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GENERAL INTRODUCTION 1). 

The main aim of the present work can be formulated as to be an attempt 
to overcome, within the framework of quantum mechanics, the well known 
difficulty of the present ,day theories of elementary particles, viz. their 
yielding infinite seH-energies, -if a model for these particles is adopted 
which corresponds with a point model in the classical domain. 

Within the framework of classical concepts, tentative solutions for these 
difficulties, already inherent in the classical picture, (cf. e.g. Chap. 11, § 1) 
have been put forward by various <authors. However, not only is there na 
stringent argument why classical theory should provide the appropriate 
starting point for the introduction of new f.eatures necessary to remove 
these inconsistencies, but moreover it must be emphasized th at one cannot 
consider a classical theory, in which the sinlgularities in the self-energies 
have been eliminated by some procedure or other, as to be necessarily 
connected, on correspondence arguments, with '3 from the self-energy point 
of view èonsistent picture of elementary particles. Indeed, by the process 
itself of suhjecting su<:h a divergence-free theory to quantization new 
divergences are again introduced. This circumstance is essentially d'ue to 
the fa ct that the very concept "one elementary particle in a for the rest 
empty space" needs in quantum theory a revision as compared with classical 
theory and it follows in fact directly fr om WElSSKOPF's calculations 2) 
(surveyed in Chap. 11, § 2) of the electromagnetic quantum field seH­
energy of the electron that there is no correspondence at all between this 
quantity and its classical counterpart. 

The method which is followed in this paper in trying to obtain finite 
seH-energies consists in assuming the elementary particles to be the sources 
of sets of fields in such a way that the various infinite contributions to the 
seH-energy to which these fields give rise cancel each other so as to make 
the total outcome finite. In chapter 11 this idea is worked out for the 
electron, while in chapter 111 the nudeons are envisag·ed from this point 
of view. As already stated, we base our investigations on quantum field 
theory. In particular the wave equation of the electron and the nucleons 
are taken to he DIRAc's equation for spin Y2 particles and it may be 
directly stated that only then it appears possible, on the present method, 
to obtain fi.nite results if a treatment is 'given on the lines of the so-called 
hole theory, i.e. if it is 'assumed that in vacuum all negative 'energy states 
of the-electron, the proton as well as the neutron are filled up in accordance 
with the exclusion principle. 

Within the classical scheme analogous ways of attack have, been 
proposed by STÜCKELBERG 3) and Bopp 4) who have envisaged classical 
theories of the electron where this particle i~ taken to be the source of a 
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short range field hesides the electromagnetic field (Chap. 11. § 1). As 
was to he expected. there is again - as in the purely electromagnetic 
theory - ·no correspondence at all hetween the classical results of these 
authors and those obtained. on similar assumptions. in the quantum theory 
of the electron. (Chap. 11. § 9). 

In chapter I the more technkal aspects of the problem on hand are 
considered 'and the results ohtained hy others are criticized (cf. loc. cit. 
§ 5). The reader who is interested in the general outline of the present 
theory. ra.ther than in computational details. may directly t~n to the 
second and following chapters. where ,the main results of chapter I will 
he found 'Summarized where necessary. 

Chapter 11 is devoted to tlhe electron. The final condusion (loc. cito 
§ 8) is th at. at any l'ate in first approximation with respect to an expansion 
in powers of the fine structure constant. a consistent hole theory of the 
electron. yielding a finite self~energy. is obtaj.ned if the electron is 
assumed to create a short range scalar field. termed f~field. This field 
appears te play 'a fundamental rele in the theory of nucleons. too: indeed 
the f~ield appears to he inseparahle from the electromagnetic field (the 
equations for whidh are not modified hy the presence of the f~field. 

though) and thus the proton. too. is a souree of the f~field. In particular it 
is shown. (Chap. 111 § 4) how on these Hnes the mass difference of proton 
andneutron becomes 'amenabie to interpretation. Further physical implica~ 
ti ons of the f~field hypothesis. amongst w'hich the in.detectability of the 
f~field quanta themselves on account of their extremely short life time 
and a deviation from ,COULOMB'S law in the hydrogen atom are the most 
characteristic features. are discussed in chapter IV. 

Chapter 111 deals with the self~nergy of nucleo'ns and the consequences 
which the pres.ent i·deas may have on the theory of nuclear forces. It is 
shown that. at any rate in first approximation. the self~nergy -difficulties 
due to the coupling of th·e nucleons with the nuclear force fields can be 
overcome by the introduction of a neutral short range scalar field. the 
"F~field" (not to be confused with the f~field mentioned above) with 
which tlhe nucleo'ns 'are strongly coupled and whkh has a range con~ 
siderably shorter than the customary meson field range. ' 

For the electrons as weIl as the nucleons we arrive in th is paper at the 
conclusion that. rather than to ~onsider the mass of these particles to be 
entirely due to their field energy - as has of ten been assumed. especially 
within the framework of classical considerations - the latter quantity 
(divided by c2 ) is. within the presen·t scheme. a small perturbation 
compared to the particle mass which shoul'd thus mainly he of other ("non~ 
field") origin. 

Thus in the present dualistic theory a quantity like the so~called classical 
electron radius fO. defined by 
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(e and m being the electronic charge and mass) loses its original inter­
pretation which, in fact, just is intimately connected with the unitary point 
of view (mass entirely due to field energy). 

It is true that the present results are based on an analysis of only the 
first approximation with respect to a development in powers of dimension­
less parameters (charge)2/hc, where "charge" stands Eor the constants 
describing the coupling between the particles concerned and the fields they 
create. It would not seem unreasonable to expect, however, that a theory 
which in this first approximation is consistent might in itseH provide an 
appropriate starting point for the discussion of tthe higher approximations 
which, not only as regar·ds the self-energy question, but moreover with 
respect to all problems concerning the interaction between elementary 
particl~, presernts lUS with inconsistencies. 

The self-energy problem of the mesons has been discussed elsewhere 5) ; 
for the sake of completeness, the main condusion there arrived at may be 
quoted here, viz. tJhat the present method of eliminating infinities in· the 
self-energies Iby means of compensation cannot be applied to the meson 
and that it would seem that our concept of the meson itself as an elementary 
point particIe might need a revision in order to attain a consistent theory 
of the meson. 

The present work was virtually completed in the summer of 1944 but 
war circumstances prevented its earIier publication. I take the opportunity 
to convey my heartfelt thanks to all those, without W'hose friendship and 
hospitality the cal'rying out of this work wouJ.d have been impracticable. 

Finally I wish to express my deep gratitude to Prof. L. ROSENFELD and 
Prof. H. A. KRAMERS for their kind interest in this work and Jor valuable 
discussions. 

Amsterdam, 1942-1945. 

Notes added in Prooi: 1. The I-field has been chosen to be of the scalar type for reasons 
of simplicity. Further implications of the theory may not on~y show whether the I-field 
hypo thesis can be upheld but also whether the choke of a scalar field is the most adequate 
one; similarly for the F-field. 2. An indkation of fundamental differences in the treatment 
of the self-energy of FERMI-DIRAC as compared with BOSE-EINST.~ particles ma,y 
perhaps be seen in the results of SCHIFF. SNYDER and WEdNBERG. Phys. Rev. 59. 307, 
315. 1940. 
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CHAPTER J. 

On the self .. energy of particIes with spin Yl. 

Summary. 

§ 1. Introduction. - § 2. Hamiltonmn of the total system; quantizatlon 
of free meson fields. - § 3. General formalism of the Proca .. field. - § 4. 
Calculation of the fp .. self .. energy: a) the statie, b) the spin, c) the fluctu .. 
ation self .. energy. - § 5. Cakulation of the f p .. self .. energy without 
canonkal transformation. - § 6. Self .. energies due to other fields. - § 7. 
On the 'higher orderself .. energies. - Appendix: 1. On the calculation of 

-+ 
wel) (Po). 2. Self .. energy due to charged fields. 3. On the electromagnetic 
self .. energy. 4. Canonical' transformation -in the scalar theory. 

§ 1. Introductia.n. 
As is weIl known, t'he interaction betweem spin Yl particles generally is 

described by assuming these particles to bethe iSources of (sets of) fields 
whiehare quanti-zed according to the Bose-Einstein scheme. These fields 
can he characterized by the following properties of the corresponding field 
quanta: 

a. Their mass. This may be either =j:. 0, in which case we will in the . 
following always speak of "mesons"; or it may be zero, as in tht: electro .. 
magnetie case, (photons). 

b. Their charge: one CaD consider neutral or charged fields. 
c. The 'transformation properties of their wave functions (field 

potentials ). AssumiDig the spin of the field quanta to be :::: 1 one can 
distinguish between scalar (s). vector (v), pseudovector (pv) and pseudo .. 
sealar (ps) fields. -

Yet. t'he three mentioned attributes of the field being fixed, the inter .. 
action is not uniquely determined. In fact,ta-king due account of invariance 
conditions, we 'still CaD dispose of the form of the interaction operator 
with reg.ard to its containing derivatives of t'he meson field wavefunctions 
or not *). IE the operator is built up by usmg ,the field potentials only, .we 
shaU speak of f .. interactions and the constant, (having the dimensions of 
a charge) determining the strength of the couplin-g between particle and 
field shall be denoted by f. The invariant interactions containi.ng derivatives 

* ) We, adhere to the customary restrictions of considering no higher than first 
derivatives of the potentiaIs and no derivatives of the wave function of the spin Y2 particIe 
in the interaction operator. 



ON THE THEORY OF ELEMENTARY PARTICLES 9 

only shall be denoted by g~interactions. The corresponding coupling 
constant here has the dimension of charge (g) times length. 

Before continuing the discussion. it may he useful. in order to avoid confusion. to point 
out that the prèsent use of the s'ymbols land g. which has appeared to me to be very 
appropriate to indicate the deep rooted distinctions between the interactions containing 
either or no derivatives. does not conform with the notations of KEMMER 1). The following 
table gives a survey of the various interactions and the notations for the correspo:lding 
"charges", according to KEMMER (K.), M0LLER and ROSENFELD 2). (M. R.) as weU as 

the present paper; 01 == V "c/in. 

Type of field 
Type of Charge Type of Charge 

interaction Pr.papu K. M. R. interaction Pt.paper K. M.R. 

scalar = s I scalar fs f l' vector fa "01 fl ga 01 gs 

vector = v vector fp gb 01 gl tensor gp fb "01 g2 

pseudovector = pv pseudovector fpp f,O) gl' pseudotensor 
I 

gpp g,"O) g2 

pseudoscalar = ps pseudoscalar fps fdO) f l pseudovector gps gd "01 f2 

... ... 
The self-energy W(p) of the particle, (p ·denoting itsmomentum). i.e. 

the energy that must be attributed to it due to its interaction with the 
field concerned, can be developed ~n an infinite series with respect to the 
parameter (charge) 2/ he: 

... Ol) ... 

W(p) = I WIn) (P) (1) 
n=1 

The develópment (1) applies equally to a "one particle theory", where it 
is oas'Sumed that all particle levels of negative energy are empty, as to 
"hole theory" where the vacuum is considered as a state in which all these 
levels are occupied in accordance with the exclusioo principle. 

The aim of the present chapter is twofold: 
First. to derive the explicit expression for the first order self-energy ... 

WW (p) for · the various types of fields, on one particle as weIl as on hole 
theory. For the electromagnetic self-energy of the electron this problem 
has been discussed by WEISSKOPF 3. 4). Furthermore, KEMMER 1) in-... 
vestigated, on hole theory, WW (p) for the case of nucleons interacting 
with meson fields. Unfortu.nately, however, his results are not correct, a 
point to which we will find opportuonity to return in the course of the 
discussion, (§ 5); 

Secondly, to discuss some general properties of the self-energy of any 
order on similar lines a'S was done by WEISSKOPF 4) for the electromagnetic 
case. 

In connection with the electromagnetic problem it has been remarked by ... 
WEISSKOPF, cf. loc. cito 4), p. 81, that the direct calculation of W(n) (p), ... 
p ~ 0 by means of the representation of th is quantity '3S an integral over 
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momentum space is ambiguous. essentially because. in this case. the pro­
hlem is ·not spherically symmetl'ical wIth respect to that space. However. 
the total self-energy generally can he written as (cf. Ioc. cito 4) p. 80) 

(2) 

where S •• and P" denote ·the ~ensor components of a souree function and 
of a function of the field 'V'ariahles respecti'Vely. i,n such a way that the 
tensor product of S •• and P"is a scalar density; < > -+ indicates that the 

p 
expectancy value of the integral should be taken for a situation in whïch 

-+ 
one particle in the state of momentum p is present. Hence. calling W the 

-+ -+ 
value of W(p) for p = O. we have 

-+ --
W(P)= WVl-,82 

and th us 

. (la) 
n 

hecause the series in the right member of (1) .r.epresents · a ·development 
with respeot to the invariant parameter (charge)2/hc. Thus. once one 
has defined the way in which tl)e momentum space integral W(n) is to be 

-+ 
calculated. W(n)(p) follows unambiguously from (la). Now the only 
natural way to compute W(n) is 4) to sum liest over all contributions of 
one spherkal shell concentric around the origin and then over all shells. 

-+ 
Defining W(n) in this way. W(n)(p) is th~n fixed by (la). or. in other 
words. the contributions of the various momentum space regions to 

-+ 
W(n)(p) should be taken together in such a way as to yield (la) . It should 

-+ 
be noted that the computation of W(n) (p) .by means of .the same pre-
scription as adopted for W(n) would not lead to the connection (la). An 
example of this is ,given in the Appendix. note 1. . 

In applying (2) to hole theory. it may be recalled that the expectancy 
value of any operator 0 depending on souree functions S and field functions 
P. where now S and P rder to the total distdbutions of the completely 
occupied negative energy lev,els plus the one particle in the state of 
positive energy. should be replaced by the expectancy value of 

o (S-Svac. F-Fvac) - OV:lC • . (3) 

where Svac is the same souree for the vacuum. while Fvac represents the 
field g·enerated by the vacuum distribution; Ovac is the expectancy value 
for this distribution itself. The subtraction of Ovac represents a suitable 
fixation of the zero point of energy. ensuring the symmetry of the theory 
with respect to particle and anti-partkle. 
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It will be clear th at (I a) holds irrespec'ti'Ve of W'hether one has to do 
with one particle or hole theory. Thus the establishment of (la) consider­
ably simplifies the computational work we shall have to perform. as it 
allows us to confine our attention to the case ,that the particle momentum 
is zero. Another simplification is obtaÏ'ned by remarking that we can 
confine us to explicit calculations for neutral intemctions only: 

Let us consider an arbitrary neutral f- or g-interaction with coupling 
constants f and 9 respectively and the corresponding charged interaction 
involvi,ng the same meson Compton !WéWe length ,,-1; we prime those 
quantities that refer to charged interaction. thus the coupling constants in 
the latter case are f'. g'. IE f = f'. 9 = g'. the probability for (virtual) 
emission and absorption of field quanta is the same for the neutral and the 
charged interac,tion. The relative magnitude of W(n) and W(n)' will fhen 
only depend on the number of intermedia te states in both cases. AS!. in 
first approximation. for a proton only ,the positive. for a. neutron only the 
negative mesons come ,jnto play. we have 

W
(I) - W(I)' W(I) - W(l)' 
f- f· g- g 

if 

1 ti = 1 f' I. I 9 1 = 1 g' 1 : 

the absolute values of the constants here OCC1.llr because W(l) is proportional 
to the square of the charge. IE both neutral and charged interaction are 
present. the latter relations represent the cOlndition for the theory to be 
"symmetrical". In a symmetrical meson theory. the first approximation to 
;the self-energy is therefore ,twiee that of the neutral theory. while in an 
unsymmetrical th.elOry. WW will he the same function of f. g. " as WW' 
is of f'. g'. x. 
. In order not to complicate unnecessarily the formalism, we will therefore 
confine ourselves in the sections ,deaHng with the first or,der cakulatiOfIls 
to neutral fields; a simple example of the calculation for charged fields, 
exhibiting all essential differences ;with the neutralcase is given i,n the 
Appendix. note 2. where also the IC\Onnection between W(n) and W(n)' for 
n > I is briefly discussed. 

The properties of the el.ectJromagp.etie first order self-energy have been 
exam,ined by WEISSKOPF 3. 4) by gauging vector and scalar potential in 
such a way that the opeMtor of i,nteraction between particle and field is 
separated into two parts: one. involving the ,CJoulomb potemtial. yielding 
the statie interactions and. correspondingly. the "statie" self-energy. 

-+ 
and one depending on the transverse vector potential Al.' which gives rise 
to a "dynamic" self-energy which has no classical counterpart. The latter 
is defined as the expectancy value '" e2 of 

-t sA ... dv .. J-+-+ 
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-+ -+ -+ 
where s is the oCurll'ent density. Both s a:n.d A.I. can he developed in a pow-er 
series in e, the electric charge: 

-+ CI)-+ 
s= I s(n) 

n=1 

-+ CI)-+ 
A~= I A~n) . (lb) 

n=O 

the term with the supersciCipt (n) being proportional 'to en. The Hrst term 
-+ 

in the deveJ.opment of A.I. is independJent of e and denotes a superpositioo 
of plane waves whkh always 'IIlay he added to the solution' of the in.­

-+ 
homogeneous wave equation for A.I.. Therefore, in first approximatioo (4) 
may he replaced by 

. (4a) 

The first term denotes the interaction of the unpertu:rbed "proper'~ current 
with the proper vecllor pot-ential (i.e. th-e vactor poten:tial due to the un~ 
perturhed .current distribution ). It has heen showaIl by WEISSKOPP, (cf. 
loc. cit. 4), secti~n 111) that ~ts contribution to the self~energy (for a 
particle at rest) .can be interpreted as to oe due to the magnetlc moment 
of the eLectron.: it is thoerefore called "spio" energy. The se.cond term 
accounts for the interactiIon lof the electron with the fluctuating ele.ctro-­
magnetic "Z&O field"; its .contributioo is called fluctuation self~en-ergy. 
On hole theory, the subtractions (3) should be performed. 

The discussion of W,W for other fjelds can of course be given on the 
same lines as WElSSKOPP'S treatment: by means of a ca.no.nical trans~ 
for.mation, ihe interaction operator can he divid-ed into a stati.c and a 

'. dynamicpart. The latter .can, 'by mea.ns of deve1opmen,ts similar to (1 b ) , 
he written as a sum of a "spin" and a ;"fluctuaUon" ,term, like (4a). In 
order to show clearly the characterist,ics of the mass of the field quanta 
ibeing different .f.rom zero such a trea'tment wiU he given ror the f p -<ase, 
or, as it is of ten caUed, the Proca~field 5), which wiU he shown to involve 
Ithe electromagnetic field as the ljmiting case that IX, the inverse field range, 
is zero; this is not quite trivial. because of the weU knQwn differences in 
methods of quantization of Proca~ and MaxweU~field·). In particular it 
twill he shown that the divergen\t part of ;WW, as obtained by deve1opin.g 
the integrand of ,the momentum space jntegral representing WW in the 
Il"egion ~f large p, is Jndependent of fe. In the 'course of this treatment 
simple general formulae wiU be oHtaï'ned hy means of which the self~ 
eil'ergy can be computed for any coupling. 

However, it will appear that the distinction between ~atic and dynamic 
terms, which .underlies most investigations .on interaction prohlems, .is not 
Jessential as concerns the self~energy, and that the calculati1óns are even 

*) Cf. e.g . L. J. F. BROER and A. PAIS, Proc. Kon. Ned. Akad. v. Wetenseh., 
Amsterdam, ~8, 190 (1945). 
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iconsiderably simplified if no canonical tIlansformation is performed. 
!especially in the cases of g~in.teractions and of charged fields in general: 
idue to the non-commutability of the spip and of the "isotopic" variables 
lSuch a transfiormation would 'here yield ' a dyn3lmic lOperator in the form 
bC an infinite series which wou:ld make it extremely cumbersome. if leasible. 
:to compute the .dynamic self~enel1gy. In order to compare the methods 
iwith a:nd without the separation into matie and dynami~ parts. we Slhall 
apply the latter to compute again the self~energy due to the Proca~field. 
IIt will be most. oonvenient 1:0 cons;der W(1)as the sum t>f two 'terms: one 
~on'esponding with the !SUIm of static and sp,n energy. which is different 
for one~particle and hole theory; the other. the fluctuation energy which is 
Ithe same in both ca»es. Having thus idêalt in detail with the f p-illlteraction. 
Iwe willhave collected all essential ,rormulae flor a simple and 5traight~ 
forward calculation of all f~ and g~self-energies. 
. In the next section.some well ... known formulae will be collected con~ 
cerning the Hamiltonian of the total system and the quantization of free 
meson fields . § 3 deals with the general formalism of the Proca~field and with 
:the canonical transform'ation whichseparates the statica.n'd dynamic parts 
:Of the interaction. In § 4 the self.,energy due to .this Hek! is calculated a·nd 
jt is shown that jt is legi'tilmate to consider the electroma:g,netic ;self~energy 
as the special case of the former for " = O. In § 5 the same quantity is 
again computed. but ,now without the use .af a c'aniOnical transformation. 
iWlhile § 6 consis'ts of a survey of the other self~energies and 'their diver­
~eIroe properties. Rinally .. § 7 lis devoted to the establishment. on hole 
theory. of some general properties of the self~energy of arbitrary order. 
In particular it is 'shawn tha't all l~self-energies W~) diverge at most 
logarithmically for any n. . 

§ 2. H amiltonJan of the tatal system; quantization of free meSOn fklds. 

Generally. the Hamilton'ian ,can be written as 

Hrow = HM + H + HSe1cb' ~ 

HM J 11'+ (~ ~ V + e, M) 11' dv ~ 
with 

• • (5) 

:The velocity of ligh't i's !put equal tto 1. M is .the mass lOf the particle *) ; 
H depends on the particle variables as well as on those of the fields; 
HSe1cb on the latter only. In view of applications to hole theory. we take 
1f' and 1f'+ to be q~numbers. satisfying the commutation relations 

-+ -+ -+ -+ -+ -+ 
lpr (x. t) lp~, (x, t) + lp~, (x', t) lpr (x, t) = drr, d (x-x'), r, r' = 1, ••. ,04 (6) 

all other pairs anti~commuting. Introducing a system of one particle wave 

*) In applying (5) to nucleons. we take the same M Eor proton and neutron. 

file:///xpdv
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functions <pq, where 1the ,symho1ic in1dex q deIllOtes momentum as weIl as 
spin and positive or negative energy state, 1p can be expanded in a sum 
which üs in the same sense symbolic: 

with 
1p = l,'aq fT'q ~ 

aq a~, + a~, Bq = ~qq' ~ 
(7) 

while all othe-r pairs anti-commute. The diag:on:al elements of products of 
tWlO or four a's are 

aq a~= l-Nq , 

a~ ar at Bq = N q (l-Nr ) 

(8) 

(9) 

N q is the occupation number (0 ,or I) of the q.,lth state. The fT'q lJllay be 
developed similarly to 1(3); in zeroth awroximaltion they are the free 
partj:cle wave func'tions <p~): 

i-+-+ 
(0)_ (-+) ' -:=-(p x-Eq t) 

fT'q -Uq P eh 

which are supposed to be normaliz'ed in a big cube of volume I .). 

(10) 

Next we consider -tlhe ~ie1d equations in free space, (nI() particl~ 

present). In the vector, (or, wMch Ihere ,amounts to the same, the pseudo­
vector ) case they are, (a dot denotes differentiation with respect to t) 

-+ -+ 
F=-grad V-U 

-+ 
G=rotU, . 

-+ 
div F + ,,2V= 0 

-+ -+-+ 
rot G + ,,2U=F. 

As a consequence of (11, c, d): 

-+ • 
div U+ V=O. 

(lla) 

(llb) 

(1Ic) 

(lId) 

(12) 

The equa'tions (lla, d) 'may be derived from the folJowing Hamiltonian 

(13) 

.) The actual systems which are considered in this paper consist, in zeroth 
approximation. of free particles and of free meson fields. Thus the wave functions of 
the total system are in this approximation, given by (10) multiplied with an infinite product 
of d~functions denoting the stationarity of the occupation of the meson states. 
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in which G and V must he <:onsidered as "denvecl" v,ariables 6), i.e. a·s to 
-+ -+ 

be defined by (llb, c) in terms of the canonical variables U and F which 
satisfy rtlhe following commutatÎoIli ~ules 

-+ -+ h -+-+ 
[Ui (x, t), Fk (x', t)L = -;- 6ik 6 (x-x'). . . . . (14) 

. , 
U may be written as a superposition of plane waves 

-+ -+ -+ -+ -+ -+ -+ -+ 
U= I I EjdU+ (jk) ei(k x-"tl+ U-(j,k)e-i(k x-rtl],! 

j=O,I,2-+ 
k 

,,= V,,2 + k2, 
• (15) 

The wave vectors k have to satisfy p,eriodicity concütio~ on the boundary 
/Of the cube in which the whole system is supposed to be enc1osed.For the 

-+ 
po1arizadon vedors EJk .th,e followiDJg relafions hold 

-+ 
-+ -+ k -+-+-+ 
EOk= kO = k' k = Ikl, Ejk E1'k = 6j1'" • (15a) 

Thus j = 0 (1, 2) . denote.s the longi'tudinal (transv,erse) waves. The 
quantization yield8 by stand:ard me'thods as ll'epr,esentaJtoilon for the Fourier 
amplitudes 

U+ (j k).n-+n+i = U- (j.k)n+1-+n = Vh (~~ 1), j= I, 2! 
-+ -+ " l/h(n+l) 

U+ (O,k)n-+n+i = U-(O, k)n+i-+n = -; r 2" , 

• (16) 

all other matt1ix elements ;yanishing. The notaltion n ~ m denores a tran·sJ.. 
-+ 

.tion in which the number of mes ons, with waveye'ctor kand .state of 

.polarizaqon j changes from n tlo m. 
In the (pseudo ).sc.alar theory the field equations :are 

-+ 
r=grad D 

A=-b. 
-+ , 

div r + ..1= ,,2 D. , 
The Hamilfunian is 

(17a) 

(17b) 

(17c) 

H Sc1da = t J<Ï'2 + ..12 + ,,2 (2) dv, . . . . . (18) 

-+ 
.with r as derived var.ia'ble definecllby (17a). We have ·the oommUltation 
rule 

-+ -+ h-+-+ 
[D(x, t), A (x', t)L = T 6 (x-x'). 
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On developing Q: 

-. -. -. -. -. -. 
Q = ,E[Q+ (k) el(k x-.t) +!r (k) e-I(k x-.t]. 

quantization giv.es 

-. 
k 

-. _-. l/h(n+l) 
[)+ (k)n-.n+l = Q (k)n+Hn = y 2v .•• • (19) 

§ 3. General formalism of the Proca~field. 

The field ,equationlS are given hy (lla. b). while (lIc. d) are :replaced 
hy *) 

-. 
div F + ,,2 V = N (20) 

(21) 

(20) must again he conside:red as defining V in te:rms of F and N. The 
Ham:ïl'tonian is given iby (5) wi th (13) and 

H=-MUdv. f 
-.-. 

. . . . . . • . (22) 

while (14). here holds too. 
In oroer to obtain the desired separation inro statie and dynamrc 

interaotion the case need he: oonsïdered in ,Which all velocity dependenee 
is neglected. This ·situat.'iofi' is descrï'bed oy tlhe \Statie equations 

-. -. -. 
Fo = -'- grad VOo div Fo + ,,2 Vo .......:. N. Uo = o. . . (23) 

The corresponding ·statie interaction can be separated from all other terms 

of (5) oy mean.s of ·a canonieal tr·aDS~mation. IE X is a fundion of Jthe 

"old" varia'bles. fr~ now l')fi. ifi'd~'caJted by a. F . ... and X the .same 
function of the "n.ew" ones: U. F • .. .. the IUni'tary transformaotlion effecting 
this separation is I 

- i f-' -. J-' -. X = 8-1 X 8. 8 = exp h K. K • Fo U dv = Fo Uil dv. . (24) 

-. -. 
where Uil i's the .lolll9i'tudinal paTt af U. Using (~3) we get 

K = - f -7 J J dv' dv" 'I'~ (;") 'l'r ~") Uil (;') V' X (1;'--;" I). 

wh ere 

e-xr 

x(r) = of.nr 

*) In §§ 3-5 we write for simplicit,Y f instead of fp. Throughout this paper all charges 
are expressed in Heaviside units. 
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is 'the Green function of the field. satlsfy1ing 

Ij. X (r) - ,,2 X (r) = - " (r) . . . (25) 

We now transform the old Hamiltonian iJ. given (in terms of the old 
variables ) by (5). (13) and (22). and will thereto use the commutation 
rules (6) and (14) whï.ch now haVe to be intenpreted as holdiing bet'Ween 
the new variables which in,deed are aga"in canonically conjugated. First 
consider H M: 

HM=HM+ [K, tpta V tpdvL. - J -+-+ 

On the righlt hand side 'the f~rst t'wo 1te.r'Dl8 have been written down of the 
'development of H in aIlJ iin'finifte seriels; 'it can ea.sily be seen. however, that 
the higher terms disap.pea.r. With the help of 

-+ -+ -+ -+ 
[tp~ (x) tpr(x), tp~, (x') tpT" (x'L = 

-+ -+ -+ -+ -+ -+ 
= Itp~ (x) tpT" (x') "TT'-tp~, (x') tpT (x) "TT"I "(x-x') 

it is found by means of some partial integrations and talting into account 
'(25) that 

HM=HM+ MUil dV-,,2 M(x') Uil (x) X (Ix-x' I) dv dv'. ..., J-+-+ J-+-+-+-+-+-+ 

The transformatioIlJ of (13) is perf05:med with the help of 

-+ -+ -+ -+ -+ -+ -+ -+ -+ 
U=U, F=F+Fo, G=G=rotU=rotU,., 

-+ -+ 
UJ. is the tran'sverse part of U. Thus 

HBe1da = H Be1dl + V 
where , 

V=t N(x) N(x')x (lx-x'l)dvdv' ...• (26) JJ
~ ~ ~~ 

is the statie interaction. As ii = H, the total transformed Hamiltonian 
finally bedomes 

Htotal = Hm + HOcJd• + V + W, 
:where 

(27) 

2 
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is !the operator of "dynamic" interaction. Taking 'X = 0, (26) and (27) 
yield the wieil known eorresponding ~xpressions for the electromagnetic 
field. 

F!rom (26) and (27) the 'following expressions lfor the statie, spin' and 
fluetuation energy are obtained, cf. (lb). (4a) or loc. cit. 4) eq. (21) *) 

W~~!n =-tjM(1)U2)dv-~2JJdVdv' M(1)(;)UW(;')X(\;-;'I), 

wá~ct =-tjM(2) U~)dv-~2J j dv dv'M(2) (;) UW)(x')x(lx-x'I),. (28) 

where the overlining denotes that the eX!J)eetaney value shiould be taken 
for the state in whieh one particle is present in the lowest positive energy 
level. In the C'éIISe of :hole theory,the subtraetions should be performed in 
ae<:dl'danee with (3). 

§ 4. Calculation of the fD~self~energy . 

a) The statie self~~nergy. 

The operator is 

ij -+ -+ -+ -+ -+-+ 
t dvdv' IN(x)-Nvac(x)IIN(x')-Nvac(x')1 x(lx-x'i)-

ij -+ -+ -+-+ 
- t dv dv' 1 N (x) N (x') Ivac X (Ix-x' 1). 

Using (7). (9) an'd (10), one ,finds for the od'iagonal element, if there is 
-+ 

one particle present in the positive level Po 

-+ -+ -+ -+ 

W
(1) _ f2 h2 S ( ~ . ~ ) 1 ut (Po) Uq (P) 11 u: (P) Uq. (Po) 1 
stat - 2 ~ ± ~ -+ -+ • 

q=t,2 q=3,1 2 + I 12 P. P-Po 
where 

• (29) 

is ,the ID!eson mass, (having the dimension of a momerutum). The plus 
(minus) sign holdJs (for the one~particle (hol~) ~heory. The summatitlD 

-+ 
q = 1, 2, (q = 3, 4) means integra,tion cJVe'!r all values of p as weIl as , . 

-+ 
summation over both spin states eorresponding with eaeh pand with the 

*) In the expression for W~~~t' N has been written for simplicity instead of N(l). 

file:///Nfa
file:///NfaNfa
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positive (negatiV'e) eneiigy 3ign, while S denotes the averaging over Ithe 
~ 

two possible 'spin eta~s qo corresponding with Po (and positive energy). 
Generally, {ut XUr }, wh.ere X operates on the spin variables is the inner q • 

product of u~ and XUr for a f~xe'd spin an.d sign of energy of the states q 
and r. The spin summati'Ons can be performed in the usual way an:d one 
~ets for Po = 0 

(one particle theory). . (30) 

W(ll 
stat ~ f2MJ dp = 16 :7(3 ft P (P2 + ,u2) (hole theory) • . . (31) 

with 

p=+ V p2+M2. 
Developing Ithe integrals gi'Vte5, ([.t. = ifinite 'terms) 

W (II 
stat 

f2 J ":7(2 ft dp + f.t. (one-p. tb.) . 

fMJdP 
.. :7(2 ft P + f.t. (hole th.). . 

(30a) 

. (31a) 

Thus the 'Clivergence on ,the one-pm-ticle 'th.eory .is of the same t)'lpe as 
that IoIf the classical fD-self-energy of a point par1lide. 'viz. linear. 

The cOrJ.·esponding expressions for the electromagnetic field are found 
• I 

from (30) and (31) by pufting ,u = O. Such a proceeding ~s obviously 
legitimate as it IÏs idenltical with the Istatement ·that the Yukawa potenti:al 
goes over into the Coulomb potential for ,u = O. 

b) T hes pin S ,e I f - ene r 'g y. 

We have 'to computé the av,erage value of 

- t dv [(M(lI-M(l1 ) (W1l-WII ) - (M(ll W1I) ] J
~~~~ ~~ 

vac oL ~,vac .&. vae 

,,2JJ ~ ~ ~ ~ ~ ~ - "2 dv dv' [lM\l1 (x)-M~~c (x)ll UIP (x')-Un~ac (x')I-

~ ~ ~ ~ ~ ~ 

-IM(l1 (x) UIP (X')lvac] X (lx-x'I). 

The terms lin the first line denote the transverse, those of the second the 
~ 

longiltudinal spin energy. UW is the solutlion of .) 

.) It should be noted that this equation is the same in the new as in the old variables. 
d . § 3. 
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and may therefore he written as 

-'" 
-+ 

In M(1) we m-ay insert (7) wilth (10), as it ÎlS tlhe "unperturbed" current, 
('" f); the dependenc.e on the aq is the same aIS for the static energy; 
again using (9) we get for the spin energy 

_ r fl2 S ( I ± X') F [ 1 + 1 J, (33a) 
2 q=I,2 q=3,4 -2f1 v Eo-E-fI v E-Eo-ft v , 

-+ -+ -+ -+ -+ -+ 
F = I ut (Po) a ... Uq (P) Ilu~ (P) a ... Uq. (Po) I + 

,,2 -+ -+ -+ -+ -+ -+ 
+ -+ -+ I ut (Po) all Uq (P) Ilu~ (P) all Uq. (Po) I 

,,2 + lp-po 12 

'rhis mayaIso he written as 

f2f12 I F 
- -2- S ( I ± I ) -+ -+ •• • (33b) 

q=I,2 q=3,4 ,,2+ Ip-poI2-(E-Eo)2 

-+ -+ -+ -+ -+ 
al. is the component of a perpendicular to P - Po- all is parallel to this 
vector. The firgt term of F corresponds with _the transveIlse, the second 
with the Jongitudinal Gllergy. The -terms in (33a) IÎI1> square brackets 
represent 'tIhe characteristic eneTgy denominators. As is weIl known, those 
states q must be exduded from the summaltion'S for which the corresponding 
energy denominators are equal 'to zero. Wenow show that for one 
particular value of E the second ldenomlÏinatior may vanish, i.e. E = Eo-fiv. 

Asthis E will he seen to be < 0, we have marked the summation I 
q=3,4 

Wlith a prime to til1>dicat~ thalt this value should be omitted. Taking for 
simplidilty Po = 0, 50 Eo = M, we gel indeed tiha't E = M -fl" if 

E<O 

. . . (3") 

provided 

" ~ 2 M.. . . . . . . . . (34a) 

Consequently iE (34a) is satisfi.ed, which m,ea.~s that the mass of the 
meson 'Î9 a-t least twice Ithalt of Ithe partlicle, the momentum space integrals 
concerned should he understood in. the following way 

p'-. '" J d; = .. n !~o [J p2 dp + J p2 dp ] . 
o p'+'1 
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IE on the other hand ft < 2M, the integration simply means 
Cl> J d;=4n J p2dp. 

o 

In thi! paper, we shall, for shor,tness, 'always write J d;' With 

of 
X-p2+1L2_~ 

- r- 4M2 

21 

the separate expression.c; for the transversearnd the loogitudinal spin 
-. 

energy a're fOUIljd tobe, if Po = 0, 

-. 
f2 (}.l )2Jdp _ f2 ( }.l )2J 32n3 1t M X-8n2 h M dp+f.t.(onep.th.) (35a) 

W(1) = 
apin, transv. 

-. 
p }.lof f dp -' 

64 n 3 h M2o. X (P2 + }.l2) - Bntte (one p. tb.) . . . . 
W(1) -

opln, long. -

It is easily seen that, if (34a)i1s satisf.ied, whioh mearns that X OOcomes 
zero 'for the p~value (34), tlhere ooours iJlO addnional cont'Ii'buoon due to 
the singularity of ,rhe integran,d ror this p: thus, in particular, thedivergent 
part of integrals like (35) and (36) is ind~ndent of (34a) being fuHilled 
or not. 

Again, as in all ca5elS where quéli1lltizaltion is tlJOt explicitly inoVolved, there 
is na ditfdculty in performing the transition ft = 0, whchgives the electro­
magnetic spin ~9Y. In. thils case tJhe longitudinal contribution vanishes, 
of course, for bath one parllicle a;nd hole theory, while in t\he former the 
transverse ,part also becomes zero, in accordtance Wlifh the result of WEISS~ 
KOPF .) . 

It may he remar~ed here, and it wiU oe usef,ul to note this for furtber 
purposes, that (33a) can al'so ,he written as 

- -.-. 
W!~tn = t S( Z ± Z') z [(qo, OI W j Iq::,) (~k~ Wjl qO,O) + 

q=I,2 q=3,of j=O,I,2 Eo E 11 
(37) 

*) Cf. Ioc. cito 4) eq. (19) and (23). 

(35b) 
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where 

• . . (38) 

and where the matrix elements (I W j I) refer to the interaction between 
particle and quantizedmeson field: 

i = 1. 2 (qo. 0 I W J I q. k) = - f J1; I uÓ -:'~k Uq I. I 
(39) 

-+ ,,/h'-+-+ 
(qo. 0 I Wo I q. k) = - f-; V 2" Iut a kO uql. etc .. 

Cf. especially (16) and (27). 
An interesting n~lsult is ol1tain:ed by taking together (29) and (33b). 

By means of tthe operator iden,tities 

• • (40) 

1t .follows that 

The invariantexpression behi,nd tthe summation signs is the generalization 
to the case J-t =1= 0 of the invariant eleC'tromagn.etic matrix elements of 
MeLLER 7). We will therefore denote (40a) by W(ll : 

Inv 

W(ll = W(ll + W(ll. . • • • • • (40b) 
tnv stat spin 

Similar invariant matrix elements. with other numerators of course. will 
be 'found to occur for any f~ or 9~interaction; this enables one te write 
down directly the expression for W\~v' or. moDe generally. the matrix 
elements of interaction, for all KEMMER oases. 

c) The fluctua.tion self~energy. 

It is weIl known that the lowest (positive) energy state of a uiree" 
partiele w'hich produces a field is defined as follows: the particle ,has zero 
momen-tum. while all oc<:upation numbers of the quantum states of ' the 
field have zero expectancy v'alue. 

Notwithstanding the latter condition. the particle can, by virtual 
lemissions and reabsorptions of field quanta. interact with the zero field. 
;From this interaction originates the fluctuation !self~energy of the particle. 
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The a'verage wlue which we ,have to consider is given by (28), in which, 
~ ~ ~ 

tin de first place, M(2) shou-ld he replaced hy M(2)-Mvac ' It can easily he 
~ ~ 

Iseen, however, that the terms M vac WO) yield no contribution. Thus W~~c 
ijs given by the difference df the expectancy values ru (28) oor the situations 
"vac + qo" and "vac". 
~ ~ 

M(2) is the current due to the field U(O) which is considered éIIS a time 
tdependent perturbation. We have 

~ ~ ~ 

M(2) = f tp(O)t a tp(J) + f tp(l)t a tp(O) 

tp(O) =}; Bq cp~) • tp(J) = Iaq cp~). 

twhere cp~) is given hy (10) and cp~) is the next term in the development, 
~ 

l'iimilar to (3), of cpq in a power series in f. Thus cp~) (x, t) is the additional 
ipart of the one particle wave function due to the occurrence of the per~ 
turbation term (cf. (27)) 

H(J) = - f a U~) - ,,2 fa dE X (I X - E I) UI?) W ~~ ~J ~ ~ ~ ~ 

IÏn the one particle Hamiltonian. Therefore 

t 

cp~)~. t) = - ~ f qJ~) J d'C J iE cp~)t (;, 'C) H(I) (7. 'C) cp~) (i 'C). 

o 

\Af ter same calculations one finds, using (9) and (16) 

IWhere some terms containing U- (j, k) which, on account of the choice of 
rthe sequence df factol1S in (28) do not contribute and some th at lead to 

~ 

Iterms in (28) with zero time average have been omitted. k is given by 
I( 38 ). The prime aHixed to the summation I indicates that t-erms which 

q,r 
1W0uid make ~ero one of the energy Idenominators in ( 41) have to be 
lexcluded from the summation. It is obvious that the results will he the 
lSame on one particle and hole theory. From (41) and (28) we infer th at 
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IWhere 
-+ -+ 

inv = 1-'2 + Ip-PoI2_(E-Eo)2. (42a) 

lis the invariant denominator we already met in (33b) and (40a). 
Furthermore. it is easily seen that. UlSing the same notations as in 

(37)-(39) 
-+ -+ 

WUI = t S 2 I [(qo. 0 I W J I q, k) (q. k I W J I qo, 0) + 
lIuet q J Eo-E-h ... 

• (43) 

We now turn to the discussion, of (42) for Po = O. IE (34a) is satisfied, 
,the p~value (34) should again be excluded ,from the integration in the way 
lin-dicated in § 4b. The first term in the numerator of (42) corresponds with 
,the tran,sverse, the second with the lon,gitudinal Ifluctuation energy. The 
iresults, are 

i However. the question has to he considered whether it is ;ustified to 
identify the expressions obtained by means of (41 )-(43) with the 
Ifluctuationenergy due to tobe electroma.gnetic field if ,,= o. As is weIl 
iknown. the quantization of this field cannot be performe-d on the same 
Jines as for the Proca~field essentially because the relation (12). which for 
'" =i= 0 is a consequence df the field equations (lIc. dl, should here be 
iConsidered as an accessory condition in ,the sense that its left member. 
operating on the occupation ,number functional of the electromagnetic field 
should yield zero in all cases actually realiozed in, nature. The different 
,footing on wobich the MaxweIl~ and Proca~quantization are based is 
dearly expressed: oy the fact tihat. whereas the matrix elements of the 
transverse vector potential smoothly go over into those of the electro~ 

magnetic vector potentilal ~f " = 0, those of the longitudinal part hecome 
dnfinite for " = 0, cf. (16). Thus it is evIdent that the transverse fluctu~ 
ation energy for " =i= 0 yields the dectromagnetic spin energy by simply 

-+ 
putting " = O. But. notwithstanding the singular behaviour of U~ (0. k) , 
,the same transition may be performed for the longitudinal term. as the 
operator of longitudinal dynamic interaction stands proportional to ,,2, cf. 
,(27). Wlhich makes itsmatrix elements "'" " , as we haveseen in (39). Thus 
we may state more 'generally: 

(44) 
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All final results concerning particle interaction or dispersion. in 
which neutral 'vector mesons are in'volved. the interaction of which 
with the particles is descdbed by a .four vector source in the meson 
field equations. continuously ,go over into the corresponding results 
for the electromagnetic field by putting" = O. iE we start from the 
suitably transformed Hamiltonian of the Proca-field. 

Thus the electromagnetic fluctuation energy is obtained from (H) by 
putting" = O. The longitudinal part th en vanishes and the total 'result is *) 

~ 

W(I) - e
2 fdP 

Buct - 16 n 3 Mhp . (Ha) 

Collecting (30a). (31 a). (34). (35) aod (H) we obtain for the divergent 
part of the total ,first order self.energy 

infMh [fPdP+M (1 + 2~2)f dp+ 4~2f~]·(one-p.th.) 
3f2 MJdP 
8 n 2 h p' (hole tb.) 

the latter being independent of ". whioh means that the divergent term of 
the Proca- and the electromagnetic self-energy are identical. 

Finally. it follows from (37) and (43) that the total dynamic seH­
energy may be written as 

~ ~ 

S 't" 't' (qo. 0 I W J I q. k) (q. k I WJ I qo. 0) ( tb) 
~ ~ E E ... . one p.- . 
q J 0- -n" 

~ ~ 

_ 2' (qo. -k I W J I q. 0) (q. 0 I W J I qa. -kl] . (hole tb.) 
q=3.1 E-Eo-h" 

aresult which we would halVe obtained directly. had we treated the 
problem on handfrom the start by means of the general formulae of 
'5~cond order perturbation theory. With regard to the case" = 0 the same 

*) WEISSKOPF's expression for this quantity. cf. loc. cito 4) . p. 81. is too large by a 
factor 2. The expression for W sp should he. in the notation of loc. cito (e is expressed in 
ordinary units) 

e
2 [p 2 _2 P + Po] W 1P =-2nmeh lim(P=CI)) P o-m c-lg me • 

cf. Ioc. cito eq. (20) and (23). Therefore eq. (26) loc. cito is again correct. The result 
(Ha) is also obtained by HE'lTLER. Quantum Theory of Radiation, Oxford Clarendon 
Press. 1936, p. 183 eq. (23). 
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<considerations apply to the total dynamieself-energy. calculated by 
perturbation theory. as those just made in our above treatment of the 
.fluctuation energy. 

§ 5. Calculation of fv-self-energy without canoni'cal transformation. 

From the developments of tJhe previous section. it appears th at the 
separation of the self-energy into statie aOid dynamic terms presents no 
·advantages. It e.g. separates the statie from the spin energy. but we ha.ve 
.geen that it is more natural to take these terms together. We shall now 
show that the calculation becomesmuch simpIer hy not performing a 
canonical transformation at all. Thus we have now to consider the 
expectancy value of 

H = t f (N V - M U) dv.. . . . . . (45) 

:From the point of view of quantization. it is more convenient to express H 
in terms of the canooical field variables. As has already been remarked. 
V is a derived variabIe. defioed by (20). Therefore we write 

H=tf("-2 N div F-M ïi)dv + ,,;2f N 2dv.. . . (46) 

Developing allquantities similarly to (1 b) we get 

H = t f (,,-2 N(I) div p(l) - M(I) [j(1)) do + ,,;2f N(I)2 do l 
• (47) 

+ t f (,,-2 N(2) div F(O) - M(2) UlO)) do. 

The terms of the first line will yield W(I) • those of the second W~) • mv uU~ 

The last term of the first lioe gives. by means of first order perturbation 
theory 

2
f22 S ( I ± :E) I Utq Uq Ilut

q Uq. I. . . . . . (48) 
" q=I,2 q=3." • 

Ta obtain the other terms of the first line. whieh will he called W(I)' mv' 
a farm uIa si,milar to (37) may he used. Putting 

H' J (,,-2 N div F - M U) do.. • . • • (45a) 

we thus get. using (38) 
~ ~ 

Wl!~=tS( I ± I')I[(qo.OIHilq.k)(q.kIHilqo.O)+ 
q=I,2 . q=3," J Eo-E-hv 

~ ~ 

+ (q. 0 IHil qo.-k) (qo.-k IHil q. O)J 
E-Eo-hv 

(49) 



ON THE THEORY OF ELEMENTARY PARTICLES 27 

wh ere (cf. (15a» 

!herefore, remembering th at H' is Hermitian, the expression between 
square brackets in (49) may be written, using (4 2a), as 

(50) 

-+-+ 
,The difference in sign of v a kO in the first and secoDid term of (50) should 
be noted. Using (40) end (40b), (49) can be written as 

W~~ = Wl!~ _ 2f22 S ( I ± I) I u: Uq I I u: uq.l· 
" q= 1,2 q=3," • 

The latter term is cancelled by (48), and so the first line of (47) indeed 
gives Wl!!v. This result can also be obtain'ed by starting from (45), 
developing as in (47) and integrating the equations for Vand U in a way 
similar to (32~. 
, Similar to (43), the terms of the second line of (47) can be written as 

• (51) 

Af ter some calculations, one again finds (44) on putting Po = O. However, 
on,e does not get (42), in which Po has not yet heen put equal to zero, but 
this only means that, in computing the fluctuation energy for a moving 
particle, starting eibher from (42) or (51), the contribution:s of the various 
regions of momentum space shoutd be taken together in a dif,ferent 'way, 
so as to yield the uniquely determined relation (la); cf. further § 1 *). 

*) The same phenomenon we have also found for other fields, cf. e.g. the Appendix, 
notes 3 and 4. 
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Thus. as it shou1d be, the present method yields the same result as that 
described in the previous section. From the considerations of 1 4 we know 
already that the electromagnetic field self-energy is obtained from th at of 
the Proca-field by putting x = O. However. contrary to the calculation of 
§ 4. it is by nomeans justified (although we know it indirectly to be true) 
to say. that the results of calculations which do not involve a canonical 
transformation yield the corresponding electromagnetic on~s if x = 0: 
whereas it was seen in § 4 that the :matrix elements of the interaction 
operator involvin-g longitudinal "free" mesons 'are proportional to x. this 
is not the case in this section. where the distinction between "free" and 
"bound" mesons is not made. but where the whole particle-field interaction 
is treated fr om the start as a perturbation. Thus it is necessary to consider 
separately the electro-magnetic self-energy as computed without a canonical 
transformat~on . This is done in the Appendix. note 3. by qwantizing the 
fjeld with the help of FERMr'S metho(d 10). 

From (47). (49) and (51) the following expressions can be obtained 
,for WW. noting that H' is hermitian 

oe.: v H I th W (I) = X
2
-
2
jN(J)2 d .. + 

O th W (J)= X2-2jN(J)2 dv + ne-po .: 

• (53) 

We have now obtained lSufficiently general fornrulae to be able to 
compute straightforwardly all self-energies due to fields of all types. To 
this purpose one can either use (52) and (53). (the N2-term having to he 
replaced by corresponding other terms. of course). or retain the division in 
W 1nv and W fluct. We shall here follow the latter procedure and thus will 
use (49) and (51). 

With the help of (52) and (53). the present results can be compared with those of 
KEMMER·Sl). This author divides the interaction operator. (referring to charged fields. 
but this is immaterial to the issue). into two parts. Hl and H2. In the case of fp·interaction. 

fp corresponding with KEMMER's 9b. the term x-2 f N 2 dv corresponds with H2. the other 
part of (45). viz. H'. cf. (45a). with Hl. It may he remarked that. from the point of view 
of the self-energy. the separate consideration of Hl and H2 is disadvantageous. as the 
integrands of Hl and H2 are no scalars. so that (la) does not apply to the expecta:1cy 
value of Hl and H2 hut only to that of Hl + H2. It may he repeated that the separatIon 
into Hl and H2 must be considered as no more than a cO:1venient method for expressing 
the interactio:1s in terms of canonical variahles; from the correspondence point of view it 
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is the operator Hl +H2 which should he taken as representative for the interaction *). 
However, even taking together the corresponding contributions of loc. cito 2) eq. (72) 

and (77), there still are many discrepancies with the present results. The origin of the 
disagreement Is to be found in the terms of (52) in square brackets which differ from 

-+ -+ 
loc. cito eq. (71) in that the first and second one contain +k and -k, respectively, while 

-+ 
KEMMER has taken k in both cases. The importance of the difference in relative sign has 
already been pointed out i:l connection with (50). From a doser examination of (52), 
It follows that the difference in sign affects those (and only those) terms which are "cross 
terms", i.e. contain products of two matrix elements which involve different source 

-+ 
functions, in the cited case the terms containing both N and Mil' Now all such cross 
tarms have erroneously been omitted in the cited paper. There are only two cases in which 
these do not occur, viz. for fs~ and fps~interactions. In these cases our results (cf. § 6) 
agree with those of KEMMER's, apart from a factor two by which hls expressions are 
too large. 

§ 6. S elf ~ ene r 9 i e s d U e t oot her f i e I d s. 

We w/ill now briefly \Survey all f~ and g~setf~energies, treating simuI .. 
taneously the s~ with their dool ps~cases aIi:d likewise v with pv. First. 
expressions like (37) ,and (42) will be deri'ved for W~v and W~~ct: 
their representations, for Po = 0, as integrals over momentum space wSIl 
then be collected in table I, Where no confU'sion· is possible, we &hall write 
{X, Y} instead of { ut XU q 1I u: Yuq• I, Further, the following notations 
are used 

h2 

W~! = - S (I ± I') miDY 
2 q=I,2 q=3," 

W;~! = ~ S( I ± I')m;"v 
q=I,2 q=3," 

W (I) - h
2 

S ~, 
l1uet - 2 ~ mflact, 

1. fs~ and fppself~energy. 

The field equations are given by (17 a) and (17b), while, instead of 
( 17c), 

~ . 
div r + A = ,,2 n - VIt RVI (54) 

with 

s: R={Se3' ps: R={ps~. 

*) FRÖHLlCH, HEITLER and KEMMER9) take Hr to describe the fp~interaction, cf. 

loc, cito eq. (30b), whereas M0LLER and ROSENFELD 2) take Hr + 14, cf. Ioc. cito eq. (7). 
Apart from the invariance argument, quoted above, which is of no interest if only statie 

interactions are considered, it should he noted, that also from the point of view of nudear 
interaction the second choice seems preferabie, as this, eontrary to the first one, (cf. Ioc. 
cit. 9) p. 164) does not lead to terms in the statie interaetion potential of the "~type, the 
oeeurrenee of whieh is ineompatible with a finite binding energy of the deuteron 10). 
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The Hamiltonian is given by (5) with (18) and 

H= - J V't RV'. IJdv . 

Thus. ww is defined as the expectancy value -- f2 of -tJ V't RV' . IJ dv. 

Using (19). the matrix elements of Hare found to he 

Hence. hy means of (49) and (51). (there are no terms like the last of (46)) 

_ IR.RI 
mlnv---. -

lDV 

IR.RI E-Eo 
mnuct = inv . h-;-· • • (55) 

In v>iew of the important röle the f s-interaction will play in subsequent 
chapters. its treatment hy means of a canonieal transformation will he 
discussed in the Appendix (note 4). It shouldbe noted th at the f ps-selE-

. ~nergy is of purely non-statie odgin. 

2. gs- a n d gps - s elf - ene r 9 y. 

The field equations are. hesides (17 c ). 

-+ -+ • 
r= grad IJ + V't P V' • A = - IJ + V't Q "1'.. • • (56) 

with 

-+ -+ 
ps: p=gps a 

"ps 
Q _gps n 

- 0:'1· 
"ps 

The interaction term in .~he Hamiltonian (5) is - J V'tQV'.Adv. The 

operator whieh must he considered to obtain the selE,energy is 

H = t [V't P "1'. r-V't Q V' . Al dv = f 
-+ -+ 

where. similar to (46), H is expressed in the canonical variahles IJ and Á. 

The last term of H yields 

-+ -+ 
tS( ~ ± .2')lP.PI . ... ' ... . (57) 

q=l,% q=3," 
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Denoting the other part of H by H', we have, with the help of (38) 

thus 

with 

-+-+ -+-+ -+-+ 
,_ IPk,Pkl-2IPk,QEI+v2 IQ,QI 

minv-- . 
!DV 

Eo-E 
E= h . 

,Therefore, by adding (57): 

lts invarianee is evident. In the same way we find from (51) 

-+ -+ -+ -+ -+ -+ -+ -+ 
2 _IPk-Qv,Pk-Qvl + IPk+ Qv,Pk+ Qvl 

v mOact - Eo-E-h v Eo-E + h v . 

3. The {sgP and {psgps~self~energy. 

31 

Considering the case that the (~ and g~sources are simultaneously 
present, i.e. that the field equations ,aregiven by (54) an'd (56), there 
occur cross~terms proportional to (g *). It is easily seen that for these 

-+-+ 
-i I R. P k-QE 1+ conj. 

minv= . 
lnv 

while 

-+-+ -+-+ 
2 _ i IR, P k-Qv·1 + conj. + i IR. P k + Qv I + conj. 

vmSuct- Eo-E-hv Eo-E+'w 

4. The "direct" gP and gppself~energy. 

It is weIl known 1) that the addition to the Hamiltonian of a term 

~J S .. (g)S" (g)dv • . . (58) 

where the integrand is thescalar product of (the tensor components of) 
g~source functions S .. (g) and n a numerical coefficient, has no effect on 

*) In loc. cito 1) terms of this type have not been taken into account . . 
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the equations of the meson field·) . It leads to a direct interaction, (i.e. 
not brought through the intermediary of fields), between particles, the 
spatial dependence of which is described by the highly singular t5-function. 
We will now compute the self-energy to which such terms give rise and 
whiéh will be ca lIed direct self-energy. This quantity obviously satisfies 
(la). In the Us and Ups-case we have to consider the operator 

By first order perturb~'tion theory its expectancy value is found to be 

n -+-+ 
"2 S ( I ± Z )[IP,PI-IQ,QI1 . 

q=I,2 q=3.4 
(588) 

5. Th e f. - a n d f po - se 1 f - ene r 9 y. 

The field equations are (lla, b) and (20), (21) . In the latter two we 
-+ -+ 

write ",t M ",', ",t N "I' instead of M. N. We have 

-+ -+ -+-+ 
v: M={. el a, N={.; pv: M={p. a, N={p. ()\. 

The {.-case has extensIvely been dealt with in the foregoing. The 
corresponding .formulae for the pseudovector theory are obtained by 

-+ -+ 
replacing elO by 0 and "I" by el' 

6. Th e 9. - a n d 9p• - s elf - ene r 9 y . 

The field equations are (lla, b), whHe (lle,d) are replaced by 

-+ -+ -+j F = - U - grad V + 1pt T "1', • 

-+ -+ 
G = rot U + 1pt S "1', 

-+ 
pv:T= 

(59) 

*) Such tenns should not be confused with the terms H2 of KEMMER's Hamiltonian, 
cf. loc. cit. 1 ) eq. (50), as the latter arise from the separation of the invariant operator of 
nucleon-field interaction .into a part depending on the canonical field variables (Hl) and 
a part depending on the source functions only (HÛ. 

One mayalso introduce terms of direct f-interaction in the Hamiltonian. As for later 
purposes only the direct g-self-energies are needed, however, direct f-self-energies have 
not been considered here. 
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The operator which yields the self-energy is 

H = t (VIt S VI . G-Vlt TV1. F) dv = J -+ -+ -+ -+ 

= t (VIt S VI . rot U-VIt TV1. F) dv + t VIt S VI . VIt S VI dv. J -+ -+ -+ -+ J -+ -+ 

G heing a derived vadable. The last term gives 

-+ -+ 
tS( I ± I )IS.SI· 

q=l,2 q=3,1 

Calling H'J the part of H, depending on the canonical variables U and F. 
which corresponds with transitions ül'volvin·g mesons with state of 
polarization i. we have .) 

-+ l/h-+-+ 
(qo. 0 I Hó I q. k) = - i" r 2" I ut T kO 

Uq I. 

Hence, with the help of simple velctor calculus, , 
1 -+ -+ -+ -+ -+-+ 

m{av=- .- [PIS, SI-lkS.kSI-
lnV 

-+-+ -+-+ -+ -+ -+ -+ -+ 
- Ik T. k TI + ,,21 T. TI + 2 E kiS 1\ Til. 

Therefore 

1 -+ -+ -+-+-+-+ -+-+-+-+ 
mlav=--. [k 2 IS.SI-lkS.k.SI-lkT.kTI + 

lnV 

-+ -+ -+ -+ -+ -+ -+ -+ -+ 
+ E

2 1 T. TI + 2tk IS!\ Til + IS. SI-I T. TI. 

That the expression between square brackets is indeed a scalar can be 
-+ -+ 

seen hy writing Sik = (S, T). where Sik is a (pseudo)tensor. and 

-+ 
k. -E=lli. 

III being a four vector. This expression can then he writtenas 

Si JSik llJ llk. 

For the fluctuation energy we get 

-+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ 

2 _ PIS. SI-lkS. k SI-Ik T. k TI +,,2 IT. TI+2vk IS!\ TI + 
"mfJuct - E E .f.. 

0- -n" 
+ same with -" instc~ad of v 

Eo-E+hv . 

~ ~ ~ ~ 

.) B 1\ b denotes the vector product of B and b. 

3 



TABLE 1. 

W(ll inv 
Type W(ll 

One-part. theory Hole theory 8ud 

ts -F( 1-4~2)A -tFC(p2 + 2M2_t ,u2) lFDp2 

g. (~r B -2(~rE 0 
. 

f, g. 0 0 0 

g't direct n (~r B -2n( ~r E -
. 

fp f2( 1 + 2~2)A - F C (P2_M2 + ,u2) f2 D (P2+-I,u2) 

g. (:" r A (P2 + 3,u2) - t (:" )2C(lOM2p2+,u2p2+6M2,u2)+ 

+3 (~ rE 

i g2 D (P2 + 3,u2) 

fp gP _3
fg 

A" 3 fg • Mh C (2p2 + ,u2) - ~ ~.h2,u'D h " 
g. t direct 0 3n (~ rE -

f/h> -3f2( 1-6~2)A - F C (p2 + 3M2_,u2) F D (P2-i ,u2) 

g/h> (:"y A p2 _ t (:" ) 
2 

(,u2-2M2) Cp2-3 ( ~ ) 2 E i g2 D p2 

fpp g/h> 0 0 0 

gpP t direct 0 -3n (~ rE -

fps 
,u2 

f2'4M2A -iFC (p2+~2) t f2 D (P2 + ,u2) 

gps g2 A +( ~r B _ ( ~ ) 
2 

M2 C (2 p2 + ,u2) + 2 ( ~ ) 
2 

E tg2.,u2 D2 

fps gps _ fg A" fg. Mft C (2p2 + ,u2) - t ~. h2 ,u' D ft " 
gp.; direct n (~.r B 2n (~ rE -
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7. The f g ~ and f g ~self~energy. 
v v pv pv 

These are due to the cross terms in fg which are found if the ,field 
equations are (20), (21) and (59). We obtain 

-+ -+ -+ -+ -+ -+ -+ 
_ ik IM /\ SI-iEIMTI +ikiNTI +conj. 

miDY-- . . 
mv 

-+ -+ -+ -+ -+ -+ -+ 

2 - i kiM /\ S 1- i v I M TI + ik I N TI + conj + 
vmfluct- E E "'-

0- -"v 
+ same with - v instead of v 

Eo-E+hv . 

8. Th e dir e c t g ~ a n d g ~'S e lf ~ ene r 9 y. 
v pv 

Similarly to -4. we get 

. (59) 

In table 1 the expressions are given for W(I) and W'nl ) ; the following 
inv uct 

abbrevations have been used, (for X see (35), (36)) 

Where one of the integrals A - E stands "multiplied" with a .fundion 
~f p, it is meant that this function should be tak~n under the integral. To 
simplify the formulae, we have, exce.pt in the ,first column, omitted the 
"indices" s, v, pv, ps. 

Table 2 gives a survey of the kinds ofdi'vergences to which WW gives 
rise; cu = cubic, qu = quadratfc, lin = linear, log = logarithmic diver~ 

gence. In the case of the fv~self~energy, the divergences indicated between 
brackets refer to the electromagnetfc self~energy. 

For later purposes we need the explicit expressions Jor the coefficients 
with which, on hole theory, the various divergences stand multiplied; we 
IWrite 

~nd introduce 

~ ~ 

W (I)- Cqu J d +3MClogJdP + f 
- ;rt2 MhP P 8 ;rt2 h p . t. 

M 
1]=-. 

fJ-
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Type 

{s 

gs 

fs gs 

gs; dir. 

{. 

g. 

{. g. 

g.; dir. 
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One-p. th. 

lin 

cu 

-
cu 

lin (-) 

cu.lin 

lin 

-

TASLE 2. 
Kinds of divergence of W(I). 

",,711) 
Winv 

Hole th. 

qu.log 
qu 

-
qu 

qu.log (id.) 

qu.log 

qu.log 

qu 

qu.log 

-
-
-

qu.log 

qu.log 

log 

-

W (I) 
Inv 

Type One-p. th.1 Hole th. 

{p. lin qu.log 

gpv cu.lin qu.log 

{P. gpv - -
gpv; dir. - qu 

{ps lin qu.log 

gps cu.lin qu.log 

(ps gps lin qu.log 

gps; dir. cu qu 

",,7111 
Wiluct 

qu.log 

qu.log 

-
-

qu.log 

log 

log 

-

f=qa and fClogare given in table 3. In the second and third column the 
~ndices s, v. pv. ps have again been omitted. 

TASLE 3. 
CoefBcients of divergences of W(I) on hole theory. 

Type Cqu I Clog 

{s - -t{2 

gs - g21]2 t g21]2 

{sgs - -

gs; direct - n g21]2 t n g21]2 

{. - {2. (e2) 

g . t g2 1]2 --!- g21]2 (I-i 1]-2) 

{. g . t {g 1] - 2 {g 1] (1 + 1]-2) 

g. ; direct t n g21]2 -2 n g21]2 

{P. - -t{2 

gpv -! g21]2 t g2 1]2 (5 - t 1]-2) 

{pv gpv - -
gp. ; direct -t n g21]2 2 n g21]2 

{ps - t{2 

gps t g21]2 -î g21]2 (1-1]-1) 

{ps gps t {g 1] -î {g 1] (1 +1]-2) 

gps; direct n g21]2 -t n g21]2 
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§ 7. On the higher order self~energies. 

It has been shown by WEISSKOPP 4) th at W(n\) , the electromagnetic 
cm 

self~energy of 'arbitrary order, diverges, on hole theory, at. most logarith~ 
mically. In this section we :shall show, by similar reasonings, that to a 
certain extent, general con~clusions as to the diver:gence properties can be 
established for any field, again starting from hole theory. As th is case will 
mainly be dealt with in the following, we ,shall from now on understand 
by W(n) the n~th order self~energy on hole theory. We now first turn 
to a short recapitulation of WElSSKOPP'S argument. 

a) T h e e 1 e c t rom a 9 net i c cas e. 

The main point is that 

W~~O if M~O, 

rwhere M here Idenotes the rest mass of the electron. 
. To show this, WEISSKOPP ronsiders the identity 

(60) 

W(n) (vac + eri) + W(n) (vac - eö) - 2 W(n) (vac) = I 
(61) I T(n) (et .... ) - T(n) (eö ~) I - I T(n) (~ et) - T(n) (~ eö) I 

The first term on the left denotes the energy -- (e2 /h) n of the system of 
'Completely filled 'Vacuum states with an additional electron (of given spin 
'direction ) in the lowest 'positive energy level et: in the same sense the 
lSecond term indicates the energy of the vacuum with one electron lacking 
lin the highest negative energy level eö ' whi1e W(n)(vac) isthe energy 
-- (e2 /h) n of the vacuum distribution itself. Thus the left hand side of 
(61) is equal to the sum of the self~energy of posiÜve 'and negative electron 

:at rest = twicethe self energy W~~ of the electron on account of the 
,symmetry of the whole theory with respect to the sign of the charge. 
r(n) (et -+) denotes the sum of the contributions due to all transitions 
~nvolving 2n -1 intermediate state·s in which the electron in the state 
e~ takes part, while similarly T(n) (-+ et) is the sum of the :Contributions 
due to all transitions in which an electron jumps into the (unoccupied) 
state et. In order to show that W~~ -+ 0 if M -+ 0 it is, therefore, 
Isufficient to prov;e that the right hand side of (61) tends to zero unider 
Ü,is condition. This amounts to proving that 4 ) 

• (62) 

,IWhere 

-+-+ -+-+ 

P±=TraceHI (1 + a PI t
J

Q3M
) Hl (1 + ap2t2Q3M) ... H 2n (1±Q3)' (63) 

E t =±Vp:+M2. 



38 ON THE THEORY OF ELEMENTARY PARTICLES 

Hl is the operator causing the transition from the (i-I) ~th to the i~th 
state; (the final =initial state is indicated by 2n). That (62) is true 
then follows from weIl known proper ties of the Dirac matrices. 

b) G~neralization of (60) to othe1 fields 

We next show that 

W(R) -+ 0 if M -+ 0 . (64) 

for any f ~ or g~interaction. For this purpose it suffices to ,prove that (62) 
here holds too, and this is easily seen to be the case. For all Hl depend 
dn 'the same way on the Dirac matrices fll and Ol and therefore the -+- fl3~ 

term in the last bracket of (63) does, in the limit M = 0, not contribute 
to P::l: as the number of interaction operators Hl oc:curring in (63) i's even. 
Furthermore, (64) hold:s whether the interaCtion concerned is of the 
charged or of the neutral type. In ,fact, if we cons1der the case of :Charged 
fields, anid to that purpose introduce isotopic matrices 7:1, representative 
of the charge coordinate of the nucleons, (63) will contain additional 
:factors 7:1 compared to the corresponding neutral interactions. This, hO'W~ 
ever, cannot affect the condusion that the -+- fl3~term does not contrihute. 

Thus (64) has been 'established for the case that we have to do with 
'either an f~ or a g~interaction. Let us now consider the case that an f~ 
and a g~interaction of the same type are simultaneously present. This 
yieIds, in first order, 'self~energy teflms proportional to fg. But for these 
jt is no longer true that the dependence of Hl and H 2 on the Dira'c 
matrices is the same, and therefore the reasoning of the preceding para~ 
graph cannot oe applied here. We thus have to insert the expressions ,for 
.the operator H involved into (63) and to 'Verify by explicit calculation 
;wh ether (62) is satisfied. As to the first order approximation, it appears *) 
that in the s~ and pv~ca.ge P + = P _ = 0, so that (64) a'gain is true; as 
we halVe seen in § 6, 30 and 70, WW (M =1= 0) = 0 for these cases. On 
the oth~r hand P + = - P _ for the v~ and ps~intera'ction. 

Finally it should he noted th at in higher order there may occur cross 
terms proportional to np nl, g7P giq, {7P giq , (7P nq nr, •••• , i, k and 1 now 
referring to different ,types of fields. There, however, we have again 

*) Take e,g. the scalar case and let e.g. Hl he the operator corresponding with the 
-+ -+ 

spatial part of the gs-interaction, i.e. HI- il?d (J p) and let H2 he the operator of 
fs-interaction: H2 - (>3. Then, for M = 0, 

~~ 

P::l: C/) Trace i (21:; ( 1 + fll ~ P») (]) (1 ± fl3) = ± i ~2 • (63) 

However, there will also he a transition involving the same intermediate state, in which 
the röles of Hl and H2 are interchanged, i.e. we have to take the sum of the right member 
of (63) and its conjugated to obtain the total P±. Thus P + = P _ = o. 
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P + = P _ as the number of operators corresponding with the different 
kinds of fields is even. Generally we may state that. if the operators 
Hl' .... H2n occurring in (63) can be grouped in such a way that each 
group contains an even number of H's depending in the same way on the 
Virac matrices. (62) is satisfied. IE they cannot be grouped in the manner 
indicated. the relation between P + and P _ has to be found by explicit 
calculations. 

We shall now consider the bearing of (64) on the divergence properties 
of W(n). First we take 

c) Th e f. ~ 5 elf,e n e r ,g y. 

We recall that all n-th order self,energy effects can be described as 
due to consecutive transitions in which the total system. af ter passing 
,through 2n - 1 intermecliate states returns to !he initial state. The 
divergent results are due to those states having very large momenta. 
,( ultra,violet catastrophe). Considering provisorily the domain in momentum 
space of the intermediate states to be cut off at a large but finite value P. 
all self-energies will be fini te. We especially choose P to be 50 large as to 
be ~ h,,; then "I = h "JPmay be considered as a small dimensionless 
parameter of the problem and. in the domain of large p. we can develop 
the integrals representing the contributions to the self-energy of various 
order in a power series in "I .). 

Now it may be remarked in the first place that no negative powers of 'YJ 

will occur. Indeed. sUch tel'lms would. for " -,) O. become infinite. contrary 
to the fact that the electromagnetic self-energy remains .finite for finite 
p •• ). The lowest exponent of "I which occurs is thereforezero: this term 
in the development is the only one remaining if " = 0 and is. therefore. 
according to the previously mentioned results for the electromagnetic field 
logarithmically divergent. 

To discuss the other terms. we note th at W(n) is a series of the form 

"" WIn) = I WIn) (P) 1Jk 
k=O k 

in which the coe.fficient of "Ik _ may be written as a power series in P which. 
for a particle at rest. generally is * •• ) 

WLn) (P)= ljc!t} (~C)/ (Ig ~C) ti • Mc2 

*) The series deveIopments used here and in the following find their justification in 
the circumstance that the self~energy is an integral over p of a rational function of 

p. h". V p2 + p2,,2. V p2 + M2. etc. By developing the integrand in the region of large 
p. which is the only domain of momentum space that interests us here. and then integrating 
term by term. the quoted series are obtained . 

.. ) It wil! be rememhered that it was shown in § 6b that it is indeed legitimate to 
consider the electromagnetic self~energy as the limiting case of the f.~self-energy for ,,_ O . 

.. *) It is immaterial to the argument whether the coeffjcients c~} depend on 
19(h,,/Mc). as may happen for k > O. 
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factors M anod c having been introduced to obtain the right odimen-sions. 
Now. according to (64)·) W(tI)(P) = 0 if M = O. for any x. and so 
W~)(P) = 0 if M = O. Consequently the exponent I of P/M.c must be 

- -< O. This implies that all terms with k-> 0 ,do not. in the subsequent 
transition P ~ co. lead to divergent results as they are at most .- p_k (or 
.- P-klgP). Thus the only divergent term is the same one as occurs in 
the electromagnetic case. Hence: . 

The f. -self-ener,gy diverges at most logarithmically to any order 
of appro"ximation. The divergent term is independent of x. -

The explicit first order calculations of § § 4. 5 are in accordance with 
this general result. The argument is furthermore independent of the 
charged or neutral character of the interaction •• ). 

d) ( - f i e I d sof 0 t her typ e. 

In the iirst place we remartk that. for the -correspondin'g "photon" fields 
(x = 0). it can be -shown in the same way as was done by WEISSKOPF for 
tbe electromagnetic field th at the corresponding self-energies diverge at 
most logarithmically in any approximation. Furthermore the (-.fields are 
connected with the correspondin-g photon fields in the same way as the 
Ep - with the electromagnetic field··) and this means th at the proof of 
§ 7c can be given for all (-fields. Therefore: . 

All f-self-energies diverge at most logarithmically to any order 
of approximation. The divergent term is independent of x. 

e) g - f i e I d s. 

As al ready strifed before. the difference between (- and g-interactions 
is essentially that the dimension of the coupling constants in the latter 
case is charge (g) times length. For reasons of simplicity it is customary 
to identify this length with the Compton wave length I/x of the mesons. 
However. in discussing the properties of the g-divergences. it will proVe 
convenient not to introduce this identification. In this section we shall 
therefore put the g-sources proportional to 

g 
xO 

wh ere xO is an inverse length fundamentally not identical with x. 

We can again develop W~) in a power series in 'YJ like we did with W~). 
However. besides 'YJ there occurs a similar dimensionless parameter 

ft ,,0 

'YJo=P' 

.) It should be noted that we always consider the double !imiting process 
Iim Iim W (P) and that the order of these Iimiting processes is never reversed. 

P-+= M-+O 
.. ) The !egitimacy of the (formal) transition ,,-+ 0 is shown on simUar !ines in the 

charged as in the neutra! f p·case. 
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Now, while we may for g~interactions , too, let "I tend to zero, this is 
impossible for "1°, as "10 is different .from zero wha"tever the mass of the 
field quanta is. Still, the ,developmènt of W~I with respect to "I can easily 
be written down in such a form that the explicit ,dependence on "10 is 
"simultaneously taken into account. In fact, while W~I will generally he 
an intrïcate function of fJ, its dependence on "10 is quite simpie: 

Therefore, the most general representation of W(nl(p) is 
g 

Followin'g the same reasoning as for f~interactions, it can be shown th at 
no negative powers df fJcan occur, while the W~I(P) are at most --lg P. 
Hence the hi'ghest divergent term whïch may occur in W~I (P) is 

V') P2nl g P .. (65) 

Thus the divergences of W~I are generally of higher order than that of 
W~I whïch e'ventually is -- 19 P, the difference being due to ~he occurrence 
of "1° . Moreover , W~I will generally involve divergences of more than one 
order, as (65) only giNes the highest possible divergent term. Consider 
e.g. W~I. According to (65). the highest divergent term whïch may be 
.found here is -- P21g P, but actually the occurrence of such a term is 
impossible: Indeed W~I (P) can he written as 

p 

W~I (P) = ( ~ ) 2J lP (p, ,,) dp, 

o 

where lP is an a}gebraïc function of p . As the highest divergence of W~I 
corresponds with the integral over the highest order term df the devel~ 
opment of lP with respect to p, a transcendental term -- P2lg P cannot 
exist. This aHords an example of the fact that not all divergences 
compatible with (65) need necessarily occur. However, to decide this, 
arguments of other kind are apparently necessary. As we ha've seen in 

" preceding sections W~I involves aquadratic and a logarithmic divergence. 

f) fg~self~energy. 

Here (64) does not hold and consequently the general dimensitOnal 
considerations .from which conclusions can be ,drawn as to the kinds of 
divergences do not apply. The explicit "calculations showed W~1 to h'ave 
a qu and a log divergence (on hole theory) in the v~ and ps~case . 
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g) Dir e cts elf ~ ene r 'g y. 

We have already seen th at in first approximation these yield a qu and 
a log divergence. The occurrence of terms of direct interaction also in~ 
fluences the higher order approximations of the self~energy. as for these 
there may occur: "cross terms" which are partly lOf ,"field". partly of 
"direct" origin. As their ".field dependence" can be discussed by the 
methods of § 7. d. e. it follows ihat these <:ross terms will gÏJVe rise to 
'divergences in W(n) the highest possible order of which is 2n. 

Appendix. 

~ 

Not e 1. On the calcU$tion of ww (Po). 

In § 1 a 'Prescription has been given flOr: computing the p~integral 
representing the self~nergy for the case that the particIe is at rest, which 

~ 

is essentially based on the fact th at. if Po = O. the problem is spherically 
,symmetrical in momentum space. We will now show by two examples 
that. generally. the same pr,escription cannot be used if Po '=1= 0: the 
divergent part. on hole !heory. has been computed of the f $~ and fu~self~ 

energy. using (55) and (40) . (42) respectively. The results are for the 
divergent parts 

f; ~2 [_ ~_ ,u
2
2+,u2 (1 + P~2) _1_lg Po+poJfdP, 

4nh Po 4 M 2 M Po Po Po-Po P 

f:2
M2 [3- 6,u: + 3,u2 (1 + P~2) _1_ lg Po +poJfdP• 

8n hPo M \ M Po Po Po-Po P 

Po=Vp~+M2 

which are incompatible with formula (la) on the one. and the corresponding 
results of table 3 on the other hand. The latter are foun:d from the above 
expressions by putting Po = O. Putting ,u = O. we get for the divergent 
parts of the "photon" field self~energies 

respectively, which do agr,ee with (1). However. further calculations show 
that the ,finite parts still would not be compatible with (I) . Thus for a 
moving particIe a more complicated prescription ,should be followed to 

~ 

obtain WW (Po) by direct calculation. As has been remarked. the know~ 
ledge of the prescription is not necessary, as. once WW has been defined. 

~ 

Ww (Po) is fixed by (la). 

Not e 2. Self~enet'gy due to charged fields. 

It was mentioned in § 1 that the self~nergy of nucleons due to a given 
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type of interaction is. in first approximation. the same for neutral and 
charged Helds. We will here illustrate the general argument. by computing 
WW for the charged f s ~field case. The field variables. now being complex. 
satisfy the equations 

... .... . 
r=grad Q. A = - Q. div r+ A =X2 Q-R. R={s ",t QNP!!3 "'. 

QNP is an operator transforming a neutron into a proton; we have 
Rf = (s ",t QpN !!3'IjJ. where QPN = Q}"p transforms a proton into a neutron. 
The Hamilton:ian is 

HlotA\=Hmat + tJ{f Ft + A At + ,,2Q Qt) + conj.-J(RQt+RtQ), 

the part ,of H depending only on the field variables having been chosen 
such th at no infinite "zero point" meson charge occurs 11). The commuta~ 
tien relations ar-e 

...... ft ...... ...... ft ... -.. 
[Q (x. t). At (x'. t)L = T c5 (x-x'), [nt (x. t), A (x' t)L = T d (x-x'). 

The first order self--energy is defined as one half of the expectancy 'Value 

-- r; of 

H=-J(R Dt + Rt D) dv. 

We first compute WI~V' Q satisfies 

D D_,,2 D = - R, 

Qt the conjugated equation. QW and Q(1)t can be found similar to (32) 
and we get 

the first (second) term between square brackets. being equal to 1 (0) if 
the nucleon state considered is a neutron state and 0 (1) if it is a proton 
state. Thus fer both neutron and proton. W\~v is given by the first of 
equations (55). To obtain Wk1lcc' we develop Q(O) and Q(O)t in plane waves: 

-.. -+-+ -..-+-+ 
D(O) = 2'[D+ (k) ei(k x-yt) + D~ (k) e-i(k x-rtl]. etc. 

The .only non~vanishing matrix eJ.ements ofthe Fourier amplitudes. are 

-.. -.. 
[D± (k)]è-.. è+ I = [Dl (k)]è+ Hè = 
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n:k -+ m:k denoting a transition in which the number of mesons with charge 
-+ 

-I- e and wave vector k changes from n:k to m:k. With the help of (51). 
where H' j should be replaced by H, one easily finds 

ç2 [Q Q Q Q ] I /h. (hl E - Eo 
mfluct=Ls NP PN+ PN NP -. --. h . 

lnv v 

Consequently the fluctuation energy of proton and neutron is indeed given 
by the second of equations (55). 

For the higher order W(n) there is no such simple one-to-one cor­
respondence of intermediate states for neutral and charged interactions. 
Consider e.g. W(2); inthe neutral theory we have for both proton (P) 
and neutron (N) the following chains of intermediate states. (Y 1 and Y 2 

denote the two neutral mesons that come into play). 

p~p+~~p+~+~~p+~~~ 

p~p+~~p+~+~~p+~~~ 

p~p+ y\ ~p~p + Y2~P: 
the same for the neutron. In a charged theory we have. (Y + is a positive. 
Y - a negatilVe meson), 

and 

P-N+ y+~p+ y++ Y-~N+ y+~p, 
P~N+ Y:~P~N+ Yi~P, 

N~P+ Y-~N+ Y-+ Y+~P+ Y-~N, 
N~P+ Y\-~N~P+ Yi~N. 

This diff.erence between charged and neutral theory is due to the restrict­
ions which. in the former. are imposed by charge conservation on the order 
in which positive and negathre mesons are emitted and absorbed. 

Not e 3. On the electromagnetic self-energy W i(1) (e). 

In order to compute this without th,e use of a gauge transformation 
which separates the Coulomb from the dynamic interaction, we have to 
consider the expectancy value of 

-+ -+ 
s = etpt a '1', 

B being the electromagnetic scalar potential. It has been remarked in § 5 
that it is not Iegitimate to consider WW (e), computed in th is way, as the 
limiting case of the Proca-field self-energy for ,,= O. though it would 
give the right result. W(l) (e) has therefore been calculated by quantizing 
the electromagnetic field by means of a method due to FERM I 8). according 
to which the electromagnetic field Lagrangian is chosen in such a way 
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that the canonicaUy conjugated of B is not zero. For particulars we refer 
to a paper by ROSENFELD 12). formula (n) of which is in the following 
indicatoo by (Rn). The necessary equations will be given without proof. 
Apart from a difference in notation and representation. they are identical 
with the correspoooing ones of th-e last cited paper: 

The Lorentz condition 
~ . 

div A + B = o. . . . . . . . (R 12) 

and its time derivative. (R 13). should be considered as accessory con~ 
ditions in the sense explained in § 5. By developing A similar to (15) and 
likewise putting 

-+-+ -+-+ 
B = Z [B+ (k) ei(k X-yt) + B- (k) e-i(k x-..t)]. • • • (R 19) 

we get the operator conditions (not identities) 

B± (k) = A± (0. k) 

Furthermore 

A+ U. k)n-+n+ I = A-U. k)n+ I-+n= Jin (~~ 1) •• 

__ l/n (n
2v
+ 1) . B+ (k)n + 1-+ n = B- (k)n -+ n + I V 

By means of (49) and (51) we then get in the usual way 

~~ ~~ 

_ 2 ~ 1 a Eb a Ej 1-11. 11 E-Eo 
mOuct-e ~ ~ ~ nv 

j=O.I.2 1 P-Po 12 - (E-EoF 

. . (R 23) 

(R 25) 

(R 26) 

The former equation which can also he obtained with M"'LLER' 5 method 7) 

is identical with (40a) with ft = O. The latter is not identical with (42) 
with ft = O. but it is easHy seen that it again yields (44a). cf. the dis~ 
cussion af ter eq. (51). 

Not e 4. Can.onical trans[ormation ~n the scalar theory. 

The field equations 

~ . ~ . 
r=grad Q, A=- Q. div r+ A=,,2 Q- R. R=fs1pt el 11'. 

follow from the Hamiltonian 

H=Hmat - J R Qdv+tJ(~ + .112 +,,2 Q2)dv 
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The statie field equations are 

-+ -+ 
re = grad DO. AO = O. div r o = ,,2 Do - RO. RO = fs 'Pt 'P. 

To separate the statie interaetion. 'We employ a eanonieal transformation 
(24) where now 

K=-J DOAdv. 

The transformation yields 

where the right member is expressed in the new variables. and 

v=- ~ RO(x)RO(x')x(lx-x'ldvdv' ij -+ -+ -+ 

The new field variables satisfy 

-+ • -+. 
r= grad D. A = - D + r. div r + A = ,,2 D. 

By means of these equations. one finds after some ealculation. using 
identities li'ke (36) 

the latter being not identieal with the seeond of equations (55). However. 
bothgive the same result for the f s~fluetuation energy for a partide at 
rest. 
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CHAPTER 11. 

On the theory of the electron. 

Summary. 

§ 1. Introductory remarks on classical theory. - § 2. The situation in 
quantum theory; statement of the problem. - § 3. The quantum electro~ 
magnetic self~energy. - § 4. Self~energy due to vector f~field. - § 5. 
Case of e~ and vector f~field. - § 6. Subtractive vector f~field. - § 7. 
Criticism of the introduction of subtractive fields. - § 8. f~fields of other 
type. - § 9. The universallength. - Appendix: Force on surface element 
of finite electron. 

§ 1. Introouctory remat'ks on classical theory. 

As is weIl known. the MAXWELL-LoRENTZ theory. whicn provides us 
with a successful description of electromagnetic phenomena in the classical 
d~main as long as distances of the order of the "classical electron radius" 
do not come into play. exhibits grave di:fficulties in the small distance 
region. This essentially finas its or,igin in that the theory does not involve 
a consistent model of the electron. which in particular is demonstrated by 
the fact that the electromagnetic self~energy of a point electron is inf.inite. 
In an attempt to remove this difficulty within the framework of classical 
theory. it has recently been suggested by STÜCKELBERG 1) to consider the 
electron to be the ,point source not only of the electromagnetic fjeld. but 
furthermore of a second field of the scalar type. the variables of which 
satisfy an equation of the ,form 

• • (1) 

Thus. although the electron has zero radius. the theory involves a funda~ 
mental length ,,-1. the range of the field. whkh should not exceed an 
order of magnitude of 10-13 cm. so as not to disturb the perfect accordance 
which exists between electromagnetic theory and experiment for ·larger 
distances. . 

The statie field energy of a system of particles interacting through the 
intermediary of such a scalar field is gi'Ven by 

. (2) 

f'lk being the distance between i~th and k~th particIe. The constant f 
determines the strength of the coupling between the particles and the field. 
to which we from now on will refer as f~field. f has the dimensions of a 
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charge, and is expressed in Heaviside units. The static energy of the 
electromagnetic field (e~field) is 

e2 1 -I-
Sn I,k rik 

(3) 

Combining the self~energy terms of (2) and (3), viz. those terms for which 
i = k, it follows that the self. .. energy due to both e~ and f~field has a finite 
value W provitded that 

(4) 

This value then is 

(4a) 

Putting W equal to the rest energy of the electron: 

W=mc2 , (4b) 

one gets 

i.e. one half of theelectron radius; according to this relation, x-1 is of the 
acceptable order of magnitude of 10-13 cm (see above). Thus th ere 
are two fundamental relation's between the constants of this theory: one 
between the charges only, arising fr om the condition of finite self~energy, 
and one between x, m, and e, following from the assumption that the total 
field self~energy for an electron at rest equals c2 times its rest mass. 

Another way of formulating the difficulties inherent in the classical 
Lorentz theory is: the energy momentum tensor Tik of the total system 
should satisfy the relation: oTik/oxk = O. However, this condition is, on 
Maxwell-Lorentz theory, weU known to be incompatible with the presence 
of charged particles in the system. This incompatibility can be overcome by 
adding to the electromagnetic tensor a tensor of other origin in order to 
let the total tensor have zero divergence; furthermore, the additional tensor 
should h'ave zero i4~elements (i =i=- 4) in the system in which the electron 
is at rest *). 

An example of a tensor which satisfies the just mentioned requirem.ents 
is the tensor of internal stresses of POINCARÉ, who, in fact, was the first 
to point out that the solutionof the electron problem might be sought in 
this direction **). 

*) Cf. W. PAULI, Relativitätstheorie, § 63, Teubner 1921; R. BECKER, Theorie der 
Elektrizität, Bd. 11, § 66, Teubner 1933. 
**) Cf. H. POIN~ARÉ, La mécanique nouvelle, Gauthier-Villars 1924; H. A. LoRENTZ. 

Theory ot Elecrrons §§ 180-181. 
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Now the energy~momefi'tum tensor of the f~fielddoes satisfy these 
requirements too: its ii~elements, i =/= i, like those of the energy momentum 
tensor of any field, vanis,h in the rest system, as they ,are the components 
of the "f-Poynting vector", whnle the condition of zero divergence is 
closely connected with the "convergence relation" ! ( i). In order to show 
this, consider ,!'l spherical electron with finite radius rand with uniform 
sllperfici'al charge distrihution silch that the total charges are ,e and f. In 
order to have zero total divergence, it 4s suffictent to show lhat, in the 
rest system of the electron, the forces on a surface element cancel each 
other. In the ,Appen'dix it is shown that this is true if 

e2 = r . g (x r) : g (x r) -+ 1 if r -+ O. • • (-fe) 

Thus (i) expresses the s'tabililty condition in the limit of a point electron. 
Another theory of the same kind .has been proposed by Bopp 2), who 

introduces ,an f~field of the vector type 'With vector (no tensor) inter~ 

action. Instead of (2), we have for the .statie intera~tion in this case 

f2 e-X'tk 
-I--
8n t,k rik • 

In order to obtain a finite result incombination with (3), it is therefore 
neeessary to take die ,H,amil'tonian, or, generally, the energy momentum 
tensor of this field wJth the moinUlS sign, an artifice which leads to sueh 
disagreeahle consequencesas a field energy which is not positive definite. 
This theory again gives rise to the relations (i), (ia), the assumption (ib) 
again is made, while it can be shown that (ie) holds too, cf. also the 
Appendix. 

I't is ,acharaeteristic feature of the LORENTZ ,electron theory as weIl as 
of those of STOCKELBERG and !3oPP, that the equa'tion of motion of the 
electron is derived from the condition that the integral, over a narrow tube 
surrounding the world line of the electron, of the divergence of the 
energy momentum tensor density of the total system vanishes. These 
theories may therefore be ealled ufi'itary - though not in the sense 
of MIE - as the equation of motion is, for given initial conditions 
of the souree funetions,essentially a consequence of the equations 
of the fields. Consequently, the electron mass has to be introduced 
into the theory as a funetion of the field variables, which, in their 
turn, now must be considered as fundions of the kinematical variables pf 
the electron which enter the theory by meansof the sour,ce functions. It 
will he .remembered from 'the LORENTZ theory 'that a convenient definition 
of m is provIded by 

f ~\(O)dV=mc2, 
where ~ik (0) is the energy momentum tensor in the electron rest system. 
As the left member is equal to W, this then justifi.es the definition (ib). 

of 
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§ 2. The situation ~n quantum theory; statement of the problem. 

The present quaIlJtum field theories. based on the ~ssumption of zero 
radius of the elementary particles. likewise give rise to an e~self~energy 
of the electron. which. like the field 8e!lf~energy of any elementary 
par'ticle. turns ou't 'to ,be infinite. but here 'this disturoing 'feature reveals 
itself in a far more complicated way than .in classical theory. This has in 
particular become clear from WElSSKOPP' S investigations 3. 4): Besides the 
patticle having a se1f~energy solely due to its charge. which ils quite 
analogous to whalt is 'called self..energy in classical theory such properties 
which have no classiéal counterparts. as its sp~n . interference effects due 
to the hole theory interpretation of the v~cuum. as weIl ~s typical fluctu~ 
ation effects. orig'inating from the quantiurbion of the fields created by 
the particle. also are intricaltely involved ,in the de'terttnina,tion o.f the total 
quantum field lSelf~energy which turns out to be entirely different from 
its dasskaI counterpar't . In .fact one .may say that the fieM seff~energy of 
the elec,tron is fundamenltaIly a quantum effec't. because by introducing 
the quantum .01 action h there en.ters in .the theory of the electron a new 

quantity; V he which has the same dimensions as the electric charge e but 
which is weIl ,kttown 'to ,he :much larger 'than e. Thus quantum 'theory 
demands a complete revis-ion of the whoJe .self~ene:rgy problem. 

In th is chapter it will be examined. whether the assumption that the 
electron, does. oesides the electromagne'tic field. also create another field 
of short ra,nge. will lead ~ la f~nite Igelf~energy in a relati'Vis'tic quantum 
theory. i.e. whether such a thoory will yieM ronvergence relations • . similar 
to (bult not necessal'Ûly identical with) . (4) . Furthermore. the possibility 
of the establishment. analogous to ('tb) . of arelation involving m. and e 
Jall final outcomes here depending on e only through some power of the 
fine struc'ture constant) wHl be d'is'Cussed. In this con'nectÎ'on a fundamental 
difference between quantum and classical theory must be observed at the 
ou'tlSet: 

In deed. the ,theory which will, b~ out1iDE~d hereafter. is. contr'ary to 
classical theorY. non~unitary: while in classi~l theory the equation of 
motion of the electron represents a secondary feature. because it is in some 
way or other derived from the field equations. its quantum mechanical 
analogue. the wave equation. cannot be obtained from the equation of the 
fields (now also involving certain commutation relations between the field 
variables ). as long as the electron is considered as a point. the coordinates 
of which are taken as quantum variables. On this assumption. the impossibility 
of a unitary treatment has been shown by PRYCE 5) *). Thus. the wave 

.) The main point is that the commutation relations between position and momentum 
coordinates of the electron are incompatible with these of the field variables if one defines 
the electron momentum as integral over space of the field momentum density. Furthermore. 
the spin properties of the electron cannot. as must be required from a really unitary theory. 
solely be derived from the properties of the fields. 
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equation. which involves m. has to be introduced as independent basic 
postulate into the theory. so that no definition a posteriori of m in terms of 
field variablesis possible in the same sense as in classica 1 theory. 

The -non-unitarity of the theory is expressed by the occurrence in the 
HamHton operator H of the '1ota\ sy's'telm of 'electron and fields of a term 
H m whtch invoJ'Ves m explid~y: 

J (he...... \ 
H=Hm + H Seld• + Hcoupling: Hm= 1pt T a\l +e3 me2 )1pdV. 

H m denotes the operator of a .. free" Dirac electron. H BeId. is that part of 
the Hamilton operator which depends only on the field variabks. while 
Hcoupllng involves both 'IJl and the field variables. 

Now the total quantum mechanical self-energy W tot is defined as 

W tot =H=mc2+ W 

the overlining denoting ,the expeC'tancy value for the sta'te in which the 
electron i:s at re'st. and it is an importan't (:onseq~ence of the non...,unitary 
aspect of the theory that the field self-energy Witself will now depend 
on m. Thus. if we assume the charge f to be .eliminated by means of a 
convergence relation. we generally have in a two field theory: 

W = W (~:' m, x) . 
Still, the 'theory might be interpretekl in such a way as to yield an electron 
mass which, similar 'to Ithe !sitt1!é1tion in classical theory is equal to the 't'dtal 
field sdf-energy, viz. by a'ssliming ,the parameter m occurring in H m to 
have a prO'Visorily undetermined 'Value which th en is fixed hy putting the 
final result for 'the Iself-oenergy of an cl~etron at rest' eq.ual ,ta me2: 

W ( ~:' m, x ) = mc2. • (4d) 

Consi'dered iD- this way, (40) 'represents an implicit equation for m from 
which jan eX'pl.'ession of m in Iterms of e2 /he and x can be 'found .). 

I,t h~s been observed ~ connection with ,th.e d~i'c.aIJ. equation (4b), 
that arelation like (4d) can only be maintained, however. if it leads to a 
sensible value of )c. Ta investigate this. we have to insert into (4d) the 
experimental 'Value df mand then to express )C in .terms of e2/hc ;élnd m. 
Now it is shownin § 10 that 

h" W~alg-.mc2 
me 

• (-fe) 

.) The c-number C = mc2 should then he subtracted from H in order that the 
expectancy value of H shall correctly he equal to mc2. Added in proof: A more detailed 
analysis of the relation of the field self-enel!QY of an elementary particIe to its total mass 
wil! he given in a forthcoming paper. The results ohtained there are in agreement with 
the present treatment of considering W as a perturhation compared to mc2 • cf. p. 52. The 
transformation properties of W wil! also he more fully discussed. 
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where a is the fine structure constant. Hence (4d) yields 

1 11 _..!.. 
- ,.... - . e .,..., 10-61 cm. 
" me 

Thus the range of the field ,and, correspon'dingly, the mas's of :the field 
quanta, would he of a quite unfamiliar order of magnitude. 

There i'S. however, an alternative way to ol1tain fl theory involving 0fJje 

main mass con1rihution, 'VÏ!Z. byconsidering the field self~energy to be a 
small ~er'tur'bation compared IwÏJth 'the "mechanicaJ" ma ss m, which implies 
that m can pncticaUy be identif.ied wi'th the experiment;al mass. This can 
be achieved by putting 

e2 

,,-I ,.... 411 mc2 = 2,8.10-u cm, 

for then Wis , according to (4d) - 0,01 mc2• The further discus sion is 
given in § 10, where it is shown that it is not trivial that W can he 
considered as a perturbation. 

More arguments against the unitary treatment and in favour of the method, which will 
be followed hereafter, of treating the field self~energy as a perturbation on the a priori 
fixed mass m, are provided by the results obtained in a subsequent paper on the theory of 
nucleons. There it is found: 

I. A theory of the mass difference of proton and neutron can he given by assuming 
the proton to interact with the f~fleld, too. but only if the range of the Hield is of the 
order ot the classical electron radius. 

2. IE one tries to compensate "'y means of convergence relations the divergences due 
to the interaction of nucleons with meson fields. it turns out that the remaining flnite part 

of the mesic self~energy is ~ Mc2 (M ~ Mneutron ~ Mproton)' whether the unitary 
method is followed or not, for here we have no liberty to dispose ot the magnitude ot the 
field range. which is < h/Mc; Thus the consideration of the field self~energy of the 
electron as a perturbation unifies the connection between field self~energy and mass for 
all Dirac particles. 

Por details we refer to Chapter 111. 

The unitarymetbod wilil·therefore be discarided jan'd we base the further 
c.onsideratioDlS on the per,turhation concept, i.e. on the relation W ~ mc2• 

The more technical aspects of the problems on hand have heen devel~ 
oped in the previous chapter 'which will becited as J. For reasons to be 
explained in § 8 we shall. in this chapter. in particular he dealing with the 
reswts obtained in J on the f~interact.ions; as to -the notations used for 
the various 'typeiS oif (fields and interactionls. the reader is begged to refer 
'to th·e tatble in J, § 1. 

Af ter a short 'survey of the properties of ,the e~self~energy in § 3, the' 
consequences of the introduction, .similar to Bopp's c1assicaI1heory. of a 
"subtradive" f~field of tthe vector 'type 'will be 'discussed a-ccoriding 'to the 
scheme jus~ ou'tlinecL (§ 6); to th4s purpose we will however, first treat 
the "addftive" vector field (§ § 4-5). It 'appeaTs that the suotrac'tive 
vector ttheory can be Ideveloped more completely than theories involving 
f~fields df other t}'IPe, but, as'Previouslymentioned. ft has the dis~ 
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advantage of a .non~definite field energy, the 'consequences of which are 
discuss~din some detail '( § 7). Sincee these are, in quantum theory, even 
more serious than in classical theory, the conception of subtractive field 
has to be discarded, and we turn to the investigation of other than vector 
f~fields (§ 8), whkh leads '1:0 the result that an f~fiePd of :the scalar type 
yields, at anyrate in first approxima'tion,to.finite results; there turns: 
out to be no correspondence between this theory a·nd STÜCKELBERGS 
clalssical formali,s~m outlined in § 1. FinaUy, § 9 isdevoted to a further 
discussion of 'the place of -the universal length ,,-1 within the present 
scheme. 

§ 3. The quantum electromagnetic self~energy. 

An investig.ation df its properties has been made by WEISSKOPF 3. 4 ) 

who arrived ;it 'the folldwing main results: 
a) Hole theory *). The self~energy of any order diverges at most 

10ga'l'ithmicaIly. 
b) One~electron theory. Here no Isuch general statemen~s can be made. 

The first order co\ntribu'tion appears Ito involve aquadratic and a linear 
divergence. 

Furthe'l'mor.e, it 'Was shown in I that 

~ --
WIn) (P) = WIn) VI-pl, (5) 

(cf. I eq. (1 a) ), where from now on we indicate the value of the n-th 
~ ~ 

order self~nergy for a particle with momentu'm p by W :(n) (p) and the 
corresponding quantity for p = 0 hy Wen). In particular '(5) also applies 
to the e~self~nergy W~n). 

One may ask why the factor (1 + '112/3). familiar from classIcal theoliY does not occur 
in the transformatlon formula for W t : this is just because the classical theory, contrary to 
quantum theory. is unitary, i.e. the energ,y momentum tensor density governing the 
behaviour of the total system of the electron and its field is given by 

(Fik is the e-field), which does not involve the dynamical electron variables explIdtly, 
and whlch, of course. does not contain the (electromagnetic) mass of the electron at all. 
This quantiW, it will be remembered, is first introduced into the theory by the definition 

r\(o) J ~4(O)dV=mc2. 
*) As weil known. the concepts of hole theoliY lead to a non-linear electrodynamics 

of the vacuum. This is expressed by the occurrence of terms in the Hamiltonlan being 
non-linear in the potentials and f.ield strengths. (the terms H2. Hs and Hf, of 
HEISENBERG 6) ). These terms do not give rise to electron self-energy contributions, because 
their expectancy value for the states "vac ± I" is the same as that for "vac", as they do 
not depend on the occupation numbers of the electron states. 
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Supposing the electron to move in the l-direction. the factor ( 1 + {P13) is then obtained 
Erom the weil known Eormula . 

and Erom symmetry considerations. noting that the trace of ~Ik vanishes. 

§ 4. Self-energy due to vector (-field. 

Consider now a par'ticle with spin Y2 fwhich we Iassume to be the (point) 
source of·a neutral short range field of the vector type. the variables of 
which satisfy a wave equation of the form (1). ("neutral vector meson 
field" ) . We take the four-vector source function to be proportional to a 
constant ( which represents the corresponding "charge" of the particle. IE 
the universa 1 length. thus introduced. tends to infinity. we ob ta in the 
e-case if f = e. 

Now it was shown in I. § 7c *) that the (-self-energy diverges at most 
logarithmically ~o éVlY order of approxima'tion and that the Idilvergent term 
is independent of x. This means thàt the divergence occurring in the 
n-th order contribution due to the (-field is identical with that of the 
e-field provided th at e2n = [2n. Consequently, a 'Su:fficienit ~o,pdj.tion for 
the [."divergence,s O'f all orders to be identical with the corresponding 
e-divergences is 

• (6) 

As (5) also holds for !the [ ... field, it follows th at the ~ondition (6). as 
expressing the identity of e- and [-divergences. is relativi'Stically invariant. 

§ 5. Case of e- and vector [-field. 

Fram these consi'clerations we i,nfer that. if an 'electron would be the 
source of the e- as weil as of the vector (-field. its self-energy of n-th 
order would. always in the positon theory. contain a logarithmically 
divergenlt (multiple) integral whkh Stapids multiplied with an (e2n + (2 n ). 

the factor an not depending on x nor on ~ and [ . This integraI. hdWever. 
forms only a part of the tot al n-th order divergence which now occurs. 
In fact, as the n-th order contribution is now generally brought about by 
meaDlS of virtual process~s in whïch p phatons and q [-quanta come inlto 
play, p + q = n, p = 0, 1, ... . n, there must, more generally. occur 
divergent integra:ls ...... anm;e 2(n - m) f2m, m = 0, ... , n. From the reasoning of 
I. § 7, it 'will be immediately clear th at these integrals will at most diverg.e 
logarithmically, while IaH an m will he independent of x. Furthermore, the 
relative mag,nitude O'f the an m for va,rying m !bu't constant n depends 'only 
on the rela'tive magnitude df the domains in momentum space involved. 

*) In loc. dt. Iv corresponds with the lof this section. 
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Taking all this into account, it is easily seen .) that the tatal logarithmic 
divergence of n-th order stands multiplied with an (e2 + (2) n. 

§ 6. Subtractive vector [~field. 

We noW have to go one step f~.lrther to atta.in a theory of the Dirac 
electron which is in some rE1Spects the quantum mechanic.al analogue of 
'the classical linear theory of the electro:n proposed by Bopp 2): let u's 
consider the electron, besides of 'the e~field, to oe tne sourc.e of a "sub~ 
tractive" [~field, that is to say, we take th at part of the energy momentum 
teJllSor (operator) of the 'tatal system which refers 'to tne [~field, and to 
the interaction of the [ ... field with the elec'tion field, with the minus sign. 
Obviously thi:s wH} alter nothing df 'what has been said abou't the type of 
the iclivergences, th is .change makes itself f.elt only with respect to the 
coef'ficient with which the integral stands multiplied. We shdW tha't th is 
coefficient becomes 

Bn (e2_f2)n. 

The fundamental difference with the case of the "additive" [~field 
consists in the different domains of the values which the energies of the 

. f~quanta may take in the intermedia te states. Indeed these values range 
from he" to + ex> for the case of the additive field , but from - he" to 
- ex> for the suhtractive lfield. Now, the logarithmiC' Iclivergent integml 
which s'taonds proportional with e2(n- mlf2m is, in the additivecase, 

CD CD CD GD CD 

...wJdPIJdP2 •.. J dPn-mJdq, •.• j"dqm , 
PI P2 pn-m ql qm 

(7) 

-+ 
the ql denoting absolute values of the moment a ql of 'the [~uanta. As 
q~ = tV c2 - h2,,2, where ti is the [...quantum energy: 

Thu.s the integral ftzJ qï l dql may be replaced Iby ftzJrp(fddfl, where rp(fl) 

.) The argument runs as follows: Consider the contribution to the divergent term, due 
to e~interaction only. of the part of momentum space which lies between Pl and Pl + dPl, 
... , Pn + dPn. This can be written as 

const. e2n • dpi ••. dpi .•• dpn. 
PI PI pn 

Replace the e~contribution to the i-th shell by the corresponding f~contribution. The 
contribution to the divergent term is now - e2 n- 2p, but is, fOll the rest, identical with the 

former one. The replacement can be performed in (~) ways, the relative magnitude of 

the total contribution - e2n- 2P as compared to that - e2 n is thus (~). Now replace the 
contribution to two shells by f~contributions. the factoll of relative magnitude now is 

(~); etc. 
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is an odd function. The corresponding integral i.n the subtractive case will 
then be I-a> cp (Ei ) dEi = - t'cp'(u ) dEi. The integral (7) therefore = (-1) m 

times the integral for the iSubtractive case 'whieh proves 'our assumption. 
Consequently the co:ndition (6) is sutfficient to obtain finite results in 

every approximation .). From what has heen said before on the invariance 
of the identity between e- and (-divergencqs, it follows that the "con­
vergence cönditioo" (6) is relati'vistically invariant. 

§ 7. Criticism of the ~ntroduction of subtractive fidds. 

A definitely unsatisfactory feature of the aJbove theory lies in the rather 
artifieial way ~ which the minus sign has to be introeDuced with regard 
to the {-HeJld energy. The free { ... field has consequently to be considered 
a:s a superposi'tiOlll of plane waves wUh which correspond quanta of 
negative energy. An electron therefore has a chlafllce of emitting a negative 
{-quantum in going through a statie Held ("{-bremsstrahlung"), thereby 
passing itself to a state of higher energy. Though the tatal f-radiation 
probabili'ty can be estimated to oe <smal1. compared to that for e-radiation, 
if x is large, the relative number of processes in which an electron emits 
an f-quantum th.'us being very much leSiS than for ordinary bremsstrahlung. 
it is hard to conceive how such (-effects should oe pos'silble at all. It is 
true that, as shown by Bopp 2). they do not occur in the case of a classical 
electron describing a closed orbi't: in such a case, the work dOllle in over­
coming e- aod {-rtadiation dampi.ng is in fact always positive. But th is 
result. however interesting. is by no meams sufficient to remove the 
objection. 

Pair formation and annihilation involving [-quanta instead of photons 
are impossible because these processes require a positive amount of energy 
to be absorbed or emitted. Still. jf one assumes the negative energy levels 
to be (nearly all) occupied, as in the hole theory, there is a possibility for 
the creation of pairs which has no analogue in the e-case and whieh presents 
new difficulties: if a statie field is present, an electron of negative energy 
may be scattered by it in emitting a negative {-quantum, the energy 
of which may be such that: the electron has positive energy in its fin al 
state. This process thus results in the formation of a pair as well as of 
an [-quantum (its inverse can therefore he ignored, bei1ng amorebody 
problem). Consequently. the infinite distribution of negative energy 
electrOlIls would become unstable in the pre'Sence of statie fields, however 
slowly varying. The theory sketched in §§ 6--7 must therefore be con­
sidered as to be inconsistent with the very existence of an infjnite electron 
distribution in vacuum; we thus discard the idea of substractive fjelds. 

§ 8. [-fjelds of otllf!t type. 

Another way of solving the self-energy difficulties in position theory 
which might lead to f~nite results without the 'device of a sulbtractive field. 

*) This also holds if the multiple divergent integraI (7) would be less than n·fold. 



ON THE THEORY OF ELEMENTARY PARTICLES 57 

suggests itseH by considering the introduction of an (-field of other type. 
ln fact, it was shown in I, § 7d th at all (-seH-energies diverge at most 
logarithmically to any order of approximation and that the divergent term 
il'l independent of x. Consequently, other (-fields might compensate the 
divergences due to the e-field and that in a relativistically invaria,nt way 
on account of (5). It cannot be ascertained without explicit . calculation, 
though, whether the corresponding "convergence relations" have any 
physical meaning. Indeed the condition for convergence of the n-th 
approximation wil] have the form 

• (8) 

In order to be cOlllsistent, a theory of this kind imposes two conditions on 
the an: 

1. They should be independent of n. 

2. an should he positive. 

A general criterion for these conditions to be sati'sfied would require 
the knowledge of the connections between the e-field and the (-fields of 
various types, with regard to the coefficients of their respective logarithmic 
divergences of any order: on account of their x-indepenldence, it wo'U:ld be 
sufficient to establish such connections between the wrious "photon" 
fields. I have ndt succeeded in arriving all: general results. 

On the other hand, one can, as an orientation, perform explicit calcula­
tions to a certain approximation. This might, in any case, be instructive 
with regard to (-fields which have to be excluded. Such computations 
have been performed in I for the first order approximation of the seH­
~nergy. Let us ofirst consider the (,,-oase. From I, tahle 3, it is seen that 
the log (,,-divergence compensates the log e-divergence if 

(9) 

The factor i provides a stdking example for the fact that this theory 
stands in no correspondence with STÜCKELBERO'S classical theory: In the 
latter, the self-energy due to e- and scalar (-field for a point electron at 
rest is fini te, as we have seen in § 1, eq. (4), if e2 = (2. 

It would be of great iIllterest to know whether this factor i also occurs 
in the higher or:der approximations, i.e. whether the log divergence in 
n-th approximation stands multiplied with (e2 - (2/2) n. 

The other (-fields, envIsaged here, yield, according to I, table 3: 

{p.-case, (pseudovector theory with pseudovector interaction): al = 5/3, 

(ps-case, (pseudoscalar " pseudoscalar ): al = -1/6. 

Thus, while the second one h'as to be discarded, the Jirst one also may 
be taken, at all events in first approximation, to obtain convergence. 
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It has been shown in I. th at the self·energy -due to u·interactions 
involves, already in first approximation, a qu and a log divergence (on 
hole theory). As the e..-self-energy has a log divergence only, thi'S means 
that, in order to get a finite self-energy in first approximation, it would 
he ne<:essary to introduce at least two u-fields; on account of its greater 
intricateness we therefore discard the possibility of introducing simultane· 
ously various u-fields to eJllSure convergence. 

Finally, one may inquire into the possibility of estahlishing convergence 
relations on one-electron theory: though we have no knowledge of the 
divergence properties of the higher order approximations in this case, it 
might anyhow be interesting to find out wh ether convergence in first 
apploximation is possible. That th is is not the case can be found from a 
closer examination of I. tables 1 a,nd 2, however, from which it is seen, on 
one-electron theory: first, that W(I) and Wlfll) (the sum of which is equal 

tOY uel 

to WW) have, for given type of field and interaction, divergences of different 
kinds which means that we have to look for combinations leading to 
compensations of the divergences of W(1) 1 and of Wlfll) separately; secondly 

t OY uel 

that all quadratic divergences occurring in the various WR~ct have positive 
sign. As such a divergence especially occurs in the e-ase, it is impossible to 
establish, on one particle theory, convergence relations for the ele<:tron, 
whatever combination of fields is chosen. 

Thus we arrive 'at the conclusion that only with a scalar {-Jield does 
one, at any rate in first approximation, ob ta in a fini te self-energy on hole 
theory, but not on one-electron theory. 

§ 9. The unJversal length. 

The further physical implications of all "two field theories" essentially 
depend on the magnitude of ". Apart from the condition ,,-1';;5 10-13 cm, 
which has to be required because the pure e-theory at 'all events is known 
to hold well if only tdistances large compared with the "classical electron 
radius" are involved, the theory leaves the value of " undetermined: the 
requirement of fini te seH-energy solely leads to arelation between the 
charges. In order to verify wh ether, as already asserted in § 2, W can 
indeed be considered as a perturbation if "'" 1013 cm-1, we have to 
compute W in terms of the 'fine structure constant, " and m. 

But here we are faced with a tdiHiculty: W is represented hy an infinite 
series and we do not dispose of a method for g·enerally determining its 
n-th term, so that, even apart fr om the still open question, whether (9) 
serves to cancel the higher order divergences, we cannot ascertain the 
convergence of the series as a whoIe. However, we will for the moment 
make the perhaps too optimistic assumption that the first order cantribution 
roughly determines the order of magnitude of the total self-energy: 

(10) 
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From the expressions given in I. table I, one qbtains af ter some simple 
tran:sformations (the charges have been expressed in Heaviside units), 

W~!=-D 

with 

e2 3e2 . P+VP2+m2e2 
16 2 ft .me2

: D=-s 2"'- .hmlg . me? n e :n; ne J>.+<D me 

f! . me? [1-;2-(6E2 _;1) 19; - (11) 
32:n;2ftc 

_4y4~ C (y2,;) - (1- ~ ) C (y2.t) ~ 1 
;= ftx 

me 

Here y is \understood to be 2: 0, i.e. ; 2: 2: the principal value integrals 
occur because, if ; >- 2, there is a particular intermedia te state with 
negative energy, for which the energy denominator in the well known 
formula for the second order energy perturbation becomes zero: the 
momentum of the electron in this state is just y.me. The condition ; >- 2 
means that the rest~energy of the f~quantum should at least be 2 mc2 , 

the breadth of the energy zone, which separates positive and negative 
electron levels: cf. I. § ib. Af ter some transformations, the finite part of 
W~! can be written as 

On developing the logarithm one th en finds 

which, 'accol"ding to (9) , is ~ 0,01 5 mc2 if x.- 1013 cm-1 • This is the 
result q'uoted and partly discussed in § 2. In oDder to examine wh ether the 
occurrence of ,the 19 ;~term in (13) is specific for the scalar field, we have 
computed the finite parts of the self~energies due to the other f~inter~ 
actions. The results are: 
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ps. vector- I!JVhe . me2 [1-e+(~1-8~2) 19 ~ + Y .W-6) 19 X] 

ps.scalar - 32~s he . me2 [1-e + (~1_ 2e) 19 ~ + Y ~2 19 X ] 

where the argument X of the logarithm is the same as that of the last term 
of (12). Developing gives 

scalar t 
vector 3f2 -1 

W{J)"", 

8n2hc 
. mc2 .lg ~. (14} 

ps. vector t 
ps. scalar -t 

Thus in all cases the 19 ~-term is the principal term; the same has been 
verified to be the case for g-interactions. Another feature oJ the regularities 
of the self-energies on hole theory is demonstrated by comparing the 
coefficients behind the brace with the constants al of § 9: the ratio of the 
finite parts of the self-energy is the same as that of the corresponding 
[2 to e2 in the convergence relations. 

We should like to point out that it is by no means trivia 1 that the self­
energy can be considered as a small perturbation for the conveniently 
chosen order of magnitude of ". For if we would have taken " to be, say, 
-- 1020 cm-1 , W would have been"" 0,1 mc2, which is alfl~lady a very 
inconvenient value, as it would necessitateus to distinguish quantitatively 
betweeri experimental mass and m. In fact, only the two extremely opposite 
points of view: either all mass is due to field self-energy, or the Jatter is 
small, lead to a theory involving only one mass characteristic for the 
electron itself, as has alreélldy been pointed out in § 2. It seems therefore 
gratifying th at the "perturbation method" is characterized hy e2/4n mc2 

being rdughly the upper limit for ,,-1, while it is at the same time its lower 
limit on the g,eneral physical grounds discussed in § 1, so that we may 
state: a consistent theory in which the self-energy can be considered as a 
small perturhation compared with mc2 is possible iE. and only iE. ,,-1 has 
roughly the same order of magnitude as the classical electron radius. 

The results obtained can therefore he summarized as follows: The 
electron has, at all events in first approximation, a finite self-energy if we 
assume it to he the source of a scalar field of short range, beside:s the 
electromagnetic field; the higher order divergences of the [-field are, like 
those due to the e-field, all of logarithmic type, But we have not heen ahle 
to prove that these divergences generally compensate each other. The 
theory is non-unitary in the sense expounded in § 2, the field self-energy 
is considered as a small perturbation, which is possible iJ the range of the 
field, which is the new fundamental constant of the theory, is chosen to be 
roughly of the same order as the classical electron radius. Further, this 
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theory does not exhibit any correspondence with a theory in which the 
self~energy singularities are eliminated by means of classica I considerations 
and where the scheme thus obtained is subsequently subjected to quantiza~ 
tion, hecause the two fundamental problems to which the present theory 
gives rise: the determination of a "convergence condition" and of arelation 
between m, " and the fine structure constant, require for their solution 
th at one -from the outset shall take into account the interaction of the 
electron with the infi.nite vacdum 'distribution of electrons and with the 
e~ and f~"zero fields", 

Appendix. 

Force on surfaqe element of finite el~tron in a classical picture, 

We take 

~ _ 0 
Xl = X, X2 = y, Xl = Z, X4 = - ct: U,. = Ox,.· 

The field equations of the scalar theory are 

rp. = - 0,. D, 0,. r,. = ,,2 D-R, 

The first set defines the f~field vector as four~gradient of the scalar 
potential Q, Ris the "source", The energy momentum tensor is 

lts divergence, the space components of which represent the f~force 
density, is 

The field equations of the vector field of short range are 

qJp is the four~vector potential. sp is the "charge~current density", The 
energy momenèum tensor is 

hence 

O~ 5tI'~ = F"~ s~, 

The second member of th is equation does not explicitly depend on " and 
is therefore also obtained on e~theory, The components of the total force 
density therefore are 

on STÜCKELBERO's theory: Fr;, s~)-r,. R I 
I-' = 1. 2, 3, 

B ' h F"~ (0) F"~ (x) on OPP s t eory: (0) s~ - (x) $~ 
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The quantities marked with (0) rder to the e-field (X = 0), thase with 
(x) to the subtractive vector [-field. The difference in re1ative sig,n of e­
and [-force density in Bopp's theory occurs because there the [-energy 
momentum tensor is to be subtracted fr om the e-tensor. 

In the case of a charge distribution which is at rest, these expressions 
become, in obvious vector notation 

with 

...... ... 
(>(o)E(o)- rR , r=-grad D, 
... ... ... 

(>(0) E(o) - (>(x) E(x) , E = - grad V. 

l:l D - ,,2D= - R', 

l:l V(x) - ,,2 V(x) = - (>(x). 

l:l VlO) = - (>(0). 

R' is the function in which R goes over -for zero velocity. Taking a spherical 
electron with fini te radius rand with uniform superficial charge density 
(>(0) = e/4:n:r2 , the e-force on a surface element dO is, taking for the field 
strength at the surface the mean of its outer and inner value: 

... 
1 er e 

"2 . "nr3 • 4nr . dO. 

Supposing further the electron to have a uniform superficial [-charge 
density [/4:n:r2, due to which it is the source of either scalar or subtractive 
vector [-field, we have for D (scalar case) as weIl as for V(x) (vector case) 
in a point at a distance e from the electron centre 

f e-xr sinh x E f e-x~ sinh "r 
A'-' E .E~r:A·~· .E~r. "J: n r" "J: :n: ç "r 

So the corresponding field strengths are 

] 
e-xr 

cosh"E -r-' E < r 
... 

JL [1 + l:] -x~ sinh "r l: > 
A l:3 "ç e. • ç r. 
"J:nç "r 

Therefore the total force on a Surface element of the electron becomes. in 
STÜCKELBERO's as weIl as in Bopp's theory 

... 
1 r dO 2 

"2 . 4nr3 • 4nr Ie -(2 g ("r)l 
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with 

This is the result quoted in § 1. 
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CHAPTER 111. 

On the self-energy of nucleons and the theory of nuclear forces. 

Summary. 

§ 1. Introduction. - § 2. Statement of tlhe pmblem. - § 3. The proton­
neutron convergence relations: their connection with the electron con­
vergence relation. - § 4. The mass difference of proton and -neutron. -
§ 5. The nucleon convergence relations. - § 6. l-ntroduction of the F-field. 
- § 7. The magnitude of the mesic self-energy. - § 8. Concluding remarks. 

§ 1. Introduction. 

In Chapter I (referred to as I in the following). the self-energy pro­
perties have been examined of particles with spin Y2 which are the source 
of one or more neutral or charged fields of either scalar (s). vector (v). 
pseudovector (pv) or pseudoscalar (ps) type. For the present purposes. 
some of the main results obtained in I will here be summarized. 

a) The self-energy W due to an aroitrary field and to either f- or g­
interaction (for this n_otation see I. § 1). can be developed in an i-nfinite 
series with respect to a dimensionless consta-nt "( charge) 2 Inc". Calling 
the n-th term in the development for a particle with momentum 
~ ~ 

p W(n)(p). we have (cf. I. § 1) 

~ <Xl ~ ~ --

W(p)=~W(n)(p); W(n) (P)= w(n)Vl-fJ2. . (1) 
n=1 

W(n) referring to zero momentnm. (1) is true in the "one particle theory" 
as weIl as in the "hole theory" interpretation of the negative energy levels 
of the spin Y2 particle concerned. According to (1). the divergence pro­
perties of the self-energy can uniquely be found from the case that the 
particle is at rest; in what will follow we can therefore. without loss of 

~ 

ge-nerality. confine ourselves to the problem for p = O. 
Whereas (1) is independent of the alternative points of view which may 

be held with regard to the occupation of the vacuum levels. the further 
general results. to the survey of which we now turn. only apply to hole 
theory. As this case will mai-nly be dealt with in the present chapter. we 
wilt if not explicitly stated otherwise. understand by W(n) the n-th order 
self-energy under the assumption that in vacuum all negative energy levels 
are completely occupied. 

b) It has been follond in I. § 7. that. whether the interaction concerned 
be of the neutral or the charged type. or a mixture of both. all [-seH-
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energies diverge at most logarithmically to any order of approximation, 
while the situation with respect ot W~I is fundamentally more complicated. 
This finds its origin in that the "g~sources" are proportional to a coupling 
constant which, unlike in the f~case where this constant has the dimensions 
of a charge ,( called f), here has the dimensions of charge (g) times length. 
In particular it was Jound that, generally, W(ll exhibits aquadratic and a g , 
logarithmic divergence. Furthermore, if ho th f~ an'd g~interaction of the 
same field type are present, there occur, in the v~ and ps~case, self~energy 
terms proportional to fg, which also diverge quadratically and logat"ithmi~ 
cally. Finally, it has been found in I that terms of direct g~interaction lead 
to self~energy contributions which, in first approximation, again yield 
divergences of the two above mentioned types. For thjs notion of "direct 
self~energy" cf. esp. I. § 6, 4°. 

c) It has been explained in Chapter 11, (further ~n referred to as 11) 
how the property of W~I to divergeat most logarithmically, irrespective of 
the field type, may lead to a finite self-energy of the electron on the 
assumption that this particIe creates, besides the electromagnetic (e~) fiel'd, 
another, or in principle more than one other. f~field of short range, pro~ 
vided that a certainrelaHvistically invariant relation between e and the 
charges f. which we call convergence relation, can be satisfied. As this 
relation generally is of the form 

• • (2) 

{n) denoting ihe order of W(n), we may state the conditions for (2) to be 
satisfied as follows: first, the coefficients of the various powers of e, ... f ps 

should be such as to allow real values for e, ... f ps *); secondly, the 
relations (2) for n = 1, 2, ... should be mutually compatible. IE, as has 
been done in 11. only one f~field i:s introduced hesides the e~field, F(1) 
becomes (cf. 11 § 8) 

e2 + al ft = 0, i = s, v, pv or ps . . (3) 

and the requirements, just mentioned, now imply: first, ai < 0; secon:clly, 
(3) substituted in F(n), n> I, should yield an identity. Whereas ai can 
be determined by calculating explicitly the first order self~energy concerned, 
which led to the result th at ai < 0 if i = s, pv and ai > 0 if i = v, ps, the 
investigation of the second condition is hampered by the difficulty th at 
we do not di:spose of a method enahling us. without the impracticable 
computation of W(n) for any n, by means of perturbation theory, to find 
an explicit expression for the coefficient of its divergent part. Thus we 
had to content ourselves with the establishment of (3), and to leave open 
the question, whether (3) with ai < 0 suffices to eliminate divergence of 
higher order. 

*) F(n) is a homogeneous polynomial in the charges of degree 2n. 

5 
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d) It is an essential feature of the present quantum field theories (cf. 
11, § 2), that they are necessarily non-unitary, i.e. that the wave equatiön 
of the particles cannot be obtained from the equations governing the 
behaviour of the fields they create. It has been shown in 11 how, conse­
quently, W depends, besides on e2/hc and [2/flc (the latter being eliminabie 
by (3) in thecase of one [-field) and on the [-field range, also on the mass 
parameter M occurring in the Dirac equation. It was th en remarked that, 
in principle, it is possible to give a unitary treatment of the electron mass 
m, viz. by considering it to be a priori undetermined and then to he fixed 
by the implicit equation W = mc2 • However, arguments were given in 11, 
§ 2 for the inapplicability of this method whichwas therefore discaided in 
favour of the alternative way of treating the field self-energy, viz. as a 
small perturbation compared to mc2 , m _being the mass of the electron as 
occurring in the Dirac equation. This appeared possible only if the range 
of the [-field is roughly of the same order as the classical electron radius, 
cf. 11, § 9. 

,§ 2. Statement of the problem. 

It is the aiIIL of the present chapter to discuss the self-energy problem 
for the "heavy Dirac particles": proton and neutron on similar lines as has 
been done for the electron *). 

It is weIl known how the idea, originally put forward by HEISENBERG 1 ) 

that protons and neutrons are the sole constituents of the atpmic nucleus, 
has led to a rapi:d advance of our theoretical 'knowledge concerning nuclear 
physics. In order to understand such fundamental features as the (J­
transitions and the exchange properties of the neutron proton interaction, 
it is, on the proton-neutron picture of the nucleus, convenient to consider 
proton and neutron as different states, with respect to an e-charge coor­
dinate, of one and the same particIe. now generally called nucleon. To this 
concept, which at present underlies all considerations within the nuclear 
domain, we willin this paper refer as "nucleon concept". 

The theory of nuclear forces, af ter passing through a half-phenomeno­
logical stage, was founded on the concept of interaction through the inter­
mediary of fjelds by the remaflk of YUKAWA 2) that a complex field (now 
called meson fieM) satisfying the relativistic Schrödinger-Gordon 
equation leads to a short range exchange force between nucleons. Since 
1938 the various a priori possible 3) meson field theories have been the 
subject of many detailed investigations. Though the question which meson 
field or combination of fields is the most suitable to account, if possible, 

*) As the wave function of the proton satisfies tbe Dirac equation, tbls Implies, in tbe 
hole theory interpretation, the existence of its anti-particle. The anti-proton has never 
been observed experimentally, but this in itself cannot be considered as a serious argument 
against the assumption that the proton is a spin Y2 particIe, as, on account of its large 
ma ss, the cross-section for proton-anti-proton pair formation by a photon (of energy 
;;:: 1,8 . 109 eV) passing through matter is very small compared to the probability for 
negaton-positon formation by a photon of the same energy. 
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for all phenomena of short range nuclear interaction, as well as to establish 
the generally assumed connection with the proper ties of the penetrating 
component -of cosmic radiation, is far from settled 4), the basic idea of 
employing meson fields for th is purpose anyhow seems fertile. It i~, 
however, beyond the present purposes to enter into a detaHed discussion 
of the merits and defects of the various current meson theories of nuclear 
forces. 

We can thus, proceeding on similar lines as in 11, confront these theories 
with the self-energy problem of the nucleons: Indeed, we have found in 

the case of the electron that, with certain èombinations of fields of the 
types s, ... , ps correspond, at all events in first approximértion, fini te self­
energies of the particIe by which they are created. The assumption of a 
short range field :being produced by the electron constitutes an essential 
new feature within the framework of the present picture of elementary 
particles, but in the nucleon case the situation is different as there the 
existence of one or more short range fields has already been postulated 
in order to account for the nuclear -forces. Thus, the idea of attaining finite 
self-energies b)/' means of suitable comhinations of fields naturally leads 
one to inquire whether any of the (mixtures of) meson fields, may, besides 
describing more or less satisfactorily the ,nuclear intera~tion phenomena, 
moreover serve to obtain finite nucleon self-energies. From th is point of 
view we will discuss the current meson theories of nuclear forces in 
section 5; however one remar:k of general order may already here be made 
on this subject: 

Whereas we have already seen in connection with (2) that the conver­
gence relations of various order, for a given type of divergence, should 
be mutually compatible, we meet in the case of g-self-energies with a new 
feature: accordj.ng to I, § 7e, every new approximation will generally 
involve convergence relations for divergences of new order, or, in other 
words, the number of convergence relations will increase the further the 
approximation is pushed. Therefore, the compatibility must now 'he requirro 
of the convergence relations for the divergences of various types. On 
account of the difficulties referred to in § I, it does, with the present 
methods, not seem feasible to attain to decisive conclusions on this question. 
Anyhow, weshaIl con fine ourselves in this chapter to the consideration of 
the first order convergence relations, thereby making use of the explicit 
expressions for the first order self-energies obtained in I *). 

*) Due to their interaction with the electron-neutrino field, the nucleons also have an 
" electron-neutrino self-energy·'.Whether this interaction is "direct" or brought about 
through the intermediar,y of mesons, the lowest self-energy contribution is of the second 
order, viz. proportional to the square of the "electron-neutrino charge" times the square 
of the mesic charge. Thus the first order convergence relations do not involve the electron­
neutrino charges of the nucleons. As these quantities are very small compared to the mesk 
charges, it is, for the rest, improbabIe that this self-energ,y will, in any theory, play an 
essential röle, as regards convergence as weU as their contribution to a fiotte nucleon 
self-energy. 
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Before we are able to turn to the problem of the connection between 
theories of nuclear forces a·nd the concept of convergence relations, another 
problem necessarily has to be tackled first, however: in fact, the nucleon 
concept, in its form enunciated above is incompatible with the very notion 
of convergence relations. This can be seen as follows: 

As we know (see I) that the e-self-energy leads to a log divergence in 
first approximation, there is certainly arelation 

which has to he fulfilled to ensure convergence of the first order proton 
self-energy *); X denotes the totality of terms arising from the log diver­
gences due to the proton creating a certain set of meson fields. Thus X 
depends on the particular set of fields chosen; but whatever this choice 
may be, there will be, as a consequence of the previously given form of the 
nucleon concept, a corresponding relation 

x=o, 
necessary .) to let the first order neutron self-energy be convergent. And 
so neutron and proton relation are clearly incompatible. Thus, if we assume 
that the finiteness of the proton and neutron self-energy is hrought about 
by convergence relations, the nucleon concept must be restated in the 
following way: 

Proton and neutron are, with respect to the electric charge and 
at least one other parameter, different states of one and the same 
particle. 

Therefore, the present problem can be stated more precisely as follows: 
a) The compatibility has to he required of the convergence relations 

for proton and neutron. In § 3 it is shown that this can he fulfilled by 
assuming the proton to be the source of the same scalar [-field as supposed 
in 11 to he created by the electron. 

p) Is it possible, once the compatibility mentioned in a has been 
established, to choose a mixture of meson fjelds responsible for nuclear 
illteraction in such a way that the mesic nucleon charges satisfy certain 
convergence relations, while, moreover, the fields considered allow of the 
interpretation of - to put it mildly - areasonabIe number of nuclear and 
cbsmic ray phenomena? It may be noted th at, if such a set of fields can be 
found, the existence of convergence relations leads to a reduction of the 
number of constants of the theory •• ) . 

*) This relation is necessary but not suH.icient, as we shall see in § 3. 
**) It should be remarked at the outset that th ere is at least one discrepancy between 

current theory and experiment on which the present consideI'ations can throw no new 
light: as has been pointed out by YUKAWA 6), it is inconceivable th at the experimentally 
found order of magnitude of the cross-section for the scattering of fast mesons b,y nucleons 
can be accounted for by the assumption that it is some mixture of meson fields and not a 
single one which is responsibIe for nuclear interaction. 
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The total Hamiltonian governing the behaviour of the nucleons and 
their surrou·nding fields can be written as 

H = H mat + H Se1d• + Hcoupllng 

HOoldl being that part of H which only involves variables of the fields 
created by the nucleons, while HcoupUng depends both on the nucleon and on 
the fieId variables. For H mat we take 

J (hC~~ ) 
H mat = 1jJt T a \l + {J Mc2 1jJ dv. 

Thus we let only one "mechanica}" mass Menter explicitly in H, i.e. 
we do not introduce different mechanica I masses for neutron and proton. 
This departure from ·the customary treatment finds its justification' in the 
following fact: the effective mass Mp for proton (MN for neutron) is now 
defined as the expectancy value of H, for the proton (neutron) state of 
the particIe present, in terms of the mechanical mass: 

Mpc2 = {Mc2 + Wp) 

MNc2={Mc2 + WN), but unequal to Mp c2, 

due to the fact that W pand W N, the expectancy values of Hcoupung for 
the proton a·nd neutron state respectively, are not identical. Now it will 
be shown in § 4 that 6, the empirical mass difference of proton and neutron 
can, to sign as weIl as to order of magnitude, just be accounted for by 
the difference of W pand W N (and that in first approximation indepen~ 
dently of the particular choice of meson fields responsible for nuclear 
interaction ). It will be clear beforehand that the scalar f~field created by 
proton as weIl as by electron (see above) plays into this resuIt; indeed 
it appears from the considerations of § 4 th at 6 is equal to about minus 
two electron masses if the range of the f~field has, not roughly as was 
already implied hy the results of 11. § 9, but rather precisely the order of 
magnitude of the classical electron radius. These results therefore corro~ 
borate the self~energy treatment of the electron given in 11, the whole 
scheme shows a satisfactory consistency. 

Furthermore, it will appear in § 7 that the self~energy due to the meson 
fieJds cannot be adapted to be made either large o~ small - as could a 
priori be done for the f~field self~energy of the electron - by suitably 
fixing the ranges I/XI of the fields. Af ter having eliminated the divergent 
parts by means of the convergence relations, we have, in fact, to insert 
into the remaining finite part the experimentaIly :known order of magnitude 
of the Xi and to see what comes out. Now it appears that in all cases, for 
fl~ as weIl as for gl~interactions, the resuIt is th at the contribution is 
< Mc2• 

Thus, while with regard to the magnitude of the self~nergy one could, -
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in the electron case. consider a priori two possibilities: either the electron 
mass is wholly due to the self-energy. or the latter is a small perturbation 
compared to the former. in the ,nucleon case the situation is different: here 
the self-energy simply turns out to be a perturbation. This means that 
the mechanical mass is practically equal to the experimental proton (and 
neutron) mass. 

As regaI'ds nuclear interaction problems. the occurrence in H mat of M 
instead of both Mp an'd M N does not lead to any material modification. Fot 
it means that the most convenient system in e.g. the de~teron problem is 
that in which the centre of gravity of the mechanical masses is at test. But 
this system is. for all means and purposes, identical with the actual centre 
of gravity system; in fact, calculations are usually performed in the first 
mentioned system. 

We now turn to a general discussion of the compatibility of proton a·nd 
neutron convergence relations (problem a), af ter which in § 4 an expression 
for the mass difference of proton ahd neutron is derived. We then are 
able to examine the nucleon convergence relations as a whole (problem (3): 
§ 5. The current theories are found not to satisfy the convergence require­
ments. It is then proposed (§ 6) to introduce. somewhat similarly to the 
solution of the difficulties for the electron. advocated in 11, a neutral s.calar 
fieId to ensure convergence without influendng the main aspects of the 
interaction problem. It appears from the convergence relations th at th is 
field is more strongly coupled with the nucleons than the other meson 
fields, from which it is inferred that its range is shorter than those of the 
other fields. Possibilities of experimental tests of ' this assumption are 
considered. § 7 consists of the discussion of the magnitude of the mesic 
self-energy of the nucleonS. while § 8 reviews the situation. 

§ ,3. The proton-neut·ron convergence relatwns; tOOir conneQtion with 
the electron convergence teZad,on. 

In first approximation. an arbitrary mixture of f- and g-interactions 
gives rise to aquadratic and a logarithmic divergence. Consequently. there 
are two convergence relations for the proton as weIl as for the ,neutron 
which generally can be written as 

'e2 + Lr (f, g, ", n) + Lr (f, g, ", n) = 0 ~ proton 
Q" (g, ", n) + Qr (g. ". n) = 0 

D' (f, g, ". n) + Lr (f. g. ". n) = 0 ~ 
Q" (g. ". n) + Qr (g, ", n) = 0 

neutron. 

• . ; ~ (4 P) 
~ (5 P) 

• ~ (4 N) 
~ (5N) 

In (4P), which serves to eliminate the logarithmic divergence in the proton 
self-energy, L" is a function of the constants f, .... n referring to the neutra I 
meson fields, while L1 is the same function of the constants of the charged 
fields, as follows from the connection between W(l)" and WW1 found in 
I, § 1. The Hdds and direct interactions of which f, ... nare representative 
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are those responsi:ble for nuclear interaction .( for the precise definition of 
the constants n see I, eq. (58), (58a), (58b)}. Besides these, the proton 
a1so creates an e~field, due to which a term e2 will occur in the conver~ 
gence relation for the logarithmic, but not for the quadratic divergence 
(5P), as we know that the e~interaction, belonging to the f~group, leads 
to a logarithmic divergence only. In (5P) Q" anrl Q7 are defined similarly 
to L" and U. Furthermore, the nucleon concept implies, that, apart from the 
e~properties of the proton, neutron and proton are identical. Thus apart 
from a term e2 missing in (4N), the convergence relations (4N), (5N) , 
will be identical with (4P), (5P). 

The incompatibility of (4P) and (4N) has alreadybeen alluded to in 
§ 2, where it was stated that, besi'des the electric charge there must be 
another parameter which takes different values for the neutron and proton 
state of the nucleon. 

Now there is a condition, not yet taken into account, which has to be 
imposed on the ,nucleon convergence relations: this will lead to the intro~ 
duction of a parameter of the desired properties and, it may be noted, 
make the compatibility of the first order convergence relations independent 
cf the particular choice of meson fields describing the nuclear forces. This 
condition is obtained by considering the mechanism by which, within the 
framework of the present theories, the processes of ,8~ra'dioactivity can be 
described. These are twofold: first, it may be assumed that th ere exists a 
direct coupling between nucleon~ and electron~neutrino field, giving rise to 

P-N+e++n, N-+P+e- +n' • (6) 

where e+ (e-) is a positon (negaton) and n (n') an (anti)neutrino~ 

Secondly, ,8~decay may be brought about by the disintegration of a positive 
or negative meson, emitted in an intermedia te state by proton and neutron: 

Now it has bee·n shown in 11 how the assumption that the electron has 
an f~coupling of the scalar type leads, at all events in first approximation, 
to a fini te negaton and positon self~energy. Denoting the corresponding 
coupling constant by f (instead of f s), the convergence relation for the 
electron is (cf. 11, eq. (9)) 

• (8) 

obviously, the theory is independent of the relative sign of e and f . We 
choose e.g. the negaton to have charges --e, -f; consequently those of 
the positon are e,_ f. We now shall require: fitst, that for (6) and (7) 
not only the (already satisfied) conservation of e~charge, but also that 
of f~charge be true; secondly, the compatibility of proton, neutron and 
electron conrvergence relation. To examine this, we put the f~charge of 
neutrino, neutron and proton equal to ).nf, ).N{ and ).p{ respectively, where 
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ln. lN and lp may take the values -+- 1 or 'zero. The first mentioned 
condition yields 

the second 

2 2 1-lp+1N=0. 

Elimination of )'p gives 

lN = t ~ ln ~ 1 - (ln + 1) ~ = O. ± 1 •. • . 

with the unique solution ln = lN = O. so lp = 1. Thus our two conditions 
suffice to determine uniquely the f~charges of all particles concerned. also 
that of the meson: y:I: has the charge ± (1 + ln) f = -+- f. 

Summari~ing the results we have found: for all electrically charged . 
elementary particles. a,n f~charge is inseparably connected with the e~ 
charge. The compatibility of the convergence relations of proton and 
neutron is, independent of specific assumptions on nuclear i·nteraction, 
expressed by (8), which is at the same time the convergence relation of 
the electron. The nucleons have. at all events in first approximation. a 
finite self~energy provided that 

L" (f. g. x. n) + Lr (f. g. x. n) = O. 

Q" (g. x. n) + Q' (g. x. n) = O. 

(9) 

(10) 

which denote two relations between the constants of the fields responsible 
for the nuclear i-nterection. Henceforth (9) and (l0) will be referred to as 
"the" nucleon convergence relations. 

In 11 it was found that the range x-lof the f~field is. in order th at the 
self~energy of the electron shall be small compared to its rest energy. 
roughly -- 10-13 cm. This ra·nge is of course identically the same whether 
the f~field is created oy electron. meson or proton. This shows a way to 
decide experimentally whether the f~field indeed exists. viz. by considering 
the Cross~section for proton~proton scattering as compared with the proton~ 
neutron scattering. 

We next proceed to show that the ,nucleon concept. which now has to 
be stated as follows: 

Proton and neutron are. with respect to their~ e~ and f~charge. 
different states of one and the same particle. 

leads to a mass difference of proton a-nd neutron which has the right sign 
and order of magnitU'de. 
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§ 4. The mass differenoe of proton and nieutron. 

Generally we may write for the self~energy of the 

proton: W p (e, f, x; nuel; M), 

neutron: W N (e, f, x; nuel; M), 
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wh ere the assembly of parameters of the nuelear interaction fields, being 
the same for proton and neutron, has been written as "nueI". (It should 
be ,noted that, in a theory which is not purely neutral. W N depends on e, 
f and x, too as a consequence of higher order transitions. ) Hence the mass 
difference 6. of proton and neutron is given by 

On account of the frequently mentioned inaccessibility of the higher order 
terms, we replace th is relation by its first order approximation. We have 

wW = WIl) (e, f, x, M) + W(1) (nueI, M) 

wW = W(1) (nueI, M), 

where wW is the sum of e~ and f~self~energy, while WW (nueI, M) 
denotes the contrihution due to the nuelear fields of force and thus is the 
same for proton and neutron. Thus 

cl ~ 'Z w(1) (e, f, x, M) . . . . . . . (11) 

independent of the particular choice of meson fields responsible for nuelear 
interaction. We introduce the dimensionless quantity 

where m is the electron mass and ~ the same as in the formulae of 11, § 9. 
Furthermore, we put 

y2 is again the same as in 11, § 9; we remind that y2 > 0 iE ~ > 2. Now 
let us suppose Eor a moment that ~lso 

c> 2, i. e. Z2 < O. . . . . . . . . (13) 

50, accordi,ng to (12): 

~ > 4.103
• 

As ,> 2, we Eind the right member of (11) simply by replacing in 11 eq. 
( 11 ) : 

mbyM, ~byC. y2 by-z2, C(y2, 1)byC(_Z2,l), C(y2,~) by C(-Z2,C). 
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Further, all results of 11, § 10 can m.m. be taken over, so Wi! get according 
to 11 (13) 

W(I) ..... 1!~~C . Me2 1g C = ~e~e . Mc2lg C> o. . . (H) 

which would give the wrong sign of b,. It is important to note that, more­
over, the order of magnitude of b, would be quite wrong if we would have 
put the"self-energy of the electron equal to mc2• For fr om (13). (H) and 

3e2 

8n2he • mc2 Ig E = mc2 

it would follow that b, '" MI 
The situation changes completely, however, if still taking E> 2, we 

put, instead of (13) 

c < 2, i. e. , Z2 > O. 
_ Then, according to (12) 

1 h 1 1 h 1 
-2 . - > - > -2 . 111 ' or 10-11 cm~- :;;:::-10-14 cm. me x l~e x 

More precisely, we can take as upper limit of x- 1 the order of 10-13 cm, 
for a larger x-1 would be at varia nee with the harmony between experiment 
and a purely electromagnetic theory of the interaction between electrically 
charged particles in the , corresponding domain of distances; thus we place 
~-1 roughly between 10-13 and 10-14 cm. 

T 0 find wW we Inow have to replace in 11, (11) *) 

m by M, E by C, y2 by +Z2, C (y2, E) by C' (Z2, C), C (y2, 1) by C' (Z2, 1), 

but the integrals C'(z2, C) and C'(z2, 1) are now no longer, as in 11, § 9, 
principal value integrals, for C < 2: 

and b, becomes (all charges are expressed in Heaviside units): 

*) This is most easily seen by noting that 

w(I) = Weil + W~), 
where W~) i.s given by the first equation of 11, (11). W~) is given in J, table 1, vi%. 
by taking together the "inv" and the "fluct" term for the f $-case. As to the treatment of 
the integrals, we especially refer to I. § 4b. 
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. As z::: 1 and z < C. we get. using (8): 

6=-i
a
n· M [1 + F(C)]. a = 1;7' l 

2 (16) 
F(C) = 1- C2 + (C4 -6 C2) 19 C + 2 Z (C2 - 4) arc tg C:;. 

In the accompanying figure. -6/mc2 bas been plotted against the range 
of the f~field in units ro = e 2/4:n mc2 . Por an order of magnitude of ,,-1 

which is smaller than that of ro. 6 is positive. It becomes negative for 
,,-1 = t ro and has the value -1.25 mc2 for ,,-1 = ro. -1.90 mc2 for 

\5 

, 

O~~~----~--~3--------­
-YKin units'o 

,,;-1 = 3ro. Por ,,; ~ 0 it tends to -2.14 mc2 • Generally we may state that 
if ,,-1 Z ro. 6 has the right sign and order of magnitude. the experimental 
value being -2.47 mc2 *). 

In II it was found that ,,;-1 should roughly he "" ro, to ensure that the 
electron self~energy shall be < mc2• with which the present result, satis~ 
factory in itself, is consistent. 

We do not know whether the higher order contributions will be fini te 
too, but, if so, it is reasonable to expect th at they are small compared with 
wW, as the fine structure constant a < 1. so that the present resuIt would 
in deed determine the order of magnitude of the whole effect to be expected 
theoretically. These higher order contributions th en might possibly account 
for the fact that 161. according to the present first or,der computations, 
turns out to he somewhat too smalI. 

Having thus shown that, at all events in first approximation . . the 
possibility in principle exists of obtaining simultaneously a finite self~ 

energy of proton and neutron, it remains to examine whether this possibility 
in deed can be realized, i.e., according to the program of § 2, whether the 
nucleon convergence relations (9) and (10) admit of solutions with which 

*) This value for the mass difference is obtained from the determination of the deuteron 
. binding energy by MVERS and VAN ATTA 4a) combined Wlith that of the mass difference 

of the hydrogen molecule and the deuterium atom by MATTlAUCH'4b). I should like ,to 
thank Dr. KUSAKA for kindly checking the calculation of 6 . 
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correspond mixtures of meson fields that are suitable for the description 
or nuclear interaction phenomena. 

§ 5. The nucleon convergenoe relaiJions. 

According to (9) a·nd (10). these are characterized by two functions L 
andQof the parameters {i ..... ni • .Irom whieh U.Q" andU.Q1 are found by 

putting f i = {'i •... • n{ = ni aod ft = n ... . n{ = n~ respectively. From I. 
table 3. we immediately obtain: 

L =-t f~ + f!-t f~v + t f~, + t U~ 11~-t U! 11! (l-t 11;-2) + 
+ t U~. 11~v (5 - t 11;~) - t g~s 11~s (1 -11;;) - 2 f. U. 11. (1 + 11;-2) -

- t fps gps 11ps (1 + 11;;) + t n, g~ 11! - 2 n. g! 11! + . 
+ 2 npv g~. 11~. -t nps g~s 11~, 

Q =-g~ 11~ + t g! 11!-t g~v 11~. + t g~s 11~s + t fv g. 11. + ~ 

+ t ç - 2 2 + S 2 2 S 2 2 + 2 2 (17) lps9ps11p. nsU,.11s yn.gv11.-ynp.gp.11p• ngps '1 p,' 

in which 

M 
11{=-

!l-i 
• (17 a) 

We may replace (9) by (L ... + tQ.,) + (Lr + tQ,.) = O. For this pur~ 
pose a function L' = L + t Q must be introduced. As L will henceforth 
no more occur; we write L instead of L' a·nd have 

L=_lf2+f2_5 t:2 +if2 +Jl g 2 Ig2 + ~ 
Y, v 1" l p. "6" ps T; - Y p. -1 _I • (18) 

+ t gps - 2f. 9.11. - t (ps gps 11ps' 

independent of gs and the n's. By (17) and (18) the most general form of 
the convergence relations is determined. 

Now it must be remaIlked that the total self~en~rgy is. on account of 
the possi:bility of introducing terms of direct g~interaction for any of the 
types s, v, pv, ps with corresponding coefficients ns • .... nps, not unambi~ 
guously defined. It is therefore necessary to dispose of a physical argument 
to determine the value of these constants ns . .... nps. Now ,it has been 
pointed out by MaLLER and ROSENFELD 5) that the constants nare fixed 
by the requirement. which will here be used tOO, that the operator of statie 
interaction between nucleons shall. in order to ensure the (statie) binding 
energy of the deuteron to be finite 6), not contain t5~interactions. This 
condition is the first of a minimum number which will be laid down in the 
present paper. in order to arrive at a convenient limitation of the choiee 
of meson field mixtures that are a priori admitted by the most general 
convergence relations. viz. those involving the coupling constants corres~ 
ponding with all possible neutral and c;harged interactions and the con~ 
stants n. without any inter~relations between them. Thus we state 
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A. The statie nuclear interaction shall not contain terms of the b~type. 
From this it is not difficult to prove that .) 

(19) 

As a first simplification, we now impose the condition A on (17), i.e. 
we use (19). Writing Q in-stead of 4Q, this gives 

Q = g~ 1}! + g~. 1}~. - 2 g~s 1}~s + 6 {. g. 1}. + 2 (ps gps 1}ps. (20) 

In th is way, both Land Q have become independent of gs. This implies 
that, as regards convergence, the inclusion of a g~~interaction in the nuclear 
interaction is immaterial. We will n'ow discuss various assumptions on 
nuclear interaction from the point of view of the convergence relations, 
given by (9), (10), (18) and (20). 

(a). The simplest a priori possibility is to describe nuclear forces by 
either one f~ or one g~interaction; we will'directly assume that an arbitrary 
mixture of the corresponding charged and neutra I fields is employed. 

However, it is evident from (18) and (20) that such an assumption 
cannot give rise to a finite nucleon self~energy. An exception should, in 
principle, be ma·de for a gs~theory, but this does not give rise to any 
statie interaction between nucleons at all, and is therefore of no interest. 
In particular it follows from this result that BETHE'S "single force hypothe~ 
sis" 7), or, in the present terminology, a 9.~theory, is incompatible with 

.) These values of nare obtained if the total statie interaction between two particles 
1 and 2 has, apart from dependence on isotopie variables, the form 

e-· r12 
[a + (J 011) 0(2) + i' (0(1) grad(ll) (0(2) grad(2))] - .- + b-terms. 

ril 

the latter van~shing on account of (19). However, the term proportional to r yields, on 
performing the spatial differentiations, also terms of the ~-type: the longitudinal 
d-interaction- 15). Thus if ,.. #- 0 there are still d-terms hidden in the dipole-dipole 
interaction. To eliminate these from the statie interaction, too, other values, n"~ should 
be taken whieh are cliscussed in a paper by F. J. BEUNFANTE!16). However, it can be 
seen that those theories whieh are examined on their · convergence hereafter for which 
r #- 0 do not yield convergence whether we use n{ or ni (in particular n~ = - j, 

n~. = - i) ; furthermore we are ultimate~y interested in theories for wmch r = 0 (see 
condition D further on). and for these our values n{ apply. To simplify the trend of the 
discussion we have therefore confined ourselves to the n{ given by (19) and have used 
these values also in discussing the theories with r #- O. It wiJl be noted that, as the n'l 

differ in numerieal value only slightly from the nj. the qualitative discussions of the vector 
a:J.d the pseudoscalar theory in § 6 are practical~y unaffected by using the ni instead 
of the nj' 

One mayalso introduce terms of direct f-interaction into the Hamiltonian which ' 
generally are of the form n"[2 f S ... (f) S ... (f)dv, where n" again is a numerical 
coefficient and I a length. As. except for the f pv-case, the constants n" should be zero 
according to condition A, we have thought it reasonable not to introduce direct 
f,-interactions at all. 
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the idea of obtaining finite self~energies by means of convergence relations. 
(p) . N ext we try to satisfy (18) and (20) by taking a mixture of 

either chargedor neutral [~ and g~interactions of the same type. 
This yie1ds, omitting the superscript v or ", 
Type s: The only solution is [s = 0, gs arbitrary. This case has just 

been discussed. 
Type v: One finds no non~trivial solutions. Thisespecially applies to 

BETHE' s [., g.~theory .). 
Types pv. ps: no non~zero solution. 
Thus all purely neutral or purely charged · one~field theories of ,nuc1ear 

forces are incompatible with the convergence re1ations, combined with 
condition A. 

('Y). The following step will be to con si der one~field theories involving 
a mixture of neutral and charged contributions. For the cases s and pv 
we get the same result as under (P); the same hoIds for v and ps if 

(21) 

In order to see whether (21) is essential with regard to the argument, we · 
consider the case that (21) is .not satisfied, but at the same time, in order 
not to have ti:> deal with unnecessarily complicated formulae, impose, 
besides A, a new condition: 

B. The theory shall be charge~iD'dependent, i.e. the forces between 
nuc1eons are independent of their state of e~charge. 

Within the framework of a one~field theory, the two possibilities to 
which B leads are: the neutral theory. which has already been discussed 
from the present point of view, and the symmetrical theory, characterized 
by the following relations betweèn the constants 

(22) 
and 

(23) 

for any type s-ps. Thus (21 r expresses that an exactly symmetrical vector 
or pseudoscalar theory does not yield finite se}f~energies. This result is 
readily seen not to be aHected by a slight deviation which may exist from 
charge~independence, which can e.g. be obtai.ned by putting instead of 

(23): ": - ,,~. ,,;s - ,,~s' or by replacing (22) by 1[71 = I [1 I (1 + d, 
I g71 = I g1 I (1 + e'), where e and e' are small. As small deviations from B 
appear to be insignificant, we will in the following for simplicity assume B 
to be exactly valid. 

Thus there is no meson theory involving sources of one type s-ps 
only, which satisfies the requirement of convergence and it is therefore 
necessary to examine more complicated interactions. Of course, there is a 

*) The constants E._ g. correspond with g. f of Ioc. cito 
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large choiee of combinations whieh are in accordance with the convergence 
relations as weIl as with the conditions A and B. However, it is hardly of 
physieal interest to consider all these cases in detail. We will therefore 
now introduce two new conditions whieh lead to a convenient further 
limitation of the number of theories which are in agreement with (18), 
(20) and the conditions A an'd B orlly. As such we take: 

C. The theory shaIl give the right relative positio~ of the 3S~ and 
lS~level of the deuteron. 

D. The statie interaction potentialof the proton~neutron system shall 
not contain an 1/r3~singularity. 

The latter condition is of basic importance in any theory whieh attempts 
to eliminate the self~energy divergences. Indeed, the requirement th at a 
theory which is free of these divergences shall not contain infinities of 
other origin is but a matteJ: of course. Now it is weIl known, that 1/r3~ 
terms in the deuteron potential entail an infinite binding energy: thus, as 
the present endeavour to obtain finite self~energies doet ,not implicitly 
involve a prescription by which the 1/r3~terms are discarded, it is quite 
natura I to impose condition D as an accessory requirement on the theory *). 

o.n the next simple assumption of only two fields of different types being 
involved, it has been shown by M0LLER and ROSENFELD 5) that there are 
only two possihilities to satisfy the conditions A-D viz.: a symmetrical 
vector~pseudoscalar theory in whieh *.) 

(2-4) 

or, if ". = 'Xps, as in loc. cit.: 

g2-g2 
u- ps' • (248) 

and a neutral scalar~pseudovector theory with 

(25) 

The latter theory is easily seen, irrespective of (25), to admit ,no solutions 
of the convergence relations, while using (248), the symmetrieal theory 
appears to yield only the trivial 'zero solution. 

Thus the symmetrieal mixed theory whieh on the whole gives a satis~ 
factory account of nuclear as well as cosmie ray phenomena is, notwith­
standing the fact that it ·does not involve 1/r3~singularities, still beset with 
the difficulty of diverging self-energies. The situation is somewhat analo~ 
gous to that of the electron theory, where the perfect accoroance of a 

.) IE C and D would have been introduced at the outset, all one-field theoqes would, 
irrespective of the convergence relations, have to he discarded. However, in view of the 
interest which sometimes is attached to vector and pseudoscalar theories involving cut-off 
prescriptions to eliminate the r- 3-singularity, it seemed justified to show that, even apart 
from D, such theories do not satisfy the convergence relations. 

**) Cf. the table in J, § 1. 
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purely electromagnetic theory with experiment which always is found if 
· only distances ~ 10-13 cm do not come into play. is in disharmony with 
the consequences of the theory with regard to the structure of the electron, 
as is most cleady expressed by its leading to an infinite self-energy for a 
point electron. Thus the possibility. discussed in 11, of eliminating the 
divergence in the electron case by assuming the electron to be the source 
of a short range scalar field besides the e-field. suggests to proceed like­
wise in the nucleon case. i.e. to intro duce a scalar short range field besides 
the field already attributed to the nucleons in order to describe nuclear 
interactions .). 

However. there is one difference as regards electrons and nucleons: 
whereas physical phenomena connected with electrons can be distinguished 
in "long range" and "short range" phenomena. the former being describable 
by the purely electromagnetic interactions. while the latter exhibit new 
features on the [-field assumption. all typical nucleon effects have exclu­
sively relerence to the short range region and so the question presents 
itself. whether the introduction of an additional scalar field in the nucleon 
case will modify those effects which are. with more or less success, des­
cribed by the meson fields hitherto employed. This problem is discussed in 
the next section. 

§ 6. Introdudion of the F-field. 

A mixture of charged and neutral scalar [s-fields leads to a term. (cf. 
(9) and (18)) 

- 1 {Y2 _ 1 {~2 
Y s Y s 

in the convergence relation which serves to eliminate the logarithmic diver­
genees. but leaves the other convergence relation unchanged. Although 
from the point of view of convergence it is immaterial whether the scalar 
field 'Y which we are now introdudng, and to which we shall reler as F­
field. is charged or neutral or a mixture of both, it can be seen from an 
inv,estigation of the coupling of this field with the electron neutrino field 
- a question to which we hope to return elsewhere - that it should be 
neutral. This is the case we therefore consider in the following a,nd we 
denote the corresponding coupling constant by F: 

(;=F. (26) 

We might. proceeding on t~e lines of the previous section, immediately 
turn to the consideration of the simp lest cases which are in accordance 
with the condition A-D, viz. the symmetrical and the neutral mixed 
theory. either of them combined with the F-field. However. it is of some 

*) This new scalar field should not be confused with that which serves to make the 
proton and neutron convergence relations compatible. and which. as we have seen, is in 
point of fact identical with the electron scalar field. 
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interest to discard provisorily condition D and to consider the vector and . 
pseudoscalar theories involving a cut oH r-3-potential. 

ln the first place we remark. th at the introduction of the F-field can 
never lead to finite self-energies within the framewoI1k of theories which 
for the rest are based on a "single force hypothesis" • i.e. in which the 
nuclear forces are described by one g-interaction only~ Indeed. according 
to (20). (10) will have the form g2 = O. irrespective of the presence of 
the F-field. Thus we will now consider an (F. [u. gu)- and a (F. [p3. gP3)­
theory. BETHE's neutral ([u. gu)-theory. generalized by the introduction of 
the F-field. yields 

or. equivalently. 

-tF2 + Po + f g!-2fu gu 1'r;1 = 0 

g~+6fu gu 1'J-;;1 = 0 

Assuming a purely neutral F-field. taking its range to be the same as that 
of the vector field and expressing all charges in BETHE's f gv. it can 
be seen that f. being essentially fixed by the lS-level. becomes ...... ~ of 
its value on the single force hypothesis. This means that the cut-oH should 
become smaller. too. in droer that the non-central term in the triplet inter­
action shall ensure that the 3S-level becomes lower than the lS-level; this 
is. in itself. a satisfactory feature. 

A charged (f ps. gp3 )-theory. combined with the F-field gives 

• (27) 

It is remarkable that the non-symmetrical theory under consideration. 
which has recently been proposed oy HULTHÉN 9). who takes a purely 
neutral F-field *). satisfies all requirements laid down in (27): it is approx­
imately charge independent. because F2 ~ g~. Furthermore. the cut-oH 
Ro is. according to HUL THÉN. fixed by 

g~$ F2 
"~$R~ ~ Ro 

which is necessary to obtain the correct binding energy of the deuteron. 
With (27) this gives 

-ft 
Ro~-"­Me 

in accordance with HULTHÉN's result. The mass of the~-mesons is taken 
to be larger than that of the pseudoscalar mesons. The theory furthermore 

*) The constants g. f. " of loc. cito c;orrespond witb F. 9ps. "ps respectively. 

6 
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gives the right sign and order of magnitude of the deuteron quadrupole 
moment. 

Thus. notwithstanding the objections of principle which can be raised 
against the device of cut~off I'otentials. it is noteworthy that the concept 
of the F~field seems anyhow qualitatively to support the basic ideas under~ 
lying .theories of this kind. 

We now rei-nclude condition D in the discussion. and thus turn to the 
mixed theories. Obviously. the neutral mixed theory still yields diver~ 

genees. for if no convergence can be attained by a pseudovector and one 
scalar field. this cannot be remedied by introducing another scalar field. 
The symmetrical theory gives 

F2 = i ({; + i (~s + \1 g;). 

gv = 2 1]-1 (3 (v + E {ps}. E = ± 1 . 

(28) 

(29) 

As in the previous cases. F is larger than the constants which. in the theory 
not involving the F~field. determine the strength of the ,nuclear interaction. 
We must therefore assume th at the range of the F~field is much smaller 
than that of the other meson fields. for otherwise the interaction would 
be preponderantly of the scalar type. in contradiction with condition C. 
Furthermore. (29) provides a new relation between the constants of the 
mixed theory. We will discuss its consistency under the assumption that 
the F~range is such. that the F~fiel:d does ,not appreciably contribute to 
the binding energy of the deuteron. In this case. the static interaction is 
determined by [v. gv and f). Therefore (29) ca·n be considered as defining 
[ps in terms of these quantities. Estimations based on the position of the 
deuteron S~levels give *) 

2 (2 
Ag: = 0.561]-1 + 0.009. AT = 0.027 . 
~nnC ' ~nflC 

• (30) 

Taking the meson mass to be = 240 m gives. for fv gv> 0 

(30a) 

which seems a reasonable order of magnitude. Inserting this in (28) one 
gets 

(31) 

An experimental indication, (which led HULTHÉN to consider the $calar~ 
pseudoscalar theory mentioned above). of the presence of the F ~field may 
perhaps he found in the ' results of AMALDI and collaborators 10) who 
obtain a-n angular 'distribution for the scattering of high energy neutrons 

*) Cf. Ioc. cito 6). eq" (106). (107) and the tab Ie of I. § 1 

file:///fps/~2/g./
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by protons which is in definite disagreement with the mixed theory. in 
its symmetrical form. It has been pointed out by HUL THÉN 11) th at this 
discrepancy may be overcome by the introduction of an additional ·neutral 
interaction of appreciably short er range than,. th at of the vector and pseudo~ 
scalar mesons of the symmetrical theory. However this may be. it is clear 
that experimental evidence on scattering in th-e high energy region may 
provide important clues with regard to the problem of the self~energy of 
nucleons and in particular with respect to its tentative solution on the 
Iines presented here. 

HUL THÉN proposes another modification which makes the theory more 
asymmetrical than that discussed above: he assumes a purely charged 
vector~pseudoscalar interaction combined with a purely .neutral scaIar~ 

pseudovector interaction. It is readily seen that the corresponding conver~ 
gence relations can be satisfied in agreat variety of ways; more definite 
statements will ~herefore have to wait for more' specified calculations. 

Anyhow, the considerations of this section show. th at it wouid seem 
possible to attain a theory of nuclear forces which involves. at all events in 
~irst approximation. no self~energy divergences and which is. moreover. free 
of r-3~singularities in the deuteron potentia!. while we also have found 
that the introduction of an F~field is qualitatively reconcilable with the 
current theories involvi.ng cut~off. Just as for the f~field of § 3. experi~ 
ment al evidence on nucleon scattering in the high energy reg ion will be 
abJe to throw more light on the validity of the present assumptions. 

§ 7. The magnitude of the mesi<: self~en'ergy. 

The ratio of the meson mass and M is such that 

1Ji ~ 10. 

Whether the mesons actually have a mass. say. 200 m or 300 m. is 
irrelevant lor the general result that the self~energy is ~ Mc2 • One 
example of this we have alrea,dy found in § 4. where a (neutral) scalar 
field was examined. Other fl~j.nteractions lead to quite similar resuits for 
the finite part W of the self~energy. We will here only state the results. 
that are readily obtained from I, table 1. (see also the footnote on p. 74) 

Wp = - 16~~hc' Mc
2 [1+~19 ~+4z (1 + ~) A J 

W pp = - 16~:hc' Mc2 [I + (~-8 E2) 19 ~ + 2z (El-6) A]. 

W ps = - 3~:hc' Mc2 [1 + (~....!...2~2) tg ~ + 2% E2 Al. 

2z E4 

E = 1J-I A = arc tg E2 Z2 = E2 - i > O. 

For 1J -- 10 all these contributions are 

1 f2 . f2 
~ 41" 41'hc' Mc2 - 41'hc' 0,1 Mc2. 
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In order to estimate more quantitatively the ratio of seIf-energy a,nd Mc2 

the actual values of the constants f and rJ should be inserted. We will 
content ourselves with one remark of qualitative order, however, which 
throws new light on the convergence relations: Consider all four f-inter­
actions to he present. The total contribution then is easily seen from (15) 
and the above equations to be, for all meson masses for instance equal to 
274 m: 

- (-0,33 f~ + 1,9 f~-I,S f~p + 0,5 f~,). 

It is interesting to note that the alternation of signs is the same as in the 
convergence relation which, for th is set of fields, is 

- t n + f! - ~ f~p + t f~s = O. 

This means th at the existence of convergence relations tends to decrease' 
the magnitude of the fi.nite part Qf the seIf-energy. Thus the convergence 
relations favour, 50 to say, the treatment of the seIf-energy as a pertur­
bation. This is particularly borne out by 11, eq. (14) from which it is seen 
that, for smaller rJ's, the convergence relations lead to a decrease of the 
self-energy of at least one order of magnitude. In the case of different 
meson masses involved the situation is more complicated but the sam~ 
general trend exists. 

It remains to consi'der the g-interactions. To show the main point we 
take the expressions which are found in the vector theory: 

1. gp,interaction. 

W = g~ . Mc2 . E-2 lim [;~ + t - (1 - t E2) 19 PM] 
8n2 he P-+ t» Jy,r 

- g! • Mc2 [1-E2 + (E4 + 6E2
) 19E + 16E2 

Z (I +E.) A] 
32n2 he 8 

2. Direct gp-interaction. 

w= ::;:;. Mc2. E-2)~t» [:2 + t-(1 +E2)lgPM J. 
3. f pgp-interaction. 

w= :!;~~. Mc2. E-l)~t» [:2 +i-(1 +E2)lgPM ] 

+ 3fpgp • Me2 Wig E + E Z2 A]. 
. 4n2 he 

4. f p-interaction. 

_ 3f~ . 
W--8 2 ... Mc2hmlgPM, 

n ne P-+ CD 

16~he' Mc2 [1-E2 + E4 lg E + Z (E2 + 2) A]. 
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where 

If we would suppose a vector field to be present only, it is easily seen from 
the convergence relations ' that the terms in the first Hne (in the case of 
the -direct self~energy: the only line) of the various W's cancel each ether. 
Thus the terms of the second lines remain. The contribution of the fg~inter~ 
action is, for TJ '" 10, readily seen to be ,negligible compared to that of 
pure f~ and g~interactions which, for the same order of TJ, are 

1 f2 or g2 
. ...., 4 n· 4 n hc . Mc2 ...., 0.01 Mc2 

for 

which is roughly the order of magnitude of the mesic coupling constants. 
Similar results are obtained if a mixture of fields is present. We note that 
in the first Hnes a finite term occurs, the "l"~term which would yield a 
large contribution, but that these lAerms just cancel out by virtue of the 
convergence relations. 

It is particularly gratifying, with regard to the non~ambiguity of the 
scheme, that the direct self~energy does not contribute to the finite part at 
all. For, had this not been 50, we could have chosen, discarding condition 
A, the nt such that the self~energy would have any order of magnitude. 
Thus the direct self~energies are, whether the "unitary" or the "perturba~ 
tion" view is held, irrelevant as concerns their mass contribution, they only 
pjay into the theory in the convergence relations. 

Thus we have shown th at the meson field self~energies are all < Mc2 

with which the "perturbation method" for nucleons is justified. 

§ 8. Concludi1lg lTemarks. 

ln '~riefly recapitulating the results of II and the present chapter, we 
divide the self~energy problems of Dirac particles into two groups: 

a. The convergence problem for the electron. 
b. The" compatibility problem" for the proton~neutron (cf. § § 2 and 3). 
c. The convergence problem for the nucleon (cf. §§ 2 and 5). 

These are representative of that crisis of divergences which mark the 
relativist ic quantum field theories in their present stage. 

The second group comprises: 

a'. The mass problem for the electron. 
b'. The mass~difference problem for the proton-neutron. 
ct. The mass problem for the nucleon. 
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By mass problem we understand the question whether the masses con­
cerned can be derived from thè "universal constants of the first kind" 12), 

e, h, e and a universal length. It has of ten been suggested th at the solution 
of a problem of the first group would entail that of the corresponding 
problem of the second group, analogous to the situation in classical electron 
theory, wh ere a non zero electron radius ensures fini te self-energy and at 
the same time allows us to consider the electron mass to be of purely 
electromagnetic origin. Let us call (a, a') 'a simultaneous solution of a a-nd 
a'. The results of a theory based on convergence relations can then be 
summarized as follows: 

(a, a') is possible a priori (unitary method) but leads to contra~ 
dictions with regard to (b, b'): if we would assume the mass of the 
electron to be entirely due to field self-energy, the proton 'would be 
twice as heavy as the neutron (cf. § -4). 

(b. b') is possible if (a, a') is discarded: perturbation mdhod. 
(e, c') is anyhow impossible: the mesic self-energy of nucleons is 

always ~ Mc2• 

Thus we see that the present theory essentially discon.nects a and a', 
e and c'. This demonstrates a characteristic feature of the present 
method: with the introduction of any universa I length, a charge, too, 
is inttoduced; the latter plays the decisive rele inasmu,ch as convergence 
is concerned, while both charge and length enter the ma ss problem. 
Thus the solution of the convergence problem does not necessarily lead to 
that of the mass problem, contrary to classical electron theory involvi.ng 
an electron radius=j= 0, but there only a length is introduced. 

On the other hand, the fact that the theory yields (b~ bi) might seem 
to support the present point of view of considering all self-energies as 
perturbations. Por a consistent theory on these lines necessarily must 
account for the only obseevable perturbation viz. the quantity b... The 
range of the [-field of the electron, though of the same order of magnitude 
as the so-called classical electron radius ro, plays a fundamentally different 
rele compared to th at of ro in classical theory: whereas the latter is deter­
mined by the condition th at the ( electromagnetic ) self-energy shall be' 
equal to mc2, in accordance with the unitary aspect of classical theory, 
x- 1 is roughly fixed by the condition that W ~ mc2, in order to attai~' 
a non-unitary treatment, cf. 11, § 9. 

As regards the possibilities of experimental tests of the [-field as well 
as the F-field hypothesis, the high energy nucleon scattering has already 
been alluded to. A fuller account will be given in chapter IV. 

Prom the results up to the present it cannot be concluded whether or 
not all divergences proportional to higher powers of the charges remain. 
In this respect we recall that in one case (cf. 11, §§ 5 and 6) it appeared 
possible to find relations between higher order divergences. In this con­
nection, the belief which sometimes has been expressed 13), that the diffi-
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culties encountered, also in interaction Iproblems, when considering higher 
order effects, may at least partly be due to the inappropriateness of the 
perturbation theory methods, seems worth noticing. Even quite apart from 
the self-energy problem it would indeed seem questionable whether any 
physical meaning can ,be attached to these higher approximations in the . 
approximation procedure. 

Furthermore the theory should be generalized to the discus sion of self~ 
energy effects in the presence of external fjelds, amongst whieh the proper 
magnetic moments of nucleons is of foremost importance. This has been, 
discussed by SERPE 14), who has, in accordance with the general prescrip~ 
tions of the M0LLER-RoSENFELD~theory 5), considered the statie contri~ 
bution due to vector and pseudoscalar fjelds on a "one~nucleon theory". 
However, the present point of view necessjtates: first, the treatment on 
hole theory, secondly the inclusion of non~statie effects; for the distinction 
between statie and non~statie contributions cannot be maintained as far as 
an exact treatment of self~energy effects is considered. 
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CHAPTER IV. 

On some further consequences of the ( .. field hypothesis. 

Let us first briefly recapitulate what we knowalready about the [ .. field: 
1. On hole theory it ensures. at all events in first approximation. con­

vergence of the electron self-energy provided 

e2 =tF.· ..... ' .... (I) 

[ heing the charge of the electron describing the coupling with the (-field. 
Furthermore. this same (-field is also created by the proton: but not by 
the neutron. 

2. The electron field self-energy (divided by e2 ) should be sm all 
compared to its mechanical mass. This holds true if 

• (2) 

where )e is the inverse (-field range. ro the classical electron radius. As a 
consequence of this same connection (2). the proton-neutron mass diffe­
rence could be accounted for. as to sign and order of magnitude. 

3. We have already pointe<! out in chapter 111. § 3 that the produ~tion 
of an (-field by the proton may. in principle. be verified by comparing the 
proton-proton scattering with the proton-neutronscattering. 

We shall now turn to the consideration of some further consequences of 
the (-field hypothesis. 

According to (1) the statie electron-proton potential becomes 

e2 
- - [1-2 e-u ]. • • • • • • • • (3) 

r 

reaching a minimum value of :::::: 0.375e2 )e for r:::::: 5/3)e: for smaller r the 
attraction goes over into arepulsion. This leads to a shift of (especially) 
the S-levels of hydrogen towards higher energies. which can be computed 
by means of a perturbation calculus 1). The result is. (a = 1/137. n = 
pri-ncipal quantum number) 

_ 8a6 1 me -t 
~ V (n S) -- -3 • 2-:::2 . -h cm . . . • . . (4) 

n )e "0 

The following table gives the values of 6.v (2S) for various va lues of ~ 
defined by )e-l = ~ ro. 

E ~v(2S) in cm- t • 

1 0.6.10-3 

2 2.6.10-3 

3 5.9.10-3• 
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R. C. WILLIAMS 2) has reported a deviation in the fine structure of the 
Ha line from theoretical expectations which has been interpreted by 
PASTERNACK 3) as due to a shift in the 2S-level of the H-atom of about 
0,03 cm-l . This would correspond with a range of the (-field of about 6 
times the classical electron radius *). Later experiments performed by 
DRINKWATER, RICHARDSON aäd H . E. WILLIAMS 5) do not confirm R. C. 
WILLIAMS' result. It is therefore not yet possible to infer anything quan­
titative from the experimental evidence. 

It may be noted that the shift (4) is somewhat larger than th at following 
from SOMMERFELD' s perturbation potentiall ), hecause the latter is different 
from zero in a finite reg ion, while the Yuikawa potential has a smaIl 
"tail" . The relative influence of this tail is weIl known from calculations 
on proton-neutron scattering, in which a Yukawa potential is compared 
e.g. with a box potentiaI 6 ). 

As far as can be judged from calculations based on BORN'S approximation 
the potential (3) cannot remove the discrepancy between theory and 
experiment as regards MOTT'S polarization effect in double scattering of 
electrons by heavy atoms 5) . 

With regard to non-static effects, the first question is whether evidence 
can be found for the existence of free {-quanta. However, this particle is 
unobservable: in any theory of the electron in which the universal length 
is introduced as the range of a field, the accompanying field quanta are 
unstable as their Compton wave length necessarily is shorter than twiee 
that of the electron, enabling them to decay into a negaton-positon pair. 
In the present case the life time TO in the rest system is given by 

(5) 

Hence TO is so smaIl that the (-quanta escape detection. It is noteworthy 
that a theory of the type considered automatically i.nvolves a universal time 
as the cot;1sequence of the introduction of a universal length. According to 
(5) the fine structure constant th us can be expressed in terms of "universal 
constants of the first kind" 5) , viz. as the ratio of a universal length and 
a universa 1 time (in units c) . 

It should furthermore be noted that the undetectability of the {-quantum 
is a consequenae of the fundamental conce'pts of the theory, and thus 
should not be compared with the ad hoc unobservability of the neutrino. 

All further modifications of current theories due to the (-field can be 
traced back to either one or both of the effects (3) and (5) . The survey 
we shall now give of the modifications occurring in the domain of cosmic 
radiation should be considered as merely a rough outlining of the situation. 

Ot) In the preliminary report of this work 4) the equation for !::::.V is erroneously given 
with h instead of h; the statement ~ loc. cito that WILLIAMS' shift corresponds with 
,,-1 = 2.5 ro is therefore incorrect. I am indebted to dr. KtKUCHd for pointing tros out to me. 
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1 0. Pair formation by photons in the field of a proton. The momentum 
absorbing field is now given by (3) which leads to a decrease of the 
differential cross~section by a factor 

where E is the ratio of h" and the momentum abs or bed by the proton. 
Thus in the non~relativistic as weU as in the extreme relativistic (ER) 
approximation all results remain unmodified, while a decrease occurs in 
the reg ion of about 137 mc2 (to fix thoughts we put ,,-1 = ro) . . 

On the other hand, an increase is obtained in the same energy reg ion 
due to the "e-f effect": a photon of energy ::;:::; 137 mc2 may be absorbed 
and an f~quantum subsequently be emitted which "immediately" decays in 
a pair. In the ER case the cross sectio~ for the total number of produced 
f~quanta is 

mc2 E 
-~-E Ig-2' me 

• • (6) 

where E is the energy of the incoming photon. The effect is independent 
of screening. 

2°. Bremsstrahlung of electrons. The differential cross section again 
decreases by the factor x. Thus on the present theory fast e1ectrons of 
energy- 137 mc2 are more penetrating than on purely electromag,netic 
theory. 

3°. Pair formation by e1ectrons of energy > 137 mc2 • By passing 
through ~ field (3) electrons of this energy may emit an f~quantum: "f~ 
bremsstrahlung" which leads to the formation of a pair. By (5) this may 

. be considered as a first order effect. 
4°. Annihilation of positons. The two~photon annihilation remains 

unaltered. A new effect, however, is the two f~quanta annihilation for 
energies > 274 mc2 which effectively leads to the creation of two pairs 
by one pair, and the one photon~ one f~quantum annihilation for energies 
> 137 mc2 giving a photon and a pair. In the ER case all three effects 
are of the order (6) wh ere E now means the energy of the positon in the 
rest system of the negaton; thus they are smalt. 

It is c1ear that these effects generally on1y can play a röle in that cosmic 
ray energy region wh ere the hard component is already of importance. In 
this connection BHABHA'S remark may be recalled 7) that the difference in 
properties of the hard component of cosmic radiation from those of the 
soft component may either be due to different properties of electrans at 
energies::;:::; 137 mc2, or to the fact that the hard component mainly consists 
of other partic1es than electrons; or to ·both causes. 

With regard to the f~interaction between electrons, ~t should be noticed 
that this can,not be treated by means of the customary expansion in powers 
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of v/c, for here the field quanta are very heavy compared to the generating 
particles so that the neglect of recoil as a first approximation has no sense: 
the effect is from the outs et relativistic. 
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