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Starting with the work of Fasel (1976), the research group at the University of 
Stuttgart has developed numerical methods for the realistic Direct Numerical 
Simulation of controlled laminar-turbulent transition in boundary layers using 
the spatial model. This paper presents results of K-type transition simulations in 
zero and adverse pressure gradients. Subsequently it is shown that such simula
tions can also be used for boundary layers in 'real-life' aeronautical applications, 
such as airfoils. For such a flow, the influence of steady suction at the wall is 
investigated and compared with experimental data. 

Introduction 

Laminar-turbulent transition in boundary layers plays a significant role in many 
practical applications. For instance, delaying the onset of transition on an air
craft wing reduces the skin friction drag, thus decreasing the fuel consumption 
of the airplane. Airfoils with a large portion of laminar flow based on a design 
that avoids st rong adverse pressure gradients are only feasible for small aircraft, 
operating at relatively low Reynolds numbers where no wing sweep is necessary. 
Larger and faster air cr aft need laminar flow control (LFC) devices to enforce 
laminar flow. Designing and optimizing such devices undoubtedly requires a 
good knowledge of the transition mechanisms. 

Transition in boundary layers is a spatially evolving complex process influ
enced by many parameters, such as free-stream turbulence, Reynolds number, 
pressure gradient, etc. In order to reduce the number of these parameters, tran
sition research has focussed on so-called 'controlled ' transition in simple model 
flows, like, for instance, the flat-plate boundary layer. In such experiments, some 
kind of a wave maker is used to excite disturbances in the boundary layer. The 
streamwise evolution of these disturbances is then examined using, for instance 
flow visualization and hot-wire measurements. 

In addition to experimental and theoretical work, Direct Numerical Sim u
lations (DNS) based on the solution of the complete Navier-Stokes equations 
have played an increasingly important role in transition research during the past 
decade. The basic approach is similar to that ·of controlled experiments. Some 
regular perturbations are introduced into the integration domain, and their sub
sequent unstable, nonlinear development is computed. Two basically different 
kinds of numerical models have been used until the beginning of the 1990s, the 
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'temporal' and the 'spatial' model. The advantages and disadvantages of both 
models are not reviewed here, they have already been discussed elsewhere (cf. 
Fasel, 1990, Kleiser & Zang, 1991). 

In the spatial model the streamwise evolution of disturbances is simulated in 
a fixed integration domain extending over a large downstream distance. With 
this model, realistic simulations of controlled experiments are possible, even in 
flows with large streamwise gradients including feedback by local flow reversal. 
However, elaborating a properly working numerical method for this model is a 
difficult task due to the boundary conditions and high demands on numerical 
stability and accuracy. 

Today, the computationally less demanding temporal model with its under
lying unphysical assumptions has been widely supplanted by the spatial model. 
The numerical results obtained by the research group of H. Fasel at the Univer
sity of Stuttgart, for instance, compare favourably weIl with available theoretical 
and experiment al data. The vibrating-ribbon experiments of Kachanov (1987) 
for the fundamental breakdown in a Blasius boundary layer simulated by Rist 
and the nonlinear development of a three-dimensional wave packet according to 
the wave-packet experiments by Gaster & Grant (1975) simulated by Konzel
mann proved to be the first successful DNS of controlled transition experiments 
using the spatial approach (see Fasel, 1990). 

This paper presents some results of two of the major investigations performed 
in the past several years at the University of Stuttgart: K-type transition in 
boundary layers with zero and adverse pressure gradient. It is then shown that 
these simulations can be easily extended to LFC studies in boundary layers of 
'real-life' airfoils including suction at the wall. 

Numerical model 

The latest version of the DNS-scheme originally developed by Fasel (1976), ex
tended to three-dimensions by Fasel et al. (1990), improved by Kloker et al. 
(1993) and by Kloker (1993), is described here. Only a general outline of the 
numerical model is given; details are available in the mentioned references and in 
Rist & Fasel (1995). Many of the basic features of our numerical scheme (distur
bance flow formulation, 'relaminarization zone' at the outflow boundary, forcing 
at the waIl, pseudo-spectral formulation, high-order finite difference discretiza
tions, explicit time integration, etc.) are equally applicable for other flows, like 
separated flows, free shear layers, compressible boundary layers, 3D boundary 
layers, and Taylor-Couette flow, for example. 

The basic configuration of the integration domain for boundary layers is rela
tively simpie. As shown in Fig. 1, a finite rectangular box is selected to represent 
a certain region of the flow over a flat plate. The integration domain extends in 
stream wise direction fr om x = Xo to x = X N, covering typically more than ten 
Tollmien-Schlichting wave lengths, and Yu is chosen to cover approximately three 
boundary layer thicknesses (6) at the out flow boundary. In the spanwise direc-
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tion, the flow is assumed to be periodic with a ehosen fundamental wavelength 
Àz. 

Governing equations 

The numerical method is based on the three-dimensional Navier-Stokes equations 
for ineompressible flow in vorticity-velocity formulation. The vorticity eompo
nents are denoted by wx , wy and W z , and u, v and ware the velocity components 
in the x, y and z direetions, respectively (see Fig. 1). 

The equations are split into a set of equations for a two-dimensional steady 
base flow and a three-dimensional disturbanee flow, i.e., for all variables f = 
[u, v, .. . , wzl we have f(x, y, z, t) = fB(X, y) + f'(x, y, z, t). This allows the eal
culation of different base flows by preseribing different free-stream velocity dis
tributions without altering the boundary eonditions for the ealeulation of the 
disturbanee flow. Thus, for investigations of the effects of different streamwise 
pressure gradients or steady suetion at the wall, only a new base flow needs 
to be computed and specified for the ealeulation of the disturbanee flow. The 
base flow is ealeulated from the 2D Navier-Stokes equations, i.e., one vorticity
transport equation and two Poisson equations for the velocity components. The 
disturbanee flow is deseribed by three vorticity-transport equations and three 
Poisson equations for the veloeity components. The detailed set of equations 
ean be found in Fasel et al. (1990), Kloker et al. (1993) or Rist & Fasel (1995), 
for instanee. 

Boundary conditions 

An arbitrary streamwise pressure gradient ean be imposed on the base flow by 
preseribing the streamwise velocity distribution Ue ( x) of the external flow at the 
free-stream boundary of the base flow calculation. Three different base flows 
are eonsidered in this paper, one with Ue(x) = 1 (Blasius boundary layer), one 
with Ue ( x) = (x / xo)-O.0826 (strongly deeelerated Falkner-Skan boundary layer 
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with Hartree parameter f3H = -0.18), and one where Ue(x) is taken from an 
experiment to represent the velocity distribution of an airfoil. In any case the 
vorticityat the free-stream boundary is set to zero and aVB/ay = -dUe/dx is 
specified for the calculation of VB. 

At the inflow boundary, Falkner-Skan profiles (= Blasius profiles for f3H = 0) 
corresponding to the imposed distribution of the streamwise pressure gradient 
are specified for the base flow variables. For a flow that does not belong to the 
Falkner-Skan family, as the airfoil boundary layer for instance, the streamwise 
velocity component UB(y) is taken from the Falkner-Skan velocity profile cor
responding to the local pressure gradient and the local dis placement thickness. 
Then, the VB(Y) profile is integrated by using the continuity equation. At the 
outflow boundary, all equations are solved neglecting the second derivatives with 
respect to x, i.e., the equations are parabolized in the streamwise direction. At 
the wall, the velocity components are zero, except for the suction strip. The 
effect of suction through a porous strip is simulated by prescribing a normal 
velocity distribution VB,O( x) at the wall as sketched in Fig. l. 

A detailed description of the boundary conditions used for the calculations 
of the three-dimensional disturbance flow is given by Fasel et al. (1990), Kloker 
et al. (1993), and rust & Fasel (1995). At the wall, all disturbance velocity 
components are zero, except within the disturbance strip, where the normal ve
locity component v:U can be prescribed as a function of x, z, and t in order to 
introduce controlled time-periodic 2-D and 3-D disturbance waves. At the free
stream boundary, vanishing vorticity fluctuations and an exponential decay of 
the velocity disturbances are assumed. At the inflow boundary, all velocity and 
vorticity disturbances are set to zero. A harmonic wave condition in x-direction 
is applied at the outflow boundary. In addition, an artificial suppression of dis
turbances is introduced in the 'relaminarization zone' upstream of the outflow 
boundary (see Fig. 1) to substantially reduce the disturbance level at this bound
ary (cf. Kloker et al., 1993 for details). Thus, possible undue reflections caused 
by large amplitude, broad-band disturbances passing the outflow boundary are 
prevented. 

Numerical method 

For the numerical solution of both the base flow and the disturbance flow equa
tions a fourth-order accurate finite-difference discretization is employed in the 
streamwise direct ion and normal to the wall, which allows for a proper treatment 
of the effects of the spatially varying boundary layer. The discretization in the 
spanwise direction for the disturbance flow is done by using a Fourier series 

K 

f'(x, y, z, t) = L Fk(X, y, t) eik'Yz 
k=-K 

(1) 

to exploit the periodicity with respect to z, where the complex Fk = [Uk, Vk, . .. , 
f2 zkl represent all disturbance variables in spectral space, and I is the basic 
spanwise wavenumber defined by I = 211"/ Àz. 
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For the base flow, the vorticity- transport equation is integrated by a semi
implicit Euler scheme in artificial time until convergence to a steady state is 
achieved. For the disturbance flow, the integration in time is performed by an 
explicit four-stage Runge-Kutta scheme offourth-order accuracy. The time inte
gration is coupled with a fourth-order accurate discretization of the x-convection 
terms using central, upwind, downwind, and again cent ral finite differences in 
each of the four stages, respectively. The sequence of upwind and downwind 
differences is altered for every time step. It can be shown that this technique ef
fectively damps out small-scale oscillations that cannot be accurately discretized 
on a given grid at no additional computational cost (Kloker, 1993). The Vk
Poisson equation is solved with a multi-grid method using SOR line iteration 
technique (LU-decomposition in y, iteration in x). The equations for Uk and Wk 
are reduced to ODEs and directly solved. 

Numerical results 

As already stated, the numerical simulation is performed in two steps. First, 
the steady two-dimensional base flow is calculated, i.e., a boundary layer under 
combined effect of streamwise pressure gradient and local suction through a nar
row su ct ion strip (if necessary). Second, two- and three-dimensional disturbance 
waves with pres cri bed frequency and amplitude are introduced into the domain 
by periodic blowing and suction through a narrow disturbance strip at the wall 
(shown schematically in Fig. 1). Af ter several periods offorcing, the streamwise 
evolution of these disturbances can be observed in the unsteady numerical results 
like in a wind tunnel experiment. 

Using periodic disturbance input, a periodic wave train is generated which 
travels downstream as sketched in Fig. 1. The numerical method was carefully 
validated by extensive comparisons with results from linear (spatial) stability 
theory, secondary instability theory and experiments (Fasel et al., 1990). 

K-type transition 

DNS of the K-type controlled transition experiments by Kachanov et al. (1985) 
have been performed by Rist (cf. Rist.& Fasel, 1995), using K = 8 in equation 
(1), and extensively compared with the available experimental data (Kachanov, 
1987 & 1994). In order to document the good agreement of the DNS with the 
experiments, new comparisons for later stages of transition are shown here in 
Figs 2 to 4 using data computed by Kloker (1993) with K = 15. 

In Fig. 2, u'-rms amplitudes are shown together with amplitudes (Ah) and 
phases (4)h) from a Fourier decomposition ofthe x-velocity component u(x, y, z, t) : 
L:h Ah(x, y, z) cos[hftt - 4>h(X, y, z)], where ft is the fundamental disturbance 
frequency. The direct quantitative comparison of the DNS results with experi
mental data for fj = 4 mm at the spanwise 'peak' and 'valley' stations in Figs 2(a) 
and 2(b) shows excellent agreement. It should be noted here that only the dis
turbance amplitudes of the 2D TS-wave and its spanwise modulation at the 
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Figure 2: Comparison of u'-disturbances. Lines = DNS, symbols = experimental mea
surements by Kachanov et al. (1985), h = disturbance frequency. 

(a) amplitude (A) at ij = 4 mm, z at 'peak' 
(b) amplitude (A) and mean flow (u) at ij = 4 mm, z at 'valley' 
(c) amplitude (A) at x = 450 mm, z at 'peak' 
(d) phase profile (<p) at x = 450 mm, zat 'peak' 
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Figure 3: Comparison of phase speeds Cr with mean-velocity ti and spectral amplitudes 
B for various frequency-spanwise-wave-number modes (h,k). a. x = 350 mm; b. x = 
410 mmo 

disturbance strip placed at x = 250 mm we re adjusted in such a way that the 
experimental amplitudes at x = 300 mm were closely met . 

Two regions can be distinguished in the results for the 'peak' station: a rather 
modest weakly nonlinear disturbance development upstream of x ~ 430 mm, 
followed by a highly nonlinear region with several 'spikes' per disturbance cycle. 
The sudden increase of the peak rms- and higher-harmonie amplitudes is due 
to these spikes which are cut for x 2: 430 mmo Figs 2( c) and 2( d) show a 
quantitative comparison of the amplitude and phase profiles, respectively for 
the highly nonlinear 'two-spike stage' at x = 450 mm which also exhibits a 
remarkable agreement. The first spike is situated bet ween y/Ól = 2.4 and 2.8 
(ij ~ 4 mm) where the phases are equal to 1800 due to their normalization with 
respect to the passage of the first spike. 

In Figs 3 and 4 the disturbances are examined in the frequency-spanwise
wave-number spectrum defined by u(x, y, z, t) = I:h I:k Bh,k(X, y) cos[k,z-hiIt
lh,k (x, y)]. The phase speeds Cr h,k = h 11/ ( {}(h,k / OX ) ofthe modes (h, k) in Fig. 3 
exhibit new, interesting features. Upstream of x ~ 400 mm, the phase speeds 
versus y are practieally constant and all modes are phase-locked to the 2D wave. 
Thus, the disturbances show 'wave-like' behaviour and the flow field in this stage 
is defined by nonlinear waves. Fig. 3 clearly shows that the nonlinear interaction 
is not confined to the critical layer (i.e., the y-position where the mean flow u 
equals the phase speed): Except for mode (1,0), all phase speeds are significantly 
different from their linear values due to the phase lock observed above. In addi
tion, there is no observable increase of higher harmonic amplitudes in the critieal 
layer by nonlinear interactions. Only the fundamental 2D and 3D disturbance 
amplitudes [modes(I,O) and (1,1)] exhibit a maximum in the critieallayer, but 
this is already there in the linear case. 

Further downstream in the spike stage, shown in Fig. 3(b), the 'wave-like' 
behaviour disappears: the phase speeds change with respect to y, especially 
inside the boundary layer. Outside, they are no longer phase-locked. At this 
stage it is much more difficult to define a critieallayer and to attribute a special 
nonlinear significance to it. The only distinct feature that can be observed is a 
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Figure 4: Amplitude maxima (a) and amplification rates ai (b) for various spectral 
modes: frequencies O, fI,2fI, spanwise wave numbers k = 1,2, 3,4,8. ($) = Floquet 
theory, Fasel et al. (1988). 

region of equal phase speed at ij ~ 2 mm where the first spike is just being formed. 
Since spikes are the manifestation of small f!-shaped vortiees, we suppose that 
this part of the flow field must be governed by nonlinear dynamie interactions of 
local fluid-flow structures in contrast to the wave interactions in the first sector. 

Both regimes also appear in Fig. 4 where the y-maxima of the B-amplitudes 
defined above and the amplification rates ai = -d/dx(Bmax) are shown for 
various frequency-spanwise-wave-number modes [(h , k), ° ~ h ~ 2, k > 0] versus 
x. It is quite evident that the initial amplification rates of the spanwise higher 
harmonies grow (linearly) with the spanwise wave number for x < 400 mmo The 
initial fan-out and deviation from linear increase of the modes with k = 3, 4,8 
should not be considered, since these modes are initially affected by the numerical 
round-off error due to their extremely smaU amplitudes (Bmax < 10-6 ) for small 
x. 

Comparisons of the amplification rates a i with an extension of Herbert's 
(1988) secondary instability theory are also shown. They reveal that the ampli
fication of modes (1,1) and (1,0) is due to a 'combined' subharmonie-fundamental 
resonance with the 2D modes (1,0) and (2,0) (Fasel et al., 1988) . The possibility 
whether or not such a resonance could amplify other modes as weU has also been 
checked. It turned out that ai due to secondary instability is largest for k = 1, so 
that the modes with higher k must be considered as higher harmonie disturbance 
components of the fundament al disturbances. This hypothesis has been further 
checked in a number of test calculations using different initial amplitudes for 
these modes. It turned out that the local amplitudes (and amplification rates) 
of the higher harmonies do not depend on their initial disturbance amplitude 
but on the local amplitude of the waves that are amplified by the 'combined' 
resonance. Thus, it appears that this resonance is the kernel that drives the flow 
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Figure 5: Experimental (a) and numerical (b) contours of ou'joy at x = 500 mmo (b) 
together with u'. 

through the first stage of K-type transition. 
In the second stage, nonlinear effects lead to a saturation of all amplitudes 

on a high level as can be observed in Fig. 4. So far, no wave resonances could be 
discovered in the numerical data. This absence might be due to the appearance 
of local dynamics that apparently replace the 'wave-like behaviour' observed in 
the first regime. 

Simulations of the late-stage structures downstream of x = 450 mm have 
been started recently using K = 64 in eq. (1), see Rist & Kachanov (1994). 
Fig. 5 shows a comparison of the instantaneous shear au' joy at x = 500 mm 
for the peak station from the DNS with data from Kachanov (1994). Spikes and 
a high-shear layer close to the wall are mapped out by black dots and circles, 
respectively in the experimental data. Regions oflarge negative u' indicate spikes 
in the numerical results. Instead of only four in the experiment, five or six spikes 
can be observed in the DNS. Besides that, the qualitative features in both data 
sets are identical: a high-shear layer traversing the entÏre boundary layer and 
several spikes (n-vortices) at its downstream end. However, there is no doubt 
that further analysis of these new data is required to learn more about possible 
interactions of such structures with the near-wall region, for instanee. 

Application to a boundary layer with adverse pressure gradient 

Kloker (1993) has used a Falkner-Skan-type boundary layer with Hartree pa
rameter f3H = -0.18 for comparison with the K-type simulation in the previous 
section. At first glance the results look very much like those for the Blasius 
boundary layer (cf. Fig. 6). Aligned A-vortices are forming out of a spanwise 
modulation of the large-amplitude TS-wave and n-vortices appear together with 
spikes at the spanwise peak stations. The downstream disturbance development, 
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x 

Figure 6: Simulated time-lines. Comparison between adverse pressure gradient (left) 
and zero pressure gradient boundary layer (right). 

however, although quite similar in the peak plane, is drastically more violent at 
the spanwise valley station in the case with adverse pressure gradient than with 
zero pressure gradient (Kloker & Fasel, 1995). A closer look at the results in
dicated that the breakdown occurs much earlier there than at the peak station. 
This is why Kloker called this station a 'Co-Peak' station instead of 'Valley'. 
A new secondary vortex system close to the wall, centred around this station, 
induces a (lower) quite characteristic high-shear layer in bet ween neighbouring 
A-vortices and accelerates transition at the 'Co-Peak' station. This event pro
ceeds much more rapidly than the formation and breakdown of the well-known 
(upper) high-shear layer on top of the A-vortex. These violent dynamic events 
are apparent in Fig. 6 but could be perceived much better in an animation. 

Application to an airfoil with suction 

The base flows of wind-tunnel experiments on a NACA 642-A-215 airfoil with 
suction performed by van Ingen (1965) have been calculated. Between 30% and 
90% of the airfoil chord (c) the wing section has been divided into 20 suction 
chambers, each of which was adjustable separately in order to prevent flow sep
aration with only minimal viscous drag by suction through aporous surface. 
Bestek et al. (1994) have simulated this flow by prescribing the velocity distri
bution shown in Fig. 7( a) at the free-stream boundary of the integration domain. 
Two calculations have been performed: one without suction at the wall with the 
integration domain reaching fr om sic = 0.2 to 0.55, and one with the suction 
velocity of van Ingen extending to sic = 0.72. 

Fig. 7(b) shows a comparison of the DNS results with the experiments for 
the streamwise distributions of the displacement thickness 61 and the momen
turn thickness 62 for both cases. Without suction the strong growth of both 
indicates the inclination to separation. For the suction case, 61 and 62 grow only 
moderately. For both cases, the numerical and experimental results are in good 
agreement. The neglection of the airfoil surface curvature in the numerical model 
is justified due to the small ratio of boundary-layer thickness to surface curva-
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Figure 7: (a) Free-stream velocity Ue and wall-suction velocity VB ,O for the DNS of 
a NACA 642-A-215 airfoil boundary layer with suction. (b) Comparison of boundary 
layer growth. Symbols = experiments v. Ingen (1965). 

ture radius within the considered chord region. Thus, the basis for subsequent 
simulations of disturbance control in practical applications is prepared. 

Conclusions 

A numerical method has been developed and optimized over the past several 
years that can now be used to perform high-resolution spatial DNS of instabil
ity and transition in various boundary-layers of practical interest, provided a 
high-performance, large-memory computer is available. The results shown here 
demonstrate a good quantitative agreement with available experimental data. 
Research within the next few years must focus on flow control in such flows, 
on boundary-layer receptivity, and on understanding the late-stage structures of 
transition to turbulence in 2D as weil as in 3D mean flows. 
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