
G. Kurizki, A. Kofman, T. Opatrny and A. Kozhekin 

Quantum Opties in Photonie Band Struetures 

Abstract 

We address several generic quantum optical processes that undergo basic modifications in 
photonic crystals: (a) spontaneous formation of atomic coherence; (b) two-photon binding 
and entanglement; (c) self-induced transparency and gap solitons. 

1 Introduction 

Dielectric structures whose refractive index is periodically modulated on a submicron scale, 
known as photonic crystals (PCs) [IJ are attracting considerable interest at present. Optical 
processes involving many atoms or excitons in such (PCs) undergo basic modifications as 
compared to the corresponding processes in open space or in bulk media. Here we survey 
our recent results on these modifications, which we attribute to three fundament al properties 
of PCs: (a) Modified density of modes (DOM), which is characterized in PCs, by st rong 
suppression of the background DOM within photonic band gaps (PBGs), by sharp band­
edge cutoffs and intra-gap narrow lines associated with defects [IJ. Many of the results 
detailed below (Sec. 2,3) stem from the failure of perturbation theory and the onset of strong 
field-atom (-exciton) coupling near sharp band edges or narrow lines in various PCs [2J. (b) 
Band-edge and Bragg refiections, which cause spatial interference effects in pulse propagation 
through the structure (Sec. 4). (c)Photon effective masses, which are associated with band­
dispersion effects in PCs, and allow (i) photon "binding" to one or many atoms (Sec. 3), or 
(ii) Kerr-nonlinear inter-photon binding corresponding to quantum-soliton states [3J. 

2 Spontaneously formed coherence in PCs 

A fundamental process relying on mode-density spectra in such structures is spontaneously 
induced coherence, due to strong coupling effects. We have developed an exact (non­
perturbative) theory ofnear-resonant interaction with quantized fields having arbitrary DOM 
spectra [2J. This theory implies that an excited two-Ievel system, whose resonance lies near a 
band-edge or narrow line in the DOM of the vacuum field would spontaneously evolve into a 
superposition of single-photon dressed states. This is a generalization of vacuum Rabi split­
ting, which occurs wh en the atom is near-resonant with a narrow mode. For a finite-width 
band, the states are pushed away from the edge, the ones ending up in the allowed band 
decay, whereas the ones pushed into the gap do not. Remarkably, there can be multiple stabie 
dressed states in a coherent superposition, as many as there are gaps in the DOM. 

In Fig.l we show the splitting of an excited state Ie) into superposed stabIe states, os­
cillating at band-gap frequencies Wj, each consisting of superposed zero-photon le,O) and 
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Figure 1: Splitting of an atomie exeited state (dashed) into superposed stabie dressed states in gaps 
(narrow lines) and deeaying states (broad line shapes). 

one-photon Ig, lw) states, weighted by the field-dipole coupling K;(W) and DOM p(w) 

Ie) -+ IW1+2) = L Cj [Ie, {Ol) 
j=1,2 

(1) 

The amplitudes of these states, ej, and their eigenfrequencies Wj are eontrollable by the atomic 
transition detuning from cutoff and by the band DOM p(w). This spontaneous coherence 
control opens interesting perspectives for lasing without inversion (LWI) in PCs containing 
3-level atoms which have one resonant transition near a band edge. 

3 Two-photon bound states by resonant interactions with atoms 
in pes 

The one-dimensional interaction of light with a system of atoms has been shown, by Bethe's 
ansatz, to produce multi-photon correlated states (referred to as string states) [4). However, 
the energy of the two-photon correlated state in the string model is exaetly the same as that 
of the unbound state. This makes any direct observation of the string two-photon state 
highly difficult. 

We study here a principally new mechanism, whereby group-veloeity dispersion in a lD 
PC where light interacts with a collection of two-Ievel atoms may lead to the production 
of a bound two-photon state with lowered energy, which makes its creation more favorable. 
The construction of two-photon solutions is then possible. Group-velocity dispersion may be 
obtained in a PC outside the band gap. This dispersion allows us to control the characteristics 
of the diphoton bound state. 

We shall consider a one-dimensional structure, in whieh all the relevant mode frequencies 
ware not too far from the atomie resonance 0, i.e. 

10 - wl« 0 

Introducing the notation À = k - ko , we can write the dispersion relation as 

w(k) = 0 + VgrÀ + (À
2 

(2) 

(3) 
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where vgr = àw(k)/àklk=ko is the group velocity (we use units ft = c = 1 ) and the last term 
corresponds to the inverse effective "mass" ofthe photon, (= 1/2 à2w(k)/àk2 Ik=ko being the 
group velo city dispersion. 

In what follows we shall use the field operator f+(X), which is the Fourier transform from 
k to x of the photon creation operator a+(>,) 

f(X) = _a(>..)ei>'x JOO d>" 

-00 27f 
(4) 

One-photon eigenstates of this system can be obtained in the Wigner-Weisskopf form [5) 

I>") = I: dx ~t(>",x)IO) 

I: dx ei>'x f(>.., x)ë(x) 10) 

+ L g; (>")S; 10) 
; 

(5) 

where st are the pseudospin operators of the j-th two-Ievel atom, which is located at the 
point x; and the field amplitude envelope f(>..,x) and atomie excitation g;(>..) are obtained 
from the Schrödinger equation 'Hl>") = w(>")I>"). 

We search for a two-photon solution in the Bethe-ansatz form 

1>"1, >"2) = J I: dX1 dX2 AÀ1 ,À2(X1 - X2) 

X~t(>"1,X1)1ÎIt(>"2,X2) ® 10) (6) 

Here the Bethe factor A>'1,À2(X1 - X2) refiects the appearance of photon-photon correlations. 
The two-photon bound state "diphoton" corresponds to complex >..'s 

>"1 = A + iT 
>"2 = A - iT 

with positive "( (the inverse width of the correlation length of the diphoton state). 
We have the following equation for the inverse correlation length of the diphoton 

-4(2"(3 + [2(vgr + 2(A? 

+4«(vgrA + (A2)h = 'TJ 

(7) 

(8) 

To first order in the velo city dispersion ( the inverse width of the dip hot on may be 
estimated as 

"( "" 'TJ 
"" 2 A 2vgr + 12vgr( 

(9) 

and is of the order of the inverse life time of the excited atomie level. 
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The binding energy of the diphoton state is 

(10) 

Thus for positive group-velocity dispersion (, the energy of the diphoton state is lower than 
the energy of the unbound state. We have considered the case wh en corrections due to 
group-velocity dispersion are small (A «vgr . In this case the width of the diphoton state 
may be estimated to be close to the natural line-width of the resonant atoms, 'Y rv 1/ rv 109 

S-l, and the group-velocity dispersion coefficient for the photonic band gap structure may be 
estimated to be inversely-proportional to the band-width of the forbidden zone D..w rv 1012 

S-l. In this case the binding energy of the diphoton would be of the order of 106 
S-l. 

4 Self-induced transparency in photonic band structures: gap soli­
tons near absorption resonances 

Pulse propagation in a non-uniform resonant medium, e.g., a periodic array ofresonant films, 
can destroy self-induced transparency (SIT) [6], because the pulse area is then split between 
the forward and backward (reflected) coupled waves, and is no longer conserved [7J. Should 
we then anticipate severely hampered transmission through a medium whose resonance lies 
in a reflective spectral domain (photonic band gap) of a PC (a Bragg reflector)? We have 
shown analytically and numerically [8, 9, 10J that it is possible for the pulse to overcome 
the band-gap reflection and pro duce SIT in a near-resonant medium embedded in a Bragg 
reflector. The predicted SIT propagation is a principally new type of a soliton, which does 
not obey any of the familiar soli ton equations, such as the non-linear Schrödinger equation 
(NLSE) or the sine-Gordon equation. 

Qualitatively, the SIT soliton in a PC may be understood as the addition of a near­
resonant non-linear refractive index to the modulated index of refraction of the Bragg struc­
ture . When this ad dit ion compensates the linear modulation, then there is no band gap and 
soliton propagation is possible (Fig.2). 

The proposed mechanism of gap solitons is revealed in a periodic array of thin layers 
of resonant two-Ievel systems (TLS) separated by half-wavelength nonabsorbing dielectric 
layers, i.e., a resonantly absorbing Bragg reflector (RABR). Such a RABR has been shown 
by us to have, for any Bragg reflectivity, a vast family of stabie solitons, both standing 
and moving [9, 10J . As opposed to the 27r-solitons arising in self induced transparency, i.e., 
resonant field - TLS interaction in a uniform medium, gap solitons in a RABR can have 
an arbitrary pulse area. The main innovation of our findings is that they demonstrate an 
unexpected property of a RABR with active layers. The RABR with thin active layers 
provides, to the best of our knowiedge, the first example of a nonlinear optical medium in 
which stabie bright and dark solitons exist for the same values of the model's parameters (at 
different frequencies). 

The periodic grating gives rise to band gaps in the system's linear spectrum, i.e., the 
medium is totally reflective for waves who se frequency is inside the gaps. The central fre­
quency of the fundamental gap is Wc = kcc/no, c being the vacuum speed of light, and the gap 
edges are located at the frequencies W1,2 = Wc (1 ± a!/4), where al is the grating modulation 
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Figure 2: The first-harmonie modulation ~fl eos 2kz of the linear refraetive index (dashed eurve) in 
a strueture of periodieally alternating layers. This modulation ean be eaneeled by the near-resonant 
nonlinear response Re fnl (inset), if it has the opposite sign to ~fl at the TLS positions. 

depth. We further assume that very thin TLS layers (much thinner than I/kc) whose reso­
nance frequency Wo is close to the gap center Wc, are placed at the maxima of the modulated 
refraction index. In ot her words, the thin active layers are placed at the points Zlayer such 
that cOS(kcZlayer) = ±l. Quantum wells embedded in Bragg mirrors are adequately described 
as TLS layers. 

The electric field E(z, t) can be decomposed into cosine and sine spatial components, 
having the dimensionless slowly varying amplitudes ~+ and ~_, respectively, 

E(z, t) h(WO)-l (Re [~+(z, t)e-iwct] cos kcz 
Im [~_ (z, t)e-iwct ] sin kcz) , (11) 

where J-L is the transit ion dipole moment of the TLS, and the characteristic absorption time 
of the field by the TLS is TO = noJ-L- 1vh/27rwc{Jo, with {Jo being the TLS density (averaged 
over z). 

The equations for the field envelope in the symmetrie mode ~+ and the polarization 
envelope P form a closed system, 

a2~+ a2~+ 
-----aT2 a(2 

2VI - IPI2 ~+, 

i8P -VI - IPI2 ~+, 

wh ere dimensionless time T, coordinate (, and detuning 8 are defined as follows: 

(12) 

(13) 

(14) 

The dimensionless modulation strength 'TI is the ratio of the TLS absorption distance to the 
Bragg reflection distance, which can be expressed as 'TI = alwcTo/4. The envelope of the 
antisymmetric field component ~_ is driven byap/ac,. 
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Figure 3: The dispersion curves (dimensionless frequency X versus dimensionless wavevector k) at 
'TJ = 0.5 and 8 = -0.2. The solid lines show the dispersion branches corresponding to the "bare" 
(noninteracting) grating, while the dashed and dash-dotted lines stand for the dispersion branches 
of the grating "dressed" by the active medium. The frequency bands that support the standing dark 
and bright solitons are shaded. The arrow indicates a complete gap, where no field propagation 
takes place. 

The spectrum produced by the linearized version of Eqs. (12) and (13) is obtained on 
assuming the TLS population to be uninverted; we then arrive at the dispersion relation for 
the wavenumber '" and frequency X. Different branches of the dispersion relation are shown 
in Fig. 3. The roots X = ± J ",2 + TJ2 (corresponding to the solid lines in Fig. 3) originate 
from the driven equation for ~_ and represent the dispersion relation of the Bragg reflector 
with the gap lxi < TJ, that does not feel the interaction with the active layers. The important 
roots are described by the dashed and dash-dotted lines; they will be shown to correspond 
to bright or dark solitons in the indicated (shaded) bands. 

Stationary solutions for the symmetrie-mode field envelope ~+ and polarization envelope 
Pare sought in the form ~+ = e-iXTS(() and P = i e-iXT P(() with real Pand S. Bright 
solitons can be shown to appear in two frequency bands x; the lower band being Xl < 
X < min{X2, -TJ, <5}, and the upper band max{Xb TJ, <5} < X < X2, where the boundary 

frequencies Xl,2 are given by Xl,2 := (1/2) [<5 - TJ ~ J(TJ + <5)2 + 8]. The lower band exists 

for all values TJ > 0 and <5, while the upper one only exists for <5 > TJ - 1/TJ, which follows 
from the requirement X2 > TJ. An example of bright solitons is depicted in Fig. 4. Note that, 
depending on the parameters TJ, <5 and X, the main part of the soliton's energy can be carried 
either by the ~+ or the ~_ mode. 

Dark solitons (DS's) are obtained similarly to the bright ones. The condition for their ex­
istence determines the following frequency interval X (TJ is defined to be positive): maxi ó, -TJ} 
< X < min{X2' TJ}, and <5 < TJ. The DS frequency range is marked by shading (to the right 

14 Quantum Opties in Photonic Band Structures 



2.' 

1.. 

0.' 

-<I.' 

-, 
-Ui 

~ oe 

Figure 4: A typical example of a bright soliton. The variables S, P, and A are plotted as a function 
of ( for the parameters 1/ = 0.2, 8 = -2, and X = 0.4. 
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Figure 5: A typical example of a dark soliton, presented in terms of the variables S, P and A. The 
parameters are 1/ = 0.6, 8 = -2, and X = 0.25. 

from zero) in Fig. 3. An example of a DS amplitude in the ~+ mode, together with the 
corresponding quantities Pand A, are plotted in Fig. 5. The DS frequency band always 
coexists with one or two bands supporting the bright solitons. Quite naturally, the bright 
and dark solitons cannot have the same frequency. 

Let us now discuss the experiment al conditions for the realization of the solitons. Ex­
citons in periodic quantum wells can, under certain conditions (such as low densities [11]) 
be described as effective two-Ievel systems (TLS's). We consider their surface density to be 
~ 1010 

- 1011 cm-2 . Structures occupying a region of approximately 100 absorption lengths 
would require a device of the total width of approximately 1 mm to 1 cm, which corresponds 
to ~ 103 to 104 unit cells. The modulation of the refraction index can be as high as al ~ 0.3, 
so that the parameter 'Tl can vary from 0 to 102 • The intensities of the applied laser field 
corresponding to ~± ~ 1 are then of the order 106 - 107 W jcm2• The dephasing time is cur­
rently ljr2 ~ 10-13 s. Decreasing the dephasing rate appears to be the main experimental 
challenge. 
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5 Conclusions 

Strong field-atom coupling near band-edge cutoff or a narrow defect line in a PC has been 
shown to allow unprecedented control of the following properties: (a) Single-atom spontan­
eously-induced coherence, which can give rise to lasing without inversion (LWI). (b) Photon 
binding, resulting in stabie propagation in resonant media has been connected with photon 
effective masses. (c) Gap solitons have revealed their capacity for "filtering" undesired pulse 
shapes and creating self-induced "cavities". 

The above novel features offer the first glim ps es into the remarkable possibilities offered 
by field confinement in PCs for the design and control of coherentjcooperative processes. 

References 

[1] E. Yablonovitch. J. Opt. Soc. Am. B 10(1993) 283-302 
[2] A. Kofman, G. Kurizki, B. Sherman. J. Mod. Opt. 41(1994) 353-384 
[3] Z. Cheng, G. Kurizki. Phys. Rev. Lett. 75(1995) 3430-3433 
[4] V.1. Rupasov, V.1. Yudson. Sov. Phys. JETP 60(1984) 927-934 
[5] V. Weisskopf, E. Wigner. Z. Phys. 63(1930) 54-73 
[6] S.L. McCall, E.L. Hahn. Phys. Rev. 183(1969) 457-485 
[7] A. Maimistov, A.M. Basharov, S.O. Elyutin, Yu.M. Sklyarov. Phys. Rep. 191(1990) 1-108 
[8] A. Kozhekin, G. Kurizki. Phys. Rev. Lett. 74(1995) 5020-5023 
[9] A. Kozhekin, G. Kurizki, B. Malomed. Phys. Rev. Lett. 81(1998) 3647-3650 

[10] T. Opatrny, B.A. Malomed, G.Kurizki. Phys. Rev. E (1999) in press 
[11] G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, S.W. Koch. Rev. Mod. Phys. (1999) in press 
[12] A.G. Kofman, G. Kurizki. Opt. Commun. 153(1998) 251-256 

Author's address 

G. Kurizki, A. Kofman and T. Opatrny: 
Department of Chemical Physics, 
Weizmann Institute of Science, 
761 00 Rehovot, 
Israel; 

T.Opatrny: 
Department of Theoretical Physics, 
Palacky University, 
Svobody 26, 779 00 Olomouc, 
Czech Republic; 

A. Kozhekin: 
Institute of Physics and Astronomy, 
University Aarhus, 
DK-8000, 
Denmark. 

16 Quantum Opties in Photonic Band Structures 


