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On the sections of a block of eightcells by a space
rotating about a plane

BY

Mrs. A. BOOLE STOTT and Dr. P. H. SCHOUTE.

INTRODUCTION.

1. If a space of three dimensions §, rotates in S, about a given
fixed plane 7 the general case is that §; and = have only a line
/ in common. We will restrict ourselves here to the special case
where §, passes through .

If we start from a fourfold infinite block of eightcells and cut
it by a space the polyhedra of intersection form a threedimensional
space-filling. When the position of the intersecting space is an
arbitrary one, the number of the polyhedra of different shape is
infinite. Here we will restrict ourselves once more to the special
cases where the number of the polyhedra of different shape is
finite. These commensurable cases are characterized by the property
that any space parallel to the considered position of the rotating
space of intersection and passing through a vertex of one of the
eightcells cuts the four edges through the opposite vertex in points
the distances of which from that last vertex are commensurable
with the length of the edge.

Finally we restrict ourselves to the case of a finite block con-
sisting of 3% = 81 eightcells, forming together an eightcell of three
times the size, and we suppose that the fixed plane 7 passes through
the centre of this block and is totally normal to a plane 7’ con-
taining two opposite edges of it.

G 1*



4 ON THE SECTIONS OF A BLOCK OF EIGHTCELLS

I. SECTIONS OF A SINGLE EIGHTCELL BY ANY
CENTRAL SPACE NORMAL TO THE PLANE CONTAINING
TWO OPPOSITE EDGES.

2. Let O be the centre of the eightcell C; and PQ one of the
two edges situated in #’. Let B be the midpoint of 2Q and C®
the cube of intersection of C; with the space through OR normal
to PQ. Then OR is a diagonal of 06(3) and the plane of that space,
bisecting that diagonal normally, is the fixed plane =; it cuts G;®
in a regular hexagon. So this hexagon is situated in the boundary
of the solid that forms the intersection of C; by any space con-
taining 7, i.e. by any central space normal to the plane 7’ through
O and PQ. This hexagon will be indicated by #Z,.

8. We will try to smooth the way to an exact knowledge of
the sections in question by considering the projection of Cj on the
plane 7. It consists (fig. 1) of a rectangle with sides PQ = 1 and
PP = ]38 (where the length of the edge of Cj is unity) divided
by two parallels P, Q, and P,Q, to PQ into three equal rectangles.
We indicate successively the projections of the 16 vertices, the 32
edges, the 24 faces and the 8 limiting cubes.

The vertices are

(P+8P, + 3P+ P)+(@+3Q +3Q+ Q).
The edges are
(8PP, + 6P P,+38P,P)+(3QQ +6QQ+3QQ)
+ (PQ+ 8P, Q +3P,Q + PQ).
The faces are
(3PP, P,+ 3P P,P)+ (3QQQ,+3Q0,Q)
+(BPP,QQ+6P PQ,Q +3P,PQQ,).
The limiting bodies are
PP, PP+ QQQQ +3PP,P,Q,Q Q-+ 3P P, PQRQAQ,.
We call the cubes projecting themselves in the lines PP, PyP

and QQ, Q,Q" the upper and lower cubes, the six other limiting
bodies the side-cubes.

Any line 7'7,7,7" parallel to PP, P,P" is the projection of a cube
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of intersection of Cy with a space parallel to these bearing the upper
and lower cubes. So any point U within the rectangle PP, Q Q
(or P,P'QQ,) is the projection of an equilateral triangle, which is
the intersection- of Cy with the plane, in U entirely normal to the
plane of the diagram. Likewise any point 7~ within the rectangle
P, P,Q,Q, is the projection of an equiangular hexagon with alter-
nately equal sides, which becomes a regular hexagon for the points
V situated like O at equal distances from P,Q, and P,Q,. Of
these triangles and hexagons the projections U and 7 form the centres.

An intersecting space Sy(#) through = projects itself on the
plane of the diagram as a line / through O; therefore the section
itself is represented in projection by the segment of / situated
within the rectangle PP'Q'Q. According to the position of that
line-segment we distinguish three different cases of intersection; if
@ designates the absolute value of the acute angle between / and
its position /, in which it is parallel to PP’, which angle = we
call the angle of rotation, the three cases are:

1%, 0° << @ < 80°, 274.30°<C 9 <C60°, 3 60°<<P<C90°

In the first case the endpoints of the segment lie in the edges
PQ, P'Q" and the space §,(7) has no points in common with the
upper and lower cubes: the section is limited by #/ree pairs of
parallel planes, whilst in the two other cases it is included by
Jour pairs of parallel planes. In the second case the segment still con-
tains points lying outside P, P,Q,Q, : by some of the planes normal
to / the section is cut in semiregular hexagons, by others in
equilateral triangles. In the third case no point of the segment lies
without P, P,Q,Q, : the sections by planes normal to / are exclu-
sively hexagons. We will consider each of these cases separately.
But first we wish to make a general remark.

If we consider the line-segment that forms the projection of the
solid of intersection as the locus of the points it contains, the
section itself appears as built up of an infinite number of infinitely
thin slices. Now in the space S;(#), bearing the section, the pro-
jection / normal to 7 in O cuts the plane of any of these slices
at right angles in its centre. As the slices of the two different
kinds (equilateral triangles and equiangular hexagons) equally admit
of a rotation of + 120° about their centres, in their planes, we find :

“By a rotation of —+ 120° about its line of projection / the
section is transformed into itself; in other words / is an axis of the
section, of period three”.

4. The case @ < 30°. In this case the six side-cubes are cut
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in congruent lozenges including a rhombohedron; for this is the
solid bounded by three pairs of parallel planes admitting of an
axis of period three.

We deduce the exact form of the lozenges limiting the section
from another source. If H, H,H,H,H H, (fig. 2) is the hexagon /g
situated in the plane =, OX, and OX, are two axes of symmetry of
kg mormal to each other and OX, is the axis of the rhombohedron
bearing the endpoints 4, 4 at equal distances from O, then the
planes containing the lozenges are

A(}Ilﬂz), A(Hsli;)’ A(I{{;H;;)’
AHH), AHH), —AHH,).

Now the line of intersection 4D of the planes connecting A
with A H, and H,H, will meet = in the point of intersection P
of H H, and H,H,, etc. So the edges through 4 and 4  are
found by joining 4 to the vertices of the triangle PQR and 4’
to the vertices of the triangle P'Q R’. Then the figure is com-
pleted by drawing through the pairs of opposite vertices (H,, H,),
(H,, Hy), (Hy, Hg) of g lines respectively parallel to 4P, 4Q, AR.

Now from PH, — } PQ we deduce DP = } AP, etc.; so the
three points B, D, F project themselves on the axis 04 in the same
point K for which OK =} O4 (in accordance with the relation
OB =1 04 in fig. 1). Likewise C,#,G project themselves in the
same point Z for which OL =% 04'= OK, whilst O is the
projection of the six points A, H,, ..., Hg on the axis. So we
find BH, = H,C, the projections KO, OL of these segments of
the same line on the axis being equal, i.e. the vertices H,, H,,
..., Hg of /g are the midpoints of the sides of the skew hexagon
BCDEFG. This gives us the relation BD = 2 H H,. So the diago-
nals of the lozenges crossing the axis 44’, or as we will say the
transverse diagonals, are equal to |2, the edge of the eightcell
being unity, for in this unit we have H H,=11-2.9

For the other diagonals intersecting the axis, the azia/ diagonals,
we find

=4170£243132=1"(4 04242 3%

Now in fig. 1 we have B4 =4 04; so AC is the hypotenuse
of a rectangular triangle with the kathetz B'4 and B'C=2]"3.

) We henceforward suppose the side of h, to be 3 cm; then PQ=3 V2 cm. and
PP’ =3 V6 cm.
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Resuming we can say that for the case under consideration the
projection on the plane 7’ (fig. 1) provides us with the means to
construct the rhombohedrical section, O4 being the length of its
semiaxis, whilst 4C and 6 cm. represent the diagonals of the
limiting lozenges. We apply this in fig. 8, where the rectangle
PP'QQ with the two lines P,Q, P,Q, dividing it into three
equal triangles is repeated in an altered position, to the two
extreme cases of this first group of sections, i.e. for ¢ = 0 and
for ¢ = 30°. By means of the rectangular triangles 4,B,'C; and
4,B,'C, the axial diagonals 4,C, and A4,C, are found and on
these the lozenges 4, B,C,D, and 4,B,C,D, with transverse diago-
nals B, D, — B,D, = 6 cm. are constructed. In accordance with
the fact that the section is a cube for =0, 4,B,C D, is a
square. In all other cases the axial diagonal 4C is longer than the
transverse diagonal BD; so, if we like, we may call 4C the macro-
diagonal and BD the brachidiagonal.

Now whilst @ increases from 0° to 30° the section (fig. 2)
changes in a simple manner. Whilst the intersection of the rhom-
bohedron with the central plane 7 normal to the axis is and
remains the regular hexagon 7, the two endpoints 4, 4" of the
axis move away from O, starting from a distance $ ]/6 cm., to
a distance 8 ]2 em. So we may say that the cube corresponding
to the original position of the rotating space is stretched out in
the direction of one of its diagonals into a rhombohedron.

If we suppose for a moment that the considered eightcell forms
part of an infinite pile of eightcells built up in the direction of
the edge PQ, so that the lower cube of an upper one coincides
with the upper cube of the next lower one, and we disregard the

limiting cubes common to two adjoining eightcells — as if we
wished to change a range of cells into a long vessel by removing
the interior diaphragms — we obtain a fourdimensional prism,

the right section of which is a cube. This prism will be cut by
any space in a rhombohedron, which only transforms itself into a
hexagonal prism with Z; as right section for ¢ = 90°; this result
will be applied directly.

5. The case 30° << @ < 60°. In this and in the following
case the rhombohedrical section of the space Sy(#) with the
fourdimensional prism found above is truncated by two planes
perpendicular to the axis 44" in the points #7, W' where that
axis meets the projections PP" and Q@ of the upper and lower
cubes. Here the points #7, W' lie on PP,;, Q,Q; so the end-
planes of the truncated rhombohedron bear equilateral triangles and
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the equal portions of the rhombohedron lying outside the eightcell
are regular triangular pyramids. In other words: the distance of
the endplanes to the plane # must exceed that of the vertices of
the skew hexagon BCDEFG to that selfsame plane, the sides of
that hexagon not being cut by the endplanes.

In fig. 3 (in which we lay down the different results) the faces
of the section are constructed for the two cases of this group we
wish to consider, the cases where the endpoint # of the line-
segment / situated on PP is the point #; halfway between P
and P, and where this point #, coincides with P,. The figure
shows the two lozenges 4,B,C,D; and 4,B,C,D,, obtained in the
way described. By means of the point 47, where the normal in
Wy on A4;B;' cuts 4,C; the line E,;F, normal to 4,C; is found,
giving us in its turn the truncated lozenge B,C,D,F, F;; the sec-
tion is limited by six of these truncated lozenges and two equila-
teral triangles with Z,F, as side. In repeating this construction
for @ = 60°, where #, coincides with P, we find for #7, the
centre of the lozenge 4,B,C,D,, i.e. the truncated lozenge be-
comes an equilateral triangle B,C,D,, the section itself is an octahe-
dron. This is as it should be: in the case @ = 60° the projection
A4 (fig. 1) is normal to the diagonal P'Q of the eightcell and
therefore §; (7) is normal to that line.

6. The case 60° << @ < 90. Here the rhombohedron is
truncated at both ends by planes normal to the axis 44’ bearing
hexagonal sections.

In fig. 3 the sections with the side-cubes are constructed for
the two cases determined by the relations P, #y = 3 WP, and
PyWyg =2 W¢P,. The results, obtained in the indicated way, are
the 1sosce1es trapez1a EF,G.H, and EF,G.H,; the corresponding
endplanes bear equlancular hexagons w1th the alternate sides equal
to E.F,, G.H, and to EF,, G¢H;. The manner in which the
midpoints W5 , Wy and W, W of the lines ZF and GH on
the macrodlagoml AC are deduced from W5, W and Wy, W
is indicated in the figure.

In the extreme case ¢ = 90° the section becomes a hexagonal
prism bounded by six rectangles with sides of 8 /2 em. and 8 em.
and by two regular hexagons with sides of 3 em.

7. After this explanation we think it will be evident to the reader
that fig. 3 enables us to make cardboard models of the seven
sections considered.!) But this figure can teach us quite as well

") A more expeditious method will be given farther om.
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how to find the images of the different sections in parallel projection,
in the manner in which fig. 2 already represents the second case
@ = 30°. For the new problem, which makes its appearance in
the third case of the pentagon B,C;D,FE,F;, viz. to find the
triangles (andhexagons) situated in the planes truncating the rhom-
bohedron, is easily solved. So in fig. 4, corresponding to that
case, the line WN' through # parallel to ON meets 4C in a
point V' of ZF and this construction always holds; in this special
case it is more to the point however to remember that % is the
midpoint of 4D, ete.

In fig. 4 the angle 4VO indicates the inclination of the faces
of the section on the plane = of the hexagon Z;. It is easy to find
the general relation between this angle ¢ (fig. 1) and the angle
of rotation @. From the two relations

OR = 0Acos®, O0A= ON tang ¥

can be deduced

tang U = sec @ |°2.
We lay down what we have hitherto found in the following:

TABLE OF RESULTS.

.é Tang | Tang | Angle | Angle
© FACES. .
2 o | ¥ ¢ v
I |6 squares A, B,C,D, (cube).....coccvvvnnn 0 Vel o 54° 44" 9"
II |6 lozenges 4,B,C,D;..cvevnenerenaneennns Ly34v630° 58° 30" 54"
IIT |6 pentagons B,C,D,E,F, and 2 equilateral _ _
triangles (side £, F,).vevuunneeennnnnn.. 1 v3|4 V14/40° 53’ 36°|61° 52" 28"
1V |8 equilateral triangles B,C,D, (octahdron)l V' 8|2V 2(60° 70° 31' 44"
V |6 trapezia E,F,G,H, and two equiangular - -
* hexagons (sides E,F;, G, H,)...ouvun... 2V 38| 1/26[18° 53 52"|78° 54’ 15"
VI |6 trapezia E,F,G,H, and two equiangular =
hexagons (sides E,Fy, G ) c.......... 317 3[21V14|719° 6’ 24"|84° 42" 43"
VII | 6 rectangles (3 VV 2cm and 3 cm) and 2 &,
(hexagonal prism).......ccvvevnennnen. ® o [90° 90°

8. Before we can pass to the study of the block of 81 eight-
cells we must say a word about the section of a single eightcell
by a space normal to the plane #' but not passing through the
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centre O; for it goes without saying that a space central to the
central eightcell of the block is in general excentric with respect
to the other eightcells of it.

If the projection / of the excentric intersecting space is inclined
to the edge PQ, the section is either a whole rhombohedron ora
part of it. The first case occurs when the two endpoints of the
segment of / lying within the rectangle PQQ P’ are points of the
edges PQ, P'Q’; in the other case the section is a truncated rhom-
bohedron, truncated at onme end or at both ends according to
whether one or neither of these endpoints lie on these edges. If it
is truncated at one end it may happen that we have to deal with
a rhombohedron of which only a triangular pyramid is cut off, or
left; or that the endplane bears a hexagon, and the section is
greater than, equal to, or less than half the rhombohedron. If it
i1s truncated at both ends the two endplanes can be situated on
different sides of the middle plane containing a regular hexagon
equal to 4z, or on the same side; so we may even obtain a trun-
cated triangular pyramid.

9. The method of investigating the sections of an eightcell by a
space rotating about a central plane = by means of the projection
in the plane 7' in the centre totally normal to it has been brought
most to the front in the preceding pages, as indeed it is our
opinion that this method is preferable for its generality to any
other1), which opinion is strengthened by its applicability to a block
of eightcells. But still we must acknowledge that, with regard to
the construction of the side-faces of the rhombohedrical sections,
a more direct method, more suitable to the wants and needs of
the maker of cardboard models, may be obtained by cutting one

Y) If we suppose in space S, of n dimensions a measure-polytope P,, to be given
and we have to consider the sections of this polytope by a pencil of central spaces
S,,_4 normal to the plane ' passing through two opposite edges PQ, P'Q’, the same
method can be used. In this case the projection of the given polytope P,, on to the
plane = is a rectangle divided into n—1 equal rectangles by n—2 lines parallel to
PQ, P'Q'. The section is either a measure-polytope Py, 4y of n—1-dimensional space,
stretched out in the direction of one of the diagonals figuring as axis with the period
n—1, which may be called a rhombotope, or a mutilated rhombotope truncated at
both ends. With regard to the section of P,, with the central space S,_, to which
the plane =’ is entirely normal, which n—2-dimensional solid is common to all the
n—1-dimensional sections, we can only remark here, that its vertices are vertices of
P,, cr midpoints of edges of P,, according to n being even or odd. We add that a
new method of dealing with this n—2-dimensional section, which is indeed a generali-
sation of the fact that in fig. 2 the hexagon A, is the part of the plane = common to
the two equilateral triangles PQR, P'Q'R’, will appear shortly in the Proceedings
of this Academy (Verslagen, Dec. 1907, p. 467, Proceedings, Jan. 1908, p. 485).
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of the side-cubes of the eightcell by the rotating space. We will
close this first section by explaining this.

We consider that side-cube of the eightcell of which the lozenge
ABCD (fig. 2) is a section, one of the three side-cubes projecting
themselves on the rectangle PP,Q,Q (fig. 1). The space of that
cube meets the plane = in the line H H, (fig. 2); this side of
the hexagon /4, joins the centres H,, H, of the two adjacent faces
of the cube projecting themselves on to the rectangle P, P,Q,€Q,
(fig. 1) the centre O of which forms the projection of 7 and there-
fore of H, H,.

We project the chosen side-cube on to the plane passing through
PQ and the centre of the cube — and containing therefore the
opposite edge which again may be called P,Q, (fig. 5) — as a
rectangle PP,Q,Q with the sides Q=38 |2 cm., PP, =6 cm. and
remark that the centre O of P, P,Q,Q — where P; and @
bisect PP, and QQ, — is still the projection of H, and H,,
and therefore of A, H,. This projection PP, Q,Q (PP, = 6 cm.) differs
from the projection PP,Q,Q (PP, =2] 6cm.) of fig. 1 and
fig. 3, which difference is due to the fact that the planes of projection
differ. Indeed the plane of projection 7’ of fig. 1 and fig. 8 passes
through PQ and the centre of the eightcell, whilst that of fig. 5
is determined by PQ and the centre of the chosen side-cube; the
first plane #' indicates the angles of rotation of the intersecting
space turning about =, the second cannot do this. So the question
arises: ,,how can we find the lines of intersection /', 4’, ... 4/
of the new plane of projection with the seven considered positions
of the rotating space?”’ To obtain an answer we remark that any
line of this new plane of projection, e.g. the diagonal PP, of the
face of the cube which projects itself on PP,, is divided by the
different points of intersection with the lines ', 4, ... 4 we
are bent on determining, in the same proportion as the projection
PP, of that selfsame diagonal on 7’ is divided by the correspon-
ding lines 7, 4,, ... /; of fig. 3. After having obtained these
lines (fig. 5) the construction of the side-faces is very easy. Indeed
we know that the normal erected in the threedimensional space of
the cube on the plane PP,Q,Q in any point U within that rectangle,
reckoned from U to either of the points of intersection with the
boundary of the cube, is *equal to the distance of that point U
from the nearer of the two edges PQ, P,Q,. So in the case III
the half C,D,B,W, of the pentagon B,C,D,E,F, of fig. 3 is
obtained by erecting in M; and #,; normals M;D;, = P, P
and W,E, = W,P on l,; so are found the halves 4, C, D, , C, D, P,
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CsDyE Wy, P,QD,, F.GyW W', F,G, Wy W' of the six side-faces
already given in fig. 3 and moreover in P, #; #;'Q, even the half
of the side-face P, P,Q,Q, of the hexagonal prism of case VII.

It goes nearly without saying that also by this new simple
method the shape and size of a// the faces can be found. So in
the case 7 the endplanes of the section are equiangular hexagons
with alternately equal sides ZyF;, G, H,. And by constructing the
unknown katheta of a right-angled triangle, the hypotenuse of
which is the segment of /' within PP,Q,Q while one katheta is
the difference of the distances of the sides Z F,, GyH, to the
centre of the hexagon, we find the distance of the endplanes, which
will enable us to make a drawing of the corresponding solid in
parallel perspective, etc.

II. SECTIONS OF THE BLOCK OF EIGHTCELLS.

10. Before entering upon the subject of the sections it will be
well to say a few words about the block itself. We suppose 81
eightcells to be built up into a rectangular block having three
along each edge and, in the fourdimensional space containing the
block that is itself an eightcell of three times the size, we imagine
a plane 7 passing through two opposite edges of this large block
and therefore containing its centre, which may still be indicated by
0. Now the block is to be cut by a space S;(#) normal to 7’
in O and containing therefore the plane # in O normal to #’. This
plane 7 cuts the large block in a regular hexagon, the sides of
which are three times the side of 4;; we will call it Z;'.

Now in the initial position of the intersecting space 8;(7), the
case @ = 0, the section evidently consists of a block of 27 cubes,
central sections of 27 of the 81 eightcells, forming the “middle
layer” of the block, while the other two layers lie beyond 8y(7)
in opposite directions (parallel to the two edges situated in #”) which
may be called “above” and “below” or “plus’ and “minus’. This
section of a very simple character is represented in fig. 6 1) in
parallel perspective, in the same manner as fig. 2; but in order
not to obtain too large figures in futare we will suppose the sides
of /g to be 1 cm., those of ;' 3 em. As fig. 6 shows, the cubes
of this section have been numbered in a definite way 1,2, 3,...,

*) The shading of the figs. 6, 7, 10 will be explained later on.
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27, which are in reality the numbers we assign to the eightcells
of the middle layer; in the same manner the eightcells of the layer
above are designated by + 1, + 2, 4+ 3,..., + 27, those of
the layer below by — 1, —2, —3,..., — 27, so that above
and below 1 are 4+ 1 and — 1, etc.

It may be remembered that, while each of the 27 cubes of the
block is a central section of an eightcell parallel to two of its
opposite limiting cubes (the upper cube and the lower cube), each
face is a section of a side-cube, each edge a section of a face and
each vertex a section of an edge. Also the cubes which are in
plane, line, or point contact — that means the cubes which have
a plane, line, or point in common — are sections of eightcells
respectively in space, plane, or line contact.

11. In order to identify the limiting cubes of each eightcell as
their sections with the space Sy(x) take different forms and posi-
tions we distinguish them by letters. We suppose the cubes «, &,
¢, d, to meet at one of the vertices of the eightcell and represent
the parallel cubes meeting at the diagonally opposite vertex by
a,¥,c,d; of these d and & are the upper cube and the lower
cube. The visible faces of the cube 1 (fig. 6) correspond in this
manner to the side cubes @, &', ¢ of the eightcell 1.

The three pairs of parallel planes dividing the large cube of
three times the size into the 27 separate cubes are the intersections
of the initial position of the space S,(#) with three of the four
pairs of parrallel spaces dividing the large eightcell of three times
the size into the 81 separate eightcells. The fourth pair of dividing
parallel spaces is parallel to Sy(7) and divides the fourdimensional
block into the three layers which we have called middle layer,
plus layer and minus layer. We may illustrate the positions
of the cubes limiting the eightcells, and the manner in which the
eightcells are numbered and their limiting cubes lettered , by giving
a small table of the space contact of the eightcell 14, the central
one of the block, with the surrounding ones. The eightcell 14 is:

in ad’ contact with the eightcell 11,

, 0b 5 & o - 23,
» CC - . m . 13,
, aa o = B = 17,
, 08 = o ” b,
. Cc ” . ” 15,
, dd - 5 - + 14,

» d,d » » 12 2 i 14‘
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Here we mean that the a cube of eightcell 13 coincides with the
a cube of eighteell 11, ete. V).

The section of the block of cubes by the plane # is shewn in
fig. 7, the letters @, &, ¢, a’, 6, ¢ refering to the limiting cubes
of the block itself. It will be seen that, as to their sections with
this plane, the intersected cubes can be arranged in three groups.
The first consists.of 2, 4, 12, 14, 16, 24, 26 cut in regular
hexagons, the second of 1, 11, 18, 21, 23, 25 cut in equal
and similarly placed equilateral triangles, the third of 3, 5, 7,
15, 17, 27 also cut in equal and similarly placed equilateral
triangles, oppositely placed with respect to those of the second
group. And the non-intersected cubes, eight in number, consist,
as to the distance of their centres from 7, of four different groups

19; 10, 20, 22; 6, 8, 18; 9.
So we find seven groups in all; they will reappear directly in a
more important point of view.

12. Let us now consider the projection of the 81 eightcells
on to the plane 7. In the above adopted reduced scale the pro-
jection of the block (fig. S)is a rectangle with sides 8 |2 em. and
8176 cm.; in this large rectangle the concentric similar and simi-
larly placed rectangle PP'QQ, the sides of which are |2 cim. and
|6 cm., represents the projection of the central eightcell 14. By
producing PP’ and QQ the large rectangle is divided into three
strips, an upper one, a middle one and a lower one, which are
evidently the projections of the three sets of 27 eightcells, forming
respectively the plus layer, the middle layer and the minus layer.
Now the manner in which the 27 eightcells of the middle layer
project themselves on the middle strip Py P, Q, @, can be deduced
from that in which the 27 cubes of the section by the initial position
of the space Sy(w) project themselves on the line 44" which forms
the projection of S,(7) and is at the same time (fig. 6) a diagonal
of the block of the 27 cubes. So we have now to consider for a
moment the projection of the 27 cubes on the diagonal A44'.

If we first direct our attention to the vertices and begin (fig. 6)
with those of the large cube we find as projections the two extre-
mities 4, 4’ and two points dividing 44’ into three equal parts.
If then we pass to the cubes 9, 14, 19 we see that the projec-

') In an infinite block of eightcells the numbers of eightcells respectively in space,
plane, line and point contact with any eightcell considered as the central ome are
equal to the numbers of limiting bodies, faces, edges, vertices of that eightcell, i.e.
8, 24, 32, 16. So we find, the central eightcell included, 81 eightcells in all, i.e. all
the eightcells of our block are wanted in order to include the central one entirely.
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tions of their vertices consist of 4', 4 and eight points dividing
A4’ into nine equal parts. So we easily convince ourselves of
the fact that the 64 vertices of the 27 cubes project themselves
into the indicated ten points !) and that the projection of any of
the 27 cubes on 44’ covers a third part of that line limited by two of
these ten points. Returning to the projection of the 27 eightcells of

*) If the three edges of the block of cubes concurring in A are taken as positive
axes of coordinates and we suppose the edge of the cubes to be unity, the coordinates
of the vertices are (p, g, »), where p, g, » are to be chosen from 0, 1, 2, 3. So, if
n(p, q, r) represents the number n of permutations with definite p, g, » and we join
together the numbers n(p, ¢, ) for which p + g + » has the same value, we find
groups of vertices lying in the same plane z + y 4 z = constant, i.e. points with a
common projection on A4’'. In this manner we get

1(000), 3(100), 3(200) + 3(110), 3(300) + 6 (210) 4 1 (111),
6 (310) + 3 (220) + 3 (211), ete.
i.e. groups of 1, 3, 6, 10, 12, 12, 10, 6, 3, 1 vertices projecting themselves in the
ten different points on 44’.

This result admits of the following general extension:

“If the (p+ 1)2 vertices of a block of pd measure-polytopes of d-dimensional space
(arranged in the form of a measure-polytope of p times the size) are projected on to a
central diagonal of the block, the projections are the endpoints of that diagonal and
the pd—1 points that divide it into pd equal parts. Moreover the numbers of the
projections coinciding respectively with these pd + 1 points are the coefficients of the
successive powers of z in the polynomial (1 + = + 2* +....4 ap)d.”

No doubt this theorem can be proved in different ways, e.g. by the induction from
p—1 to p and d—1 to d, or more simply still by the generation of the configuration
of the vertices, proceeding from a row of p 4+ 1 equidistant points to a row of p 41
squares, etc. Of the demonstration connected with the manner in which the theorem
was found we can only give a summary sketch here. It conmsists of three parts. In the

first part we consider the special case p infinite, in which the block fills up the 2% th

part of d-dimensional space corresponding to the positive sense of the d axes 0X,,
0X,,....0X,; in that case the result depends, in the way indicated in the theorem,
on the form (1—z)—d. In the second part we show that the finite block of the theorem
may be considered as the algebraic sum of 24 infinite blocks equipollent to the infinite
block of the first part but showing with regard to the position of the vertex at finite
distance that originally occupied the origin the effect of a parallel translation, any of
the vertices of the finite block forming the origin of one of these 24 infinite ones; in
this algebraic sum the sign of any of the 24 infinite blocks is positive or negative
according to the number of coordinates of its origin differing from nought being even
or odd. In the third part we prove that this sum of infinite blocks can be represented
by (1—B)d, if Bk represents one of these blocks, the system of coordinates of which
origin consists of k units and d—k noughts (1 standing for B°, i.e. for the infinite
block in its original position) and then it is clear that this geometric composition of
the 2 infinite blocks to the finite one is to be translated algebraically by multiplying

—zp+1\a
the result (1—z)—d by (1—=ap+1)d. So we find (_1_{0:_1;_) or (1+z+z'+...ap)d,

We may add that the general theorem given above is also an extension of the pro-
blem in how many ways the word abracadabra written in a triangle may be read, or
in how many ways the king of the chessboard can march from a given row to any
row k squares higher (see E. Lucas, “Théorie des nombres”, p. 13, 14).
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the middle layer on the middle strip of fig. 8 we find that the
projection of any of these eightcells covers a third part of the
strip, consisting of three of the nine parts into which this strip
can be divided by lines parallel to P,Q, Now, if we arrange
(fig. 6) the 27 cubes in groups, and reckon as belonging to the
same group these cubes that cover in projection on 44" the same
third part, we alight evidently on the seven groups found above.
So in order to apply this result to the projection of the block of
eightcells, we have repeated under the projection (fig. 8) the line
A4’ in seven parallel positions 4,4,’, 4,4, ,. .., 4;4;, indicated
on each of them the position of the third part that forms the pro-
jection and inscribed at each of these third parts the numbers
19; 10, 20, 22; 1, 11, 13, 21, 23, 25; etc.

of the eightcells projecting themselves on the corresponding third
part of the strip. For convenience we will designate these groups
of eightcells by &,, G, Gy, G;, G;', G;', G, indicating by the
subscript the number of the eightcells, and we will add the
signs + and — to the corresponding groups of the plus layer and
the minus layer 1).

13. Now we are quite provided with the means of determining,
for any arbitrary position of the intersecting space 8y(z), the
number, form and size of the different solids, sections of separate
eightcells which fill up the section of the large block of eightcells,
which is itself an eightcell of three times the size. We may even
assert that this process, complicated as it seems, in reality is
easier than another to which we are accustomed and which we
perform daily: “to see what o’clock it is.” For our dial — the
plane 7' on to which the block of eightcells has been projected —
has one hand only — the projection of the intersecting space
turning round O. But in order to facilitate the enumeration of
the results it will be well to introduce beforehand a simple nota-
tion for the different kinds of solids we obtain.

As we have seen the section of any of the 81 eightcells is a

') If we replace the 27 cubes by their centres, the projection of these centres on &
diagonal of the block of cubes gives us a range of seven points coinciding with the
centres of the rectangles P,PQQ,, P'P,’Q,’Q" and the five points dividing the segment
of AA' limited at these two points into six equal parts. So the numbers 1, 3, 6, 7,
6, 3, 1 are found — compare the preceding note — as the coefficients of the powers
of z in (1 4+ =+ =*)%

In the extemsion of the problem to the measure-polytope P, (P) with edges equal to
p units of space S, divided into p» measure-polytopes Py, (") with edges unity, the
numbers of polytopes of the groups G coinciding in projection on #* (compare the pre-
ceding note) are the coefficients of the powers of = in (1+4+z+42a*4....4ap—1)n,
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rhombohedron or a part of it, obtained by truncation at one end
or at both ends by planes normal to the axis; if we except the
special case @ = 90°, which will be treated separately, this rule
is general. Now this section can be designated by the symbol
a(p, q), where a represents the length of the axis of the unmuti-
lated rhombohedron expressed in cm., whilst » and ¢ indicate the
fractions of the axis cut off by the endplanes, the first of these
parameters refering to that endplane the external normal of which
corresponds in sense to 4'A. For the unmutilated rhombohedron
is determined by the hexagonal section normal to the axis in the
centre, which section is the same for all the rhombohedra, and
the length of the axis. So (0, 0) stands for a whole rhombohe-
dron, a(p,0) or a(0, p) for a rhombohedron truncated at one
end, a (p, p) for a rhombohedron truncated at both ends admitting of a
plane normal to the axis dividing it into two congruent halves;
so a(p, ¢) transforms itself into a(g,p) by a rotation through
180° about any line normal to the axis, ete.

14. We consider the case III (tang ® — 4 ]73) in detail, and
to that end we reproduce in fig. 9 the projection of the block of
eightcells on 7’ and the projection /= 4B, C;... 4" of the inter-
secting space. Here within the rectangle PP Q Q that is the pro-
jection of any eightcell of the group G, let us say the central one
14, lies the segment C,C," of /, whilst the points Bg, B, on the
edges PQ, P'Q are the endpoints of the axis of the rhombohe-
dron. So, as B,C, = G, B, is a sixth part of B;B;’, we find for
the section 1 1742 (, ).

In general the value of a is sec @ |/6; in the following table,
which gives us for all the groups of intersected eightcells 1. the
segment of / lying within the projection, 2". the segment of / re-
presenting the axis of the unmutilated rhombohedron, 3. the sym-
bol a(p,¢), this value of a is indicated at the head, which
allows us to use the simplified symbol (g, ¢).

Verhand. Kon. Akad. v. Wetensch, (1e Sectie) DL IX. n°, 7. G2
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TABLE OF RESULTS ¥oR cAsE III,

tang @ = -12—1/3, tang ¢ = %l/ﬁ, &= %VE

Q

Q@

So if we vepresent the really different pieces (}, &

o &

cc,
G, B/
BQ Cﬂ’

C, B

2 &

n'c

B’ B"
B, B,

B, B,

B, B,

BB’

&b
G, 0)
©, %)
(8, 0)
©, &

+6,
+6,
+ 6,
16

B,C,
BI Cl
Cl Cl

G, B,

(2,0) by 4, B, C we find:

So in case III 59 of the 81 eightcells are cut.

G + 65, — Gy’

Ge + 6,
GGI;—t—G’

G

3

— &

6

P Gll

_G7

Gy', + 6

B,B,' (01 ‘&) -G, Cz'Bal B: B:' (%1 O)

BIBA' (01 %) —Ga' CI'BI' Bb B:’ (%1 0)

BI.BA (%1 %) _Ga' Calcx' ‘BO'BI' (%- %)

AB (3, 0|—6|BC'| B A {0, §
b, & 0,

+ %) 13 pieces 4

0, 1) 26 , B

(3,0

0,520 » ¢

59 pieces altogether.

15. In the following table giving the results for the seven cases
considered Q, O, 7, H, P denote respectively cube, octahedron,
tetrahedron, hexagonal prism, triangular prism, whilst 4, B, C,
D, IY represent less regular sections of eightcells.



(GENERAL TABLE OF RESULTS.

Number Tangent Tangent| Value Number
of 8 1 8 of Enumeration of the different sections.
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GG’ (I’ Tlg)‘lgﬁ'*"gsx G’I (T’?’ ’:]f’ +G , = Gy (0’15‘
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VII 0 o) 0 57 |Gy, + G7,—G7[ 21 H GG,’ - Ge;_Gs,; 36 P
Gy, + G5 ,— G
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It goes without saying that the different 4, B, C, D mentioned
in this table stand for different sections.

16. Now we have still to solve this problem: “if we are given,
for any of the six cases 1I, III,...., VII considered, a bag con-
taining the set of models representing the corresponding sections
of the eightcells of the block, how can these pieces be put to-
gether so as to obtain the corresponding section of the block
itself P’

This problem can be easily solved in the following way. We
begin by arranging the set of models into classes according to
their shape, subdivide these classes into groups according to the
last table of results and assign to each model of any group one
of the numbers of the eightcells belonging to that group, without
sign, with the sign -+ or with the sign — according to the layer
the group belongs to. Then we inscribe on the faces of any model
originating from the upper cube and the lower cube of the corres-
ponding eightcell the letters  and &, on the three or the six side-
faces originating from the side-cubes the letters a, é,¢ or 4', &', ¢’
or both triplets, taking care to put the right triplet at the right
place and to write the three constituents of each triplet in due
order of succession. After having prepared the work in this way
we have only to consult a table of contact, of which we gave
above only the part refering to the central eightcell 14, in order
to be able to bring to coincidence the faces of the models that
are to coincide, i.e. in order to be able to build up the section
of the block of eightcells in the way desired.

The result of this solution is given in the six groups of figures
10y, 10y,.. .10y, corresponding to the six cases II, III,...VIL
Each of these groups consists of:

1%. one relative large figure in parallel perspective representing
the section of the block of eightcells built up of the pieces that
are sections of the separate eightcells,

2", two or more small figures in parallel perspective marked
4, B, C, D, E, representing these different pieces,

3", one or two plane sections of the solids of intersection
obtained with planes on which we will fix attention afterwards.

17. It will be necessary now to say a word or two about the
shading and the colouring of the groups of fig. 10; we begin by
the shading.

The shading of the figures 10 is based on the supposition that the
eightcells of the block are alternately black and white in the
manner which may be considered as the consequent fourdimensional
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extension of the shading of the chessboard squares. So the shading
of the eightcells of the middle layer is shown in that of the cubes
(fig. 6) forming their sections with the space Sy(#) in its initial
position I, and in the sections of these cubes by the plane =
(fig. 7); to obtain the shading of the eightcells of the plus and the
minus layer we have to invert black and white of the corresponding
eightcells, i. e. of the eightcells bearing the same number, of the
middle layer. Then two eightcells in space contact or in line
contact are alike, two eightcells in plane contact or in point contact
are different with regard to the shading. By adding that we suppose
the central eightcell to be white the shading is-quite determined
by the stated rule of contacts. '

But there is more. For we can prove easily by this rule that
any two eightcells the projections of which on the plane #’ coincide
are alike with regard to the shading. So the three eightcells of
G, projecting themselves (fig. 8) on the rectangle equal to P PQQ,
and overlapping this for two thirds must coincide in shade, as
they are in space contact with the unique eightcell of &, that
projects itself on PyPQQ, and therefore differ in shade from that
eightcell; the cube common to this eightcell and any of the three
belonging to G; projects itself on the overlapped part of PyPQQ,.
So we can go on and assert that the six eightcells of G must
correspond in shade, each of them being in space contact with at
least one of the three eightcells of G, and therefore differing in
shade with these, etc.!) So we find easily the following result:

White are the | T &1 . + G . + 66 . &
41 eighteells . . . | 3 L ; 5 arl’
P Gl - GG - GG i
black are the ‘ T Gy ¢ + & X t Gs ,
2 1 6 6 , 1
40 eighteells . . . ’, _ 6, _ 6, 6,

Now the question arises: “from the fact that the eightcells of
the same group correspond in shade and their sections are equal
the possibility of al/ equal pieces corresponding in shade presents
itself; in which of the cases I, II, ... VII is this possibility
realised?” To answer it we have only to consult the general table

") We can give an analogue to the “rule of contact” for the projections on =’ in
the form: “Two eightcells the projections of which overlap for one third or are in
point contact are alike, two eightcells the projection of which overlap for two thirds
or are in line contact are different with regard to the shading.”
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of results. We find that the answer is alternately no, yes, no, etc.
So in the cases II, IV, VI all equal pieces correspond in shade.
And of the other cases the first behaves differently from III, V,
VII, in this sense that in the cases III, V, VII all equal pieces
will correspond in shade, when the 'shading of the eightcells of
both the plus layer and the minus layer have been inverted, an
alteration which does not affect the first case.

18. If in the solution of the problem of reconstruction of the
section of the block by putting together the different pieces, we
confine ourselves to the pieces belonging to the groups of the
middle layer, the result is a part of the whole section, included
between two planes. These planes are evidently the planes of inter-
section of the intersecting space Sy(7) with the two spaces sepa-
rating the middle layer from the plus layer and the minus layer;
as the two separating spaces are parallel to and equidistant from
the space containing the centres of the eightcells of the middle
layer, the two new planes, which we call + 7 and — 7, are
parallel to and equidistant from . In theinitial position I the
intersecting space §; () coincides with the space bisecting the
distance between the separating spaces; for this reason the planes
—+ 7 and — 7 are at infinity in that case and cannot appear in
fig. 6. For which value of the angle of rotation ¢, supposed to
increase from 0° to 90° do these planes | 7, — 7 begin to inter-
sect the section? A single glance at fig. 8 shows us that this angle
P,04 is characterized by its tangent £ "3, so it amounts to 10° 53’
36”; in the rhombohedrical section of the block corresponding to
this angle the planes + =, — 7= would make their appearance in
the extremities 4, 4" of the axis of the rhombohedron. For any
acute angle that surpasses this value the planes 4+ 7 and — 7 divide
the section into three parts, the extreme ones of which — equal
to one another — are left uncoloured, while the middle slice is
coloured yellow. On the side-faces of the sections the polygons of
intersection with the planes 4 7, — o separate parts of the sur-
face differing in shade. What appears in the planes 7, — 7
themselves is shown in the case 1I for both the planes, in the
other cases for the plane 4~ 7 only; in these sections can be seen
how the polygons are built up of the d-faces and the &’ faces of
the pieces of the middle layer. The other plane sections, added to
the figure-groups 10;;, 10,y,... 10y, refer to the endplane not
visible in the principal figure.

After what has been said it will not be necessary farther to
explain the meaning of the numbers without sign or with one of
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the signs + on the side-faces of the sections of the block, on the
endplanes of these sections and on the sections of these sections
with the planes 4 o, — #. With regard to the letters 4, B, C,
D, E, indicating the sections of the separate eightcells of different
shape, inscribed also in the endplanes and the sections with the
planes -+ 7, — o it may suffice to remember that the forms 4
and B meet the invariable plane 7 respectively in regular hexagons
and equilateral triangles marked on them, whilst the other forms
C, D, E have no point in common with that plane.

19. A mere inspection of the groups of figures 10y, 10y,. . .,
10y; can show how the section of the block composed of the
sections 4, B, C,... of the separate eightcells changes, when the
angle of rotation @ varies from 0° to 90°, from which ensues that
the angle { of the side-faces of the section with the plane =
increases from 54° 44’ 9" to 90°. If we now push the rotation
still farther and suppose that ¢ varies from 90° to 180° we pass
at the supplementary values of these considered above by stadia
VI, V..., T’ closely connected to the sections VI, V,..., L
For, if we consider the two positions ¢ and 180°—@ of the inter-
secting space §; (7) as each other’s mirror-image with regard to
the 1initial position @ = 0 of that space as a threedimensional
looking-glass, and remark that the reflection of the block itself in
that looking-glass interchanges only the signs 4 and — of the
eightcells of the plus layer and the minus layer, then it is evident
that the two sections corresponding to two supplementary values
@, 180°—¢@ of the angle of rotation are each other’s looking-glass
image with regard to the plane =, the interchange of the signs
=+ included.

We finish our considerations by a rapid survey of the different
cases.

Case II. The sections differ but slightly from the initial case
(fig. 6). If we invert the shading of the pieces corresponding to
the plus layer and the minus layer, and we glue together the
corresponding pieces (1, + 1), etc. of the groups G, 4 Gg and
(3, —8), etc. of the groups G,',— G, we hit upon a figure
which can be derived from the solid (fig. 6) by stretching in the
direction 44'. As we already remarked the shading of the equi-
lateral triangles in - 7, — 7 correspond to the d-faces and the
d-faces of the middle layer; if the shades were inverted they
would refer to the d'-faces of the plus layer and the d-faces of the
minus layer.

As a glance at the figure shows, the section with the plane -7
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passes into that with the plane — # by a rotation through 180°
about the centre of the figure, succeeded by the substitution of
28 — % for any number £%; as this simple rule holds in general,
we give in the groups 10y, 10, ..., 10y, the section with the
plane - 7 only.

If R represents a rhombohedrical section the solids 4, B, C
satisfy the relations R = 4 = B -+ C; 4 and C are always white,
B is always black.

Case III. The small triangle marked e represents the endplane
below, invisible in the principal ﬁgufe, as seen from within the
section, i.e. from above; in the four following cases the polygons
marked e must be interpreted in the same way.

Here we have R—= 4+ 2 C=2 B; A4 and C are white in
the middle layer and black elsewhere, while B is black in the middle
layer and white elsewhere.

Case IV. Here the relation holds R = O —+ 2 T7'; the octahedra
are white, the tetrahedra black.

This case is by far the most remarkable one; it solves the
question: “how to divide an octahedron O® with edges equal to
three units into octahedra O® and tetrahedra 7 with edges
unity?” If we place the O® with one of its diagonals vertically,
the solution can be given as follows. Divide the vertical diagonal
into six equal parts. Cut the octahedron O® by five horizontal
planes passing through the points of division. Divide the square
of the middle section into nine and the squares of the adjacent
sections into four squares equal to the squares of the extreme
sections. Then these 1+ 4 4 9 4+ 4 4+ 1 =19 equal squares

") In connexion with the space-filling properties of octahedra O(1) and tetrahedra
T(1) in the two different positions it is evident that it must be possible to fill an
octahedron O(p) and a tetrahedron T(»), both with edges p, by O0(1) and T(1). We only

mention the results here. In the case of O(p) g(Qp‘+ 1) o) and ?E?p(p’—l) TM) of
each of the two positions are required; in the case of I'(P) we want %(p'—l) o',

1
gP (p+1) (p+2) TM) corresponding in position with 7(») and %p (p—1) (p—2) T*
in the opposite position. These results verify the relations in volume

%(25)’ +1) 0 + %”( p'—1) T = p* o), %(p'—l) o) + %(p +2) T =p* T

based on the fact that 4 T(1) correspond to one O(1), as they ought to do.

In threedimensional space divided into O(1) and T(1) there is plane contact between
two polyhedra of different kind. So an O(1) and two T()) in plane contact with it on
two opposite faces form a rhombohedron, an O(1) and the eight T(1) in plane contact
with it form the well-known figure of the two equal but oppositely placed tetrahedra
penetrating one another in an octahedron.
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5

represent the horizontal middle sections of the 19 O®. Moreover
the 4 4 12 4 24 - 12 4 4 line-segments equal to unity, forming
together the sides of the 19 squares, represent the horizontal edges
of the tetrahedra 7. Any of these 56 segments belongs to two
tetrahedra if there are two segments lying in two adjacent planes
crossing it at right angles and having their centres in the vertical
through the centre of the chosen segment. If there is only one
such segment the chosen segment belongs to only one tetrahedron.
So we find in the layers between the planes successively
4+12+12 4+ 4=327", 16 right-handed ones and 16 left-
handed ones.

Case V. Here we find R= 4 + 2 C+ 2 B+ 2 D. Of these
different pieces 4 and B occur in the middle layer only, C and D
in the extreme layers only. The forms 4 are all white, the forms
B all black. The forms C and D show this particularity that not
even the equal forms belonging to the same extreme layer corres-
pond in shade. So the upper layer contains 13 C, six white ones
(5> 1) and seven black ones (4, %), ete.

Case VI.Here R=4+ 2 C+ 2 £+ 2 B+ 2 D. Moreover
all 4, &£, D are white, all C, B black.

Case VII. This case leads us back to the well-known plane-
filling by regular hexagons and equialateral triangles.

Lascard

) November, 1907.
Groningen






Pl 1

»

JBijtel litt.. RJ Mulder tmpr Leiden.

AL I T~ L N, S S S AU . . 4
|
._ !
|
S / \ I |
\ = Eimiuiuik Rt It~/ Gty Sl Ehl Ity
\ i
3 s ) EEREIS S . < s B
N / oS
CY m e e B e | e R
g A I B
S ° R s B
~ I3
4/ M
‘‘‘‘‘‘‘‘‘‘‘‘‘ N ) B (R~ IS
Y &Y -] 1,
ﬁ G
............................... Lel S
/ .
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 4]
e = o R E L R <

@

N

¥ h =8
D4;
%
ey 7 & e & "
AN \ )
3
.
OO e
of
Wo A ©
S S Nal
0
W.O
a S SS =
s
A

otating about a plane.

space

byas

Mps. A.BOOLE STOTT and D* PH.SCHOUTE : ‘O the sections of a block of' eightcells

A
L) q
"l
N
~ el
oS . *
L{
| 3
ey
V) ~ A1
= Mty
S
N F S
S = o
~
¥ w N
mo Q . S5 =1
. Y
A= / o
L ] )

Sectie) DLIX.

e

Verhand. Kon. Akad. v Wetensch. (1


file:///erhmid

PLIIL

7

TBijtel Lith. PJMrlderimpr. Leiden.

Mrs. A.BOOLE STOTT and D* PH.SCHOUTE: “On the sections of a block of e{gfhtcells lya space rotating abouit a plane.”

AT )
a0

\Q\\\\i_

\\\\\\\\\x\\\..

G

E

.

a

_n’\

Verhand. Kon. Akad.v: Wetensch. (1€ Sectie) DI. IX.



