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Figure 4: Transition positions and N­
factor curves (SWN strategy) for swept 
Hiemenz flow . 
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Figure 5: Transition positions and N­
factor curves (envelope strategy) for a 
cylinder yawed at 30°. 

R, giving 15:S N :S 18, but all three methods would probably satisfy engineering 
requirements for this particular set of data. 

Fig. 6 shows the effect of surface and streamline curvature treatment for the 
SWN strategy. The quality of the N -factor correlation does improve markedly 
below R=600 to give a very narrow band around N =15. Surface curvature im­
proves the fit while streamline curvature increases N. For the envelope strategy 
curvature increases N to about 18.5, but the fit is slightly poorer. Finally, Fig. 
7 shows the detrimental effect of considering only stationary modes. This result 
is unaffected by either integration strategy or curvature effects. 

Conclusions 

Dimensional analysis of the flow near a swept attachment line has shown that 
transition position is a function of Rand Rx. The variations in surface finish and 
wind tunnel environment during the experiments have not had a discernible ef­
fect on the results. The results of the linear stability analysis generally correlate 
well with the experimentally measured transition onset positions. The correla­
tion is a significant improvement on that obtained with the crossflow Reynolds 
number. Best results are obtained from the envelope integration strategy and 
from the spanwise wavenumber strategy with curvature terms included. The 
latter strategy has a better physical basis for infinite-swept flows. Including cur­
vature terms in the analysis alters the value of the N -factor for both integration 
strategies, but only improves the correlation for the SWN strategy. 

The experiment al observations (Poll, 1985) reveal the presence of both sta­
tionary and tra velling disturbances ahead of the transition region. The linear 
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Figure 6: Transition positions and N­
factor curves (SWN strategy) for a cylin­
der yawed at 300 inc/uding surface and 
streamline curvature effects. 
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Figure 7: Transition positions and sta­
tionary mode N-factors (SWN strategy) 
for a cylinder yawed at 30° . 

stability analysis, however, only correlates well whén travelling modes are con­
sidered, prompting one of two conclusions: that in this flow there is a significant 
region of linear-theory-type wave growth, the travelling modes proving dominant 
over the stationary modes; or that the results presented here are a fantastic co­
incidence, given that linear stability analysis may be totally inapplicable to this 
problem. The dominance of stationary modes is usually associated with higher 
free-stream turbulence levels , but it is not clear how the presence of astrong, 
uniform chordwise velo city gradient influences the transition behaviour. 

The values of N-factor from the SWN strategy are believed to be higher than 
those previously recorded for any type of disturbance in a wind tunnel. The work 
of Malik et al. (1994) suggests that non-parallel effects would be small. This 
does not invalidate the use of the eN methad as an engineering taal, but confirms 
that there are different flow fields requiring different values of N. Neither does 
the quality ofthe N -factor correlation imply that the transition process is wholly 
linear: simply that here the non-linear growth is either short in extent or can 
be represented by an extension of the linear growth regime. Future work will 
extend the experiment al database to flows with suction and to situations where 
R < 400 andfor Rx > 1 million. 
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