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Abstract 

We discuss the so-called entropie repulsion for gradient interface modeis. 
This phenomenon appears when the random interface is placed on one side of a 
hard wall. The combined effect of local fiuctuations and global stiffness pushes 
the interface away from the wall. Recently, there has been considerable progress 
in understanding this effect in a quantitatively precise way for a certain class of 
modeis. We describe this progress and related questions on wetting problems. 

1 Random surfaces and random walk representa
tions 

Our "random surfaces" are special families of real-valued random variables defined 
on a d-dimensional discrete lattice, in our case Zd. Let A be a fini te subset of Zd. 
The random variables will be denoted by <Pi, i E A. 

Let 

8A ~f {i E Zd\A : 3i E A with li - il = 1} , 

and 11 = Au8A. Furthermore, let U : IR -t [0,00) be a symmetrie continuous function 
satisfying some (mild) growth condition for U(x), lxi -t 00. We will not be very 
precise for the moment , as we will stiek to more restrictive assumptions in a moment. 
We then define the probability measure PA on IRA by 

(1.1) 

where the summation is over unordered nearest-neighbor pairs, and <Pi == 0 for i i. A, 
i.e., we take zero boundary condition. ZA is of course the norming in order that P5{ 
becomes a probability measure. In the case of A = An = {-n, -n + 1, ... , n}d we 
just write P:!. We will usually drop the U from the notation. Clearly if d = 1, Pn is 
just the ordinary random walk tied down at both ends of the interval. 
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A particular case is the so-called harmonie erystal, where U (x) = x2 . In this 
special case we denote the above measure by p~arm, which is a centered Gaussian 
measure. lts covariances have a simple random walk representation: If i, j E A, then 

r A(i , j) ~f ~A 4>i4>jP~arm(d4» = lE~w (foTAC 1{f/. =j} dS) , (1.2) 

where (1].)8>-0 is the continuous-time simple random walk on Zd with holding times 
of expectati~n 1/2d, starting in i under IF~w, and TAc is the first entrance time in AC, 
which is of course finite as we have assumed A to be finite. To prove (1.2), remark 
that 

exp [-~ .L_(4)i-4>j)2] =exp [-~(4),-Q4>)A]' 
(',J)EA 

where (., .) A is the usual inner product in IRA, and Q4>(i) = L:jEA:lj-il=l (4)j - 4>i), 
i E A, 4>laA = 0, i.e., Q is the Q-matrix of the simple random walk with holding times 
of expectation 1/2d, and with killing at 8A. Clearly 

(_Q)-l(i,j) =lE;RW (foTAC 1{f/. =j}dS), 

and th is is just E~arm (4)i 4>j) . 
From the random walk representation (1.2) and well-known properties of simple 

random walk it follows for instance that E~arm (4)5) is of order n for d = 1, log n for 
d = 2, and stays bounded for dimensions d ~ 3. In the lat ter case a thermodynamic 
limit p"!:oarm exists. One should however remark that this random field has correlations 
that decay only slowly. In fact , r oo (i,j) = r oo (j - i) = E~rm (4)i4>j) behaves like 
Ij - il-d+2 for Ij - illarge. 

Helffer and Sjöstrand [24] discovered that there is a similar representation in the 
case where U is uniformly convex. This was put in a probabilistic framework in 
[20] . In order to avoid technical difficulties, we assume that U is twice continuously 
differentiable and that there exists a number K E (0,1) with 

K ~ UI/(x) ~ I/K, x E IR. (1.3) 

To describe the random walk, we first have to intro duce the standard reversible dif
fusion process on IRA that has PAas its invariant measure. 

If H : IRA -+ IR is any smooth function, satisfying some appropriate growth condi
tion, then by partial integration we have for any smooth test function f : IRA -+ IR 

1 (82f 8H 8 f ) 
A exp [-H(4))] L 8A.2 - 8A. . 8A. . d4> = o. 

IR iEA '1'. '1'. '1'. 

Therefore, the diffusion process with generator 

'"' ( 8
2 

8H 8 ) 
~ 84>; - 84>i 84>i 
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has exp [-H (4J) 1 d4J / J exp [-H (4J) 1 d4J as its stationary measure. Applying this to 

H(4J) ~f ~ L U(4Ji - 4Jj), 
(i,j)EA 

one sees that the diffusion process (Xt)t>-o on IRA with generator 
'" 

has PA as its invariant measure. Based on the paths (Xt ) of this diffusion process, 
one constructs now a continuous-time jump process ('T/t)t>-o on A that is killed upon 
leaving A, and has jump rates from i to j, li - jl = 1, giv'(:;n by 

XC· . t) def lU"(X X) a Z,J, = 2 t,i - t,j, (1.4) 

where we set Xt,j == 0 for j f/: A. The joint process ((Xt,'T/t))t~O' is a Markov process 
on IRA x A, with generator 

CF(4J,i) ~f LF(4J,i) + ~ L U"(4Jj - 4Ji) (F(4J,j) - F(4J,i)), 
jEA,lj-il=l 

where we set F(4J,j) == 0 for j f/: A. We write Tt, t ~ 0, for the semigroup of the 
diffusion process, and Tt, t ~ 0, for the semigroup of the pair ((Xt , 'T/t) )t>-o . We denote 
by 1P'(</>,i) the law of the joint process, starting in (4J, i). If I: IRA -t IR i; smooth, then 
we denote by DI: IRA x A -t IR the function defined by 

DI(4J,i) = ::/4J). 

The basic observation that underlies the random walk representation is the following 
commutation relation: 

DL = CD, (1.5) 

which is easily checked. 
We denote by CA the set of Coe-functions on IRA that grow not faster than expo

nentially in any component. 

Theorem 1.1. ([24j,[20j). Let I,g E CA. Then 

covpA(f,g) = (oe dt LEA(DI(i,.)TtDg(i,.)). 
Jo iEA 
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Proof. We may assume EA(g) = O. Then 

EA(fg) = -100 

dtEA(fLTtg) 

= {OO dt L EA (al aTtg) 
Jo iEA a</>i a</>i 

(1.6) 

= (OO dt L E A(DI(i,.)7tD g(i,.)), 
Jo iEA 

where the first equality uses the weU known fact that D (f, h) ~f LiEA EA (H: tt.) 
is the Dirichlet form associated with the diffusion, i.e., D(f, h) = -EA (f Lh) for any 
nice functions land h. This foUows from partial integration. The second equality in 
(1.6) uses (1.5). • 

Applying Theorem 1.1 to the special case I(</» = </>i, g(</» = </>j , we get 

~A </>i</>jPA(d</» = ~A JE(i,,,,) (1rA C 

ds l{I).=j}) PA (d</». (1.7) 

Remark that in the harmonic case where the second derivative of U is constant, the 
random walk is independent of the diffusion process, and we therefore get back the 
random walk representation (1.2). 

In principle, the random walk representation (1.7) should be nearly as useful as 
(1.2). Indeed, as the diffusion process X t is rapidly mixing, the random walk 'f}t 

driven by (1.4) should not behave much differently from the standard one. There 
are however considerable difficulties in implementing this heuristics and many of the 
fine properties have not been proved. Consequently, many of the qualitatively precise 
results presented here are known only in the Gaussian case. We will discuss this later 
on. 

2 Entropie repulsion for dimensions d ~ 3. 

2.1 Statement of the result for the harmonie ease 

Entropic repulsion is a general phenomenon in statistical mechanics of random inter
faces in the presence of waUs. A waU is a fixed (typically nonrandom) layer impene
trabie for the random surface. Therefore, the surface has to stay on one si de of the 
wal!. We consider here the simp lest possible wall, namely the configuration identical 
to 0, possibly only on some part of the region on which the random surface is defined. 
In the case of our gradient type interfaces this just means that the surface has to have 
a definite sign, for convenience a positive one. Thus, we consider the conditional law 
for the random field P (·1 n~) where 
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In the physics literature, also more complicated types of wall to surface interactions 
have been considered. We will give some comments about that in the final section. 

What is the effect of the presence of the wall on the surface? The crucial point is 
that the surface has local fluctuations, which push the interface away from the wall. 
On the other hand, there are long-range correlations giving the surface a certain 
global stiffness. In order to understand what is going on, consider first the case where 
there are no such long-range correlations, in the extreme case, where the <Pi are just 
i.i.d. random variables. In that case, evidently nothing interesting is happening: The 
variables are individually conditioned to stay positive. In particular, E (<pdn1) stays 
bounded for A t Zd. This picture remains the same for fields with rapidly decaying 
correlations. However, gradient fields behave entirely differently, and so do interfaces 
in more realistic statistical physics modeis. As the surface has some global stiffness, 
the energetically best way for the surface to leave some room for the local fluctuations 
is to move away from the wall in some global sense. This effect is called "entropic 
repulsion" and is well known in the physics literature. 

The first mathematically rigorous treatment of entropie repulsion appeared in the 
paper by Bricmont, Fröhlich and El Mellouki [12], where some qualitative results were 
proved. In a series of recent papers [4], [17], [18], and [5], sharp quantitative results 
have been derived, the most accurate ones for the harmonie case. 

In most of these and related questions, the two-dimensional case is the most diffi
cult but also the most interesting one. In fact, interfaces in the "real world" are mostly 
two-dimensional. I give a discussion of the two-dimensional case in the next section. 
In the present one, I outline what is happening in the easier higher-dimensional case, 
and mainly stick to the harmonic case. For gradient non-Gaussian modeis, some re
sults in the same spirit have been obtained in [18], but they are not as precise as the 
ones obtained in the Gaussian model. This is partiy connected with the difficulties to 
get precise information from the random walk representation (1.7). The case where 
one starts with the field p!:oarm is somewhat easier than the field on the finite box 
An with zero boundary condition. In the latter case, there are some boundary effects 
complicating the situation without changing it substantially. This is investigated in 
[17]. 1 am dropping from now on the superscript "harm", giving special mentioning 
when the more gener al situation is considered. Despite the fact that we consider Poo, 
we consider the wall only on a finite box, i.e., we consider Poo ('lntJ ' and we are 
interested in what happens as n --t 00. We usually write n~ for nt. Our first task 
is to get information about Poo (n~) . 

Theorem 2.1. Let d ~ 3, and consider the harmonie case. Then 

a) 

Poo (n~) = exp [-2r(0)cap (A) n d
-

2 10gn (1 + 0(1))] , 

where A = [-1, l]d, cap(A) denotes the Newtonian capacity of A 

cap(A) ~f inf {1I\7 fll 2 
: f ~ IA} , 

and r(O) = r 00(0,0) is the varianee of <Po under Poo· 

file://-/ilXn
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b) 
Eoo (4)oIO~) = 2Jr(0) logn(l + 0(1)). 

c) 

.cpoo(. ln~) ((4>i - EOO(4)i IO~))iEZd) -+ Poo weakly, 

where .c Poo (-In~) denotes the law of the field under the conditioned measure. 

Part b) gives the exact rate at which the random surface escapes to infinity, 
while part c) states that the effect of the entropic repuls ion essentially consists of 
only this shift: after subtraction of the shift, the surface looks as it does without 
the wall. However, there is some subtlety in this picture. From the Theorem in 
particular part c), one might conclude that limn-too pooB;Jr(O)IOgn (O~) = 1, where 

Ba: IR
Zd -+ IR

Zd 
is the shift mapping Ba ((4>i)iEZd) = (4)i + a)iEZd • But th is is not the 

case. In fact Poo B;Jr(O) log n (o;t) converges rapidly to o. As part c) states only the 

weak convergence, this is no contradiction. Parts a) and b) of Theorem 2.1 had been 
proved in [4], part c) in [18]. 

2.2 Sketch of the pro of of the lower bound in Theorem 2.1 a). 

The proof of part a) partly follows the standard pattern in large deviation theory, 
but there are some uncommon aspects. I will give some more detailed comments 
concerning the lower bound which is quite interesting also from the large deviation 
point of view. In the next section, I will discuss in a bit more detail the proof of the 
upper bound in the two-dimensional case, which is much more delicate than the proof 
of the upper bound in higher dimensions. 

Before I proceed, I recall one of the basic large deviation "philosophies" in the most 
simple case ofthe Cramer Theorem for sums ofi.i.d. real-valued random variables Xi, 
i E N, having exponential moments, and satisfying EXi = O. We are interested e.g. 
in the behavior of P (~ 2:7=1 Xi ~ a) for fixed a > 0 and large n. The well-known 
strategy is to ask what joint law Qn for the vector (Xl, . . . ,Xn) would achieve that 
the empirical mean exceeds a with large probability, and Qn is "entropically closest" 
to J.Ln , where J.L denotes the law of the Xi. "Entropically closest" means that the 
relative entropy H (QnlJ.Ln ) is minimal. The relative entropy is defined by 

H(PIQ) ~f ! log ~~dP, 
for two probability measure P and Q, where the expres sion has to be understood to 
be infinite if P is not absolutely continuous with respect to Q or if the logarithm of 
the derivative is not integrable with respect to P. In the Cramér case, it turns out 
that the optimal Qn is again a product measure, say vn, and that v has to be chosen 
inside the exponential family 

v(dx) ~f eÀxJ.L(dx) / ! eÀxJ.L(dx) . (2.1) 
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The parameter À is uniquely chosen such that IJ has exactly mean a. Cramér's Theo
rem then states that 

P (~ t, Xi ~ a) = exp [-H (Qnll-'n) (1 + 0(1))] = exp [-nH(IJII-')(l + 0(1))]. 

(2.2) 

The actual proof of the lower bound can be given by the following well-known (and 
easy) entropy inequality: If P and Q are two probability measures on an arbitrary 
measurable space (n, F) and A E F, then 

1 P(A) H(QIP) + e- 1 

og Q(A) ~ - Q(A) (2.3) 

Typically, this inequality is useful only if Q(A) '" 1, as otherwise one does not get 
any decent information about P(A). In the Cramér case, this is achieved by choosing 
À = Àb in (2 .1) slightly too large, namely such that J xlJ(dx) = b> a. Then by the 

law of large numbers one gets IJn (~ L~l Xi ~ a) ~ 1, and hence the lower bound 

in (2.2) follows from (2.3) with P = I-'n, Q = IJn, and A = {L~l Xii n ~ b} by 
letting b ..I. a in the end. 

Let us now look at the modification this argument needs in order to prove the 
lower bound in part a) or Theorem 2.l. 

The first task is to find out what the appropriate (and hopefully optimal) measure 
transformations are. Not surprisingly, at least in the Gaussian case, the cheapest 
way to transform the measure P 00 is to apply a shift. Furthermore, and this is not 
completely obvious, the shift should be constant on the box An, say to a positive level 
an, which still has to be determined. Outside An, we also apply a shift, otherwise 
the entropy cost at the boundary would be too large. It is not difficult to see that 
the optimal thing to do is to apply a shift given by the harmonic extension of anlAn 
out si de An. Therefore, we consider the field ((h + fn(i))iEZ d , where 

f (') def { an for i E An 
n Z = anlP'~w (T < 00) for i ~ An ' (2.4) 

where T is the first entrance time into An of the random walk. We denote the law of 
th is field by Rn,a and we keep in mind that it depends on the choice of the sequence 
a = (an ) . The relative entropy is obtained by an easy calculation: 

H(R lP )=/10 exp[-!(f/J-fn,(-Q)(f/J-fn))]dR (2.5) 
n,a 00 g exp[-~(f/J,(-Q)f/J)] n,a 

1 = 2 (fn, (-Q)fn) . 

Remember that Q is the Q-matrix of the random walk, i.e., the discrete Laplacian. 
It is weIl known (and easy to see) that this expression behaves for large n in the 
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following way: 

(2.6) 

where A = [-1, lt, and cap(A) is the Newtonian capacity of A. 
The next task is to determine the proper choice of an . The discus sion of the 

Cramér case would lead to the conclusion that we should choose this sequence in such 
a way that Rn,a(n;t) -+ 1. But th is turns out to be wrong, a fact which leads to some 
interesting complications as I will explain now. 

Let us first derive a very crude lower bound for Rn,a(n;t). As the field of random 
variables is positively correlated (and Gaussian), we can apply Slepian's inequality 
(i.e., the FKG inequality for physicists), see [27] Corollary 3.12, and get 

(2.7) 

where 4> is the standard normal distribution function . This inequality appears to be 
of a very doubtful quality, as is revealed by considering the case an = 0, in which case 
it only tells that poo (n;t) ~ (1/2)I An l, which is certainly not terribly impressive. None 
the less, let us look at what happens when an -+ 00. Using the standard expansion 
for the standard normal distribution function 1 - 4>(x) '" ~cp(x), x -+ 00, where cp is 
the standard normal density, we get 

Rn a(n;t) ~ exp [-IAni Vr(O) cp ( ~) (1 + 0(1))]. (2.8) 
, an V r(O) 

The bound goes to 1 as soon as an ~ V2df(0) logn. On the other hand, if an ~ 
(1-é)V2df(0) logn with é > 0 arbitrary, then the bound goes to 0 and therefore does 
not appear to be very useful. Of course, one may ask whether Rn,a(n;t) really goes to 
o in the lat ter case, as the application of the Slepian inequality might be quite crude. 
However, it can in fact be proved that Rn,a(n;t) -+ 0 for an '" (1 - é)V2df(0) logn. 
Therefore, an = V2df(0) logn is the border line case for which we seem to be able 
to get anything useful out of the entropy inequality (2.3). Applying it together with 
(2.6) and the above choice of the sequence (an ), we get the bound 

poo(n;t) ~ exp [-df(0)cap(A)nd
-

2 Iogn(1 + 0(1))] . (2.9) 

This bound is of the right order, but the constant in the exponent is the wrong one, 
as is seen from Theorem 2.1 a). We may ask who the culprit of this failure is. It turns 
out that it is not the inequality (2.7) but the entropy inequality (2.3), as I will now 
explain. 

At first sight, it is not clear why the above argument should not give a sharp 
lower bound. The reader of course knows that this is not the case, at least if he 
believes in the statement of the Theorem. I present a heuristic argument that gives 
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the asymptotie behavior stated in part a) of Theorem 2.1. However, the reader will 
realize, that the heuristics is somewhat at odds with the use of the entropie bound 
propounded above. The device is just to match the right-hand side in the Slepian 

inequality (2.7) with exp [-H(Rn,alPoo)]. The prefactor Vf(O) / an in (2.8) is of 
course of no importance here, as the behavior of the right-hand side is mainly deter

mined by cp (an / vr(O) ) in the exponent. (As a side-tracking remark, I would like 

to mention that this prefactor is of crucial importance in the proof of the absence 
of a wetting transition for dimensions d ~ 3 in [5].) Remark also that the right
hand side of (2.8) depends much more sensitively on the sequence (an ) than does 
exp [-H(Rn,alPoo)] = exp [-~a~nd-2cap(A)(1 + 0(1))] . Therefore, the match essen
tially is achieved by equating the "capacity rate" nd - 2 with IAnl exp [- a~/ 2f(O)] , 
leading to 

an '" 2Vf(O) log n, 

and with this choiee we get 

exp [-H(Rn,alPoo)] = exp [-2f(O)cap(A)nd- 210gn(1 + 0(1))] 

which is the correct behavior. However, the lower bound cannot be obtained directly 
via the entropy inequality, as Rn,a (n~) -t O. 

The way out of this problem is to make a decomposition of the random field into 
a part which keeps the long-range dependencies but suppresses the local ftuctuations, 
and a second part that keeps the ftuctuations but has rapidly decaying correlations. 
The entropy inequality is then applied only to the first one. In [4], this splitting 
was done in a rat her trieky way. In later applications [18], [5] it was realized that 
the splitting is a variant of a well-known and simp Ie splitting routinely used in field 
theory. Remember that the covariances are given by f = (_Q)-l, where Q is the 
discrete Laplacian. We now introduce a so-called mass, i.e., we consider the operator 
-Q + c2 and a corresponding inverse 

This is the covariance matrix of a Gaussian field with a random walk representation 
where the random walk has a killing rate c2. Therefore, it is easy to see that these 
covariances are exponentially decaying. On the other hand, if c is small, then the 
above modification has not much effect on the short range correlations. If we consider 
now 

then this is still positive definite, i.e., the covariance matrix of a Gaussian field. This 
field essentially keeps the long range correlations of the original field, but suppresses 
the local ftuctuations. According to this splitting, we decompose the field variables 
4Ji into independent parts: 
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With this decomposition, we have separated the two problems. We apply the argu

ment with the entropy bound only to the field J> ~f (J>i). . A simple but crucial 
tEAn 

observation is that the relative entropy for this field under shifts given by In in (2.4) 
behaves in exactly the same way as for the original field. This is coming from the 
fact that this relative entropy is a "long range" quantity not affected by the cutting 
of the local fluctuations. The reader may easily check this. Therefore, we have for 
any é > 0: 

2 

H (Poo (In + J>ó E .) I Poo (J>ó E .)) = a2nnd-2cap(A)(1 + 0(1)). 

The o(l)-term is understood to be for n -t 00, and depends on é. As remarked above, 
we essentially have killed the local fluctuations in the J>ó -field. Applying Slepian's 

inequality as above, we therefore have Poo (in + J>ó E n~) -t 1 for an = c00gn with 

any c > 0 provided we choose é small enough, and from that we would get estimates 

on Poo (J>ó E n~) . However, we are not really interested in this probability as we 

still have to take into consideration the <Pi variables, which we have neglected for the 

moment. The idea is not to look at Poo (J>ó E n~ ) , but at the probability of some 

much more restrictive event, namely 

Poo (J>i ~ pJlogn for all iE An) , 

where we choose p slightly above the "optimal height", i.e., p = 2Jr(0) +ó with some 
small Ó. If we now choose é small enough, suppressing the local fluctuations in the 
J>i variables as far as necessary (depending on the choice of ó), we get by the above 
procedure, using Slepian's inequality and the entropic bound: 

P 00 (J>i ~ (2 Jr( 0) + ó) Jlog n for all i E An) 

~ exp [-2(1 + c(Ó))r(0)cap(A)nd
-

2 Iogn] , 

with c(ó) -t 0 for Ó -t O. This is just coming from relative entropy considerations, the 
procedure to apply the entropy inequality being exactly the same as in the Cramér 
case, this now working as we can suppress the local fluctuations by choosing é appro
priately. Remember that these local fluctuations had brought the problems responsi
bIe for not getting a better bound than (2.9). Amoment's reflection reveals now that 
we are done: 

Poo (n~) ~ Poo (n~ lJ>i ~ (2Jr(0) + ó) Jlogn for all i E An) 

x Poo (J>i ~ (2Jr(0) + ó) Jlogn for all iE An) , 

and 

Poo (<Pi ~ - (2Jr(0) +ó) Jlogn for all i E An) ~ exp [_nd
-

2
- 71 (O)] , 

again by Slepian's inequality, with 1](ó) > 0, 1](ó) -t 0 as Ó -t O. We therefore obtain 
the lower bound, by letting Ó -t 0 in the end. 
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2.3 Sketch of the pro of of the upper bound in Theorem 2.1 a) 

I don 't discuss the upper bound in detail, but I give a sketch of an argument giving 
an upper bound of the right order but not the correct constant. 

We distinguish between even and odd points in An. A point is called even if the 
sum of its components is even, otherwise it is called odd. Evidently 

Poo (n~) :::; Poo (if>i ~ 0, i even) 

= Eoo (1{t/l; ;;,O, i odd}Poe (if>i ~ 0, i even I (if>j)j Odd))· 
The effect of this conditioning is of course very simple. Let us phrase it for later 
purposes in a slightly more general situation. Con si der A C An and the a-field FA 
generated by (if>i)iEA . Then the conditional distribution of the field given FA is still 
Gaussian. F'tuthermore 

E (if>iIFA) = L lP'~w (1]TAArA;' = j)if>j, 
jEA 

where TA is the first entrance time in A, and 

(2.10) 

(2.11) 

Applying this to our situation, we see that conditioned on (if>j)j odd the variables if>i, i 
even, are i.i.d. with a fixed variance a2 = 1/2d < r(o). The conditional mean of if>i is 
just the arithmetic mean of the neighboring if>j, which we denote by 4>i. We therefore 
get 

Poo (if>i ~ 0, i even I (if>j)j Odd) = 11 P (ç ~ -4>i) , (2.12) 
zeven 

where ç is a centered normally distributed random variable with variance a2 . Remark 
next that the above expression is very smalI, unless most of the 4>i are quite large. For 
instance, if half of the ~(2n)d variables 4>i are:::; 8y1ogn, then the above expression 
is roughly 

1 (2n)d 

( [ 
82 log n] ) 4" d f 1 - exp - 2a

2 
~ exp [_end-I] ~ pen), (2.13) 

if 82 /2a2 = 1. This is negligible with respect to the desired bound. Therefore, we get 

Poe (n~) :::; Poo (4)i > 8v'logn for half of the even i, if>j ~ ° all odd j) 
+ pen) (2.14) 

:::; Poo ((2n~d/2L 4>i ~ ~v'lOgn) + pen). 
teven 
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By an elementary computation, we have 

Var ((2n~d/2 ,L (fii) = n-
d+2!! (-~)-l(x,y)dxdy x (1+0(1)), 

• even A x A 

where (_~)-l(X,y) is the standard Green kemel of the d-dimensional Laplacian. 
Therefore 

Poe (n~) :::; exp [-Cnd -
2 Iogn]. 

This is a bound of the correct order, but the constant C is not the optimal one. I 
will now give a sketch how the above procedure can be trimmed to yield the correct 
constant. 

First I present some straight forward ways to optimize the above procedure. For 
instanee, it is not necessary to have half of the (fii to be :::; <5y'îogn in order to get 
(2.13). A bound of the same order is obtained if an arbitrary prop ort ion of the (fii 
variables is below this level. AIso, on the right hand side of (2.13), one does not really 
need n d - 1 in the exponent. It suffices to have something slightly larger than n d - 2 , 

and therefore one can nearly take <5 = 2a. Using this observation, one obtains easily 

with é > 0 arbitrary, as soon as n is large enough, and this yields 

(2.15) 

but the reader. may check that this is still not the correct constant of Theorem 2.1. 
There are two reasons for this failure . The first one is easy to amend: It is bad to 
switch to the "global" arithmetic mean of the (fii variables in the second inequality 
in (2.14). The correct way to do th is step is to chop the box An first into finitely 
many subboxes, still of macroscopie scale, say of side length én, do the arithmetic 
mean procedure separately for all the subboxes, and letting é -t 0 in the end (after 
the n -t 00 limit). The crucial point is that we get estimates of the type (2.13) on 
the event that a small prop ort ion of the (fii in any of the én-boxes is below the critical 
value <5 which is slightly smaller than 2a. The reader may check that in this way, we 

can replace 1 / JJA XA(-~)-l(X,y)dxdy on the right hand side of (2.15) by cap(A), 
i.e., we are getting 

(2.16) 

Now we would be finished, if only we could replace a2 by r(0). Remember however 
that a 2 < r(O). 

Here is a sketch how to handle the problem properly. The even-odd procedure is 
just not the proper thing to do. Instead of conditioning on the odd variables, one has 
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to take a larger but still microscopie subgrid. The field on which one is conditioning 
is (</>j) jELZd , L large. For points i away from the grid points, e.g. 

iE An,L ~f (LZ d + (L/2, ... , L/2)) n An, 

the conditional variance is 01, whieh satisfies 

lim ai = r(o). 
L-+oo 

(2.17) 

(2.18) 

This follows easily from (2.11) and removes the problem of the conditional variance 
being too small, but there are evidently some difficulties. A seeming one is that we 
have to estimate 

(2.19) 

which may look bad because IAn,LI is much smaller than IAnl. However, it turns out 
that (2.19) is sharp on the level of precision we are considering. Keep in mind that 
we are looking at a phenomenon that is essentially of "long range" character, so it 
should be not surprising that such a th inning is not bad for the estimate we have 
in mind. We want to do the same conditioning procedure as explained above, but 
now conditioning on the (</>j)jELZd. An evident problem is that the </>i , iE An,L, are 
no longer conditionally independent. The conditional covariances are expressed by 
(2.11). Prom this representation, it is evident that these conditional covariances are 
rapidly decaying. This is then sufficient to apply hypercontractivity estimates whieh 
essentially give an estimate similar to the right-hand side of (2.12). Summarizing: 
One fixes Land then with some additional work one can get the same estimates 
as with the even-odd procedure, and one gets an upper bound like (2.16), but with 
a2 replaced by ai. Using (2.18), this gives the desired upper bound. For details, 
see [4). Anticipating already the discus sion for the two-dimensional case in the next 
section, it should be remarked that the main problem there is that such a "one step 
conditioning" is no longer appropriate. In two dimensions, any conditioning with 
a finite L is "killing" too much variance, and only L = Ln = na with Ct < 1 but 
arbitrary close to 1 would leave the variance intact. But then, the estimate (2.19) is 
becoming really too bad. We will give some explanations in the next section how to 
solve this problem. 

2.4 Final remarks 

1. The analysis of P 00 (o;t) as sketched above also makes parts b) and c) of Theorem 
2.1 very plausible, but there are some substantial additional technieal difficulties 
to really prove these, especially part c) . I will not discuss this here. 

2. An analysis of the type explained above can also be done for more general non
Gaussian gradient modeIs, where the analysis of the variances and covariances 
can be performed with the Helffer-Sjöstrand random walk representation intro
duced in Section 1. This has been done in [18). However, the estimates available 
in this case are less precise than in the Gaussian case. For th is reason, estimates 
with precise constants have not (yet) been obtained. 
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3. I have restricted the discussion to the case wh ere one starts with the infinite-volume 
Gaussian field Poo. It might be more natural to consider the finite-volume mea
sure Pn with zero boundary condition and condition it on nt. This has been 
done in [17) . The first task again is to investigate the behavior or Pn (nt) . This 
probability is however dominated by boundary effects: it is substantially smaller 
than Poo (nt) , because the event that the field is positive near the boundary 
has small probability. With the zero boundary condition, the variables rpi for i 
near the boundary are essentially nearly independent. It is therefore clear that 
Pn (nt) is at most of order exp [_en d - 1 ] • This is in fact the correct asymptotic 
behavior, as has been proved in [17). The behavior of the variables away from 
the boundary is however not much affected by the zero boundary con dit ion and 
b) and c) of our Theorem remain correct (with the same constants) also in this 
case. 

4. In the Gaussian case, it is actually possible to get an asymptotie evaluation which 
goes beyond the leading order term. This has been important in a recent work 
on so-called wetting transitions [5). I will make some comments about these 
problems in the last section. 

3 Entropie repulsion in two dimensions 

3.1 Outline of the two-dimensional situation 

We again consider only the harmonie case. If the lattiee is two-dimensional, a ther
modynamic limit of the measures Pn does not exist as the varianee blows up. Pn(nt) 
is of order exp [-en), as has been shown in [17). As remarked in the last section, 
th is is mainly a boundary effect and is not so relevant for the phenomenon of the 
entropie repulsion. To copy somehow the procedure of the last section, consider a 
subset D c V = [-1,1]2 which has a niee boundary and a positive distance from the 

boundary of V. To be specific, just think of taking D d~f >. V for some >. < 1. Then 

let Dn ~ nD n Z2 and nt
n 
~f {rpi ~ 0, i E Dn}. In contrast to Pn(nt), Pn (ntJ 

decays much slower, but still faster than any polynomial rate. In [6) we proved the 
following result: 

def / Theorem 3.1. Let 9 = 1 21l". 

a) 

lim (I 1 )2 logPn(nt ) = -2gcapv(D), 
n--+oo ogn n 

where capv(D) is the relative capacity of D with respect to v: 

capv(D) ~f inf {11V'fll; : f E H6(V), f ~ lonD} . 

Here, HJ (V) is the Sobolev space of (weakly) differentiable functions f with 
square integrable gradient and flav = O. 



RANDOM WALK REPRESENTATIONS AND ENTROPIe REPULSION 69 

b) For any é > 0 

lim sup Pn (l4>x - 2..;g log nl ~ é log nl friJn) = O. 
n-+oo xEDn 

This corresponds to parts a) and b) of Theorem 2.1. Part c) does not make sense 
here as Pao does not exist. 

I will not give the proof of Theorem 3.1, it being quite complicated. I will however 
explain the main technique for an easier hierarchical model. First, one should point 
out that the lower bound in a) is quite easy, in fact easier than in the case d ~ 3 
discussed in the last section. In order to understand why this is so, we step back 
to the heuristic explanation of the last section, which works here too, and gives the 
correct answer. We need precise information on the varianees and covarianees r n(i,j) 

given by (1.2). For iE An we write O";(i) ~f r n(i , i) . 

Lemma 3.2. 

sup 100;(i) - glognl ~ c(8) , 
iEDn 

where c(8) depends only on 8 ~f dist(D, BA) . 

The proof is an easy consequence of Theorem 1.3.3 of [26). 
According to the heuristics given in Subsection 2.2, we should find a sequence 

a = (an) su eh that there is an approximate match between exp [-H(Rn,alPn») and 
Rn,a(O.-iJJ, where 

def ( ) Rn,a = Pn 4> + In E · , 

In being given in our case given by 

I ( .) def { an fori E Dn 
n Z = pRW (7 < T ) for i E An \ Dn • Dn 8An 

The relative entropy in the two-dimensional case is given by 

(See Lemma 2.4 of [1) .) Estimating Rn,a(niJJ again by Slepian's inequality, we get 

Rn,a(ntJ ~ 11 Pn(4)i + an ~ 0) ~ 11 (1 - exp [- 20"~;(i)]) (3.1) 
' EDn 'EDn 

~ (1 _ exp [_ a; ] ) IDn I , 
2glogn 

the last approximation by Lemma 3.2. An approximate matching of the right-hand 
side of (3.1) with exp [-H (Rn,alPn») is achieved by taking an ,...., 2y'glogn and 
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then exp [-H (Rn ,alPn)] = exp [-29 (logn)2 (1 + 0(1))] . Remark however, that if we 

choose an a tiny bit larger, then the right-hand side of (3.1) is tending to 1, without 
exp [-H (Rn ,alPn)] being much changed. This contrasts sharply with the case d ;:: 3, 
and makes things easier for the lower bound. lndeed, we can just apply Slepian's 
inequality together with the entropy bound. 

On the other hand, proving the upper bound is much more delicate. To see the 
reason for this, we try to repeat the procedure outlined in Section 2.3. Consider again 
the field variables 4>i for i E An,L which was defined by (2.17) conditioned on LZ2

. 

It is not difficult to see from (2.11) that for a fixed number L, al stays bounded in 
n. This variance is in fact up to some negligible correct ion the same as if we would 
just consider the box AL with zero boundary conditions and calculate the variance 
of the field in the midpoint. Therefore, al is of order 9 log L. This means that we 
have to choose L = Ln essentially of order n, or maybe slightly smaller, in order that ar '" var(4)i)' But this is of course disastrous for the proof outlined in Section 2.3, 
because IAn,LI is then way too small. 

The way out of this problem is by applying a multiscale analysis, where one does 
successive conditionings on many intermediate scales. The details are quite delicate, 
and it is best to explain the procedure for a simplified hierarchieal model which is 
however catching all the essentials that are necessary for a treatment of the harmonie 
case. 

3.2 Entropie repulsion for a hierarehical model 

We call a sequence a = al a 2 ... a m , ai E {O, 1} , a binary string; f( a) = m is the 
length. 0 is the empty string of length O. We write T for the set of all such strings of 
finite length, and Tm C T for the set of strings of length m . If a E Tm , 0 :::; k :::; m , 
we write [alk for the truncation at level k : 

AIso, if a E T , fJ E T, then we write afJ E T for the natural concatenation. If a, 
fJ E Tm we define the hierarchical distance 

dH(a,fJ) ~c m - max{k:::; m : [alk = [fJ]d 

We consider the following family (X")"ET of centered Gaussian random variables: 
deC 

X 0 = 0, and for a E T, f(a) = m ;:: 1 

where (Ç~1"2 ... "O) OE"" 0ETo is a family of independent centered normally distri-
t t 1' , 01",0, , 

buted random variables with variance f. Evidently, the 2m random variables X"' 
a E Tm all have variance Tm . More generally 

(3.2) 
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It is also easily proved by induction on m that 

We argue now that there is much similarity between the two-dimension harmonie field 
(<Pi)iEDn and the field (XQ,)aET~ . To see this, we first match the number ofvariables, 
i.e., put 2m = IDnl. As IDnl is of order n 2 , this means that m '" 2Iogn/log2. Then 
we should also match the variances, i.e., take I = g/2Iog2. For the free field (<Pi), it 
is known that cov( <Pi, <pj) behaves like g (log n) / log li - j I, if i, j are not too close to 
the boundary. This follows from the random representation and standard results on 
two-dimensional random walks (see [26]). Comparing this with (3.2), we see that for 
any number s E (O,g) 

# {j E Dn : cov (<Pi , <pj) ::;; s logn} '" # {(3 E Tm : cov (Xa, X,B) ::;; s logn} (3.3) 

to leading order, for any i E Dn, a E Tm. Therefore, the two fields have roughly the 
same covariance structure. The above criterion (3.3) looks a bit formal, but in fact 
the two fields are qualitatively (and even in many quantitative aspects) very close. 
The hierarchical field clearly has a much simpier structure. For instanee, there is no 
real geometry involved. The zero boundary condition for the qrfield corresponds for 
the hierarchical field to the setting X 0 = O. 

From now on, we set I = 1. This is just a sealing which is of no importanee. 

Theorem 3.3. Let n~ = {Xa ~ 0, foralla E Tm} 

a) 

p (n~) = exp [-m2 Iog 2(1 + 0(1))] . 

b) For any é > 0 

where a is understood to belong to Tm. 

We give only a closer discussion of part a). As already remarked, the lower bound is 
easy, and is a direct consequence of Slepian's inequality. The upper bound follows from 
properties of the distribution of the maximum of the variables, as will be explained 
now. 

Proposition 3.4. Given TJ > 0, there exists b(TJ) > 0 such that 

P (max X a ::;; J2Iog2(1- TJ)m) ::;; exp [-b(TJ)m2
] 

aET~ 

lor large enough m. 

Before proceeding further with the discussion of this result, we show that it implies 
Theorem 3.3 a) . 
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Proofthat Proposition 3.4 implies Theorem 3.3 a). We fix kEN and assume 
m > k. We write the elements 0 E Tm as 0 = {3" (3 E Tk, , E Tm-k and 

X X Y (m-k) 
'" = {3 + {3'Y ' 

where (YJ~-k) 'YETm_k for varying {3 are independent copies of (X'Y)'YETm-k' Set 
Fk = a(X{3 : (3 E Tk) and fix an arbitrary A > O. For i E N, let 

A}k) = {#{ {3 E Tk : X{3 ~ J210g2(1 - A)m} ~ i} E Fk' 

According to Proposition 3.4, there exists b(A) > 0 such that on A}k) 

P(X", ~ 0V'0 E TmlFk) 

~ P ( inf YJ~-k) ~ -J210g2(1- A)m,forl fixed (3IS») 
'YETm- k 

~ exp( -b(A)im2
) . 

(for m large enough). We therefore get 

(3.4) 

for any i, k, A, if m is large enough. Depending on A, we choose i so large that 
b(A)i ~ 10 (i ~ io(A), say). Let A = {{3 E Tk : X{3 ~ (J210g 2 - A)n}. On A}k)C we 

have lAl ~ i - 1. Putting B = {2- k L:{3 EA Xák
) ~ -An}, we get 

Ik A2 m 2 
2 

~ 2 exp(- 22-2kk(i-l)2) ~ exp(-lOm ), 

provided k ~ ko(A, I) (m large enough). Combining this with (3.4), we get 

P(X", ~ 0,0 E Tm) ~ p(A}k)C nBC) + 2exp(-lOm2) 

for i ~ io(A) , k ~ ko(l, A). On A}k)c nBC we have 

2-k L X {3 = T k L X{3 + T k L X{3 

{3E T k {3EA MA 

2k I 
~ -Am+ 2~ (J210g2-.À)m~ J210g2m-3.Àm 

(3.5) 
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by still increasing k (if necessary). Implementing this in (3.5), we get 

. 1 1 (v'210g2-3À)2 
hmsup -2 10gP(X" ~ 0, a E Tm) :::; -- 2-k m--+oo m 2 1 -

Letting k -+ 00, and then À -+ 0, we get the upper bound in Theorem 3.3 a). As 
remarked before, the lower bound is an easy application of Slepian's inequality. 

3.3 Discussion of Proposition 3.4 

The result was actually known since long, except perhaps the Gaussian tail estimate. 
For instance Biggins in [3] proved that 

(3.6) 

in probability, and this has been reproved many times. The constant is somewhat 
surprising, since it is the same as if the variables would be independent: If Y" are 2m 

U.d. normally distributed random variables with variance m, then it is easy to see 
that 

I· max"ET m Y" ~l 2 lm = V":'10g..:.. 
m--+oo m 

(3.7) 

Therefore, the Biggins result states that, for the maximum, the hierarchical model 
behaves to leading order in the same way as if the field variables would be independent. 

Perhaps the easiest way to understand (3.6) (but perhaps not to prove it) is to 
replace the binary tree of depth m by one with a fixed (large) number K of branching 
levels. So we con si der variables 

(3.8) 

where ai E {I, ... ,2ml K}, and the Ç~l , ... ,"i are normally distributed with expectation 
o and variance mi K. We again get 2m random variables with variance m, but a slightly 
different covariance structure. By (3.7), as m -+ 00 (K fixed), we have 

1 v'21og2 
- maxç~ -+ -'---~ 
m "11K 

in probability, and for any al, ... ,ai 

1 Hl v'210g 2 
-maxç -+ --::-::--
m "i+1 "1,· .. ,"i+1 K' 

From this one gets 

(3.9) 
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for any fixed K. The upper bound follows directly from Slepian's inequality (also for 
the binary tree case) . This of course does not prove (3.6) in the binary tree case, 
but as K is arbitrary, it makes it very plausible. Our proof of Proposition 3.4 (and 
actually also in the rj>-field case) is based on arefinement and extension of the above 
"finite K" argument. 

Remark 3.5. Much more than just (3.6) or the statement of Proposition 3.4 is known 
in the binary tree case, namely also the next order corrections whieh are of order 
log m, and even the correct tail estimates: For mand u large enough, one has 

P (max X a ~ ..j2log2m - ~IOgm+u) ~ exp[-cu] 
aET", 2 2 og2 

(3.10) 

p(maxxa ~ ..j2Iog2m- ~IOgm-u) ~exp[-cu2] 
aET", 2 2 og2 

(3.11) 

There is no published proof for this, not even for the fact that - 2~ log m is the 
proper correction. The result is however close to a result of Bramson [9] on branching 
Brownian motions, and can be proved by an adaptation of his approach. Bramson had 
announced results of this type in his paper, but they have never been published. The 
Gaussian lower tail estimate in (3.11) is not proved in [9], also not for the branching 
Brownian case, but it is actually not very difficult. It should also be remarked that for 
the supremum of 2m ij.d. Gaussian random variables with variance m, the correction 
to the leading order J2log 2m is only - 2"'2 \Og 2 log m, which is easily checked. Also 
the lower tail in this case is doubly exponential, while the Gaussian tail in (3.11) is 
the correct behavior in the tree case. 

Remark 3.6. Sidetracking a bit further, let us observe that the binary tree case is 
the border line case where the above triviality of the maximum (to leading order) is 
correct , i.e. , where the maximum of the field of random variables is to leading or
der at the same level as if they were independent. To give this statement a precise 
meaning, consider again the above binary tree, but where the variances of the vari
ables ~~, ... ak' k ~ m, may vary with k, but still remain independent. For instance, 
consider a continuous function f : [0,1] -+ (0,00), satisfying f f(x)dx = 1, and set 
var(ç~, ... ak) = f(klm). Then the variances of the variables X a for a: E Tm is still m 
(approximately). One may ask under what conditions on f (3.6) remains true. One 
can prove that this is the case if and only if f is nondecreasing. The binary tree case 
discussed before is the case with f == 1. For a discus sion of various aspects of this and 
related models and its connections with spin glass theory, see [16] . 

1 give a proof of Proposition 3.4 including the Gaussian tail estimate. The proof 
given here has the advantage to be quite robust, and a modification of it, using a 
cascade of conditionings, has been used in the free field case in [6] to prove entropie 
repulsion. 

Before starting with the proof of Proposition 3.4, it has to be observed that the 
most straightforward approach, namely an application of the second moment method 
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fails. Define for À > 0 

Then, neglecting factors which are only polynomial in m, we have 

which goes rapidly to 00 if À < v'210g 2. If we would know that 

(3.12) 

then we could apply the Tchebychev inequality, or sharper versions of it, and conclude 
that Nm(À) is large with large probability, and therefore max"ET", X" ~ Àm with 
large probability. The reader is invited to check that (3.12) is correct if À is small 
enough, but that the opposite is true for À sufficiently close to v'210g 2, an effect 
which is due to the correlations of the field . In fact, if the X" would be ij.d., then 
we could argue in this way. 

One way to proceed is to con si der intermediate levels like in (3.8), and prove, by 
induction along the Klevels, that the maximum is surpassing the appropriate heights 
corresponding to the different levels. 

We will repeatedly use some of the standard exponential inequalities for indepen
dent random variables. A convenient one is the following: 

Lemma 3.7. Let 6, .. . , Çn be i. i. d. real-valued random variables satisfying EÇi = 0, 
(12 = Eç;, Ilçilloo :s; 1. Then 

For a proof, see [2] 
We first prove the following preliminary result: 

Lemma 3.8. There exist 8 > 0, b > 0 su eh that 

P(#{ ex E Tm : Xo< ~ O} :s; 2óm
) :s; e-

bm2
. 

Proof. We use e as a generic positive constant, not necessarily the same at different 
occurrences. Also, all inequalities are required to hold only for large enough m. 

1 Yl def X Without loss generality, we assume that m is even. If ex E T m/2' et 0< = 0<, 

Y; ~f ç:f2+l + ç:fo2+2 + ... + ç;;Q ... o. Then 

P(#{ ex E Tm : Xo< ~ O} :s; 2mó
) :s; P(#{ ex E T m / 2 : Y,; + Y; ~ O} :s; 2mó

) 

Let A d~f {ex E Tm / 2 : Y,; ~ -m/10} and define the event A ~f {lAl ~ 2m / 4
}. Then 

(3.13) 



76 BOLTHAUSEN 

Remark that 

(3.14) 

2-m /
2 L Y; = 2-m / 2(L Y; + LY;) ~ Tm

/
2(IAlm2 -IAcl ~) 

OIET m/2 OIEA OIrtA 

m m/2 2 m m 
~ -10 +2- IAI(m + 10) ~ -20' 

as lAl < 2m/4 on N. Using this in (3.13) and using (3.14), we get 

P(AC
) ~ P(Tm

/
2 L Y; ~ - ;) + e-cm3 ~ exp( _cm2

), 

OIETm / 2 

by Lemma 3.7. 

Let now F1 ~f a(Y; : et E Tm / 2 ). We then have 

P (#{et E Tm / 2 : Y; + Y'; ~ O} ~ 2óm ,A) 

= E (l AP (~l{Y.;;:-Yn ~ 2m<ÏIF1)) 

~ E (lAP (~ l{Y';;:m/lO} ~ 2mó I Fl) ) 

where Y1 , . . • ,Y2m/4 are i.i.d. centered Gaussian random variables with varianee m/2. 

Let rIj ~f l{Yj;:m/lO} - P (JIj ~ m/10) . Remark that P (JIj ~ m/lO) ~ exp [-m/90]. 
Choosing fJ small enough, we have 

p (~. 1{y, 'm/'O) om,) " p ( ~'" ;, 2~' exp [-m/90[) 

~ exp [_2cm] , 

again by Lemma 3.7. • 
We will apply Lemma 3.8 not directly to m, but to a small proportion: 

Corollary 3.9. Let'f/ > O. Then there exist fJ('f/) > 0 and b('T}) > 0 such that 

P (# {et E TIJm: X OI ~ O} ~ 2m<Ï(IJ)) ~ exp [-b('T})m2
] . 
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Proof of Proposition 3.4 We fix ", > 0, KEN, to be chosen later on (depending 

on fJ). We put"'i d~f ",+ *(1-",),0:::; i:::; K. Without further notice, we will assume 
that "'im E N. Let 

def { } ro = 0' E TIJm: Xo; ~ 0 

r i ~f {a E T IJim : [O']IJi_Im E r i-I , Xo; ~ V2log2 (~ - ;2) (1- ",)m}. 
We fix some 8 > 0, which is at most equal to the 8(",) of Corollary 3.9, and put 

We will now show that Ai has large probability. Before proceeding, a comment is in 
order why we define the events Ai in this way. Evidently, we are shooting for having 
!r K I ~ 1 with large probability, and therefore it appears that we should rather and 
more simply consider the events {!r;! ~ I}. Trying to copy somehow the proof of (3.9) 
given above, we would like to prove that P (Iri l ~ 11 Fi-d has large probability on 
{Iri-Il ~ I}, where Fi = a(çL .. o;; : j :::; "'im). This would then do the job. However, 
it seems imp os si bie to proceed in this way, because of the still present dependencies 
between the levels, which is exactly the reason why the direct second moment failed, 
as we have explained above. The trick to define the Ai as we do is to have on each 
level i, 0 :::; i :::; K , sufficiently many variables overshooting a certain bound, in order 
that the second moment method works to perform the induction from one level to the 
next . 

Let us now proceed with the induction from level to level. We already know from 
Corollary 3.9 that 

P(Ao) ~ 1 - exp( -b(",)m2
). (3.15) 

We claim that for arbitrary ", > 0, and corresponding 8(",) > 0, we may choose 
K o(",) EN such that for K ~ Ko, there exists dK > 0 such that 

(3.16) 

on Ai-I, i ~ 1. Clearly, (3.15) and (3.16) prove Proposition 3.4. In fact, depending 
on fJ > 0, we take", = fJ/2 and K ~ K o("') such that 11K < fJ/2. Then 

P(AK ) ~ 1 - exp [-b(",)m2 ] - K exp [_edKm] ~ 1 _ exp [_ b~",) m2
] , 

and evidently 

AK C {max Xo; ~ V2Iog2(1- fJ)m}. 
o;ETm 

It therefore only remains to prove (3.16). 
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On A i - 1 , we have at least J.L ~f 2mó parameters a E TT/._ lm such that 

We pick J.L such o's, caU them Ol, ... , Ow To each ai there correspond 2M
, M = 

*(1 - l1)m, Gaussian variables Za. a'. , 1 :::; j :::; 2M , of variance M such that the 
1 

variables X a with [O]T/. _lm E {01, ... ,01J} are given by X a• + Za.aj' 1 :::; i :::; J.L, 

1 :::; j :::; 2M
. It therefore suffices to estimate 

(3.17) 

from above. Let 

and remark, that for different i, the l1ij are independent. Put l1i ~f 'E~:1 l1ij. Then 

E (~"i) = 2'Tm P (Z'i ;, ,121og 2(1-.) K;, 1 m) ;, 2 

if m is large enough. Therefore, 

p (t l1i :::; 2
mó

) :::; p (t (l1i - El1i) :::; _2
mó

) 

:::; p (lt(l1i - El1i ) I ~ 2mó
) . 

Evidently, II11ill00 :::; 2M = 2(1;~)m. Our requirement now is that K ~ Ko(3) , where 
(l-11)/Ko :::; 8/3. (Remember that 11, 8 are already chosen, depending on 13.) Putting 

fii ~f (l1i - El1i)/lll1i - ET/. 1100, we get 

p (t l1i :::; 2mó ) :::; p (Itfiil ~ 22óm/3) :::; exp [_ 2
m
;/3], 

by Lemma 3.7. We therefore see that the expression in (3.17) is bounded above by 
exp [_2mó/3 /3], which proves (3.16). Therefore, Proposition 3.4 is proved. 

4 Concluding remarks: Pinning and the wetting 
transit ion 

The problem of entropie repulsion is closely related to the so-caUed wetting transition. 
Wetting appears for interfaces having also an attracting wall-to-surface interaction. 



RANDOM WALK REPRESENTATIONS AND ENTROPIe REPULSION 79 

This attraction is usually assumed to be very local: Only if the surface is very close 
to the wall, then it feels the attraction. There are several ways to define such alocal 
attraction. The standard way in the physies literature is to change the Hamiltonian 
in (1.1), i.e., ~ L(i,j)aU(4Ji - 4Jj), by adding some pinning potential, e.g. replace it 
by 

(4.1) 

where 'Ij; is some function with values in IR- , being nonzero only in a neighborhood of 
O. If a hard wall is present as in Section 2, the function 'Ij; has only to be defined on 
IR+ . The wetting problem is arising when both types of influences are present, which 
lead to a competition between the entropie repulsion and the pinning. A transition 
occurs when at specific parameters there is a transit ion from a pinning dominated 
situation to arepulsion dominated one. In physies jargon, this is a transition from 
partial wetting to complete wetting. 

It is however appropriate to discuss separately the pinning problem and leave out 
for the moment the hard wall condition. I therefore first describe what is known 
about the pinning phenomenon, in the absence of entropie repulsion. It is reasonable 
to assume that 'Ij; : IR -t IR- is symmetrie. A slightly different model whieh has been 
introduced in [7] is called 8-pinning. Here one modifies the definition (1.1) by defining 

where é is a positive parameter. This model is technieally slightly easier than the 
pinning with the 'Ij;-function, whieh we call the "bump pinning" case. However, all 
the results whieh have been proved for the 8-pinning case can also be derived (with 
some technical complications) for the bump pinning one. A remarkable fact is that, 
in any dimension, and for arbitrarily weak pinning, the field gets localized in astrong 
sense, namely 

a) 

h) 

for some positive C, m (whieh depend on é). 

This has been proved in [13] for the harmonie case in dimension d ~ 3 (for bump 
pinning) using reflection positivity. The drawback of this method is that it works 
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only with periodic houndary conditions and the formulation actually needs some 
modification. In the two-dimensional case, a) has heen proved in [22] (also for the 
Gaussian case). The proof however could not he used for b). Both a) and b) have 
been proved in [8] by a modification of the arguments of [13], again with the usual 
restrictions when applying reflection positivity. A full and satisfactory treatment has 
been given in [21] and [25] covering also the non-Gaussian case (with U uniformly 
convex) . The dep enden ce for instance of sUPn J 14>01 Pn ,E(d4» on c for small c, or of 
the mass m in b) is quite an interesting problem. In [22] a bound of order Jlog(l/c) 
(for d = 2) has been obtained. The correct dep enden ce however is of order 10g(l/c), 
as comes out of the analysis in [8] and [25]. 

The wetting phenomenon is appearing when one considers both pinning and a 
hard wall condition. Therefore we con si der 

A natural question is which of the interaction effects is dominating the overall behavior 
of the random field . It is not difficult to see that, for large c, the model is "pinning 
dominated". This is quite easy and has been proved in [7], but actually only in a 
somewhat weaker formulation, namely by a pressure estimate. To be precise, we 
consider the pressure 

A A + 
+( )def I· 1 I Zn,EPn,é(On) 

p c = lm -IA I og + 
n-+oo n ZnPn(On) 

The existence of the limit is easily established (see [7]), and also that p+(c) ~ o. 
Naturally, p+(c) > 0 would mean that the model is pinning dominated, whereas 
p+(c) = 0 essentially would mean that the pinning has no effect (at least not to 
leading order) . It is natural to expect that in the former case one would have strong 
localization properties like a) and b) above, but this has not been proved and is 
probably quite difficult. On the other hand, one would expect that if p+(c) = 0, 
then the model would behave essentially in the same way as without pinning, but 
again, this has not been proved. Clearly, p+(c) is monotone in c, and p+(O) is O. The 
question of a wetting transition (in a weak sense) is whether or not there is a positive 
interval of c-values where p+ = O. The following facts are known: 

a) In any dimension, p+(c) > 0 for large enough c. This has been proved in [7] for 
the Gaussian case and d = 2, but the argument works easily also in the other 
cases. 

b) The existence of a wetting transition is easy for d = 1. This has been proved for a 
discrete random walk case by M. Fisher [22], but it is easy also for the gradient 
models considered here (see [5]). The existence of a wetting transition is also 
known for the Ising model in d = 2, i.e., where the interface is one-dimensional. 

c) Recently, it has been proved that the Gaussian model in d ~ 3 does not have a 
wetting transition, i.e., that p+(c) > 0 for all c. This is true both for 8-pinning 
and for bump pinning (see [5]) . 
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d) It has recently been shown by Caputo and Velen ik [14] that the Gaussian model in 
d = 2 has a wetting transition. Even more surprisingly in the light of c) above, 
other slightly modified models have a wetting transition in all dimensions. The 
case discussed in [14] is the continuous SOS-model, where U(x) = lxi. It is quite 
remarkable that the physics of the model is depending so strongly on the special 
details of the interaction. The proof given by Caputo and Velenik uses a simple 
but very clever argument of Chalker [15]. 

In the physics literature, slightly different models have been considered. The one 
having attracted most attention is a Gaussian gradient model of the type considered 
here, but not with a hard wall condition. Instead, the measure has a potential 'I/J and 
a Hamiltonian as in (4.1) , where 'I/J : IR ~ IR is a mixture of two exponentials: 

'I/J(x) = -€exp [-x/ç] + exp [-2x/ç], (4.2) 

where €, ç > 0 are parameters. The most interesting questions are connected with 
the behavior for € close to O. Remark that 'I/J(x) ~ 00 rapidly as x ~ -00, so this 
is acting like a somewhat softer wall. On the other hand, there is a negative part of 
the 'I/J-function near 0, whose depth and width depends on the parameter €. In fact, 
the width is of order log(l/€) and the depth is of order € for € '" O. For x ~ 00, 

'I/J(x) is evidently going to O. There is a paper by Lemberger [28] on this model, but 
the most interesting problems, especially the ones concerning the small € behavior, 
are completely open. From non-rigorous renormalization group considerations, one 
expects a rich behavior of this model for € '" 0 for different ranges of the ç parameter 
(see e.g. [10], [11]). 

Let me sketch the background and motivation for the consideration of this "double 
exponential" model. I am indepted to François Dunlop who introduced me to this 
topic. In physically more realistic models , like the Ising model, there is still consider
able uncertainty about the nature of the wetting transition, even with non-rigorous 
methods, and a sol ut ion is completely beyond reach of a mathematically rigorous 
treatment. I give a short discussion of the situation for the Ising model. Consider 
the three-dimensional Ising model, where interfaces are two-dimensional. Let us con
sider the Ising model, below the critical temperature Tc, and defined on a cubic box, 

say Bn ~f {-n, -n + 1, . .. , n} 3 
. Taking minus boundary conditions on the lower 

half x E aBn, Xl ~ 0, and plus boundary conditions on the upper half, introduces 
a two-dimensional random interface, which however may have "overhangs". It is 
known (by works of Dobrushin) that this interface remains stiff if the temperature is 
small enough, i.e. , the fluctuations stay of order one. However, it is believed, but not 
proved rigorously, that there is a so-called roughening transition at some temperature 
Tr < Tc, meaning that for temperatures between these two critical values, the inter
face has fluctuations which grow logarithmically in n, whereas only below Tr they 
stay of order one. This is certainly one of the most prominent and challenging open 
problems in rigorous statistical mechanics, but physicists appear to be confident. Let 
us now modify the boundary condition slightly, taking the minus boundary condition 
only at the bottom of the box, while the rest of the boundary has plus boundary con
dition. The interface is then repelled by the bottom through the entropic repuls ion 
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effect. Let us now still modify the model by making it energetically advantageous 
for the interface to stick to the bot tom layer. This can be done by introducing an 
external field on the boundary layer at the bottom just inside the box. If we have a 
minus boundary condition on the bottom layer then this external field should favor 
plus spins. It is believed that such alocal attraction of the interface to the bottom 
layer leads still to another transition temperature Tw E (Tr , Tc), the so-called wetting 
transit ion temperature. For temperatures below, the interface is believed to stick to 
the wall in the sense that the deviation from the bottom layer is of order one, despite 
the fact that the temperature is above the roughening transition. This is the region 
of "partial wetting". On the other hand, for temperatures above Tw , the entropie 
repulsion should win, and the interface moves away from the boundary, i.e., one has 
"complete wetting". Many of the problems about the precise nature of this transi
tion are however completely unclear. A purely phenomenological theory has led for 
temper at ure T < Tw , but very close to, to a Gaussian approximation leading to the 
above Gaussian gradient model with 'Ij; given by (4.2). However, the derivation of 
this approximation is very far from rigorous (saying nothing about the existence of 
Tr and T w for the Ising model which of course has to be supposed in order to make 
sen se of this approximation) . The questions around this wetting transition are quite 
fascinating and to a large extent completely unsolved. 
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