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Abstract 

This paper presents several recent results concerning level sets, bubbles and 
excursions of a 8rownian sheet, a10ng with the main methods of proof and 
directions of current research. 

1 Introduction 

This paper discusses several recent developments in the study of level sets, bubbles 
and excursions of the Brownian sheet. It intends to provide a review of much of the 
existing body of literature on this topic and to present some new results on level sets 
and excursions, along with key techniques in their proofs and some open problems. 

The Brownian sheet is a real-valued, centered and continuous Gaussian process 
(W(t), t E ~) indexed by the positive quadrant in the plane, with covariance given 
by 

(1.1) 

lt is one of the natural extensions of Brownian motion to higher-dimensional time. 
No single multiparameter Gaussian process can play as central a role as standard 
Brownian motion plays in the theory of one-parameter processes. lndeed, one could 
consider the solutions to the heat equation driven by white noise, to the wave equa
tion driven by white noise (essentially, the Brownian sheet [30]) , and to an elliptic 
equation driven by white noise (such as the Whittle sheet [23]), to all be basic random 
fields of equal importance, and each with very different properties. There are also 
other important Gaussian random fields, such as Lévy's Brownian motion [14, 22, 26] . 
However, the Brownian sheet is probably the random field that arises in the widest 
number of contexts and has been the most studied. 

Study of the Brownian sheet began with work of Kitagawa [17], Chentsov [4] and 
Yeh [28]. Important results on sample path properties were then obtained by Orey 
and Pruitt [21], Czörgö and Révèsz [5], Pyke [24] and Walsh [29], among many others. 
Motivation for the work reported here comes from results on level sets by Adler [1] 
and Kendall [16], followed by more recent work of Dalang and Walsh [11, 12]. 

lThe research of this author is partially supported by the Swiss National Foundation for Scientific 
Research. 
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2 Basic properties of the Brownian sheet 

One immediately observes from Eq. (1.1) that the Brownian sheet vanishes on the 
coordinate axes, and that for fixed 82 (resp. fixed 81), the map 81 f-t W(81,82) 
(resp. 82 f-t W(81,82) is a Brownian motion with speed 82 (resp. 81). Many other 
Gaussian processes are also embedded in the Brownian sheet. For instance, u f-t 

W(u,1 - u) is a Brownian bridge, while u f-t W(u, I/u) is an Ornstein-Uhlenbeck 
process (see [30]). 

The fact that W(81 ,0) = W(0,82) = ° is akin to an initial condition, and it is 
a common misunderstanding to assume that properties of the Brownian sheet are 
induced by this initial condition. In fact, the Brownian sheet can be equivalently 
defined as the solution of the stochastic hyperbolic partial differential equation 

where r, denotes two-parameter white noise, with the initial conditions W (81,0) 

W(0,82) = 0, for all 81 ~ ° and 82 ~ 0. Most properties of the Brownian sheet 
that relate to horizontal and vertical lines, including the surprising "propagation 
of singularities" phenomenon discovered by Walsh in [29], are not induced by the 
coordinate axes but by the fact that the characteristic directions of the hyperbolic 
operator 82/(881882) are the horizontal and vertical directions. 

Let ~ be the (partial) order on JR2 defined by 

Viewed along any monotone increasing curve (in this partial order), the Brownian 
sheet is a Brownian motion (af ter a deterministic time-change). Clearly, if one thinks 
of the Brownian sheet as a random function of two real variables, then the surface 
that it defines is extremely irregular and its restriction to any monotone curve looks 
like a sample path of ordinary Brownian motion. 

3 Problems that lead to the Brownian sheet 

The study of the Brownian sheet can be motivated by the many contexts in which it 
arises. We mention two of them. The first is a problem in bivariate statistics that 
makes use of the Brownian sheet. 

Consider a sequence (Xn ) of independent and identically disributed random vari
ables that are uniformly distributed on the unit square [0,1]2 . Let Fn(t1' t2) denote 
the number of integers iE {1, .. . ,n} such that Xi E [0,t1] X [0,t2]. One can show 
(cf. [2]) that 

Fn(t1' t2) - nt1t2 W- ( ) 
y'ri => t1, t2 , 

where W(t1, t2) = W(t1, t2) - t1t2W(I, 1). The process (W(t), tE [0,1]2) is termed 
the pinned Brownian sheet and is analogous to the one-parameter Brownian bridge. 
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lts properties are clearly very closely related to those of the Brownian sheet. If 
one wants to statistically test whether or not the random variables X n are indeed 
uniformly distributed, then one needs information about the pinned Brownian sheet. 
In order to build confidence intervals and to compute p-values, knowledge about the 
distribution of the maximum of the Brownian sheet is needed. However, even though 
there are many asymptotic formulas for tails of this distribution [3, 27], there is no 
known exact formula for this distribution, which may explain why questions regarding 
distributional properties of the Brownian sheet are generally very' difficult to answer. 

The Brownian sheet also arises in ot her areas of stochastic analysis. For instance, 
in the study of Wiener space and Malliavin calculus, the Brownian sheet provides 
a representation of the Ornstein-Uhlenbeck process on Wiener space. This process, 
sometimes called the Malliavin process on Wiener space, is the C(I14 , IR)-valued so
lution (Xt , t ~ 0) of the infinite-dimensional stochast ic differential equation 

dXt (-) = -Xt (-) dt + dW(t, .). 

The distribution of this process is stationary in time, and for a fixed time t, the law 
of X t is that of a standard Brownian motion. It turns out that the Brownian sheet 
provides a very simple representation of this process ([18, 15]) : 

s ~ 0, -00 ~ t ~ +00 . 

This representation has proven very effective in the study of the Malliavin process 
(see for instance [19]). 

4 Level sets, bubbles and excursions 

For x E IR, the non-negative quadrant can be decomposed into three subsets as follows: 

{s E IR~ : W(s) = x}, 

{s E IR~ : W(s) > x}, 

{s E IR~ : W(s) < x} . 

Because sample paths of the Brownian sheet are continuous, the first subset is closed, 
while the second and third are open sets: each of these is a countable union of 
components, that is, of connected open subsets. In addition, the level set L(x) is the 
common boundary of these two sets. 

The first set of questions of interest here concerns the Hausdorff dimension of the 
level set and related sets. Other questions include topological properties of the level 
set (cf. [16], [5]). For instance, Kendali [16] proved that almost all points tE L(x) are 
points at which the level set is totally disconnected, that is, the connected component 
of L(x) that contains t consists of the single point t. The "almost all" is with respect 
to loc al time measure on L(x) . On the other hand, the level set L(x) separates the two 
open subsets L+(x) and L_(x). As such, a determinist ic result from planar topology 
(see [16]) implies that this set cannot be totally disconnected, so it must contain non
trivial connected subsets. However, there is currently no information on the nature 
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of such subsets (e.g. their Hausdorff dimension, where they occur, what such subsets 
might look like, etc), though it is known that they cannot consist of Jordan arcs that 
are differentiable even at a single point [6]. 

Another set of questions of interest here concerns geometrie proper ties of the 
decomposition 

lR! = L_(x) U L(x) U L+(x) . 

Indeed, one would like to understand the nature of the contact between L_ (x) and 
L+(x), and the nature of L(x) in the neighborhood of boundary points of components 
of L_(x) . Several results in this direct ion are described in the papers of Dalang and 
Walsh [11, 12]. 

Much recent progress in understanding the nature of the contact between L_ (x) 
and L+(x) comes from the study of points of increase. This will be described in 
Section 6 below. 

Finally, just as there has been for several years a very good understanding of 
excursions of ordinary Brownian motion, one would like to understand the behavior 
of excursions of the Brownian sheet , where an excursion is defined as follows. First, 
we term a Brownian bubble a single connected component of L±(x). An excursion of 
the Brownian sheet is then the restriction of the Brownian sheet to any fixed bubble 
(for instanee, the bubble that contains the point t = (1,1)). The excursion is positive 
(resp. negative) if the restrietion of the Brownian sheet to this bubble is positive 
(resp. negative) . We shall describe below a surprising recent result concerning the 
lack of independenee between different excursions of the Brownian sheet. 

5 Hausdorff dimensions 

The main result on the Hausdorff dimension of level sets of the Brownian sheet is the 
following theorem, due to R. Adler [1]. 

Theorem 5.1. Almost surely, for all xE lR, the Hausdorff dimension of L(x) is ~ . 

In fact, AdIer's result was proved for the d-parameter Brownian sheet , in which 
case ~ = 2 - ~ should be replaced by d -~. AdIer 's result implies that L(x) is a very 
complicated closed set. A picture of this closed set, obtained by simulation, Can be 
found in [11]. 

A much more recent result, due to T. Mountford [20], establishes the following 
surprising property. 

Theorem 5.2. Almost surely, the Hausdorff dimension of the boundary of any fixed 
bubble is in the interval [1.25, 1.5[. 

Notice that the interval [1.25, 1.5[ is open on the right: the Hausdorff dimension of 
any fixed bubble is strictly less than ~, which means that "most of L(x) is in between 
the boundaries of individual bubbles." 

The following remains an open problem. 

Problem 1. Do the boundaries of all bubbles have the same Hausdorff dimension? 
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Recent work of the authors and D. Khoshnevisan motivates the following conjec
ture: the answer to the question in Problem 1 is yes, and the Hausdorff dimension of 
all bubbles should be 

~ - ~ (5 -J 13 + 4V5) . 

6 Points of increase 

A point of increase of a Brownian mot ion (B(u) , u ~ 0) is a (possibly random) time 
u > 0 such that for some € > 0, 

B(u - h) < B(u) < B(u + h), for 0 < h < €. 

Dvoretsky, Erdös and Kakutani [13] have established the following celebrated result. 

Theorem 6.1. Almost surely, Brownian motion has no point of increase. 

For the Brownian sheet, the question of existence of a point of increase can become 
either of the following: (a) do there exist bubbles of opposite signs that share a 
boundary point? or (b) Do there exist curves, or even monotone curves, along which 
the Brownian sheet has a point of increase? Formally, does there exist a (possibly 
random) function "/ : [0,1] -t ]0, 00[, r E ]0, 1[ and € > 0 such that for 0 < h < €, 

Wb(r - h)) < Wb(r)) < Wb(r + h))? (6.1) 

If so, we say that W has a point of increase (at the random level Wb(r))). If in fact, 
given x E IR, there exists a (possibly random) function "/ : [0,1] -t ]0, oor and h > 0 
such that for 0 < h < €, 

Wb(r - h)) < x < Wb(r + h)), (6.2) 

then we say that W has a point of increase at the fixed level x. Question (a) was 
answered affirmatively in [20], but since a boundary point of an open set in the plane 
may not be the endpoint of a curve that is otherwise contained in the open set, 
answering question (b) gives more information about the contact between bubbles. 

Theorem 6.1, together with the basic properties mentioned in Section 2, show 
that the Brownian sheet cannot have a point of increase on any given determinist ic 
monotone curve ,,/, as it behaves like a Brownian mot ion along such a curve. Therefore, 
any curve "/ with property (6.1) or (6.2) must in fact be random. 

The following result is due to Dalang and Mountford [7]. 

Theorem 6.2. For all x E ~, with positive probability, there exists a monotone curve 
contained in the square [1,2]2 along which the Brownian sheet has a point of increase 
at level x. 

The conclusion can be made valid with probability one if the point of increase is 
allowed to occur anywhere in the positive quadrant. 
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The result of Theorem 6.2 implies that a bubble in L_(x) can share a common 
boundary point with a bubble of L+(x). On the other hand, there is no control over 
the regularity of the curve, in (6.2). 

The proof of Theorem 6.2 in [7] is quite demanding. On the other hand, it is 
natural to ask, as did John B. Walsh, whether or not the conclusion of Theorem 6.2 
might not be true for any continuous function of two variables. It turns out that this 
is not the case, as shown in the following result of Dalang and Mountford [8] . 

Theorem 6.3. Let A be the subset of C(IRî, IR) that consists of functions f with the 
property that there exists a monotone curve along which f has a point of increase. 
Then A has first Baire category. 

Of course, the set C(IRî, IR) is not of first Baire category, by the Baire Category 
Theorem, so this result implies th at sample paths of the Brownian sheet are contained 
in a topologically small subset of C(IRî, IR). In this regard, the behavior of the 
Brownian sheet differs from that of standard Brownian motion, whose sample paths 
are outside the (topologically small) set of functions which admit a point of increase. 

In view of Theorem 6.3, it is natural to ask whether points of increase might exist 
along some particular type of curve, say even along horizontallines. The following is 
currently an open problem. 

Problem 2. Given x E IR, do there exist horizontal lines along which the Brownian 
sheet has a point of increase at level x? More precisely, given x E IR, is there a point 
(Tl , T2 ) E ]0, 00[2 and é > 0 such that 

for 0 < h < c? 

We note that if such horizontallines do exist, then they must be random, because 
as mentioned in Section 2, the Brownian sheet behaves like a Brownian motion along 
any determinist ic horizontalline, and hence does not have any point of increase. 

While Problem 2 remains open, Dalang and Mountford [9] have established the 
following result. 

Theorem 6.4. With positive probability, there are horizontal lines along which the 
Brownian sheet has a point of increase at random levels, that is, there exist random 
points (Tl, T2 ) E [1,2]2 such that 

1 
for 0 < h < 2". 

Again, the conclusion can be made valid with probability one if the point (Tl, T2 ) 

is not constrained to belong to [1 , 2]2 , but is allowed to be anywhere in IRî. 
Theorem 6.4 has the following implication with regard to properties of the Orn

stein-Uhlenbeck process on Wiener space. 

Corollary 6.5. The Ornstein- Uhlenbeck process on Wiener spa ce hits with probability 
one the set of paths in C(~, IR) that have points of increase. 
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Since Theorem 6.4 is a statement concerning points of increase at random levels, 
it says nothing about the level set L(x) at a fixed level x. One would like to modify 
the statement in some way so as to obtain a related result valid at fixed levels. 

In order to do this, it is useful to understand how results such as those in Theorems 
6.2, 6.4 or even 5.2 are proved. They all make effective use of the following local 
decomposition of the Brownian sheet, which was already used in [16] and [11 , 12]. 
For fixed t = (tl, t2) E [1, 2]2, one can write 

The processes Xl and X 2 are defined for UI and U2 both positive and negative, and are 
independent. The specific distribution depends on whether Ui is positive or negative: 
(Xl (UI), UI ~ 0) is a Brownian motion (with speed U2), while (Xl (-ut), 0:::; UI :::; h) 
is a Brownian bridge with value 0 at times 0 and tI, and similar statements hold for 
X 2 • However, locally near 0, Xl behaves like a Brownian motion, whether UI runs 
forwards or backwards from O. In addition, the last term 1]t, ,t2 (UI, U2) is small relative 
to Xl and X 2: it is of order JUIU2, while Xi(Ui) is of order VUi, for small UI and 
U2 . This means that the behavior of the Brownian sheet W in the neighborhood of a 
point t is essentially the same as that of additive Brownian motion X defined by 

where Xl and X 2 are independent, and are Brownian motions for both positive and 
negative time. 

Theorems 6.2, 6.4 and 5.2 are all based on this local decomposition, and an ac
counting of the error term 1], which can be quite involved. But intuition and conjec
tures about the properties of the Brownian sheet can be obtained from corresponding 
properties of additive Brownian motion. Of course, this must be done with care: 
for instance, while the conclusions of Theorems 5.2 and 6.2 are valid for additive 
Brownian motion, with a similar (and in fact, simpier) proof, the conclusion of The
orem 6.4 does not hold for additive Brownian motion, because for any T2 , the path 
tI I-t X(tI, T2) is that of a Brownian motion with initial value X 2(T2), and this cannot 
have a point of increase by Theorem 6.l. 

Substantial information about bubbles of additive Brownian motion was obtained 
by Dalang and Walsh in [12] . By examining how bubbles of this process come into 
contact with each other, one is led to the following definition: we term a broken line 
with corner at (tI, t2) the union of two segments of the form {tt} x [t2, t2 + h] and 
[tI,tl + h] X {t2}. The following theorem is established in [9]. 

Theorem 6.6. With probability one, there exist broken lines along which the Brown
ian sheet has a point of increase at fixed levels, that is, for all x E IR and h > 0, there 
exists (Tl, T2 ) E IR~ such that 

for 0 < U < h. (6.4) 
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In addition, it is shown in (9) that the set of all (Tl, T2 ) with the property (6.4) 
has Hausdorff dim en sion ~. In particular , this set is uncountable and cannot con sist 
only of isolated points. 

ProoI ol Theorem 6.6. We shall define below an event A(t, n), which describes the 
fact that "W has an approximate point of increase of order n along a broken line with 
corner at t ." 

Let X n be the number of points t with dyadic coordinates of order 2n contained 
in [2, 3)2 for which A(t,n) occurs. We will use the estimates in (6.7) and (6.8) below 
to check that there is E > 0 such that for all large n, 

E(Xn )2 
E(X~) ~ E. 

It follows from this and the Cauchy-Schwartz inequality that 

and from Fatou's lemma that 

P (limsup {Xn > a}) ~ E. 
n-+oo 

(6.5) 

Therefore, with positive probability, there is a sequence (tn ) of elements of [2 ,3]2 such 
that A(tn , n) occurs for all large n. In view of the definition of the event A(tn , n) given 
below, the limit of a convergent subsequence of (tn ) will have the property requested 
in the conclusion of Theorem 6.6. 

In order to complete the proof, it now suffices to define the event A(t, n) and to 
establish the inequality (6.5) . Set 

where 

Ao(t, n) 

Au(t, n) 

AR(t,n) 

A(t, n) = Au(t, n) n Ao(t, n) n AR(t, n), 

{IW(t) - xl :s; T n
}, 

{W(tl, t2 + v) - W(h, t2) < _Tn, T 2n :s; V :s; I} , 
= {W(t l + u, t2) - W(t l , t2) > T n, 2-2n :s; U :s; I} . 

Then Ao(t, n) describes the fact that W(t) is approximately equal to x, Au(t, n) 
occurs if W stays below W(t) along a vertical segment with lower extremity at t, and 
AR(t, n) occurs if W stays above W(t) along a horizontal segment with left extremity 
at t. So A(t, n) does indeed occur if and only if W has an approximate point of 
increase of order n along a broken line with corner at t. 

From the definition of X n , 

E(Xn) = LP(A(t,n)) and E(X;) = L L P(A(s, n) n A(t, n)), (6.6) 
s 
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where each sum is over the 24n points in [2,3]2 with coordinates that are dyadic of 
order 2n. It is shown in [9] that there is e > 0 such that for all large n, 

P(A(t,n» ~ eT3n
, (6.7) 

and there is a constant C < 00 such that for all large n, 

(6.8) 

From (6.6) and (6.8), one ean deduce as in [9] that there are constants k > 0 and 
K < 00 such that 

and 

This proves (6.5) and completes the pro of of Theorem 6.6. • 
7 Dependenee between excursions 

One of the features of excursions of standard Brownian mot ion away from a fixed 
level is that these excursions are independent of each other, and there is a beautiful 
point process description of excursions [25, Chapter VIII]. Can one develop such a 
theory for the Brownian sheet? It turns out that it will not be possible to describe 
excursions of the Brownian sheet independently of each ot her. 

Indeed, one feature which makes pos si bIe the independence of excursions of Brown
ian motion is the fact that dis tin ct excursion intervals never have a common endpoint , 
but are separated by infinitely many ot her excursions. If a positive excursion interval 
could share an end point with a negative excursion interval, then knowing that one of 
the excursions is positive would indicate that the other is negative (given that a.s., 0 
is not a local minimum or maximum of Brownian motion ). 

Theorems 6.2 and 6.6 above show that distinct bubbles of the Brownian sheet can 
share boundary points , and given this, it is natural to suspect that excursions of the 
Brownian sheet in distinct bubbles are not independent. This int uit ion is formalized 
in the following theorem of Dalang and Mountford [10]. 

Theorem 7.1. Given the level set L(O) and the sign of all but finitely many excur
sions of the Brownian sheet away from 0, the sign of the remaining excursions is fully 
determined. 

Prool The complete proof of this theorem is highly technical and will be given in 
[10]. However, the main ideas are as follows. Suppose that we are given L(O), and 
the sign of all excursions of W except the one that contains (1,1): call this excursion 
C(I,I). We are going to show how to determine the sign of C(I, 1) . 

Suppose for a minute that W(I , 1) > O. Define 

T = inf{sl > 1: W(Sl, 1) = Ol, 
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and set B(v) = W(T, 1 + viT) . Then B = (B(v), v ~ 0) is a standard Brownian 
motion. 

We now focus on excursions of B near v = O. On average, B "has as many" positive 
excursions as negative excursions near O. Each negative excursion of B corresponds 
to a negative bubble of W, which is certainly distinct from C(I,I) since we have 
assumed that W > 0 on C(I, 1). 

On the other hand, a positive excursion of B corresponds to a positive bubble of 
W , and this positive bubble mayor may not coincide with C(I , I) . In fact, think 
of a positive excursion of B near v = 0 th at is comparatively long and goes up to a 
relatively high level, and reaches its maximum at v = ê, say. It is quite likely that the 
point (T,I + ê/T) will be part of C(I, 1) , since there is a good chance that W will be 
positive along some path that connects the segment [1, T[ x {I} to the point (T, 1 + ê). 

Therefore, positive excursions of B that correspond to bubbles of W distinct from 
C(I,I) are fewer than negative excursions of B that correspond to such distinct 
bubbles. 

The key observation is now that the occurenee of such excursions is determined 
by the level set L(O) and the sign of all excursions except that of C(I, 1). Formally, 
let F;t (resp. F;;) be the event "there is a positive (resp. negative) excursion of B 
originating in [2-(n+l) , 2-n] of length 2-n that corresponds to an excursion of W 
distinct from C(I, 1)." 

One can show that if W(I, 1) > 0, then 

P (limsuPF;t) = 0 and P (limsuPF;;) = 1, 
n-too n-too 

while if W(I, 1) < 0, then 

P (limsuPF;t) = 1 and P (limsuPF;;) = O. 
n-+ oo n-+oo 

Clearly, the events lim sUPn-too F;t and lim sUPn-too F;; are determined by L(O) and 
the sign of all but finitely many excursions of W. 

The main technical difficulty is to quantify the likelihood that a positive excursion 
of W corresponds to an excursion of W distinct from C(I, 1) . Details of this can be 
found in [10]. • 

References 

[1] Adler, R.J ., The uniform dimension of the level sets of a Brownian sheet, Ann. Probab. 
6(3) (1978) , 509- 515. 

[2] Adler, R.J., An introduction to continuity, extrema, and related topics lor general Gaus
sian processes, I.M.S. Lecture Notes- Monograph Series, 12, Institute of Mathematica! 
Statistics, Hayward, CA, 1990. 



LEVEL SETS, BUBBLES AND EXCURSIONS 127 

[3] Beljaev, Ju.K. and V.I. Piterbarg, The asymptotie behavior of the average number of 
the A-points of upcrossings of a Gaussian field beyond a high level, Soviet Math. Dokl. 
13 (1972), 309-313. 

[4] Chentsov, N., Wiener random fields with several parameters, Dokl. Acad. Nauk SSSR 
106 (1956), 607- 609. 

[5] Czörgö, M. and P. Révèsz, On the nondifferentiability of the Wiener sheet, in: Contri
butions to probability, Academie Press, New York-London, 1981, 143-150. 

[6] Dalang, R.C. and T.S. Mountford, Non-differentiability of curves on the Brownian sheet, 
Annals of Probability 24(1) (1996), 182-195. 

[7] Dalang, R.C. and T .S. Mountford, Points of increase of the Brownian sheet, Probab. 
Th. Rel. Fields 108 (1997) , 1- 27. 

[8] Dalang, R.C. and T .S. Mountford, Points of increase of functions in the plane, Real 
Analysis Exchange 22(2) (1997) , 833- 841. 

[9] Dalang, R.C. and T .S. Mountford, Eccentrie behaviors of the Brownian sheet along 
lines, preprint, 1999. 

[10] Dalang, R.C. and T.S. Mountford, Non-independence of excursions of the Brownian 
sheet and additive Brownian motion, in preparation. 

[11] Dalang, R.C. and J.B. Walsh, Geography ofthe level sets ofthe Brownian sheet, Probab. 
Th. Rel. Fields 96 (1993), 153-176. 

[12] Dalang, R.C. and J.B. Walsh, The structure of a Brownian bubble, Prob . Th. Rel. 
Fields 96 (1993) , 475-501. 

[13] Dvoretsky, A., P. Erdös and S. Kakutani, Non-increase everywhere of the Brownian 
mot ion process, in: Proc. 4th Berkeley Symp. Math. Statist. Probab. 2 (1961), 103- 116. 

[14] Goldman, A., Mouvement Brownien à plusieurs paramètres: mesure de Hausdorff des 
trajectoires, Astérisque 161, 1988. 

[15] Hirsch, F., Représentation du processus d 'Ornstein-Uihenbeck à n-paramètres, in: 
Séminaire de Probabilités XXVII (eds. J. Azéma, P.A. Meyer and M. Yor), Lect. N. 
in Math. 1557, Springer Verlag, Berlin- Heidelberg-New York, 1993, 302- 303. 

[16] Kendali, W .S., Contours of Brownian processes with several-dimensional times, Z. 
Wahrsch. Verw. Gebiete 52(3) (1980), 267- 276. 

[17] Kitagawa, T. , Analysis of varianee applied to function spaces, Mem. Fac . Sci . Kyushu 
Univ. Ser. A 6 (1951), 41-53. 

[18] Meyer, P.A., Note sur les processus d 'Ornstein-Uhlenbeck, in: Séminaire de Probabilités 
XVI 1980/81 (eds. M. Yor and J. Azema), Lect. Notes in Math. 920, Springer Verlag, 
Berlin- Heidelberg- New York, 1982, 95-133. 

[19] Mountford, T.S. , Double points and the Orhnstein-Uhlenbeck process on Wiener space, 
Illinois J. Math. 34 (1990) , 38- 48. 

[20] Mountford, T.S., Estimates of the Hausdorff dimension of the boundary of positive 
Brownian sheet components, in: Séminaire de Probabilités XXVII (eds. J. Azéma, 
P.A. Meyer and M. Yor). Lect . Notes in Math. 1557, Springer Verlag, Berlin
Heidelberg- New York, 1993, 233- 255. 

[21] Orey, S. and W.E. Pruitt, Sample functions of the N-parameter Wiener process, Ann. 
Probab . 1(1) (1973), 138- 163. 



128 DALANG AND MOUNTFORD 

[22] Ossiander, M. and R. Pyke, Lévy's Brownian motion as a set-indexed process and a 
related centrallimit theorem, Stochastic Process. Appl. 21(1) (1985), 133- 145. 

[23] Pitt, L.D. and R.S. Robeva, On the sharp Markov property for the Whittle field in 
2-dimensions, in: Stochastic analysis on infinite-dimensional spaces (Baton Rouge, LA, 
1994), Pitman Res. Notes Math. Ser. 310, Longman Sci. Tech., Harlow, 1994, 242-254. 

[24] Pyke, R., Partial sums of matrix arrays, and Brownian sheets, in: Stochastic analysis. 
A tribute to the memory of Rollo Davidson, Wiley, London, 1973, 331-348. 

[25] Revuz, D. and M. Yor, Continuous martingales and Brownian motion, Second edition, 
Grundlehren der Mathematischen Wissenschaften 293, Springer-Verlag, Berlin, 1994. 

[26] Si, S., Variational calculus for Lévy's Brownian mot ion and a generalization, in: Gaus
sian random fields (Nagoya, 1990) , Ser. Probab. Statist. , 1, World Sei. Publishing, River 
Edge, NJ, 1991, 364- 373. 

[27] Talagrand, M. , The small bali problem for the Brownian sheet, Ann. Probab. 22(3) 
(1994), 1331- 1354. 

[28] Yeh, J., Wiener measure in a sp ace of functions of two variables, TI-ans. Amer. Math. 
Soc. 95 (1960), 433-450. 

[29] Walsh, J.B., Propagation of singularities in the Brownian sheet, Ann. Probab. 10(2) 
(1982), 279--288. 

[30] Walsh, J.B., An introduction to stochastic partial differential equations, in: École d'été 
de probabilités de Saint-Flour, XIV- 1984, Lecture Notes in Math. 1180, Springer, 
Berlin-New Vork, 1986, 265- 439. 

Robert C. Dalang 
Département de mathématiques 
Ecole Polytechnique Fédérale 
1015 Lausanne, Switzerland 
E-mail: robert.dalang@epfl.ch 

T.S. Mountford 
Department of Mathematics 
University of California 
Los Angeles, CA 90024, U.S.A. 
E-mail: malloy@math.uc1a.edu 

mailto:robert.dalang@epE.ch
mailto:malloy@math.ucla.edu

