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Abstract 

We review some properties of nonsymmetric Ornstein-Uhlenbeck generators 
in LP(J-t), where J-t is an invariant measure. We provide a necessary and sufficient 
condition for the Poincaré Inequality and the Logarithmic Sobolev Inequality, 
thus extending the result of Rothaus and Simon to the nonsymmetric Gaussian 
case. Next, we show that the same condition is necessary and sufficient for the 
compact embedding of the Sobolev space W6,P(J-t) into LP(J-t). We provide also 
necessary and sufficient condition for the Ornstein-Uhlenbeck operator to be 
selfadjoint and in this case its domain in LP(J-t) is completely characterized. 

1 Introd uction 

Consider a stochast ie differential equation 

{ 
dZ = AZdt + y'lJdW, 
Z(O) = xE H, 

(1.1) 

on a real separable Hilbert space H, where W is a standard cylindrical Wiener process 
on H, A generates a Co-semigroup (S(t)) on Hand the operator Q ~ 0 is selfadjoint 
and bounded in H. Under the assumptions listed below equation (1.1) has a solu
tion Z which is a Feller process on H. Our main assumption is that there exists a 
nondegenerate invariant measure J-t for Z. 

If A = -~I then (1.1) defines the so-called Malliavin process which enjoys many 
remarkable properties. In particular, if A = -~I then the process Z admits a unique 
invariant measure J-t which is zero-mean Gaussian with the covarianee operator Q. It 
was proved by Nelson in [21] that the transition semigroup of th is process is hyper
contractive. Moreover, the generator LM of the process Z, when considered in the 
space LP(H, J-t), satisfies the Logarithmic Sobolev Inequality and the best constant in 
this inequality (for p = 2) coincides with the size of the speet ral gap for the genera
tor. The question when these properties of the operator LM extend to more general 
classes of diffusion generators was (and still is) an object of intense study, leading in 
particular, to the Gross [19] sufficient condition for hypercontractivity given in terms 
of the Logarithmic Sobolev Inequality and the Simon-Rothaus condition [25], [27] for 
hypercontractivity of symmetrie semigroups. 

Ifwe denote by DM the Malliavin derivative, then LM = -~DMDM and, in view 
of the Meyer inequalities, the Sobolev spaces W;l defined by DM may be identified 

with the domains of (I - LM t/ 2 in LP(H, J-t) . This identification yields, among other 
things, closed range of the operator DM in LP(H, J-t; H) and continuous imbeddings 
of Sobolev spaces W;l. 
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The generator LM is related to the Number Operator in Quantum Field Theory 
and this fact provided an important motivation for the study of the Malliavin process. 
However, various examples coming from Mathematical Physics, see [13] and [14], and 
recently from Mathematical Finance, see [20], demand a theory of a more general class 
of Ornstein-Uhlenbeck processes given by (1.1) whieh are not necessary symmetrie. 
Let us note that in many problems conditions imposed in this survey on equation 
(1.1) are too restrietive. For a more general class of Ornstein-Uhlenbeck processes see 
[3], [22] and [4]. 

In the present survey we consider a class of Ornstein-Uhlenbeck processes whieh 
is, in a sense, a right generalization of the Malliavin process: it enjoys most of its 
properties described above and covers various applications arising in Mathematical 
Physics. The paper summarizes recent developments obtained in [6], [7], [8] and [9], 
but we will be mainly concerned with the consequences of the spectral gap property 
studied in [10]. 

We will assume the following condition which is a standing assumption for the 
rest of the paper: 

100 

tr S(u)QS*(u)du < 00. (1.2) 

If (1.2) is satisfied then the process 

Z(t,x) = S(t)x + l t 
Set - s) VQdW(s) 

is a solution to (1.1). Moreover, equation (1.1) admits an invariant measure I" which 
is Gaussian with the mean zero and the covariance operator 

Qoo = 100 

S(u)QS*(u)du. 

Throughout this paper we assume for simplicity of presentation that 

kerQ oo = {Ol· (1.3) 

If (1.2) and (1.3) hold then the transit ion semigroup 

Rtcf>(x) = Ecf>(Z(t, x)) 

defines a Co-semigroup of positive contractions in LP(H,JL) for all p E [1 , 00) . lts 
generator L is uniquely determined by the formula 

1 
Lcf>(x) = "2tr (QD 2 cf>(x)) + (x, A* Dcf>(x)) , xE H, 

where D stands for the Fréchet derivative and cf> belongs to an appropriately defined 
dense class of cylindrieal functions, see [5]. In this way we obtain a large class of Gauss
Markov processes on H which may be thought of as generalizations of the Malliavin 
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process. However, it may be shown that this class contains processes with rather 
pathological properties and therefore we will restrict to a smaller class of Ornstein
Uhlenbeck generators which is described below. 

Let Qt denote the covariance operator of the Gaussian random variabie Z (t, x). 
It was shown in [6] and [7] that the equality of images 

. (Q1/2) _. (Q1/2) 1m 00 - 1m t , t > 0, (1.4) 

is a necessary condition for many regularizing properties of the transition semigroup 
(Rt ) like hypercontractivity (in this case (1.4) is also sufficient), compactness, smooth
ing and some ot hers as weIl. On the other hand (1.4) does not assure sufficiently 
regular behaviour of the transition semigroup (Rt ) for small times. We will show that 
such a regular behaviour of (Rt ) is assured by an inclusion 

(1.5) 

which is stronger than (1.4) . This assumption is satisfied for the Malliavin process but 
it holds also in the case of Q = J. It was proved in [6], that while (1.4) is equivalent to 
the hypercontractivity of the Ornstein-Uhlenbeck semigroup the Logarithmic Sobolev 
Inequality does not need to hold, see [16] and Section 2 below for explicit examples. 
In Section 3 we use the technique developed in [19] to show that the Logarithmie 
Sobolev Inequality is satisfied if and only if (1.5) holds. We prove also that (1.5) is 
equivalent to the existence of spectral gap for L. This result extends the result of 
Rothaus [25] and Simon [27] to the non symmetrie Gaussian case. 

The other topic of this paper are the imbeddings of Gaussian Sobolev spaces and 
characterizarion of the domain of L. For the importance of such imbeddings for the 
study ofnonlinear stochastie evolution equations seeJ14], [11] and [5] . Let DQ<p denote 
the derivative of a function <P in the direct ion of Q1 2(H). Note that for Q = Qoo we 
obtain the Malliavin derivative. If DQ is closable then we can define the Sobolev space 
Wb'P C LP(H, /-L). We will show that if (1.5) holds then Wb'P c Wb'~, the gradient 
DQ has closed range and the Helmholtz decomposition of the space LP(H, /-Li H) holds. 
Moreover, we show that the embedding of Wb'P into LP(H, /-L) is compact if and only 

if the imbedding i: QIJo2(H) -t Q1/2(H) is compact. 
We show also that (1.5) yields continuous imbedding ofthe domain of L in LP(H, /-L) 

into some Orlicz spaces, thus extending to the nonsymmetric case the results obtained 
for the selfadjoint semigroups in [15]. To this end we apply the ideas of [2] developed 
for the case A = - ~ J to prove that domp(L) is contained in the Orlicz space LPLogT L 
for r < p. Next, using the representation of Rt as a second quantized operator we 
show that dom2(L) is continuously imbedded into the Sobolev space W~'~. 

Finally, we discuss the symmetric case which is important in numerous physical 
applications and has been an object of intense study for a long time. First, we provide 
necessary and sufficient conditions for L to be symmetrie which extend the earlier 
result of [28] obtained for Q = J. Next, using the results obtained in [8] we provide a 
complete characterization of the domain of L in LP(H, /-L) in terms of Sobolev spaces. 
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2 General Ornstein-Uhlenbeck semigroup 

In this section we present some properties of an arbitrary Ornstein-Uhlenbeck semi
group which satisfies conditions (1.2) and (1.3) without any further assumptions. 

Let Ho = im (Q~2) and Ilhllo = IIQ~l/2 hll for h E Ho. For the reader's conve

nience we recall the basic lemma from [6]. 

Lemma 2.1. Assume (1.2) and (1.3). The family of operators Só(t) = 

Q~2 S* (t)Q~l/2 defined on Ho which is a Co-semigroup on (Ho, II . Ilo) has a unique 
extension to a Co-semigroup of contractions on H (still denoted by Só(t)). The space 
Ho is invariant for the semigroup S(t). Moreover, IISó(t)1I < 1 if and only if (1 ·4) 
holds. 

In the sequel we denote by Ko the domain of the operator A(; considered as a 
generator of the Co-semigroup in Ho. Let L2(H, /-L) = EBn>-o Hn be the Wiener-Ito 
decomposition of the space L2(H, /-L). We will denote by In the orthogonal project ion 
of L2(H, /-L) onto the n-th polynomial chaos Hn. In particular Io(rP) = (rP,I). For 
any h E H we denote by rPh the measurable linear function on H such that rPh(X) = 
(Q~l/2X, h) for x E Ho . The domain of L in LP(H, /-L) will be denoted by domp(L) . 

The space 

P (Ko) = lin {In (rPi:) : hE Ko, n = 0,1, .. . } 

is dense in LP(H, /-L) for all p ~ 1 and its elements may be identified with polynomials 
of n variables, n = 0,1, .... Note that for any rP EP (Ko) 

RtrP(x) = Ie rP (S(t)x + y) /-Lt(dy), 

where /-Lt = N (0, Qt) and 

Qt = fot S(s)QS*(s)ds. 

Using this fact one may show, see [6], that 

P (Ko) C dom2 (L) 

and 

n 

LIn(rPhl ···rPhn ) = L:In (rPh1 ••• rPh'_lrPAoh.rPh'+l ... rPhn ) (2.1) 
i=l 

for hl, ... ,hn E dom (A(;). Hence, it follows that 

P (Ko) C domp (L) . 



N ONSYMMETRIC ORNSTEIN-UHLENBECK GENERATORS 103 

Lemma 2.2. Assume (1.2) and (1.3). Then P (Ko) is a core for L in LP(H, J.L) for 
all p E [1,00) . Moreover, L is a unique extension of (L, P (Ko)) to a generator of 
Co-semigroup on LP(H,J.L). 

Let DcP denote the Fréchet derivative of cP E P (Ko) . We define the first Sobolev 
norm of cP E P (Ko) by 

and for n ~ 2 

where the norm of the operator (Ql/2) ®n DncP(x) is the Hilbert-Schmidt norm in the 
space H ®n. The complet ion of P (Ko) in the norm 1I·lln,p is denoted by WQ'p. The 

space Wb'P may be identified with a subspace of LP(H, J.L) if and only if the operator 
DQ = Ql/2 D with the domain P (Ko) is closable. In particular, for the Malliavin 

derivative DM we have DM = QIj,2 0 DQoo. A necessary and sufficient condition for 
the closability of DQ in L2(H, J.L) was given in [18]. 

Let N be an operator in L2(H, J.L) with the domain P (Ko). We say that N is 
closable on dom2 (L) endowed with the graph norm if N cPn -t 0 for every sequence 
(cPn) cP (Ko) such that 

cPn -t 0 and LcPn -t O. 

The closure of N in this norm will be denoted by N. The next result proved in [10] 
gives the precise formulation of the weU known property of diffusion semigroups. 

Theorem 2.3. ([10]) Assume (1.2) and (1.3). Then the operator DQ with the do
main P (Ko) is closable on dom2(L) endowed with the graph norm and 

Let V = Ql/2Q~1/2 be an operator in H with the domain Ho. Putting cP = cPh in 
the above theorem and taking (2.1) into account we obtain 

(-A~h, h) = ~ IIVh112
, hE Ko. (2.2) 

Proposition 2.4. ([10]) Assume that (1.2) and (1.3) hold. Then the space Wb'P is 
continuously imbedded into LP(H, J.L) if and only if V is closable. 

Let us recall the result from [6] which provides necessary and sufficient conditions 
for the hypercontractivity of the semigroup (Rt ) . 
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Theorem 2.5. For every t ~ 0 and p E [1,00) 

IIRtlILP-+Lq(.) = 1, 

where 

p-1 
q(t) = 1 + IISo(t)112 . 

In parlicular, Rt is hypercontractive ij and only ij IISo(t)1I < 1, or equivalently ij and 
only ij (1 .4) holds. 

2.1 The symmetrie ease 

In this section we present some properties of symmeteric Ornstein-Uhlenbeck gener
ators obtained in [9]. We start with the necessary and sufficient conditions for the 
semigroup (Rt) to be selfadjoint in L2(H,j.t). This problem has been solved in [28] 
for the case Q = I. 

Theorem 2.6. Assume (1 .2) and (1 .3). Then the semigroup (Rt ) is seljadjoint 
in L2(H, j.t) ij and only ij Q (dom (A*)) c dom(A) and 

AQx = QA*x, x E dom (A*). 

Remark 2.7. If the semigroup (Rt) is symmetrie, then V is closable and Aa = - ~ V* V. 
Moreover, ker(Q) = {O} . 

It is shown in [9] that the operator (AQ, P (Ko)) has Friedrichs extension to a 
selfadjoint operator in H and P (Ko) is a core for (_AQ)1/2. We denote hy W~~ the 
closure of P (Ko) in the norm 

ifJ E P (Ko). 

Similarly, W~'P denotes the closure of P (Ko) with respect to the norm 

where II·IIHS denotes the Hilhert-Schmidt norm of an operator. The next theorem 
characterizes the domain of L in LP(H, j.t) for all p E (1,00). More genera! results 
of this type may he found in [8] and [9]. The domain of (_L)1/2 in LP(H,j.t) was 
characterized in [26]. 

Theorem 2.8. Assume that L is seljadjoint in L2(H, j.t). Then jor every p E (1,00) 

domp (_L)1/2 = W~,P, 

and 

domp (L) = W~,p n W~~, 

where AQ denotes the Friedrichs extension oj the operator AQ defined on Ko. 
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3 The spectral gap inequality 

In this section we study the Ornstein-Uhlenbeck generator L under the assumption 
(1.5). The main result says that (1.5) is equivalent to the existence of a gap in the 
spectrum of L, that is for the spectrum G'2(L) of L in L2(H, v) we have 

G'2(L)\{0} C {À E C: Re À ~ -r}, (3.1) 

for a certain r > o. We present the results obtained in [10]. It is well known (see 
Proposition B.1. in [13]) that (1.5) is equivalent to the following condition. 

There exists a > 0 such that for all x E H 

Obviously, (3.2) holds if and only if 

IlVxll ~ ailxii 

for all x E Ho. Let us recall that by (11.22) in [13] 

Ho = im(T) , 

where T : L 2 (0, OOi H) ----t H is given by the formula 

Tu = 10
00 

S(S)Ql/2U (s)ds. 

(3.2) 

(3.3) 

(3.4) 

Hence, applying Proposition B.1 from [13] and taking into account that T* h(t) = 
Ql/2S*(t)h we obtain the following result. Let 

Proposition 3.1. Condition (1.5) holds if and only if for a certain c > 0 

(3.5) 

or equivalently 

(3.6) 

Moreover, if (3.6) holds then 
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Proof. In view of the previous considerations, it is enough to noitce that if (3.6) 
holds then the operator 

extends to a bounded operator on H and 

• 
Remark 3.2. Note that, V-i: H -+ H is compact if and only if C : H -+ L 2(O, 00; H) 
is compact. 

Let 

L~(H, J.l) = {4> E L2(H, J.l) : /H 4>(x)J.l(dx) = O} . 
Clearly, Rt (LÖ(H,J.l)) C LÖ(H,J.l) . The restriction of Rt to LÖ(H,J.l) will be denoted 
by R~. The theorem below provides necessary and sufficient conditions for the spectral 
gap inequality (3.8) for L. 

Theorem 3.3. Assume (1.2) and (1.3), and let a > 0 be fixed. Then the lollowing 
conditions are equivalent. 

(i) Condition (3.2) holds. 

(ii) IISo(t)1I ~ e-ta~(L)/2 lor all t ~ o. 

(iii) IIR~112 ~ e-ta~(L)/2 lor all t ~ O. 

(iv) The generator L ol the semigroup (Rt ) in L2(H,J.l) enjoys the property: 

( ) 1 2 2 
-L4>, 4> ~ "2 a2 (L)II4>lb, 

(and hence hence (3.1) holds) . 

Proof. If IISü(t)11 ~ e-a't/2 then by properties of contraction semigroups 

(3.8) 

(3.9) 

for all h E dom (Aü). Hence, by (2.2) IIVhl12 ~ a211hl12 for all h E Ko and by the 
limiting argument (3.2) follows for all h E Ho. Conversely, if (3.2) holds then (2.2) 
yields (3.9) for all h E Ko and since Ko is a core for Aó inequality (3.9) is satisfied 
for all h E dom (Aü) . Thereby IISü(t)1I ~ e-a't/2 which concludes the proof that (i) 
and (ii) are equivalent. The equivalence of (iii) and (iv) follows by the well known 
properties of contraction semigroups. Next, (ii) and (iii) are equivalent by the result 
in [6]. • 
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Corollary 3.4. (i) 11 DQ is closable then (3.8) is equivalent to the Poincaré inequal
ity, 

(ii) 11 any ol the conditions ol Theorem 3.3 is satisfied then (1.4) holds. 

Proof. Part (i) is obvious. To prove (ii) note that (ii) of Theorem 3.3 yields IISo (t)11 < 
1 for all t > 0 and by Proposition 2 in [7] this property is equivalent to (1.4). • 

Below we provide some necessary and sufficient conditions for (1.5) to hold. 

Corollary 3.5. Assume that S(t)Q = QS(t). Then (1.5) holds il and only there 
exist M ~ 1 and f3 > 0 such that 

IIS(t)11 ~ Me- f3t , t ~ o. (3.10) 

11 (3.10) holds then 

2
1
(L) = sup r= IIS*(t)xI1

2 
dt. a2 IIxll~1 Jo 

Proof. Note first that Q commutes with S*(t) and so does Ql/2. It follows from (i) 
that Ql/2(H) is dense in H . Indeed, assume that Qx = 0 for a certain x "I- o. Then 
QS*(t)x = S(t)*Qx = 0 and thereby Q=x = 0 which contradicts (1.3). Assume first 
that (3.10) holds. Then the operator 

T 1u = 10= S(t)u(t)dt, u E L 2(0, 00, H), 

is bounded from L2(0, 00; H) to H. Since T = Ql/2T1 it follows that (1.5) holds. 
Conversely, assume that (1.5) holds. Hence, by (3.5), for all x E Ql/2(H) 

(3.11) 

and by the Fatou Lemma (3.11) follows for all x E H. In view of the Datko-Pazy 
theorem [23], (3.11) yields (3.10). Finally, if (3.10) holds then 

(V-I r V-I = Q-l/2Q=Q-l/2 = 10= S(t)S*(t)dt. 

Hence, 

2
1
(L) = sup IW-1X112 = sup r= IIS*(t)xI12 

dt 
a2 IIxll~1 Ilxll~1 Jo 

which concludes the proof. • 
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It follows from Theorem 3.3 that if (1.5) holds then Só(t) is a strict contraction 
for t > 0 and therefore the semigroup (Rt ) is hypercontractive by the result in [6]. It 
was shown by Gross (see [19] and references therein) that hypercontraction property 
is closely related to the following Logarithmic Sobolev Inequality 

i I </>(x)IP log I </>(x) I {l(dx) :::; c(P) ((r(p) - L)</>, </>p} + II</>II~ log 11</>llp (3.12) 

for </> E domp(L) , </>p = sgn</>I</>Ip-l and p > 1. It is known that (3.12) implies 
the Spectral Gap inequality. However, it was shown in [16] that (3.12) does not 
hold for arbitrary hypercontractive Ornstein-Uhlenbeck semigroup. Below we give a 
necessary and sufficient condition for (3.12) to hold. This result may be viewed as a 
generalization of the re sult of Rothaus [25] and Simon [27] to the case of nonsymmetric 
semigroups. 

Theorem 3.6. The generator L of the Ornstein-Uhlenbeck semigraup satisfies the 
Logarithmic Sobolev Inequality (3.12) if and only if (1 .5) holds and in that case for 
</> E domp(L) 

i I </>(x)IP log I </>(x) I {l(dx) :::; p ~ 1 a~~L) (-L</>, </>p) + II</>II~ log 11</>llp, (3.13) 

where the constant a is given in (3.2). 

Praof. Assume (1.5). By the result in [6] the semigroup (Rt ) is hypercontractive 
from LP(H,{l) to U(H,{l) for all 

q ~ q(t p) = 1 + P - 1 
'" II So(t)11

2 (3.14) 

and IIRtllp,q = 00 for q > q(t,p). If (1.5) holds, then, in particular, (3.14) is satisfied 
for 

q:::; 1 + (p - l)ea~(L)t. 

Hence by Theorem 3.12 in [19] (3.12) holds with , = 0 and c(p) = (p-lra~(L). Con
versely, assume that the Logarithmic Sobolev Inequality (3.12) holds for every p > 1 
and certain ,(p) , c(P) > O. Then by Theorem 3.7 in [19] 

IIRtllp,p(t,p) :::; eM(t,p) (3.15) 

for a function p which is a solution to the initial value problem 

dp 
c(p) dt = p, p(O,p) =p, t ~ 0 

and with 

M(t,p) = fot ,(p(s, p)) ds. 
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But, by the above mentioned result in [6], (3.15) implies that p(t,p) ~ q(t,p) and 
in this case IIRtllp(t,p) ~ 1. Therefore we can assume that M = 0 which together 
with (3.15) and Theorem 3.12 from [19) yields (3.13). Take h E dom (Aü) such that 

Ilhll = 1 and define on H the measurable linear function (fJh(x) = (Q-;;,I/2 x, h). Then 

(5.2) yields 

with the left-hand si de being an absolute constant. As a consequence we find that 

(-A~h, h) ~ cllhl1 2 

for a certain positive c and all h E dom (Aü). Finally, (2.2) yields IIVhll2 ~ 2cllhl1 2 

and this inequality concludes the proof. • 

Corollary 3.7. Assume (1.2), (1.3) and dimH < 00. Then the Logarithmic Sobolev 
Inequality (3.12) holds ij and only ij det Q =j:. O. 

We will apply the results obtained above to the symmetrie case. In th is case it 

follows from (2.2) that IlVxll = v'211( _AO)I/2 xii on Ko and therefore 

-- 1/2 
Ho C domVIKo = dom (-Ao) . 

This implies that V with the domain Ho is closable and 

- 1/2 dom V = dom ( - Ao) . 

It follows from Theorem 2.3 that 

dom (L*) = dom(L) C W~,2. 

Note that in general dom(L) is not a subset of WQ~ = dom ((1 - LM)"/2) for any 
a> O. 

As a consequence of Theorem 3.6 and Proposition 3.5 we obtain a complete char
acterization of the hypercontractivity properties in the case when S(t)Q = QS(t). 
Equivalence of (iii) and (iv) below is weU known [19). 

Corollary 3.8. Assume that S(t)Q = QS(t). Then the jollowing conditions are 
equivalent. 

(i) The semigroup (S (t)) is exponentially stable. 

(ii) im (Q~/2) = im (Q~2) jor t > 0 (i.e. (1.4) holds). 

(iii) The generator L oj (Rt ) satisfies the Logarithmic Sobolev Inequality (3.12) . 
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(iv) (Rt ) is hypercontractive from LP(H,j.t) to Lq(H,j.t) lor all 1 < p < q :::; 1 + 
IIS~(t~112 . 

Example 3.9. We provide here an example of the transit ion semigroup for which (1.4) 
holds but (1.5) is not satisfied. The first example of this type, related to the finite 
dimensional Ornstein-Uhlenbeck process, was given in [16]. We shall present another 
one which is of same importanee in Mathematical Finanee (see [20] and [29]) for 
details) . In the space L 2 (0, 1) we consider the equation 

where the operator 

{ 
dZ = AZdt + bdW, 
Z(O) = x, 

a 
A = a(' dom(A) = {x E H I (O, 1) : x(l) = O}, 

generates the semigroup 

S(t)X(i) = { xO(t + () if t + ( :::; 1, 
'" if t + ( > 1. 

We assume that W is a one dimensional Wiener process and b E H is such that 

lin {S(t)b: t ~ O} 

is dense in H. Obviously Rt is hypercontractive for t > 1 and Ho ct im (QI/2). 
If we take for example b == 1 then it is easy to see that Ho is dense in H but for 
0< tI < t2 < 1 

Therefore im (Q!/2) f:- im (Q~2) and the semigroup (Rt ) is not hypercontractive for 

t < 1. 

Example 3.10. Let 0 C R d be a bounded domain with a smooth boundary and let 
H = L 2 (0) . We consider a differential operator 

with the zero Dirichlet boundary conditions. We assume that the operator 

Ad(() = L aa(() ~;: (() 
lal=2m 
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is strongly elliptie, all the coefficients all: are bounded and measurable and for lal = 2m 
the coefficients all: are continuous in O. Then by the result in [1] the operator A with 
the domain H 2m(o) n H[{'(O) generates an analytie semigroup (S(t)) in H. We 
will also assume that the semigorup (S(t)) is exponentially stabie. Consider a !inear 
stochastie differential equation in H = L2 (O): 

{ 
dZ = AZdt + BdW, 
Z(O) = x. 

We assume that B is an isomorphism of H onto H() = dom (-A)(), where 

Then by [1] condition (1.2) holds and the process Z is wen defined. To be more explicit 
one may consider the operator Bx(() = (-A)-()b(()x((), where b is a measurable 
function on 0 such that 

0< m ~ b(() ~ M, (E O. 

For Q = BB· we have 

and the norm in H() is equivalent with the graph norm in Q1/2(H). Hence, the 
space Q1/2(H) is invariant for the semigroup (S(t)) whieh is strongly continuous and 
exponentially stabie in Q1/2(H) endowed with the graph norm. Equivalently, the 
operators SQ(t) = Q-1/2S(t)Q1/2 are wen defined on H and {SQ(t) : t ~ O} is an 
exponentially stabie Co-semigroup on H. Since (3.5) may be rewritten in the form 

the above discussion shows that (3.16) holds for every h E H which yields (1.5). 

Example 3.11. Let H = L~ (R) be a weighted L2-space with the weight p(() 

(1 + k(2) -1, k > O. For different values of k > 0 we obtain equivalent norms so 
dependence on k is omitted. Let A = ~ - mI with m > 0, where ~ denotes the 
Laplace operator in L 2 (R) with the domain H 2 (R). The operator A generates a sym
metrie semigroup S(t) = etA on L2 (R) whieh extends to an analytic Co-semigroup on 
L~(R). Moreover, by Proposition 9.4.5 in [14] 

where 

3k 
!3=m-->O 

4 
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for k sufficiently smalI. We define Q = J J* , wh ere J is the imbedding of L 2 (R) 
into L~(R). Then L is a weIl defined generator of the Ornstein-Uhlenbeck transition 
semigroup which has an invariant measure (see [14] for details). It is easy to check that 
(S(t)) is an exponentially stabIe Co-semigroup in L 2 (R) and therefore by Proposition 
3.1 condition (1.5) holds. Since Ql/2(H) = L2(R) th is also follows directly from the 
inclusion 

4 Sobolev spaces W~,p and characterizations of L 
and its domain 

In this section we study properties of the imbeddings of the Sobolev space Wà'P 
which hold under condition (1.5) and give some better characterizations of domp(L) 
which follow from (1.5). We will start with the result which shows that if (1.5) 
holds then similarly as in the case of Malliavin operator LM the generator L is a 
composition, loosely speaking of gradient and divergence operator. Let D denote the 
maximal domain of the operator DQ~ AoDQ~ in LP(H,f..L), that is cp E D if and·only 

if cp E Wà::, DQ~cp E LP (H,f..L;dom (Ao)) and AoDQ~ cp E domp (DQ~). 

Corollary 4.1. ([10}) Ij (1 .5) holds then 

Lcp = DQ~A~DQ~cp, cp E D n dom2(L). 

In the theorems below we characterize imbedding of the Sobolev space Wà'P into 
LP(H, f..L) and give a sufficient condition for DQ to have a closed range in LP(H, f..L) . 
We show also that (1.5) yields the Helmholtz decomposition of p-integrable vector 
fields on H . Theorem 4.4 extends the results of [12], [24], and [14] to the case when 
p -:j:. 2 and the operators Q and Qoo do not commute. In the theorem below we use 
the notation 

w1,p - W1 ,p n LP(H 11) 
O,Q - Q 0 ,,... 

Theorem 4.2. ([10}) Assume (1.2) and (1.3). Then jor every p E (1,00) the jollow
ing holds. 

(i) The space Wà'P is continuously imbedded into Wà'~ ij and only ij V is closable 
and (1 .5) holds. 

(ii) Assume that V is closable. Ij (1.5) holds then im(DQ) is closed in LP(H,f..L) 
and jor every F E LP(H, f..L; H) we have a unique decomposition 

F= DQU +Fo, 

with U E W~:~ and DQFo = O. 
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Theorem 4.3. ([10}) Assume (1.2) and (1.3). If V is closable and the operator 
C : H -+ L2 (O, 00; H) defined in Section 3 is compact then the imbedding of W~'P 
into LP(H, JL) is compact for all p E (1 ,00). Conversely, if for a cerlain p > 1 the 
imbedding of W~'P into LP(H, JL) is compact then V is closable and C is compact. 

We will sketch the proof of sufficiency only. We con si der first the case p = 2. 
--1 -

If V is compact then V· V has a complete orthonormal system of eigenvectors 
{ej : j ~ I} with the corresponding sequence of eigenvalues {,j : j ~ I} such that 
o < ,I ~ ,2 ~ ... and lim, j = 00. Let a = (al, ... ) denote an arbitrary sequence 
of nonnegative integers such that lal = al + a2 + . . . < 00. If V is closable then 
the strongly contiuous semigroup on L2 (H, JL) generated by LV = - D'QtJQ will be 
denoted by (Rf). The functions 

form a complete orthonormal system in L2(H, JL) and (2.1) yields 

LV fa = (a,,) fa, 

where (a,,) = al,l + a2,2 + . .. . Since limj-+oo,j = 00 and ,j > 0 the only 
accumulation point of the sequence (a,,) is infinity and all of them are of finite 
multiplicities sin ce ,j are. Since 

(4.1) 

the compactness of the operator (I - L vrl
/

2 
concludes the proof of sufficiency for 

p = 2. Since the semigroup (Rf) is symmetrie in L2(H, JL), we find that (RI) is 
compact in L2(H, JL) . Since (RI) is positive and contractive on LP(H, JL) for p E [1,00] 
the interpolation arguments yield compactness of the semigroup (Rf) in LP(H, JL) for 
all p E (1 ,00). By the re sult in [8] we have 

domp (_L V )1/2 = W~,P, 

hence the imbedding of domp (_L V )1/2 into LP(H,JL) is compact and the theorem 
follows. 

Remark 4.4. If dim H < 00 then the imbedding of W~,p into LP(H, JL) is compact if 
and only if det Q =J. O. 

Remark 4.5. The imbedding of W~,2 into L2(H,JL) is never of Hilbert-Schmidt type. 
It is enough to consider the case dimH = 1 and Q = I = Qoo. Let fn denote the n-th 
normalized Hermite polynomial. Then D fn = fofn-l and for sufficiently smooth 
cp E L2(R, JL) we have 

00 

(I - LI) cp = L)n + 1) (cp, fn) fn, 
n=O 
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hen ce (I - LI) -1/2 is not Hilbert-Schmidt. 

Theorem 4.6. Ql0j) If (1.2), (1.3) and (1.5) hold then dom2 (L) is continuously 
imbedded into W Q'~ . Moreover, 

11</>lIw~'! ~ max (1, a~~L)) IIU - L) </>112 ' (4.2) 

Proof. Let 

J = 100 

e- tRtdt 

be the resolvent of Rt. It is enough to show that the operator U - LM) J is bounded 
on L2(H, /I,). To th is end note that by the results of [6] 

J</> = L 100 

e-t RtIn(</» dt = L Jn</>, 
n~O n~O 

and Jn is the resolvent of the semigroup Rt restricted to Hn. Since the operator LM 
acts invariantly in Hn it remains to show that 

sup IIU - LM) Jnll < 00 . 
n~O 

By Theorem 4 in [6] and (1.5) 

where a = a2(L). Thereby 

This yields the estimate (4.2). 

Theorem 4.7. ([10]) Assume (1.2) and (1.3), (1 .5) and p > 1. Then 

(i) domp (L) C LP Logr L, for 0 ~ r < p, 

(ii) If moreover the semigroup (Rt ) is analytic then 

domp (L') C PLogr L. 

for t > 0 and 0 ~ r < pt. 

(4.3) 

• 
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Proof. This theorem has been proved in [2] for L = LM but the close inspection of 
the proof shows that it can be repeated for a general Ornstein-Uhlenbeck semigroup 
if the Logarithmic Sobolev Inequality (3.13) holds. • 

Remark 4.8. Conditions of analyticity of (Rt ) are given in [17]. In particular, if 
dim H < 00 then (Rt ) is analytic if and only if (1.5) hold. 

Finally, as an immediate consequence of Theorems 4.3 and (4.6) we obtain 

Corollary 4.9. Assume that S(t)Q = QS(t). Then the conclusions of Theorem 
4.6 hold if and only if the semigroup (S(t)) is exponentially stabie. Moreover, if the 
semigroup (S(t)) is exponentially sta bie then the conclusions of Theorem 4.3 hold. 
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