restricted to 
equation (1.2) . A basic example is the Oseledec theory [39] which will be discussed 
later. On the other hand the existence of an ergodic measure on Y (th ere is always at 
least one; see [38]) is quite irrelevant for the discussion of some questions which are 
posed naturally in terms of random differential equations. For example, stability and 
smoothness problems arising in the theory of exponential dichotomy are often solved 
without use of ergodic theory. 

When convenient, one can write equation (1.2)y in the form 

X' = A(Tt(y))x (1.2)~ 

where A : Y -+ M n is a bounded Borel function. For example, define 

l
l /n 

A(y) = lim n y(s) ds 
n-tOO 0 

(y E Y); 

then for each y E Y, A(Tt(y)) is defined and equals y(t) Lebesgue-a.e. Sometimes it 
is useful to have a continuous function A : Y -+ M n in (1.2)~; this is possible if (and 
only if) the original function a(·) is uniformly continuous on IR. 

As a special case, suppose a is periodic with period 1: a(t + 1) = a(t). Then 
the above construction produces a circle Y c LOO(IR, Mn ). The flow {Tt I tE IR} is 
equivalent to translation on the standard unit circle: Tt (e27ri /l) = e27ri (lI+t) (0:::; 0 < 1). 
There is exactly one ergodic measure on Y, which corresponds to normalized Lebesgue 
measure on the circle {O :::; 0 < I}. 

Example 2 Suppose a : IR -+ Mn is quasi-periodic with k frequencies 'YI, ... ,'Yk . 
That is, a(t) is a uniform limit of trigonometric polynomials 

In th is case the construction of Example 1 produces a k- torus Y (assuming the 
frequencies 'YI, .. . ,'Yk are rationally independent), and the translation flow on Y is 
equivalent to a Kronecker twist flow: 

There is a unique invariant measure J1 on Y, which corresponds to the normalized 
Lebesgue measure dOl 1\ ... 1\ dOk on T k. 

Example 3 We refer to the book of Doob [15] for the definitions of the terms from 
probability theory used below. Let (0,1/) be a probability space, and let {Zt I t. E IR} 
be a stationary ergodic, stochastically continuous family of differential equations 

(w EO). 
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Let X be the uncountable product X = rr n, and let Voo be the probability mea-
tER 

sure defined on the a-algebra B generated by finite products A = {(Wt)tER I Wt, E 
Btl , .. . , Wtk E Btk} C X (where Btl , . .. , Btk c nare v-measurable) by the formula 
voo(A) = v(Btl) ... v(Btk ). Define 

where Wo means the zero-th "coordinate" of (Wt) EX. Let Y = clsi(X) in the weak-* 
topology. Then it can be shown that i is a Borel map and that the image measure 
i(voo ) = IJ is an ergodic measure on Y . 

We take the point of view that the family of differential equation (1.3)w is equiv­
alent to the random differential equation 

X' = y(t)x (y E Y) 

with Y = cis i(X). Thus all methods we develop for random differential equations 
can be applied to equations (1.3)w. 

At this point it is instructive to observe that there is natural progression in the 
collection of all random ODEs as regards the "degree of randomness" of the triple 
(Y, {Te}, IJ). A periodic differential equation exhibits no randomness. It is rather 
surprising that, even though a quasi-periodic flow (Example 2) exhibits very strong 
recurrence properties, solutions of a random ODE with quasi-periodic flow (Y, {Te}) 
can exhibit quite irregular behavior. This is evidenced by results concerning the 
Lyapounov exponents of such equations; see especially the examples of Mil!ionsCikov 
[37] and Vinograd [51]. More recently, it has been shown that the quasi-periodic 
Schrödinger operator can exhibit a "substantial amount" of point spectrum; see [18] . 

In any case, one can imagine that the ergodic flow on Y may satisfy mixing 
conditions, have positive entropy, etc. In particular the entire range of possibilities of 
"deterministic chaos" may be present in the flow on Y . It is to be expected that the 
randomness of the flow on Y wil! make itself feit in the behaviour of the solutions of 
equations (l.l)y. 

At this point one may object that the concept of random differential equation is 
too genera!. One of the lessons of the last twenty-five years is that potent tools are 
available for the study of all such equations, the application of which leads not infre­
quently to useful insights. These tools are (1) the concept of exponential dichotomy; 
(2) Lyapounov type numbers adapted to the random frameworks; (3) rotation number. 
We wil! il!ustrate all three of these concepts in our treatment of random bifurcation. 

Some fields in which one or more of these concepts have been fruitfully applied in 
recent years are the following. 

(1) The random Schrödinger operator. Textbooks are now available on this subject 
[9, 16]. It is interesting to compare their contents with the discussion in the 
early "reviews" ([26, 50]). It is clear that many interesting problems in this field 
need further study, for example the Cantor spectrum problem for quasi-periodic 
operators and the Schrödinger inverse problem together with its rel at ion to the 
Korteweg-de Vries equation. 
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(2) The study of transversal homo clinic orbits and the numerical study of chaotic 
systems. These fields have benefited from the use of exponential dichotomy 
as a tooI. Palmer [40, 41] first related exponential dichotomy to the existence 
of transversal homoclinic orbits. For further developments see, e.g., [2, 3, 42]. 
The Contemporary Mathematics volume [33] is devoted to chaotic numeri cs and 
contains several papers which use Palmer's exponential dichotomy approach to 
orbit shadowing. 

(3) Control theory of non-autonomous systems. The present author and M. Nerurkar 
have discussed the relation between local and global controllability for linear sys­
tems using Lyapounov exponents [31]. Exponential dichotomy is very useful in 
studying the random linear stabilization problem [29] . We also wish to men­
tion the papers of Bougerol [4, 5] who discusses the random Kalman filter using 
Lyapounov exponents. 

(4) Random orthogonal polynomials have been studied systematically by J. Geron­
imo and his co-authors [20, 21]. In particular, an inverse problem for such poly­
nomials has been formulated and solved by extending a basic result of Kotani 
from the theory of the random Schrödinger operator [34] and using ideas of 
algebraic curve theory [22]. 

(5) Random bifurcation theory. In Section 3 below we will discuss the random 
saddle node bifurcation (see also [1, 12]). In Section 4 a bifurcation scenario 
worked out by the author and Y.F. Yi [32] will be discussed. 

2 Basic concepts 

In this section we consider some basic definitions and facts having to do with expo­
nential dichotomies, Lyapounov exponents, and rotation numbers. 

Let 

X' = A(Tt(y))x xE lRn (2.1)y 

be a random family of linear equations where {Tt I t E lR} is a flow on a compact 
metric space Y . We will assume for convenience that A : Y ~ M n is continuous 
though, as discussed in § 1, it would suffice to assume that Y is a weak-* compact, 
translation invariant subset of LOO(lR, Mn ) (or more generally of Lfoc(lR, Mn ) for p 2: 
1) . 

Definition 2.2 Equations (2 .1)y are said to have an exponential dichotomy (ED) if 
there are constants C > 0, 'Y > 0 and a continuous family {Py I y E Y} of projections 
Py : lRn ~ lRn such that 

lI<J>y(t)Py<J>y(S)-lll ::; K e-"({t-8) 

II <J>y (t)(I - Py)<J>y(s)-lll ::; Ke+"({t-8) 

(t 2: s) 

(t ::; s). 
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Here <I>y(t) is the fundamental matrix solution of (2.1)y (i.e. it is an n x n matrix 
function which satisfies the differential equation and the initial condition <I>y(O) = 1). 

A basic fact concerning the existence of an exponential dichotomy is due to Sacker­
Sell [45, 46J and Selgrade [48J. First recall that the flow on Y is called chain recurrent 
if given y E Y, T > 0, and t > 0, there is a finite sequence y = Yl, Y2, .. . ,YN = Y of 
points in Y and a corresponding sequence tI > T, ... , tN-l > T such that 

distance (Yi+ 1 , Tt. (Yi)) < t 1 ~ i < N . 

Theorem 2.3 Suppose that the flow on Y is chain recurrent. Then equations (2.1)y 
have an ED iJ and only iJ, Jor each Y E Y the only solution x(t) oJ (2.1)y which is 
bounded on all oJ]R is the zero solution. 

The ED property is extremely useful because of the remarkable stability properties 
and smoothness properties of the projections Py. Basic stability results are due to 
Coppel [14J and Sacker-Sell [46], while Palmer [40], Yi [53] and ot hers have proved 
smoothness results. 

We next give a brief discussion of Lyapounov exponents. Fix Y E Y ; the Lyapounov 
exponent of a non-zero solution x( t) of equation (2.1)y is 

. 1 
(3(x) = hm - In IIx(t)lI . 

t-too t 
(2.4) 

(If the limit does not exists, one replaces lim by limsup in (2.4)). Also the maximal 
Lyapounov exponent of equation (2 .1)y is 

(3y = lim ~ In II<I>y(t)ll· 
t-too t 

(2.5) 

The limits in (2.4) and (2 .5) need not exist; however in the random context one 
has the fundamental theorem of Oseledec [39] which has been reproved several times 
(e.g. [1]) and which has a non-linear vers ion developed by Ruelle [43J . To state the 
linear version, we introduce the skew-product flow defined by equations (2 .1)y. This 

is the flow {1\ I t E ]R} defined on the product space Y x ]Rn in the following way : 

The reason for the term "skew-product" is that the y-part of the flow does not depend 
on x. 

Theorem 2.6 Let j.L be an ergodic measure on Y . There is a set Yo c Y oJ Juli 
j.L-measure such that, iJ y E Yo, then there are k ~ n Lyapounov exponents (31, . .. ,(3k 
oJ equation (2.1)y. That is, Jor each non-zero solution x( ·) oJ equation (2.1)y, the 
limit in (2.4) exists and is among {(31, .. . ,(3k} . The set {(31' ... ,(3k} is independent oJ 
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Y E Yo· Furthermore, there are measurabie subbundies W l , ... ,Wk C Yo x IRn which 
are invariant with respect to the flow {Tt I t E IR} and which satisfy 

the bun dIe Wi has the following description: 

W i = {(y, x) E Yo x IRn I lim ~ In lI~y(t)xll = {3;}. 
t-+±oo t 

Finally, {3y = max {{31 , . . . , {3k} for J.L-a.a. y E Y. 

This theorem states that there is a "measurable decomposition" of Y x IRn into in­
variant measurable subbundies, where the subbundies are defined by the J.L-Lyapounov 
exponents of the random differential equation (2 .1)y . Of course the measurable de­
composition can be viewed as a random analogue of the decomposition of IRn into the 
generalized eigenspaces of a constant matrix A, because the generalized eigenspaces 
of A are invariant under the act ion of the fundamental matrix sol ut ion ~(t) = e At of 
the constant-coefficient system x' = Ax. 

Next, we discuss the relation between the Sacker-Sell theory of exponential di­
chotomy and the Oseledec theory. Define the dynamical spectrum I: of the ran­
dom differential equation (2.1)y as follows: I: = P E IR I the translated equations 
x' = [->.1 + A(Tt(y))]x do not admit an exponential dichotomy}. Then it is proved 
in [46] that I: is a union of finitely many closed intervals [al, bl ] U .. . U [ar, br ] where 
al < bI < a2 < b2 < .. . < ar < br and r < k . There are continuous subbundies 
W I ~ .. , Wr C Y x IR~ such that - -

(i) WI EB · . . EB Wr = Y x IRn; 

(ii) if (y,x) E W i , then lim, lim ~lnll~y(t)xll E [ai,bi]. 
t-+±oo t-+±oo t 

Furthermore, each continuous bundie W i is a direct (measurable) sum of Oseledec 

bundies: W i = Wh EB . . . EB W ji . The endpoints e E {al, bI , ... , ar, br} of the spectral 
intervals are distinguished in the sense that, for each such number e, th ere is an ergodic 
measure J.L = J.Le on Y with respect to which e is an almost everywhere Lyapounov 
exponent in the sense of the Oselcdec theory. 

Suppose now that the linear random differential equation (2.1)y is 2-dimensional, 
i.e., x E IR2. Let x(t) be a non-zero solution of (2 .1)y, and let 8(t) be the polar angle 
of x(t) in the x = (Xl, x2)-plane. Of course we suppose that 8(t) is determined in a 
continuous way. We define the rotation number 

Ct = lim 8(t) . 
t-+oo t 

(2.6) 

The right hand side of (2.6) is clearly independent of the initial value 8(0) . The 
limit need not exist for every y E Y (though it does if (Y, {Tt}) admits exactly one 
ergodic measure). As in the case of the Lyapounov exponent, if J.L is an ergodic 
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measure on Y, then the limit in (2.6) exists for J.L-a.a. y and is constant, independent 
of y and of the initial value 0(0) . Proofs af these statements are mastly in [28], though 
the results stated there are given for the almost periodic Schrödinger operator. The 
proofs in [28] are generalized to the case we are considering in [23] . 

The rotation nu mb er is of fundamental importance in the theory of the one­
dimensional random Schrödinger operator, and the paper [28] marks the foundation 
of the systematic development of that theory in the 1980s. The utility of the rotation 
number derives from its strong continuity properties with respect to parameters. This 
feature will be illustrated in our discussion of bifurcation theory. There is a higher­
dimensional version of the rotation number, defined for example if the function A(·) 
takes values in the Lie algebra sp(n, IR) of infinitesimally symplectic matrices, or more 
generally in u(p, q) . This quantity is discussed in [27, 30] and an application to the 
random feedback stabilization problem of contral theory is given in [29]. We will not 
discuss the higher-dimensianal rotation number here because its definition would take 
us too far afield and because we will not use it in the sequel. 

3 Random bifurcation theory: the random 
saddle node 

We consider one of the simplest random bifurcation problems which, however, still 
has instructive features . See [6, 12]. The random saddle node is modelled by the 
random differential equation 

(3 .1)y 

where (Y, {Tt}) is a compact metric flow and q : Y -+ IR is a continuous function . If 
q = 0, then one checks directly that x± = ±H determines, for each À < 0, a pair 
of fixed points, one of which is attracting and one of which is repelling. On the other 
hand, if À > 0, then all solutions x(t) of x' + x2 = -À tend to -00 in finite time. 

If q is non-zero, the situation is similar but there are some interesting possibilities 
x' 

that merit mention. Let us begin by changing variables, writing cp = -. Then the 
x 

equation for cp is simply the random one-dimensional Schrödinger equation where À 

plays the role of an eigenvalue parameter: 

(3.2)y 

Since q is bounded, the operator Ly = - d
2

2 
+ q(Tt (y» is self-adjoint and bounded 

dt 
from below in L 2 (IR) for each y E Y . 

We now make use of some of the most basic facts from the theory of the random 
Schrödinger operator (see [28, 50, 9,16]). Fix an ergodic measure J.L on Y and suppose 
for convenience that the "topological support" of J.L is all of Y (that is, J.L(V) > 0 for 
every open subset V c Y). Then the spectrum ~ C IR of the operator Ly is constant 
(as a closed subset of IR) for J.L-a.a y E Y . Let Ao be the left endpoint of~ . Then, for 
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À < Ào, the associated differential equation 

(;,)' ( ~ ) (;) (3.3)y 

has an exponential dichotomy. Using the fact that the coefficient matrix in (3.3)y has 
trace zero, this implies that, in the <p - <p' space, there is an expanding direction and a 
contracting direction , and these directions vary continuously with y. More precisely, 
one has 

Y X IR2 = W+ EB W-

where W± are the continuous invariant subbundies discussed in § 2: each is one­
dimensional. 

Define now 
+ _ <p',..(0) 

Xy - <p+(0)' 
_ <p'- (0) 

Xy = <p_(0) 

where <p+(t) (<p-(t)) is a sol ut ion of (3.3)y in the expanding (contracting) direction. 
It can be shown that x; are finite for all y E Y, or equivalently that <p±(t) :j; 0 for 
all t E IR, for each y E Y. 

Amoment's reflection shows that the sections {(y, x;) I y E Y} C Y x IR are 
analogues of the attracting-repelling fixed points arising for À < 0 when q = O. These 
sections support ergodic measures J.L± (the natural lifts of J.L under the projection 
7r : Y x IR -t Y). Thus one can also speak of attracting and repelling invariant 
measures in Y x IR. 

On the other hand, if À > Ào, then the rotation number a = a(À) of equations 
(3 .3)y is strictly positive ([28, 23]). This imp lies (see § 2) that, for J.L-a.a y, all non-zero 

solutions (;~;)) of (3.3)y rotate around the origin in <p - <p' space infinitely of ten 

as t -t 00. This means that all solutions of the x-equation (3 .1)y blow up in finite 
time for J.L-a.a. y. 

These features have of course direct analogues when q = O. When À = Ào, however, 
an interesting possibility arises which has no analogue in the case q = 0 (nor in the 
case when q is periodic). Namely, at À = Ào, the two ergodic measures J.L+ and 
J.L- need not collapse together to form one measure (this is what does happen if 
q = 0 or if q is periodic), but rather they may remain distinct. It so happens that 
they remain distinct if and only if the maximal Lyapounov exponent f3(À o) with 
respect to J.L of equations (3 .3)y when À = Ào is strictly positive. This phenomenon 
in turn is common when the flow (Y, {Td) admits non-trivial recurrence properties. 
lts discovery for al most periodic flows is due to Millionscikov ([37]; see also Vinograd 
[51]). For "highly random" flows it is due to Furstenberg and Kesten [19]. 

In any case, consider now the linearization of (3.1)y around a given solutian x(t): 
one obtains 

(8x)' + 2x(t)8x = O. (3.4)y 

We may linearize equations (3.1)y "around J.L+", where J.L+ is the limit as À increases 
to Ào of the measures J.L+(À). It is easy to make sen se of this idea; intuitively speaking 
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one substitutes in (3.4}y solutions x(t) of (3 .1)y which are in the support of 11+. Since 
I 

x = ~, we see that the Lyapounov exponent of equations (3.4)y which corresponds 
t.p 

to the measure 11+ is -2,8(Ào). 
The moral of these remarks is that the stability of an invariant measure (in the 

sense that the corresponding Lyapounov exponent of equations (3.4)y is strictly neg­
ative) does not guarantee the continuability of the invariant measure. Indeed Y x IR 
carries no measures invariant for equations (3.1)y (which project to 11) if À > Ào . 
If the continuability is given, however, then negativity of the Lyapounov exponent 
does indeed guarantee the stability of the continued invariant measure for nearby 
parameter values [6] . 

4 Random bifurcation theory 11: a two-dimensional 
problem 

We begin by formulating a quite general one-parameter bifurcation problem with two 
degrees of freedom . Let Y be a compact metric space with flow {Tt I t E IR}, and 
let I C IR be an open interval containing the origin À = O. Con si der the random 
differential equations 

xE IR2 (4.1)y 

where nÀ(Y'x) is jointly continuous in (À,y,x), is C2-smooth in x, and satisfies 
nÀ(Y'x) = O(lIxI1 2

) as x -+ O. The flow {Td is allowed to vary with À j we assume 
that Tt = T/ is jointly continuous. 

Suppose now that x = 0 is an asymptotically stabie solution of (4.1)y for each 
À < 0, but that asymptotic stability is lost as À passes through zero. A natural 
and important question arises: is there a new asymptotically stabie invariant set 
(attractor) if À > O? If so, what does it look like? 

In a moment we will con si der two situations in which variants of this general 
problem arise. First let us rephrase the problem slightly. Note that, for fixed À, the 
solutions of (4 .1)y define a skew-product flow {iÜ on Y x IR2 in the following way: 

Tt(y, xo) = (Tt(y), x(t» 

where x(t) is the solution of (4.1)y satisfying x(O) = xo. It is easy to see that {Td 
defines a flow on Y x IR2 , at least if solutions of (4.1)y exist on -00 < t < 00 . But this 
latter condition can be assured by multiplying nÀ(Y") by a suitable bump function 
of x centered at x = O. 

Note now that the set Y x {Ol c Y X IR2 is compact and invariant with respect 
to the flow {Tt = T/'} for each À E J. By hypothesis this set is asymptotically stabie 
for À < 0 but ceases to be so at À = O. We will search for compact, invariant, 
asymptotically stabie subsets Z of Y x IR2 which are near Y x {Ol when À > O. 

Let us now consider two problems which motivate the study of (4 .1)y. The first is 
that of the breakdown of stability of an invariant two-torus in a non-linear dynamical 
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system. Consider a one-parameter family of equations 

Z' = f>.(z) zE IRN (4.2h 

where as before À lies in an open interval I C IR containing zero. Suppose that 
{Y>. I À E I} is a continuous family of invariant 2-tori, which is stable for À < 0 but 
loses stability at À = O. One asks if (4. 7)y admits an invariant attractor for À > O. 

There is a well-known way, indicated by Ruelle and Takens [44], by which a family 
of invariant 2-tori can arise in parametrized family of nonlinear dynamical systems. 
Thus this problem is of significant interest . Two approaches to studying the problem 
were developed in the late 1970s by Sell and Flockerzi ([49, 17]) and by Chenciner­
Iooss ([10, 11]) . In both approaches, strong smoothness conditions together with a 
diophantine assumption on the flow on the 2-torus at the critical value À = 0 are of 
crucial importance. 

It should be emphasized that Chenciner and Iooss wrote down a (strong) condition 
guaranteeing the existence of a smooth family of invariant 2-tori for À > 0, i.e., after 
the breakdown of asymptotic stability. Our theory presupposes the persistence of the 
family of 2-tori for À > O. In situations where this persistence does not hold, our 
theory is not applicable. 

If persistence does hold, however, then (4.2)>. can be reduced to (4.1)y by the device 
of linearizing (4.2) >. around the compact invariant set Y>. and making appropriate 
assumptions concerning the existence of a center manifold. See [32] for details. 

A second type of problem, to which our methods apply directly, is illustrated by 
the noisy Duffing van der Pol oscillator 

(4.3) 

Here y(.) E Y, and Y is a weak-* compact, translation invariant subset of LOO(IR, M n ) . 

Thus one has a "parameter-disturbed" bifurcation problem. Note that v = v' = 0 
is a sol ut ion of (4.3); one studies the stability of this sol ut ion as a and f3 vary. The 
problem (4.3) was studied by Holmes and Rand [24] when y = O. They divided the a­
f3 parameter space into eight regions, with various bifurcation scenarios as one crosses 
the boundary between one region and another. 

When y(t) = ç(t) = white noise, this problem has been studied numerically by 
K.R. Schenk of Bremen [47]. Motivated by the work of Holmes-Rand, he also divides 
the a-f3 parameter space into eight regions. He describes the "attracting invariant 
measures" in Y x IR2 in each region (here Y is the path space of white noise) . He 
ob serves that the attracting invariant measure has a "two-peak" structure in certain 
regions, and a "crater" structure in others. The two-peak structure is produced 
by what he calls a stochastic pitchfork bifurcation, and the crater structure by a 
stochastic Hopf bifurcation. 

Schenk does not give an analytical discus sion of these very interesting bifurcation 
patterns. The bifurcation scenario we now discuss resembles in a general way Schenk's 
stochastic pitchfork bifurcation (and not the stochastic Hopf bifurcation, despite the 
title of [32]). It must be quickly noted that the randomness y(.) which we study is 
defined by a flow on a 2-torus, very far indeed (one might think) from white noise. Yet 
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we have the impression that our scenario has more in common with that described by 
Schenk than with those discussed in quasi-periodic bifurcation theories ([10, 11,49, 17] 
and more recently [25, 35, 7, 8]) . 

Let us now return to equations (4.1)y. Recall that the parameter À takes values 
in an open interval I containing À = O. We suppose that Y E Y, a fixed 2-torus, and 
write 

Y = (Yl, Y2) 

where Yl, Y2 E [0,1) ~ 'R./Z are angular coordinates on Y . The flow {Tt'\ I t E 'R.} is 
assumed to be generated by a vector field VÀ on Y. We take for granted that standard 
existence and uniqueness results are satisfied by the solutions of the equations y' = 
VÀ (y). We shall assume throughout that the vector fields VÀ (À E 1) are jointly 
continuo us in (À, y) and that they are all transversal to a fixed simple closed curve 
K C Y which is not homotopic to a point. Changing coordinates on Y, we can and 
will assume that K is given by {(Yl' Y2) I Yl = Ol · 

As an example of the flows on Y which we have in mind, consider 

(the quasi-periodic case). The frequencies are 1 and p(À). The quantity p(À) is 
obviously the classical rotation number [13] of the first return map mÀ : K ~ K : 
Y2 ~ Y2 + p(À) , which in th is case coincides with the time-one map. 

In general we will write p(À) for the classical rotation number of the first return 
map mÀ : K ~ K (À E 1), which need not coincide with any time-to map of {T/} . 
Since mÀ is a homeomorphism ofthe circle K to itself, p(À) has all the usual properties, 
which we will use below with limited further comment. 

We next introduce a useful decomposition. Write 

[,(y) = ( aÀ(T.ot(Y)) 0 ) b ( ) 
" aÀ(Tt(y)) + À Y where tr bÀ (-) == 0, 

and let (3b(À) be the maximal Lyapounov exponent of the "traceless" equation 

Then the maximal Lyapounov exponent (3(À) of the linearization of (4 .1)y : 

is the sum: 
(4.5) 

It is necessary to add a caveat to this discussion. If the rotation number p(À) 
is irrational, then there is exactly one measure on Y which is ergodic with respect 
to the flow {Tn. In this case (3a, (3b and (3 are all well-defined and (4.5) is true. 
On the other hand, if p(À) is rational, then there may be several ergodic measures 
on Y . One must make a choice of ergodic measure in order to define the maximal 
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Lyapounovexponents. This will not always be convenient, so in what follows we will 
tacitly assume that p(A) is irrational whenever we apply the formula (4.5). 

We now suppose that f3(A) < 0 for A < 0 but that f3(A) > 0 for at least some 
A in every interval (0, Al) with Al > O. We pose the question: do equations (4.l)y 
possess an attractor in Y x IR2 for at least some A > O? We shall see that, subject 
to some more or less reasonable assumptions, the answer is yes. In the scenario we 
study, there will be an attractor for some but not all A in each interval (0, Al) with 
Al > O. In fact there will be an attractor for a "large" set of positive A, but these 
attractors definitely do not form a continuous family on (0, Al)' 

It is convenient to divide the possible relations between f3b and f3 into three cases: 

(Rl) f3b(A) » f3(A) for A > 0, A near zero; 

(R2) f3b(A) ~ f3(A) for A > 0, A near zero; 

(R3) f3b(A) « f3(A) for A > 0, A near zero. 

In what follows we will assume that the first relation holds. It holds in particular if 
f3b(O) > 0 and if f3b is continuous at A = O. There are grounds for believing that these 
conditions are verified rather of ten for the random linear equations (4.4)y . However 
satisfactory rigorous results are not yet available which would bolster this belief, so we 
omit further discussion of the matter. Moreover, for technical reasons we shall have 
to assume that f3b(O) = 0 in order to prove our main result. We feel, however, that our 
main theorem is true if f3b(O) > 0, and that proving our results under this hypothesis 
would contribute substantially to understanding the breakdown of stability of the zero 
solution of equations (4.l)y. 

An important hypothesis of our main theorem will be that lA(') is not too smooth 
as a function of y. In fact we will require that IA be no more than Cl-Ó-smooth for 
some r5 > O. This is because the conclusion of our Theorem 4.6 is al most certainly 
false if IA is cr -smooth for T > 1. Thus our bifurcation scenario should be viewed as 
complementary to theories in which a high degree of smoothness is required. 

Before turning to a discussion of our results, we remark that con dit ion (R3) is 
satisfied in theories where a stable 3-torus bifurcates cleanly from the family of 2-tori 
at A = 0 ([10, 11,49, 17)). Roughly speaking, the "hyperbolic" part of the linearized 
system (4.4)y is dominated by the "elliptic" part. The relation (R2) seems rather 
unpleasant from a theoretical point of view. An example which displays transversal 
homo clinic behaviour in (4.l)y when (R2) holds is given in (32). 

We now begin the analysis of equations (4.l)y when x = 0 loses asymptotic stabil­
ity at A = 0 and when condition (Rl) above holds. We will impose further assump­
tions of a "generic" nature, meant to hold for as large a class of problems as possible. 
We begin with the family of vector fields {VA}' If the rotation number p(A) of the 
first-return map mA : K -+ K is rational, then (generically) the circle K supports q 
attractor-repeller pairs, i.e., there is frequency locking. While it is certainly reason­
able that frequency locking should occur for an open dense set of A EI, we assume 
that it does not occur at A = O. If it did, then our loss-of-stability problem would 
reduce to a (non-smooth!) version of the bifurcation problem studied in (44). Further 
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investigation of this matter would be interesting. Here, however, we will assume that, 
at À = 0, the rotation nu mb er p(O) is irrational. In fact the important set of À-values 
will be those for which p(À) is irrational. With this in mind, we define 

A. = cls{.x E I I p(À) ct Q}, 

and no te that 0 E A •. 
Next we consider the linear equations 

( 4.4)y 

The solutions of this equation exhibit a rich range of behaviourj its theory is far from 
completely developed. On the other hand one has sufficient knowledge to permit our 
analysis of equations (4.1)y. The basic result which we will need states that, roughly 
speaking, a generic one-parameter family x' = b).(Tt(y))x of trace-zero linear systems 
has an exponential dichotomy for an open dense set of parameter values in A •. 

To state this result more precisely, let sl(2, IR) be the Lie algebra of 2 x 2 real 
matrices with trace zero. Let B be the set of all C1-ó-mappings from the 2-torus Y 
into sl(2, IR) where 0 < 8 ::; 1. Further let s be any non-negative number (s = 00 is 
allowed). Define C6(/, B) to be the collection of all C6-mappings from the interval I 
to the Banach space B. The number s is not important in our theory, but the nu mb er 
8 is. The re sult we now enunciate is very likely false if 1 - 8 is replaced by r for r > 1. 

Theorem 4.6 Let {V). I À E I} be a family of vector fields on Y satisfying the con­
ditions enunciated earlier. There is a residual subset E C CS(/, B) with the following 
property: if b = b). (-) E E, then the equations 

(4.7)y 

have an exponential dichotomy for all À in an open dense subset of A •. 

The idea in what follows is quite simpIe. Since ED is an extremely robust property, 
it is natural to study the non-linear equations (4.1)y for parameter values À E A. for 
which an exponential dichotomy is present in equations (4.7)y. One expects that the 
presence of ED in the linear equations will make itself feIt in the behavior of solutions 
of the nonlinear equations. 

We return to equations (4.1)y. The fact is that these are too general for us to 
handle, even with the relation (Rl) and Theorem 4.6 at our disposal. However, we 
can deal with the problem 

(4.8)y 

by using a gene rali zat ion of the method of averaging, as described in [32]. 
To analyze equations (4.8)y, we write 

-1 ) ( 1 o +8). 0 
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Let (r,O) be polar coordinates in the x-plane. Then equations (4.8)y take the form 

2 ~ 

r ' = >.{[aÀ + UÀ]r + dÀr + fÀ} 

O' = >'{LÀ + GÀr + gÀ} 

where aÀ is a function of Tt(y); UÀ, dÀ,LÀ and G À are functions of (Tt(y), r(t), O(t)). 
One has explicitly: 

UÀ(y,O) = ÖÀ(Y) cos 20 + EÀ(Y) sin 20 

LÀ(y,O) = IÀ(Y) + EÀ(Y) cos 20 - öÀ(Y) sin 20. 

The function dÀ(y,O) depends on the nonlinearity nÀ. In addition Î>. = O(r3
) and 

gÀ = O(r2
) as r -+ 0, uniformly in (y,O). 

Define another function 

PÀ(Y'O) = 8~À = 2EÀ(Y) cos 20 - 2ÖÀ(Y) sin 20. 

Introduce the following hypotheses. 

(Hl) (3b(>') » (3(>.) for small positive >., and (3b(O) = O. 

(H2) 

(H3) 

(H4) 

When >. = 0, there is a unique measure on the "projective bundle" Y x pi (IR) 
which is invariant under the natural flow-of lines on Y x pi (IR) defined by 
x' = 10(Tt(y))x . See [32] . This hypothesis can be viewed as a very weak vers ion 
of the diophantine condition in the smooth quasi-periodic theory. It allows our 
averaging procedure to work. 

The average do = lim .!.. fT do(Ts(Y), O(s)) ds is less than zero. The average is 
T-too T Jo 

well-defined by (H2). This is a generalized weak-attractor condition. 

The mean values PÀ = lim .!..lT 

pÀ(Ts(Y), O(s)) ds satisfy Po = 0 and PÀ < 
T-too T 0 

c(3b (>') for a certain constant c. This may be viewed as a weak norm al form 

condition; it is satisfied if, at >. = 0, 10 = (~o -rio) . 
(H5) Four quantities which we do not write explicitly do not deviate too much from 

their mean values. 

We can now state our main theorem. 

Theorem 4.9 Let Ab be the set of points 0 < >. E A. such that x' = bÀ(Tt(y))x has 
an ED. Assume that hypotheses (Hl)-(H5) hold. 

(a) If>. E A n (0,>'1) for sufficiently sm all >'1, then equations (4.1)y admit an 
attractor-repeller pair Z- (>'), Z+ (>') in Y x IR2. These sets tend to Y x {O} C 
Y X IR2 as >. -+ O. 
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(b) The sets Z- (.X) vary discontinuously as ,X -+ 0 in a precise sense as ,X -+ 0+; sa 
do the sets Z+(,x) . 

We finish this paper with a brief discussion of point (b) of Theorem 4.9. It is here 
that the rotation number a('x) of equation (4.7)y plays a role . Here we speak of the 
rotation number defined in § 2 and not of the classical quantity p(,x). 

The main point is that there is a "time-changed" version éi('x) of the rotation 
number such that, if equations (4. 7)y have an ED at ,x, then 

where n,\,m,\ are integers. Now, by removing a set of first category from the set E 
of Theorem 4.6, one can assume that éi(O) is not of the form n + mp(O) for integers 
n, m. Since éi(·) is continuous, the integers n,\, m,\ must vary wildly as ,x -+ O. 

Now, the integers n,\, m,\ are winding numbers, and it turns out that they reflect 
the way in which Z- (,x) is embedded in Y x IR2 • It is in this sense that the sets Z- (,x) 
vary discontinuously as ,x -+ O. 
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