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Abstract 

In this paper we present an overview of recent work on lattice and measure­
valued models of catalytic reactions, in particular , on catalytic branching sys­
tems. The main phenomena exhibited by nearly critical branching systems are 
dimension-dependent dumping in small and large space and time scales. Special 
attention is given to the effects which occur when the catalyst is highly dumped, 
in particular, when in the continuum models the catalyst is a time-dependent 
singular measure. Finally, the interactive model of mutually catalytic branching 
is described and some recent results are reviewed. The basic tools indude log­
Laplace functionals , measure-valued martingale problems, collision local times, 
and duality. 

1 Introd uction: Catalytic reaction-diffusion 
systems 

Reaction-diffusion partial differential equations have been studied for many years, and 
one of the applications is to model catalytic reactions. A catalytic reaction requires 
the presence of a catalyst which determines the rate of the reaction. For example, a 
single type catalytic reaction-diffusion is given by the partial differential equation: 

8u(t, x) 
8t 1 1 } 2~u(t,x) - 2 rt(X) R(u(t,x)), 

Ult=o+ = <P ~ 0, 

(1.1) 

where ~ is the d-dimensional Laplacian, R : Il4 -+ Il4 is a locally Lipschitz­
continuous function, the initial function <p is continuous, and (t,x) ~ rt(x) ~ 0 
is also a continuous function representing the density of a eatalyst at time t at x. 
However, there are some catalytie reaetions in which the eatalyst is coneentrated on 
an x set of zero Lebesgue measure and equation (1.1) must be replaeed by one with 
an irregular coefficient r. To illustrate this we consider an important example. 

Example 1.1 (glycolysis) . Glycolysis is acellular reaction in which glucose is broken 
down into pyruvate, and energy is released. This is achieved by a chain of reactions 
taking place inside a cell which can be described by a system of reaction-diffusion 
equations. Each reaction in the chain is initiated by an enzyme catalyst. How­
ever, these enzyme catalysts may not be spatially distributed in a homogeneous way. 
Within the eell there is a network of "filamentous aetin" , and enzyme molecules can 
bind to filaments le<).ding to highly concentrated eatalytic regions (see [52]). 0 
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The example of glycolysis and other catalytic reactions (cf. [53]) lead to a study in 
which the catalyst is not given by a regular density function but rather by a measure­
valued process: 

ft(dx) = catalytic mass at time tin the volume element dx. (1.2) 

In this case it is useful to reformulate the reaction-diffusion equation (1.1) by the 
corresponding mild form 

u(t,x) = f Pt(y-x)cp(y)dy JRd 

- ~ ft f Pt-s(Y - x) R (u(s , y)) fs(dy) ds, 
2 Jo JRd 

with the (standard) heat kernel 

Pt(x) := (211"t)-d/2exp[_I~~2]. 

(1.3) 

(1.4) 

Such partial differential equations have been studied when ft(dx) == f(dx) is a de­
terministic measure concentrated on an open set ([5]) or on a hypersurface ([16]). 
However, the example of glycolysis suggests generalizing this set-up to catalytic mea­
sures concentrated on fractal-like sets and also varying in time. 

The study of reaction-diffusion equations with irregular reaction rates and their 
relation to catalytic branching models had been initiated in [13, 24, 14]. Subsequently 
there has been a considerable development in the mathematicalliterature. For earlier 
surveys, see [35, 36, 21], [27, Section 6.3], and [47]. For catalytic branching models in 
a discrete time setting, see [11, 12, 43, 44, 1, 6]. 

Before returning to describe probabilistic models which are related to equations 
of th is type, we begin with models of catalytic reactions in discrete spaces. 

2 Lattice models of catalytic branching 

Catalytic reactions such as glycolysis take place at the molecular level. The goal of 
this research is to develop a class of mesoscopic models of these reaction-diffusions 
which include the spatial heterogeneities in the "geographical structure" of catalysts 
and reactants and temporal fluctuations which occur. Moreover, the heterogeneous 
distribution of catalysts and reactants has a profound effect on the rate of product 
formation - how can this be quantified? 

In order to address these problems, we begin at the microscopie (molecular) level 
and with the simplifying assumption of a spatially discretized system. In th is setting 
a chain of reactions such as occurs in glycolysis can be viewed as a kind of a multitype 
branching process 

r n - 1 R 
~ n (2.1) 
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where Rl, ... , Rn are a sequence of reactants, and f 1, . .. , f n-l are catalysts. In 
a typical biochemical system such as glycolysis, molecules of reactant Rl enter the 
system as a constant rate Poisson process, each molecule of reactant Rj - l is replaced 
by a random number of molecules of reactant Rj at a rate proportional to the time 
spent in the presence of a molecule of the catalyst f j - l . 

In order to simplify the exposition, we consider primarily the case of a single 

reactant type and the catalytic reaction Rl ~ Rl. The mathematical methods 
developed for the analysis of the lat ter system can be extended to the former multitype 
case. 

2.1 Catalytic reactions of particle systems in Zd 

We begin with a particle system on Zd. A particle of mass m located at a point x 
will be described by a point measure m8z . A particle system in Zd (with spatially 
varying masses) is then simply a measure J.L on Zd. On the other hand, we will often 
identify a measure J.L on Zd with its density function J.L : Zd -t 1I4 with respect to the 
counting measure C := l:zEZd 8z , that is, 

J.L(B) = L J.L(x) = j J.L(x) C(dx), 
zEB B 

(2.2) 

Then J.L(x) is the mass in x and, at the same time, the density of mass at x. 
Given N(t) reactant particles of mass m at time t located at wl, .. . , w{"(t), we 

consider the point measure 

N(t) 

mL8wi 
j=l 

(2.3) 

describing the state of the reactant at time t. For this to serve as a discrete space 
model of a reaction-diffusion system, we assume that the system dynamics involves 
spatial dispersion and that the reactant particles undergo catalytic branch ing. To 
model the spatial dispersion we assume first of all that the reactant particles undergo 
independent simple random walks Wj in Zd. Additionally, in the presence of the 
catalyst, a reactant particle can either produce a new reactant particle (of the same 
type) or die (critical binary branching). Splitting or death for a reactant particle with 
trajectory W will occur according to a Poisson process run with a clock A~(t), say, 
which measures the time spent in the presence of the catalyst. Here we assume that 
the catalyst at time t is given by a measure ft on Zd. Then, by definition, 

t ~ o. (2.4) 

A~ is called the collision (local) time between the intrinsic random walk path wand 
the catalyst f. (Note that by our convention (2.2) there is no difference between the 
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notions of collision time and collision local time in the present Zd case.) Examples of 
r and the related collision time A~ are listed below. Note that A~ is a continuous 
additive functional of the Markov process w. 

We thus have the catalytized reactive transitions: 

catalytic reproduction: 8x -----+ 8x + 8x with clock ~ A~ , 

catalytic killing: . 1 r 
8x -----+ 0 wlth clock 2" Aw . 

Example 2.1 (catalysts and their collision time) . 

(i) (uniform catalyst) In this case 

(2.5) 

and the reactant process X = Xr is a classical branching random walk with 
branching rate "(. 

(ii) (single point catalyst) Here rt == 80 , thus 

A~(t) = occupation time (or density) at 0 by time t for the random walk w. 

(iii) (constant number of catalytic random walk particles) In the case 

(2.6) 

where "(1 , . .. ,"(M are independent simple random walks in Zd also independent 
of the intrinsic reactant path w, we have 

M 

L f(t, "(j, w) (2.7) 
j=1 

where f( t, "(j, w) denotes the occupation time at 0 by time t for the random walk 
w - "(j . 

(iv) (autonomous branching random walk catalyst) In this case the catalytic 
particles are assumed to perform autonomously a critical binary branching sim­
ple random walk in Zd. In low dimensions branching particle systems exhibit 
spatial clumping, and therefore they provide an example in which we can study 
the effect of a random heterogeneous catalytic medium on the distribution of 
reactant mass. Such a study has recently been carried out in [45]. 0 
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2.2 Mutually catalytic branching particle systems 

In a catalytic reactant cycle the reactant Rj - l serves as the catalyst for the production 
of the reactant Rj, j = 2, ... , M, and RM serves as the catalyst for the production of 
Rl, 

Rl --+ R2 

/' '\t 

Rs R3 

t .!. 

R7 R4 , ./ 
R6 f-- R5 

Figure: Catalytic reaction cycle (M = 8) 

In the special case M = 2, we have two mutually catalytic reactants. At the particle 
level, letting the two reactant types be called "Red" and "Blue", and let all of them 
move in the lattice Z d as simple random walks, we have in the case of critical branching 

Red+Blue -t Blue offspring 

Red + Blue -t Red offspring 

Red+Blue -t Blue death 

Red+Blue -t Red death 

each of them with clock iARB, where ARB = ARB(dt) should refer to the collision 
time between a red and a blue particle. 

2.3 Continuous-state catalytic branching in Zd 

The particle models introduced above are intuitively appealing and are used in sim­
ulation experiments (cf. http:/ lwww.mi.uni-erlangen.de;-klenke) . However, the 
continuous-state processes which arise in the limit of a large number of particles of 
small mass have the advantage that they can be studied by powerful tools of stochastic 
calculus. 

We next introduce the continuous-state analogs of the particle systems discussed 
above. Recall that Xt(x) and rt(x) denote the amount of reactant, respectively 
catalyst, at site x E Zd at time t. Then {Xt : t ~ O} is required now to satisfy the 
following system of Ito stochastic differential equations 

Xt(x) = Xo(x) + fot ~~Xs(x) ds + fot Jrs(x) Xs(x) dWs(x), (2.8) 

t ~ 0, x E Zd, where ~ is the discrete Laplacian (note that ~~ is the generator 
of a simp Ie random walk on Zd), and {W(x) : x E Zd} is a system of independent 

http://www.mi.uni-erlangen.de/~klenke
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one-dimensional (standard) Brownian motions. This system is also referred to as 
simple super-random walk X = X r in Zd with catalyst f. In the special case of 
Example 2.1 (i) of a uniform catalyst ft(x) = "(, the process X = X r is the well­
understood simple super-random walk with constant branching rate "(. On the other 
hand, analogously to the Example 2.1 (iv), one can take an autonomous simple super­
random walk with branching rate "( as catalyst f. For this f , the solution X = X r to 
(2.8) is called the simple super-random walk with simp Ie super-random walk catalyst 
f. 

2.4 Continuous-state mutually catalytic branching in rz,.d 

Consider a pair of mutually catalytic reactants denoted by X = (Xl, X 2
) . By defi­

nition, they satisfy the following system of stochast ic differential equations: 

j = 1,2, t ~ 0, xE Zd, and {Wj(x) : xE Zd, j = 1,2} is a system of independent 
one-dimensional Brownian motions. The constant "( > 0 is called the collision rate. 
We will come back to this model in Section 5. 

3 Continuum space models of catalytic branching 

In this section we pass from Zd to êZd and let ê .!. O. (This, in particular, provides 
insight into the dumping structure of the lattice system when ê is smal!.) 

3.1 Lattice approximation to the continuum space model 

In order to explore the possibility of a continuum space analog of the continuous-state 
catalytic branching models in Z d we replace 

• the discrete Laplacian ~ by the scaled Laplacian ~ e : 

(~c f)(x) := ê-
2 L [J(y) - I(x)] , (3.1) 

y: Iy-xl=c 

• the counting measure i = L XEZ d c5x on Zd by the scaled counting measure 

i e := ê
d L c5x 

xEcZd 

(approaching the Lebesgue measure on IRd as ê.!. 0), 

(3.2) 



CATALYTIC AND MUTUALLY CATALYTIC BRANCHING 151 

and modify our convention (2.2) by identifying measures J.l(dx) on ê7L.d with their 
density function x f-t J.l(x) with respect to the scaled counting measure f/;: 

J.l(B) = é
d 2: J.l(x) = j J.l(x) fe(dx), 

"'EB B 

(3.3) 

Similarly, we replace the earlier system {W(x) : xE Zd} of independent Brownian 
motions by the 

"approximating white noise" {é- d
/

2W(x): xE éZ d } (3.4) 

where now {W(x) : xE éZ d } is a system of independent one-dimensional Brownian 
motions. 

Instead of (2.8) we then consider, for a fixed é > 0, the system of stochastic integral 
equations 

[t 1 t 
X%(x) = Xó(x) + Jo 2~e X; (x) ds + Jo JrHx) Xff(x) é-

d
/

2 dWs(x), (3.5) 

t ~ 0, xE éZd, for the reactant's density Xt(x) given the catalyst's density r;(x) in 
x at time t. 

In order to study the limit as é .j.. 0, we observe that, for é fixed, the measure­
valued process xe associated with the solution of this system satisfies a measure-valued 
martingale problem, denoted by MPeZd. Write (J.l, f) for the integral f I(x) J.l(dx). 

MPeZd For cp in the domain D(~) of the Laplacian ~ in ]Rd, 

t ~ 0, (3.6) 

is a continuous martingale with increasing process 

t ~ O. (3.7) 

and L[r< ,x<] is defined by 

[ 'IjJ(s,x)L[p ,x <] (d[s , x]) = [CO [ 'IjJ(s , x) X;(x) r;(x) fe(dx)ds, 
JR+ xeZd Jo JZd 

for all continuous functions 'IjJ : 1I4 x éZd -+ 1I4 with compact support. 

We interpret L[r< ,x<] as the collision local time of the catalyst re and the reactant 
x e. [Note that the additional term "local" is justified in the sense of (3.3) since, for 
each t fixed, 

X f-t L[r<,x<] ([0, t] x {x}) (3.8) 
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is a density function with respect to the scaled counting measure i e of (3.2).] 
Now we identify each measure Jl on éZ d with a measure on ~d supported by éZd 

and denoted by the same symbol Jl . Let C = C ([0, 00), Mf(JRd)) denote the space of 
all continuous functions from [0,00) into the set Mf(JRd) of finite measures on JRd (the 
latter equipped with the topology of weak convergence, and C with the compact-open 
topology) . The law 3 ) ofthe process x e can be characterized as the unique probability 
distribution pe on C with initial condition Xó such that all Xi, t ~ 0, are supported 
by éZd and such that the martingale problem MPez d is solved (cf. [34, Chapter 4]) . 

We can then ask for the weak convergence of the laws p e on C as é .j.. ° provided 
that Xó --+ Xo in law. 

3.2 Super-Brownian motion (SBM) in Rd 

In the case of a uniform medium, r;(x) == "( , standard arguments can be used to prove 
tightness of the laws of the measure-valued processes {xe : 1 ~ é > o} and to show 
that any limit point X = X r solves the following martingale problem: 

MP(SBM) For cp E D(Ll), 

Mt(cp) = (Xt , cp) - (Xo, cp) -fot (Xs , ~Llcp) ds (3.9) 

is a continuous martingale with increasing process 

((M.(cp))t = ( cp2(x)L[r ,xj (d[s,x]) 
J[O,tj xRd 

(3.10) 

where 

L[r,xj (d[s,x]) (3.11) 

is well-defined. 

In this case the martingale problem can be shown to have a unique solution by proving 
that any limit point X = X r is related to the log-Laplace equation via log-Laplace 
transforms: 

-logE {exp(Xt,-cp) IXo} = (Xo,u(t) , } 

ou _ 1 ( 2) _ ot - "2 Llu - "(u , Ult=o+ - cp ~ 0, 

(3.12) 

for a suitable set of test functions cp. The resulting process is the well-known contin­
uous super-Brownian motion (SBM) X with branching rate "(. 

Although the SBM exists in any dimension, the qualitative properties are highly 
dimension dependent and an understanding of this provides insight into the phe­
nomenon of spatial dumping. Some of the key properties are: 

3) Here are our general rules for the choice of notation of probability distributions: The letter 
P (with or without any index) refers to a particIe's motion law, lP' to a distribution of a random 
medium, and P to a law of a measure-valued process under consideration, given the medium (if 
any) . Expectations with respect to such distributions are denoted by E,E, and P, respectively. 
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• Fix t > O. If d = 1, then X t is an absolutely continuous measure. If d ~ 2, 
then X t is almost surely singular, and the Hausdorff dimension of the support 
suppXt of X t is 2. 

• Two independent SBMs in IRd colli de if and only if d < 6. Here two measure­
valued processes Xl, X 2 are said to colli de if 

P (gsuppX I n gsuppX2
) =j:. 0) > 0 

where gsuppXi denotes the global support of Xi : 

gsuppXi := closure ( U SUPPXl) . 
t>O 

(3.13) 

(3.14) 

• A Brownian particle 8w with path w collides with an independent SBM if and 
only if d < 4. 

Remark 3.1 (tempered measures). The SBM can be extended to an M p (lRd )-valued 
process with p > d, where M p(lRd ) := {p.: (p., ljlp) < oo} with reference function 
ljlp(x) := (1 + IxI2)-P/2 , xE IRd . 0 

Remark 3.2 (regular media, averaging effect). If the present constant catalytic me­
dium rt(dx) == ')'dx is replaced by a time-independent regular medium rt(dx) == 
')'(x) dx, where x ~ ')'(x) is now a spatially homogeneous ergodic field of finite ex­
pectation, then the large sc ale structure of the related catalytic SBM X = X r will 
depend only on the expectation of ')'(0). See (19) for an example of an averaging effect 
of this type. There, large scale fluctuations are studied for a branching particle sys­
tem in supercritical dimensions leading to generalized Ornstein-Uhlenbeck processes 
which depend only on the constant mean of the catalytic medium x ~ ')'(x). These 
results once more motivate us to restrict the further study to irregular catalysts, and 
to extend our consideration to media with infinite mean. 0 

3.3 Catalytic super-Brownian mot ion in IRd 

We now turn to the question of the existence of a continuum space catalytic process 
X = X r for an irregular catalyst r . In the case of a general catalytic medium r t(dx) 
the formal limit should solve the following measure-valued martingale problem: 

((M.(cp)))t = 

(Xt, cp) - (Xo, cp) - fot \ X s , ~6.cp) ds, } 

r cp2(x)L[r,x] (d[s,xJ), 
J[O ,t] xlR d 

(3.15) 

where L[r,x] (d[s, xJ) is the colli sion local time between the catalyst r and the 
reactant X = X r according to the following definition. 
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Definition 3.3 (collision local time). ([2]) The collision local time L[X1,X2] = 

L[Xl,X2] (d[s, xl) between two continuous measure-valued processes Xl, X 2 on ]Rd is 
said to exist, if the limit 

(3.16) 

exists in probability, for all continuous functions 'Ij; : lR.t- x ]Rd -+ lR.t- whieh vanish for 
all sufficiently large s and satisfy 

sup'lj;(s,x) ~ c.p <Pp(x) . (3.17) 
8 

(Recall that the symbol Pó refers to the heat kernel, and that <Pp is the reference 
function introduced in Remark 3.1.) 0 

In order to establish existence of X = X r for a class of irregular catalysts r, we 
first consider formally the corresponding log-Laplace functional: 

-logE {exp(Xt ,-cp) I X o} = (Xo,u(O, 'It)), (3.18) 

t ~ 0, cp ~ 0, where for t fixed, u = u(-,'I t) is the solution of the log-Laplace catalytic 
reaction-diffusion equation: 

au 1 2 ( ) - ar = 2~u - rr(dx)u, 0 ~ r < t , u(t-, · It) = cp ' ~ o. (3.19) 

(Note that compared with (1.1) we now used a backward formulation with a terminal 
condition cp to take into account the duality nature of the relationship between X and 
u given by (3.18) together with the time-inhomogeneity of r.) Equation (3.19) can 
be reformulated to capture the microscopie particle perspective via Dynkin's function 
space equation ([31]): 

(3.20) 

Here Er,x refers to expectation related to the law Pr,x of (standard) Brownian mot ion 
w in ]Rd starting from x at time r, and the continuous additive functional A~(ds) 
of Brownian motion w is the special case L[r ,ó"'] (ds X ]Rd) of the collision local time 
L[r ,ó",] between the catalyst r and the intrinsic Brownian reactant particle 8w . We 
caU A~ the Brownian collision local time with r. 

The essential question now is for whieh continuous measure-valued paths r the 
Brownian colli sion local time A~ exists. 
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Example 3.4 (time-independent catalyst). In ([28]) the case ft == fo is treated, where 
f 0 is a determinist ic measure on IRd , d ;;:: 2. The condition 

(3.21) 

where (J E (0,2) is a fixed constant, guarantees the existence of the Brownian collision 
local time A~. In particular, (3.21) is satisfied if the Hausdorff dimension of the 
support suppfo of fo is at least d - 2 + {J. 0 
Remark 3.5 (branching functionals). The Brownian collision local time A~ is a special 
case of a continuous additive functional of Brownian motion w. More generally, 
continuous additive functionals of Markov processes are used to control the branching 
in related superprocesses; see, for instance, [30, 31, 17, 20, 54]. 0 

Now we return to a time-dependent catalyst f, which, for the moment, is deter­
ministic. 

Theorem 3.6 (existence of the catalytic SBM). ([17]) Assume that the colli­
sion local time A~ exists and satisfies the local admissibility condition 

So ;;:: O. (3.22) 

Then the equation (3.20) is well-posed, and there is a measure-valued Markov process 
X = X r with log-Laplace transition functional (3.18). If, in addition, there is a 8> 0 
and for each N ;;:: 1 a constant eN ;;:: 1 such that 

o ~ r ~ t ~ N, x E IRd
, (3.23) 

then X has Mp(lRd) ~valued continuous trajectories [provided it starts in Mp(lRd)] . 

The process X = X r introduced in the previous theorem is called the catalytic 
super-Brownian motion in IRd with catalyst f. Let P r ,1' = P~,I' denote the law of X 
when it is started at time r with the measure J.L. 

Remark 3.7 (strong lifting). The collision local time L[r ,x] which appears in the mar­
tingale problem MPlRd(f) in the beginning of this subsection is a continuous additive 
functional of the Markov process X = X r , and in fact it is the "strong lifting" of the 
continuous additive functional A~(ds) of Brownian mot ion w. More preeisely, L[f ,X] 

is a measure-valued continuous additive functional of X sueh that 

Er'I'L[f,X] (r, t) x IR
d

) = ~d! l t 

A~(ds) Pr,,,, (dw) J.L(dx) 

(cf. [31, Theorem 6.2.3]). 

(3.24) 

o 
Example 3.8. Here we colleet a couple of special cases of eatalysts f which meet all 
requirements posed in Theorem 3.6. 
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(i) (single point catalyst in JR) ([15]) Consider the continuum space and mass 
analog of Example 2.1 (ii). Let d = 1, and rt == Óo, which gives f~ A~(ds) = 
ft(O) with ft(O) denoting the Brownian local time at O. In ([39]) it is established 
that 

(3.25) 

the super-Iocal time at the catalyst, has the same law as the total occupation 
measure of a continuous super-!-stable subordinator on ll4 (starting with an 
appropriate initial measure related to X o). Moreover, th is super-loc al time is 
almost surely a singular measure (see also [22]). 

If the critical branching is replaced by a supercritical one, it would then be 
possible to obtain results on the total reactant by using the previous result 
together with a Girsanov transformation. 

(ii) (frozen Lévy random catalysts in JR) ([25]) Let rt == r o , where ro is the 
(infinitely divisible) random measure on JR defined via its log-Laplace functional: 

-loglEexp(ro , -cp) = ~lco (l_e- A'P(X)) v(d'x)dx, cp ~ O. (3.26) 

Here the Lévy measure v of ro is assumed to satisfy foco min('x, 1) v(d'x) < 00. 

Note that ro is a pure point measure, say ro = :E j aj Óy; . 

Note also that the stabie random measures of index " E (0, 1) are special cases, 
where 

v(d'x) = C,X-l-'Y' d,X, (3.27) 

and with atoms Yj dense in JR. 

(iii) (fiuctuating Lévy random catalyst in JR) ([13, 24, 14]) Let ro = :Ej ajÓy ; 

be a stabie random measure as in the end of (ii), and set 

rt := Laj Ów [ 

j 

(3.28) 

where the w j , given r o , are independent Brownian motions starting from yj . 

(iv) (super-Brownian catalyst) ([17]) Let r be a SBM in JRd, d ~ 3, with ro 
the Lebesgue measure. Then for almost all r the continuous super-Brownian 
reactant X = X r with super-Brownian catalyst r exists. 0 

4 Structural properties of catalytic SBMs 

In this section we survey results on the structural properties of catalytic SBMs on JRd. 
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4.1 Analytic and probabilistic questions 

First we raise some questions in terms of the catalytic SBM X = X r . 

(a) (absolutely continous states) When are the measures X t absolutely contin­
uous? 

(b) (long-term global extinction) Does the process X = X r suffer long-term 
global extinction, that is, 

IIXtl1 := Xt(IRd
) -+ 0 in probability as tt 00, ( 4.1) 

for all finite initial measures X o? 

(c) (long-term local extinction) Let X o be the Lebesgue measure. Does the 
process suffer weak long-term local extinction, that is, limttoo Xt(B) = 0 in 
probability, for all bounded open B C IRd ? Or does it even suffer strong long­
term local extinction, that is, the lat ter convergence statement holds a.s.? 

(d) (compact support property) Does X have a compact global support gsuppX 
[recall (3.14»), provided that X o has compact support? 

All these questions can be related to questions in terms of the log- Laplace catalytic 
reaction-diffusion equation 

AU 1 2 ( ) - ar = 2~u - rr(dx)u, 0 ~ r < t, u(t-,·I t) = cp. ~ o. (4.2) 

(a') (fundament al solutions) Does (4.2) have fundamental solutions? That is, 
can cp = ()óx be taken as terminal condition, for sufficiently many x E IRd? 

(b') (long-term sup-norm extinction) Does Ilu(O, · lt)IIoo -+ 0 as t t 00 when 
u(t, ·It) == I? 

(c') (long-term Ll-norm extinction) Does IIu(O, ·1t)IIl -+ 0 as t t 00 when 
u(t, ·It) f 0 has compact support? 

(d') (elliptic boundary value problem) In the case rt == r o , does for each 
compact subset K c IRd with non-empty interior KO the non-linear elliptic 
boundary value problem 

(4.3) 

have a sol ut ion? 

In the subsequent subsections we will describe a number of typical results which 
address questions of this kind. 
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4.2 Absolutely continuous states 

It is proved in ([16, Theorems 2.5.2, 2.6.2]) that, for each fixed t > 0, absolute 
continuity of the measure X t is implied by the existence of fundamental solutions for 
Lebesgue-almost all xE JRd. [That is, (a') implies (a).] (See also [48].) 

Example 4.1 (absolutely continuous states). Let t > O. 

(i) (constant medium) In the classical case ft (dx) == -ydx, fundamental solutions 
exist for all x if and only if d = 1. In other words, SBM in JRd has absolutely 
continuous states if and only if d = 1. (Otherwise the states are singular.) 

(ii) (weighted hyperplanes catalyst) ([16, Example 4.4.4]) Let d> 1 and f~d) == 
fo X C(d-i), where fo is the -y'-stable random measure on JR of Example 3.8 (ii), 
and C(d-i) is the Lebesgue measure on JRd-i . Then the states X t are absolutely 
continuous if and only if -y' < 2L 1 . 0 

On the other hand, for the super-Brownian reactant X = X r with a super­
Brownian catalyst f of Example 3.8 (iv) in dimensions d = 2,3, the measures X t , 

t > 0, are absolutely continuous, and the densities form a very smooth field. This 
can be shown directly in an L2-approach, see [37]. Similarly, for this model the 
existence of the collision local time L[r,x] in dimensions d ~ 3, and the absolute con­
tinuity of the marginal measures L[r,x] ([0, t] x dx) , t > 0, in d = 2 can be shown 
by L2- methods, see [29]. 

4.3 Global extinctionjpersistence 

It follows from the log-Laplace functional relationship (3.18) that the questions (b) 
and (b') in Subsection 4.1 are equivalent. By a martingale argument, one then gets 
even an almost sure convergence IIXtll -+ 0 as tt 00. 

Example 4.2 (long-term global extinction). Assume that X o E Mf(JR)\{O}. 

(i) (single point catalyst in JR) ([39]) Let d = 1 and ft == 80 = X o. Then 

o < IIXtll = l t 
f2( 2 ) L[r ,x] (ds x {Ol) -+ 0 a.s . (4.4) 

o V~ ttoo 

(Recall that L[r,x] (ds x {O}) is the super-Brownian local time of X at O. Conse­
quently, there is no finite time global extinction but long-term global extinction 
(ultimate global extinction). 

(ii) (uniform disk catalyst in JR2) In contrast, in the case d = 2 with 

ft(dx) == l{I"'I ~ l}(x) dx, 

long-term global extinction does not hold: 

p(IIXtll -+ 0) < 1. 
ttoo 

(To see this, use a Feynman-Kac formula as in (4.10) below.) 

(4.5) 

(4.6) 
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(iii) (hyperbolic catalyst) Let d = 1 and 

ft (dx) == Ixl-2 dx. (4.7) 

Then all super-Brownian "particles" die before they reach the catalytic center 
O. This is made precise in [40]. 0 

Now we turn to our main model of a catalytic SBM. 

Theorem 4.3 (catalytic SBM). Consider the super-Brownian catalyst f starting 
from Lebesgue measure, as in Example 3.8 (iv), and start off X = X r with a finite 
measure JL ":f O. 

(i) (global persistenee in d = 1) ([17]) Let d = 1 and fix s ~ 0 as well as JL E 
Mr \ {Ol· Then lor almost all f, 

m = mr := lim IIXtil exists P 8,1' --a.s., 
ttoo 

(4.8) 

where the limiting mass mr has full expectation IIJLII (global persistence) and 
positive (finite) varianee. Moreover, mr has log-Laplace functional 

(4.9) 

with Uo satisfying the function space integral equation 

s ~ 0, x E IR. (4.10) 

(ii) (long-term global extinction in d = 2) ([38]) 11 d = 2, then IIXtil ~ 0 al­
most surely as tt 00 . 

(iii) (ultimate global extinction in d = 3) ([38]) 11 d = 3, then 

o < 11 Xti I ~ 0 a.s. as t t 00. (4.11) 

Remark 4.4 (open problem). It is not known whether finite time survival as in Theo­
rem 4.3 (iii) holds also in dimension 2. (It would follow from a positive answer to the 
open problem in Remark 4.11 below.) 0 
Remark 4.5 (finite time extinction). [23] Opposed to Theorem 4.3 (iii), finite time 
global extinction can be shown by probabilistic methods in the case of the following 
catalysts in dimension one: determinist ic power laws, ij.d. uniform, and frozen stabIe 
catalysts as in Example 3.8 (ii). Interesting counterexamples are also constructed 
there. (For a survey on these results, see [41] .) 0 
Remark 4.6 (models with additional birth term). [32] Analogously to the one-dim­
ensional single point catalytic model of Example 3.8 (i), an additional single point 
source can be introduced in (4.2) instead, leading to a SBM with an exponential 
growth of the mean mass. 0 
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4.4 Local extinctionjpersistence 

Here we assume that X = X r starts from the Lebesgue measure. It follows from the 
Laplace functional representation that the weak long-term local extinction question 
in (c) is equivalent with (c'). 

Example 4.7 (extinction/persistence). Recall that Xo(dx) = dx. 

(i) (classical SBM) It is well-known that classical SBM suffers weak long-term 10-
cal extinction in dimensions 1 and 2 but converges to a steady state with full 
intensity (local persistence) in dimensions d ;? 3 (cf. [3, 4]). 

The question of st rong local extinction is more difficult. In dimension one, 
results from [46] can be used to show that 

P (Xt(B(O,r)) = 0 for all t > r) -t 1, (4.12) 
Ttoo 

where B(O, r) denotes a ball of radius r centered at the origin, implying st rong 
long-term local extinction. 

(ii) (single point catalyst) ([15]) In the single point-catalytic model of Example 
3.8 (i), weak long-term local extinction holds true. 0 

Theorem 4.8 (local persistenee under a super-Brownian catalyst in IRd
). 

Consider the super-Brownian catalyst of Example 3.8 (iv), starting from Lebesgue mea­
sure. 

(i) (d = 1) ([17]) For almost all r-realizations, X t converges in probability as t t 00 

to the Lebesgue measure. 

(ii) (d = 2) ([33,37]) For almost all r-realizations, X t converges in law as t t 00 

to a random multiple of Lebesgue measure of full expectation. 

(iii) (d = 3, infinite biodiversity) Consider the super-Brownian catalyst r in its 
equilibrium state. Then X t converges in law as tt 00 to a random limit X oo of 
full expectation ([18]). 

For almost all r , each non-empty open ball in 1R3 is hit by infinitely many 
clusters in the cluster representation of the infinitely divisible random measure 
X oo ([38]). 

4.5 Compact support property 

In the classical case of a constant medium r t (dx) = 'Y dx, the compact support prop­
erty as formulated in (d) of Subsection 4.1 can be shown with the help of the elliptic 
boundary value problem as in (d'); see [46]. Therefore the ordinary super-Brownian 
motion in IRd has the compact support property. This type of relation between the 
compact support property and an elliptic boundary value problem is used also in the 
following example. 
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Example 4.9 (frozen random Lévy catalyst). [25] Let d = 1 and rt == ro as in Ex­
ample 3.8 (ii). 

(i) (stabie catalyst) If ro is a stabie random catalyst as in the end of Example 
3.8 (ii), then X = X r has the compact support property. 

(ii) (rarefied random Lévy catalyst) Let ro have Lévy measure 

1 
vedA) = ~ 1(0 < A ~ 1) dA. (4.13) 

Then the global support gsuppX is a.s . non-compact, provided that X o f:. 0. 0 

The previous example (ii) shows a case where the compact support property is 
lost if the catalyst is too rarefied. We mention still another example in this direction. 

Example 4.10 (instantaneous propagation of reactant matter). ([38]) 
Consider the super-Brownian reactant X = X r in R3 with a super-Brownian catalyst 
r of Example 3.8 (iv). Then for all t > 0 and almost all r, 

P {Xt(B) > 0 'ti non-empty open balls B C R3 I X t f:. o} = 1. (4.14) 

Combined with the absolute continuity of X t , the equivalence of X t with the Lebesgue 
measure follows, provided that X t f:. o. 0 
Remark 4.11 (open problem). It is not known whether the instantaneous propagation 
of reactant matter property according to Example 4.10 also holds in dimension d = 2. 

o 

5 Mutually catalytic branching 

In the catalytic branching models of Sections 3 and 4, the catalyst was always an 
autonomous random process r which catalyzes the reactant X = X r . In this last 
part of the paper we return to the mutually catalytic model in Zd introduced in 
Subsection 2.4, and its continuum space analog. 

5.1 Weak uniqueness via duality 

First of all, we reformulate the stochastic equation (2.9) as a martingale problem for 
the pair X = (Xl, X2) of processes: 

MPZd For j = 1,2 and test functions <p3 : Zd -t R of compact support, 

t ;;:: 0, (5.1) 

are continuous square integrable martingales with continuous square function 

(5.2) 
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where 

(Lx(t),~) := l t 

L ~ (y) X; (y) x'; (y) ds, 
o yEZ d 

t ~ O. (5.3) 

Here 8j ,k denotes the Kronecker symbol. Consequently, Lx(t) is the eollision loeal 
time by time t , in analogy with Definition 3.3. 

Theorem 5.1 (mutually catalytic branching on Zd). ([26]) There is a con tin­
uous non-degenerate Markov process X = (Xl, x 2 ) on zd with states in an appropri­
ate space of tempered measures which satisfies the martingale problem MPZd. The 
law of X is unique. 

Existence of solutions to the system (2.9) of stochastic differential equations, that 
is, to the martingale problem MPZd, can be obtained by standard methods. However, 
the proof of uniqueness requires a duality argument which goes back to [50]. It turns 
out that an independent copy X = (Xl , X2 ) of the same system provides a duality 
relationship ([26]), which we next want to describe. 

By a simple coordinate transformation, we introduce a new pair Y = (y l
, y 2) of 

measure-valued processes, 

(5.4) 

and we denote by Y = (yl , y2) an independent copy of Y. Moreover, we introduce 
the self-duality function 

x, Y E IR, (5.5) 

(with i the imaginary unit) . According to our convention (2.2), the measures Yr.j on 
Zd are identified with their density functions. Then by Itö's formula it can be checked 
that 

(5.6) 

= fot [_(Ysl, ~~Yo1) + i(Ys2, ~~yo2) + ~ (Ysl )2 - (Yn2, (Y01)2 - (Y02)2)] 

x <p((Ys
l ,yn,(Y/ 'Yo2))ds + Mt, t~O, 

where M is a martingale. A similar formula holds by interchanging the role of Y 
and Y. By standard arguments (cf. [34, Section 4.4]), this then implies the following 
self-duality relation: 

(5.7) 

Based on this, existence proves uniqueness in the martingale problem for Y = (yl ,y2
) 

which is related to MPZd via the transformation (5.4). 
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5.2 Long-time behavior: Finite initial states 

Assume now that the mutually catalytic branching process X = (Xl, X 2
) on Zd 

of Theorem 5.1 starts oif at time 0 with non-zero finite deterministic measures XJ 
and XJ. Then it is easy to verify that IIXtl1 := (lIX/II,IIXllI) coincides in law with 
B(r IILx(t)lI) (recall the definition (5.3) ofthe collision local time), where t f-+ B(t) is 
aplanar Brownian mot ion starting from IIXol1 E IR~ . By the martingale convergence 
theorem, 

IIXtil -t some IIXooll = (IIX';' II , IIX~ II) a.s., 
ttoo 

(5.8) 

and hence EIIXool1 = B(O) = IIXoll. This already gives part (i) in the following 
theorem. 

Theorem 5.2 (finite measure-valued mutually catalytic branching in Zd). 
Assume 0 < IIXJII·IIXJII < 00. 

(i) (global persistent convergence) ([26)) IIXtl1 converges a.s. as t t 00 to some 
IIXoo l1 with full expectation. 

(ii) (global coexistence of types in d ~ 3) ([26)) In dimensions d ~ 3, 

E IILx(oo)11 < 00 and P (IIX';'II · IIX~ II > 0) > O. (5.9) 

(iii) (global segregation of types in d ~ 2) In dimensions d ~ 2, the limit 
IIXoo l1 coincides in law with B(r) , where 

r := inf {t : BI (t)B2 (t) = O} (5.10) 

is the almost surely finite exit time /rom IR~ of the planar Brownian motion 
B = (BI, B 2) starting /rom IIXoll. In particular, 

IIX';'II . IIX~II = 0 a.s. (5.11) 

([26)). However ([49)), for certain initial states X o , finite time survival holds: 

Ilxlll · llx; 11 > 0, t > 0, a.s., 

whereas for certain other cases, for each fixed T > 0 and é E (0,1), 

P (IIXlll · IIX;1I = 0 for t ~ T) ~ 1 - é, 

(5.12) 

(5.13) 

provided that one of XJ or XJ is sufficiently small (that is, finite time global 
segregation occurs with large probability). 

The long-term global extinction of one type in statement (iii) is proved by showing 
that 

IILx(t)11 -t 00 on {IIX';'II·IIX~II > O}. 
ttoo 

(5.14) 

Summarizing, in the finite measure case, agiobal segregation of types occurs in 
low dimensions, whereas coexistence of types occurs in high dimensions. 
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5.3 Long-time behavior: Uniform initial states 

In this subsection we assume that the initial state Xo = (XJ, XJ) is given by uniform 
measures cf = (Cl f, èe) with intensities cl, c2 > O. First we again ask for the long­
term behavior without sealing. In order to address the question "How big are the 
one-type blocks for t large?", we let r, (3, I:: > 0 and define for A = {x E ]Rd : lxi ~ r} , 

Xl'" (A) := l::{3d L X!-lt(X), j = 1,2, t ~ O. (5.15) 
x E ,,-tl A 

Furthermore, we denote by f(d) the Lebesgue measure on ]Rd. 

Theorem 5.3 (long-term behavior for uniform initiais). Let Xo = cf. 

(i) (local persistent convergence) ([26]) X t converges in law as t t 00 to a pair 
oj spatially homogeneous random measures X oo = (X~, X~) having jull inten­
sity c. 

(il) (local coexistence of types in high dimensions) Assume d ~ 3. Then 

X~(x) X~(x) > 0, xE Zd, a.s. (5.16) 

(i2) (local segregation of types in low dimensions) Ij d ~ 2, then 

X oo = B(T)ëd), (5.17) 

where T is the exit time [recall (5.10)] from]R~ oj planar Brownian motion 
B staTting from c. 

(ii) (growth of one-type blocks in d ~ 2) ([7]) Let d ~ 2, fix t > 0, and let 
cJ.. o. 
(iil) (supercritical blocks) Ij (3 > ~, then 

(ii2) (subcritical blocks) Ij d = 1 and (3 < ~ , then 

X~ -+ B(T)f(l) in law. 

(5.18) 

(5.19) 

(iii) (oscillations of types in low dimension) ([8]) Let d ~ 2. Then with prob­
ability one, 

o = liminf Xl(x) < limsupXl(x) = 00, 
ttoo ttoo 

j = 1,2, x E Zd. (5.20) 

Consequently, in all dimensions there is local persistent convergence. In high 
dimensions local coexistence of types prevails. In low dimensions, however, locally 
only one type survives finally. More precisely, in the long run locally there is one 
predominant type near O. "Unitype blocks" at time t = 1/1:: are of size 0(1/ ..JE) . 
Moreover, in the case d = 1 the origin lies in an even larger single-type block as time 
increases. Finally, the predominant type near zero oscillates infinitely often as t t 00. 

For the case of more general initial states, we refer to [9]. 
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5.4 Mutually catalytic branching on R 

Next we ask for a continuum analog of the mutually catalytic branching model of 
Theorem 5.1. Formally, instead of (2.9) we obtain a pair of non-linear stochastic 
partial differential equations: 

:tX{(x) = ~~x{(x) + V'YXl(x) Xl (x) W!(x), t > 0, xE IRd
, j = 1,2, 

(5.21) 

where WI , W2 are independent (standard) space-time white noises on IRd. 
In the one-dimensional case, the stochastic equation (5.21) can be made precise: 

Theorem 5.4 (mutually catalytic branching in IR). ([26)) Let d = 1. 

(i) (existence and uniqueness in law) There is a function-valued solution X = 
(Xl, X 2 ) to the stochastie equation (5.21) su eh that 

sup P ( r [X;(x)q + X;(x)q] e->'I xi dX) < 00 
s~t lJR 

(5.22) 

for some À, q > O. Uniqueness in law holds ([51)). 

(ii) (persistent convergence) In analogy with Theorems 5.2 (i) and 5.3 (i), per­
sistent convergenee holds. 

(iii) (segregation of types) In analogy with Theorems 5.2 (iii) and 5.3 (i2), seg­
regation of types occurs. 

For a recent cydically catalytic model in IR we refer to [42]. 

5.5 Mutually catalytic branching on R2 

Next we ask for a continuum space mutually catalytic model if d ~ 2, at least in a 
measure-valued setting, as in the martingale problem MPJRd(r) of Subsection 3.3. 

Based on the (one-way) catalytic results of Section 4, heuristically we expect for 
a possible limit that 

• X{ (dx) « dx on the complement of suppXt, where j f:. k, and the symbol « 
den ot es absolute continuity, 

• sUPPXI n sUPPXl has zero Lebesgue measure, 

• Xl (dx) «dx and Xl (dx) «dx off this interface. 

For the rest of the paper we assume that d = 2. 

Theorem 5.5 (mutually catalytic branching in IR2). ([10)) Let 'Y > 0 be suffi­
ciently small, and restriet attention to a "reasonable" pair Xo = (XJ, X5) of initial 
measures on IR2 • 
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(i) (existence) There is a pair X = (X I, X 2) of measure-valued processes with the 
following property. For j = 1,2 and cpJ in a nice space of smooth test functions, 

t ~ 0, (5.23) 

is a continuous square integrable (zero-mean) martingale with continuous square 
function 

(5.24) 

with Lx the collision local time between Xl and x 2 according to Definition 3.3. 

(ii) (absolutely continuous states) For t > 0 fixed, X t has absolutely continu­
ous states: Xt(dx) = Xt(x) dx. 

(iii) (segregation of types) For e(2) - almost all x, the law of Xt(x) coincides 
with the exit state B(T) [recall (5.10)] of planar Brownian motion starting from 
the point Xo * Pt (x). In particular, 

Var xl (x) = 00 , j = 1,2, 

(provided that XJ =fi 0, j = 1, 2), and Xl (x)Xl(x) = 0 almost surely. 

(iv) (self-similarity) If X o = ce(2), then 

t I--t é2Xc 2 t (é- l . ) 

(5.25) 

(5.26) 

has the same law as X, for all é > O. In particular, the law for the densities in 
(iii) is constant in time and space. 

(v) (persistent convergence) In analogy with Theorems 5.2 (i) and 5.3 (i), persis­
tent convergence holds. 

(vi) (segregation of types) In analogy with Theorems 5.2 (iii) and 5.3 (i2), long­
term segregation of types occurs. 

Note that the existence claim on the colli sion local time Lx of the processes Xl 
and X 2 is an integral part of the martingale problem in (i). 

Acknowledgment We are grateful to Frank den Hollander for careful reading the 
manuscript and his suggestions for an improvement of the exposition. 
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