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Abstract 

For each n ~ 1 we use the concept of "admissible arrays on n symbols" to 
define a set of positive integers Q(n) which is determined solely by number the­
oretical and combinatorial constraints. The set Q(n) is intimately connected to 
the set of periods of periodic points under iteration of nonexpansive maps. This 
paper provides a guide of recent joint work of the author with Roger Nussbaum 
and Michael Scheutzow. 

1 Introd uction 

In this section we present a number of examples and some motivation to study the 
large time behaviour of discrete dynamieal systems defined by iterating nonexpansive 
maps. 

Let K n denote the positive orthant in IRn
, M = (mij) be a nonnegative n x n­

column stochastic matrix, i.e., 2::7=1 mij = 1 for 1 :s; j :s; n, mij ~ O. Consider the 
discrete dynamical system 

x(k + 1) = Mx(k) (1.1) 

for k = 0,1,2, . . . with x(O) = xo, where x : N ~ IR and Xo E Kn is given. The large 
time behaviour of the orbits of Eq. (1.1) follows from the Perron-Frobenius theory 
[7] for matriees with nonnegative entries. In fact, for every Xo E K n , there exists 
ç = ç(xo) E Kn and an integer p = p(xo) such that MPç = ç, Mjç f ç, 1 :s; j < p, 
and 

lim Mjp xo = ç. 
)-+00 

(1.2) 

In other words, all orbits of Eq. (1.1) approach periodic points. Furthermore, the 
possible minimal periods of the periodie points that can arise, are precisely the orders 
of the elements of the symmetrie group on n letters. More general, if A is a nonnegative 
matrix with spectral radius equal to one, then all bounded orbits of x(k+ 1) = Ax(k), 
approach periodic points and the possible minimal periods of the periodie points that 
can arise are again precisely the orders of the elements of the symmetrie group on n 
letters. This result, in particular, imp lies that the large time dynamies of bounded 
orbits of x(k + 1) = Ax(k) is as complex as iterating a permutation matrix. For 
references and a proof of these results we refer to Section 9 of [14]. 

Dynamical systems of type (1.1) arise often in applications. An element x E Kn 
may be interpreted as the distribution of mass over finitely many containers Gi , i.e., 
for 1 :s; i :s; n, the ith-coordinate of x denotes the mass in container Gi . The vector 
M x is the distribution of mass over the containers after one time unit. Property (1.2) 



270 VERDUYN LUNEL 

may now be interpreted as follows, starting with any initial distribution of mass over 
the containers, one will eventually approach a periodic procedure how to redistribute 
the mass over the containers. This linear model of diffusion of mass is rather special, 
for example, the mass sitting at the top of container Gi is moved in exactly the same 
way as the mass at the bot tom of container Gi . 

A simple nonlinear diffusion model that eliminates this special feature of linear 
models can be constructed as follows. Suppose that with each container Gi , 1 ~ i ~ n , 
we associate infinitely many containers Gik of finite volume aik with 2:%:1 aik = 00 . 

The rule of the movement of sand between the containers now consists of two steps. 
Pour the sand from container Gi into container Gil until container Gil is full or 
container Gi is empty. Next repeat the same procedure with Gik for k > 1, until 
there is no more sand left in container Gi. If Mik (X) denotes the volume of sand in 
container Gik , then 

k-l 

Mik(X) = min(max(xi - Laij,O),aik) . (1.3) 
j=l 

We carry out this procedure for each of the containers Gi , 1 ~ i ~ n . After the first 
step all containers Gi are empty. In the next step we redistribute the sand in the 
containers Gik over the containers Gi according to a fixed rule 

'Y: {1,2, . . . ,n} x N -+ {1,2, . .. ,n}, (1.4) 

and the sand from container Gik is poured into container G-r(i ,k) . 
If Yj denotes the tot al amount of sand in Gj af ter these steps are completed, then 

Yj = L Mik (X) . 
-r (i,k)=j 

(1.5) 

Equations (1.3)- (1.5) define a map &y : Kn -+ Kn, where Yj is the jth-coordinate of 
&y(x). It is easy to see that &y preserves total mass, i.e., 

n n 

LR-r (X)j = LXj, 
j=l j=l 

and is order preserving, i.e., x ~ Y implies &y(x) ~ &y(y) , where x ~ Y if and only 
if Y - x E K n . The map &y defined by Eq. (1.3)- (1.5) is a special example of a 
nonlinear diffusion model studied in [1]. 

Let F : Kn -+ K n be a nonlinear map which preserves total mass and is order­
preserving. From aresult by Crandall and Tartar [2], it follows that F is [I-norm 
nonexpansive, i.e., IIFx - Fylll ~ Ilx - yllt , where Ilxllt := 2:7=1 IXjl· Akcoglu and 
Krengel [1] proved that if F is h -norm nonexpansive and has a bounded orbit (i.e., 
(IWj xoll)~l is bounded for some Xo E Kn), then all orbits under iteration of F 
converge to periodic orbits, that is, for every Xo E Kn there exists , = '(xo) and an 
integer p = p(xo) such that FP(,) =" Fj(,) f:-', 1 ~ j < p, and 

lim Fjp(xo) = , . (1.6) 
J-+OO 
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Furthermore, the pos si bIe minimal periods p are a priori bounded by nL This result 
suggests the importance of understanding the periodic points of lt -norm nonexpansive 
maps and it marks the beginning of a large amount of work in this direction (see [10] 
and the references given there). 

Define .1'3(n) to be the collection of maps 1 : K n ~ K n which are nonexpansive 
in the lt -norm and satisfy 1(0) = O. Scheutzow [16] showed that the minimal period 
p of a periodic point ç of a map 1 E .1'3 ( n) is less than or equal to the least common 
multiple of the integers from 1 up to n, p ~ lem (1, 2, 3, . .. ,n). Nussbaum [10] showed 
that this upper bound is in general not optimal and determined, for 1 ~ n ~ 32, the 
largest possible minimal period of a periodic point of a map 1 E .1'3 (n). 

In this paper we shall describe recent joint work with Roger Nussbaum and Michael 
Scheutzow [13, 14] building on earlier work in [12]. As a consequence of our main 
result we have the following remarkable facto The possible periods of periodic points 
of a map I E .1'3 (n) that can occur, can be realized in the map El, : K n ~ Kn defined 
by Eq. (1.3)- (1.5) for an appropriate choice of the function "(. So the large time 
behaviour of bounded orbits of x(k + 1) = F(x(k)) is as complex as iterating a map 
R'Y . 

This paper consists of four sections. In Section 2 we define some classes of maps 
and present our main result. In Section 3 we shall discuss and illustrate how to 
compute the possible periods of periodic points of maps I E .1'3(n) explicitly. In 
Section 4 we present some results from work in progress and discuss some open and 
related problems. 

2 Definitions and the main result 

The cone Kn = {x E IRn I X i ~ 0, 1 ~ i ~ n} induces a partial ordering by x ~ y if 
and only if y - xE K n. A map 1 : D C IRn ~ IRn is order-preserving if I(x) ~ I(y) 
for all x, y E D with x ~ y. If IJ (x) denotes the lh coordinate of I (x), then I is 
called integral-preserving if 

n n 

LiJ(x) = LXj for all x E D. 
j=l j=l 

We start to define some refinements of the class of maps .1'3(n). 

Definition 2.1. Define u = (1,1, . .. ,1) E IRn and consider the lollowing conditions 
on maps I : K n ~ Kn: 

(1) 1(0) = 0, 

(2) I is order-preserving, 

(3) I is integral-preserving, 

(4) I is nonexpansive with respect to the lt -norm, 

(5) I(Àu) = Àu lor all À > 0, 
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We define sets ol maps Fj(n), 1 ~ j ~ 3, by 

U : K n --+ K n 
1 I satisfies (1), (2), (3) and (S)}, 

= U : K n --+ K n 
1 I satisfies (1), (2) and (3)} , 

U : K n --+ K n 
1 I satisfies (1) and (4)}· 

A proposition of Crandall and Tartar [2) imp lies that if I : Kn --+ Kn is integral­
preserving, then it is order-preserving if and only if it is h -norm nonexpansive. Thus 
we see that 

If I : Kn --+ Kn is integral-preserving and order-preserving, one ean easily check that 
I satisfies (5) if and only if I is sup-norm-deereasing, i.e., 11/(x)lloo ~ Ilxll oo for all 
x ED. U sing this eharaeterization of F 1 (n) and a result of Lin and Krengel [3), we 
see that if f E F1 (n) and y E Kn is a periodie point of f, then there is a permutation 
a, depending on f and y, sueh that 

Examples of maps belonging to F1 (n) ean be eonstructed as follows. Let a and T be 
permutations of the set {I, 2, 3, ... ,n}. Define the map f : K n --+ K n by 

I(x)j = min{xu(j), I} + max{xr(j) , I} - 1, j = 1,2, .... ,n, 

even for sueh simple looking examples it is not easy to determine the pos si bie minimal 
periods of the periodie points of f. 

In order to obtain more information about the possible periods, we define sets of 
positive integers Pj(n) , 1 ~ j ~ 3, by 

Pj(n) = {p ~ 11 31 E Fj(n) and a periodie point of f 
of minimal period p}. 

Our theorems will deseribe the sets P2(n) and P3(n) , preeisely and provide eon­
siderable information about the set PI (n). 

Beeause F 1 (n) C F2 (n) C F3 (n) we have, by definition, 

(2.1) 

If Sn denotes the symmetrie group on n symbols and a an element of Sn then, by 
permutation of the eoordinates, a induees a linear map a that belongs to F1 (n) and 
it is easy to see that ç = (1,2,3, ... ,n) E K n is a periodie point of minimal period 
p equal to the order of a as an element of symmetrie group Sn. Thus PI (n) eontains 
the set of all orders of elements of Sn. However, in general, is PI (n) larger than the 
set of orders of elements of Sn . 

By eonstructing special maps one ean show (see [10) for Pl(n) and Section 8 of 
[14) for P2(n)) that the sets Pl(n) and P2(n) have the following properties 
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Theorern 2.2. Letj = 1 or j = 2. Ifpl E Pj(nd andP2 E Pj (n2), then 

lcm (PI, P2) E Pj (nI + n 2). 

Furthermore, if Pi E Pj (m) for 1 ~ i ~ r, then 

r lcm (PI, P2, . . . ,Pr) E Pj ( rm ) . 
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Claim (1) follows from concatenation of maps. If Pi E Pj(ni), i = 1,2, there 
exist maps h E Fj (ni) with, respectively, periodie points Çi of minimal period Pi· 
The map F : Kn1 +n2 -+ Knl +n2 defined by F (x, y) = (ft (x), h (y)) has aperiodie 
point ç = (6,6) of minimal period lem (Pl,P2). To prove the second claim, we use 
the following nontrivial observation. If there are maps h E Fj(m) with, respectively, 
periodie points Çi of minimal period Pi, then there also exists a single map F E F j (m) 

with periodic points ti of minimal period Pi, i = 1,2, ... ,r, simultaneously. Assuming 
the existence of such a map F : Km -+ Km we can construct a map T : Krm -+ K rm 

as follows 
T(Xl ,X2, ... ,xr ) = (F(Xr ),Xl, ... ,Xr-l) 

that has a periodic point ç = ( tI , . .. , t r) of minimal period r lem (PI , P2 , . .. ,Pr). For 
example, the map f : K 4 -+ K 4 given by 

f(Yl , Y2, Y3, Y4) = (min{Y3, I} + max{Y4, I} - 1, Yl, Y2, max{Y3, I} + min{Y4, I} - 1) 

belongs to F1 (4) and has periodic points (2,1,1,1) and (1,0,0, 1) of minimal period, 
respectively, 4 and 3. Consequently, 2 x lem {3, 4} = 24 E PI (8). Since 24 is not 
the order of an element of the symmetrie group on eight symbols, a nonlinear map is 
needed to have a periodie point of minimal period 24 in K 8 • 

Also note that, since Pj (l) = {I}, one has that Pj(n) C Pj(n + 1) for all n ~ 1 
and if P E Pj(n) and dip, then dE Pj(n) (j = 1,2,3). 

To describe the set P3(n) precisely, we use the notion of admissible arrays intro­
duced by Nussbaum and Scheutzow [12). 

Definition 2.3. Suppose that (L, -<) is a finite, totally ordered set and that ~ is a 
finite set with n elements. Let Z denote the integers and for each iEL, suppose that 
Bi : Z -+ ~ is a map. We shall say that {Bi : Z -+ ~ I iEL} is an admissible array 
on n symbols if the maps Bi satisfy the following conditions: 

(i) For each iEL, the map Bi : Z -+ ~ is periodic of minimal period Pi, where 
1 ~ Pi ~ n. Furthermore, for 1 ~ j < k ~ Pi we have Bi(j) i= Bi(k) . 

(ii) If -< denotes the ordering on Land mI -< m2 -< ... -< mrH is any given 
sequence of (r + 1) elements of Land if 

Bmi (Si) = Bmi+l (ti) 

for 1 ~ i ~ r , then 
r 

~)ti - Si) =t ° mod p, 
i=1 

where p = gcd ({Pmi I 1 ~ i ~ r + I} ) . 
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The concept of an admissible array on n symbols depends on the ordering ~ on 
L, but it has been observed in [12] that if ILI = m, we can assume that L = {i E Z 1 
1 ~ i ~ m} with the usual ordering and ~ = {j E Z 11 ~ j ~ nl. An admissible 
array {Bi : Z -+ ~ 1 iEL} can be identified with a semi-infinite matrix (aij), iEL, 
j E Z, where aij = Bi(j). For this reason, we shall sometimes talk about the "ith row 
of an array". We shall say that "an admissible array has m rows" if ILI = m. 

The period of an admissible array {Bi : Z -+ ~ 1 iEL} is defined to be the least 
common multiple of the periods of the maps Bi, iEL. 

Definition 2.4. Suppose that S = {qi 1 1 ~ i ~ m} is a set ol positive integers with 
1 ~ qi ~ n lor 1 ~ i ~ mand qi f:. qj lor 1 ~ i < j ~ m. We eaU S an array­
admissible set for n il there exists an admissible array on n symbols {Bi : Z -+ ~ 1 i E 
L} sueh that Bi has minimal period Pi, and a one-to-one map (J ol {1, 2, ... , m} onto 
L su eh that qi = Pu(i) . 

Definition 2.5. Q(n) = {lem(S) 1 Sc {1,2, ... ,n} is array-admissible lor nl· 

To become more familiar with admissible arrays and the set Q(n), we compute 
the sets Q(n) for 1 ~ n ~ 6 and refer to Section 3 for a systematie approach. 

First observe that if p is a prime and pOl E Q(n) for some a ~ 0 and n ~ 1, 
then pOl ~ n. Furthermore, if q has the prime factorization q = pf' . .. p~m and 
2:;:1 p? ~ n, then q E Q(n) (the maps Bi in the definition of an admissible array 
can be positioned in such a way that the ranges of the maps Bi do not intersect and 
this implies that the second condition in the definition of an admissible array is void). 
This last observation implies that the orders of the elements of the symmetrie group 
on n letters are contained in the set Q(n). These observations yield Q(l) = {1} , 
Q(2) = {1, 2} and Q(3) C {1, 2, 3, 6} . Can 6 E Q(3)? For this we need an admissible 
array with two maps BI and B2 with periods 2 and 3. Since n = 3 the intersection of 
ranges of BI and B2 is nonempty. Hence there exist h, SI such that BI (sd = B2 (h) 
and the second condition in the definition of an admissible array yields tI - SI =t 0 
mod 1. A contradiction. Thus Q(3) = {1, 2, 3}. Similarly Q(4) = {1 , 2, 3, 4}, Q(5) = 
{1, 2, 3, 4, 5, 6} and Q(6) C {1, 2, 3, 4, 5, 6, 12} . Can 12 E Q(6)? One cannot take an 
admissible array {BI, B2 } with periods 3 and 4, but there exists an admissible array 
{BI, B2 } with periods 4 and 6; define BI (j) = j mod 6 and B2 (j) = j + 1 mod 4. So 
Q(6) = {1, 2, 3, 4,5,6, 12} 

In earlier work Nussbaum and Scheutzow [12] showed that there is an intimate 
connection between the sets Pi(n), i = 1,2,3 and Q(n) which can be derived from the 
structure of the semilattiee generated by aperiodie orbit of a map in Fi (n), i = 1,2,3. 
To explain this connection we need some more definitions. If x, y E IRn

, we define 
x /\ y and x V y in the standard way: 

x/\y z, zi=min{xi,yd for1~i~n 

xVy .- w , wi=max{Xi,yd for1~i~n. 

If V c IRn
, V is called a lower semilattiee if x /\ y E V whenever x E V and y EV. 

If A c IRn , there is a minimal (in the sense of set inclusion) lower semilattiee V =:) A, 
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the lower semilattice generated by A. If lAl < 00, it follows that IVI < 00. If V is a 
lower semilattice, a map h : V -+ V is called a lower semilattice homomorphism oE 
V if 

h(x 1\ y) = h(x) 1\ h(y) for all x,y EV. 

If W C IRn is a lower semilattice, h : W -+ W is a lower semilattice homomorphism 
of Wand ç E W is a periodic point of minimal period p of h, we let V denote the 
fini te lower semilattice generated by 

From the definitions it follows that h(V) C V and hP(x) = x for all x E V. In 
particular, hIV is a lower semilattice homomorphism, hIV is one-to-one, onto and 

is also a semilattice homomorphism of V . 
The relevanee of these ideas in our situation is indicated by the following theorem 

due to Scheutzow [16] . 

Theorem 2.6. Suppose that f E F3(n) and that ç E K n is a periodie point of f of 
minimal period p. Let A = Uj (ç) I 0 ~ j < p}. If V denotes the finite lower semilat­
tiee generated by A, then f(V) C V, flV is a lower semilattiee homomorphism of V, 
fP(x) = x for all x E V and UIV)-l = fp-11V is a lower semilattice homomorphism 
ofV . 

Definition 2.7. If f : D C IRn -+ IRn , we shall write f E 91 (n) if and only if D is 
a lower semilattice f(D) CD and f is a lower semilattice homomorphism of D. We 
shall write p E Ql (n) if and only if there exists a map f E 91 (n) and a periodie point 
ç E Kn of f of mini mal period p. 

From Theorem 2.6 it follows that P3(n) C Ql (n). Our main theorem [13] describes 
the situation precisely. 

Theorem 2.8. For every positive integer n 

The inclusion Ql(n) C Q(n) follows from [12] and the inclusion Q(n) C P2(n) is 
proved in [13] by explicitly constructing a map &y defined by Eq. (1.3)- (1.5) with 
a periodic point of minimal period q from a given admissible array {Bjlj E L} with 
period q. 

A nontrivial consequence of the theorem is the observation that if q E Q(n) and 
p divides q, then p E Q(n). This allows us to define maximal elements, a p E Q(n) is 
called maximal ifthere does not exist a q E Q(n), q =f:. p and p divides q. For example, 
if we list only the maximal elements, then Q(6) consists of the elements 5 and 12. 
This observation is crucial in any attempt to compute the set Q(n) explicitly. 
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3 Computation of Q(n) 

From our main result it follows that the set of positive integers Q(n) which is deter­
mined solely by number theoretical and combinatorial constraints is a central object 
of study. lts explicit computation turns out to be a highly nontrivial problem. In 
this section we shall describe some results from [14] which, in particular, allow the 
computation of Q(n) for n ~ 50. We begin with a general definition. 

Definition 3.1. We dejine inductively, for each n ~ 1, a collection of positive inte­
gers pen) by P(I) = {I} and, for n > 1, p E pen) if and only if either 

(A) P = Icm(PI,P2) , where PI E P(nd , P2 E P(n2) and nl and n2 are positive 
integers with n = nl + n2 or 

(E) n = rm for integers r > 1 and m ~ 1 and P = rlcm(Pl ,P2, . . . ,Pr), where 
Pi E P(m) for 1 ~ i ~ r. 

From Theorem 2.2 , we obtain that 

Since from our main result , P2(n) = Q(n) , it follows that the set pen) provides a 
"lower bound" for Q(n). 

The set pen) can easily be computed and in order to compute Q(n) it suffices to 
study the complement of pen) in Q(n). In other words it suffices to compute the set 

{lcm (S)IS C {1,2, ... ,n} is array-admissiblefor n and lcm(S) ti- pen)}. 

Since it seems rat her difficult to compute Q(n) directly, we followed this approach in 
[14] to compute Q(n) explicitly for 1 ~ n ~ 50. 

The following result is a corollary of Theorem 3.1 of [14] and plays a crucial role 
in this approach. 

Theorem 3.2. Let S = {Pi 11 ~ i ~ m + I} be a collection of m + 1 distinct positive 
integers Pi with 1 ~ Pi ~ n. Assume that Pi + Pj > n for 1 ~ i < j ~ m + 1. Assume 
that Sj cS, 1 ~ j ~ Mare pairwise disjoint sets with S = U'j=l Sj . For each j, 
1 ~ j ~ M, assume that there is an integer rj > 1 such that 

gcd(p,q)h for all P E Sj and all q:l p,q ES. 

I-' L Sj > 1, 
j=1 rj 

then S is not an array-admissible set for n . 

This theorem motivates the following definition. 

Definition 3.3. A set S C {I, 2, . . . , n} satisjies the generalized condition C for the 
integer n if S does not contain disjoint subsets Q and R with the following properties: 
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(i) gcd(a,fJ) = 1 for all a E Q and fJ E Q U R with a:j:. fJ· 

(ii) a + fJ > n* := n - 2::""YEQ ')' for all a, fJ E R with a :j:. fJ· 
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(iii) there exist pairwise disjoint sets Sj C R, 1 :::; j :::; j.L with U';=l Sj = Rand such 
that for each j , 1 :::; j :::; j.L, there is an integer rj > 1 such that 

gcd(p, q)1rJ for all p E Sj and all q:j:. P, q ER. 

(iv) 2::';=1 ~ > 1, where Sj = ISjl. 

So any set S C {I , 2, ... , n} which does not satisfy generalized condition C is 
not array-admissible for n, and this condition can be effectively used to study the 
complement of P(n) in Q(n). 

We mention two other necessary conditions for array-admissible sets that follow 
from Theorem 3.1 of [14]. 

Definition 3.4. A set S C {I, 2, . . . , n} satisfies condition D for the integer n if S 
does not contain a set R with the following properties: 

(i) IRI = m + r - 1, where m ~ 2 and r ~ 2, and gcd (a, fJ)lr for all a, fJ E R with 
a :j:. fJ. 

(ii) there exist disjoint subsets Rl and R 2 of R with Rl U R 2 = R , IRll = mand 
IR21 = r - 1, 2::"'ERI a > n, and a + fJ > n for all a E Rand fJ E R 2 . 

An example of a set that does not satisfy condition D for n = 21 is the set 
S = {9,15, 16,21}. In this case take R = {9,15,16,21}, m = 2 and r = 3. Thus 
S = {9, 15, 16,21} is not array-admissible for n = 2l. 

Definition 3.5. A set S C {I, 2, ... , n} satisfies condition E for the integer n if S 
does not contain disjoint subsets Q and R with the following properties: 

(i) gcd(a, fJ) = 1 for all a E Q and fJ E Q U R with a :j:. fJ· 

(ii) there is an integerr ~ 1 such that gcd(a,fJ)lr for all a,fJ E R with a:j:. fJ and 

(iii) 2:: t3ER fJ > rn*, where n* := n - 2::"'EQ a . 

An example of a set thàt does fiot satisfy condition E for n equal to 24 is S = 
{4, 10, 14, 22} and this set is not array-admissible for n = 24. 

An example of a set S that satisfies D and E but fails generalized condition C for 
n equal to 45 is given by 

S = {24, 30, 33, 36, 39, 42}. 

For if PI = 24, P2 = 30, P3 = 33, P4 = 36, P5 = 39 and P6 = 42 then Pi + Pj > 45 for 
1 :::; i < j :::; 6. If 

SI = {33,39}, S2 = {30,42}, S3 = {24,36} 
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gcd (p,a)13 
gcd (p , a)16 
gcd(p,a)112 
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for p E SI and all a E S, 
for p E S2 and all a E S, 
for p E S3 and all a E S . 

If we set r1 = 3, r2 = 6 and r3 = 12, then 

2 

L Sj = ~ + ~ + ~ > l. 
j=l rj 3 6 12 

Thus the set R = SI U S2 U S3 satisfies the conditions (1)-(4) of Definition 3.3 with 
Q = 0 and this shows that the generalized con dit ion C fails for {24, 30, 33, 36, 39, 42} 
with n = 45 and the set S is not array-admissible for n = 45. 

From the results in [14], it actually follows that 

Theorem 3.6. For n ~ 33 a set S C {I, 2, ... ,n} is array-admissible for n if and 
only if S satisfies the conditions generalized C, D and E given in Definition 3.2-3.4 
for n. 

This theorem presents a relatively simple procedure to explicitly compute Q(n) 
for 1 ~ n ~ 33. If n = 34 the set S = {12, 14, 16, 20, 34} satisfies generalized condition 
C, condition D and E, but it turns out th at S is not array-admissible for n = 34. So 
further conditions are needed to describe the array-admissible sets. 

With the aid of these ideas and some further results along the same lines, the 
following theorems were obtained in [14]. 

Theorem 3.7. If S C {I, 2, . . . ,n} is a set such that lcm (S) has at most three prime 
factors, then lcm (S) E Q(n) if and only if lcm (S) E P(n). If S C {I, 2, .. . ,n} is a 
set such that lcm (S) has four prime factors and gcd (S) > 1, then lcm (S) E Q (n) if 
and only if Icm(S) E P(n). 

Theorem 3.8. For every positive integer n less than or equal to 50 we have 

Q(n) = P(n) . 

The proof of this theorem is computer-assisted. Subsets S of the integers from 
1 up to n are considered. If lcm (S) rt. P(n), the conditions in Definitions 3.3-3.5 
(and further generalizations) are tested. After this sieving procedure one is left with 
what are called "candidate exceptional sets" which might occur as the periods of an 
admissible array on n symbols. One then uses subtle arguments that none of these 
exceptional sets is actually array-admissible. The number 50 in the theorem has no 
particular meaning. Up to this integer, the number of candidate exceptional sets is 
quite small. 

However, as the following result shows, in general, P(n) i Q(n). 

Theorem 3.9. There exist integers n and sets S such that Icm(S) E Q(n) while 
Icm(S) rt. P(n) . In particular, q = 23 X 72 X 11 x 13 E Q(78) and q E P(79) but 
q rt. P(78) . 
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At present we do not know the smallest integer n such that pen) I- Q(n) . We also 
do not know whether PI (n) = Q(n) in general. Until now all examples of integers q 
for which q E Q(n) but q (j. pen) have the property that q EPI (n). 

We conclude this section with the maximal elements of Q(n) for 1 ~ n ~ 27 and 
refer to [14] for the complete list and further information about the computation. 

n maximal elements of Q(n) 

1 [1] 
2 [2] 
3 [2,3] 
4 [3,4] 
5 [4,5,6] 
6 [5,12] 
7 [7,10,12] 
8 [7,10,15,24] 
9 [14,15,18,20,24] 
10 [14,18,21,24,40,60] 
11 [11,18,21,24,28,40,60] 
12 [11,28,35,36,42,120] 
13 [13,22,35,36,84, 120] 
14 [13,22,33,36,90,120,140,168] 
15 [26,33,44,105,120,140,168,180] 
16 [26,39,44,55,66,126,140,180,210,240,336] 
17 [17,39,52,55,72,126,132,180,240,280,336,420] 
18 [17,52,65,77,78,110,132,144,240,252,280,336,360,420] 
19 [19,34,65,77,110,144,156,165,240,252,264,336,360,840] 
20 [19,34,51,91,130,154,156,165,198,220,252,264,720,1680] 
21 [38,51,68,91,130,154,195,198,231,264,312,440,660,720,1260,1680] 
22 [38,57,68,85,102,182,195,234,260,312,396,462,504,528,616,720, 

880,1260,1320,1680] 
23 [23,57, 76,85,182,204,234,273,312,385,396,462,504,520,528,616, 

720,780,880,1260,1320,1680] 
24 [23, 76,95,114,119,143,170,204,234,273,312,364,520,616, 720, 770, 

780,792,924,1680,2520,2640] 
25 [46,95,119,143,170,228,255,300,364,408,455,468,546,720,792,990, 

1008,1540,1560,1680,1848,2520,2640] 
26 [46,69,133,190,228,238,255,300,306,340,408,572,720,792,910,936, 

1008,1155,1540,1680,1848,1980,2184,2520,2640,3120] 
27 [69,92,133,190,238,285,300,306,357,408,429,456,572,680, 792,936, 

1020,1080,1170,1386,1512,1820,1980,2184,2310,2640,3080,3120, 
3696,3780,5040] 
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4 Conclusions 

Even though the set P(n) is described explicitly, it is highly irregular as is the set of 
orders of the symmetrie group on n letters. From recent work [15], it follows that on 
a log scale the largest elements of P(n) and Q(n) have the same asymptotics as the 
largest element of the set of orders of the symmetrie group on n letters, i.e., if ,(n) 
denotes the largest element of Q(n) then 

log,(n) '" Vnlogn. 

It would be interesting to study whether P(n), in some sense, can serve as a good 
approximation of Q(n) for gener al n. 

Instead of considering h-norm nonexpansive maps 1 : Kn -+ Kn with 1(0) = 0 
and defining the set of mini mal periods P3 (n) of all periodic points of such maps, 
we can consider [I-norm nonexpansive maps 1 : ]Rn -+ ]Rn and define R(n), as the 
analogue of P3 (n), to be the set of all minimal periods of the periodic points of such 
maps that can arise. From Example 1.3 of (10) (see also (17)) it follows that 

R(n) C Q(2n). 

From work in progress by Bas Lemmens, it follows that R(n) :j; Q(2n) in general. 
For example, if n = 3, we have seen 12 E Q(6) but one can show that 12 ft R(3) and 

R(3) = {I, 2, 3, 4, 5, 6}. 

One can ask a question which is superficially related but actually very different. 
Consider maps 1 : D f -+ D f C ]Rn such that 1 is h -norm nonexpansive. It is 
known, even if D f is infinite, that such a map may not have an h -norm nonexpansive 
extension F : IRn -+ IRn. Define R(n) to be the set of positive integers p such that 
there exists an h -norm nonexpansive map 1 : D f -+ D f which has a periodic point of 
minimal period p. For n ~ 3 one expects R( n) to be strictly larger than R( n). From 
recent work [4], it actually follows that 8 and 12 belong to R(3) while the elements 
of R(3) are less than or equal to 6. Can one characterize R(n) precisely by number 
theoretical and combinatorial constraints? An upper bound of n!22n for elements of 
R(n) has been obtained by Misiurewicz [8], but this estimate is probably far from 
sharp (see (4) for nuther details). 

Finally, it should be mentioned that the [I-norm is not essential as a starting 
point for these results. In fact, for any polyhedral norm on a finite dimensional vector 
space V and any nonexpansive map F : V -+ V with a bounded orbit, it follows that 
all orbits under iteration of F converge to periodic orbits. Furthermore, the set of 
possible minimal periods is a finite set. In particular, the sup-norm has attracted a lot 
of attention. See [1, 5, 6, 9, 18) and the references given there, for more information 
and results. 
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