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Abstract 

The paper provides necessary and sufficient conditions under which stochas
tie heat and wave equations on ]Rd have function-valued solutions. The results 
extend, to all dimensions d and to all spatially homogeneous perturbations, re
cent characterizations by Dalang and Frangos [2] . The paper proposes a natural 
framework for a study of nonlinear stochastie equations. It is based on the har
monie analysis technique and on the stochast ic integration theory in functional 
spaces. Generalizations to the d-dimensional torus and to nonlinear equations 
are discussed as weIl. 

1 Introd uction 

The paper is concerned with the stochast ic heat and wave equations: 

and 

{ 
~~ (t, B) = .:lu(t, B) + 8::;[ (t, B) , 
u(O, B) = 0, B E IRd , 

t > 0, B E IRd , 

{ 
~ (t, B~ = .:lu(t8~) + 8:~ (t, B) , t > 0, 
u(O, B) - 0, 8t (0, B) - 0, B E IRd , 

(1.1) 

(1.2) 

where Wr is a spatially homogeneous Wiener process with the space correlation r . 
The correlation r can be any positive definite distribution. It defines the covarianee 
operator of the Wiener process by the formula Q<p = r * <p, <p E S(lRd ). 

It is well-known, see [25), that if 8::;[ is a space-time white noise, or equivalently if 
r = 8{o}, then the equations (1.1), (1.2) have function-valued solutions if and only if 
the space dimension d = 1. It is therefore of interest to find out in dimensions d ;;:: 1 for 
what space-correlated noise, equations (1.1) and (1.2), have function-valued solutions. 
This problem has been recently investigated, for the stochastic wave equation, by 
Dalang and Frangos [2), see also Mueller [18), when d = 2. Let Wr(t, B), t ;;:: 0, B E 1R2, 
be a Wiener process with a space correlation function r: 

lEWr(t ,B)Wr(S,1I) = t /\ sr(B - 11), 

1 Research supported by KBN Grant No. 2P03A 082 08 
2The first draft of the paper was prepared wh en the author was visiting Scuola Normale Superiore 

in Pisa, in Spring 1997. Research supported by KBN Grant No. 2P03A 08208 



198 KARCZEWSKA AND ZABCZYK 

where r(O) = 1(101),0 E IR2, and 1 is a non-negative function, continuous except at O. 
It has been shown in [2] that the stochastic wave equation (1.2) has a function-valued 
solution if and only if 

r 1(101) In I!I dO < +00. 
JI()I ~ l u 

(1.3) 

The proof in [2] is based on an explicit representation of the fundamental solution 
of the determinist ic wave equation in dimension d = 2 and can not be extended to 
higher dimensions. 

In the present note we treat the general case of arbitrary dimension d and oj 
arbitrary spatially homogeneous noise for bath the stochastic heat and wave equations. 
Spatially homogeneous noise processes were introduced by Holley and Stroock [11] and 
Dawson and Salehi [5] in connection with particle systems, see also Nobel [20], Da 
Prato and Zabczyk [4] and Peszat and Zabczyk [21], [22] for more recent investigations. 
We consider also equations (1.1) and (1.2) on the d-dimensional torus Td . It is 
interesting to note that for both stochastic heat and wave equations, (1.1) and (1.2) 
on IRd and on T d , the necessary and sufficient conditions are exactly the same, despite 
the different nature of the equations. Also the fact that our conditions are related to 
Newtonian potentials makes the appearance of the logarithmic function in the Dalang 
and Frangos paper [2] more natural. The obtained characterizations farm a natural 
framework in which nonlinear heat and wave equations can be studied. Similar results 
can be formulated for linear parts of Navier-Stokes equations and other equations of 
Huid dynamics. Techniques developed in the paper apply also to equations (1.1) and 
(1.2) with ~ replaced by fractional Laplacien -(-~)"', Q E (0,2]. However, those 
generalizations are not studied here. 

Ta formulate our main theorems let us recall, see [9], that positive definite, tem
pered distrubutions rare precisely Fourier transfarms of tempered measures JL . The 
measure JL will be called the spectral measure of r and of the process Wr. 

Theorem 1.1. Let r be a positive definite, tempered distribution on IRd , with the 
spectral measure JL . Then the equations (1.1) and (1.2) have junction-valued solutions 
ij and only ij 

(1.4) 

Theorem 1.2. Assume that r is not only a positive definite distribution but also a 
non-negative measure. The equations (1 .1) and (1.2) have junction-valued solutions: 

i) jor all r ij d = 1; 

ii) jor exactly those r jor which ~()I ~ lln 10Ir(dO) < +00 ij d = 2; 

iii) jor exactly those r jor which ~()1 ~ 1 ~r(dO) < +00 ij d ~ 3 . 

Note that condition (1.3) is a special case of ii). 
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Similar theorems hold for stochastic heat and wave equations on the d-dimensional 
torus, see Theorem 5.1 and Theorem 5.3 in §5. 

The paper is organized as follows. Preliminaries and the formulation of the prob
lem will be given in section 2. Section 3 contains proofs of the results for the case of 
IRd • Applications are discussed in section 4. Extensions to the d-dimensional torus 
are contained in section 5. We finish the paper with two conjectures and some partial 
answers in section 6. 

The present paper is an updated vers ion of the preprint [14]. 

Acknowledgement. The authors thank Professor J.M.A.M. van Neerven for helpfui 
comments on the presented material. 

2 Preliminaries 

2.1 Heat and wave semigroups 

Let Sc(lRd) denote the space of all infinitely differentiable functions 'Ij; on IRd taking 
complex values, for which the seminorms 

11 'Ij; 11 Cl:,{3 = sup I x Cl: D{3'1j; (x) I 
zERd 

are finite. The adjoint space S~(lRd) is then the space of tempered distributions. By 
S(lRd) and S'(lRd) we denote the spaces of real functions from Sc(lRd) and the space 
ofreal functionals on S(lRd). 

For'lj; E Sc(lRd) define 'Ij;(s)(x) = 'Ij;(-x),x E IRd. By S(s)(lRd) and S(s)(lRd) we 

denote the spaces of 'Ij; E Sc(lRd) such that 'Ij;(x) = 'Ij;(s)(x) and the space of all 
ç E S~(lRd) such that (ç,'Ij;) = (ç,'Ij;(s)) for all 'Ij; E S(lRd). 

If ;: is the Fourier transform on Sc(lRd): 

then its inverse ;:-1 is given by the formula 

We use the same notation for the Fourier transforms acting on S~(lRd) . 
Note that the operators;: and ;:-1 transform S'(lRd) onto S(s) (lRd) and S(s) (lRd) 

onto S'(lRd), respectively. The Fourier transforms of cp E Sc(lRd) and ç E S~(lRd) will 
be denoted by <p and t 

Consider first the heat equation 

au at = 6u, t ~ 0, u(O) = ç, (2.1) 
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where ç E S~(lRd) . If û denotes the Fourier transform of u then 

aû 2, , ' 
at = -1.\1 u and u(O) = ç, 

and therefore 
û(t) = e-IAI2t{ 

Consequently, for arbitrary ç E S~(lRd), equation (2.1) has a unique solution in S~(lRd) 
and the sol ut ion is given by the formula 

where p(t)(.\) = e-tIAI2, 

The family 

u(t ,x) = p(t) * ç(x) = (ç,p(t,x - .)) 

~ p(t x) = _l_e 4' 
, V(411"t) d ' 

t > 0, 

(2.2) 

(2.3) 

forms a semigroup of operators, continuous in the topology of S~(lRd). The formula 
(2.2) shows that the semigroup S(t), t ~ 0 has a smoothing property: for all ç E 
S~(lRd), S(t)ç is represented by a Coo function. 

Similarly, for the wave equation, 

8u - V 
8t - , 

8v = .ó.u 
8t ' 

u(O) = ç 

v(O) = (, 

one gets, passing again to the Fourier transforms û and V, that: 

aû , 
at = v, 

By direct computation we have 

d ( û) (cos (1.\lt) , 
dt v = -1.\1 sin (1.\lt), 

lAl , ~ )(~) 
cos (1.\lt) ( . 

Therefore, 

û(t) = [cos (1.\lt)]û(O) + [sin 1~~lt)] v(O), 

v(t) = -[1.\1 sin (1.\lt)]û(O) + [cos (1.\lt)]v(O). 

(2.4) 

(2.5) 

Note that for each t E IRI functions cos (1.\lt), sinl(lî lt) and 1.\1 sin (I.\lt) , .\ E IRd, 
are smooth and polynomially bounded together with all their partial derivatives. 
Therefore the formulae (2.4), (2.5) define distributions belonging to S~(IRd). 
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Let Pl,l(t), Pl ,2(t), P2,1(t), P2,2(t), tE 1R1 , be elements from S'(lRd) such that, 

cos (IÀlt) = F(Pl,l(t)) (À), sinl~~lt) = F(Pl,2(t)) (À) 

-IÀlsin (IÀlt) = F (P2 ,1 (t)) (À), cos (IÀlt) = F (P2,2(t)) (À), À E IRd
• 

Then 
u(t) = Pl,l (t) * u(O) + Pl,2(t) * v(O), 

v(t) = P2,1(t) * u(O) + P2,2(t) * v(O), tE IR. 

As for the heat equation, explicit formulae for the distributions Pi,j(t), i,j = 1,2 are 
known, see [17, pp. 280-282]. In particular, they have bounded supports. 

We shall use the following notation 

(2.6) 

For all ç E S~(lRd), R(t)ç is a continuous function of time. For each t > 0, the linear 
transformation R(t) acts continuously on S~(lRd). 

2.2 Spatially homogeneous Wiener process 

Let f be a positive definite, tempered distribution. By Wr we denote an S'(lRd)
valued Wiener process defined on a probability space (n, F, IP') such that 

lE(W(t), <p)(W(s), 1/;) = t 1\ s(f, <p * 1/;(8))' 

where 1/;(8)(X) = 1/;( -x), x E IRd , see [21]. It is well-known that this way one can 
describe all space homogeneous S'(lRd)-valued Wiener processes, see e.g. [21]. 

The crucial role for stochastic integration with respect to Wr is played by the 
Hilbert space S} C S' (lRd) consisting of all distributions ç E S' (lRd) for which there 
exists a constant C such that, 

The norm in S} is given by the formula: 

lçls' = sup l(ç,1/;)1 
r t/J Es V(f,1/;*1/;(8)) 

The space S} is called the kemel of Wr, see [21] . 
Let H be a Hilbert space contiunuously embedded into S'(lRd) and let LHS(S} , H) 

be the space of Hilbert-Schmidt operators from S} into H . Assume th at \[I(t), t E 
[0, T], is a predictabie LHS(S}, H)-valued process such that 
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Then the stoehastie integral 

ean be defined in a standard way, see [12], [3], [21) . It is an H - valued random variabie 
sueh that 

and 

lEI foT w(s)dWr(s)lir = lE (foT 11 w(s) 11 iHS(S~ ,H)dS) . 

The definition of the stoehastic integral ean be extended to all predictabie '11 sueh 
that 

(2.7) 

This is, in asense, the largest class of integrands. One says that the stochastic integral 
(2.2) exists inHiftheintegrabilityeondition (2.7) holds. Finallyifw(t,w),t ~ 0, w E 
n are linear operators on S'(IRd), not neeessarily everywhere defined, and for some 
Hilbert spaee H, eontinuously embedded into S' (IRd ) , the proeess '11 is H stoehastieally 
integrabie, than one says that the proeess '11 is S' (IRd ) stochastically integrable or that 
the stochastic integral (2.2) exists in S'(IRd), see [12) . 

We will need a eharaeterization of the spaee S~ from [21, Proposition 1.2) . In the 
proposition below Lfs) (IRd , jl) denotes the subspaee of L 2 (IRd, jl; q consisting of all 
functions u such that u(s) = u, see §2.1. 

Proposition 2.1. A distribution ~ belongs to S~ ij and only ij ~ = ûji, jor some 
u E Lfs)(IRd ,jl). Moreover, ij ~ = ûji, and 71 = Vji , then 

2.3 Questions 

The solution X to the stochastic heat equation and the solution Y to the stochastic 
wave equation is understood in the evolution form, 

X(t) fot S(t - s)dWr(ds), t ~ 0, 

Y(t) = fot R(t - s)dWr(ds), t ~ 0, 

(2.8) 

(2.9) 

where S(·) is given by (2.3) and R(·) by (2.6). It is not difficult to show, see [15], that 
the stoehastie integrals (2.8), (2.9), exist in S'(IRd). 
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We say that the solutions X and Y are lunction valued if the integrals (2.8), (2.9) 
exist in L~(I~d) = L2(1~d, p(x)dx) for some positive, continuous, integrabie weight p. 
We will see that characterizations of function-valued solutions are independent of the 
choice of the weigth p. 

To motivate the definition of the function valued solutions assume that an S' (IRd
) 

valued process X(t),t ~ 0, can be identified with function valued process Z(t,x),t ~ 
0, x E IRd, in the sense that X (t), (which depends also on w), can be represented as a 
nmction Z(t, .). As X is a Gaussian and spatially homogeneous process we can expect 
that for each t ~ 0, random variables Z(t,x), x E IRd, are Gaussian with identical 
probabilistic laws. In particular, for all positive, integrable functions p(x), xE IRd

, 

IE (Ld Z2(t, X)P(X)dX) = L}IEZ2 (t, x))p(x)dx = (~d P(X)dX) IE(Z2 (t, 0)) < +00. 

Consequently, IP'(Z(t, ·) E L~(IRd)) = 1. 

The main questions of the present paper are formulated as follows. 

Question 1. Under what conditions on r the stochastic integrals X(t), t ~ 0, exist 
in L~(IRd) lor some (any) positive integrable weight p ? 

Question 2. Under what conditions on r the stochastic integrals Y(t), t ~ 0, exist 
in L~(IRd) lor some (any) positive integrable weight p ? 

Answers to these questions have been formulated in the Introduction as Theorem 
1.1 and Theorem 1.2. The case of d-dimensional torus Td is treated in §5. 

3 Proofs of Theorem 1.1 and Theorem 1.2 

3.1 Proof of Theorem 1.1. 

(a) Stochastic heat equation 

Let us recall that we denote by S~ the kemel of the Wiener process Wr and that 

S(t)~ = p(t) * ~, t ~ O. 

It follows from §2.2 that the stochastic integral 

fot S(t - s)dWds) , t> 0, 

takes values in L~(IRd) if and only if 

fot 11 S(a) 11 Ls(S~,L~)da < +00. 

Let {ud be an orthonormal basis in L(8) (IRd , j.t) . Then by Proposition 1.2 of [21], 
ek = ûiJi" kEN, is an orthonormal basis in S~. 
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Thus we have 

11 S(a) 11 Ls(S~,L~) = ~ IS(a)UiJLli~ = ~ ld Ip(a) * UiJL(x) 1
2 
p(x)dx, a> O. 

However, p(a) E S(lRd ) and therefore 

p(a) * UiJL(x) = (p(a, x - .), UiJL) = (ukl1-,p(a, x - .» . 

The last identity follows from the definition of the Fourier transform of the distribution 
Ukl1-. However, 

and therefore 

Consequently 

11 S(a) 11 iHS(s' L2) = L ( I(Ukl1-,ei(X")e-<TloI2)12 p(x)dx 
r P k JlRd 

= ~ ld Ild uk(À)ei (x,À)e-<T 1ÀI
2 
l1-(dÀ) 1

2 

p(x)dx 

= ld [~I(Uk,e-i(X,O)e-<T IOI 2hf6>(lRd,/L) n p(x)dx. 

By the Parseval identity in L(s) (lRd , 11-), 

Finally, 

Therefore 

if and only if 
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(b) Stochastic wave equation 

Let us recaU that R(a)ç = Pl,2(a) * ç, 0' ~ 0, ç E S~(IRd), see (2.6). The process 
Y(t), t ~ 0, is weU defined as an L~(IRd)-valued process if and only if 

fot 11 R(a) 11 'iHS(S~ ,L~)da < +00. 

But 

However 

Pl,2(a) * ûiJl(x) = (Pl ,2 (a, x - '), ûiJl) = (Pl ,2 (a)(x - '), UkP.)· (3.1) 

To justify the identity (3.1) we need the foUowing lemma, see [8]. 

Lemma 3.1. Let ç and'f} be distributions with bounded supports. Then the convolu
tion ç * iJ exists and is a function of class COO. Moreover, 

Note that the distribution Pl,2 has bounded support and one can assume also that 
functions Uk, kEN, have bounded supports as weU. 
But 

, ()( _ ')(') = i(x,À) sin (IÀla) Pl,2 0' x /\ e IÀI ' 
Therefore 

11 R(a) 11 'iHS(S~,L~) = ~ fad 1 (UkP., ei(x,.) sin? '110'») 1

2 
p(x)dx 

= ~ id l(uk,ei(X, ') sin ~I. '110') )Lf.) (Rd,l') r p(x)dx. 

Again, by the Parseval identity, 

11 R(a) 11 'iH S(S~,L~) = [Ld P(X)dX] Ld (sin ~~la»2 p.(dÀ). 

Consequently, 

t [ r ] r [t (sin (IÀla»2 ] 
Jo 11 R(a) 11 Ls(S~,L~)da = JlRd p(x)dx JlRd Jo IÀI2 dO' p.(dÀ). 

By an elementary argument one shows now that the integral is finite, for all t > 0, if 
and only if 

Ld 1 + 11ÀI2 p.(dÀ) < +00. 

This complet es the proof of Theorem 1.1. • 
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3.2 Proof of Theorem 1.2. 

Let 

where 

t > 0, 

Thus Gd is the resolvent kemel of the d-dimensional Wiener process. It is easy to see 
that 

G ( ) - _1_ r -i(x,À) 1 d>' x E IRd • 
d X - (27f)d J Rd e 1 + 1>'12 ' 

The following properties of Gd are well-known, see [16], [10], [8]: 

Proposition 3.2. One has that: 

and, in general, for d ~ 2, 

d 1 
Gd(X) = (27f)-2 ~K d-2 (Ix!), 

Ixl-2 ~ 

where K-y, T ~ 0, denotes the modified Bessel function of the third order. 

We will need also a characterization of the behaviour of Gd near 0 and near 00, 

see [10, Proposition 7.2.1]. 

Proposition 3.3. The function Gd has the following properties: 

(a) for d ~ 1, for lxi bounded away from a neighbourhood of zero and for a constant 
c>o 

G ( ) c - lxi. dX ~~e , 
Ixl~ 

(b) for d ~ 3 and for a constant c > 0, in a neighbourhood of zero 

c 
Gd(x) ,...., Ixld - 2 j 

(c) for d = 2 and for a constant c > 0, in a neighbourhood of zero 

We will also use the following lemma: 

Lemma 3.4. Assume that the distribution r is not only positive definite but it is also 
a non-negative measure. Then 
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Proof. 8ince J.t = y-l(r) and e- tl ·12 HÎ.12 E S(lRd ), by the definition of the Fourier 
transform of a distribution, 

Therefore 

Moreover 

p(s)*Gd = 1+00 

e-tp(t)*p(s)dt = e81+OO e-(t+8 )p(t+s)dt = eS 1+00 e-t7 p(o')do. 

80 

and then 
e-Sp(s) * Gd t Gd as s.J- o. 

Hence, if r is a non-negative distribution on IRd , then 

This completes the proof of Lemma 3.4. • 
We pass now to the proof of the theorem. It is well-known that a non-negative 

measure r belongs to S' (lRd ) if and only if for some r > 0, 

r 1 1
1 

1 r(dx) < +00. lRd + x r 
(3.2) 

Moreover, for arbitrary d ~ 1, 

r Gd(x)r(dx) = r Gd(x)r(dx) + r Gd(x)r(dx). 
1Rd 11xl~1 11xl>1 

But, by Proposition 3.3 (a), 

r Gd(x)r(dx) ~ c r e-1x1r(dx), 
11x1 >1 11xl>1 

and from (3.2) 

r Gd(x)r(dx) < +00. 
11xl>1 
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Since the function G l is continuous, 

1 Gl(x)f(dx) < +00, 
Ixl~l 

and the theorem is true for d = 1. 

If d=2 then fn~dG2(X)f(dx) < +00 if and only if ~xl~l G2(x)r(dx) < +00. But 

G2 (x) '" cln fxr for some c > 0 in the neighbourhood of 0, so 

1 
G2 (x)/cln lxT -t 1 as lxi -t O. 

Therefore, for some Cl > 0, C2 > 0: 

1 1 
c2 ln lxT ~ G2(x) ~ Cl In 1xT' for lxi ~ 1. 

Consequently, 

r G2(x)f(dx) < +00 if and only if 1 In _111 f(dx) < +00. 
JRd Ixl~l X 

If d ~ 3, in the same way, 

r Gd(x)r(dx) < +00 if and only if r I 1!_2f(dx) < +00. 
JRd JRd X 

This completes the proof of Theorem 1.2. 

• 
4 A pplications 

We illustrate the main results by several examples. We start with the case of bounded 
functions f. 

Proposition 4.1. IJ the positive definite distribution f is a bounded function then 
the equations (1.1) and (1.2) have Junction-valued solutions in any dimension d. 

Prool If the positive definite distribution f is a bounded function then f is a 
continuous function and the corresponding spectral measure I-l is finite. Since the 
function 1+1>.12 ' ,X E ]Rd, is bounded therefore 

~d 1 + 1
1
,X

1
21-l(d,X) < +00 

and by Theorem 1.1 the result follows. • 
Stochastic evolution equations with noise of such type have been introduced by 

Dawson and Salehi [5) with an extra requirement that I-l is absolutely continuous with 
respect to Lebesgue measure on ]Rd. In the case of d = 2 they have appeared in the 
recent paper by Mueller [18) . 
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Example 4.2. It is well-known that functions rex) = e- 1xIQ, x E IRd , for Q E (0,2] are 
positive definite. In fact, they are Fourier transforms of the so called symmetrie stable 
distributions, see [16] or [6]. Consequently with such covariances r the equations (1.1) 
and (1.2) have function-valued solutions. 

We consider now some examples of unbounded covariances r. 

Proposition 4.3. For arbitrary Q E (0, d) the function r 0: (x) = dra, x E IRd is a 

positive definite distribution. Equations (1.1) and (1.2) with the covariance r 0: have 
function-valued solutions ij and only ij Q E (0,2/\ d). 

Proof. It is well-known, see [17], [8] or [16], that r 0: is the Fourier transform of the 
function Cl I>.ILQ, À E IRd , where Cl is a positive constant. The condition (1.4) is 
equivalent to 

By standard calculation 

1 + <Xl 1 1 
1= C2 ( 2) -d-rd-ldr, 

o 1 + r r-O: 

where C2 is a constant . One obtains, that I < +00 if and only if 

1
1 1 
-l-dr < +00 and r -0: o j <Xl 1 

-3-dr < +00, r -0: 
1 

or equivalently, Q > 0 and Q < 2. Since Q E (0, d), the result follows. • 
Remark 4.4. Note that Proposition 4.3 contains, as a special case, an application from 
the paper [2, Examples]. 

We pass now to examples for whieh rare genuine distributions. 

Example 4.5. If e:r is the space-time white noise then r = 8{o} and the correspond
ing spectral measure f.t has a constant density, say C > O. Since 

if and only if d = 1, the equations (1.1) and (1.2), perturbed by such noise, have 
function-valued solutions iff d = 1. 

Example 4.6. Walsh [25], in his study of particle systems, arrived at the following 
equation for fluctuations: 

AU 
at (t,~) (4.1) 

u(O,~) 
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It is easy to calculate that the covarianee function corresponding to t€ WÓ{ o } (t, e), t ~ 
0, is r = -8{'0} and the appropriate speet ral measure p has the density dIL (>.) = >.2d>' . 

Since 

1
+00 1 

~>.2d>'=+00, 
-00 1 + A 

the equation (4.1) does not have a function-valued solution . This fact has already 
heen noticed hy Walsh [25]. 

5 Equations on the d-dimensional torus 

Many of the previous considerations can he extended from IRd to stochastic equations 
on more general groupSl. As an illustration we discuss here the case of d-dimensional 
torus Td, for more details we refer to [13] . The d-dimensional torus T d can he iden
tified with the Cartesian product, (-11', 1I']d, regarded as a group with the addition 
modulo 211' (coordinatewise). We assume that Wr is a D'(Td)-valued Wiener pro
cess spatially homogeneous with the space correlation r. The distrihution r can he 
uniquely expanded into its Fourier series 

r(O) = L ei(n,O),n, 

nEZd 

with the non-negative coefficients such that In = I-n and L 1+1';.lr < +00, for 
nEZd 

some r > O. 
Denote Z! = N and, hy induction, Z~+l = (Z; X Zd) U {(O, n); n E Z~} . Then 

Zd = Z~U (-Z~) U {Ol. 
The corresponding spatially homogeneous Wiener process W(t), t ~ 0 can he 

represented in the form: 

W(t,O) = .,fYöf3o(t) + L ~ ((cos(n,O))f3~(t) + (sin(n,O))f3;(t)) , 
nEZ~ 

OE T d
, t ~ 0, (5.1) 

where 130, 13;, f3~, n E Z~ are independent, real Brownian motions and the convergence 
is in the sense of D'(Td). 

Denote H = HO = L2 (Td), HOt = HOt(Td) and H- Ot = H-Ot(Td), a E~, the real 
Soholev spaces of order a and -a, respectively. The norms are expressed in terms of 
the Fourier coefficients, see [1] 

1 1 

IlellHQ = (L (1 + InI2)OtlenI2) 2 = (leol2 + 2 L (1 + InI2)Ot ((e~)2 + (e;)2)) 2, 
nEZd nEZ~ 

lThe C3.'le oflinear and nonlinear heat equations on compact Lie groups h3.'l been recently discussed 
in [24). 
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and 
1 1 

IlçllH-a = (L (1 + In I2 )-<>IÇn I2) 2= (lçol2 + 2 L (1 + InI2)-<> ((ç~)2 + (ç;)2)) 2, 
nEZd nEZ~ 

where Çn = ç; + iç;, Çn = Ln, n E Zd. 

We have the following result. 

Theorern 5.1. Equations (1.1) and (J .2) on the torus T d have H<>+l(Td)-valued 
solution if and only if the Four"ier coefficients (rn) of the kemel r satisfy: 

L ,n(1 + InI2)<> < +00. (5.2) 
nEZd 

Remark 5.2. Recently, the problem of existence of solution to stochastic wave equa
tion in S' (lRd ) has been considered by Gaveau [7). 

As in the case of IRd , condition (5.1) can be written in a more explicit way. 

Theorern 5.3. Assume that r is not only a positive definite distribution but is also a 
non-negative measure. Then equations (J .l) and (1.2) have function-valued solutions: 

i) for all r if d = 1; 

ii) for exactly those r for which ~91 ~ 1 In IOlr(dO) < +00 if d = 2; 

iii) for exactly those r for which ~91 ~ 1 mbr(dO) < +00 if d ~ 3. 

The proofs of both theorems are similar to those for IRd . For details we refer to 
our preprint [13) . 

In fact the proof of Theorem 5.1 can be done in a different way by taking into 
account the expansion (5.1) of the Wiener process W , with respect to the basis 1, 
cos(n, O}, sin(n, O}, n E Z~, 0 E Td. We sketch the different proof now. 

Equations (1.1) and (1.2) can be solved coordinatewise with the following explicit 
formulae for the solutions: 

..rYö/3o(t) + L ~ [cos(n, O} l t 

e-lnI 2 (t-8)d/3~(s) 
nEZ ~ 0 

X(t , O) 

(5.3) 

Y(t , O) " ~ [ t sin(lnl(t - s)) 1 
..rYö/3o(s)ds + ~ y2,n cos(n,O} Jo Inl d/3n(s) 

nEZ~ 0 

+ sin(n,O} fot sin(lnll~~ - s)) d/3;(S)] . (5.4) 
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It is easy to check that the series defining the processes X and Y converge in D' (Td) 
lP' - almost surely. It follows from the definition of the space HO+l that X(t) E Ho:+l , 

IP'-almost surely if and only if, 

Since the stochastic integrals in (5.5) are independent Gaussian random variables 
therefore (5.5) holds IP'-almost surely if and only if, 

Or equivalently, if and only if, 

(5.7) 

Similarly, Y(t) E HO:+1
, IP'-almost surely, if and only if, 

L (1 + InI2)O:+1 ,:ï21t 
sin2(lnls)ds < +00. 

nEZ ~ 0 

(5.8) 

Since, for arbitrary t > 0, 

'n121t e-2lnl2sds --t ~, as Inl --t +00, 

1
t 

t 1" sin2(lnls)ds --t - sin2 ada, as Inl --t +00, 
o ~ 0 

therefore inequalities (5.7) and (5.8) hold if and only if, 

L (1 + InI2)O:+l In
2 

< +00, 
nEZ ~ Inl 

as required. • 
Expansions (5.3) , (5.4) lead also to more refined results. 

Theorem 5.4. Assume that 

""' In ~ 1 + InlO: < +00, 
nEZ d 

lor some Cl! E (0,2). Then solutions X(t), Y(t) , t ~ 0 are Hölder continuous with 
respect to t > 0 and () E Td with any exponent smaller than 1 - ~. 
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The theorem is a consequence of Theorem 5.20 and Theorem 5.22 from [3] . For 
the case of R2 and the stochastic wave equation a similar result was obtained in [2]. 

We finish the section with some applications of Theorems 5.1 and 5.3. 

Corollary 5.5. Assume that r E L2(Td) and d = 1, 2,3. Then the stochastic heat 
and wave equations (1.1) and (1.2) have solutions with values in L2 (Td

). 

, d 2 
Corollary 5.6. Assume that lor some 1 ~ p ~ 2, r E lP(Z ). 11 d < -/!:ï, then the 

stochastic heat and wave equations (1.1) and (1.2) have solutions in L 2 (Td
) . 

6 Conjectures 

Taking into account Theorem 1.1 it is natural to expect that the following conjecture 
is true. 

Conjecture 1. 11 In~.d Hj),12J.t(d,X) < +00 and lunctions g : IR -t IR, b : IR -t IR are 
Lipschitz then nonlinear heat equation 

{ 
8ub~' O) = ~u(t, 0) + g(u(t , 0)) + b(u(t , 0)) 8~r (t, 0), 
u(O,O) = uo(O), 0 E IRd , 

t > 0, 0 E IRd, (6.1) 

and nonlinear wave equation 

{ 
82~~; ,o) _= ~u(t, 0) 8~ g(u(t ,!)) + b(u(t, 0)) 8Fr (t , 0) , 
u(O,O) - uo(O) , Ft(O,O) - vo(O), 0 E IR , 

t> 0, 0 E IRd , (6.2) 

have lunction valued solutions. 

At the moment there are only partial confirmations of the conjectures. N amely, 
the following result concerned with nonlinear heat equation (6.1) is contained in the 
paper [22]. It strengthens an earlier result from [21]. 

Theorem 6.1. Assume that g and bare Lipschitz and that lor a positive number " 
the distribution r + " is a non-negative measure. Nonlinear heat equation (6.1) has 
a unique Markovian solution in L~, 

i) lor all r il d = 1; 

ii) lor exactly those r lor which ~Ol ~ lln 10Ir(dO) < +00 il d = 2; 

iii) lor exactly those r lor which ~Ol ~ l ~r(dO) < +00 il d ~ 3 . 

An existence result for nonlinear stochastic wave equations was proved in the 
paper [2] by Dalang and Frangos and more recently by Millet and Sanz-Sole in [19] . 
The following result was shown in [2]. 
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Theorem 6.2. If the correlation r is a fu,nction of the form r(o) = f(IOI), with f 
positive and continuous outside 0, and if the dimension d = 2 and the condition (1.3) 
is satisfied then the equation (6.2) has alocal solution. 

The above theorem has been recently strengthened and extended to dimension 
d = 3, in the paper [22] by Peszat and Zabczyk. 

Theorem 6.3. Assume that 9 and b are Lipschitz, that for a positive number, the 
distribution r +, , is a non-negative measure and that d ~ 3 . Nonlinear wave equation 
(6.2) has a unique solution in L~ , 

i) for all r if d = 1; 

ii) for exactly those r for which ~61 ~ 1In 10Ir(dO) < +00 if d = 2; 

iii) for exactly those r for which ~61~1 ~r(dO) < +00 if d ~ 3 . 

It is interesting to note that conditions of Theorem 6.1 and Theorem 6.3 imply that 
the reproducing kernel space S~ consists only of functions, namely, S~ C L2(lRd) + 
Cb(lRd ), see [21] . This seems to be essential for the definition ofthe stochastic integral 
with the integrands being multiplication operators. We therefore pose the following 
conjecture. 

Conjecture 2. If JRd HI>.12 J.l(d>') < +00 then elements of s~ are represented by 
locally integrable fu,nctions . 

The following proposition is a partial confirmation of Conjecture 2. 

Proposition 6.4. If JRd HI>'12J.l(d>') < +00 then 8{o} (j. S~. 

Proof. Assume, to the contrary, that for some u E L(s)(lRd ,J.l), ûji, = 8{o}. 

Then, for a constant c> 0, u(x)J.l(dx) = cdx and u(x) > ° for almost all x E IRd and 
measure J.l can be identified with its density ,(x) = ,,(.,) , xE IRd • 

We also have 

and 

Consequently 

r 1 ,(x) dx < +00 
JRd VI + 1>'1 2 vI + 1>'1 2 

' 

1 1 VI + 1>' 12 d x < +00. 
Rd VI + 1>'1 2 ,(x) 

Adding both inequalities and taking into account that a + ~ ~ 2 for all a > 0, one 
arrives at JlRd ~d>' < +00, a contradiction. • 

HI>'12 
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