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Abstract 

A fully quantum mechanical theory for the interaction of light and electron-hole excitations 
in semiconductor quantum-well systems is developed. The resulting many-body hierarchy 
for the correlation equations is truncated using a dynamical decoupling scheme leading to 
the semiconductor luminescence equations. Numerical results are presented for the photolu­
minescence of incoherently excited quantum wells. 

1 Introduction 

Recombination of electron-hole pairs and luminescence are fundament al processes in semi­
conductors. It is known from atomic systems that luminescence is modified when various 
atoms are optically coupled [1] or when atoms are positioned in a high-quality cavity [2, 3]. 
An analogous situation in semiconductors can be realized e.g. with an array of quantum wells 
(QW) [4] or for QWs in a semiconductor microcavity [5]. Like in atomic systems, strong 
coupling effects [5, 6] and suppressed or enhanced spontaneous emission [7, 8, 9, 10] due to 
the high quality optical resonances have been observed. For low excitations, the semicon­
ductor material shows excitonic resonances below the fundamental absorption edge. In a 
microcavity, such a resonance is strongly coupled to the cavity mode leading to the double 
peaked normal-mode coupling spectrum which has been observed, e.g., in transmission and 
reflection [5] as weIl as in photoluminescence [6]. 

The transmission spectrum can experimentally be determined using pump-probe tech­
niques. Such experiments can be explained in great detail [11, 12] on the basis of a classical 
description of the light field [13, 14]. The theory/experiment agreement might suggest that 
a quantum treatment of light only leads to minor corrections. However, this is usually true 
only as long as the classical fields exceed the vacuum fluctuations . Therefore, photolumines­
cence in such a correlated system is an important phenomenon which cannot be explained 
semiclassicaIly. 

Without external driving field the polarization and the coherent microcavity field (E) 
typically decays on a ps time scale aft er the excitation pulse. However, in many cases a 
substantial number of incoherent electrons and holes remain excited in the system. The 
system can th en reach its ground state via non-radiative electron-hole recombination and 
through spontaneous emission leading to photoluminescence, which cannot be explained by 
the classical properties of the light . 

The quantum mechanical analysis of the interacting photon-semiconductor system poses 
a considerable challenge to current theories. In the classical description of light, the major 
difficulties arise from the consistent inclusion of carrier-carrier Coulomb interaction effects. 
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In this paper, we review a general theory for the semiconductor luminescence of electron­
hole pairs where many-body effects are included. Staring point is a quantum mechanical 
treatment of the interacting carrier-photon system in the electron-hole picture. The operator 
equations presented provide a general starting point for investigating quantum properties of 
light in semiconductor systems. The approach is not only valid for stationary emission under 
equilibrium conditions but also for the temporal emission dynamics under nonequilibrium 
conditions resulting from the interplay of incoherent and coherent fields, e.g., luminescence 
in the presence or after excitation by externallaser fields [15, 16J. 

The emission properties critically dep end on the excitation conditions of the system. 
Even though incoherent excitonic populations are not included at the present level of the 
theory, excitonic effects enter through the Coulomb interaction between the carriers [17J. 
For the description of incoherent photoluminescence, we develop the "semiconductor lumi­
nescence equations" which are based on a generalization of the Hartree-Fock decoupling 
scheme. In some respect, these equations are the analog to the "Maxwell-Semiconductor 
Bloch equations" describing the coherent excitation dynamics. In their most elementary 
form the semiconductor Bloch equations are based on the Hartree-Fock decoupling; the ad­
dition of many-body-correlations is subject of intense current research, see [13J and references 
therein. On the other hand, carrier-correlations and non-Markovian effects are already par­
tially included in the presented semi conductor luminescence equations. 

2 Equations of Motion for Photons and Carriers 

For a classical field, the light-matter coupling is described by the dipole interaction Hamil­
tonian proportional to the scalar product of the field and the carrier polarization. When the 
treatment includes a quantum field, the specific form of the interaction Hamiltonian cannot 
be extracted trivially from the semiclassical Hamiltonian [18J. In [16], the quantized inter­
action Hamiltonian is derived in order to correctly include the quantum aspects of the light 
and the carrier systems. 

In principle, we could use the vector potential operator to describe the quantum properties 
of light, e.g., within a Green's function method [19, 20J. However, in this paper we choose an 
alternative method where the quantum aspects of light are derived directly from the nonlocal 
boson operators b~ and bq describing the creation and anihilation of photons in the mode q. 
This scheme directly leads us to a generalization of the semiclassical semiconductor Bloch 
equations [21J for the quantum case. 

The dynamics of the photon operator bq is obtained from the Heisenberg equation of 
mot ion ih8bq j8t = [bq, HJ with the Hamiltonian of the interacting system [16J, 

·h 8 bt - ruv bt 1: - pt ( ) 
2 at q.,qll - - Iql q.,qll + 2 qUq QW qll , (1) 

where &q and uq determine the vacuum field amplitude and mode strength at the QW, 
respectively. The evolution of the photon operators is coupled to the QW polarization 
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operator 

(2) 

with the dipole matrix element dcv(qll). In a Bloch basis for a two-band semiconductor, 
the interacting carrier system is described by creation (ct, vt) and annihilation (Ck, Vk) 
operators for conduction and valence band electrons, respectively. According to Eq. (2), 
optical processes can be described with the microscopic polarization operators 

(3) 

wh ere qc+qv = qll. The operator P~(qll) simultaneously creates an electron in the conduction 
band and destroys an electron in the valence band, i.e., it creates an electron-hole pair. The 
center of mass of this electron-hole pair moves with the momentum liqll. In principle, the 
ratio of qc and qv can be chosen arbitrarily, here we use the center of mass coordinates 

(4) 

The Heisenberg equation of motion for Pk ( qll) in the fully quantized case differs from 
the semiclassical calculation [21] only in those terms that involve commutators with the 
light-matter interaction Hamiltonian. We obtain 

ili! Pk(qll) = (f~+qc - fk-qJ A(qll) 

[
t A t A ] + dcv(qll) ck+qcE(qll)ck+qc - vk_q.E(qll)Vk-q. 

+ L {[A(q,,), P~W(qll)] Ê(qll)} + L Vk'-k 
'''' N k'k" q!l"r-qll ' 

X [vLq. (ct'+kll_kCkll +vt'+kll_kVkll) Ck'+qc 

-vt'_q. (ctIlCk'+kll-k + V~,Vk'+kll-k) ck+qc] 

where f~(v) determines the free carrier energies, 

(5) 

(6) 

using M = me + mh and 1 = ...L +...L. In Eq. (5), Vk is the QW matrix element of the 
~ me mh 

Coulomb potential, and { ... } N denotes normal ordering. The operator for the electric field 
in the dipole picture [18] is given by [16] 

A A 9 A 

foE(qll) = D(qll) - n2SPQw(qll), (7) 
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with the mode expansion of the displacement operator, 

€~ D(qll) = Js ~ i&q [Üq"qllbq"qll 

- ü* bt ] q.,-qll q.,-qll . (8) 

The QW confinement wavefunctions ~(z) enter via 

9 = ! dz 1~(zW· (9) 

For the carrier occupation number operators 1Îk = ctCJc: and 1Îk = vtvk as we obtain the 
equations of mot ion 

in! 1Îk = [L ~(qll)vt+qIlÊ(qll)Ck 
qll 

- L Vk'-kCt, (CtIlCkl+kll-k 
k',k" 

+vtIlVk'+kll-k) CJc:] - h.c., (10) 

in! 1Îk = [- L ~(qll)vtÊ(qll)Ck-qll 
qll 

+ L Vk'-kvt (ct'+kll_kCkll 
k/,k" 

+ Vt'+kll_kVkll) Vk'] - h.c. (11) 

In Eqs. (5), (10), and (11), the ordering of Ê and carrier operators is crucial since Ê contains 
both field and particle operators. Together with the operator equations (1), these equations 
serve as a general starting point for our investigations of quantum correlations. 

The equations of motion fOf l\(qll) and 1Î~v contain four-particle operator combinations 
as a consequence of the Coulomb interaction and the dipole self-energy. As usual, this leads 
to an infinite hierarchy of equations since expectation values consisting of n particle operators 
are always coupled to higher order terms having n + 2 particle operators. In practice, this 
hierarchy has to be truncated using a suitable decoupling. In the semiclassical regime, the 
simplest decoupling scheme is the dynamic Hartree-Fock approximation, 

(ala~a3a4)IHF = (ala4)(a~a3) 
- (ala3)(a~a4), 

combined with the random phase approximation, 

(12) 

(13) 
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This approach can be extended for the fully quantized system where it is important to retain 
also field-particle correlations in terms like (al a~OFa3a4) with a single photon operator OF. 
The corresponding truncation [16, 17] permutes OF between all possible Hartree-Fock terms 
of the carriers. For the incoherent excitations studied here, the intraband transitions vanish 
such that we find additional factorizations 

(14) 

3 Semiconductor Luminescence Equations 

Quantum corrections to the semiclassical limit can be determined by studying terms like 
t" _ t" t " t - t _ t ~(bqPk(qll)) - (bqPk(qll)) - (bq) (Pk(qll)) and ~(bq .. qllb~,qll) - (bq .. qllb~,qll) (bq.,qll)(b~,qll)' 

where the classical factorization is subtracted from the full term. The significance of such 
corrections increases as the coherent terms (bq.,qll) and (A(qll)) become smaller. 

In the following, we focus on the theoretical analysis of incoherent photoluminescence 
where carriers are nonresonantly generated in the QW by stationary or pulsed optical exci­
tation high above the semiconductor band-edge. Since there is no coherent field or intraband 
polarization generated in the vicinity of the exciton resonances ~e can use 

(bq(to = 0)) = O. 

Starting from these initial values, our equations show that for t > to 

(A(qll)) = (bq) = (1Î~"bq) 
= (bqA(qll)) = (bqbq/) = O. 

(15) 

(16) 

Under these incoherent conditions the quantum correlations are obtained directly from the 
fuIl terms, i.e. ~(b~A(qll)) = (b~A(qll)) and ~M.,q"b~,qll) = (bt.qllb~,qll)· Furthermore, 

the only non-zero quantities are f~,h, (b~A(qll))' and (bt.qllb~,qll)' The equation of mot ion 

for (b!bq') is obtained from Eq. (1) without the need of a factorization approximation 

ili! (bt.qllb~,qll) = li (Wql - wq) (bt.qllb~,qll) 
+ i&quq(bqIP~w(qll)) + i&q/u~/(b~PQw(qll))' (17) 

Thus, the photon number expectation values are coupled to field-matter correlations of the 
type (b~A(qll))' The equations of motion for (b~A(qll)) and f~,h can be derived from the 
quantum operator equations (1) and (5)-(11) combined with the dynamic decoupling and 
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the initial condition (16), 

{) t' in Ot (bqPk(qll)) 

= [f~+qc - fLqv -1iwq - ~(k, qll)] (b~A(qll)) 
- (1 - fk+qc - f~-qJ n(k, q) 

+ fk+qJ~_qvnSE(k, q) 

!fk = ~ L Im [-i~(qll)êqu~(b!..qIlA-qc(qll))]' 

!fk = ~ L Im [-id*cv(qll)êqu~(bLqllk+qv(qll))] . 
q.,qll 

(18) 

(19) 

(20) 

Equations (17)-(20) give a closed set of semiconductor luminescence equations with the energy 
renormalization, 

~(k, qll) = L Vk'-k (Jk'+qc + f~'-qJ ' (21) 
k' 

and the renormalized stimulated contribution, 

n(k, q) = dcv(qll)(b~Ê(qll)) 

+ L Vk'-k(b~Pdqll))' (22) 
k' 

In Eq. (18) the term proportional to 1 - fk - f~ intro duces either stimulated emission or 
absorption depending on the excitation conditions. The strength of the spontaneous emission, 

(23) 

is determined by the dipole matrix element dcv and the effective mode strength at the QW 
position uq . 

The term (b~A(qll)) gives the amplitude of a process where an electron hole pair, with 
center of mass momentum qll, recombines by emitting a photon with the same in-plane mo­
mentum. As long as there are carriers excited in the QW, this correlation starts to build up 
even if the field-particle and the field-field correlations are initially taken to be zero, because 
the term fk+qJ~_qVnsE(k, q) entering Eq. (18) is nonzero. Thus, it provides a spontaneous 
emission source to the recombination process. According to the factor fk+qJ~-qV' the spon­
taneous recombination takes place only if an electron at k + qc and a hole at k - qv are 
present simultaneously. As the field correlations start to build up, the stimulated contri­
bution n(k, q) can alter the photoluminescence spectrum. In other words, the observed 
photoluminescence is a result of the dynamic interplay of the field-field and field-particle cor­
relations affected by the elementary processes of spontaneous emission and the stimulated 
contributions. These effects have been shown to explain nonlinear effects in semiconductor 
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microcavity systems which previously had been incorrectly attributed to "boser" transitions 
[22]. 

Under coherent excitation conditions, quantum correlations ofthe type ~(btA(qll») con­
tain contributions form the coherent dynamics well-known from the semiconductor Bloch 
equations and incoherent dynamics described by the semiconductor luminescence equations. 
The resulting interplay of coherent and incoherent dynamics is studied in [15, 16]. 

4 Q uant um-WeIl Luminescence 

To illustrate the theory we study in the following examples of the semiconductor photo­
luminescence when the carrier occupation functions can be approximated as Fermi-Dirac 
distributions with equal carrier density for electrons and holes. Such an approach is reason­
ably well justified for situations where the intraband carrier scattering time is much faster 
than the carrier recombination and generation times. An experimentally relevant exam­
ple is the situ at ion where near band-gap lu mine sc en ce is measured af ter an excitation of 
the system into interband-absorption region. Af ter the excited carriers are thermalized due 
to carrier-carrier and carrier-phonon interaction, there exists a temporal window of several 
tenth of picoseconds, where the carrier dis tri but ion is practically constant, provided th at the 
recombination is weak. 

For a description of the incoherent excitation regime, we start our calculation by setting 
all correlations initially to zero and evolve Eqs. (17)-(20) to steady state. The simplest way 
to include the effects of screening and dephasing is to phenomenologically replace the bare 
Coulomb potential by a screened one V:. Furthermore, one has to add a term (~Eg -
ir)(btA(qll) in Eq. (18) where "y is the dephasing rate, and ~Eg = Ek(V: - Vk ) is the 
Coulomb-hole gap shift. The microscopic treatment of interaction-induced dephasing and 
screening is further discussed in [16]. 

Under steady-state conditions, the measured luminescence spectrum is determined by the 
photon flux in a detector, i.e., the number of photons in the detector modes per time interval. 
The steady-state photon flux is given by 

(24) 

For a similar definition, see [23]. If the light field is changing rapidly, a more general detector 
model has to be used [24]. 

For a QW embedded in a spatially homogeneous background, the free-field modes are 
plane waves. Using standard GaAs parameters, the resulting 3D exciton binding energy is 
EB = 4.2 meV and the Bohr radius is ao = 12.5 nm. Then, assuming an 8 nm QW width, 
the quantum confined exciton has its Is-resonance 2.45 EB below the band gap energy Eg. 

Figure 1 shows the computed photoluminescence in comparison with the absorption for 
different temperatures. The top row of figures displays the absorption spectra for low carrier 
densities and the middle row presents the corresponding photoluminescence spectra. We see 
that absorption and luminescence are peaked at the same exciton resonance energy, showing 
that even though our theory does not include population of incoherent excitonic states, the 
spectra are still peaked at the exciton resonance. This is a consequence of the well-known 
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Figure 1: Quantum-well absorption and luminescence for three different carrier temperatures and 
carrier density 1 x 1010 cm-2 . The middle row shows the photoluminescence obtained from the 
full calculation while for the bottom row the Coulomb terms have been neglected. Eg is the 
unrenormalized band gap energy and EB is the 3D exciton binding energy. 

fact, that the strong interband Coulomb correlations in semiconductors lead to excitonic res­
onances in the interband polarization (in a semiclassical picture) and in the photon assisted 
polarization (in the fuH quantum theory). The bottom row of figures shows the artificial 
results obtained by shutting oir the interband Coulomb term. Then the photoluminescence 
peak shifts to the band edge, as expected from free, i.e., non-interacting carrier theory. Fur­
ther inversitgations [17] show, that for increased carrier density, where the exciton is gradually 
bleached and eventuaHy gain occurs the QW luminescence stays peaked at the exciton res­
onance energy even when the absorption peak vanishes. For these elevated excitations, the 
band edge nonlinearities make the photoluminescence increasingly asymmetric. 

In summary, this article presents a quantum theory of semiconductor light emission. 
Examples for the evaluation of this theory have been shown for the electron-hole regime, 
where incoherent excitonic populations can be ignored. The theory has also been evaluated in 
the low excitation purely excitonic regime and interesting results regarding exciton formation 
dynamics and related photoluminescence have been reported [25]. Work is in progress to 
include excitonic populations also in the electron-hole approach and to study the influence 
of structural sample disorder on the exciton formation and light emission dynamics. 
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