
RENEWAL EQUATION FOR THE HEAT 
EQUATION OF AN ARITHMETIC 
VON KOCH SNOWFLAKE 

M. VAN DEN BERG 

Abstract 

We investigate the asymptotic behaviour of the heat content as the time 
t -+ 0+ for an arithmetic von Koch snowflake generated by a regular k-gon. 

1 Introduction 

Let D he an open, bounded and connected set in euclidean space IRm (m = 2,3, ... ) 
with boundary aD, and let UD : D x [0, (0) -t IR be the unique weak solution of the 
heat equation 

au 
~U = at' xE D, t > 0, (1.1) 

with initial condition 

U(XjO) = 0, xE D, (1.2) 

and with boundary condition 

U(X j t) = 1, x E aD, t > 0. (1.3) 

Let 

ED(t) = i UD(Xj t)dx, (1.4) 

represent the total amount of heat in D at time t. 
In this paper we analyse the asymptotic behaviour of the heat content EKk .• (t) 

as time t -t 0+, where Kk,s is aplanar region (m = 2) with a piecewise self-similar 
and fractal boundary. The construction of K k,s is as follows. Fix an integer k ~ 3 

and let lij = ~ (cosec~) e~, j = 1, ... ,k he the vertices of a regular k-gon with 
volume ~ cot (~) and boundary length k. Fix s E (0,1). We construct aKk,8 by 
repeatedly replacing the middle prop ort ion s of each segment, heginning with VI V2 , 

V2 V3 , ... , Vk- I Vk and Vk VI, by the k -lother sides of a regular k-gon. We summarize, 
without proof, some of the geometrie properties of Kk ,s in the following. See also 
Chapter 8 in [1) and Chapter 9 in [2) . 
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Proposition 1.1. 

(i) There exists a non-empty relatively closed subset h C (0,1) such that Kk,8 is 
embeddable in 1R2 if and only if s E h. Moreover, h ç (0, tJ for k ~ 4 with 
equality if and only if k = 4. For s E h, Kk,8 is open, bounded and simply 
connected. 

(ii) The volume of Kk ,s is given by 

k (1 + S)2 (11") 
IKk,sl = 41 _ (2k _ l)s2 + 2s cot k ' sE h· (1.5) 

(iii) The HausdorfJ dimension and the interior Minkowski dimension of 8Kk,8' s E 
hare equal, and are given by the unique positive root dk ,8 of 

(
I_S)d 

(k - l)sd + 2 -2- = 1. (1.6) 

(iv) The interior upper Minkowski content of 8Kk ,s is finite and the interior lower 
Minkowski content of 8Kk,s is strictly positive. 

(v) Kk,s is arithmetic if sE Ak ' where 

{
log 1-. P } 

Ak = sE h : 2 = -, pEN, q EN, (p, q) = 1 . 
logs q 

(1.7) 

If Kk,s is non-arithmetic (s E Ik \ A k) , then 8Kk,. is internally Minkowski 
measurable. 

The heat content for K3 1 has been analysed by Fleckinger, Levitin and Vassiliev 
'3 

in [3, 4]. They proved the existence of two strictly positive, continuous and (10g9)-
periodic functions 'l/Jl and X such that for t --+ 0+, 

EK (t)='l/Jl(-10gt)tl-~-x(-10gt)t+O(e-"i2'). (1.8) 3,1 

It is not known whether 'l/Jl and X are non-constant functions . 
The elementary analysis presented by van den Berg and Gilkey in [5] for k = 4 

and s E 14 extends to all snowflakes and yields the following. For all non-arithmetic 
snowflakes Kk ,s there exists a constant ek ,. such that for t --+ 0+, 

(1.9) 

For all arithmetic snowflakes K k, s , there exists a (~log; )-periodic, strictly positive 

and continuous function -0 : IR --+ (0,00) such that for t --+ 0+, 

(1.10) 
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The main result of this paper (Theorem 1.4) is a refinement of (1.10) up to an expo­
nential remainder. The results of Fleckinger, Levitin and Vassiliev in [4] for k = 3, 
8 = ~ and of van den Berg in [6] for k = 4, 8 E A4 are recovered as special cases. The 
idea in the proof of Theorem 1.4 is to exploit the self-similarity of 8Kk,s in order to 
obtain an approximate functional equation for the heat content EKk .• (t) (Proposition 
1.2). It is eonvenient to define for t ~ 0, 

E(t) 
1 
"kEKk .' (t), 

H(t) = E(t) - (k _ 1)82 E (!...) _ 2 (~) 2 E (_t_) . 
S2 2 e~S)2 

Sinee 0 ~ UKk •• (X i t) < 1 for X E Kk,s and t > 0, we see that 

o ~ E(t) ~ 

IH(t)1 ~ 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

Proposition 1.2. For each k = 3, 4, . . . and 8 E h there exist a function F : 
[0, 00) ---t IR and a constant Ck > 0 such that 

H(t) = F(t) + 0 (e-~) , (1.15) 

where F is continuous, and satisfies both the linear functional equation 

F(t) = c;8rFCl;S)2) ' t~O, (1.16) 

and the estimate 

lF(t)1 ~ lOODt. (1.17) 

The main idea in the proof of Proposition 1.2 is to exploit the symmetry of Kk ,s, 
the self-similarity of 8Kk ,s and to use the probabilistie solution of (1.1)-(1.3). The 
probabilistie tools have the advantage over the analytie tools in that they give simple 
proofs of (i) the various estimates involving the maximum principle (the principle of 
not feeling the boundary), and (ii) the sealing properties of the heat equation (sealing 
of brownian motion) . 

The proof of Proposition 1.2 is very similar to the proof of the eorresponding 
statement for k = 4, 8 E I4 in [6], and will be omitted. 

The structure of the asymptotie expansion of EKk .• (t) , t ---t 0+, 8 E Ak is governed 
by the geometry of {z E IC : Pk(Z) = Ol, where 

(
1 s) dk •• 

Pk(z ) = 1- (k -1)8dk ·· z q 
- 2 ---T- zP, (1.18) 

and where pand q are the unique positive integers determined by the ehoiee of 8 E Ak 
in (1.7). We list some geometrie properties of {z E IC: Pk(z) = O} in the following. 
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Proposition 1.3. Let sE Ak and let ZI, Z2, ... denote the roots of Pk(z) = 0, ordered 
such that 

(i) All roots have multiplicity 1. 

(ii) ZI = 1, and 

p ~ q, IZql < s -~ q , 
d4,lJ 

p~ q, IZql < s--q-, 

p < q, Zq =-s 
_ d4.5 q , 

1+V3 _~ IZpvql ~ --2-s q, 

for k ~ 5, 

for q odd, k = 4, 

for q even, k = 4, 

for k = 3, 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

where pVq = max{p, q}, and where (1.23) is sharp forp = 1, q = 2 (s = 3-20) 
d 3 • 

and for p = 2, q = 1 (s = ~). Moreover, no roots of P3 (z) have modulus s-""""";F. 

(iii) If Z is a root (of Pdz) = 0) with modulus r, then z is the only other possible 
root with modulus r. 

The proof of Proposition 1.3 will be deferred to Section 3. 
By Proposition 1.3 (i) we may define 

• Zj - Z 
aj= hm --. 

Zj-tz Pk(Z) 

We also put 

Z 

'IjJ(Z) 

-logt, 
2 1 
-log -, 
q s 

eZ(I-~) H(e- Z). 

The main result of this paper reads as follows. 

Theorern 1.4. 

(i) 'IjJ is continuo us and for Z E R, 

converges absolutelyon the annulus W given by 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

(1.29) 
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(ii) For wE W, define 'l/Jw : ~ ---+ C by 

'l/Jw(Z) = L w-m+!;'l/J(z - m'Y) . (1.30) 
mEZ 

Then 'l/Jw is 'Y-periodic and unilormly continuous. 

(iii) Let k = 3,5,6, .. . , S E Ak or k = 4, S E A4, q odd. Then there exist a n­
periodic unilormly continuous function X : ~ ---+ ~ and 'Y-periodic unilormly 
continuous functions {</>Zj : Zj E V, Pk(Zj) = 0, j = 1,2, .. . }, where 

V = wEe: Iwl > s--'7F , 
{ 

d
k

• } (1.31) 

such that lor t ---+ 0+, 

{j :ZjEV} 

-X( -logt)t + 0 e-~ . ( 
c.

2
) (1.32) 

The proof of Theorem 1.4 will be deferred to Section 2. 
We note that, by (1.20) and (1.21) in Proposition 1.3, the second term in the right 

hand side of (1.32) is absent for k ~ 4. We also note that the case k = 4, s E A4, 
q even has been excluded from Theorem 1.4 (iii). In that case there is, by (1.22), a 

dk • 

root with modulus s--'7F. This delicate case was discussed in detail in [6). 
The leading term in (1.32) corresponds to the root with smallest modulus, i.e. 

Zl = 1. Comparing (1.32) with (1.10), we have 1f = a1'l/J1 by (1.30). This also jibes 
with the special case k = 3, s = ~ in (1.8) since al = 1 for these values of s and k. 
Since K k ,8 is bounded and simply connected, we have by Proposition 1.1 (iv), and by 
Corollary 1.5 in [7) that 1f is finite and strictly positive. The contributions from the 

remaining roots in Ware 0 (t1-~) but» t, while all roots in V give contributions 

which are o(t). The function X in (1.32) is directly related to the function F in 
Proposition 1.2. If we define X : ~ ---+ ~ by 

F(t) = tX(-logt), (1.33) 

then Proposition 1.2 implies that X is continuous and n-periodic. The complicated 
relation between X and X can be read off from the various formulae in the proof of 
Theorem 1.4 in Section 2. 
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2 Proof of Theorem 1.4 

By (1.14) and (1.27), 

(2.1) 

For wE W, we have by (1.29) and (2.1), 

m=O m=O 

Moreover, by (1.14), (1.15) and (1.17) there exists a constant Cl such that IH(t)1 :::; 
Clt for all t ~ O. By (1.27), 

(2.3) 

For wE W, we have by (2.3), 

(2.4) 

The absolute convergence of the series in (1.30) follows from (2.2) and (2.4). The 
continuity of 'Ij; follows directly from the continuity properties of EKk .• ' The continuity 
of 'lj;w then follows directly from the exponential decay of Iw-m'lj;(z -m,)1 for m ~ 00 

and for m ~ -00 by (2.3) and (2.1) respectively. The uniform continuity follows from 
the ,-periodicity of 'lj;w. 

To prove part (Ui) of Theorem 1.4, we define f : IR ~ IR by 

(2.5) 

Substitution of (2.5) into (1.12) gives, by (1.27), 

(
1 S)dk .. 

f(z) = (k - l)sd k 
•• f( z - q,) + 2 T f(z - n) + 'Ij;(z). (2.6) 

Equation (2.6) is an inhomogeneous renewal equation of arithmetic type. From (1.13) 
and (2.5) we obtain 

lim f(z) = O. 
z-+-oo 

(2.7) 

The inhomogeneous term 'Ij; in (2.6) is continuous, and satisfies, by (2.1) and (2.3), 

(2.8) 
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It follows by the renewal theorem for the arithmetic case (p.198 in [8)) that (2.6) -
(2.7) has a unique continuous solution given by (see also (3.10) - (3.16) in [6)) 

00 

f(z) = L L ajzj1-m'IjJ(z - m,). (2.9) 
m=O j 

In order to analyse the behaviour of the double sum in (2.9) for z -t 00, we fiTst 
consider the contribution from the jth term in (2.9) such that Zj E W. We write 

00 00 

L ajzj1-m'IjJ(z - m,) = ajz;1-~ 'ljJz; (z) - L ajzjl+m'IjJ(z + m,) . (2.10) 
m=O m=1 

By (1.15), (1.33) and the continuity of X and H, there exists a constant C2 such that 
for z ~ 0, m ~ 0, 

(2.11) 

By (1.27), (2.11) and the n-periodicity of X we obtain that (see also (3.23) in [6)) 

00 

L ajzjl+m'IjJ(z + m,) P ( ~)-1 =-±= ~ ajzjl+m 1 - zfsP q e-dk .• 2 X(z + m,) 
m=1 

+0 (e-Cks2 e' ) . (2.12) 

In order to estimate the contribution from a term in (2.9) with j such that Zj E V, 
we define K : lR -t lR by 

'IjJ(z) = eZ
( 1-~) {e- Zx(z) + K(z)} . (2.13) 

It follows by (1.27) and (2.11) that K satisfies 

IK(z)1 ~ C2e-Cks2e', z ~ O. (2.14) 

The contribution from the jth term in (2.9) with Zj E V can be written as 

ajzj1 ~ {e-(z-m"l)~ zjmX(z - m,) + e(z-m"l)(1-~) zjm K(z - m,)} 

where 

= ajzj1e-Z~ (1- sP~ ZjP) -1 ; (s~ Zj1) m X(z - m,) 

+z; ~ ~z; (z), (2.15) 

(2.16) 
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The first series in the right hand si de of (2.15) converges since X is bounded, and 
Zj EV. The infinite sum reduces, by the n-periodicity of X, to the finite sum in the 
first term in the right hand si de of (2.15). It remains to investigate the asymptotic 
behaviour of ~Zj (z), Z -+ 00 in (2.16). It is straightforward to check that ~Zj satisfies 

(2.17) 

The second term in the right hand side is, by (2.14), exponentially small for Z -+ 00. 

By Lemma 2.5 and (2.32) in [4], we conclude that there exists a ,-periodic continuous 
function <Pzj such that 

~Zj(Z) = <Pzj(z) + 0 (e-Ck82eZ ) , Z -+ 00. (2.18) 

Theorem 1.4 follows from (2.9), (2.10), (2.12), (2.15), (2.18), where X can be read off 
from the first terms in the right hand sides of (2.12) and (2.15) respectively. 

3 Proof of Proposition 1.3 

The proof of Proposition 1.3 (i), (iii) for k = 4 can be found, after a suitable trans­
formation, in Lemma 6.4 of [9). 

(i) The statement is trivial if p = q = 1 (i.e. s = ~). Since (p, q) = 1, it remains 
to consider the case p :/; q. We argue by contradiction. Suppose Z is a root with 
multiplicity larger than 1. Then both Pk(z) = 0 and P~(z) = O. Hence 

1, 

= o. 

Since p :/; q, we can solve (3.1) - (3.2) for zP and zq. This gives 

zP 

p 
(k - l)sdk •• (p - q) , 

q 

From (3.3) - (3.4) and (1.7) we obtain that pand q have to satisfy 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

First suppose q > p. Then the left hand si de of (3.5) is positive. Hence (-I)P > 0, 
so that p is even. Since (p, q) = 1, we have that q is odd. Since the left hand si de of 
(3.5) is even, k - 1 is even. Let i, m, n and r be the unique positive integers such that 
k = 2l m + 1, p = 2n r, where mand r are odd. Counting the factors of 2 in both si des 
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of (3.5), we ohtain that q + rn2n = r12n . Since n is a positive integer, we conclude 
that q is even. This is a contradiction. 

Next suppose that q < p. Rewriting (3.5), we have 

(3.6) 

Since the left hand side of (3.6) is positive, we have (-l)q > O. Hence q is even. Since 
(p, q) = 1, we have that p is odd. Hence (3.6) can he rewritten as 

(3.7) 

Since p is odd, the left hand side of (3.7) is odd. Hence q = 2r, where ris odd. Since 
(p,q) = 1, we also have (p,r) = 1. Since q = 2r , the right hand side of (3.7) contains 
a factor r 2r

. Hence r2r Ipp. Since (p, r) = 1, we have to conclude that r = 1 and q = 2. 
Hence (3.7) reduces to 

pp = (k -l)P(p - 2)p-2, p odd. (3.8) 

Since q = 2 and p > q, we have p ~ 3, p odd. It follows from (3.8) that (6) PEN. 

Hence there exists an odd integer n such that p = (k - l)n. From (3.8) we conclude 
that 

( 2) (k-l)n 
k-1-~ =((k - 1)n-2)2 . (3.9) 

Since the right hand side of (3.9) is a positive integer, k - 1 - 1 is an integer. Since 
n is odd, we conclude that n = 1, p = k - 1. Hence (p - 2)P-~ = 1, and so p = 3, 
k = 4 and q = 2. This contradiets the fact that q ~ p for s E A4 C (O,~]. 

(ii) It follows from (1.6) that z = 1 is a root of Pk(Z) = O. Suppose z is any other 
root. Then 

1 (k -l)sdk,.zq + 2 (1; s) dk, . zP 

I(k -l)sdk,·zq + 2 C; s) dk ,. zpl 

~ (k - l)sdk" lzlq + 2 C ; s) dk, . Izlp . (3.10) 

Since the right hand si de of (3.10) is strictly increasing in Izl and equal to 1 for Izl = 1, 
we ohtain Izl ~ 1. Proposition 1.3(iii) (the proof of which is independent of parts (i) 
and (ii)) implies that z = 1 is the only root with modulus 1. Hence Zl = 1. Let 

(3.11) 

Then Pk(z) = 0 if and only if 

(k - l)wq + 2wP = 1. (3.12) 
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Suppose k ~ 5, and w is a root of (3.12) with Iwl ~ 1. By Proposition 1.1, Ak C 
(O,~] fork ~ 5. Henceq ~pand (k-l)lwl q = 11-2wP I:::; 1+2IwIP :::; 31w1 P :::; 3lwl q

• 

This is a contradiction. 
Suppose k = 4 and w is a root of (3.12) with Iwl > 1. By Proposition 1.1, 

A4 C (O,~]. Hence q ~ pand (k - 1)lwlq = 11 - 2wP I :::; 1 + 21wlP < 31wlP :::; 3lwlq
• 

This is a contradiction. To complete the proof for k = 4, we suppose that w = e iO is 
a root of (3.12) with 0 < () < 7r . Then Ui is another root of (3.12). Hence 

It follows that 

3e
iqO + 2e

ipO 1, 
3e- iqO + 2e- ipO = 1. 

eipO + e- ipO 

e iqO + e- iqO 

-2, 

2. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Hence pO = (2l + 1)7r, q() = 2m7r, l,m E Z. Since 0 < () < 7r, we have 1 < ~ and 
q < ~. Since 

p 2l + 1 
-=--, 
q 2m 

(3.17) 

we conclude that (p, q) > 1. This is a contradiction. Finally, w = -1 is a root of 
(3.12) if and only if q is even and p is odd. 

Suppose k = 3. First we show that there are no roots of (3.12) with Iwl = 1. 
Suppose to the contrary. Then w = e iO and Ui = e- iO are roots of (3.12). Since 
w = -1 is not a root, we may assume 0 < () < 7r. Hence 

It follows that 

2e
iqO + 2e

ipO 1, 

2e- iqO + 2e- ipO = 1. 

cos(p8) 

sin(p8) 

1 
cos( q()) = 4' 

= sin(q()) = O. 

Hence there exist 1 E NU {Ol, mEN such that 

1 1 
pO = arccos 4 + 2l7r, q() = - arccos 4 + 2m7r, 

or there exist 1 E N, mEN U {O} such that 

1 1 
pO = - arccos 4 + 2l7r, q() = arccos 4 + 2m7r, 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 



HEAT EQUATION FOR AN ARITHMETIC VON KOCH SNOWFLAKE 35 

In either case, we conclude that ~ arccos t is rational. This contradicts Theorem 6.16 
in [10] . To prove (1.23), we note that if q > pand w is a root of (3.12) with Iwl > 1, 
then 

(3.24) 

Hence 

(3.25) 

Since q ~ 2 we have 21wl 2 
- 21wl ~ 1. This implies (1.23) in the case q > p. The case 

p> q follows by the symmetry of (3.12). This proof also shows that we have equality 
in (1.23) if and only if p = 1, q = 2 (s = 3 - 2V2) or p = 2, q = 1 (s = ~). 

(iii) It is sufficient to prove that if Wl is a root of (3.12) with modulus r, then uh 
is the only other possible root with the same modulus. Suppose to the contrary, and 
let 

(3.26) 

be roots of (3.12) with 

(3.27) 

Then 

I(k - l)wf-q + 21 = I(k - l)w~-q + 21, (3.28) 

and 

I(k - l)wf-q + 211(k - l)wf-q + 21 = I(k - l)w~-q + 211(k - l)w~-q + 21· (3.29) 

It follows that 

wf-q + wf-q = w~-q + w~-q. (3.30) 

From (3.26) and (3.30), we obtain 

cos((P - q)'ljJd = cos((p - q)'ljJ2). (3.31) 

Without loss of generality, we may assume that p 1= q. By (3.31) we have 

. /. _ 211"m ± ./. 
'1"1- -- '1"2 

p-q 
(3.32) 

for some m E Z. Suppose we have the + sign in (3.32). Since reitPl is a root of (3.12), 
we have 

(3.33) 
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Dividing both sides of (3.33) by e 2;::' gives 

(3.34) 

Since re i 1/!2 is also a root of (3.12), we conclude that for some i E Z, 

mp = l. p-q (3.35) 

By (3.27), 11/11 - 1/121 ~ 1r. Since we assumed the + sign in (3.32), we conclude that 

! ~!~l. p-q (3.36) 

From (3.35) and (3.36), we obtain that both lil ~ ~ and ~ = l~m' This implies 
(p, q) > 1, contradicting the choice of pand q. Suppose we have the - sign in (3.32). 
Since r ei 1/!l is a root of (3.12), we have 

(3.37) 

Dividing both· sides of (3.37) by e 2;::' and noting that re- i 1/!2 is a root of (3.12) 
yields (3.35) for some i E Z. By (3.27), 11/11 + 1/121 < 211'. Hence (3.32) (with the -
sign) imp lies 

!p:q!<l. 
From (3.35) and (3.38), we obtain that both lil < p and ~ 
(p, q) > 1, contradicting the choice of pand q. 
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