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The generalised Hiemenz model is used to describe incompressible flow in the 
infinite swept attachment line boundary layer. This base flow is perturbed using 
local spatial LST and the resulting secondary instability problem is solved at 
high Reynolds numbers, extending earlier work. Issues raised by compressibility 
are discussed next; in the absence of a simplifying theoretical assumption, such 
as that of Görtler & Hämmerlin, we proceed to design a DNS in order to study 
the instability in question. The algorithm is outlined and first results on its 
successful application on a relevant compressible model problem are presented. 

Introd uction 

The investigation into secondary stability was initiated as an at tempt to explain 
the frequencies appearing in the spectrum, distinct from the linearly unstable 
ones, at conditions favouring linear growth (Poll, private communications; Poll et 
al., this volume). Although not sharply defined as such, these frequencies appear 
in the parameter space region where harmonies of the primary linearly growing 
wave are expected. A secondary instability analysis is thus called for to shed light 
into this problem. Within the framework of the classic, in Blasius flow, Floquet 
analysis (Herbert, 1988) it is impossible to introduce three-dimensional stream­
wise (chordwise) periodic disturbances superimposed upon the linearly growing 
spanwise eigen mode in a theoretically self-consistent manner. The re as on is, of 
course, the parity of the linear eigenfunctions in the attachment line problem; 
these have been assumed, in theoretical analyses, to inherit the symmetry of the 
base flow (Görtler-Hämmerlin assumption, henceforth referred to as GH) while 
the incompressible DNS of Spalart (1988) has demonstrated that this assumption 
may be justified in the linear regime. Invoking the GH assumption to study sec­
ondary instability in the attachment line, however, results in the elimination of 
the dependence of the system of equations on the streamwise coordinate which, 
in turn, prohibits the introduction of streamwise periodic disturbances in the 
present problem in a formal manner. 

The inability to introduce streamwise periodic disturbances into the stagna­
tion region, while being consistent with the currently available theoretical tools, 
does not preclude the actual presence of such waves in an experiment. The 
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conjecture is then made that ij present, streamwise periodic waves will amplify 
according to Floquet secondary theory. Further, use is made of the observa­
tion (Arnal, 1992; Theofilis & Poll, 1994) and theoretical prediction (Theofilis, 
1995) that the classic Orr-Sommerfeld model is an adequate approximation to 
the infinite-swept attachment line boundary layer linear stability problem at high 
Reynolds numbers. Comparisons between results obtained using the set of as­
sumptions exposed and experiments, currently performed, will test the validity 
of the present approach. The many analogies between attachment line flow and 
the Blasius boundary layer, alongside the success of Floquet theory in Blasius 
flow (Kachanov & Levchenko, 1984; Rerbert, 1988) renders this model as the 
first candidate to be investigated. 

In compressible flow the issue of attachment line instability is further com­
plicated by the lack of information on experimental results which would validate 
the base flow (e.g. Reshotko & Beckwith, 1955) to be used at the stagnation re­
gion. Even less is available on the experiment al validation of the various theories 
put forward for the linear stability of the compressible problem. From a theo­
retical point of view, one combines numerical solutions to the inviscid problem 
in the free-stream with first-order boundary layer theory near the wall, followed 
by linear analysis of the resulting profiles (e.g. Malik & Beckwith, 1988). It is 
weIl known, however, Mack (1984, for a review), that the linear stability results 
obtained using slightly different base flows can be profoundly different due to 
the presence of derivative terms in the stability equations. In our opinion it is of 
little practical importance to go even further and analyse the secondary stabil­
ity of compressible attachment line boundary layer along these lines before the 
issues raised above are addressed in a satisfactory way. 

In order to proceed we choose to embed the question of attachment line 
secondary instability within the framework of DNS . The design requirements for 
a DNS of the STAgnation Region (STAR) are stated and the potential of the 
algorithms used to meet successfully these requirements is demonstrated. Linear 
and nonlinear instability results are presented for a flow problem which exhibits 
inviscid instability, that of a free shear layer. Aside from the good documentation 
available there are more reasons for selecting this flow model for validation of the 
code. First, from a physical point of view, it is weIl known that the compressible 
flat-plate boundary layer flow is susceptible to inviscid instability through the 
act ion of the generalised inflection points developing in the base profile (Mack, 
1984). While incompressible attachment line instability is viscous in nature, the 
analogies between the eigenvalue spectra of this flow and the Blasius boundary 
layer gives rise to the conjecture that inviscid instability at the attachment line 
itself will come in play in compressible flow. Second, crossflow instability, active 
in the stagnation region at all Mach numbers, is inviscid in nature (Reed & Saric, 
1989). Finally, a purely practical reason exists in order to focus on the free shear 
layer, namely that best use of available computing resources can be made by 
developing the DNS on a model problem which exhibits instability associated 
with large growth rates. 
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Figure 1: (a) Spatial structure of secondary eigenfunctions; R=2000, Branch 11, A = 
1 %; The effect of primary amplitude (b) and Reynolds number (c) on the secondary 
growth rate. 

Review of incompressible results 

Extending the approach used by Theofilis & Poll (1994) for subharmonic instabil­
ity to studying fundamental disturbances as weIl, we use spatial LST to monitor 
a linearly unstable primary wave developing along the spanwise direction, which 
becomes unstable to three-dimensional streamwise periodic disturbances. The 
full body of results of this study is presented by Theofilis (1996); here a summary 
is presented. The spatial structure of secondary eigenfunctions at a particular 
set of conditions is shown in Fig. la. It may be seen that the secondary per­
turbations possess a structure analogous to that of the secondary waves found 
in Blasius flow; most of the activity is confined within the boundary layer, with 
the characteristic double-peak appearing in the subharmonic perturbation. 

The effect of primary amplitude and Reynolds number on the secondary 
growth rate is presented in Figs 1b and Ic respectively. A number of conclusions 
may be drawn from these results. First, it is seen that both types of secondary 
instability (and presumably also detuned modes, although not studied here) may 
be present. As the amplitude of the primary disturbance superimposed upon the 
base flow A -+ 0 the secondary growth rates are also seen to approach zero, as 
the case is in Blasius flow. At low A subharmonic instability is seen to be more 
powerful a mechanism than its fundamental counterpart. As A grows, much as 
in the Blasius boundary layer, fundamental instability takes over; the cross-over 
point is found to be A ~ 1.8%. For a fixed low value of A, on the other hand, 
increasing the Reynolds number fl results in the two instability mechanisms 
approaching a single one. While fl -+ 00 studies have not been performed, the 
trend obtained suggests that large fl secondary instability is inviscid in nature; 
this prediction awaits theoretical verification. 
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Issues raised by compressibility 

Even in incompressible flow there is no theoretical justification for the use of 
the GH assumption in the late linear and early nonlinear stages, although it 
still produces optimal results compared to ot her approaches in the linear regime 
(Arnal, 1992, and this volume). With compressibility taken into account it is 
not possible to use a GH-type of approach any more. The coupling of flow vari­
ables through density results in terms explicitly dependent upon the streamwise 
(chordwise) coordinate x appearing in the equations. 

A secondary stability study based on PSE (Bertolotti, 1991), on the other 
hand, is physically meaningful when considering mild growth of the boundary 
layer. In the attachment line problem this may only be the case in compressible 
flow along the spanwise direction; in the incompressible regime under the GH 
approximation the parallel boundary layer set up along the attachment line pro­
hibits PSE from improving the results obtained by spatial LST. However, the 
questions raised regarding the formal introduction of the third dimension into 
the compressible problem remain. 

Design requirements for a STAR DNS 

Our approach to solve the theoretical problems discussed has been to use DNS 
for the stagnation region. The fundamental requirement for a STAR DNS is that 
it solves for the flow in the vicinity of an attachment line. Physically this implies 
inclusion of the currently little understood region of interaction between attach­
ment line and crossflow instability. In so doing, DNS has the potential to provide 
initial conditions for the theoretical study of crossflow instability further down­
stream in the chordwise direction; these conditions appear to be essential for the 
convergence of PSE methods near the attachment line, as recently experienced 
in the ATTAS experiments (Stolte et al., 1995). 

From a numerical point of view, as with any DNS, the long-time integrations 
suggest use of low-dispersion, low-dissipation schemes for spatial differentiation. 
Schemes of this nature currently include spectral single- or multi-domain and 
Padé 3/4/6 or 5/6/5 compact finite-differences. The ability to interchange nu­
merical differentiation schemes has been found to be useful for diagnostic pur­
poses by Pruett et al. (1995). Time-integration may be performed by a member 

of the 0 ((Llt)3) family of Runge-Kutta schemes derived by Wray (1986) which 
ensure optimal memory use, given that the time-step Llt is low because of spatial 
discretisation requirements and the CFL-related restriction. 

Finally, the issue of the out flow boundaries in a STAR DNS has to be ad­
dressed. In the incompressible limit the generalised Hiemenz base flow ensures 
that a strictly parallel boundary layer is set up in the spanwise direction; this 
can be treated numerically as homogeneous and a Fourier expansion may be 
utilised in this direction. The streamwise direction, on the other hand, is one of 
st rong acceleration of the flow; as such it lends itself to application of the spatial 
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concept (Spalart, 1988). This may be accomplished by any of the techniques 
available, namely the sponge layer (Israeli & Orszag, 1981), the fringe technique 
(Spalart, 1988) and its windowing derivative model, the relaminarisation-zone 
technique (e.g. EissIer & Bestek, 1996) or the buffer domain approach (Streett 
& Macaraeg, 1989). 

Application of the ideas discussed and assessment of their performance is 
presented next. It should be noted that the modular construction of the DNS 
code permits study of a variety of flow problems with minimal additional effort, 
concentrated mainly on the provision of base flow and the associated LST- or 
PSE-based initial conditions. 

DNS validation results 

The argumentation on the choice of the compressible free shear layer as the 
model base flow problem to validate the DNS approach has been presented ear­
lier. Further, the Crocco-Busemann integral is utilised to obtain the base flow 
temperature pertinent to the hyperbolic tangent model for the base flow veloc­
itYi alternatively the Lock profile has also been used, or the temperature has 
been kept constant across the layer. The inviscid instability ofthis flow to three­
dimensional linear disturbances is obtained by spectral collo cat ion solution of 
the Lees-Lin system (Mack, 1984) and is fed as initial condition into the DNS at 
low amplitude. 

The compressible three-dimensional Navier-Stokes equations are then march­
ed in time with spatial derivatives in the streamwise x and spanwise z directions 
calculated using Fourier collocation (temporal approach) and those in the normal 
y direction using a choice of Chebyshev collo cat ion or Padé 3/4/6 compact finite­
differencesi for the type of instability considered and the purposes of validation of 
the numerical techniques suffices to integrate only the Euler part of the equations. 
Characteristic non-reflecting boundary conditions are applied at the Iyl -+ 00 

Table 1: Convergence history for the reproduction of the 2- and 3-D LST result by 
DNS. A denotes amplitude of the superimposed perturbation. 

MacIi=O.4, a=0.409 
t/J=O =71'6 

LST DNS DNS 
A=10- 2 A=10- 6 NY (8, NY, 8) (16,NY,16) (32,NY,32) 

NY Wj Wj 

.1 .1 4 7 
64 0.155301 0.155275 0.155277 64 0.130305 0.129809 0.129806 
128 0.155301 0.155300 0.155301 128 0.129795 0.129961 0.129961 

256 0.129930 0.129948 0.129948 
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Figure 2: Nonlinear development of (a) 2D and (b) 3D unstable inviscid mode; (c) 
perturbation energy and growth rate evolution with time in the 2D simulation. 

boundaries (Adams, 1992). The solution is obtained exclusively in real space, 
derivatives being calculated by straightforward matrix multiplication as opposed 
to the classic FFT; the former approach has been found to be of comparable 
efficiency to the latter for the grids and machine architect ure utilised. Both the 
conservative form of the governing equations, as weil as the pressure equation 
(Pruett et al., 1995) have been solved with identical results obtained including 
the nonlinear stages. 

The quality of the DNS solution in the linear regime is assessed by monitoring 
the reproduction of two- and three-dimensional linear growth rates. Such a 
comparison is presented in Table 1 as a function of the number of nodes NY 
utilised in the normal direction y. Both a two-dimensional ('Ij; = tan-1 (~) = 0) 
and a three-dimensionallinear perturbation are used to initialise the DNS. The 
former was used in order to monitor spurious growth of three-dimensionality in 
our code; the perturbation eigenvector was obtained on the same grid as that 
used for the DNS. By contrast, the three-dimensional mode was obtained on a 
grid different to that on which the DNS was performed and was transferred on 
the latter using piecewise cubic Hermite interpolation. The agreement between 
LST and DNS results for the 2D mode may be seen as typical of weil-resolved 
DNS; no spurious three-dimensional growth was detected in this simulation. The 
interpolation procedure was proven to be responsible for the discrepancy bet ween 
LST and DNS for the 3D mode; with the DNS performed on ihe grid on which 
the LST problem is solved agreement similar to that obtained for the 2D mode 
is achieved. 

In Figs 2a and 2b the results of two simulations starting with the 2- and 3D 
modes as initial conditions, respectively, are presented. The nonlinear structures 
characterising the vort ex roil-up at the late transitional stages may be seen. The 
wiggles present in both simulations are a result of attempting to solve the Euler 
equations without any form of artificial dissipation, and not of low resolution. 
In a corresponding Navier-Stokes calculation these wiggles disappear. Finally 
in Fig. 2c we present the evolution of a 2D mode through the linear stage 
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(growth rate obtained by the slope of the function In(Epert )1/2(t), Epert being 
the perturbation energy) into nonlinear saturation at large t; at this time a 
weil-resolved analogous three-dimensional calculation would have resulted into a 
turbulent state having been reached. 

Conclusion 

The theoretical difficulties in modelling secondary stability in the attachment line 
problem, combined with the lack of experimental support for a specific model 
of base flow and its primary stability, led us to design a DNS for the stagnation 
region. The numerical tools to be utilised have been validated on a compressible 
three-dimensional model problem, physically relevant to the flow at hand. 

A simplified model has been proposed for secondary destabilisation of the 
corresponding incompressible flow; its results are currently being compared with 
recent experiments and, if validated, will be used to provide intuition in the pa­
rameter ranges to be monitored by DNS. Work in this area, as weil as on the 
remaining issues regarding the STAR DNS described, namely buffer implemen­
tation as weil as base flow and its LST is currently underway. 
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