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of (3.5), we ohtain that q + rn2n = r12n . Since n is a positive integer, we conclude 
that q is even. This is a contradiction. 

Next suppose that q < p. Rewriting (3.5), we have 

(3.6) 

Since the left hand side of (3.6) is positive, we have (-l)q > O. Hence q is even. Since 
(p, q) = 1, we have that p is odd. Hence (3.6) can he rewritten as 

(3.7) 

Since p is odd, the left hand side of (3.7) is odd. Hence q = 2r, where ris odd. Since 
(p,q) = 1, we also have (p,r) = 1. Since q = 2r , the right hand side of (3.7) contains 
a factor r 2r . Hence r 2r Ipp. Since (p, r) = 1, we have to conclude that r = 1 and q = 2. 
Hence (3.7) reduces to 

pp = (k -l)P(p - 2)p-2, p odd. (3.8) 

Since q = 2 and p > q, we have p �~� 3, p odd. It follows from (3.8) that (6) PEN. 

Hence there exists an odd integer n such that p = (k - l)n. From (3.8) we conclude 
that 

( 2) (k-l)n 
�k�-�1�-�~� =((k - 1)n-2)2. (3.9) 

Since the right hand side of (3.9) is a positive integer, k - 1 - 1 is an integer. Since 
n is odd, we conclude that n = 1, p = k - 1. Hence (p - �2�)�P�-�~� = 1, and so p = 3, 
k = 4 and q = 2. This contradiets the fact that q �~� p for s E A4 C �(�O�,�~�]�.� 

(ii) It follows from (1.6) that z = 1 is a root of Pk(Z) = O. Suppose z is any other 
root. Then 

1 (k -l)sdk,.zq + 2 (1; s) dk,. zP 

I(k -l)sdk,·zq + 2 C; s) dk,. zpl 

�~� (k - l)sdk" lzlq + 2 C ; s) dk,. Izlp . (3.10) 

Since the right hand si de of (3.10) is strictly increasing in Izl and equal to 1 for Izl = 1, 
we ohtain Izl �~� 1. Proposition 1.3(iii) (the proof of which is independent of parts (i) 
and (ii)) implies that z = 1 is the only root with modulus 1. Hence Zl = 1. Let 

(3.11) 

Then Pk(z) = 0 if and only if 

(k - l)wq + 2wP = 1. (3.12) 
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Suppose k ~ 5, and w is a root of (3.12) with Iwl ~ 1. By Proposition 1.1, Ak C 
(O,~] fork ~ 5. Henceq ~pand (k-l)lwl q = 11-2wP I:::; 1+2IwIP :::; 31w1 P :::; 3lwl q

• 

This is a contradiction. 
Suppose k = 4 and w is a root of (3.12) with Iwl > 1. By Proposition 1.1, 

A4 C (O,~]. Hence q ~ pand (k - 1)lwlq = 11 - 2wP I :::; 1 + 21wlP < 31wlP :::; 3lwlq
• 

This is a contradiction. To complete the proof for k = 4, we suppose that w = e iO is 
a root of (3.12) with 0 < () < 7r . Then Ui is another root of (3.12). Hence 

It follows that 

3e
iqO + 2e

ipO 1, 
3e- iqO + 2e- ipO = 1. 

eipO + e- ipO 

e iqO + e- iqO 

-2, 

2. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Hence pO = (2l + 1)7r, q() = 2m7r, l,m E Z. Since 0 < () < 7r, we have 1 < ~ and 
q < ~. Since 

p 2l + 1 
-=--, 
q 2m 

(3.17) 

we conclude that (p, q) > 1. This is a contradiction. Finally, w = -1 is a root of 
(3.12) if and only if q is even and p is odd. 

Suppose k = 3. First we show that there are no roots of (3.12) with Iwl = 1. 
Suppose to the contrary. Then w = e iO and Ui = e- iO are roots of (3.12). Since 
w = -1 is not a root, we may assume 0 < () < 7r. Hence 

It follows that 

2e
iqO + 2e

ipO 1, 

2e- iqO + 2e- ipO = 1. 

cos(p8) 

sin(p8) 

1 
cos( q()) = 4' 

= sin(q()) = O. 

Hence there exist 1 E NU {Ol, mEN such that 

1 1 
pO = arccos 4 + 2l7r, q() = - arccos 4 + 2m7r, 

or there exist 1 E N, mEN U {O} such that 

1 1 
pO = - arccos 4 + 2l7r, q() = arccos 4 + 2m7r, 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 



HEAT EQUATION FOR AN ARITHMETIC VON KOCH SNOWFLAKE 35 

In either case, we conclude that ~ arccos t is rational. This contradicts Theorem 6.16 
in [10] . To prove (1.23), we note that if q > pand w is a root of (3.12) with Iwl > 1, 
then 

(3.24) 

Hence 

(3.25) 

Since q ~ 2 we have 21wl 2 
- 21wl ~ 1. This implies (1.23) in the case q > p. The case 

p> q follows by the symmetry of (3.12). This proof also shows that we have equality 
in (1.23) if and only if p = 1, q = 2 (s = 3 - 2V2) or p = 2, q = 1 (s = ~). 

(iii) It is sufficient to prove that if Wl is a root of (3.12) with modulus r, then uh 
is the only other possible root with the same modulus. Suppose to the contrary, and 
let 

(3.26) 

be roots of (3.12) with 

(3.27) 

Then 

I(k - l)wf-q + 21 = I(k - l)w~-q + 21, (3.28) 

and 

I(k - l)wf-q + 211(k - l)wf-q + 21 = I(k - l)w~-q + 211(k - l)w~-q + 21· (3.29) 

It follows that 

wf-q + wf-q = w~-q + w~-q. (3.30) 

From (3.26) and (3.30), we obtain 

cos((P - q)'ljJd = cos((p - q)'ljJ2). (3.31) 

Without loss of generality, we may assume that p 1= q. By (3.31) we have 

. /. _ 211"m ± ./. 
'1"1- -- '1"2 

p-q 
(3.32) 

for some m E Z. Suppose we have the + sign in (3.32). Since reitPl is a root of (3.12), 
we have 

(3.33) 
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Dividing both sides of (3.33) by e 2;::' gives 

(3.34) 

Since re i 1/!2 is also a root of (3.12), we conclude that for some i E Z, 

mp = l. p-q (3.35) 

By (3.27), 11/11 - 1/121 ~ 1r. Since we assumed the + sign in (3.32), we conclude that 

! ~!~l. p-q (3.36) 

From (3.35) and (3.36), we obtain that both lil ~ ~ and ~ = l~m' This implies 
(p, q) > 1, contradicting the choice of pand q. Suppose we have the - sign in (3.32). 
Since r ei 1/!l is a root of (3.12), we have 

(3.37) 

Dividing both· sides of (3.37) by e 2;::' and noting that re- i 1/!2 is a root of (3.12) 
yields (3.35) for some i E Z. By (3.27), 11/11 + 1/121 < 211'. Hence (3.32) (with the -
sign) imp lies 

!p:q!<l. 
From (3.35) and (3.38), we obtain that both lil < p and ~ 
(p, q) > 1, contradicting the choice of pand q. 
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