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Suppose k > 5, and w is a root of (3.12) with |w| > 1. By Proposition 1.1, A; C
(0,1] for k > 5. Hence ¢ > p and (k—1)|w|? = |1 —2wP| < 1+2|w|” < 3|w|? < 3|w|?.
This is a contradiction.

Suppose k£ = 4 and w is a root of (3.12) with |{w| > 1. By Proposition 1.1,
A4 C (0,1]. Hence g > p and (k — 1)|w|? = |1 — 2wP| < 1+ 2Jw[? < 3|w|? < 3Jw|?.
This is a contradiction. To complete the proof for k = 4, we suppose that w = e is
a root of (3.12) with 0 < < w. Then W is another root of (3.12). Hence

3ei?? 4 2¢0 = 1, (3.13)
3710 4 2P0 = 1. (3.14)
It follows that
el p e~ — _2 (3.15)
el e = 2 (3.16)

Hence pf = (2l + 1)7, g8 = 2mm, I,m € Z. Since 0 < § < 7w, we have [ < L%l and
q < . Since

p_4d+l (3.17)
q 2m
we conclude that (p,q) > 1. This is a contradiction. Finally, w = —1 is a root of

(3.12) if and only if ¢ is even and p is odd.
Suppose k = 3. First we show that there are no roots of (3.12) with |w| = 1.
Suppose to the contrary. Then w = e and W = e~ * are roots of (3.12). Since

w = —1 is not a root, we may assume 0 < 6 < w. Hence
2e'10 4 260 = 1, (3.18)
2”40 4 20 = 1, (3.19)

It follows that

cos(pd) = cos(gf) = %, (3.20)
sin(pd) = sin(¢gf) =0. (3.21)

Hence there exist [ € NU {0}, m € N such that
1 1
pb = arccos 1 + 2lm, g = — arccos 1 + 2mm, (3.22)
or there exist [ € N, m € NU {0} such that

1
pd=— a.rccosi + 2Im, @ = arccos 1 + 2mm, (3.23)
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In either case, we conclude that 1  arccos i is rational. This contradicts Theorem 6.16

in [10]. To prove (1.23), we note that if ¢ > p and w is a root of (3.12) with |w| > 1,
then

2Juwl? = [1 - 207 < 1+ 2w’ < 1+ 2wt (3.24)
Hence
1
2w (1-— ) <1 (3.25)
|w]

Since g > 2 we have 2|w|? — 2|w| < 1. This implies (1.23) in the case ¢ > p. The case
p > q follows by the symmetry of (3.12). This proof also shows that we have equality
in (1.23)ifand only if p=1,g=2 (s=3-2v2) orp=2,g=1 (s = }).

(iii) It is sufficient to prove that if w; is a root of (3.12) with modulus r, then w,
is the only other possible root with the same modulus. Suppose to the contrary, and
let

wy = ret¥, wy = re'¥? (3.26)
be roots of (3.12) with
0< P <m, 0K oo <,y Yy # Yo (3:27)
Then
|(k —wi ™7 +2| =|(k—1wh™?+2|, (3.28)
and

[(k—1D)w! " +2||(k— 1)@+ 2| = |(k— Vw7 +2||(k—1)wh " +2|. (3.29)
It follows that
R R S (3.30)
From (3.26) and (3.30), we obtain

cos((p — q)¢1) = cos((p — q)¥2)- (3.31)

Without loss of generality, we may assume that p # q. By (3.31) we have

Y1 = —q + 1 (3.32)

for some m € Z. Suppose we have the + sign in (3.32). Since re*¥* is a root of (3.12),
we have

1=(k—-1)rle WYt 520y gppeirYat HIE (3.33)
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Dividing both sides of (3.33) by e gives

e = (k — 1)riett¥2 4 2rPeiP¥2, (3.34)

Since re¥? is also a root of (3.12), we conclude that for some I € Z,

—r el (3.35)
pP—q
By (3.27), |1 — 2| < 7. Since we assumed the + sign in (3.32), we conclude that
'2—"’ <L (3.36)
p—q
From (3.35) and (3.36), we obtain that both |I| < § and 2 = . This implies
(p,q) > 1, contradicting the choice of p and q. Suppose we have the — sign in (3.32).
Since re'¥! is a root of (3.12), we have

1= (k- l)r"e_iq'l’”z;'—"qi + orPe PV IR (3.37)

Dividing both: sides of (3.37) by e 554 and noting that re~*¥2 is a root of (3.12)
yields (3.35) for some [ € Z. By (3.27), |1 + 2| < 27. Hence (3.32) (with the —
sign) implies

‘l’ <1 (3.38)
p—q

From (3.35) and (3.38), we obtain that both |I| < p and 5 = # This implies
(p,q) > 1, contradicting the choice of p and q.
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