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On the sections of a block of eighlcells hy a space 
rotating about a plane 

BY 

Mrs. A. BOOLE STOTT and Dr. P. H. SCHOUTE. 

INTRODUC'fION. 

1. If a space of three dimensions 83 rotates in 84 about a given 
fixed plane 'Ir the general case is that 83 and 'Ir have only a line 
I in common. We will restrict ourselves here to the special case 
where 83 passes throngh 'Ir. 

If we start from a fourfold infinite block of eightcells and cut 
it by a space the polyhedra of intersection form a threedimensional 
space-filling. When the position of the intersecting space is an 
arbitrary one, the number of the polyhedra of different sbape is 
infinite. Here we will restrict ourselves once more to the special 
cases whel'e the number of tbe polybedra of different shape is 
finite. These commensurable cases are characterized by the property 
tbat any space parallel to the considered position of the rotating 
space of intersection and passing through a vertex of one of the 
eightceUs cuts tbe four edges tbrough the opposite vertex in points 
the distances of wbich from that last vertex are commensurable 
with the lengtb of tbe edge. 

r'inally we restl'ict ourselves to tbe case of a finite block con­
sisting of 34 = 81 eightceUs, forming together nn eigbtcell of three 
times the size, and we suppose that the fixed pinne 'Ir passes through 
tbe centre of this block and is totally normal to a plane 'Ir' con­
taining two opposite edges of it. 

G 1* 



4 ON THE SECTIONS OF A BLOCK OF EIGHTCELLS 

I. SECTIONS OF A SINGLE EIGH'fCELL BY ANY 

CENTRAL SPACE NORMAL TO 'fHE PLANE CONTAINING 

TWO OPPOSITE EDGES. 

2. Let 0 be the centre of the eigbtcell Cs and PQ one of tbe 
two edges situated in '1r". Let R be the midpoint of PQ and C6 (3) 

the cube of intersection of Cs with t.he space through OR normal 
to PQ. 'fhen OR is a diagonal of C6 (3) and the plane of tbat space, 
bisecting tbat diagonal normally, is the fixed plane '1r'; it cuts C6 (3) 

in a regular bexagon. So . tbis bexagon is situated in tbe boundary 
of tbe. solid tbat forms the intersection of Cs hy any space con­
taining '1r', i. e. by any central space normal to the plane '1r" througb 
o and PQ. This hexagon wiU be indicated by hs. 

3. We will try to smootb tbe way to an exact knowledge of 
tbe sections in question by considering tbe projection of Cs on tbe 
plane '1r". It consists (fig. 1) of a rectangle witb sides PQ = 1 and 
P P' = Va (wbere tbe lengtb of tbe edge of Cs is unity) divided 
by two parallels P t QI and P2~ to PQ into tbree equal rectangles. 
We indicate successively tbe projections of the 16 vertices, tbe 32 
edges, tbe 24 faces and tbe 8 limiting cubes. 

Tbe vertices are 

'fhe edges are 

(3PPI +6PIP2+3P2P')+(3QQI +6~Q2+3Q2Q') 
+(PQ+3PI~ +3P2Q2+P'Q')· 

1.'he faces are 

(:3 PPI P2 + 3 PI P2P') + (3 Q~ Q2 + 3 QI ~Q') 
+(3PPl QI Q+6PIP2Q2~ +3P2P'Q'~)· 

1.'he limiting bodies are 

PPt P2P' + Q~ Q2 Q' + 3PPIP2~QI Q+3PIP2P'Q'~~. 
We eaU tbe cubes projecting themselves in the lines P PI P2P' 

and Q~ Q2 Q' tbe upper and lower cubes, tbe six otber limiting 
bodies tbe side-cubes. 

Any line Tl~ 1~11' parallel to P P t P2P' is tbe projection of a cube 
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of intersection of Os with a space parallel to these bearing the upper 
and lower cubes. 80 any point ij" within the rectangle PP1 ~ Q 
(or P2P' Q/~) is the projection of an equilateral triangle, which is 
thc intersection of Ga with the plane, in ij entirely normal to the 
plane of the diagram. Likewise any point V within the rectangle 
PIP2~~ is the projection of an equiangular hexagon with alter­
nately equal sides, which becomes a regular hexagon for the points 
V situated like 0 at equal distances from PI QI and P2~. Of 
these trianglesand hexagons the projections ij and V form the centres. 

An intersecting space 8s('1I'") through '11'" projects itself on the 
plane of the diagram as à line I through 0; therefore the section 
itself is represented in projeetion hy the segment of 1 situated 
within the rectangle P P' Q' Q. According to the position of that 
line-segment we distinguisb three different cases of intersection; if 
cp designates the absolute value of the acute angle between 1 and 
its position lo in which it is parallel to P P', which angle '11'" we 
caU the angle oj rotation, the three cases are: 

lBt. 0° < cp < 30°, 2nd • 3.0° < cp < 60°, Wd. 60° < cp < 90°. 

In the first case the endpoillts of the segment lie in the edges 
PQ, P' Q' and the space 83 ('11'") has no points in common with the 
upper and lower cubes: the section is limited by three pairs of 
parallel planes, whilst in tbe two other cases it is included by 
jour pairs of parallel planes. In the second case tbe segment still con­
tains points lying outside PIP2~~ : by some of the plan es normal 
to 1 the section is cut in semiregular hexagons, byothers in 
equilateral triangles. In the tbird case no point of the segment lies 
without PI P 2 ~ ~: the sections by planes norm al to 1 are exclu­
sively hexagons. We will consider each of these cases separately. 
But first we wish to make a general remark. 

If we consider the line-segment that forms the projection of the 
solid of intersection as the locus of the points it contains, the 
sectioll itself II.ppears as built up of an infinite number of infinitely 
thin slices. Now in tbe space 83('11'"), bearing the section, the pro~ 
jection 1 normal to '11'" in 0 cuts the plane of any of these slices 
at right angles in its centre. As the slices of the two different 
kinds (equilateral triangles and equiangular hexagons) equaUy admit 
of a rotation of + 120° about their centres , in their plan es , we find : 

"By a rotation of + 120° about its line of projection 1 the 
section is transformed into itself; in other words 1 is an axis of the 
section, of period three". 

4. The case cp < 30°. In tbis case the six side-cubes are cut 
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in congruent lozenges including a rhombohedron; for this is the 
solid bounded by three pairs of parallel planes admitting of an 
axis of period three. 

We deduce the exact form of the lozenges limiting the section 
from another source. If HlH2H3H4H5HS (fig. 2) is the hexagon "s 
situated in the plane 7r, OXI and OX2 are two axes of symmetl'y of 
!ts normal to each other and OX3 is the axis of the rhombohedron 
bearing the endpoints A, A' at eq ual distances from 0, then the 
plan es containing the lozen ges are 

A (14 H2) , 
A'(H4H

5
) , 

A (H3H4) , 

A'(Hs14) , 
A (H5Hs) , 
A'(H2H3)· 

N ow t.he line of intersection AIJ of the planes connecting A 
with 14 H2 and H3H4 win meet 7r in the point of intersection P 
of 14 H2 and H3H4' etc. 80 thc edges through A and A' are 
found by joining A to the vertices of the triangle PQR and A' 
to the vertices of the triangle P' Q'R'. Then the figure is com­
pleted by drawing through the pairs of opposite vertices (Hl' H 4), 

(H2 , H5), (Ha, Hs) of !ts lilles respectively parallel to AF, A Q, AR. 
Now from PH2 = t PQ we dedtice IJP = t AP, etc.; so the 

three points B, IJ, F project themselves on the. axis 0.1. in the same 
point K for which OK = ~ OA (in accordance with the relation 
OB = t OA in fig. 1). Likewise C,E, G project themselves in the 
same point L for which OL = 1 0.1.' = OK, whilst 0 is the 
projection of the six points 14, H2' ... , H s on the axis. 80 we 
find BJ4 = Hl C, the projections KO, OL of these segments of 
the same line on the axis being eq ual, i. e. the vertices Hl' H2' 
.. . , H s of !ts are the midpoints of the si des of the skew hexagon 
BCDEFG. rl'his gives us the relation BIJ = 214H2' 80 the diago" 
nals of the lozengcs crossing the axis AA', or as we will say the 
transverse diagonals, are equal to V2, the edge of the eightcell 
being unity, for in this unit we ha.ve 14H2 = t V2. 1) 

For the other diagonals intersectiug the axis, the atcial diagonals, 
we find 

AC=.g.AN=tVOA2+ (JJV2= 
= ! VUA2 + (t V3)2 = V(t OA)2-·~F(2 V3)2~ 

Now in fig. 1 we have B'A = tOA; so AC is the hypoten~e 
of a rectangular triangle with the kathetre B' A and B' C = 2 V 3 . 

') We henceforward suppose the side of h. to be 3 cm; then PO = 3 \12 cm. and 
pp' =3 \/S cm. 
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Resuming we can say that for the case under consideration the 
projection on the plane .,.' (fig. I) provides us with the means to 
construct the rhombohedrical section , 0 A being the length of its 
semiaxis, whilst A ° and 6 cm. represent the diagonals of the 
limiting lozenges. We apply this in fig. 3, where the rectangle 
PP'Q'Q with the two lines PI~' P2 f4 dividing it into three 
equal triangles is repeated in an altered position, to the two 
extreme cases of this first group of sections, i. e. for ~ = 0 and 
for ~ = 30°. By means of the rectangular triangles Al BI' 01 and 
Al B 2' 02 the axial diagonals Al 01 and A2 02 are found and on 
these the lozenges Al BI 01 IJl and A2B 2 02 D2 with transverse diago­
nals BI IJl = B 2 D2 = 6 cm. are constructed. In accordance with 
the fact that the section is a cu be for ~ = 0, Al BI q IJl is a 
square. In all other cases the axial diagonal AG is longer than the 
transverse diagonal BIJ; so, if we like, we may call A ° the macro­
diagonal and BIJ the brachidiagonal. 

Now whilst ~ increases from 0° to 30° the section (fig. 2) 
changes in a simple manner. Whilst the intersection of the rhom­
bohedron with the central plane .,. normal to the axis is and 
remains the regular hexagon lt6 , the two endpoints A, A' of the 
axis move away from 0, starting from a distance ~- V6 C1n., to 
a distance 3 V2 cm. 80 we may say that the cu be corresponding 
to the original position of the rotating space is stretched out in 
the direction of one of its diagonals into a rhombohedron. 

If we suppose for a moment t.hat the considered eightcell forms 
part of an infinite pi Ie of eightcells huilt up in tbe direction of 
the edge PQ, so that the lowel' cube of an upper one coincides 
with the upper cube of the next lower one, and we disregard tbe 
limiting cubes common to two adjoining eightceUs - as if we 
wished to change a range of ceUs into a long vessel by removing 
the interior diaphragms - we obtain a fourdimensional prism, 
the right section of which is a cube. This prism will be cut by 
an!J space in a rhombohedron, wbich only transforms itself into a 
hexagonal prism with lt6 as right section for ~ = 90°; this result 
will be applied directly. 

5. The case 300<~<60°. In this and in the following 
case the rhombohedrical section of the space 83(",) with the 
fourdimensional prism found above is truncated by two planes 
perpendicular to the axis AA' in the points W, W' wherc that 
axis me ets the projections P P' and QQ' of the upper and lower 
cubes. Here the points W, W' lie on PPI , f4Q'; so the end­
plan es of the truneated rhornbohedron bear equilateral triangles and 



8 ON THE SECTIONS OF A BLOCK OF EIGHTCELIB 

the equal portions of the rhombohedron lying outside the eightcell 
are regular triangular pyramids. In other words: the distance of 
the endplanes to the plane 'Ir must exceed that of the vertices of 
the skew hexagon BOlJ.EFG to that selfsame plane, the sides of 
that hexagon not being cut by the endplanes. 

In fig. 3 (in which we lay down the different results) the faces 
of the section are constructed for the two cuses of this group we 
wish to considcr, the cases where the endpoint W of the line­
segment l situated on P P' is the point Wa halfway between P 
and P t and where this point W4 coincides with Pt. rrhe figure 
shows the two lozenges AaBaOa])a and A4B 4 04])4' obtained in the 
way described. By means of the point Wa' where the normal in 
Wa on Aa Ba' cuts Aa 0a the line h~Fa norDial to Aa 0a is found, 
giving us in its turn the truncated lozenge Ba 0alJa.EaFa; the sec­
tion is limited by six of these truncated lozenges and two equila­
teral triangles with .EaFa as side. In repeating this construction 
for cp = 60 0

, where W4 coincides with P t we find for W4' the 
centre of the lozenge A4B 4°4])4' i. e. the truncated lozenge be­
comes an equilateral triangle B 404])4' the section itself is an octahe­
dron. This is as it should be: in the case cp = 60 0 the projection 
AA' (fig. 1) is normal to the diagonal P' Q of the eightcell and 
therefore 8a ('Ir) is normal to that line .. 

6. Th e cas e 60 0 < cp < 90. Here the rhombohedron is 
truncated at both ends by planes normal to the axis AA' bearing 
hexagonal sections. 

In fig. 3 the sections with the side-cubes are constructed for 
the two cases determined by the relatiol)s P2 W5 = 3 W5P1 and 
P2 Ws = 2 W6P1. The results , obtained in the indicated way, are 
the isosceles trapezia .E5F5 G5H5 and .E6F6G6H6; the corresponding 
endplanes bear equiangular hexagons with t4e alternate sides equal 
to .E5F5' G5H5 and to .E6F6' G6H6. rrhe manner in which tbe 
midpoints W5', W6' and W5', W6' , of the lines EF and GH on 
the macrodiagonal AO are deduced from W5 , W6 and W5 , W6 

is indicated in the figure. 
In the extreme case cp = 900 tbe section becomes a hexagonal 

prism bounded by six rectangles with sides of 3 V2 cm. and 3 cm. 
and by two regular hexagons with si des of 3 cm. 

7. After this explanation we think it will be evident to the reader 
that fig. 3 enables us to make cardboard models of the seven 
sectioDs cODsidered. 1) But this figure can teach us quite as weU 

1) A more expeditiouB method will be given farther on. 
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how to find the images of the different sections in parallel projection , 
in the manner in which fig. 2 already represents the second case 
cp = 30°. Fol' the new problem, which makes its appearance in 
the third case of the pentagon BaCaJJaEaFa' viz. to find the 
triangles (and' hexagons) situated in the planes truncating the rhom­
hohedron, is easily solved. So in fig. 4, corresponding to that 
case, the line JlTN' through JIT parallel to ON meets AC in a 
point N' of EF and this construction always holds; · in this special 
case it is more to the point however to remember that E is the 
midpoint of AJJ, et.c. 

In fig. 4 the angle ANO indicates the inclination of the faces 
of the section on the plane 'li of the hexagon h6' It is easy to find 
the general relation hetween this angle '" (fig. 1) and the angle 
of rotation cp. ~'rom the two relations 

OR = OA C08 cp, OA = ON tang '" 

can be deduced 

tang '" = 8ec cp V2. 
We lay down what we have hitherto found In the following: 

TABLE OF RESULTS. 

I'i Tang .9 
FA CES. +> 

c.:> ., 
ifI 00 

I 6 squares AIB1C,Dl (cube) . . ...... . . . ... . . 0 

Il 6 lozenges A. B.C.D •.. •.••........ . . . ... . lva 

III 6 pentagons B.C,D,E.f~ and 2 equilateral 
triangles (side E,F,) ..•. ..... . .... ..... tva 

IV 8 equilateral triangles B.C.D. (octah'd"on) Va 

V 6 trapezia E.F.G.lf • . and two equiaugular 
. hexagons (sides E.F., G.H.) .. . .. . .... .. 2Va 

VI 6 trapezia E.F.G.TT. and two equiangular 
hexagons (sides E.F., G.H.) ..... .. . . ... Ha 

-
VII 6 rectangles (3 V 2 cm and 3 cm) and 2 hl 

(hexagonal prism) . .................... 00 

Tang 

'" 
V2 

-iVs 

tVg 

2V2 

V26 

2Vï4 

00 

-
Angle -=;r 

O· 

30· 

40· 53' 36" 

60· 

73· 53' 52" 

79· 6' 24" 

90· 

54· 

58· 

61" 

70· 

78· 

84· 

90· 

44' 9" 

30' 54" 

52' 28" 

31' «" 

54'15" 

42' 43" 

8. Before we can pass to the stndy of the block of 81 eight­
cells we must say a word about the section of a single eightcell 
hy a space norm al to the plane 'li' hut not passing through the 
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centre 0; for it goes without saying that a space central to the 
central eightcell of the block is in genera] excentric with respect 
to the other cightcells of it. 

If the projection l of the excentric intersecting space is inclined 
to the edge PQ, the section is either a whole rholltbohedron or a 
part of it. 'fhe first ' case occurs when thc two endpoints of the 
segment of l lying within the rectallg1e PQQ'P' are points of the 
cdges PQ, P' Q'; in the other case the section is a truncated rhom­
bohedron , truncated at oue end or at both ends according to 
whether one or neither of these end points lie on these edges. If it 
is truncated at one end it may happen that we have to deal with 
a rhombohedron of which only a triangular pyramid is cut aff, or 
left; or that the endplanc bears a hexagon, and the section is 
greater than, equal to, or less than half the rhombohedron. 1f it 
is truncated at bath ends the twa endplanes eau be situated on 
different sides of the middle plane cOlltaining a regular hexagon 
equal to hs ' or 011 the same side; so we may even obtain a trun­
cated triangular pyramid. 

9. The method of investigating thc sections of an eightcell by a 
space rotating about u central plane 71"' by means of the projectiou 
in the plane 71"" in the centre totally norrnal to it has been brought 
most to the front in the preceding pages, as indeed it is our 
opinion that this method is preferabie for its generality to any 
other 1), which opinion is strengthened by its applicability to a block 
of eightcells. But still we must acknowledge that, with re gard to 
the constructiou of the side-faces of the rhombohedrical sections , 
a more direct method, morc suitable to the wants and ueeds of 
the maker of cardboard modeis, may be obtained by cutting one 

') If we suppose in space Sn of n dimensions a measure-polytope P2n to be given 
and we have to consider the sections of this polytope hy a pencil of central spaces 
Sn-1 normal to the plane "..' passing through two opposite edges P Q, P ' Q', the same 
metbod can be used. In this case tbe projection of the given polytope P2n on to tbe 
plane ".. is a rectangle divided into n-1 equal rectangles by n-2 lines parallel to 
P Q, P' Q'. The section is either a measure'polytope P2(n-1) of n-1.dimensional space, 
stretched out in the direction of one of the diagonals figuring as axis with the period 
n-l, which may be called a rhombotope, or a mutilated rhombotope truncated at 
both ends. With regard to the section of P2n with the central space Sn_2 to which 
tbe plane "..' is entirely normal , which n-2-dimensional solid is common to all the 
n-1-dimensional sections, we can only rem ark here, that its vertices are vertices of 
P cl" n midpoints of edges of P2 n according to n being even or odd. 'We alld that a 
new method of deding with tbis n~2-dimcnsional section, whicb is indeed a generali­
satiDn of the fact that in fig. 2 the hexagon h. is the part of the plane ".. common to 
the two equilateral triangles P Q R, p' Q' R', will appear shortly in the Proceedings 
of this Academy (Verslagen, Dec. 1907, p. 467, PI'oceedings, Jan. 1908, p. 485). 



BY A SPACE ROTATINGABOUT A PLANE. 11 

of the side-cu bes of the eightcell by the rotating space. We wiU 
close this first section by eXplaining this. 

We consider that side·cube of the eightceU of which the lozenge 
ABCIJ (fig. 2) is a section, one of the three side-cubes projecting 
themselves on thc rectangle PP2~Q (fig. 1). The space of that 
cube meets the plane 7r in the line ~ H2 (fig. 2); this side of 
the hexagon 1t6 joins the centl'es Hl' H 2 of the two adjacent faces 
of the cube projecting themselves on to the rectangle PI P2 ~ ~ 
(fig. 1) the centre 0 of which forms the projection of 7r and there­
fore of I4 H2' 

We project the chosen side-cube on to the plane passing through 
PQ and the centre of the cube - and containing therefore the 
opposite edge which again may be called P2~ (fig. 1)) - as a 
rectangle PP2~Q with the sides PQ= 3 V2 cm., PP2 = 6 Cllt. and 
remark that the centre 0 of PlP2~~ - where PI and Ql 

biseet P P2 and Q~ - is still the projection of' ~ ahd H2' 
and thereföre of HlH2' 'fhis projection PP2~Q (PP2 = 6 cm.) differs 
from the projection PP2~Q (PP2 = 2 V6 cm.) of fig. land 
fig. 3, which difference is due to the fact that the planes of projection 
differ. lndeed the plane of projection 7r' of fig. land fig. 3 passes 
through PQ and the centre of the eightcell, whiist th at of fig. 5 
is determined by PQ and the centre of the chosen side-cube; the 
first plane 7r' indicates the angles of rotation of the intersecting 
space turning about 7r, the second cannot do this. 80 the question 
ariscs: "how can we find the lines of intersection 1/, 12', ••. 17' 

of the new plane of projection with the seven considered positions 
of the rotating space?" To obtain an answer we rem ark that any 
line of this new plane of projection, e. g. the diagonaIPP2 of the 
face of the cu be w hich proj ects itself on P P 2' is di vided by the 
different points of intersection with the lines 11 ', 12', ••• 17' we 
are bent on determining, in the same proportion as the projection 
P P 2 of that selfsame diagonal on 7r' is divided by the correspon­
ding lines 11 , 12 , •. , 17 of fig. 3. Aftel' having obtained these 
lines (fig. 5) the construction of the side-faccs is very easy. lndeed 
we know that the normal erected in thc threedimensional spaceof 
the cllbe on the plane PP2~Q in any point ij within that rectangle, 
reckoned from U to either of the points of intersection with the 
boundary of the cube, is 'equal to the distance of that point U 
from the nearer of the two edges PQ, P2~' 80 in thc case III 
the half CaDaEa Wa of the pentagon Ba Ca Da Ea Fa of fig. 3 is 
obtained by erecting in Ma and Wa normals MaDa = PI P 
and WaEa = WaP on la'; so are found the halves Al Cl IJl' C2IJ2P, 
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0a])aEaWa' P1f4.])4' F5Gr,W'5W5', F6G6W'6W6' ofthe six side-faces 
already given in fig. 3 and moreover in P1 W7 W7' Q" even the half 
of the side-face P1P2f4.Q" of the hexagonal prism of case VII. 

It goes nearly without sayingthat also by this new simple 
metbod the shape and size of all the faces can be found. So in 
the case P the endplanes of the section are equiangular bexagons 
with alternately equal sides E"F5' G5H5. And by constructing tbe 
unknown katheta of a right-angled triangle, the hypotenuse of 
which is the segment of '5' within PP2f4.Q while one katheta is 
the difference of the distances of the sides E5F5' G5H5 to the 
centre of the hexagon, we find the distance of the endplanes, which 
will enahle us to make a drawing of tbe corresponding solid in 
parallel perspective, etc. 

Il. SECTIONS OJ!' rrHE BLOCK OF EIGHTCELLS. 

10. Before entering upon the subject of the sections it will be 
weil to say a few words ahout the block itself. We suppose 81 
eightcells to be built up into a rectangular block having tbree 
along each edge and, in the fourdimensional space containing the 
block that is itself an eightcell of three times the size, we imagine 
a plane 'Ir' passing through two opposite edges of this large block 
and therefore containing its centre, which may still be indicated by 
O. Now the block is to be cut by a space Sg('Ir) norm al to 'Ir' 

in 0 and containing therefore the plane 'Ir in 0 normal to 'Ir'. This 
plane 'Ir cuts the large block in a regular hexagon, the sides of 
which are three times the side of lt6 ; we will caU it lt6'. 

Now in the initial position of the intersecting space Sg('Ir), tbe 
case cp = 0, the section evidently consists of a block of 27 cubes, 
central sections of 27 of the 81 eightceUs, forming the "middle 
layer" of the block, while the other two layers lie beyond Sg('Ir) 
in opposite directions (parallel to the two edges situated in 'Ir') which 
may be called "above" and "below" or "plus" and "minus". This 
section of a very simple . cbaracter is represented in fig. 6 1) in 
parallel perspective, in the same manner as fig. 2; but in order 
not to obtain too large figures in futllre we will suppose the sides 
of lt6 to be 1 cm., those of lt6' 3 cm. As fig. 6 shows, the cubes 
of this section have been numbered in a definite way 1, 2, 3, ... , 

') The shading of the figa. 6, 7, 10 will be explained later on. 
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27, which are in reality the numbers we assign to the eightcells 
of the middle layer; in the same manner the eightcells of the layer 
above are designated by + 1, + 2, + 3, ... , + 27, those of 
the layer below by - 1, - 2, - 3 , ... , - 27, so that above 
and below 1 are + 1 and - 1, etc. 

lt may he remembered that, while each of the 27 cubes of the 
block is a central section of an eightcell parallel to two of its 
opposite limiting cubes (the upper cube and the lower cube) , each 
face is a section of a side-cube, each edge a section of a face and 
each vertex a section of an edge. Also the cubes which are in 
plane, line, or point contact - that means the cubes which have 
a plane, line, or point in common - are sections of eightcells 
respectively in space, plane, or line contact. 

11. In order to identify the limiting cnbes of each eightcell as 
their sections with the space 83('11") take different forms and pooi­
tions we distinguish them by letters. We suppose the cnbes a, b, 
c, d, to meet at one of the vertices of the eightceH and represent 
the parallel cubes meeting at the diagonaHy opposite vertex by 
a', b', c', á; of these d and á are tbe upper cube and the lower 
cube. The visible faces of the cube 1 (fig. 6) correspond in this 
manner to the side cubes a, b', c of the eightcell 1. 

The three pairs of parallel planes dividing the large cube of 
three times the size into the 27 separate cubes are the intersections 
of the initial position of the space 83('11") with three of the four 
pairs of parrallel spaces dividing tbe large eightcell of three tiines 
the size into the 81 separate eightcells. 'rhe fourth pair of dividing 
parallel spaces is parallel to 83('11") and divides the fourdimensional 
block into the three layers which we have called middle layer, 
plus layer and minus layer. We may illustrate the positions 
of the cubes limiting the eightcells, and the manner in which t.he 
eightcells are numbered and their limiting cubes lettered , by giving 
a smaH table of the space contact of the eightceH 14, the central 
one of the block, with the surrounding ones. 'fhe eightcell 14 is: 

, 
contact with the eightcell 11, 10 aa 

" 
bb' 

" " " " 
23, 

, 
13, 

" 
cc 

" " " " , 
17, 

" 
aa 

" " " " 
" 

b'b 
" " " " 

5, 
, 

15, 
" 

cc 
" " " " 

" 
dá 

" " " " + 14, 

" 
d'd 

" " " " 
-14. 
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Here we mean tbat the a cube of eightcell 13 coincides witb the 
a' cube of eightceU 11, etc. 1). 

'l'he sectioll of the block of cubes by the plane 7r is shewn in 
fig. 7, the letters a, 1/, c, a', b, c' refering to the limiting cubes 
of the block itself. It will be seen that, as to their sections with 
this plane, tbe intersected cubes can be arranged in three groups. 
The first consists . of 2, 4, 12, 14, 16, 24, 26 cut in regular 
hexagons, the second of 1, 11, 13, 21, 23, 25 cut in equal 
and similarly placed equilateral triangles, tbe third of 3, 5, 7, 
15, 17, 27 also cut in equal and similarly placed equilateral 
triangles, oppositely placed with respect to those of the second 
group. And the non-intersected cubes, eight in number, consist , 
as to the distance of their centres from 7r, of four different groups 

19; 10,20,22; 6, 8,18; 9. 
80 we find seven groups in all; they will reappear directly in a 
more important point of view. 

12. Let us now consider the projection of the 81 eightcells 
on to the plane 7r' . In the above adopted reduced scale the pro­
jection of tbe block (fig. S) is a rectangle with sides 3 V2 cm. and 
3 V6 cm.; in this large rectangle the concentric similar andsimi­
larIy placed rectangle P P' Q' Q, the sides of which are Vz cm. and 
-V6 cm., represents the projection of the central eightcell 14. By 
producing P P' and QQ' the large rectangle is divided into three 
strips, an upper one, a middle one and a lower one, which are 
evidently the projections of the tbree sets of 27 eightcells, forming 
respectively the plus layer, the middle layer and the minus layer. 
Now the mannel' in which the 27 eightcells of the middle layer 
project themselves on the middle strip PoPo' ao' ao cau be deduced 
from that in which the 27 cubes of the section by the initial position 
of the space S3(7r) project themselves on tbe line AA' which forms 
the projection of S3(7r) and is at the same time (fig. ü) a diagonal 
of the block of the 27. cllbes. 80 we have now to consider for a 
moment the projection of the 27 cubes on the diagonal AA'. 

If we first direct our attention to the vertices and begin (fig. 6) 
with those of the large cube we find as projections the two extre­
mities A, A' and two points dividing AA' into three equal parts. 
If then we pass to the cubes 9, 14, 1 U we see that the projec-

1) In an infinite block of eightcells the numbers of eightcells respectively in space, 
plane, line and point contact with any eightcell considered as the central one are 
eqnnl to the nnmbers of limiting bodies, faces, edges, vertices of that eightcell, i. e. 
8, 24, 32, 16. So we find, the central eightcell included, 81 eightcells in all, i. e. all 
the eightcells of our block are wanted in order to include the central one entirely. 



BY A. SPACE ROTATING A.BOUT A. PLANE. 15 

tions of their vertices consist of A', A and eight points dividing 
AA' into nine equal parts. 80 we easily convince ourselves of 
the fact that the 64 vertices of the 27 cubes project themselves 
into the indicated ten points 1) and that the projection of any of 
the 27 cubes on AA' covers a third part of that line limited by two of 
these ten points. Returning to the projection of the 27 eightcells of 

1) If the three edges of the block of cubes concurring in A are taken as posi.ti ve 
nes of coordinates and we suppose the edge of the cubes to be unity, tbe coordiuates 
of the vertices are (p, q, "), wbere p, q, r are to be chosen from 0, I, 2, 3. So, if 
nep, q, r) represents the number n of permutation9 with definite p, q, rand we join 
togetber the numbers n (p, q, r) for wbich p + q + r bas the same value, we find 
group9 of vertices lying in the same plane x + y + z = constant, i. e. points with a 
common projection on AA'. In this manner we get 

1 (000), 3 (100), 3 (200) + 3 (110), 3 (300) + 6 (210) + 1 (111), 
6 (310) + 3 (220) + 3 (211), etc. 

i.e. groups of 1, 3, 6,10,12,12,10,6,3,1 vertices projecting themselves in the 
ten different points on AA'. 

This result admits of the following general extension: 
"If the (p + l)d vertices of a block of pd measure.polytopes of d·dimensional space 

(arranged in the form of a measure.polytope of p times the size) are projected on to a 
central diagonal of the block, the projections are the endpoints of that diagonal and 
tbe pd-1 points that divide it into pd equal parts. Moreover the numbers of tbe 
projections coinciding respectively with these pd + 1 poiuts are the coefficients of the 
successive powers of x in the polynomial (1 + x + x' + .... + xp)d." 

No doubt this theorem can be proved in different waye, e. g. by the induction from 
p-1 to pand d- 1 to d, or more simply still by tbe genera ti on of the configuration 
of the vertices, proceeding from a row of p + 1 equidistant points to a row of p + 1 
squares, etc. Of the demonstration connected with the manner in which the theorem 
was found we can only give a summary sketch here. It consists of three parts. In the 

1 
fint part we eonsider the special case p infinite, in which the block fills up the 2d th . 

part of d·dimensional space corresponding to the positive sense of the d axes OX., 
OX" .... OXd ; in that case the result depends, in the way indicated in tpe theorem, 
on the form (l--x)-d. In the second part we show that the fini te block of the theorem 
may be considered as the algebraic sum of 2d infinite blocks equipollent to the infinite 
block of tbe first part but showing with regard to the position of the vertex at fini te 
distance th at originally occupied the origin the effect of a parallel translation , any of 
the vertices of the finite block forming the origin of one of these 2d infinite ones; in 
this a1gebraic SUlD the sign of any of the 2d infinite blocks is positive or negative 
aceording to the number of coordinates of its origin differing from nought Leing even 
or odd. In the third part we prove th at this sum of infinite blocks can be represented 
by (l-B)d, if Bk represents one of these b10cks, the system of coordinates of which 
origin consists of k units and d-k noughts (1 standing for BO, i. e. for the infinite 
b10ck in its original position) and then it is clear that this geometrie composition of 
the 2d infinite bloeks to tbe finite one is to be translated algebraically by multiplying 

(
l-xP+1)d the result (l-x)- d by (1--xp+1)d. So we find I-x or (l+x+x'+ ... xp)d. 

We may add that the genera1 theorem given above is also an extension of the pro­
blem in how many ways the word abracadabra written in a triangle may be read, or 
in how many ways the king of the chessboard can march from a given row to any 
row k squares higher (see E. LUCAS, "Théorie des nomb"eB", p. 13,14). 
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the middle layer on the middle strip of fig. 8 we find that the 
projection of any of these eightcells covers a third part of the 
strip, consisting of three of the nine parts into which this strip 
can be divided by lines parallel to Poflo. Now, if we arrange 
(fig. 6) the 27 cubes in groups, and reckon as belonging to the 
same group these cubes that cover in projection on AA' the same 
third part, we alight evidently on the seven groups found above. 
So in order to apply this result to the projection of the block of 
eightcells, we have repeated under the projection (fig. 8) the line 
AA' in seven parallel positions Al A/, A2 A2', . .• , A7 A7', indicated 
on each of them the position of the third part that forms the pl'O­
jection and inscribed at each of these third parts the llumbers 

19; 10,20,22; 1,11,13,21,23,25; etc. 
of the eightceUs projecting themselves oh the corresponding third 
part of the strip. For convenience we will designate these groups 
of eightceUs by Gl' Ga' Gs , G7 , Gs', Ga', Gl ' indicating by the 
subscript the llumber of the eightceUs, and we will add the 
signs + and - to the corresponding groups of the plus layer and 
the minus layer 1). 

13. Now we are quite provided with the means of determining, 
for any arbitrary position of the intersecting space 8a(1r), the 
numbel', form and si ze of the different solids, sections of separate 
eightcells which fill up t.he section of the large block of eightcells, 
which is itself an eightcell of three times the size. We may even 
assert that this pl'oèess, complicated as it seems, in reality is 
easier than another to which we are accustomed and which we 
perform daily: "to see what o'clock it is." For our dial - the 
plane 1r' on to which the block of eightcells has been projected -
has one hand only - the projection of the intersecting space 
turning round O. But in order to facilitate the enumeration of 
the l'esults it wiU be weU to introduce beforehand a simple nóta­
tion for the different kinds of solids we obtain. 

As we have seen the section of any of the 81 eightceUs is a 

') If we replace the 27 cubes by their centres, the projection of these centres on a 
diagonal of the block of cubes gives us a range of seven points coinciding with the 
centres of the rectangles p.PQQ., P'P;Q;Q' and the five points dividing the segmeut 
of AA' Iimited at these two points into six equal parts. 80 the numbers 1, 3, 6, 7, 
6, 3, 1 are found - compare the preceding note - as the coefficients of the powers 
of x in (1 + x + x')'. 

In the extension of the problem to the measure-polytope P2n(p) with edges equal to 
p units of space Sn divided into pn measure-polytopes P2n(l) with edges unity, the 
numbers of polytopes of the groups G coinciding in projection on ",' (compare the pre­
ceding note) are the coefficients of the powers of :z; in (1 +:z; + x" + .... + :z;p-1)n. 
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rhombohedron or a part of it, obtained by truncation at one end 
or at both ends by planes normal to the axis; if we except the 
special case cp = 90°, which will be treated separately, this rule 
is general. Now this section can be designated by the symbol 
a (p, q), where arepresents the length of the axis of the unmuti­
iated rhombohedron expressed in cm., whilst pand q indicate the 
fractiolls of the axis cut oft' by the end planes, the first of these 
parameters refering to that endplane the extcrnal normal of which 
corresponds in sense to A'A. For the unmutilated rhombohedron 
is determined by tbe hexagonal section normal to the axis in the 
centre, wbicb section is the same for all the rhombohedra, and 
the length of the axis. So a (0, 0) stands for a whole rhombohe­
dron, a Cp, 0) or a (0, p) for a rbombohedron truncated at one 
end, a Cp, p) for a rbombohedron truncated at both ends admitting of a 
plane normnl to the axis dividing it into two congruent balves; 
so a (p, q) transforms itself into a (q,p) by a rotation through 
180° about any line normn 1 to the axis, etc. 

14. We consider the case lil (tang cp = t 0) in detail, and 
to that end we reproduce in fig. 9 the projection of the block of 
eightcells on .".' and the projection 1= AB1 01 ... A' of tbe inter­
secting space. Here within the rectangle P P' Q' Q that is the pro­
jection of any eightcell of the group G7 , let us say the central one 
14, lies the segment 02 °2' of I, whilst the points Ba' Ba' on the 
edges PQ, P' Q' are the elldpoints of tbe axis of the rhombohe­
dron. So, as Ba02 = C2' Ba' is a sixth part of BaBa', we find for 

the section t V42 Ch Ir)· 
In general the value of a is sec cp V6; in the following tabie, 

wbich gives us for all the groups of intersected eightcells 1 st. the 
segment of I lying within the projection, 2nd

. the segment of I re­
presenting the axis of the unmutilated rhombohedron, 3rd

. the sym­
bol a (p, q), this value of a is indicated at the he ad , which 
allows us to use the simplified symbol (p, q). 

Verband. KOIl. Akad.. v. WeteDsch. (ie Sectie) Dl. IX. 11°, 7, G2 
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TABI.E OF RESULTS ]<'OR CASE lIl, 

tang cp = tV3, tang 0/ = tVI4, a = tV 42 

--- -- -
I 

G, C. C.' B. Ba' (t, t) + G, B.C. B. B. 'i (0, i) -G, C,'B,' B. B.' a, 0) 

G. C. n: /I. B: (l, 0) + G. B,C, B,B: (0, i) -Ga' C,'B,' B. B,' Ct, 0) 

G' • B. C,' B. IJ, ' (0, t) + G. C,C. B,B. (t, t) -G.' C.'C, ' B:B,' (t , 1;) 

G · G. B. B, B. (l, 0) + G, G,B. . \ B. a, 0) -G,' B. ' C, ' B.' A' (0, t) 
G' • /I:C. ' B: B, ' (0, i) 

80 if we l'epresent the l'eally different pleces ct, i), ct, 0), 
ct , 0) by A, B, 0 we find: 

-G' 3 
-G ' 6 
-G' 1 
-G7 

ct, t) 13 pleces A 

C-h 0) I 26 B 
CO , t) " 
ct, 0) I 20 0 
CO, t) -- - " 

I 59 pieces altogether. 

80 in case III 59 of the 81 eightcells are cut. 
15. In the following tahle giving the results for the seven cases 

cOllsidered Q, 0, T, H, P denote respectively cu be , octahedron, 
tetrahedron , hexagonal prism, triangular prism, whilst A, B, 0, 
D, g represent less regular sec ti ons of eightcells, 



GENERAL TÀBLE OF RESlJJ,TS. 

-- . .. . --- -- .0 - - 0 -_ .... - [ 

V I Number Nu~ber 'fangentlTangent a ue of E 11 urne rat ion 0 f th e di ff ere n t sec t i 0 11 S. 
hOof cp of 0/ of a . 
te case I pleces 

I I 0 I V 2 I V6 I 27 I all G: 27 Q. 

--nl!.vsitVil 2V2 
, 

45 G7 , + G1, - Gt' (0, 0) 9A G3 , - G6 ' I (t, 0)1 118 C 
G6; - G' (t, ?)! 18B G3 , + G6 ! (O,~) , s 

i i I . 
G6' + G3 (0. 3) 

i 

111 tVS tV14 l.V-- 59 G7 , + Gs' - Gs' ct, t) 13 A I 
Gs; - G7 I (t , ~)! l 20 C 2 4.2 

G6, + G1, - G6' (t,O)1 26 B [ Gs ' + G7 (0, «) I 

i 
G'6' + G6, - G1 ' (0, t) : 

[ 

IV I VS l2V2 12V6 51 G7 , + G6 , - G6 ' 1 (i, t) 1 19 0 G6 , + Gs, - Gi : (i, O)l ; 32 T 

1 
I I G6' + G7 , - G3' I (0, i- : 
I I -

V !2VS V26 ! V78 63 G7 ' (ï\, 1\) I 7 A + G7 , - G6' I <-1-. l2°)i 126 C + Gs' - G6 I (-Ho, 0)1 118 

I 

I G6, (~, i~)! 1 12 B + G6, - G7 (1"2"' t)l + G6 ' , - - Gs' (0, ft)l 
I G6 (12' 4) I 

VI sVB" 2V14 2V42 57 G7 (t,t) 7 A + G, i (*'il 1114 0 + G61 (~.tl 11 121) + G6,ICï·fl 1112 
G6, <î'1)112B -G7 (t'3) -G6 (9,0)1 i- G6 1(9'3)! [ 

! 
G6 <9' 9) 

I I 
VII ':Ij ':Ij ':Ij 57 G7 , + G7 , -G7 121 H I GG; + G6: - G6 I i 136 P 

I 
I G6 ' + Gr, ,- GG l 

]) 

E 

~ 
~ 
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""d 
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Cl 
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t-3 
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~ 
Z 
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~ 
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It goes without saying that the different A, B, 0, n mentioned 
in this table stand for different sectiom~. 

16. Now we have still to solve this problem: "if we are given, 
for any of the six cases 1I, lIl, .... , VII considered, a bag con­
t.:'lining the set of models representing the corresponding sections 
of the eightcells of the bloek, how can these pieces be put to­
gether so as to obtain the corresponding section of the block 
itself?" 

This problem can be easily solved in the following way. We 
begin by arr!tllging the set of models into classes according to 
their shape, subdivide these classes into groups according to the 
last table of results and assign to each · model of any group one 
of the numbers of the eightcells belonging to that group, without 
sign, with the sign + or with the sign - according to the layer 
the group belongs t~. Then we inscribe on the faces of any model 
originating from the upper cube and the lower cube of the corres­
ponding eightcell the letters d and d', on the three or the six side­
faces originating from the side-cubes the letters a, b, c or a', b', c' 
or both triplets, taking care to put the right triplet at the right 
place and to write the three constituents . of each triplet in due 
order of succession. After having prepared the work in this way 
we have only to consult a table of contact, of which we gave 
above only the part refering to the central eightcell 14, in order 
to be able to bring to coincidence the faces of thc models that 
are to coincide, i. e. in order to be able to build up the section 
of the block of eightcells in the way desired. 

'l'he result of this solution is given in the six groups of figures 
IOn, lOm, ... 10VII corresponding to the six cases 1I, lIl, ... VII. 
Each of these groups consists of: 

1 st. one relative large figure in parallel perspective representing 
the section of the block of eightcells built up of the pieces that 
are sections of the separate eightcells, 

2nd
• two or more smaH figures in parallel perspective marked 

A, B, 0, D, B, representing these different pieces, 
3rd

• one or two plane sections of the solids of intersection 
obtained with planes on which we win fix attention afterwards. 

17. It wiII be necessary now to say a word or two about the 
shading and the colouring of the groups of fig. 10; we begin by 
the shading. 

'rhe shading of thc figurcs 10 is based on the supposition that the 
eightceUs of thc block are alternately black and white in the 
marmer which may be considered as the consequent fourdimellsional 
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extension of the shading of the chessboard squares. So the shading 
of the eightcells of the middle layer is shown in that of the cubes 
(fig. 6) forming their sections witb tbe space 8a('1I"') in its initial 
position I, and in the sections of these cubes by the plane '11'" 

(fig. 7); to obtain the shading of the eightcells of the plus and the 
minus layer we have to invert black and wbite of the corresponding 
eightcells, i. e. of the eightcells bearing the liame num ber, of the 
middle layer. Then two eightcells in space contact or in line 
contact are alike, two eightcells in plane contact or in point contact 
are different with regard to the shading. By adding that we suppose 
the central eightcell to be white the shading isquite determiued 
by the stated rule of contacts. . 

But tbere is more. For we eau prove easily by tbis rule that 
any two eightcells the projections of which on the plane '11"" coincide 
are alike with regard to thc shading. So tbe three eightcells of 
Ga projecting themselves (fig. 8) on the rectangle equal to PoPQQo 
and overlapping this for two tbirds must coincide in shade, as 
they are in space contact with the unique eightcell of Gl that 
pl'ojects itself on poPQaa and therefore differ in shade from that 
eightcell; tbe cube common to tbis eightcell and any of the three 
belonging to Ga projects itself on the overlapped part of PoPQQo· 
So we can go on and assert that the six eightcells of G6 must 
cOrl'espond in sha~e, each of them being in space contact with at 
least one of the three eightcells of G3 and therefore differing in 
shade with these, etc. 1) So we find easily the following result: 

White are the 1+ G1 + G6 + G6' + G1' 

4] eightcells ... I 
G3 G7 

G' 
3 

-- G - G6 
G' -G' 

I 1 - 6 1 

black are the + G3 + G7 + G3' 

G1 G6 
G' G' 

40 eightceUs ... 6 1 
- G3 - G7 -G' 3 

Now the question Rl'ises: "fr'Jm the fact that the eightcells of 
the same group correspond in shade and their sections are equal 
the possibility of all equal pieces corresponding in shade presents 
itself; in whieh of the cases I, II, ... VII is this possibility 
realisedP" rro answer it we have only to consult the general tahle 

1) We can give an analogue to the "rule of contact" for the projections on 'Ir' in 
the form: "Two eightcells the projectioDs of which overlap for one third or are in 
point contact are alike, two eightcells the projection of which overlap for two thirds 
or are in line contact are different with regard to tbe shading." 
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of results. We find tbat tbe answer is alternately no, yes, no, etc. 
So in the cases Il, IV, VI all equal pieces correspond in shadc. 
And of the other cases the first behaves differently from UI, V, 
VU, in this seuse that in the cases UI, V, VII all equal pieces 
will correspond in shade, when the shading of the eightcellsof 
both the plus layer and the minus layer have been inverted, an 
alteratiori w hich does not affect the fust case. 

18. If in the solution of the problem of reconstruction of the 
section of the block by putting together the different pieces, we 
confine ourselves to the pieces belonging to the groups of tbe 
middle layer, tbe re sult is a part of tbe wbole section J included 
bet ween two planes. rrhese plan es are evidently tbe plan es of inter­
section of the intersecting space 8a(7r) witb the two spaces sepa­
rating tbe middle layer from tbe plus layer and tbe minus layer; 
as the two separating spaces are parallel to and equidistant from 
tbe space containing tbe centres of the . eightcells of the middle 
layer J tbe two new planes, whicb we eaU + 7r and - 7r J are 
parallel to and equidistant from 7r. In the initial position I the 
intersecting space Sa (7r) coincides with the space bisecting tbe 
distance betwecn tbe separating spaces ; for this reason the plan es 
+ 7r and - 7r are at infinity in that case and canHot appeal' in 
fig. 6. For which value of the angle of rotation cp, supposcd to 
increase from 0° to 90 0 do these planes + 7r, - 7r begin to inter­
seet the section? A single glance at fig. 8 shows us that this angle 
PoOA is cbaracterized by its tangent t VS, so it amounts to 10° 53' 
36"; in the rbombobedrical section of the block corresponding to 
tbis angle tbe plan es + 7r, - 7r would make tbeir appearance in 
the extremities A, A' of the axis of the rhombohedron. For any 
acute angle tbat surpasses this value the planes + 7r and - 7r divide 
the section into three parts, the extreme ones of whicb - equal 
to one anotber - are left uncoloured, while tbe middle slice is 
coloured yellow . On tbe side-faces of the sections tbe polygons of 
intersection witb the planes + 7r, - 7r separate parts of tbe SUl'­

face differing in shade. Wbat appears in the planes + 7r, - 7i 

themselves is sbown in the case II for both the planes, in the 
othe1' cases for the plane + 7r only; in these sections can be seen 
how the polygons are built up of the d-faces and tbe d' faces of 
the pieces of the middle layer. rrhe othe1' plane sections, added to 
the figure-groups lOm, 1 OlV' . .. 10 YlI' refer to the endplane not 
visible in the principal figure. 

Aftel' wbat has been said it will not be necessary fa1'ther to 
explain the meaning of the numbers without sign or with one of 
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the signs + on the side-faces of the sections of the block, on the 
elldplanes of these sections and on the sections of these sections 
with the plan es + 'lr, - 'lr. With regard to the letters .A, B, 0, 
IJ, E, indicating the sections of the separate eightcells of different 
shape, inscl'ibed also in the endplanes and the sections with the 
planes + 'lr , - 'lr it may suffice to remember that the forms .A 
and B meet the invariable plane 'lr respectively in regular hexagons 
and equilateral triangles marked on them, whilst the other forms 
0, IJ, B have no point in common with that pl~ne. 

19. A Il1ere inspection of the groups of figures IOn, lOm, .. ·, 
10"II can show how the section of the block composed of the 
sections A, B, 0,... of the separate eightcells changes, when the 
angle of rotation cp varies from 00 to 90 0

, from which ensues that 
the angle ~ of the side-faces of the section with the plane 'lr 

incl'eases from 54') 44' 9" to 90°. If we IlOW push the rotation 
still farther and suppose that cp variEis from 900 to 1800 we pass 
at the supplementary values of these considered above by stadia 
VI', V'" .. , I' closely connected to the sections VI, V, ... , I. 
.1.1'01', if we consider tbe two positiol1s cp and 1 SOo_cP of the inter­
secting space Ss ('lr) as each othel"s mirror-image with regard to 
the initial position cp ~ 0 of that spa ce as a threedimensional 
looking-glass, anel rem ark that the reflection of the hlock itself in 
that looking-glass interchanges only the signs + and - of the 
eightcells of the plus layer and the minus layer, then it is evident 
that the two sectiollS con'esponding to two supplementary values 
cP, 1 S Oo_cP of the angle of rotation are each other's looking-glass 
image with regard to the plane 'lr , the interchange of the signs 
+ included. 

We finish our considerations by a rapid survey of the different 
cases, 

Cas e Il. The sections diffel' but slightly from the initial case 
(fig. 6). If we invert the shading of the pieces COlTesponding to 
the plus layer anel the minus layer, and we glue togetber the 
corresponding pieces Cl, +- ]), etc. of tbe grou ps G 6' +- G 6 and 
(3, - 0), etc. of the groups G6', - G6', we hit. upon a figure 
which can he derived from the solid (fig. 6) by stretching in the 
dil'ection AA', As we already remarked the shading of tbe equi­
lat81'al triangles in + 'lr , - 'lr correspond to the d-faces and the 
a-faces of the middle layer; if the shades were inverted they 
would refer to the d'-faces of the plus layer and the d-faces of the 
minus layer. 

As a glance at the figure shows, the section with the plane + 7('" 
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passes into that with the plane -.". hy a rotation through 1800 

a.bout the eentre of the figure, sueceeded by the substitution of 
28 -Ic for any number Ic; as this simple rule holds in general , 
we give in the groups lOm, 1 0IV' ... , 10VII the section with the 
plane +.". only. 

If R · represents a rhombohedrical seetion the solids A, B, C 
satisfy the relations R = A = B + 0; A and 0 are always white, 
B is always black. 

Oas e lIl. The small triangle marked erepresents the end plane 
below, invisible in the prineipal figure, as seen from within the 
section, i. e. from above; in the four following eases the polygons 
marked e must be interpreted in the same way. 

Here we have R = A + 2 C= 2 B; A and 0 are white in 
tbe middle layer and ~lack elsewhere, while B is blaek in the middle 
layer and white elsewhere. 

Oas e IV. Here the relation holds R = 0 + 2 T; the octahedra 
are white, the tetrahedra black. 

This case is by far the most remarkable one; it solves the 
question: "how to divide an octahedron (j3) with edges equal to 
three units into octahedra (j1) and tetrahedra 1'<1) with edges 
unity?" If we place the (j3) with one of its diagonals vertically, 
the solution can be given as follows. Divide the vertieal diagonal 
into six equal parts. Out the octahedron (jS) by ti ve horizontal 
planes passing through the points of division. Divide tbe square 
of the middle section into nine and the squares of the adjacent 
seetions into four squares equal to the squares of the extreme 
seetions. Then these 1 +4 + 9 + 4 + 1 = 1 U equal squares 

') In connexion with the space-filling properties of octahedra 0(1) and tetrahedra 
T(l) in the two different positions it is evident that it must be possible t:> fill an 
octahedron o(p) and a tetrahedron T(P), both with edges p, by 0(1) aud T(l). We only 

mention the results here. In the case of (){p) * (2p S + 1) ()(l) and 2; (pS_1) T(I) of 

each of the two pósitions are requiredj in the case of T(p) we want t(pS-l) 0', 

~ p (p + l)(p + 2) T(I) corresponding in position with T(p) and i p (p-l)(p-2) T' 

in the opposite position. These resnlts verify the relations in volume 

~(2p' + 1) 0(1) + ~(P'-l) T(l) = p' 0(1), t (pl-1) 0(1) + ~(p + 2) T(1) = p' Tel) 

based on the fact that 4 T(l) correspond to one O(1), as they ought to do. 
In threedimensional space divided into oei) and T(l) there is plane contact between 

two polyhedra of different kind. So an 0(1) and two T(I) in plane contact with it on 
two opposite faces form a rhombohedron, an 0(1) and the eight T(l) in plane contact 
with it form the well-known fignre of the two equal but oppositely placed tetrahedra 
penetrating one another in an octahedron. 
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represent the horizontal middle sections of the 19 (P). Moreover 
the 4 + 12 + 24 + 12 + 4 line-segments eq ual to unity, forming 
together the si des of the 1 9 squares, represent the horizontal edges 
of the tetrahedra lXi). Any of these 56 segments belongs to two 
tetrahedra if there are two segments lying in two adjacent planes 
crossing it at right angles and having t.heir centres in the vertical 
through the centI'e of the chosen segment. If there is only one 
snch segment the chosen segment belongs to only one tetrahedrOlI. 
So we find in the layers bet ween the planes sllccessively 
4 + 12 + 12 + 4 = 32 Ti), 16 right-handed ones and 16 left­
handed ones. 

Case V. Here we find R = A + 2 C + 2 B + 2 IJ. Ofthese 
different pieces A and B occnr in the middle layer only, C and IJ 
in the extreme layers only. The forms A are all white, the forms 
B all black. The forms C and IJ show this particularity that not 
even the equal forms belonging to the same extreme layer corres­
pond in shade. So the upper layer contains 13 C, six white ones 
CT~' t) and seven black ones ct, 12), etc. 

Case VI. Here R = A + 2 C+ 2 E+ 2 B + 2 IJ. Moreover 
all A, B, IJ are wbite, all C, B black. 

Cas e VII. This case leads us back to the well-known plalle­
filling by reglllar hexagons and equialateral triangles. 
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