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Abstract 

We present a quantum mechanical formalism to study the interaction between the active re
gion in a semiconductor device and the electromagnetic field. The method explicitly avoids 
decomposition into modes. Instead, use is made of the classical Green tensor for the pas
sive structure. We derive an expression for the spontaneous emission rate generally valid 
for localized and delocalized interactions. As an application, we calculate the spontaneous 
emission factor f3.P for an edge-emitting three-Iayer (waveguide) structure with a quantum 
weU as a function of the width of the middle layer and the position of the quantum wen in 
it. 

In view of apparent developments towards miniaturization of semiconductor devices as wen as 
realization of schemes where semiconductor lasers emit light with non-classical properties [1, 
2, 3, 4], there is an obvious need for a general quantum mechanical framework in which one 
is able to treat the electromagnetic field, the electron dynamics and the interaction between 
electrons and the electromagnetic field in a quantized way for general geometries. Such a 
framework could already today be necessary to understand the basic operation of quantum 
optical devices (noise properties, photon statistics and correlations). It should also allow for 
a straightforward integration with existing quantum mechanical models for the fuU electron 
dynamics in the active region [5J and in semiconductors in general [6J . 

The present paper reports on our approach towards such a general framework and the 
results obtained thus faro A key role in our quantum mechanical theory is played by the 
classical Green tensor of the passive dielectric structure, i.e., the fuU device with its active 
constituents like quantum wens removed. Most of the existing semiconductor light emit
ting devices can be described in this manner. In our approach we deal directly with the 
electromagnetic field operators, rather than creation and annihilation operators for the nat
ural modes of the structure. Thus we avoid certain complications connected to the lossy 
character of a mode as a consequence of the open nature of any dielectric structure. The 
problem is formulated by defining the Hamiltonian in a generalized Coulomb gauge and the 
basic commutation relations. Then in the Heisenberg picture the equations of mot ion for 
the relevant operators are straightforwardly derived. An important position is taken by the 
inhomogeneous operator wave equation for the electromagnetic vector potential in which 
the source term refiects the field-matter interaction. This equation can be implicitly solved 
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for the vector potential in terms of the classical Green tensor pertaining to the dielectric 
structure th at remains af ter removing the active constituents. From here on it is possible 
to build further towards a more comprehensive theory th at includes the analysis of higher 
order correlation functions, stimulated emission, squeezing and lasing. In the present paper 
we focus on the application of the theory developed so far to the fundamental problem of 
spontaneous emission. 

A general formula for the spontaneous emission rate is derived that, unlike the usual 
result based on localized electric dipole interaction, takes the delocalized character of the 
electron states fully into account (electric current rather than electric dipole interaction). 
Moreover, the orientation of the current matrix element, i.e., the polarization associated 
with the transition, is taken into account. Next, we apply th is formula to a multilayer 
dielectric configuration with a quantum well and we obtain explicit results for three-Iayer 
waveguide structures, a problem that received significant attention recently, both theoretical 
and experimental [7, 8, 9]. Not only can we demonstrate the strength and elegance of 
our method [10], and completely confirm the theoretical results obtained in [9], but we also 
calculate the spontaneous emission factor fJs p for a selected mode in a three-Iayer edge emitter. 

An important advantage of our method is that it allows a consistent Hamiltonian formu
lation of the problem, without running into difficulties associated with the open character of 
the system. The field is quantized directly, without invoking a modal decomposition, while 
the electromagnetic features are separated, in a way, from the quantum-mechanical ones. It 
is assumed that the (classical) Green tensor for the full device geometry without the active 
carriers is known. In practice it may not be an easy task to calculate the Green tensor for a 
realistic multilayer device. On the ot her hand, for a given structure, it needs only be done 
once. This Green tensor is then used as input for the quantum mechanical equations of 
motion. 

1 Derivation of equations of mot ion 

In this section the Heisenberg equations of mot ion for the relevant operators in a light 
emitting dielectric device will be derived. The Hamiltonian for such a device and the com
mutation relations for the operators need to be identified. For the charge carriers the weIl 
known fermion anti-commutation relations hold. For the field operators the situation is not 
so straightforward [11, 12, 13, 14] and indeed is different from the vacuum case. We distin
guish two interacting parts in the light-emitting device. One part consists of the free charge 
carriers (the electrons in the conduction band and the holes in the valence band) the quan
turn transitions of which produce or absorb (incoming) light. Usually these occur only in a 
small subregion of the system, e.g. a quantum weIl. The ot her part is passive and constitutes 
all the rest of the device, including the various interfaces that give rise to reflection like in 
a cavity or to guided, radiation and substrate modes like in a waveguide. Here only bound 
charges interact with the field . We neglect absorption in this part, which is areasonabie 
approximation in the optically relevant regime. The dielectric properties (that arise due to 
the interaction with the bound charges) are then accounted for by a real dielectric function 
é(r) that is only space-dependent. This dielectric space may be considered as an effective 
vacuum, in which the electromagnetic field may be quantized in a similar way as in the true 
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vacuum. This is shortly summarized in the next subsection. 

1.1 Quantization of the electromagnetic field in a lossless dielectric structure 

For the quantization of the field in the passive part we foIlow the lines of the extensive 
discussions by Knöll, Vogel and Welsch [11, 12], Glauber and Lewenstein [13], and Tip [14]. 
Note that th is part of the system contains no free charges or currents. We intro duce the 
vector potential field in the usual way as (in SI units) 

B(r, t) 

E(r, t) 

v x A(r,t) 
aA(r, t) 

at 

(1) 

(2) 

In (2) one normally expects a scalar potential as weIl. However, this term is chosen to be 
zero due to the absence of free charges. For the vector potential we choose the generalized 
Coulomb gauge [11, 12, 13, 14]: 

V· (c(r)A(r, t)) = O. (3) 

Note that this is compatible with V . D = 0, where D = -é'oc(r)Ä. Identification of the 
proper canonical momentum density as the conjugate variabie to A for quantization of the 
field requires special care, since the independent variables are non-trivial components of the 
vector field because of the generalized transversality condition (3) . It can be shown that the 
canonically conjugate momentum density is given by [12] : 

II(r, t) = coc(r)Ä(r, t) = -cot:{r)E. (4) 

The Hamiltonian for the electromagnetic field then reads: 

H . _! d3 ~ [(IT(r, t))2 (V x A(r, tW] 
doel - T 2 () + , cOc r I.to 

(5) 

the integration extending over all space, with c(r) == 1 everywhere outside the dielectric light 
emitting device. The canonical quantization condition is more complicated than in the usual 
Coulomb gauge, where it involves the transverse delta function [15]. Here, because of the 
generalized transversality condition (3) , one obtains the equal-time commutators [12]: 

[ 
, " ili ~ , 
Ao(r), E,8(r )] = --8

0
,8(r, r) . 

co 
(6) 

where 8~,8(r, r') is the generalized transverse delta function [12, 13]. For a transverse vector 
field XT(r) one has the relation: 

L! d3T'c(r)8~,8(r, r')XJ(r') = X~(r), 
,8 
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while for a longitudinal vector field XL(r): 

L f d3r' 8~p(r, r')c(r')Xj(r') = O. 
P 

(8) 

Note that with this definition the generalized transverse delta function differs by a constant 
factor c(r) = c from the usu al transverse delta function when c(r) is independent of r. In 
a number of recent papers [16, 17, 18, 19] it has been stressed that a real c(r) unequal 
to 1 violates the Kramers-Kronig relations and therefore causality. However, as a model 
valid for the limited frequency range of optical waves in a dielectric material it should be 
acceptable [8, 13, 19]. 

1.2 Hamiltonian 

The total Hamiltonian for the system has to be derived by determining the energy associated 
with all the processes in the system. The active particles and the interaction are confined 
to the active region. The part of the Hamiltonian concerned with the electromagnetic field 
is given in (5). Now consider the free charge carriers in the active region. The particle 
Hamiltonian is split into a part which contains only the canonical variables of the particles, 
now written in terms of the electron field operators ~(r, t) as 

Hel = f d3r~t(r,t)(;~:V'2+eU(r))~(r,t) 
act.reg. 

+~ f f d3rd3r'~t(r, t)~t(r', t)V(r, r')~(r', t)~(r, t) (9) 
act. reg. 

(in which U(r) is the lattice potential and V(r, r') is the instantaneous Coulomb interaction), 
and the electron-field interaction Hamiltonian 

Hint =- f drÁ(r,t).j(r,t) (10) 
act.reg. 

with, in the case of a generalized Coulomb gauge (3), an operator j (r, t) defined as: 

j(r, t) = ;~: {~t(r, t)V'~(r, t) - (V'~t(r, t)) ~(r, t)} 

• t • { ine V' c(r) e2
• } 

+1lT (r, t)1lT(r, t) --( -) - -2 -A(r, t) . 
2me cr me 

(11) 

The third term in this expression originates from V' Á and the condition (3). Note that 
~(r, t) and therefore the region of integration extends in practice only over the active region 
to which the free charge carriers are confined. 

When substituted in (10), the term in (11) proportional to Á(r, t) is often neglected on 
the basis of arguments that the electromagnetic radiation fields are weak compared to the 
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atomic field strengths [20, 21]. The term with the gradient of c(r) in (11) is also expected 
to be of minor importance, because the dielectric constant is by definition a macroscopic 
quantity, representing the effect of the average polarization of bound charges over a region 
that is large compared to atomic dimensions [22]. For the active layer it is a somewhat 
hypothetical quantity, referring to the system without the free carriers and will not differ 
very much from the dielectric constants of the surrounding layers. From now on, we will 
neglect these terms and identify J(r, t) with the electromagnetic current: 

It is only the transverse current which acts as a source of the electromagnetic field. This 
follows from the the operator Maxwell equation, which can be expressed as: 

a . . 
- at D(r, t) + 'V x H(r, t) 

1 . • 
= - in [coc(r)E(r, t), Hint], (13) 

where the second equality in (13) follows from the Heisenberg equations of mot ion (see (15)) 
for the displacement operator. Using (6) and (7) one obtains: 

JEM,o(r, t) = J d3r'c(r) L ó~p(r, r') Jp (r', t) = J~M,O(r, t), 
act.reg. p 

(14) 

where Jp(r', t) is the ,B-component of J(r, t) and a,,B = x, y, z. Since the current JEM(r, t) 
is transverse, we will denote it from here on as J~M(r, t). 

1.3 Equations of motion 

In the Heisenberg picture the operators are time-dependent, while the states are time
independent. An advantage of this picture is that the electromagnetic field operators satisfy 
equations that resembie as close as possible the classical electromagnetic field equations. By 
assuming the interaction switched on at t = 0, all expectation values can be evaluated in 
the free-field state of the system at t = O. For an operator ft' that has no explicit time
dependence, the Heisenberg equation of motion is given by: 

d·I· . 
dt F = in[F,H] . (15) 

For the vector potential operator Á(r, t) one deduces the following vector wave equation, by 
application of (15) with the Hamiltonians (5) and (10), using relation (14) and the gauge 
condition (3): 

(16) 
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After time-Fourier transformation of (16) the formal sol ut ion in terms of j~M(r',w) is ob
tained as: 

Á(r,w) = Áfree(r,W) + ! d3r' ä (r,r',w)· j~M(r',w), 

in which the Green tensor satisfies the equation: 

(17) 

(18) 

and Áfree(r, w) is a solution of the homogeneous equation, representing the electromagnetic 
field operator for the passive dielectric structure. 

The operator for the electron field is expanded in a basis set: 

~(r, t) = L S(t)IP-y(r). (19) 
-y 

where the label 'Y indicates quantum numbers of Bloch states, i.e., band index n and wave 
vector k [6]. For the operator S(t) the Fermion anti-commutation rules hold: 

s (t)S' (t) 

S(t)ê~ (t) 
-s' (t)S(t), 
á-YT - ê~(t)S(t). 

(20) 

(21) 

In the same representation the current operator (14) can be expressed as: 

ifM.Q(r, t) = L ê~(t)ê-r(t)j~-YT(r), (22) 
"'(,"t' 

with 

j~-YT(r) = ! dVé(r) L á~,8(r, r')j,8.-YT(r'), 
act.reg. ,8 

(23) 

and 

(24) 

If the adopted basis representation IP-y(r) is that of the mean-field (Hartree-Fock) solutions, 
the many-body Hamiltonian for the electrons (9) is represented as [23, 24, 25]: 

Hel = LE-yê~(t)S(t) + ~ t Vtl,8'-YT ê1(t)ê1,(t)ê-r(t)S(t). 
-y tI,8'n' 

The prime on the summation in (1.3) indicates that Coulomb interaction terms already 
included in the mean-field energies E-y must be discarded in order to avoid double counting. 
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The equation of mot ion for the current density (22) is determined by Heisenberg equations 
of mot ion for a pair of electron creation and annihilation operators: 

- i~ L ! d3r {ê~(t)êa(t)Á(r, t) . j~a(r) - êl(t)ê.y, (t)Á(r, t) . j~-y(r)} 
a e!.ext 

1 
+ ih (E-y' - E-y)ê~(t)ê.r(t) 

+ i~ [ê~(t)ê.y,(t), ~ t V.8.8'aa'ê1(t)ê1,(t)êa,(t)êa(t)]. (25) 
.8.8'oa' 

The last term in this expression entails the many-electron problem and can be approximated 
in various ways to obtain a closed set of equations that can be solved [6). In the next section, 
which is intended to illustrate the use of the Green tensor, we shall treat (25) only in its 
simplest (free-carrier) approximation, i.e., we disregard the last term. 

2 Application to spontaneous emission 

2.1 Derivation of the spontaneous emission rate 

The method we use to derive the spontaneous emission rate is adapted from the methods' 
commonly used in quantum opties [26) and in particular inspired by [27). On the basis of 
the equation of mot ion (25), we will derive an expression for the occupation number of the 
conduction band (, = " = 2, k) of the form: 

(26) 

in which the brackets indicate expectation values, the factor r SE is interpreted as the coeffi.
cient of spontaneous emission and the dots represent terms of more complicated form. From 
inspection of (25) it is clear that, neglecting the electron-electron interaction, a result of the 
form (26) must be obtained from the first line on the right hand side of (25) which contains 
the field operator Á(r, t). This field operator, which describes the creation of a photon in 
the process that we consider, consists according to (17) of a free part and a part generated 
by the (transverse) electromagnetic current. Since we are interested in optical transitions, 
only terms with optical frequencies of the current j~M(r, t) are relevant here. These are the 
terms of (22) for which , and r' refer to different bands. For them, we use the zero-order 
expression for the elements of the density operator: 

ê~k(t)ên'k,(t) = ê~k(O)ê,.'k,(O)e-iWn'nt; (n =F n') (27) 

with Wn'n = k(En'k' - Enk)' Then substitution of the current (22) into (17) yields: 

Á(r,t)=Áfree(r,t)+ L ! d3r'ä(r,r',wn'n)ê~k(t)ên'k,(t)·j~n,(r',k,k'), (28) 
n'#n,k'kact.reg. 
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with j~n,(r, k, k') =j~kn'k,(r). The use of (27) in the intermediate step implies a limitation 
to lowest order in the field operator Á(r, t) (note that the fermion operators are coupled 
via (25) to the field operator) and thereby higher order processes such as the re-absorption 
of emitted photons are neglected. 

The summation in (28) splits in two parts, one in which all terms have a negative frequency 
content (Eq < Ep): 

. - . - ~ J 3 t+ T t Aopt (r, t) = A free (r, t) + ~ d r G (r, r', Wqp) . jpq(r', kp, kq)êpkp (t)êqk.(t) (29) 
q<p,kq,kpact.reg. 

and the ot her part which is its Hermitian conjugate Áop/ (r, t) = [Áopt - (r, t)]f, in which all 
the terms have a positive frequency content. The former can be associated with a photon 
creation operator while the latter is associated with a photon annihilation operator. Cal
culation of the spontaneous emission is most easily performed by normal ordering of the 
operators [27, 28, 29, 30], which implies that these photon creation operators are put on 
the left and the photon annihilationoperators are put on the right in operator-product ex
pressions. In this way one loses all vacuum expectation values containing factor Álree; i.e, 
contributions of the free field, and the spontaneous emission is regarded as the radiation 
reaction of the current source back on itself. Moreover we adopt the familiar rotating wave 
approximation [29J, in which creation of a photon is accompanied by transit ion of an electron 
to an energetically lower state and the annihilation of a photon by the opposite transition. 
Substitution of (28) into (25) for '"t = '"t' = (n, k) and omitting the last commutator in (25) 
th en yields the Heisenberg equation of motion: 

[Á - (r, t) . j~ (r, t) - j~(r, t) . Á + (r, t) 

-Á - (r, t) . j~t(r, t) + j~k(r, t) . Á + (r, t)] , (30) 

in which 

j~(r, t) 
m<n,k' 

j~k(r,t) = L j~n(r,k',k)ê~k,(t)ênk(t). (31) 
m>n,k' 

Since the integrand in (30) is anti-Hermitian, one obtains for the expectation value of this 
equation, in any state of the form lepel> 10fieid > with arbitrary electronic state and vacuum 
photonic state, 

! < ê~k(t)ênk(t) >= 

-~ {L L Im [I(n,k,m,k',p,kp,q,kq) < (ê!kp(t)êqkq(t)ê~k(t)ê.".k,(t)) >] 
m>n,k' q<p,kpkq 

+ L L Im [I(n,k,m,k',p,kp,q,kq ) < (ê~k(t)ê.".k,(t)ê!kp(t)êqkq(t)) >]} (32) 
m<n,k' q>p,kpkq 
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where 

1(n,k,m,k',p,kp ,q,kq) == ! ! d3rd3r'j~m(r,k,k'). ä (r,r',wqp ) .j~(r',kp,kq). (33) 

act. reg. 

Equation (32) expresses the time evolution of the carrier number operator corresponding to 
band n and wave vector k in the first Brillouin zone as a net result of two contributions: 
transitions of electrons to band n and transitions from band n to other bands. We will now 
consider the simp Ie case of just two bands, an upper band labeled 2 (conduct ion band) and a 
lower band 1 (valence band). Then (32) for the occupation operator of the conduct ion band 
can be written as: 

:t < ê~k(t)ê2k(t) >= 

-~ L lm {1(2, k, 1, k', 1, kb 2, k) < 4k(t)ê2k(t)(8k'kl - êtk
1 
(t)êlk,(t)) >} 

k/,k} 

~ L lm {1(2, k, 1, k', 1, kb 2, k2) < 4k(t)êlk,(t)êtk1 (t)~k2(t) >} . (34) 
k' ,kl.k2T"k 

The first term on the right hand side of (34) describes, apart from a correction due to 
a possible Pauli blocking of the fin al state k' in the valence band, the effect of decay by 
spontaneous emission of intial conduction band state k. The second term on the right hand 
side of (34) contains combinations of ê-operators that give rise to quantum interference among 
multiple radiation pathways, some of which are similar to those occuring in V-type atomic 
systems [31, 32]. Such effects may lead, in principle, to much faster decay than resulting from 
the first term. However, in realistic situations the necessary coherences for such enhancement 
are most probably not observabie. Therefore, we will neglect such effects here. We may now 
find the coefficient of spontaneous emission from the term on the right hand side of (34) that 
is proportional to < 4k(t)~k(t) >. This coefficient is: 

rSE = ~Llm[1(2,k,1,kl,1,k',2,k)] = 
k' 

~lm ~ ! dr ! dr'jfl (r, k, k')· ä (r, r', W2k,lk') . jÎ2(r', k', kl . (35) 
k act. reg 

The form of (35) is reminiscent of the traditional Fermi Golden Rule result for the sponta
neous emission rate, which reads: 

(36) 

The current densities Y play parts similar to the transition matrix elements in (36), while 
the Green tensor takes account of the electromagnetic contribution to the density of final 
states p(E). Our basic result has a simple interpretation in terms of the (self) radiation 
reaction energy of the emitting current in its own emitted field [33]. 
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1. interface El 

d quantum weil..,. f2 
f2 

T interface 

Figure 1: A typical edge-emitting laser. The pump stripe on the top determines the pumped region 
of the quantum weIl, and this in turn determines the opening angle of the laser mode. 

3 The ,BBp-factor 

Applications of (35) to a quantum weIl in a dielectric multilayer configuration can be found 
elsewhere in these proceedings [34] as weIl as in [10]. These concern calculations of spon
taneous emission rates and their variations as functions of width of the guiding layer and 
the position of the quantum weIl therein. As another application, we will present here a 
calculation of the spontaneous emission beta-factor, {Jsp, for an edge-emitting structure. By 
its definition [35], this factor is the spontaneous emission rate into a given (laser) mode as 
a fraction of the total spontaneous emission rate. These emission rates may be calculated 
using (35), in which for the emission into a lasing mode the corresponding contribution to the 
total Green tensor should be retained as follows. For a dielectric configuration that occupies 
a finite region in space, the mode of interest for lasing will, in most cases, manifest itself by 

++ 
a simple pole of G (r, r', w) in the complex w-plane at w = Wmode. Then the propagator of 
this mode may be constructed by the prescription: 

G7ed (r, r', w) = [ lim (( - Wmode) ë (r, r', ()] 1 , 
,~Wmod. W - Wmode 

(37) 

and the ,s.p-factor is obtained as: 

++ 
Im~k' I dr I dr'jIl(r,k,k'). Gred (r,r',W2k,lk') ·jf2(r',k',k) 

,sSP = act. reg ++ . (38) 
Im~k' I dr I dr'jIl(r,k,k'). G (r,r',W2k,lk') ·jf2(r',k',k) 

act. reg 

Since the Green tensor for a finite dielectric object such as, e.g., a VCSEL, is quite compli
cated and, in fact, at present not available to us, we have adopted the model of a multilayer 
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Figure 2: (a) f3.p of the fundamental guided mode versus width of the middle layer d, with the 
active quantum weIl at the center of the layer. (b) f3.p versus position of the quantum weIl zo/d, 
for fixed width d = À/2 (zo/d = 0 means quantum weIl at the interface and zo/d = 1/2 means 
quantum weIl at the center). 

configuration with infinite extension in the lateral direction, for which the Green tensor is 
known in analytic form [8]. 

A complication that arises in the case of a dielectric structure with finite extent is that 
the mode spectrum has also guided modes which form continuous branches, so that the 
prescription (37) cannot be applied. However, we have shown in [10] that in this case the 
contribution of individual guided modes, for a given frequency wgap of the electronic transition 

++ 
between the conduction band and the valence band, can be identified as residues of G at 
poles in the complex k-plane, where k is the lateral wavenumber. The contribution of a single 
guided mode is then given by integration over alllateral directions of k. For a typical edge
emitting laser, with structure as shown in Fig. 1, lasing can only occur in lateral directions 
within the activated layer, roughly determined by the orientation of the pump stripe. For 
typical stripe dimensions of 5 /Lm by 250 /Lm, this implies restriction of the lasing modes to 
an angle 1/J :::: 2 x 10-2 rad out of the 211" continuum of guided modes with a given k. 

Another complication is that in a real device the emission spectrum is not monochromatic 
but has a width 6.w'P:::: 3THz [36], while the selected longitudinal mode has a natural width 
6.wm ode :::: 30GHz due to outcoupling losses. Therefore, we take as an estimate of fl.p for 
arealistic structure the fraction (1/J/211")(6.Wmode/6.W.p ) :::: 10-4 /11" of the contribution of the 
fundamental guided mode of the same layered configuration with infinite lateral extension. 

We previously calculated the total spontaneous emission rate as a function of layer width 
for a three-layer waveguide fabricated from Al",Gal_",As with a quantum wen embedded at 
the center of the middle layer [10, 34]. The quantum wen is very thin and has dielectric 
constant equal to that of the middle layer. For the case of a three-layer waveguide fabricated 
from GaxAll_",As with x = 0.50, x = 0 and x = 0.50 respectively, we now calculate the 
flsp-factor, as described above, for the fundamental guided mode, i.e., the first guided mode 
to be bom with increasing width d of the middle layer, starting from d = O. The fl.p-factor 
as a function of d is plotted in Fig. 2(a). The width dis given in units of >'/2, where >. is 
the vacuum wavelength associated with the electronic transition frequency wgap ' It is seen 

Lenstra, Hooijer, AIlaart and Harel 55 



that as d increases from 0, the f:1.p-factor rises steeply, obtains a maximum near d = >'/4 and 
then decreases monotonously. This can be explained as follows. First it should be realized 
that the spontaneous emission rate into the mode of interest is proportional to the value of 
the mode intensity at the location of the emitter, i.e., the quantum weIl, whereas the total 
spontaneous emission rate does not change much with increasing width [10]. One can show 

that for small d the intensity at the center of the middle layer scales as I ex J k~m (d) - él ~, 
where kgm(d) is the pole in the complex k-plane associated with the mode of interest, given 
by [10]: 

=0, 
w w Ft - < kgm ~ .,fi2-. 
c c 

(39) 

From this one finds that for small d, where kgm is only slightly larger than Vfïw/c, the mode 
intensity is proportional to d: 

w2 

I ex 2c2 (é2 - él)d, (40) 

which explains the initiallinear increase of f:1.p with d. In turn, for large d the mode intensity 
scales as lid, which leads to the final l/d decrease of the f:1.p-factor. 

The value of the f:1.p-factor found here is on the order of 10-5, depending on the width 
of the middle layer. This agrees weIl with estimates by others [35, 36, 37], based on various 
different approaches. Clearly, our technique provides a good approximation for the f:1.p-factor 
and allows us to predict the general trends of its dependence on design parameters such as 
dielectric constants, quant urn-weIl position, and width of the middle layer. As an example, 
we show in Fig. 2(b) the variation of f:1.P with the position of the quantum weIl in the middle 
layer. Here the f:1op-factor dearly probes the mode intensity. 
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