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Abstract

We discuss the so-called entropic repulsion for gradient interface models.
This phenomenon appears when the random interface is placed on one side of a
hard wall. The combined effect of local fluctuations and global stiffness pushes
the interface away from the wall. Recently, there has been considerable progress
in understanding this effect in a quantitatively precise way for a certain class of
models. We describe this progress and related questions on wetting problems.

1 Random surfaces and random walk representa-
tions

Our “random surfaces” are special families of real-valued random variables defined
on a d—dimensional discrete lattice, in our case Z% Let A be a finite subset of Z<.
The random variables will be denoted by ¢;,: € A.

Let

DAY {ie ZN\A:3j € Awith|i — j| =1},

and A = AUGA. Furthermore, let U : R — [0, 0c0) be a symmetric continuous function
satisfying some (mild) growth condition for U(z), |z| = oo. We will not be very
precise for the moment, as we will stick to more restrictive assumptions in a moment.
We then define the probability measure P4 on R by

P) ™ Sexp |3 Y UG- )| [] s (L1)

(4,5)€A €A

where the summation is over unordered nearest-neighbor pairs, and ¢; = 0 for i ¢ A,
i.e., we take zero boundary condition. Z4 is of course the norming in order that PX
becomes a probability measure. In the case of A = A, = {-n,-n+1,...,n}¢ we
just write PY. We will usually drop the U from the notation. Clearly if d = 1, P, is
just the ordinary random walk tied down at both ends of the interval.
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A particular case is the so-called harmonic crystal, where U(z) = z2. In this
special case we denote the above measure by P§*™ which is a centered Gaussian
measure. Its covariances have a simple random walk representation: If 7,5 € A, then

Tali,j) & /RA ¢id; PR (dg) = EFY (/0 Lin,=i} ds) ; (1.2)

where (7;) s>0 is the continuous-time simple random walk on 7% with holding times
of expectation 1/2d, starting in ¢ under PRV, and 74 is the first entrance time in A¢,
which is of course finite as we have assumed A to be finite. To prove (1.2), remark
that

1 1
exp |3 X -6 | =ep |3 (-0
(i,7)EA
where (-,-) , is the usual inner product in R4, and Q¢(i) = Ejeﬁﬂj—il:l(‘bj — ¢i),
i € A, dloa =0, i.e., Q is the Q-matrix of the simple random walk with holding times
of expectation 1/2d, and with killing at A. Clearly

(~@)71 (G, ) = B ( [ 1{n,=j}ds) ,

and this is just ER™ (¢;;) .

From the random walk representation (1.2) and well-known properties of simple
random walk it follows for instance that ERa™ (¢2) is of order n for d = 1, logn for
d = 2, and stays bounded for dimensions d > 3. In the latter case a thermodynamic
limit Pha™™ exists. One should however remark that this random field has correlations
that decay only slowly. In fact, ['oo(i,j) = [eo(j — i) = ER®™ (¢;¢;) behaves like
|7 —i|~9*2 for |j — i| large.

Helffer and Sjostrand [24] discovered that there is a similar representation in the
case where U is uniformly convex. This was put in a probabilistic framework in
[20]. In order to avoid technical difficulties, we assume that U is twice continuously
differentiable and that there exists a number K € (0,1) with

KU"(z)<1/K,z e R (1.3)

To describe the random walk, we first have to introduce the standard reversible dif-
fusion process on R4 that has P4 as its invariant measure.

If H: R? — R is any smooth function, satisfying some appropriate growth condi-
tion, then by partial integration we have for any smooth test function f : R4 — R

0*f OH of )
exp[-H — — =— d¢ = 0.
Jouow @) 2 (52 ~ 56:38:)
Therefore, the diffusion process with generator

02 O0H 0O
5o~ 5aco)

i€EA
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has exp [-H(¢)] d¢ / [ exp[—H(¢)]d¢ as its stationary measure. Applying this to

HOE S Y U@i-4y),

(i,j)EA

one sees that the diffusion process (X;),5, on R* with generator

e 2 1 , 0
L=y (3712—5 > U<¢i-¢j>a75,.)

i€A JEA,|j—i|=1

has P4 as its invariant measure. Based on the paths (X;) of this diffusion process,
one constructs now a continuous-time jump process (nt)t20 on A that is killed upon
leaving A, and has jump rates from i to 7, |i — j| = 1, given by

1
0¥ (i,5,1) & SU" (Xei — Xr), (1.4)

where we set X; ; = 0 for j ¢ A. The joint process ((X¢,7m¢)),50  is @ Markov process
on R4 x A, with generator

LRG0 ELR@ )+ Y U'(gs - 6) (F6,9) ~ F(8,0),

JEA,|j—i|=1

where we set F(¢,j) = 0 for j ¢ A. We write T3, t > 0, for the semigroup of the
diffusion process, and T, t > 0, for the semigroup of the pair ((X;, M))i>0 - We denote
by P(4,i) the law of the joint process, starting in (¢,4). If f : RA — R is smooth, then
we denote by Df : R4 x A — R the function defined by

of
Df(¢,i) = .
£(.0) = 55-(9)
The basic observation that underlies the random walk representation is the following
commutation relation:

DL = LD, (1.5)

which is easily checked.
We denote by C4 the set of Coo-functions on R that grow not faster than expo-
nentially in any component.

Theorem 1.1. ([24],/20]). Let f,g € Ca. Then

covey(f,9) = [ dt 3 Ba (DG, )TiDg(i, )

Y icA
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Proof. We may assume E4(g) = 0. Then

Ea(fg) = — / " 4t Ea(fLT9)

50 of 0Tyg
[ aym (2L208) 0o
/0 ; " \0¢: 94
= / dt Y B4 (Df(i,)TiDgi, ),
L i€A

where the first equality uses the well known fact that D (f, h) def YicaBa (a%zt,- 53&)
is the Dirichlet form associated with the diffusion, i.e., D(f,h) = —E 4 (fLh) for any
nice functions f and h. This follows from partial integration. The second equality in

(1.6) uses (1.5). [ |

Applying Theorem 1.1 to the special case f(¢) = ¢i, g(¢) = ¢;, we get

/ ¢i¢jPA(d¢) = / ]E(i,dz) (/ AC ds 1{11.,=.1'}) PA(d¢) (17)
RA RA 0

Remark that in the harmonic case where the second derivative of U is constant, the
random walk is independent of the diffusion process, and we therefore get back the
random walk representation (1.2).

In principle, the random walk representation (1.7) should be nearly as useful as
(1.2). Indeed, as the diffusion process X; is rapidly mixing, the random walk 7
driven by (1.4) should not behave much differently from the standard one. There
are however considerable difficulties in implementing this heuristics and many of the
fine properties have not been proved. Consequently, many of the qualitatively precise
results presented here are known only in the Gaussian case. We will discuss this later
on.

2 Entropic repulsion for dimensions d > 3.

2.1 Statement of the result for the harmonic case

Entropic repulsion is a general phenomenon in statistical mechanics of random inter-
faces in the presence of walls. A wall is a fixed (typically nonrandom) layer impene-
trable for the random surface. Therefore, the surface has to stay on one side of the
wall. We consider here the simplest possible wall, namely the configuration identical
to 0, possibly only on some part of the region on which the random surface is defined.
In the case of our gradient type interfaces this just means that the surface has to have
a definite sign, for convenience a positive one. Thus, we consider the conditional law
for the random field P (-|Q}) where

O (g0, i€ A}
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In the physics literature, also more complicated types of wall to surface interactions
have been considered. We will give some comments about that in the final section.

What is the effect of the presence of the wall on the surface? The crucial point is
that the surface has local fluctuations, which push the interface away from the wall.
On the other hand, there are long-range correlations giving the surface a certain
global stiffness. In order to understand what is going on, consider first the case where
there are no such long-range correlations, in the extreme case, where the ¢; are just
iid. random variables. In that case, evidently nothing interesting is happening: The
variables are individually conditioned to stay positive. In particular, E (¢;|QF) stays
bounded for A 1 Z?. This picture remains the same for fields with rapidly decaying
correlations. However, gradient fields behave entirely differently, and so do interfaces
in more realistic statistical physics models. As the surface has some global stiffness,
the energetically best way for the surface to leave some room for the local fluctuations
is to move away from the wall in some global sense. This effect is called “entropic
repulsion” and is well known in the physics literature.

The first mathematically rigorous treatment of entropic repulsion appeared in the
paper by Bricmont, Fréhlich and El Mellouki [12], where some qualitative results were
proved. In a series of recent papers [4], [17], [18], and [5], sharp quantitative results
have been derived, the most accurate ones for the harmonic case.

In most of these and related questions, the two-dimensional case is the most diffi-
cult but also the most interesting one. In fact, interfaces in the “real world” are mostly
two-dimensional. I give a discussion of the two-dimensional case in the next section.
In the present one, I outline what is happening in the easier higher-dimensional case,
and mainly stick to the harmonic case. For gradient non-Gaussian models, some re-
sults in the same spirit have been obtained in [18], but they are not as precise as the
ones obtained in the Gaussian model. This is partly connected with the difficulties to
get precise information from the random walk representation (1.7). The case where
one starts with the field Ph3™ is somewhat easier than the field on the finite box
A, with zero boundary condition. In the latter case, there are some boundary effects
complicating the situation without changing it substantially. This is investigated in
[17]. T am dropping from now on the superscript “harm”, giving special mentioning
when the more general situation is considered. Despite the fact that we consider Py,
we consider the wall only on a finite box, i.e., we consider Py, (-|2f ), and we are
interested in what happens as n — oo. We usually write Q; for an. Our first task
is to get information about Py, ().

Theorem 2.1. Let d > 3, and consider the harmonic case. Then
a)
P (2F) = exp [-20(0)cap (A) n?2logn (1 + o(1))],
where A = [-1,1]*, cap(A) denotes the Newtonian capacity of A
cap(4) L inf {IVSI7: £ > 14},
and I'(0) = ' (0, 0) is the variance of ¢o under P,.
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b)
Eo (¢0|QF) = 24/I(0) logn(1 + o(1)).

Lp_ (106 ((d’i - Em(¢i|Q:))iezd) — Poo weakly,

where Lp_ (-lot) denotes the law of the field under the conditioned measure.

Part b) gives the exact rate at which the random surface escapes to infinity,
while part c) states that the effect of the entropic repulsion essentially consists of
only this shift: after subtraction of the shift, the surface looks as it does without
the wall. However, there is some subtlety in this picture. From the Theorem in
particular part c), one might conclude that lim,_,c Psof (Q}) = 1, where

2,/T(0)logn - ™
6, : RZ° - RZ" is the shift mapping 6, ((#3);eza) = (¢i + @);cza - But this is not the
- + 9
case. In fact P(,oé’2 o (%) converges rapidly to 0. As part c) states only the
weak convergence, this is no contradiction. Parts a) and b) of Theorem 2.1 had been

proved in [4], part ¢) in [18].

2.2 Sketch of the proof of the lower bound in Theorem 2.1 a).

The proof of part a) partly follows the standard pattern in large deviation theory,
but there are some uncommon aspects. I will give some more detailed comments
concerning the lower bound which is quite interesting also from the large deviation
point of view. In the next section, I will discuss in a bit more detail the proof of the
upper bound in the two-dimensional case, which is much more delicate than the proof
of the upper bound in higher dimensions.

Before I proceed, I recall one of the basic large deviation “philosophies” in the most
simple case of the Cramer Theorem for sums of i.i.d. real-valued random variables X;,
t € N, having exponential moments, and satisfying EX; = 0. We are interested e.g.
in the behavior of P (£ 3", X; > a) for fixed a > 0 and large n. The well-known
strategy is to ask what joint law @, for the vector (X1, ..., X,) would achieve that
the empirical mean exceeds a with large probability, and @, is “entropically closest”
to u™, where p denotes the law of the X;. “Entropically closest” means that the
relative entropy H (Qn|u™) is minimal. The relative entropy is defined by

def dP
1(P1Q) Y [10g 5P,
for two probability measure P and @), where the expression has to be understood to
be infinite if P is not absolutely continuous with respect to @ or if the logarithm of
the derivative is not integrable with respect to P. In the Cramér case, it turns out
that the optimal @, is again a product measure, say v™, and that v has to be chosen
inside the exponential family

v(dr) def e u(dzx) // e* u(dz) . (2.1)
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The parameter A is uniquely chosen such that v has exactly mean a. Cramér’s Theo-
rem then states that

N
P (% 2 Xi> ) = exp [~ H (@ulu") (1 + o(1))] = exp [-nH (v])(1 + o(1))].
- (2.2)

The actual proof of the lower bound can be given by the following well-known (and
easy) entropy inequality: If P and @ are two probability measures on an arbitrary
measurable space (2, F) and A € F, then

P(A) . H(Q|P)+e!
Q(4) QM4)

Typically, this inequality is useful only if Q(A) ~ 1, as otherwise one does not get
any decent information about P(A). In the Cramér case, this is achieved by choosing
A = X in (2.1) slightly too large, namely such that [ zv(dz) = b > a. Then by the

law of large numbers one gets v _1 Xi 2 a) — 1, and hence the lower bound
g i=

in (2.2) follows from (2.3) with P =p", Q =v" and A = {3, Xi/n > b} by
letting b | a in the end.

Let us now look at the modification this argument needs in order to prove the
lower bound in part a) or Theorem 2.1.

The first task is to find out what the appropriate (and hopefully optimal) measure
transformations are. Not surprisingly, at least in the Gaussian case, the cheapest
way to transform the measure Py, is to apply a shift. Furthermore, and this is not
completely obvious, the shift should be constant on the box A, say to a positive level
an, which still has to be determined. Outside A,,, we also apply a shift, otherwise
the entropy cost at the boundary would be too large. It is not difficult to see that
the optimal thing to do is to apply a shift given by the harmonic extension of a,14,
outside A,. Therefore, we consider the field (¢; + fn(i));cz4, Where

(2.3)

log 2 -

.\ def an for i€ A,
Fali) = { anPWV (r < 00) for ig¢ A, °’ (2.4)

where 7 is the first entrance time into A, of the random walk. We denote the law of
this field by R, , and we keep in mind that it depends on the choice of the sequence
a = (a,). The relative entropy is obtained by an easy calculation:

/1 [—1 (b= fa, (—Q)(& — fn))]
exp [~1 (¢, (—Q)9)]

= 5 (fru (_Q)fn) .

H (Rn.q|Ps) dR,,., (2.5)

Remember that @ is the Q-matrix of the random walk, i.e., the discrete Laplacian.
It is well known (and easy to see) that this expression behaves for large n in the
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following way:
1
H (RnalPoo) = 504 cap(A)(1 +o(1)), (26)

where A = [-1, 1]d, and cap(A) is the Newtonian capacity of A.

The next task is to determine the proper choice of a,. The discussion of the
Cramér case would lead to the conclusion that we should choose this sequence in such
a way that R, ,(Q;7) — 1. But this turns out to be wrong, a fact which leads to some
interesting complications as I will explain now.

Let us first derive a very crude lower bound for R, ,(Q;}). As the field of random
variables is positively correlated (and Gaussian), we can apply Slepian’s inequality
(i.e., the FKG inequality for physicists), see [27] Corollary 3.12, and get

[An]
Rn,a(Q:) 2 H Rn,a(¢i 2 0) = ((I) (_%)) ’ (27)

i€A,

where ® is the standard normal distribution function. This inequality appears to be
of a very doubtful quality, as is revealed by considering the case a,, = 0, in which case
it only tells that P, () > (1/2)!A»!, which is certainly not terribly impressive. None
the less, let us look at what happens when a,, — oo. Using the standard expansion
for the standard normal distribution function 1 — ®(z) ~ 2¢(z), £ — 0o, where ¢ is
the standard normal density, we get

Bna(0) > exp [— Al V;:O)cp( \/W) <1+o<1>)]. 28)

The bound goes to 1 as soon as a, > 1/2dI'(0)logn. On the other hand, if a, <
(1—€)4/2dI’(0) log n with € > 0 arbitrary, then the bound goes to 0 and therefore does
not appear to be very useful. Of course, one may ask whether R, ,(Q;}) really goes to
0 in the latter case, as the application of the Slepian inequality might be quite crude.
However, it can in fact be proved that R, .(Q;}) — 0 for a, ~ (1 —€)4/2dI'(0) logn.
Therefore, a, = 1/2dI'(0) logn is the border line case for which we seem to be able
to get anything useful out of the entropy inequality (2.3). Applying it together with
(2.6) and the above choice of the sequence (a,), we get the bound

P () > exp [—dI'(0)cap(A)n? 2 logn(1 + o(1))] . (2.9)

This bound is of the right order, but the constant in the exponent is the wrong one,
as is seen from Theorem 2.1 a). We may ask who the culprit of this failure is. It turns
out that it is not the inequality (2.7) but the entropy inequality (2.3), as I will now
explain.

At first sight, it is not clear why the above argument should not give a sharp
lower bound. The reader of course knows that this is not the case, at least if he
believes in the statement of the Theorem. I present a heuristic argument that gives
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the asymptotic behavior stated in part a) of Theorem 2.1. However, the reader will
realize, that the heuristics is somewhat at odds with the use of the entropic bound
propounded above. The device is just to match the right-hand side in the Slepian

inequality (2.7) with exp [—~H(Rp|Ps)]. The prefactor F(O)/ a, in (2.8) is of
course of no importance here, as the behavior of the right-hand side is mainly deter-
mined by ¢ (an / VT (O)) in the exponent. (As a side-tracking remark, I would like

to mention that this prefactor is of crucial importance in the proof of the absence
of a wetting transition for dimensions d > 3 in [5].) Remark also that the right-
hand side of (2.8) depends much more sensitively on the sequence (a,) than does
exp [~H(Rn,q|P)] = exp [—-3a2n?~2cap(A)(1 + o(1))] . Therefore, the match essen-
tially is achieved by equating the “capacity rate” n?~2 with |A,|exp [— a2/ 2I'(0)],
leading to

an ~ 24/TI'(0)logn,
and with this choice we get
exp [—H (Rp,q|Pso)] = exp [—2I(0)cap(A)n?~?logn(1 + o(1))]

which is the correct behavior. However, the lower bound cannot be obtained directly
via the entropy inequality, as R, o (;}) — 0.

The way out of this problem is to make a decomposition of the random field into
a part which keeps the long-range dependencies but suppresses the local fluctuations,
and a second part that keeps the fluctuations but has rapidly decaying correlations.
The entropy inequality is then applied only to the first one. In [4], this splitting
was done in a rather tricky way. In later applications [18], [5] it was realized that
the splitting is a variant of a well-known and simple splitting routinely used in field
theory. Remember that the covariances are given by I' = (—Q)~!, where @ is the
discrete Laplacian. We now introduce a so-called mass, i.e., we consider the operator
—Q + €2 and a corresponding inverse

f =\
I ¥ (—@+¢?)7 .
This is the covariance matrix of a Gaussian field with a random walk representation
where the random walk has a killing rate 2. Therefore, it is easy to see that these
covariances are exponentially decaying. On the other hand, if € is small, then the
above modification has not much effect on the short range correlations. If we consider
now

fe déf - Fsa
then this is still positive definite, i.e., the covariance matrix of a Gaussian field. This
field essentially keeps the long range correlations of the original field, but suppresses
the local fluctuations. According to this splitting, we decompose the field variables
¢; into independent parts:

¢i = ¢ + 6.
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With this decomposition, we have separated the two problems. We apply the argu-
ment with the entropy bound only to the field $ def (af ) i A simple but crucial
observation is that the relative entropy for this field underz Esh'izfts given by f, in (2.4)
behaves in exactly the same way as for the original field. This is coming from the
fact that this relative entropy is a “long range” quantity not affected by the cutting
of the local fluctuations. The reader may easily check this. Therefore, we have for
anye >0:
2
H (Pc>o (fn +é e ) | B (55 € )) = %”n"‘%ap(A)(l + 0(1)).

The o(1)-term is understood to be for n — co, and depends on . As remarked above,
we essentially have killed the local fluctuations in the 55 —field. Applying Slepian’s
inequality as above, we therefore have P, ( fot o€ Qj) — 1 for a,, = cy/logn with
any ¢ > 0 provided we choose £ small enough, and from that we would get estimates
on Py, (ZE € QI) . However, we are not really interested in this probability as we
still have to take into consideration the ¢$ variables, which we have neglected for the
moment. The idea is not to look at Ps ((ZE € QI) , but at the probability of some
much more restrictive event, namely

P, (gf > py/logn for all i € An),

where we choose p slightly above the “optimal height”, i.e., p = 24/I'(0) +6 with some
small . If we now choose ¢ small enough, suppressing the local fluctuations in the
@S variables as far as necessary (depending on the choice of §), we get by the above
procedure, using Slepian’s inequality and the entropic bound:

Puo (% > (2v/T(0) +6) /logn for all i € A,)
> exp [—2(1 + ¢(6))T'(0)cap(A)n??logn],

with ¢(d) — 0 for § — 0. This is just coming from relative entropy considerations, the
procedure to apply the entropy inequality being exactly the same as in the Cramér
case, this now working as we can suppress the local fluctuations by choosing € appro-
priately. Remember that these local fluctuations had brought the problems responsi-
ble for not getting a better bound than (2.9). A moment’s reflection reveals now that

we are done:
% > (2VT0) +6) Viogn for all i € A, )

Puo () > P (94
x Poo (% > (2V/T0) + ) v/iogn for all i € A, ) ,

and
Peo (¢f 2= (2\/IT0) + 6) Vlogn for all i € An) > exp [_nd—2—n(5)] ,

again by Slepian’s inequality, with n(d) > 0, 7(d) — 0 as § — 0. We therefore obtain
the lower bound, by letting § — 0 in the end.
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2.3 Sketch of the proof of the upper bound in Theorem 2.1 a)

I don’t discuss the upper bound in detail, but I give a sketch of an argument giving
an upper bound of the right order but not the correct constant.

We distinguish between even and odd points in A,. A point is called even if the
sum of its components is even, otherwise it is called odd. Evidently

Poo () < Poo (¢i 2 0, i even)
= Ex (1{¢,->0, i odd} Poo (¢i 20, 7 even ’(¢j)]’ odd)) .

The effect of this conditioning is of course very simple. Let us phrase it for later
purposes in a slightly more general situation. Consider A C A, and the o-field F4
generated by (¢;)ica. Then the conditional distribution of the field given Fj4 is still
Gaussian. Furthermore

E($ilFa) =Y P (ranras = )55 (2.10)

jEA

where 74 is the first entrance time in A, and

TA/\TA%
cov (¢u¢]|]:A) = ]EZRW (/0 1{173=j}d8) . (211)

Applying this to our situation, we see that conditioned on (¢;) j odd the variables ¢;, i
even, are i.i.d. with a fixed variance 0 = 1/2d < I'(0). The conditional mean of ¢; is
just the arithmetic mean of the neighboring ¢;, which we denote by ¢,. We therefore
get

- (¢l 0, zeven| ®;) j Odd) H Pt (2.12)

i even

where ¢ is a centered normally distributed random variable with variance o?. Remark
next that the above expression is very small, unless most of the ¢; are quite large. For
instance, if half of the 3(2n)¢ variables ¢; are < dv/Iogn, then the above expression
is roughly

2 HeDE
(1 — exp [—6 logn]) ~ exp [—cn g~ ] def p(n), (2.13)

202
if 82/20? = 1. This is negligible with respect to the desired bound. Therefore, we get

o ] & B (Ei > §4/logn for half of the even i, ¢; > 0 all odd j)
+p(n) (2.14)

( 7 L k>3 logn) p(n).

i even
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By an elementary computation, we have

<(2 )4/2 Z ¢z> _n—d+2//A ) (z,y)dzdy x (1+ 0(1)),

i even

where (—=A)~!(z,y) is the standard Green kernel of the d-dimensional Laplacian.
Therefore

Py () < exp [-Cn??logn].

This is a bound of the correct order, but the constant C is not the optimal one. I
will now give a sketch how the above procedure can be trimmed to yield the correct
constant.

First I present some straightforward ways to optimize the above procedure. For
instance, it is not necessary to have half of the ¢; to be < é/logn in order to get
(2.13). A bound of the same order is obtained if an arbitrary proportion of the ¢,
variables is below this level. Also, on the right hand side of (2.13), one does not really
need n%~! in the exponent. It suffices to have something slightly larger than n?¢=2,

and therefore one can nearly take § = 20. Using this observation, one obtains easily

Py () < P ( T Z ;> (20 —¢) \/logn)

i even

with € > 0 arbitrary, as soon as n is large enough, and this yields

S axa(=8)7(z, y)dzdy

but the reader.may check that this is still not the correct constant of Theorem 2.1.
There are two reasons for this failure. The first one is easy to amend: It is bad to
switch to the “global” arithmetic mean of the ¢, variables in the second inequality
n (2.14). The correct way to do this step is to chop the box A, first into finitely
many subboxes, still of macroscopic scale, say of side length en, do the arithmetic
mean procedure separately for all the subboxes, and letting ¢ — 0 in the end (after
the n — oo limit). The crucial point is that we get estimates of the type (2.13) on
the event that a small proportion of the @; in any of the en-boxes is below the critical
value § which is slightly smaller than 2. The reader may check that in this way, we

can replace 1 /ffoA(—A)‘l(a;, y)dzdy on the right hand side of (2.15) by cap(A),
i.e., we are getting

Py (O}) < exp [— e {1+ 1)) ni=2log n] , (2.15)

Py () < exp [—20%cap(A)(1 + o(1))n* 2 logn| (2.16)

Now we would be finished, if only we could replace o2 by I'(0). Remember however
that o2 < I'(0).

Here is a sketch how to handle the problem properly. The even-odd procedure is
just not the proper thing to do. Instead of conditioning on the odd variables, one has
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to take a larger but still microscopic subgrid. The field on which one is conditioning
is (¢;) jerzar L large. For points ¢ away from the grid points, e.g.

i€ (L2 (L/2,...,L/2)) 0 A, (2.17)
the conditional variance is 2, which satisfies
lim o =T(0). (2.18)
L—oo

This follows easily from (2.11) and removes the problem of the conditional variance
being too small, but there are evidently some difficulties. A seeming one is that we
have to estimate

Poo () < Poo (43, i € App), (2.19)

which may look bad because |A,, 1| is much smaller than |A,|. However, it turns out
that (2.19) is sharp on the level of precision we are considering. Keep in mind that
we are looking at a phenomenon that is essentially of “long range” character, so it
should be not surprising that such a thinning is not bad for the estimate we have
in mind. We want to do the same conditioning procedure as explained above, but
now conditioning on the (¢;) jeLzd- An evident problem is that the ¢; , i € Ap L, are
no longer conditionally independent. The conditional covariances are expressed by
(2.11). From this representation, it is evident that these conditional covariances are
rapidly decaying. This is then sufficient to apply hypercontractivity estimates which
essentially give an estimate similar to the right-hand side of (2.12). Summarizing:
One fixes L and then with some additional work one can get the same estimates
as with the even-odd procedure, and one gets an upper bound like (2.16), but with
o? replaced by o%. Using (2.18), this gives the desired upper bound. For details,
see [4]. Anticipating already the discussion for the two-dimensional case in the next
section, it should be remarked that the main problem there is that such a “one step
conditioning” is no longer appropriate. In two dimensions, any conditioning with
a finite L is “killing” too much variance, and only L = L, = n® with a < 1 but
arbitrary close to 1 would leave the variance intact. But then, the estimate (2.19) is
becoming really too bad. We will give some explanations in the next section how to
solve this problem.

2.4 Final remarks

1. The analysis of Py, (2;}) as sketched above also makes parts b) and c) of Theorem
2.1 very plausible, but there are some substantial additional technical difficulties
to really prove these, especially part c). I will not discuss this here.

2. An analysis of the type explained above can also be done for more general non-
Gaussian gradient models, where the analysis of the variances and covariances
can be performed with the Helffer-Sj6strand random walk representation intro-
duced in Section 1. This has been done in [18]. However, the estimates available
in this case are less precise than in the Gaussian case. For this reason, estimates
with precise constants have not (yet) been obtained.
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3. I have restricted the discussion to the case where one starts with the infinite-volume
Gaussian field Py,. It might be more natural to consider the finite-volume mea-
sure P, with zero boundary condition and condition it on . This has been
done in [17]. The first task again is to investigate the behavior or P, (Q;}) . This
probability is however dominated by boundary effects: it is substantially smaller
than Py (%}), because the event that the field is positive near the boundary
has small probability. With the zero boundary condition, the variables ¢, for %
near the boundary are essentially nearly independent. It is therefore clear that
P, () is at most of order exp [—cn?~!] . This is in fact the correct asymptotic
behavior, as has been proved in [17]. The behavior of the variables away from
the boundary is however not much affected by the zero boundary condition and
b) and c¢) of our Theorem remain correct (with the same constants) also in this
case.

4. In the Gaussian case, it is actually possible to get an asymptotic evaluation which
goes beyond the leading order term. This has been important in a recent work
on so-called wetting transitions [5]. I will make some comments about these
problems in the last section.

3 Entropic repulsion in two dimensions

3.1 Outline of the two-dimensional situation

We again consider only the harmonic case. If the lattice is two-dimensional, a ther-
modynamic limit of the measures P,, does not exist as the variance blows up. P, (%)
is of order exp[—cn], as has been shown in [17]. As remarked in the last section,
this is mainly a boundary effect and is not so relevant for the phenomenon of the
entropic repulsion. To copy somehow the procedure of the last section, consider a
subset D C V = [-1,1]? which has a nice boundary and a positive distance from the

boundary of V. To be specific, just think of taking D df \V' for some A < 1. Then

let D, “ nDNZ?2 and Qb 4 {¢; > 0,i € D,}. In contrast to P, (), P (QF,)

decays much slower, but still faster than any polynomial rate. In [6] we proved the
following result:

Theorem 3.1. Let g def 1/2x.
@)

. 1 +
P N = e D),
lim a 72 log P.(Q},) 2g capy (D)

where capy (D) is the relative capacity of D with respect to V :

capy (D) & inf{||Vf||§ fEeHVV), f > 1onD}.

Here, H} (V) is the Sobolev space of (weakly) differentiable functions f with
square integrable gradient and floy = 0.
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b) For anye >0
lim sup Py (|¢z — 2y/glogn| > 5108"|QE,,) =1

Nn—00 4

This corresponds to parts a) and b) of Theorem 2.1. Part c¢) does not make sense
here as P, does not exist.

I will not give the proof of Theorem 3.1, it being quite complicated. I will however
explain the main technique for an easier hierarchical model. First, one should point
out that the lower bound in a) is quite easy, in fact easier than in the case d > 3
discussed in the last section. In order to understand why this is so, we step back
to the heuristic explanation of the last section, which works here too, and gives the
correct answer. We need precise information on the variances and covariances 'y (%, )

given by (1.2). For i € A, we write 02(i) < ', (i, 9).
Lemma 3.2.

sup [02(i) — glogn| < ¢(9),
D.

where c(d) depends only on § def dist(D, 0A).

The proof is an easy consequence of Theorem 1.3.3 of [26].

According to the heuristics given in Subsection 2.2, we should find a sequence
a = (an) such that there is an approximate match between exp [—H(Rp q|P»)] and
Rn,a(QB"), where

f
Rnadj P (¢+fn (= ')’
fn being given in our case given by

1) def an fori € Dy,
* - ]P’?W(‘I'D'I <T3A") fOI‘iEAn\Dn
The relative entropy in the two-dimensional case is given by
a2

H(Rn,a|Ppn) = —capv( )(1+0(1)).

(See Lemma 2.4 of [1].) Estimating Rn,a(QJ[)n) again by Slepian’s inequality, we get

Roa@5,)> [[ Pattitan>0= [T (1-ew[-525]) @)

i€D, i€D,

a2 |Dn|
~(1- —-—=
( . [ 2glogn]) !

the last approximation by Lemma 3.2. An approximate matching of the right-hand
side of (3.1) with exp[—H (R,,|P,)] is achieved by taking a, ~ 2,/glogn and
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then exp [—H (Rp 4| Pn)] = exp [—2g (logn)? (1 + 0(1))] . Remark however, that if we

choose a,, a tiny bit larger, then the right-hand side of (3.1) is tending to 1, without
exp [—H (Rn,q|Pn)] being much changed. This contrasts sharply with the case d > 3,
and makes things easier for the lower bound. Indeed, we can just apply Slepian’s
inequality together with the entropy bound.

On the other hand, proving the upper bound is much more delicate. To see the
reason for this, we try to repeat the procedure outlined in Section 2.3. Consider again
the field variables ¢; for i € A, 1 which was defined by (2.17) conditioned on LZ>2.
It is not difficult to see from (2.11) that for a fixed number L, o} stays bounded in
n. This variance is in fact up to some negligible correction the same as if we would
just consider the box Ay with zero boundary conditions and calculate the variance
of the field in the midpoint. Therefore, 0% is of order glog L. This means that we
have to choose L = L,, essentially of order n, or maybe slightly smaller, in order that
02 ~ var(¢;). But this is of course disastrous for the proof outlined in Section 2.3,
because |A,, 1| is then way too small.

The way out of this problem is by applying a multiscale analysis, where one does
successive conditionings on many intermediate scales. The details are quite delicate,
and it is best to explain the procedure for a simplified hierarchical model which is
however catching all the essentials that are necessary for a treatment of the harmonic
case.

3.2 Entropic repulsion for a hierarchical model

We call a sequence a = ajaz...anm, o; € {0,1}, a binary string; £(a) = m is the
length. & is the empty string of length 0. We write T for the set of all such strings of
finite length, and T;, C T for the set of strings of length m. If & € Tp,, 0 < k < m,
we write [a]; for the truncation at level k :

def
[a1a2 . .am]k = 0ag...0k.

Also, if & € T, 8 € T, then we write a3 € T for the natural concatenation. If «,
B € T, we define the hierarchical distance

du(a, B) - 2 max {k < m: [a]r = [Blx}

We consider the following family (X, )ac7 Of centered Gaussian random variables:

Xo d——ifO, and fora €T, f(a) =m>1

def

2
Xa = 61111 + €a1a2 +...+ égllaz...am’

where (£ 4. .5 )ien or..a.cr, 18 a family of independent centered normally distri-
buted random variables with variance 4. Evidently, the 2™ random variables X,,
a € Ty, all have variance ym. More generally

cov (Xa, X5) = 7(m — diz(a, B)). (32)
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It is also easily proved by induction on m that

va.r(2 m Z X)—'y (1-27m).
a€Tm

We argue now that there is much similarity between the two-dimension harmonic field
(¢i)iep, and the field (X4), ¢, - To see this, we first match the number of variables,
i.e., put 2™ = |Dy|. As |Dy,| is of order n?, this means that m ~ 2logn/log2. Then
we should also match the variances, i.e., take v = g/2log 2. For the free field (¢;), it
is known that cov(¢;, ¢;) behaves like g (logn) /log|i — j|, if 4,7 are not too close to
the boundary. This follows from the random representation and standard results on
two-dimensional random walks (see [26]). Comparing this with (3.2), we see that for
any number s € (0, g)

#1{J € Dy : cov(¢i, ¢;) < slogn} ~ #{B € Ty : cov (Xa,Xp) < slogn}  (3.3)

to leading order, for any i € D,,, a € Ty,. Therefore, the two fields have roughly the
same covariance structure. The above criterion (3.3) looks a bit formal, but in fact
the two fields are qualitatively (and even in many quantitative aspects) very close.
The hierarchical field clearly has a much simpler structure. For instance, there is no
real geometry involved. The zero boundary condition for the ¢-field corresponds for
the hierarchical field to the setting X = 0.

From now on, we set v = 1. This is just a scaling which is of no importance.

Theorem 3.3. Let Q) = {X, >0, foralla € T, }
a)
P () = exp [-m?log2(1 + o(1))] .
b) For anye >0

lim P

m—00 (

—v/2log m‘ ’Q+ 0,

where a is understood to belong to T,,.

We give only a closer discussion of part a). As already remarked, the lower bound is
easy, and is a direct consequence of Slepian’s inequality. The upper bound follows from
properties of the distribution of the maximum of the variables, as will be explained
now.

Proposition 3.4. Given n > 0, there exists b(n) > 0 such that

P (él’é%?( Xa < V/2log2(1 - n)m) < exp [—b(n)m?]

for large enough m.

Before proceeding further with the discussion of this result, we show that it implies
Theorem 3.3 a).
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Proof that Proposition 3.4 implies Theorem 3.3 a). We fix k € N and assume
m > k. We write the elements a € T}, as a = B, 8 € Tk, ¥ € Trm—i and

Xo=Xp+Y" ",

where (Yﬁ(;"_k)).,eTm_k for varying § are independent copies of (X,)yeT,,_.- Set
Fir = 0(Xg : B € Tx) and fix an arbitrary A > 0. For [ € N, let

AP = (BB e Ty : X5 < \/2log2(1 — N)m} > 1} € Fi.
According to Proposition 3.4, there exists b(A) > 0 such that on A,(k)
P(Xq 20Va€Ty|Fr)
< P( inf Y™ > —\/2log2(1 — A)m, for I fixed ﬂ/s))

YETm -k
< exp(=b(A)Im?).
(for m large enough). We therefore get
P(Xo > 0,a € Ty) < P(AM°) + exp [-b(N)Im?], (3.4)

for any [, k, A, if m is large enough. Depending on ), we choose [ so large that
b > 10 (I > Io()), say). Let A = {B € Ty : X5 < (v2Iog2 — A)n}. On AP we
have |A| <1 — 1. Putting B = {2 kY sea Xé,k) < —/\n}, we get

P (BnA"‘)c) < 2 max P [2°F ZX(’“) < - m|.
i S\1) sct g =
|S|<t—1 Bes

As Var (2_" Y ses X/gk)) < 272Kk(l — 1)2, we can estimate the right-hand side by

/\2 2
m < exp(—10m?),

< M exp(——2 0
S 2 exp(—ommrpg — 1) S

provided k > ko(),!) (m large enough). Combining this with (3.4), we get

P(Xa > 0,a € Ty) < P(AY N B°) + 2exp(—10m?) (3.5)
for I > lo(N), k > ko(1,)). On A(k)c N B¢ we have
27k Z Xg = 2_"2Xg+2"°ZXg
BET, BEA BEA

/\m+ \/2log m 2> /2log2m — 3\m
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by still increasing k (if necessary). Implementing this in (3.5), we get

_1(/2TgZ - 3’

i 1
llmsupmlogP(Xa>0,a€Tm)< 2 1_92-Fk

m—o0

Letting k — oo, and then A — 0, we get the upper bound in Theorem 3.3 a). As
remarked before, the lower bound is an easy application of Slepian’s inequality.

3.3 Discussion of Proposition 3.4

The result was actually known since long, except perhaps the Gaussian tail estimate.
For instance Biggins in [3] proved that

lim DB8%eeln Xa _ /5707 (3.6)

m—o00 m

in probability, and this has been reproved many times. The constant is somewhat
surprising, since it is the same as if the variables would be independent: If Y, are 2™
i.i.d. normally distributed random variables with variance m, then it is easy to see
that

. maXaer,, Yy
rr}gnoo — = v2log2. (3.7)
Therefore, the Biggins result states that, for the maximum, the hierarchical model
behaves to leading order in the same way as if the field variables would be independent.
Perhaps the easiest way to understand (3.6) (but perhaps not to prove it) is to
replace the binary tree of depth m by one with a fixed (large) number K of branching
levels. So we consider variables

def
Xt(lK) é 6;1 + 5(211&2 + R + 65...01{’ (38)

where a; € {1,...,2™/K} andthe &, . arenormally distributed with expectation
0 and variance m/ K. We again get 2™ random variables with variance m, but a slightly
different covariance structure. By (3.7), as m — oo (K fixed), we have

1 1 V2Tog2
m e boy 2 K
in probability, and for any a;,...,qa;
lma.x{i“ R v2log?2
m it Q1 yeee s Qi1 K *
From this one gets
1
lim — max X > 1/2log?2 (3.9)

m—oo MM «
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for any fixed K. The upper bound follows directly from Slepian’s inequality (also for
the binary tree case). This of course does not prove (3.6) in the binary tree case,
but as K is arbitrary, it makes it very plausible. Our proof of Proposition 3.4 (and
actually also in the ¢-field case) is based on a refinement and extension of the above
“finite K” argument.

Remark 3.5. Much more than just (3.6) or the statement of Proposition 3.4 is known
in the binary tree case, namely also the next order corrections which are of order
logm, and even the correct tail estimates: For m and u large enough, one has

P (gel%zt" Xa > V/2log2m — 2——2\/_3@ logm + u) < exp [—cu] (3.10)

P(max Xo € V2log2m — %logzlogm—u) < exp [—cu?] (3.11)

aGTm

There is no published proof for this, not even for the fact that —2—\/73-—m

proper correction. The result is however close to a result of Bramson [9] on branching
Brownian motions, and can be proved by an adaptation of his approach. Bramson had
announced results of this type in his paper, but they have never been published. The
Gaussian lower tail estimate in (3.11) is not proved in [9], also not for the branching
Brownian case, but it is actually not very difficult. It should also be remarked that for
the supremum of 2™ i.i.d. Gaussian random variables with variance m, the correction
to the leading order v/2log2m is only _Wflﬁfz log m, which is easily checked. Also
the lower tail in this case is doubly exponential, while the Gaussian tail in (3.11) is
the correct behavior in the tree case.

logm is the

Remark 3.6. Sidetracking a bit further, let us observe that the binary tree case is
the border line case where the above triviality of the maximum (to leading order) is
correct, i.e., where the maximum of the field of random variables is to leading or-
der at the same level as if they were independent. To give this statement a precise
meaning, consider again the above binary tree, but where the variances of the vari-
ables §(’§lmak, k < m, may vary with k, but still remain independent. For instance,
consider a continuous function f : [0,1] — (0, 00), satisfying [ f(z)dz = 1, and set
var(€% ,.) = f(k/m). Then the variances of the variables X, for a € Tp, is still m
(approximately). One may ask under what conditions on f (3.6) remains true. One
can prove that this is the case if and only if f is nondecreasing. The binary tree case
discussed before is the case with f = 1. For a discussion of various aspects of this and
related models and its connections with spin glass theory, see [16].

I give a proof of Proposition 3.4 including the Gaussian tail estimate. The proof
given here has the advantage to be quite robust, and a modification of it, using a
cascade of conditionings, has been used in the free field case in [6] to prove entropic
repulsion.

Before starting with the proof of Proposition 3.4, it has to be observed that the
most straightforward approach, namely an application of the second moment method
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fails. Define for A > 0

Np(N) d-—eif#{a €Tm: Xy > am}.

Then, neglecting factors which are only polynomial in m, we have

A2m

B (NmW) ~ 2mexp |- 257

which goes rapidly to oo if A < 1/2log2. If we would know that
vvar (Npm(A)) € E(Nim(N), (3.12)

then we could apply the Tchebychev inequality, or sharper versions of it, and conclude
that Np,(\) is large with large probability, and therefore maxqer,, Xo = Am with
large probability. The reader is invited to check that (3.12) is correct if A is small
enough, but that the opposite is true for A sufficiently close to 1/2log2, an effect
which is due to the correlations of the field. In fact, if the X, would be i.i.d., then
we could argue in this way.

One way to proceed is to consider intermediate levels like in (3.8), and prove, by
induction along the K levels, that the maximum is surpassing the appropriate heights
corresponding to the different levels.

We will repeatedly use some of the standard exponential inequalities for indepen-
dent random variables. A convenient one is the following:

Lemma 3.7. Let &, ... ,&, be i.i.d. real-valued random variables satisfying E€; = 0,
0% = E&}, ||€illoo < 1. Then

(

For a proof, see [2]
We first prove the following preliminary result:

n

Y &

i=1

42
>t] <2 e |,
- ) = exp[ 2na2+2t/3]

Lemma 3.8. There exist § > 0, b > 0 such that

2

P#{a€Tn:Xe >0} <2°™) ge™tm.

Proof. We use c as a generic positive constant, not necessarily the same at different
occurrences. Also, all inequalities are required to hold only for large enough m.

Without loss generality, we assume that m is even. If & € Ty, /s, let Y} def Xa,
£
Y2 L 6™+ + € o Then

P#{a€Tm:Xoa 20} <2™) S P#{a €Ty Y2 + Y2 >0} <2™)
Let A% {a€Tn;:Y) >-m/10} and define the event A def {|A] > 2™/*}. Then

P(A°) < P(AS, max Y! <m?) + P( max Y} >m?). (3.13)

€T /2 a€Ty 2
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Remark that

3

P( max Y]} >m?) e ™. (3.14)
aETm/2
On A¢ N {max, Y} < m?} one has
—m/2 1 _ o—-m/2 1 1 —m/2 2 Al
2 D Ya=2AQ Va4 ) V) <2A(AIM - A% )
a€Tm /2 a€A oA
€ s e A K e
70+ 2 "IN + 35) < ~ 35
as |A| < 2™/* on A°. Using this in (3.13) and using (3.14), we get
P(A) SP@ ™2 Y YIS —35) + e Sexp(-em?),
aETm/2
by Lemma 3.7.
Let now F; % o(Y, : a € Tp/2). We then have
P(#{a€Tp;:Ys +Y2>0} <2, A)
=F (IAP (Z Liyzy-v1} < gl .7:1)>
aEA
<E (].AP (Z 1{Y§>m/10} < 2m6| f1>)
a€EA
2m/4
<P Z Lersmptn € 27 |
i=1
where Y1, ... ,Yym/4 areii.d. centered Gaussian random variables with variance m/2.

Let 75 < 11y, 5m/10) — P (Y; > m/10). Remark that P (Y; > m/10) > exp[-m/90].
Choosing ¢ small enough, we have

om/4 om/4
P (Z Ly, >m/10y < 2 ) ( Zm >2 exp[—m/90])

=1

< exp[-2°7],
again by Lemma 3.7. [ |

We will apply Lemma 3.8 not directly to m, but to a small proportion:

Corollary 3.9. Let n > 0. Then there exist 6(n) > 0 and b(n) > 0 such that

P (# {a €Tym : Xo 20} < 2"“5(’7)) < exp [—b(n)m?].
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Proof of Proposition 3.4 We fixn > 0, K € N, to be chosen later on (depending
on 3). We put 7; ef n+ %(1 —n), 0 < i < K. Without further notice, we will assume
that 7;m € N. Let

'Y o€ T 1 X 20}

) .
r;= - { € Tyim : [a]n _ym € Li1, Xo 2 v/2log2 (K Kz) (1 —n)m} :

We fix some J > 0, which is at most equal to the §(n) of Corollary 3.9, and put
A Iy > 2

We will now show that A; has large probability. Before proceeding, a comment is in
order why we define the events A; in this way. Evidently, we are shooting for having
ICkx| > 1 with large probability, and therefore it appears that we should rather and
more simply consider the events {|I';| > 1}. Trying to copy somehow the proof of (3.9)
given above, we would like to prove that P (|[';| > 1| F;—1) has large probability on
{ITi=1| > 1}, where F; = o(&, . ..a;  J < mim). This would then do the job. However,
it seems impossible to proceed in this way, because of the still present dependencies
between the levels, which is exactly the reason why the direct second moment failed,
as we have explained above. The trick to define the A; as we do is to have on each
level 7, 0 < 7 < K, sufficiently many variables overshooting a certain bound, in order
that the second moment method works to perform the induction from one level to the
next.

Let us now proceed with the induction from level to level. We already know from
Corollary 3.9 that

P(4o) > 1 - exp(~b(n)m?). (3.15)

We claim that for arbitrary n > 0, and corresponding d(n) > 0, we may choose
Ko(n) € N such that for K > Ky, there exists dx > 0 such that

P(A;|Fi—1) 21— exp(—ed"'") (3.16)

on A;_;, i > 1. Clearly, (3.15) and (3.16) prove Proposition 3.4. In fact, depending
on 8 > 0, we take n = 3/2 and K > Ko(n) such that 1/K < /2. Then

P(Ak) > 1 —exp [-b(n)m?] — K exp [-e?*™] > 1 —exp [_%ﬂ)_mz] "
and evidently
Ag C {maxX v2log2 (l—ﬂ)m}

It therefore only remains to prove (3.16).
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On A;_;, we have at least u def gmé parameters a € Ty, _,m such that

Xa = V2log2 (% - ZI;—QI) (1-n)m.

We pick p such a’s, call them ai,...,a,. To each a; there correspond 2M M =

%(1 — n)m, Gaussian variables Zaialy 1 € J < 2M  of variance M such that the

variables X, with [a];,_,m € {a1,...,o,} are given by Xo, + Zoia, 1 <0 <
1 < j < 2M. Tt therefore suffices to estimate

u 2M

é
Zzl a °I >v2log2(1— n)——2—m \ <2™ (3.17)
i=1 j=1

from above. Let

def 1
Nij = Za ot >V2Tog2(1— n)—g-m’

and remark, that for different i, the 7);; are independent. Put n; def Z j=1Mij- Then

2m

1— K-1
ij —9®mp <Zij > /2log2(1 - n)Trn) >2
Jj=1

if m is large enough. Therefore,

B B
P (Z ni < 2'"6) <P (E (mi — Emi) < —2m6)
i=1 i=1
"
<P< (n: — Em;) 22"“’).
=1

Evidently, ||7i|lcc < 2M = 2“2m Our requirement now is that K > Ko(8), where
(1-7)/Ko < /3. (Remember that 7, § are already chosen, depending on 3.) Putting

— def
M = (mi — Eni)/|Ini — En;lloo, we get

(Z" < 2""5) <P ( dom| >

by Lemma 3.7. We therefore see that the expression in (3.17) is bounded above by
exp [—-2™%/3 /3], which proves (3.16). Therefore, Proposition 3.4 is proved.

4 Concluding remarks: Pinning and the wetting
transition

The problem of entropic repulsion is closely related to the so-called wetting transition.
Wetting appears for interfaces having also an attracting wall-to-surface interaction.
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This attraction is usually assumed to be very local: Only if the surface is very close
to the wall, then it feels the attraction. There are several ways to define such a local
attraction. The standard way in the physics literature is to change the Hamiltonian
in (1.1), i.e., %Z(i,j)ez U(¢: — ¢;), by adding some pinning potential, e.g. replace it
by

HO) 2 S Ulgi—65)+ X 0(60), (4.1)

(i,4)€A €A

where 1) is some function with values in R™, being nonzero only in a neighborhood of
0. If a hard wall is present as in Section 2, the function % has only to be defined on
R*. The wetting problem is arising when both types of influences are present, which
lead to a competition between the entropic repulsion and the pinning. A transition
occurs when at specific parameters there is a transition from a pinning dominated
situation to a repulsion dominated one. In physics jargon, this is a transition from
partial wetting to complete wetting.

It is however appropriate to discuss separately the pinning problem and leave out
for the moment the hard wall condition. I therefore first describe what is known
about the pinning phenomenon, in the absence of entropic repulsion. It is reasonable
to assume that ¢ : R & R™ is symmetric. A slightly different model which has been
introduced in [7] is called 4-pinning. Here one modifies the definition (1.1) by defining

Poc(df) s |5 3 UG- 45)| T] (@i +eso(dp)

e (i,j)EAn icAn

where € is a positive parameter. This model is technically slightly easier than the
pinning with the ¢-function, which we call the “bump pinning” case. However, all
the results which have been proved for the §-pinning case can also be derived (with
some technical complications) for the bump pinning one. A remarkable fact is that,
in any dimension, and for arbitrarily weak pinning, the field gets localized in a strong
sense, namely

a)
sup [ g0l Poc(d8) < 0
b)
sup [ 10, Po. (@) < Cexpl-mli - ]

for some positive C,m (which depend on €).

This has been proved in [13] for the harmonic case in dimension d > 3 (for bump
pinning) using reflection positivity. The drawback of this method is that it works
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only with periodic boundary conditions and the formulation actually needs some
modification. In the two-dimensional case, a) has been proved in [22] (also for the
Gaussian case). The proof however could not be used for b). Both a) and b) have
been proved in [8] by a modification of the arguments of [13], again with the usual
restrictions when applying reflection positivity. A full and satisfactory treatment has
been given in [21] and [25] covering also the non-Gaussian case (with U uniformly
convex). The dependence for instance of sup,, [ |¢ol P,.(d¢) on ¢ for small ¢, or of
the mass m in b) is quite an interesting problem. In [22] a bound of order y/log(1/¢)
(for d = 2) has been obtained. The correct dependence however is of order log(1/e),
as comes out of the analysis in [8] and [25].

The wetting phenomenon is appearing when one considers both pinning and a
hard wall condition. Therefore we consider

B (dp) X P (dglQ).

A natural question is which of the interaction effects is dominating the overall behavior
of the random field. It is not difficult to see that, for large €, the model is “pinning
dominated”. This is quite easy and has been proved in [7], but actually only in a
somewhat weaker formulation, namely by a pressure estimate. To be precise, we
consider the pressure

+ def . 1 ZAn,EPn,E(QI)
p(e) = nhm log XGRS

=00 |Ap|

The existence of the limit is easily established (see [7]), and also that p*(¢) > 0.
Naturally, p*(e) > 0 would mean that the model is pinning dominated, whereas
pT(e) = 0 essentially would mean that the pinning has no effect (at least not to
leading order). It is natural to expect that in the former case one would have strong
localization properties like a) and b) above, but this has not been proved and is
probably quite difficult. On the other hand, one would expect that if p*(¢) = 0,
then the model would behave essentially in the same way as without pinning, but
again, this has not been proved. Clearly, p*(g) is monotone in €, and p*(0) is 0. The
question of a wetting transition (in a weak sense) is whether or not there is a positive
interval of e-values where p* = 0. The following facts are known:

a) In any dimension, p*(e) > 0 for large enough e. This has been proved in [7] for
the Gaussian case and d = 2, but the argument works easily also in the other
cases.

b) The existence of a wetting transition is easy for d = 1. This has been proved for a
discrete random walk case by M. Fisher [22], but it is easy also for the gradient
models considered here (see [5]). The existence of a wetting transition is also
known for the Ising model in d = 2, i.e., where the interface is one-dimensional.

c) Recently, it has been proved that the Gaussian model in d > 3 does not have a
wetting transition, i.e., that p*(g) > 0 for all . This is true both for §-pinning
and for bump pinning (see [5]).
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d) It has recently been shown by Caputo and Velenik [14] that the Gaussian model in
d = 2 has a wetting transition. Even more surprisingly in the light of c) above,
other slightly modified models have a wetting transition in all dimensions. The
case discussed in [14] is the continuous SOS-model, where U(z) = |z| . It is quite
remarkable that the physics of the model is depending so strongly on the special
details of the interaction. The proof given by Caputo and Velenik uses a simple
but very clever argument of Chalker [15].

In the physics literature, slightly different models have been considered. The one
having attracted most attention is a Gaussian gradient model of the type considered
here, but not with a hard wall condition. Instead, the measure has a potential 1 and
a Hamiltonian as in (4.1), where ¢ : R — R is a mixture of two exponentials:

P(x) = —eexp[-z/€] + exp [-22/¢], (4.2)

where €,£ > 0 are parameters. The most interesting questions are connected with
the behavior for € close to 0. Remark that 1 (z) — oo rapidly as £ — —oo, so this
is acting like a somewhat softer wall. On the other hand, there is a negative part of
the 1-function near 0, whose depth and width depends on the parameter €. In fact,
the width is of order log(1/¢) and the depth is of order € for € ~ 0. For z — oo,
¥(z) is evidently going to 0. There is a paper by Lemberger [28] on this model, but
the most interesting problems, especially the ones concerning the small ¢ behavior,
are completely open. From non-rigorous renormalization group considerations, one
expects a rich behavior of this model for € ~ 0 for different ranges of the £ parameter
(see e.g. [10], [11]).

Let me sketch the background and motivation for the consideration of this “double
exponential” model. I am indepted to Frangois Dunlop who introduced me to this
topic. In physically more realistic models, like the Ising model, there is still consider-
able uncertainty about the nature of the wetting transition, even with non-rigorous
methods, and a solution is completely beyond reach of a mathematically rigorous
treatment. I give a short discussion of the situation for the Ising model. Consider
the three-dimensional Ising model, where interfaces are two-dimensional. Let us con-

sider the Ising model, below the critical temperature T, and defined on a cubic box,

say B, def {-n,—n+1,... ,n}3. Taking minus boundary conditions on the lower

half z € 0B,, z; < 0, and plus boundary conditions on the upper half, introduces
a two-dimensional random interface, which however may have “overhangs”. It is
known (by works of Dobrushin) that this interface remains stiff if the temperature is
small enough, i.e., the fluctuations stay of order one. However, it is believed, but not
proved rigorously, that there is a so-called roughening transition at some temperature
T, < T., meaning that for temperatures between these two critical values, the inter-
face has fluctuations which grow logarithmically in n, whereas only below T, they
stay of order one. This is certainly one of the most prominent and challenging open
problems in rigorous statistical mechanics, but physicists appear to be confident. Let
us now modify the boundary condition slightly, taking the minus boundary condition
only at the bottom of the box, while the rest of the boundary has plus boundary con-
dition. The interface is then repelled by the bottom through the entropic repulsion
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effect. Let us now still modify the model by making it energetically advantageous
for the interface to stick to the bottom layer. This can be done by introducing an
external field on the boundary layer at the bottom just inside the box. If we have a
minus boundary condition on the bottom layer then this external field should favor
plus spins. It is believed that such a local attraction of the interface to the bottom
layer leads still to another transition temperature Ty, € (T, T;), the so-called wetting
transition temperature. For temperatures below, the interface is believed to stick to
the wall in the sense that the deviation from the bottom layer is of order one, despite
the fact that the temperature is above the roughening transition. This is the region
of “partial wetting”. On the other hand, for temperatures above T, the entropic
repulsion should win, and the interface moves away from the boundary, i.e., one has
“complete wetting”. Many of the problems about the precise nature of this transi-
tion are however completely unclear. A purely phenomenological theory has led for
temperature T' < T, but very close to, to a Gaussian approximation leading to the
above Gaussian gradient model with ¢ given by (4.2). However, the derivation of
this approximation is very far from rigorous (saying nothing about the existence of
T, and T, for the Ising model which of course has to be supposed in order to make
sense of this approximation). The questions around this wetting transition are quite
fascinating and to a large extent completely unsolved.
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