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GENERAL INTRODUCTION 1).

The main aim of the present work can be formulated as to be an attempt
to overcome, within the framework of quantum mechanics, the well known
difficulty of the present day theories of elementary particles, viz. their
yielding infinite self-energies, if a model for these particles is adopted
which corresponds with a point model in the classical domain.

Within the framework of classical concepts, tentative solutions for these
difficulties, already inherent in the classical picture, (cf. e.g. Chap. II, § 1)
have been put forward by various authors. However, not only is there no
stringent argument why classical theory should provide the appropriate
starting point for the introduction of new features necessary to remove
these inconsistencies, but moreover it must be emphasized that one cannot
consider a classical theory, in which the singularities in the self-energies
have been eliminated by some procedure or other, as to be necessarily
connected, on correspondence arguments, with a from the self-energy point
of view consistent picture of elementary particles. Indeed, by the process
itself of subjecting such a divergence-free theory to quantization new
divergences are again introduced. This circumstance is essentially due to
the fact that the very concept “one elementary particle in a for the rest
empty space’’ needs in quantum theory a revision as compared with classical
theory and it follows in fact directly from WEISSKOPF's calculations 2)
(surveyed in Chap. II, § 2) of the electromagnetic quantum field self-
energy of the electron that there is no correspondence at all between this
quantity and its classical counterpart.

The method which is followed in this paper in trying to obtain finite
self-energies consists in assuming the elementary particles to be the sources
of sets of fields in such a way that the various infinite contributions to the
self-energy to which these fields give rise cancel each other so as to make
the total outcome finite. In chapter II this idea is worked out for the
electron, while in chapter III the nucleons are envisaged from this point
of view. As already stated, we base our investigations on quantum field
theory. In particular the wave equation of the electron and the nucleons
are taken to be DIRAC's equation for spin 14 particles and it may be
directly stated that only then it appears possible, on the present method,
to obtain finite results if a treatment is given on the lines of the so-called
hole theory, i.e. if it is assumed that in vacuum all negative ’energy states
of the-electron, the proton as well as the neutron are filled up in accordance
with the exclusion principle,

Within the classical scheme analogous ways of attack have, been
proposed by STUCKELBERG 3) and BoPP 4) who have envisaged classical
theories of the electron where this particle is taken to be the source of a
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short range field besides the electromagnetic field (Chap. II, § 1). As
was to be expected, there is again — as in the purely electromagnetic
theory — no correspondence at all between the classical results of these
authors and those obtained, on similar assumptions, in the quantum theory
of the electron, (Chap. II, § 9).

In chapter I the more technical aspects of the problem on hand are
considered and the results obtained by others are criticized (cf. loc. cit.
§ 5). The reader who is interested in the general outline of the present
theory, rather than in computational details, may directly turn to the
second and following chapters, where the main results of chapter I will
be found summarized where necessary.

Chapter II is devoted to the electron. The final conclusion (loc. cit.
§ 8) is that, at any rate in first approximation with respect to an expansion
in powers of the fine structure constant, a consistent hole theory of the
electron, yielding a finite self-energy, is obtained if the electron is
assumed to create a short range scalar field, termed f-field. This field
appears to play a fundamental réle in the theory of nucleons, too: indeed
the f-field appears to be inseparable from the electromagnetic field (the
equations for which are not modified by the presence of the f-field,
though) and thus the proton, too, is a source of the f-field. In particular it
is shown, (Chap. III § 4) how on these lines the mass difference of proton
and neutron becomes amenable to interpretation. Further physical implica-
tions of the f-field hypothesis, amongst which the indetectability of the
f-field quanta themselves on account of their extremely short life time
and a deviation from CoULOMB's law in the hydrogen atom are the most
characteristic features, are discussed in chapter IV.

Chapter III deals with the self-energy of nucleons and the consequences
which the present ideas may have on the theory of nuclear forces. It is
shown that, at any rate in first approximation, the self-energy difficulties
due to the coupling of the nucleons with the nuclear force fields can be
overcome by the introduction of a neutral short range scalar field, the
“F-field” (not to be confused with the f-field mentioned above) with
which the nucleons are strongly coupled and which has a range con-
siderably shorter than the customary meson field range. '

For the electrons as well as the nucleons we arrive in this paper at the
conclusion that, rather than to consider the mass of these particles to be
entirely due to their field energy — as has often been assumed, especially
within the framework of classical considerations — the latter quantity
(divided by c¢2) is, within the present scheme, a small perturbation
compared to the particle mass which should thus mainly be of other (‘‘non-
field"”) origin.

Thus in the present dualistic theory a quantity like the so-called classical
electron radius ry, defined by
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(e and m being the electronic charge and mass) loses its original inter-
pretation which, in fact, just is intimately connected with the unitary point
of view (mass entirely due to field energy).

It is true that the present results are based on an analysis of only the
first approximation with respect to a development in powers of dimension-
less parameters (charge)2/hc, where ‘“charge” stands for the constants
describing the coupling between the particles concerned and the fields they
create. It would not seem unreasonable to expect, however, that a theory
which in this first approximation is consistent might in itself provide an
appropriate starting point for the discussion of the higher approximations
which, not only as regards the self-energy question, but moreover with
respect to all problems concerning the interaction between elementary
particles, presents us with inconsistencies.

The self-energy problem of the mesons has been discussed elsewhere 5);
for the sake of completeness, the main conclusion there arrived at may be
quoted here, viz. that the present method of eliminating infinities in the
self-energies by means of compensation cannot be applied to the meson
and that it would seem that our concept of the meson itself as an elementary
point particle might need a revision in order to attain a consistent theory
of the meson.

The present work was virtually completed in the summer of 1944 but
war circumstances prevented its earlier publication. I take the opportunity
to convey my heartfelt thanks to all those, without whose friendship and
hospitality the carrying out of this work would have been impracticable.

Finally I wish to express my deep gratitude to Prof. L. ROSENFELD and
Prof. H. A. KRAMERS for their kind interest in this work and for valuable
discussions.

Amsterdam, 1942—1945.

Notes added in Proof: 1. The §-field has been chosen to be of the scalar type for reasons
of simplicity. Further implications of the theory may not only show whether the f-field
hypothesis can be upheld but also whether the choice of a scalar field is the most adequate
one; similarly for the F-field. 2. An indication of fundamental differences in the treatment
of the self-energy of FERMI-DIRAC as compared with BOSE-EINSTEIN particles may
perhaps be seen in the results of SCHIFF, SNYDER and WEINBERG, Phys. Rev. 59, 307,
315, 1940.
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CHAPTER 1L

On the self-energy of particles with spin 15.

Summary.

§ 1. Introduction. — § 2. Hamiltonian of the total system; quantization
of free meson fields. — § 3. General formalism of the Proca-field. — § 4.
Calculation of the f -self-energy: a) the static, b) the spin, c) the fluctu-~
ation self-energy. — § 5. Calculation of the f -self-energy without

canonical transformation. — § 6. Self-energies due to other fields. — § 7.
On the higher order self-energies. — Appendix: 1. On the calculation of

—’
W) (py). 2. Self-energy due to charged fields. 3. On the electromagnetic
self-energy. 4. Canonical transformation in the scalar theory.

§ 1. Introduction. _

As is well known, the interaction between spin 14 particles generally is
described by assuming these particles to be the sources of (sets of) fields
which are quantized according to the Bose-Einstein scheme. These fields
can be characterized by the following properties of the corresponding field
quanta:

a. Their mass. This may be either £ 0, in which case we will in the"
following always speak of “mesons”; or it may be zero, as in the electro-
magnetic case, (photons).

b. Their charge: one can consider neutral or charged fields.

c. The transformation properties of their wave functions (field
potentials). Assuming the spin of the field quanta to be = 1 one can
distinguish between scalar (s), vector (v), pseudovector (pv) and pseudo-
scalar (ps) fields.

Yet, the three mentioned attributes of the field being fixed, the inter-
action is not uniquely determined. In fact, taking due account of invariance
conditions, we still can dispose of the form of the interaction operator
with regard to its containing derivatives of the meson field wave functions
or not *). If the operator is built up by using the field potentials only, we
shall speak of f-interactions and the constant, (having the dimensions of
a charge) determining the strength of the coupling between particle and
field shall be denoted by f. The invariant interactions containing derivatives

*) We_ adhere to the customary restrictions of considering no higher than first
derivatives of the potentials and no derivatives of the wave function of the spin 15 particle
in the interaction operator.
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only shall be denoted by g-interactions. The corresponding coupling
constant here has the dimension of charge (g) times length.

Before continuing the discussion, it may be useful, in order to avoid confusion, to point
out that the present use of the symbols f and g, which has appeared to me to be very
appropriate to indicate the deep rooted distinctions between the interactions containing
either or no derivatives, does not conform with the notations of KEMMER 1). The following
table gives a survey of the various interactions and the notations for the correspoading
“charges”, according to KEMMER (K.), MeLLER and ROSENFELD 2), (M.R.) as well as

the present paper; w = V xc/4n.

Type of field ix;It‘ZrZeCf::n Pr.p.pce,rh :(.r gl:l. R. in’It'Zl::t;fn Pr.p-:rh ?(.r g;[- R.
scalar = s ; scalar fs |9q@| £ | vector gs |faxe| £
vector = v ‘ vector f, g | gy tensor g, |fp*@| 92
pseudovector = pv ! pseudovector fpo | fe@ g pseudotensor | gp, |, *® g2
pseudoscalar = ps ~ pseudoscalar fps fgo fi pseudovector | gps |gg*® f

The self-energy W(-;;) of the particle, (; denoting its momentum), i.e.
the energy that must be attributed to it due to its interaction with the
field concerned, can be developed in an infinite series with respect to the
parameter (charge)2/fc:

WG):nng(")(;). R ()

The development (1) applies equally to a “one particle theory”, where it
is assumed that all particle levels of negative energy are empty, as to
“hole theory"” where the vacuum is considered as a state in which all these
levels are occupied in accordance with the exclusion principle.

The aim of the present chapter is twofold:

First, to derive the explicit expression for the first order self-energy

_’
WQ)(p) for the various types of fields, on one particle as well as on hole
theory. For the electromagnetic self-energy of the electron this problem
has been discussed by WEISSKOPF 3:4). Furthermore, KEMMER1) in-

vestigated, on hole theory, W(1) (;) for the case of nucleons interacting
with meson fields. Unfortunately, however, his results are not correct, a
point to which we will find opportunity to return in the course of the
discussion, (§ 5);

Secondly, to discuss some general properties of the self-energy of any
order on similar lines as was done by WEISSKOPF 4) for the electromagnetic
case.

In connection with the electromagnetic problem it has been remarked by

—’
WEISSKOPF, cf. loc. cit. 4), p. 81, that the direct calculation of W(*(p),

—’
p % 0 by means of the representation of this quantity as an integral over
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momentum space is ambiguous, essentially because, in this case, the pro-
blem is not spherically symmetrical with respect to that space. However,
the total self-energy generally can be written as (cf. loc. cit. 4) p. 80)

W(Z):(fs..ﬁ"d@;, R )

where S.. and F** denote the tensor components of a source function and
of a function of the field variables respectively, in such a way that the
tensor product of S.. and F*'is a scalar density; { ) - indicates that the

expectancy value of the integral should be taken for a situation in which
-
one particle in the state of momentum p is present. Hence, calling W the

- ->
value of W (p) for p = 0, we have

Wip)= WL T—p
and thus

W‘ﬂ’(?):W‘"’l/lTﬂz, (W=wwm), . . . (la)

because the series in the right member of (1) represents-a development
with respect to the invariant parameter (charge)2/#c. Thus, once one
has defined the way in which the momentum space integral W(® is to be

-'
calculated, W((p) follows unambiguously from (la). Now the only
natural way to compute W(" is4) to sum first over all contributions of
one spherical shell concentric around the origin and then over all shells.

_*
Defining W( in this way, W(®(p) is then fixed by (la), or, in other
words, the contributions of the various momentum space regions to

—>
W (p) should be taken together in such a way as to yield (1a). It should

be noted that the computation of W(")(;) by means of the same pre-
scription as adopted for W(?) would not lead to the connection (la). An
example of this is given in the Appendix, note 1.

In applying (2) to hole theory, it may be recalled that the expectancy
value of any operator O depending on source functions S and field functions
F, where now S and F refer to the total distributions of the completely
occupied negative energy levels plus the one particle in the state of
positive energy, should be replaced by the expectancy value of

O(S‘_Svaco F_Fvac)_ Ov.lc P S S S S S (3)

where S,,. is the same source for the vacuum, while F,,. represents the
field generated by the vacuum distribution; O,,. is the expectancy value
for this distribution itself. The subtraction of O,,. represents a suitable
fixation of the zero point of energy, ensuring the symmetry of the theory
with respect to particle and anti-particle.
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It will be clear that (1a) holds irrespective of whether one has to do
with one particle or hole theory. Thus the establishment of (1a) consider-
ably simplifies the computational work we shall have to perform, as it
allows us to confine our attention to the case that the particle momentum
is zero. Another simplification is obtained by remarking that we can
confine us to explicit calculations for neutral interactions only:

Let us consider an arbitrary neutral f- or g-interaction with coupling
constants f and g respectively and the corresponding charged interaction
involving the same meson Compton wave length x—1; we prime those
quantities that refer to charged interaction, thus the coupling constants in
the latter case are f’, g’. If f = f’, g = g/, the probability for (virtual)
emission and absorption of field quanta is the same for the neutral and the
charged interaction. The relative magnitude of W(*) and W(» will then
only depend on the number of intermediate states in both cases. As, in
first approximation, for a proton only the positive, for a neutron only the
negative mesons come into play, we have

W(‘) W(l)' W(l) W(l)’
if
lfi=I1f1. lgl=
the absolute values of the constants here occur because W(1) is proportional
to the square of the charge. If both neutral and charged interaction are
present, the latter relations represent the condition for the theory to be
“symmetrical”. In a symmetrical meson theory, the first approximation to
the self-energy is therefore twice that of the neutral theory, while in an
unsymmetncal theory, W() will be the same function of f, g, » as W(l)’
is of f/, g’, #.

In order not to complicate unnecessarily the formalism, we will therefore
confine ourselves in the sections dealing with the first order calculations
to neutral fields; a simple example of the calculation for charged fields,
exhibiting all essential differences with the neutral case is given in the
Appendix, note 2, where also the connection between W(" and W(* for
n>1 is briefly discussed.

The properties of the electromagetic first order self-energy have been
examined by WEISSKOPF 3 4) by gauging vector and scalar potential in
such a way that the operator of interaction between particle and field is
separated into two parts: one, involving the Coulomb potential, yielding
the static interactions and, correspondingly, the “static” self-energy,

—)
and one depending on the transverse vector potential A,, which gives rise
to a “dynamic” self-energy which has no classical counterpart. The latter
is defined as the expectancy value ~ e2 of

Y e
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- - -
where s is the current density. Both s and A, can be developed in a power
series in e, the electric charge:

- o - - ©
s= 23 s A =3Am. . . . . . (1)
n=1

n=

o

the term with the superscript (n) being proportional to e®. The first term

-
in the development of A, is independent of e and denotes a superposition
of plane waves which always may be added to the solution of the in-

—'
homogeneous wave equation for A,. Therefore, in first approximation (4)
may be replaced by

-> - - -
—%f s(l)Agl)dv—;,f WAOdy . . . . . (48)

The first term denotes the interaction of the unperturbed “proper” current
with the proper vector potential (i.e. the vactor potential due to the un-
perturbed current distribution). It has been shown by WEISSKOPF, (cf.
loc. «cit. 4), section III) that jts contribution to the self-energy (for a
particle at rest) can be interpreted as to be due to the magnetic moment
of the electron; it is therefore called “spin” energy. The second term
accounts for the interaction of the electron with the fluctuating electro-
magnetic ‘“‘zero field'; its contribution is called fluctuation self-energy.
On hole theory, the subtractions (3) should be performed.

The discussion of W(1) for other fields can of course be given on the
same lines as WEISSKOPF's treatment: by means of a canonical trans-
formation, ‘the interaction operator can be divided into a static and a
dynamic part. The latter can, by means of developments similar to (1b),
be written as a sum of a “spin” and a “‘fluctuation” term, like (4a). In
order to show clearly the characteristics of the mass of the field quanta
being different from zero such a treatment will be given for the f -case,
or, as it is often called, the Proca-field 5), which will be shown to involve
ithe electromagnetic field as the limiting case that , the inverse field range,
is zero; this is not quite trivial, because of the well known differences in
methods of quantization of Proca- and Maxwell-field *). In particular it
twill be shown that the divergent part of W (1), as obtained by developing
the integrand of the momentum space jntegral representing W(1) in the
region wof large p, is independent of «. In the ‘course of this treatment
simple general formulae ‘will be obtained by means of which the self-
energy can be computed for any coupling.

However, it will appear 'that the distinction between static and dynamic
terms, which underlies most investigations on interaction problems, is not
essential as concerns the self-energy, and that the calculations are even

*) Cf. eqg. L. ]J. F. BROER and A. PAIS, Proc. Kon. Ned. Akad. v. Wetensch.,
Amsterdam, 48, 190 (1945).
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considerably simplified if no canonical transformation is performed,
especially in the cases of g-interactions and of charged fields in general:
idue to the non-commutability of the spin and of the “isotopic™ variables
such a transformation would here yield a dynamic operator in the form
bf an infinite series which would make it extremely cumbersome, if feasible,
to compute the dynamic self-energy. In order to compare the methods
with and without the separation into static and dynamic parts, we shall
apply the latter to compute again the self-energy due to the Proca-field.
It will be most convenient to consider W(1) as the sum of two 'terms: one
Fomesponding with the sum of static and spin energy, which is different
for one-particle and hole theory; the other, the fluctuation energy which is
lthe same in both cases. Having thus ‘dealt in detail with the f -interaction,
twe will have collected all essential formulae for a simple and straight-
forward calculation of all f- and g-self-energies.

In the next section, some well-known formulae will be collected con-
cerning the Hamiltonian of the total system and the quantization of free
meson fields. § 3 deals with the general formalism of the Proca-field and with
'the canonical transformation which separates the static and dynamic parts
of the interaction. In § 4 the self-energy due to this field is calculated and
it is shown that jt is legitimate to consider the electromagnetic self-energy
as the special case of the former for x = 0. In § 5 the same quantity is
again computed, but now without the use of a canonical transformation,
while § 6 consists of a survey of the other self-energies and their diver-
)lgen;oe properties. Rinally, § 7 is devoted to the establishment, on hole
theory, of some general properties of the self-energy of arbitrary order.
In particular it is shown that all f-self-energies W(f"’ diverge at most
logarithmically for any n.

§ 2. Hamiltonian of the total system; quantization of free meson [ields.
Generally, the Hamiltonian can be written as

Heowr = Hy + H 4+ Hpaas
with
h o= * (5)
Hy =ftp*(-—i— aV+e;M)tpdv

The velocity of light is put equal to 1. M is the mass of the particle *);
H depends on the particle variables as well as on those of the fields,
Hpeaas on the latter only. In view of applications to hole theory, we take
w and yt to be g-numbers, satisfying the commutation relations

- - - - L -
vr(w )yl (X, 0+t (X, 0y, () =8,rd(x—x), r.r’=1,...,4 (6)
all other pairs anti-commuting. Introducing a system of one particle wave

*) In applying (5) to nucleons, we take the same M for proton and neutron.
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functions @g, where the symbolic index g denotes momentum as well as

spin and positive or negative energy state, v can be expanded in a sum
which lis in 'the same sense symbolic:

y=2agpq
with A 4

aq a;, + a;, aq = 6qql

while all other pairs anti-commute, The diagonal elements of products of
two or four a's are

alag =Ny, agal=1—Ng . . . . . . (§
atagala, =N N, afaralag=Ng(1-N;) . . . (9

N, is the occupation number (0 or 1) of the g-th state. The ¢, may be
developed similarly to (3); in zeroth approximation they are the free
particle wave functions (0:

-

i -
> -—(p x—Eg t)
— = q
P =uq(p)eh

(10)

which are supposed to be normalized in a big cube of volume 1 *).

Next we consider the field equations in free space, (mo particles
present). In the vector, (or, which here amounts to the same, the pseudo-
vector) case they are, (a dot denotes differentiation with respect to ¢)

- -
F=—gradV-U. . . . . . . (113
—’
G=rotl, . . . . . . . . . . (11p)
divi"':-l-sz:O. o § 8 1]
- > -
rotG+x*U=F. . . . . . . . (11d)
As a consequence of (11, ¢, d):
->
divlU+V=0. . . . . . . . . (12

The equations (1la, d) may be derived from the following Hamiltonian

Hﬁ,m,=;f3%'2+62+x2(i'n+VZ) v, . . . (13)

*) The actual systems which are considered in this paper consist, in zeroth
approximation, of free particles and of free meson fields, Thus the wave functions of
the total system are in this approximation given by (10) multiplied with an infinite product
of d-functions denoting the stationarity of the occupation of the meson states.
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in which G and V' must be considered as “derived” variables 6), i.e. as to
be defined by (115, c) in terms of the canonical variables l_; and —.F" which

satisfy ithe following commutation rules

[w&amGML=%mu;}L....(m

U may be written as a superposition of plane waves
- - -> > -> >
U= 2 e [Ur(jk)elk x-vd L U (j,k)e-tk x—1)],
7=0,1,2—>
k . (15)
v= "%+ k%

The wave vectors k have to satisfy jperiodicity conditions on the boundary
of the cube in which the whole system is supposed to be enclosed. For the

polarization ve‘ctors:/: the following relations hold

- - —,: - - =
eo,‘.=k°5—k—, k=|k|. enxepe=28jp.. . (15a)

Thus j=0(1,2) denotes the longitudinal (tfansv.erse) waves. The
quantization yields by standard methods as wepresentation for the Fourier
amplitudes

U (Rherars = U= G Bororn = 22D, j=1,2
(16)

-> i T ET)
U+ (0,k)nsn1 =U=(0, k)ns1->n = % ’ (r;-:- ') ,

all other matrix elements vanishing. The notation n — m denotes a transi-

. -
tion in which the number of mesons with wave vector k and state of
polarizatjon j changes from n to m.

In the (pseudo)scalar theory the field equations are

-
P=gmad . « » s« » » « » (178)
A==y o ¢« 5 + » « » » (T8
- .
divlil+4=x2Q2. . . . . . . . (179
The Hamiltonian is
H@a={fﬁﬁ+AL+ﬂgﬁa,.. T

with ; as derived variable defined by (17a). We have the commutation
rule

[g&aA&mL=%o&;m
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On developing Q:

-> B - —_ =
Q=3 [Q* (k) eik = 4 Q (k) e~i(k x-+1],
I
quantization gives

Qr (k)n—r a1 =8 (k)n+1->n = V

A+l 9)

§ 3. General formalism of the Proca-field.
The field equations are given by (11a, b), while (11c, d) are replaced
by *)
—’
div F4+x*V=N , N=fyty,. . . . . (20
- > > > - :
rotG+x*U=M+F , M=fytay . . . . (21)
(20) must again be considered as defining V in terms of F and N. The
Hamiltonian is given by (5) with (13) and
- - _
H=—{MUdv, . . . . . . . (22

while (14), here holds too.

In order to obtain the desired separation into static and dynamic
interaction the case need be considered in which all velocity dependence
is neglected. This situation is described by the static equations

E(,:-—gtadVo. dlvFo-i—szo N, Uo—-O . . (23

The corresponding static interaction can be separated from all other terms
of (5) by means of a canonical transformation, If X is a function of the

“old” variables, from now on indicated by 0, F .. and X the same
function of the “new” ones: U, F, ... the unitary transformation effecting
this separation is

o~ i - - - -
X=5"Xs S=eprK K=fF.,Udv=fF° U, dv, . (24)
- - )

where U, is the longitudinal part of U. Using (23) we get

—+ -+ > = o - -
K=—f2 [ [do d” y1) v, G T, @) T 2 (=",

where
_x’

1()=

4nr

*) In §§ 3—5 we write for simplicity f instead of f,. Throughout this paper all charges
are expressed in Heaviside units.
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is the Green function of the field, satisfying
Ax@@—#x@)=—¢6@) . . . . . . . (25

We now transform the old Hamiltonian H, given (in terms of the old
variables) by (5), (13) and (22), and will thereto use the commutation
rules (6) and (14) which now have to be interpreted as holding between
the new wvariables which indeed are again canonically conjugated. Pirst
consider H y:

m=HM+[K,fw+'£-V'7wdv]_.

On the righit hand side 'the first two terms have been written down of the
development of H in an infinite series; 'it can easily be seen, however, that
the higher terms disappear. With the help of

[t (¥)wr @) wh (=) pr (2] =

-+ - - - -»> =
=yt (x) wr (x) Orr—yt, (x') yr (x) 8rpn} 8 (x—x7)

it is found by means of some partial integrations and taking into account
'(25) that

~ -»> > > > > o - -
Hy=Hy+ f M U, dv—x? f M(x') U, (%) z (|x—="|) dv dv’.

The transformation of (13) is performed with the help of

~

- 5> o> - -+ - -
=U, F=F+F, G=G=rotU=rotU,,

2

S

A - -
V= V—xdiv Fy= Vy—x~2div F.
- -
U, is the transverse part of U. Thus

ﬁﬁcldl = Hpass + V

.where
szffN(;)N(;’)z(IZ—;’I)dvdv’. ... (26)

is the static interaction. As H — H, the total transformed Hamiltonian
finally becomes
ﬁtotal=Hm + Hpeas + V+ W,
where
> - > > > - »> =
W=—fMLLdv——x’ffdvdv’M(x) U, ) z(|x—x']) @7)
2
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is the operator of “dynamic” interaction. Taking x = 0, (26) and (27)
yield the well known corresponding expressions for the electromagnetic
field.

From (26) and (27) the ‘following expressions ifor the static, spin' and
fluctuation energy are obtained, cf. (1), (4a) or loc. cit. 4) eq. (21) *)

W = }ffdudv’N(;)N(;’)x(l_;—;'l).

W =—1% f M‘”U“’d"‘“Jf do dv/ MW () U (") 12— ')

) > - 52 SR S , ,
Whuee =— % M"’U‘f’dv—f dvdv’ M@ (x) U (x") x (|]x—x"|), . (28)

where the overlining denotes that the expectancy value should be taken
for the state in which one particle is present in the lowest positive energy
level. In the case of hole theory, the subtractions should be performed in
accordance with (3).

§ 4. Calculation of the f -self-energy.
a) The static self-gmergy.
The operator is

[ dod? (NG~ N G N () — Nuwe 0} 25— )=

—""f f do dv’ {N () N &) }ac 2 (| x—2"]).

Using (7), (9) and (10), one finds for the diagonal element, if there is

_’
one particle present in the positive level pg

f’hzs( Y ful, Po)uq(P)Hu*(P)uqo(Po)i

Wk = ) .- (29)
2 g=1,2 g@g=3,4

w2+ [p—pol?

where
u=hox

is the meson mass, (having the dimension of a momentum). The plus
(minus) sign holds for the one-particle (hole) theory. The summation

q =1, 2, (q = 3,4) means integration over all values of p as well as

-
summation over both spin states corresponding with each p and with the

*) In the expression for W(slt)at , N has been written for simplicity instead of N(%).
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positive (negative) energy sign, while S denotes the averaging over the

two possible 'spin states g, corresponding with ;0 (and positive energy).
Generally, { ut Xu,}, where X operates on the spin variables is the inner
product of u} and Xu, for a fixed spin and sign of energy of the states g
and r. The spin summations can be performed in the usual way and one
gets for pp =0

5 f (one particle theory). . (30)
Wi 16n i
_ M dP

T 167x*h ) P(p*+pu

3 (hole theory) . . . . (31)

with
P=+|/p*+ M?.
Developing the integrals gives, (f.t. = finite termis)

2
='4£2hf dp +£t. (one-p. th). . . . (30a)

+f.t. (hole th). . . . . (3la)

uzh

Thus the divergence on the onve-particle theory is of the same type as
that of the classical f -self-energy of a point particle, viz. linear.

The corresponding expressions for the electromagnetic field are found
from (30) and (31) by pufting u = 0. Such a proceeding fis obviously
legitimate as it is identical with the istatement that the Yukawa potential
goes over into the Coulomb potential for u = 0.

b) The spin self-energy.
We have to compute the average value of

- - - - = =
= %f dv [(MO—MQ)) (uO-Ug),,) — Mo Uub),,|

_%zf[dv dv’ [{M®" (;)__Mga)c(x); {Um(x')—uﬂlm(x’)}—

T e - -
— { MW () UD (x)}vac] 2 (| x—x").
The terms tin the first line denote the transverse, those of the second the
—
longitudinal spin energy. U(1) is the solution of *)

-
O U®— 2 U =— MO

*) It should be noted that this equation is the same in the new as in the old variables,

cf. § 3.
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and may therefore be written as

t
U‘”—fdke”‘"f s"”(t t)deM“)(E Je-i*¥i. . (32)

_’
In M) we may insert (7) with (10), as it is the “unperturbed” current,
(~ f); the dependence on the ag is the same as for the static energy;
again using (9) we get for the spin energy

f’h’ n F 1 1
S(.,Z.F_z,)—zm[lso E—#h» TE=E,— v]f(””)
-»> - -+
F={u} (po) a. uq (p)} tu} (P) a, ug, (Po)i +
’ul -»> = - -+ = -+
o {"zo (Po) @, uq (p)} {“3 (P) @, ug, (Po)}
B+ [p—po?
This may also be written as
2 %2
~EXs(z + z) - .. . (3%)

TS L [p— ol — (E— Ep)?

- -
a, is the component of a perpendicular to p—py. @, is parallel to this

vector. The first term of F corresponds with the transverse, the second
with the longitudinal energy. The terms in (33a) tin square brackets
represent the characteristic energy denominators. As is well known, those
states g must be excluded from the summations for which the corresponding
energy denominators are equal to zero. We now show that for one
particular value of E the second denomlinator may vanish, i.e. E = Eq—#».

As this E will be seen to be << 0, we have marked the summation J
g=3,4

with a prime to indicatg that this value should be omitted. Taking for
simplidity po = 0, so E; = M, we get indeed that E = M — v if

E<?
1
p:l'-i'uMz —w=p .. (3
provided
p=2M.. . . . . . . . . (349

Consequently if (34a) is satisfied, which means that the mass of the
meson is at least twice tthat of ithe particle, the momentum space integrals
concerned should be understood in the following way

p'—e @
-
fdp:‘in lim [fpz dp +‘j~p2 dp].
n—>0
0 p+n
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If on the other hand u < 2M, the integration simply means

i @
fdp:‘!ufpzdp.
0

In this paper, we shall, for shortness, always write f dz_;. With

4

— 2 2 __ M
X’—P +/.l, 4M2

the separate expressions for the transverse and the longitudinal spin

_’
energy are found to be, if py = 0,

321::311 ( M) c)i(p 3 7{: A (Aﬂd)z f dp+f.t. (onep.th.) (35a)

N :
wa - d 2
spin, transv. —Tg—,;{z_ﬂliﬁf?p(pz_i—%#z):_&n—!ﬁi[fpdp_

I‘J2 1 ut dp
2 3 1 + Mz 2 W ;f';] + £t (hOIC th.) . e e (368)
—64F3h IT;‘J‘—Z X—zd—;——z = finite (onep.th) . . . . . . . . (35b)
1) — = . (P + #?)
spin, long -+
N dp(P*+4pd)_ i dp
— sl [T anth 2 1.t (hole th) (36b)

It is easily seen that, if (34a) is satisfied, which means that X becomes
zero for the p-value (34), there occurs mo additional contribution due to
the singularity of the integrand for this p; thus, in particular, the divergent
part of integrals like (35) and (36) is independent of (34a) being fulfilled
or not. ,

Again, as in all cases where quantization is not explicitly involved, there
is no difficulty in performing the transition 4 — 0, whch gives the electro-
magnetic spin engrgy. In this case the longitudinal contribution vanishes,
of course, for both one particle and hole theory, while in the former the
transverse part also becomes zero, in accordance with the result of WEISS-
KOPF *).

It may be remarked here, and it will be useful to note this for further
purposes, that (33a) can also be written as

90.0] Wflq.k) q.lejlqo-O)
EO—E—hV

WO =3S(3 = 3) 3 [
q=1,2 q=3,4 j=0,1,2

(37)

+(Qm HW1|Q- (q'0|WJIQm—k)

E Eo'—h'l'

*) Cf loc. cit. 4) eq. (19) and (23).
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where

-

- -
hk=pp,—p. . . . « « . . . (38)

and where the matrix elements (| W |) refer to the interaction between
particle and quantized meson field:

. - A -
i=12 (q0|W;lqk)=—F} 3 lufacjug
(39)

=+ x 1/ h
(@0. 0| Wolq. k) =—Ff |/ 3, tuf ak® ug}. etc.
Cf. especially (16) and (27).

An interesting result is obtained by taking together (29) and (33b).
By means of the operator identities

-> > S>> -

:;L ;:::: (a P—Po) (a. P—'Po)
IP—Polz . v .« . (40)

> > >
(a, P—po) = E—E,,

it follows that

wo 4+ W =

stat spin

F L4 S(2 +=2) fuf ug} {u} uo}—{uf a uq} {u*a u} ¢ - (40a)
q=1,2 g=3,4 F + IP_PO |2_(E_Eo)2

The invariant expression behind the summation signs is the generalization

to the case u >~ 0 of the invariant electromagnetic matrix elements of

MoLLER 7). We will therefore denote (40a) by W( : '
WO =W 4 wo

stat spin *

(40B)

Similar invariant matrix elements, with other numerators of course, will
be 'found to occur for any f- or g-interaction; this enables one to write
down directly the expression for W , or, more generally, the matrix
elements of interaction, for all KEMMER cases.

c) The fluctuation self-energy.

It is well known that the lowest (positive) energy state of a “free”
particle which produces a field is defined as follows: the particle has zero
momentum, while all occupation numbers of the quantum states of the
field have zero expectancy value.

Notwithstanding the latter condition, the particle can, by virtual
lemissions and reabsorptions of field quanta, interact with the zero field.
‘From this interaction originates the fluctuation self-energy of the particle.
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The average value which we have to consider is given by (28), in which,
in de first place, 1&!2) shoild be replaced by A_Z(2)—A—2vac. It can easily be

- -

seen, however, that the terms M, U yield no contribution. Thus W)
lis given by the difference of the expectancy values of (28) for the situations
“vac + qo" and “vac”.

- -
M) is the current due to the field U(® which is considered as a time
dependent perturbation. We have

- — -»>
M® = fyOrt gyl 4 fyO)t g y©
twhere (p‘°) is given by (10) and (p(” is the next term in the development,

similar to (3), of g4 in a power series in f. Thus ¢p(” (x, t) is the additional
ipart of the one particle wave function due to the occurrence of the per-
turbation term (cf. (27))

- - - -> > o> >
HO=—falio—wfa [dEx(x—E) U0 @
in the one particle Hamiltonian. Therefore
- i : - - - -»>
Q) (x, ) = — F 2<P(,‘.”fdtfdf POt (&, 1) HO (&, 7) 9D (£, 7).
r
0
After some calculations one finds, using (9) and (16)

. QG.k , QG
— 4 ]' - -
M"’—fzqz' N, Zgufau,} gu*a [E Eq—hv+Er‘E9+h” uq%e it

(41)

Q%= ELIR 1 ) o

where some terms containing U~ (j, k) which, on account of the choice of
the sequence of factors in. (28) do not contribute and some that lead to

—’
terms in (28) with zero time average have been omitted. k is given by

I(38). The prime affixed to the summation 3 indicates that terms which
qr
would make zero one of the energy denominators in (41) have to be

excluded from the summation. It is obvious that the results will be the
same on one particle and hole theory. From (41) and (28) we infer that

1 e >
—— [1_2”2"}, a ejrugiiut a e ugf +

g=l,...,4_ inv

wip=s >

fluet =
(42)

%2 - - E—E
+m {ul ak®ug}{uta k°uqo}:|. ™ 0
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where
- -
inv=p?+4 |p—po|*—~(E—Ep)®. . . . . . (42a)

is the invariant denominator we already met in (33b) and (40a).
Furthermore, it is easily seen that, using the same notations as in
(37)—(39)

,0|Wj|q, kWl qo,
9&“—%822[(‘“0‘ ’ﬁ,_k),é"_,,,' 11900

. (43)

(Qo-—‘k |Wilq,0)(q. 0| Wy Qor—k)
EO—E + hi’

We now turn to the discussion of (42) for py = 0. If (34a) is satisfied,
the p-value (34) should again be excluded from the integration in the way
indicated in § 4b. The first term in the numerator of (42) corresponds with
the transverse, the second with the longitudinal fluctuation energy. The

results are
2 2 4 d
) —_f _(E_» dp
Wﬂluct trans. — lsuith I/Pz+.“2 42 Mh l:fpdp ( 2 4A42)~j‘ P :I + f.t.
(44)
0 Y d dp w Pa ‘dp
Wﬂuc!. long. ™ 32,,3 Mt X VP i ,“ 8712 M’l + f t.

i However, the question has to be considered whether it is justified to
identify the expressions obtained by means of (41)—(43) with the
fluctuation energy due to the electromagnetic field if x = 0. As is well
known, the quantization of this field cannot be performed on the same
lines as for the Proca-field essentially because the relation (12), which for
% 5% 0 is a consequence of the field equations (1lc, d), should here be
considered as an accessory condition in the sense that its left member,
operating on the occupation number functional of the electromagnetic field
should yield zero in all cases actually realized in nature. The different
footing on which the Maxwell- and Proca-quantization are based is
clearly expressed by the fact that, whereas the matrix elements of the
transverse vector potential smoothly go over into those of the electro-
magnetic vector potential if x — 0, those of the longitudinal part become
infinite for x = 0, cf. (16). Thus it is evident that the transverse fluctu-
ation energy for » 5% 0 yields the electromagnetic spin energy by simply

putting »x — 0. But, notwithstanding the singular behaviour of U* (o,—l:).
the same transition may be performed for the longitudinal term, as the
operator of longitudinal dynamic interaction stands proportional to »2, cf.
(27), which makes its matrix elements ~ %, as we have seen in (39). Thus
'we may state more generally:
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All final results concerning particle interaction or dispersion, in
which neutral 'vector mesons are involved, the interaction of which
with the particles is described by a four vector source in the meson
field equations, continuously go over into the corresponding results
for the electromagnetic field by putting x — 0, if we start from the
suitably transformed Hamiltonian of the Proca-field.

Thus the electromagnetic fluctuation energy is obtained from (44) by
putting 2 = 0. The longitudinal part then vanishes and the total result is *)

*
e? d|
W =tgmitz | o - - - - - - 449

Collecting (30a), (31a), (34), (35) and (44) we obtain for the divergent
part of the total first order self-energy

Jm[fpdp+M<1 +2’L,)fd +4M2f ] (one-p. th)

32 M (d
8a,hf"(h1:h)

the latter being independent of %, which means that the divergent term of
the Proca- and the electromagnetic self-energy are identical.

Finally, it follows from (37) and (43) that the total dynamic self-
energy may be written as

S 2/ (QOv 0 [ Wl | q, k) (q' k | Wl | Qo» 0) , (one p.-th')

j Eo—E—’hV
S> (Qo-0|WI|ka)(ka|WJ|Q0-0)
Jj q_l 2 Eo—‘E"‘hV

, (qos kIWJIq-O)(Q»Olwfiqo. —5
53 ) E—Fy iy , (hole th.)

a result which we would have obtained directly, had we treated the
problem on hand from the start by means of the general formulae of
second order perturbation theory. With regard to the case » — 0 the same

*) WEISSKOPF's expression for this quantity, cf. loc. cit. 4), p. 81, is too large by a
factor 2. The expression for W should be, in the notation of loc. cit. (e is expressed in

ordinary units)
P+ po:l

e?

W”"""'Z wmch mc

limgp—) [pp —miclg

cf. loc. cit. eq. (20) and (23). Therefore eq. (26) loc. cit. is again correct. The result
(44a) is also obtained by HEITLER, Quantum Theory of Radiation, Qxford Clarendon
Press, 1936, p. 183 eq. (23).
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considerations apply to the total dynamic self-energy, calculated by
erturbation theory, as those just made in our above treatment of the
fluctuation energy.

§ 5. Calculation of fv-self-energy without canonical transformation.

From the developments of the previous section, it appears that the
separation of the self-energy into static and dynamic terms presents no
advantages. It e.g. separates the static from the spin energy, but we have
seen that it is more natural to take these terms together. We shall now
show that the calculation becomes much simpler by not performing a
canonical transformation at all. Thus we have now to consider the
expectancy value of

H=;f(Nv-_A71ﬁ)dv. ... 49)

‘From the point of ¥iew of quantization, it is more convenient to express H
in terms of the canonical field variables. As has already been remarked,
V is a derived variable, defined by (20). Therefore we write

> 5 - 22
H:%f(x-szivF—MU)dv+ TJdev.. .. (46)
Developing all quantities similarly to (15) we get

-> -> - 22
H=% | (x2NOdiv Fb — M® UW) dv + —z—fN“’z dv
(47)
- -> -
+ % | x2N@div FO— M@ U0) dy.
The terms of the first line will yield W , those of the second W{ .
The last term of the first line gives, by means of first order perturbation
theory
f2
ﬁs(qﬁ,ziqﬁ,”"zo""; fubugd. . . . . . (48)

To obtain the other terms of the first line, which will be called wa,
a formula similar to (37) may be used. Putting

> >
H’=f(n-2NdivF—MU)dv.. ... . (45a)

we thus get, using (38)

- ->
(90. 0| Hj| q. k) (q. k| H]| q0. 0) +
EO—E—'h'V

9=12 g¢g=3,4 J

W =345(3 + 2’)2[
(49)

’ _> —) ’
+ (q. 0| HY| qo.—k) (g0, —k | Hj| q. 0)
E_Eo—hv
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where (cf. (15a))

Lo f1/h >
(qo.OlHolq.k)=; 2 kiul ugl—v{ut akug} |,
N - - R L
i=1,2: (qo.OIHj|q.k)=fVE ful aejrngl;etc.

Therefore, remembering that H’ is Hermitian, the expression between
square brackets in (49) may be written, using (42a), as

Fh [zuz,,<k—v37€°>uqz:u;(k—vﬁ")uq.,z .

22y E,—E—hv
Ll (k+vak°)uq::u+(k+vak°>aq.,:] (50)
E Eo—h'l'

> >
f? n? b {ub aejiug} {ulacnug}
2 j=12 inV

‘The difference in sign of 73750 in the first and second term of (50) should
be noted. Using (40) and (40b), (49) can be written as

A i $S(Z 2 2)uf,ugl {uf ).
The latter term is cancelled by (48), and so the first line of (47) indeed
gives W This result can also be obtained by starting from (45),
developing as in (47) and integrating the equations for V and U in a way
similar to (32).

Similar to (43), the terms of the second line of (47) can be written as

. ; - - i
wo =35z 3| @0 HilekakH H|q0 |
q J EO—E—hV (51)

(Qm k|H!|Q-0)(q'0|HJIQO-‘—k) ]
EQ_E+h$’

After some calculations, one again finds (44) on putting po = 0. However,
one does not get (42), in which p, has not yet been put equal to zero, but
this only means that, in computing the fluctuation energy for a moving
particle, starting either from (42) or (51), the contributions of the various
regions of momentum space should be taken together in a different ‘way,
so as to yield the uniquely determined relation (1a); cf. further § 1°*).

*) The same phenomenon we have also found for other fields, cf. e.g. the Appendix,
notes 3 and 4.
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Thus, as it should be, the present method yields the same result as that
described in the previous section. From the considerations of § 4 we know
already that the electromagnetic field self-energy is obtained from that of
the Proca-field by putting  — 0. However, contrary to the calculation of
§ 4, it is by no means justified (although we know it indirectly to be true)
to say, that the results of calculations which do not involve a canonical
transformation yield the corresponding electromagnetic ones if x = 0:
whereas it was seen in § 4 that the matrix elements of the interaction
operator involving longitudinal “free” mesons are proportional to x, this
is not the case in this section, where the distinction between “free” and
"‘boun*d" mesons is not made, but where the whole particle-field interaction
is treated from the start as a perturbation. Thus it is necessary to consider
separately the electro-magnetic self-energy as computed without a canonical
transformation. This is done in the Appendix, note 3, by quantizing the
field with the help of FERMI's method 10).

From (47), (49) and (51) the following expressions can be obtained
for W), noting that H’ is hermitian

-2 A~
Hole th.: W0 =2 f N®2 gy +
. (52)

- - - -
(90.0|H|q. k)(q.k|H}|90.0)  «, (q0.—k|H}|q.0)(q.0|H}|qo.—k)
=B %‘[ q=zl:2 Eq—E—h q-—%',Q E—E,—hy

A
One-p. th.: W= foN‘”z dv+
. (53)

-> -
, (0.0 |Hj| q.k) (q.k |H| q0.0)
+5z 2 E,—E—hv

We have now obtained sufficiently general formulae to be able to
compute straightforwardly all self-energies due to fields of all types. To
this purpose one can either use (52) and (53), (the N2-term having to be
replaced by corresponding other terms, of course), or retain the division in
Wi and Wg,.. We shall here follow the latter procedure and thus will
use (49) and (51).

With the help of (52) and (53), the present results can be compared with those of
KEMMER's *). This author divides the interaction operator, (referring to charged fields,
but this is immaterial to the issue), into two parts, Hy and Hz. In the case of f -interaction,

f, corresponding with KEMMER's g, the term x-2 [/ N2dv corresponds with Ha, the other
part of (45), viz. H', cf. (45a), with Hy. It may be remarked that, from the point of view
of the self-energy, the separate consideration of Hy and Hz is disadvantageous, as the
integrands of Hy and Ha are no scalars, so that (la) does not apply to the expectaacy
value of Hy and Hz but only to that of Hy -+ Ha. It may be repeated that the separation
into Hy and Hz must be considered as no more than a coavenient method for expressing
the interactioas in terms of canonical variables; from the correspondence point of view it
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is the operator Hj -+ H2 which should be taken as representative for the interaction *).

However, even taking together the corresponding contributions of loc. cit. 2) eq. (72)
and (77), there still are many discrepancies with the present results. The origin of the
disagreement is to be found in the terms of (52) in square brackets which differ from

-> ->
loc. cit. eq. (71) in that the first and second one contain +k and —k, respectively, while

KEMMER has taken ;:in both cases. The importance of the difference in relative sign has
already been pointed out in connection with (50). From a closer examination of (52),
it follows that the difference in sign affects those (and only those) terms which are “cross
terms”, i.e. contain products of two matrix elements which involve different source

_'
functions, in the cited case the terms containing both N and M,. Now all such cross
terms have erroneously been omitted in the cited paper. There are only two cases in which
these do not occur, viz. for fs- and f ps-interactions. In these cases our results (cf. § 6)

agree with those of KEMMER's, apart from a factor two by which his expressions are
too large.

§ 6. Self-energies due to other fields.

We will now briefly survey all f- and g-self-energies, treating simul-
taneously the s- with their dual ps-cases and likewise v with pv. First,
-expressions like (37) and (42) will be derived for W{® and W{ ;
their representations, for po = 0, as integrals over momentum space will
then be collected in table 1. Where no confusion is possible, we shall write
{ X, Y} instead of {u}o Xuq} {u‘; Yuqol. Further, the following notations
are used

2 2
wo=25(2 x Zyme Wu=2s(2 + 2)m.

oy g=1,2  g=3,4 g=1,2  g=3,4
A2 .
Wi = 5 S ' maua.
q

1. fs- and fps-self-energy.

The field equations are given by (17a) and (17b), while, instead of
(17¢),

divi4+Ad=»Q—wtRy . . . . . . (54)
with

s: R=f;0;5, ps: R=fps0s

*) FROHLICH, HEITLER and KEMMER®) take H? to describe the f,-interaction, cf.

loc, cit. eq. (30b), whereas MoLLER and ROSENFELD 2) take Hf + H2, k. loc. cit. eq. (7).
Apart from the invariance argument, quoted above, which is of no interest if only static
interactions are considered, it should be noted, that also from the point of view of nuclear
interaction the second choice seems preferable, as this, contrary to the first one, (cf. loc.
cit. ®) p. 164) does not lead to térms in the static interaction potential of the d-type, the
occurrence of which is incompatible with a finite binding energy of the deuteron 19).
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The Hamiltonian. is given by (5) with (18) and
H:—fw*Rtp.de.

Thus, W) is defined as the expectancy value ~ {2 of —-}f@p*Rtp . 2dv.

Using (19), the matrix elements of H are found to be

- h
(@001 Hl 0. 9= |/ 2 tuf, Rug), etc.
Hence, by means of (49) and (51), (there are no terms like the last of (46))
{R. R} _{R. R} E—E,
S T fluct — % . .

inv inv hy

inv —

(55)

In view of the important réle the fs-interaction will play in subsequent
chapters, its treatment by means of a canonical transformation will be
discussed in the Appendix (note 4). It should be noted that the fps-self-
'gnergy is of purely non-static origin.

2. gs- and gps-self-energy.
The field equations are, besides (17c),

- - .
'=grad2+4+ytPy , A=—Q2+9tQy, . . . (56)
with
-> -
s: P=9 e, Q= 9s,
Xs %s
- -
: p=9¢s , =9ss, .
ps Xps o Q Xps 01
The interaction term in the Hamiltonian (5) is — | wtQu.Adv. The

operator which must be considered to obtain the self-energy is
> >
H=§f[w*Pw-F—w*Qw-A] dv =
- - -
=4;f[1p*Ptp.grad.Q—w+Qw.A]dv—{—{;fw*Ptp.w*Ptpdv.

where, similar to (46), H is expressed in the canonical variables 2 and A.
The last term of H yields

$3S(2 £ 3)BBL . . . . . .. (7

g=1,2 g¢=3,4
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Denoting the other part of H by H’, we have, with the help of (38)

(qo.0|H|q.k)-z]/ + Br—Q) uql ete.
thus
> > >
m! _{Pk,Pk}——Z{Pk.QeH—v’{Q.Q}
o inv
with
e=E°h_E

Therefore, by adding (57):

mio, = Pk kl— 21PkQe} +£1Q. Q) LB P11, Q).

inv

"U-L

Its invariance is evident. In the same way we find from (51)

(Pk—Q» Pk—Q»}  {Pk+Qv,Pk+ Qv
E\—E—hy Ey—E + hav ’

2y Mg =

3. The fsgs- and fpsgps-self-energy.

Considering the case that the f- and g-sources are simultaneously
present, i.e. that the field equations are given by (54) and (56), there
occur cross-terms proportional to fg *). It is easily seen that for these

—i{R, Pk—Qe} + conj.

inv

Migy —
while

i{R, Pk——Qv}+con) i{R, Pk+Qv}+con;
29 Maoct = E,—E—hy + E,—E + h»

4. The “direct” gs- and gps-self-energy.

It is well known 1) that the addition to the Hamiltonian of a term

%fS..(g)S"(g)dv N

where the integrand is the scalar product of (the tensor components of )
g-source functions S.. (g) and n a numerical coefficient, has no effect on

*) In loc. cit.1) terms of this type have not been taken into account.
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the equations of the meson field *). It leads to a direct interaction, (i.e.
not brought through the intermediary of fields), between particles, the
spatial dependence of which is described by the highly singular é-function.
We will now compute the self-energy to which such terms give rise and
which will be called direct self-energy. This quantity obviously satisfies
(1a). In the gs and gps-case we have to consider the operator

n - -
5 [ 40w By.yBy—yt Qu.v* Qu)
By first order perturbation theory its expectancy value is found to be

—S( 2 == _Z‘ )[{P P}—{Q Qil. . . . (58a)

q=1,2
5. The f - and fpp-sel‘f—energy.
The field equations are (11a, b) and (20), (21). In the latter two we
-
write yt My, yt N y instead of 1?4 N. We have

- - - -
vi M=f,0,0, N=f; pviM=fp, 0, N={fp, 01.

The f-case has extensively been dealt with in the foregoing. The
corresponding formulae for the pseudovector theory are obtained by

-> -
replacing 0,0 by ¢ and “1” by p;.

6. The g - and gpv':self-energy.
The field equations are (11a, b), while (11c, d) are replaced by

F=—lI V4utT
=—U—grad V4 yt Ty, (59)
- -

G=rotU+ytSy,

- - -
v: T=—2 0,0 S= i’ 030

- — -
pv:T= 2,6 S=9r,,6

Ppv "pn

*) Such terms should not be confused with the terms Hz of KEMMER's Hamiltonian,
cf. loc. cit.1) eq. (50), as the latter arise from the separation of the invariant operator of
nucleon-field interaction into a part depending on the canonical field variables (H;) and
a part depending on the source functions only (Hz).

One may also introduce terms of direct f-interaction in the Hamiltonian. As for later
purposes only the direct g-self-energies are needed, however, direct f-self-energies have
not been considered here.
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The operator which yields the self-energy is
> > - -
H= lf(wsw.c;—w T, B do=
- - > - - -
=if(tp'fStp.rot Uyt Tz,u.F)dv-i—%ftp*S‘p.w*Swdv.
G being a derived variable. The last term gives

+1S( 2+ 2){_3,-:9}.

g=1,2 g=3,4

Calling H’; the part of H, depending on the canonical variables U and F,
which corresponds with transitions involving mesons with state of
polarization j, we have *)

) - . R - -
(90, 0| Ho | q. k) =—ix VZ_v ful Tkougl,

o> 1/A > > > - .
(400 | Fjl a. =t |/ 2 1, BENA ) —» Tl uals j=1.2
Hence, with the help of simple vector calculus,
, 1 -> > > >
My =— — [k?{S, S} —{k S, k S}—
inv

- =

i nd -> = -
kT}+»{T, T}+2¢k{S A T}l

{

=y

Therefore

> > > >

1 - = > > > >
M =— — [k {S, S} — {k S, k. S|~k T.k T} +
-—'

- >

-»> > -»> > - -
+&{T, T} +2ek{S N\ T{] +1{S.S}—{T. T}.
That the expression between square brackets is indeed a scalar can be
seen by writing Six — (§, 5:), where Six is a (pseudo)tensor, and
-
k, — &= H[,
I1; being a four vector. This expression can then be written as
S; /St I1; II.
For the fluctuation energy we get
- > - > > > - > = > - - - > -
_ K4S, S} —{k S, k S} —k Tk T} +»2{T, T} +2vk{S A\ T}
2y mgue = +
Eo_ E —hy

same with —» instead of »

+ Eo—E+hv

> > - >
*) & /\ b denotes the vector product of a and b.
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T W inv Wo
e One-part. theory Hole theory s
2
£ (1= A| 4P CE +2M—4 9 }£Dp?
gs (%)2 B —2 (%)2 E 0
fsgs 0’ 0 0
gs:direct | n (l)z B —2n (l)z E
x x f—
2
2 F(1+55m)A |—FCE—br+m) £D @+
2 2
g (%) Awr+30a| —4 () CO0M e i +6M+| 49°Die +349
+3 (%)ZE
fog. -—3%0-An 3%9.MhC(2p2+,u2) —%g—g.h’p’D
2
gv: direct | 0 3n (%) E —
2
fm 3 (1—gps ) A| —F C + 30—y £ D @~ )
2 2 2
o |(£) ae —4(f) w2 cr—3(L)'E | 4o Dp
foo g 0 0 0
gpo s direct | 0 —3n <—g—)z E —
2 M 24 # 2 2 2
fre £ oA —£C(p+5) D (o + i)
2
or eA+(2)B |~ (L) mrcertm+2(L)E| gt D0
fos gps %A% f—;‘g.MhC(Zp2+,u2) -—%%.h{u’D
gps: direct | n (%)2 B 2n (%)z E —
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7. The f g,- and f, g,-self-energy.
These are due to the cross terms in fg which are found if the field
equations are (20), (21) and (59). We obtain

- - - - — - -
ik{MAS}—ie{MT}+ik{N T} + coni.

inv

Miny — —

- = - - = - -
pyme — iRIM A S}—iv{M T} + ik {N T} + conj
== E,—E—hv

+

same with —v instead of »

+ E,—E+ h»

8. The direct g - and g, -self-energy.
Similarly to 4. we get

28(2 = Z)USS—ILT . . . . . (59
g=1,2 g=3,4 .

In table 1 the expressions are given for W() and W _: the following
abbrevations have been used, (for X see (35), (36))

1 9’2 1 dp
6h ) X =2 8n ’h’fdp B t&wrm ) Px=C

_’

M (dp
167’3thXl/p2+,uz— " 873 h3 P

Where one of the integrals A—E stands “multiplied” with a function
of p. it is meant that this function should be taken under the integral. To
simplify the formulae, we have, except in the first column, omitted the
“indices” s, v, pv, ps.

Table 2 gives a survey of the kinds of divergences to which W(1) gives
rise; cu = cubic, qu = quadratic, lin = linear, log — logarithmic diver-
gence. In the case of the f -self-energy, the divergences indicated between
brackets refer to the electromagnetic self-energy.

For later purposes we need the explicit expressions for the coefficients
with which, on hole theory, the various divergences stand multiplied; we

write
Wm:nzcl‘&hf 3MC‘°“fdp+ft

and introduce

=K,

x.|§
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TABLE 2.
Kinds of divergence of W,
o Wit o Hoct
Type (One-p.th.| Hole th. Type |One-p.th.| Hole th.

fs lin qu, log qu, log || fpe lin qu, log | qu, log
gs cu qu — G po cy, lin | qu, log | qu, log
fs gs - - - foo gpe | — - -
gs:dir. | cu qu — gpoidir.| — qu —
£ lin (—) | qu,log (id.) | qu, log || fps lin qu, log | qu, log
go cy, lin | qu,log qu, log || gps cy, lin | qu,log | log
£ 9o lin qu,log log fosgps | lin qu, log | log
go:dir.| — qu — gps: dir.| cu qu ==

Fqz and lciop are given in table 3. In the second and third column the
indices s, v, pv, ps have again been omitted.

TABLE 3.
Coefficients of divergences of W on hole theory.
Type G Clog
f - [ =
gs ~ gty t9°n
fsgs — -
gs; direct — ng*n? $ng?n?
[ == £ (e?)
go 19’7 —3g* P (1—§7?)
fo g $fgn —2fgn(1+97?
go ; direct $ng?n? —2ng?*n?
foo == —&F
Gpo —2g*n’ +9’n*(5—477?
foo gpo - =
gpo i direct | —3 ng?%? 2ng%y?
fos = F
Gps Y9’ 7’ —4$g*n*(1—77)
[os gps Y fgn —3fgn(1+97?)
gps; direct ng*n* | —4ng*n?
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§ 7. On the higher order self-energies.

It has been shown by WEISSKOPF 4) that W , the electromagnetic
self-energy of arbitrary order, diverges, on hole theory, at most logarith-
mically. In this section we shall show, by similar reasonings, that to a
certain extent, general conclusions as to the divergence properties can be
established for any field, again starting from hole theory. As this case will
mainly be dealt with in the following, we shall from now on understand
by W) the n-th order self-energy on hole theory. We now first turn
to a short recapitulation of WEISSKOPF's argument.

a) The electromagnetic case.

The main point is that
W —>0if M>0, . . . . . . . (60)

where M here denotes the rest mass of the electron.
To show this, WEISSKOPF ‘considers the identity

W (vac + ef) + W (vac —e;) —2 W (vac) =

T (e )= T (e )} — { T (> ) — T ()} |
The first term on the left denotes the energy ~ (e2/h)" of the system of
completely filled vacuum states with an additional electron (of given spin
direction) in the lowest ‘positive energy level ef : in the same sense the
second term indicates the energy of the vacuum with one electron lacking
in the highest negative energy level ey, while W(®(vac) is the energy
~ (e2/h)" of the vacuum distribution itself. Thus the left hand side of
(61) is equal to the sum of the self-energy of positive -and negative electron
at rest = twice the self energy W of the electron on account of the
symmetry of the whole theory with respect to the sign of the charge.
\:T(") (e —) denotes the sum of the contributions due to all transitions
jnvolving 2n—1 intermediate states in which the electron in the state
ey takes part, while similarly T(" (— e¥) is the sum of the ‘contributions
due to all transitions in which an electron jumps into the (unoccupied)
state ef. In order to show that W@ —0 if M -0 it is, therefore,
isufficient to prove that the right hand side of (61) tends to zero under
this condition. This amounts to proving that 4)

Pi=pP_  if M=0 . . . . . . . (62
where

> > -
P.=Trace H, (1 + ‘2'—2—"2ﬂ> H, (1 + ‘ﬂ%&—) ... Hyn(1205), (63)
1 2

E1=:tl/p3+M2.
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H; is the operator causing the transition from the (i—1)-th to the i-th
state; (the final — initial state is indicated by 2n). That (62) is true
then follows from well known properties of the Dirac matrices.

b) Generalization of (60) to othet fields
We next show that

Wnas0 if M=0 . . . . . . . (69

for any f- or g-interaction. For this purpose it suffices to prove that (62)
here holds too, and this is easily seen to be the case. For all H; depend
in the same way on the Dirac matrices g; and o; and therefore the + @3-
term in the last bracket of (63) does, in the limit M — 0, not contribute
to P as the number of interaction operators H; occurring in (63) is even.
Furthermore, (64) holds whether the interaction concerned is of the
charged or of the neutral type. In fact, if we consider the case of ‘charged
fields, and to that purpose introduce isotopic matrices 7, representative
of the charge coordinate of the nucleons, (63) will contain additional
factors 7; compared to the corresponding neutral interactions. This, how-
ever, cannot affect the conclusion that the + ps-term does not contribute.

Thus (64) has been established for the case that we have to do with
either an f- or a g-interaction. Let us now consider the case that an f-
and a g-interaction of the same type are simultaneously present. This
vields, in first order, self-energy terms proportional to fg. But for these
it is no longer true that the dependence of H; and Hj, on the Dirac
matrices is the same, and therefore the reasoning of the preceding para-
graph cannot be applied here. We thus have to insert the expressions for
the operator H involved into (63) and to verify by explicit calculation
whether (62) is satisfied. As to the first order approximation, it appears *)
that in the s- and pv-case P, = P_ = 0, so that (64) again is true; as
we have seen in § 6, 3° and 7°, W) (M £ 0) = 0 for these cases. On
the other hand P, — — P_ for the v~ and ps-interaction.

Finally it should be noted that in higher order there may occur cross
terms proportional to f3* fu, g2 g2, PP L e iy b K and [ now
referring to different types of fields. There, however, we have again

*) Take e.g. the scalar case and let e.g. Hy be the operator corresponding with the
> >

spatial part of the gs-interaction, i.e. Hy~io1(o p) and let Hz be the operator of
Fs-interaction: Ha ~ g3. Then, for M = 0,
- 5
e p i
Py o Traceip, op (l +Q'—(EL)> 03(1 £o3) == —Z— . . (63)
However, there will also be a transition involving the same intermediate state, in which

the réles of Hy and Hp are interchanged, i.e. we have to take the sum of the right member
of (63) and its conjugated to obtain the total P4. Thus P, =P_ =0.
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P, = P_ as the number of operators corresponding with the different
kinds of fields is even. Generally we may state that, if the operators
H,, ..., Hy, occurring in (63) can be grouped in such a way that each
group contains an even number of H's depending in the same way on the
Dirac matrices, (62) is satisfied. If they cannot be grouped in the manner
indicated, the relation between P, and P_ has to be found by explicit
calculations,

We shall now consider the bearing of (64) on the divergence properties
of W(»)., First we take

¢) The [,-self-energy.

We recall that all n—th order self-energy effects can be described as
due to consecutive transitions in which the total system, after passing
through 2n—1 intermediate states returns to the initial state. The
divergent results are due to those states having very large momenta,
'(ultra-violet catastrophe). Considering provisorily the domain in momentum
space of the intermediate states to be ‘cut off at a large but finite value P,
all self-energies will be finite. We especially choose P to be so large as to
be > fAix; then 7 = fix/P may be considered as a small dimensionless
parameter of the problem and, in the domain of large p, we can develop
the integrals representing the contributions to the self-energy of various
order in a power series in 7 *).

Now it may be remarked in the first place that no negative powers of 7
will occur. Indeed, such terms would, for x — 0, become infinite, contrary
to the fact that the electromagnetic self-energy remains finite for finite
P **). The lowest exponent of # which occurs is therefore zero: this term
in the development is the only one remaining if » = 0 and is, therefore,
according to the previously mentioned results for the electromagnetic field
logarithmically divergent.

To discuss the other terms, we note that W(# is a series of the form

wo= 3 wp (P)r*
=0

in which the coefficient of #* may be written as a power series in P which,
for a particle at rest, generally is ***)

P\l (, P\t
Wi (P)= <) (E) .(lg m) . Mc?

*) The series developments used here and in the following find their justification in
the circumstance that the self-energy is an integral over p of a rational function of

p, hx, V' p%+ §2x2, V/p% + M2, etc. By developing the integrand in the region of large
p,» which is the only domain of momentum space that interests us here, and then integrating

term by term, the quoted series are obtained.
**) It will be remembered that it was shown in § 6b that it is indeed legitimate to
consider the electromagnetic self-energy as the limiting case of the f,-self-energy for » — 0.
k¥
)

It is immaterial to the argument whether the coefficients c‘,{'} depend on
lg(hx/Mc), as may happen for k> 0.
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factors M and ¢ having been introduced to obtain the right dimensions.
Now, according to (64) *) W®(P) =0 if M =0, for any %, and so
W (P) =0 if M = 0. Consequently the exponent [ of P/Mic must be
= 0. This implies that all terms with kx>0 .do not, in the subsequent
transition P — oo, lead to divergent results as they are at most ~ P-* (or
~ P-k1gP). Thus the only divergent term is the same one as occurs in
the electromagnetic case. Hence:

The f -self-energy diverges at most logarithmically to any order
of approximation. The divergent term is independent of x.

The explicit first order calculations of §§ 4, 5 are in accordance with
this general result. The argument is furthermore independent of the
charged or neutral character of the interaction **).

d) f-fields of other type.

In the first place we remark that, for the corresponding “photon” fields
(2 = 0), it can be shown in the same way as was done by WEISSKOPF for
the electromagnetic field that the corresponding self-energies diverge at
most logarithmically in any approximation. Furthermore the f-fields are
connected with the corresponding photon fields in the same way as the
f,- with the electromagnetic field **) and this means that the proof of
§ 7c can be given for all f-fields. Therefore:

All f-self-energies diverge at most logarithmically to any order
of approximation. The divergent term is independent of x.

e) g-fields.

As already strifed before, the difference between f- and g-interactions
is essentially that the dimension of the coupling constants in the latter
case is charge (g) times length. For reasons of simplicity it is customary
to identify this length with the Compton wave length 1/x of the mesons.
However, in discussing the properties of the g-divergences, it will prove
convenient not to introduce this identification. In this section we shall
therefore put the g-sources proportional to

g
20
where %0 is an inverse length fundamentally not identical with x.

We can again develop Wg') in a power series in 7 like we did with W‘f").

However, besides # there occurs a similar dimensionless parameter

_ A
Mo = p ¥

*) It should be noted that we always consider the double limiting process

lim lim W/(P) and that the order of these limiting processes is mever reversed.
P> M0

**) The legitimacy of the (formal) transition » — O is shown on similar lines in the
charged as in the neutral f -case.
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Now, while we may for g-interactions, too, let % tend to zero, this is
impossible for 79, as 0 is different from zero whatever the mass of the
field quanta is. Still, the development of W(é" with respect to 7 can easily
be written down in such a form that the explicit dependence on %0 is
simultaneously taken into account. In fact, while W(;) will generally be
an intricate function of 7, its dependence on %0 is quite simple:

i g \2"
W o (;3) .
Therefore, the most general representation of W(g")(P) is
W (P) = (n°) > W (P)n.

Following the same reasoning as for f-interactions, it can be shown that
no negative powers of # can occur, while the W (P) are at most ~ Ig P.
Hence the highest divergent term which may occur in Wg‘)(P) is

wprlgP. . . . . . . . . . (69)

Thus the divergences of Wg') are generally of higher order than that of
W which eventually is ~ Ig P, the difference being due to the occurrence
of 70. Moreover, W will generally involve divergences of more than one
order, as (65) only gives the highest possible divergent term. Consider
e.g. Wg). According to (65), the highest divergent term which may be
found here is ~ P2Ig P, but actually the occurrence of such a term is
impossible: Indeed Wg)(P) can be written as

W (P)= (%)’ fp By, o) i,

where @ is an algebraic function of p. As the highest divergence of w
corresponds with the integral over the highest order term of the devel-
opment of @ with respect to p, a transcendental term ~ P2lgP cannot
exist. This affords an example of the fact that not all divergences
compatible with (65) need necessarily occur. However, to decide this,
arguments of other kind are apparently necessary. As we have seen in
preceding sections Wg) involves a quadratic and a logarithmic divergence.

f) fg-self-energy.

Here (64) does not hold and consequently the general dimensional
considerations from which conclusions can be drawn as to the kinds of
divergences do not apply. The explicit calculations showed W‘}L to have
a qu and a log divergence (on hole theory) in the v~ and ps-case.
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g) Direct self-energy.

We have already seen that in first approximation these yield a qu and
a log divergence. The occurrence of terms of direct interaction also in-
fluences the higher order approximations of the self-energy, as for these
there may occur “cross terms” which are partly of ‘“field”, partly of
“direct” origin. As their “field dependence” can be discussed by the
methods of § 7, d, e, it follows that these cross terms will give rise to
divergences in W(" the highest possible order of which is 2n.

Appendix.

Note 1. On the calculation of W) (_p'o).

In § 1 a prescription has been given for computing the p-integral
representing the self-energy for the case that the particle is at rest, which

is essentially based on the fact that, if ;0 = 0, the problem is spherically
symmetrical in momentum space. We will now show by two examples
that, generally, the same prescription cannot be used if po % 0: the
divergent part, on hole theory, has been computed of the fs~ and f -self-
energy, using (55) and (40), (42) respectwely The results are for the
divergent parts

LIW—Z _é_ﬁz__i_"_z 1..*._‘_);.) 1 po+Po fdp
47ltho 4 MZ 2 M2 popo

M [, 6w AN Po+PofdP
8712hp0 M2+3’u2kl+ﬂ_di pOPO
oy =V"p2 + M?

which are incompatible with formula (1a) on the one, and the corresponding
results of table 3 on the other hand. The latter are found from the above
expressions by putting po = 0. Putting u = 0, we get for the divergent
parts of the “photon” field self-energies

_3fm? f_a_r;_, 3fM2fdp
167‘2 h Po P ! 7!2 f Po
respectively, which do agree with (1). However, further calculations show

that the finite parts still would not be compatible with (1). Thus for a
moving particle a more complicated prescription should be followed to

—'
obtain W) (p,y) by direct calculation. As has been remarked, the know-
ledge of the prescription is not necessary, as, once W(1) has been defined,

W (py) is fixed by (1a).

Note 2. Self-energy due to charged [ields.
It was mentioned in § 1 that the self-energy of nucleons due to a given
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type of interaction is, in first approximation, the same for neutral and
charged fields. We will here illustrate the general argument, by computing
W) for the charged fs-field case. The field variables, now being complex,
satisfy the equations

- ; - .
I’'=grad 2, A=—Q2,divIi4+ A=x2Q2—R, R={f;v' Qnros v.

Qup is an operator transforming a neutron into a proton; we have
R* = fiy* Qpy 03y, where Qpy = Q},, transforms a proton into a neutron.
The Hamiltonian is

Hiow = Huu + 4 f (I'T* + 4 4% + 20 Q%) + conj.— f (RQt+RtQ),

the part of H depending only on the field variables having been chosen
such that no infinite “zero point”” meson charge occurs 11). The commuta-
tion relations are

P

[2 (= ), At (', ] = % 8 (x—2), [O (% 0), 4 (' 0] = _’:- Biloe—2),

The first order self-energy is defined as one half of the expectancy value
~ fZ of

H=—f(R9++R+9)dv.

We first compute Wil . Q satisfies
D Q_ x: Q = Rv

Qt the conjugated equation. £2(1) and Q()t can be found similar to (32)
and we get

minv = — £2 [Qne Qpy + Qpey Qur) -{ei:—f’} ;

the first (second) term between square brackets being equal to 1 (0) if
the nucleon state considered is a neutron state and 0 (1) if it is a proton
state. Thus for both neutron and proton, Wl is given by the first of
equations (55). To obtain W) . we develop 2(0)and 20t in plane waves:

o < -> +>
QO = 3[4 (k) /x4 QF (k) e~ x~1], etc.

The only non-vanishing matrix elements of the Fourier amplitudes are

- - = l
[.Qi (k)]ni_, el — [‘Qi (k)]n*+l—> == V@'
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n* > m* denoting a transition in which the number of mesons with charge

=+ e and wave vector zchanges from n* to m*. With the help of (51),
where H’; should be replaced by H, one easily finds

93; E‘—Eo'

v ' hv

M = £ [Qup Qe + Qew Que] 122

Consequently the fluctuation energy of proton and neutron is indeed given
by the second of equations (55).

For the higher order W(" there is no such simple one-to-one cor-
respondence of intermediate states for neutral and charged interactions.
Consider e.g. W(@); in the neutral theory we have for both proton (P)
and neutron (N) the following chains of intermediate states, (Y; and Y.
denote the two neutral mesons that come into play),

P->DP+Y, ->»P+Y,+Y,»P+4+Y, =P,
P->P+Y -»>P+Y,4+Y,»P+Y,-P
P>pP+Y, ->P->P +Y,->P;

the same for the neutron. In a charged theory we have, (Y+ is a positive,
Y- a negative meson),

P-N+Y*=>P+4+Y*+Y - ->N+Y+*=P,
P>N+Yr—->P->N+ Y;—=D,

and .
N->P+Y ->N+Y +4+Y+t=>P+Y-—-N,
N->P+Y ->N->P+Y;—>N.

This difference between charged and neutral theory is due to the restrict-
ions which, in the former, are imposed by charge conservation on the order
in which positive and negative mesons are emitted and absorbed.

Note 3. On the electromagnetic self-energy W) (e).

In order to compute this without the use of a gauge transformation
which separates the Coulomb from the dynamic interaction, we have to
consider the expectancy value of

- - -
%f(eB—sA)dv. e=eyty, s—eytay,

B being the electromagnetic scalar potential. It has been remarked in § 5
that it is not legitimate to consider W(1) (e), computed in this way, as the
limiting case of the Proca-field self-energy for » — 0, though it would
give the right result. W) (e) has therefore been calculated by quantizing
the electromagnetic field by means of a method due to FERMI 8), according
to which the electromagnetic field Lagrangian is chosen in such a way
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that the canonically conjugated of B is not zero. For particulars we refer
to a paper by ROSENFELD 12), formula (n) of which is in the following
indicated by (Rn). The necessary equations will be given without proof.
Apart from a difference in notation and representation, they are identical
with the corresponding ones of the last cited paper:

The Lorentz condition

divA+B=0. . . . .. .. (R12

and its time derivative, (R 13), should be considered as accessory con-
ditions in the sense explained in § 5. By developing A similar to (15) and
likewise putting

R >
B=J[B* (k)eit*x~*) + B~ (k) e~k x—t], . ., . (R19)
we get the operator conditions (not identities)

BE(l)=A*©0,% . . . . . . . (R23

Furthermore

AR nsr= AR iea= | PEED L (R2s)

B*(ns1on =B (Kaosnis _V”("“) ... (R26)
By means of (49) and (51) we then get in the usual way

{1.1} — {a, a]
- -
[ P—DPo lz"'(E—'Eo)2

My — 3

> >

mﬂ“d_—_ez Z' ’QSj.an;—{l 1; E;EO.
7=0,1,2 |p—po|2 (E—E,)? v

The former equation which can also be obtained with MoLLER's method 7)
is identical with (40a) with x4 = 0. The latter is not identical with (42)
with u = 0, but it is easily seen that it again yields (44a), cf. the dis-
cussion after eq. (51).

Note 4. Canonical transformation in the scalar theory.
The field equations

- o >
I'=grad 2, A=— Q,divI 4+ A=x*Q2—R,R=fsytosvy,

follow from the Hamiltonian

H=H.,...—fR.de+1} (T2 + 42 + 2 Q%) do



46 ON THE THEORY OF ELEMENTARY PARTICLES
The static field equations are

-

_'
I =grad 29, 4°=0,div I, = »* 2, — R, RO = fi yt y.

To separate the static interaction, we employ a canonical transformation

(24) where now
K=— f 2° A do.

1?=Hm.,+;f(FZ+AZ+x292)dv+ V+ W

The transformation yields

where the right member is expressed in the new variables, and
- -» -
V=_l,ffRo(x)Ro(x')zux—x'|dvdv'
- - =+ -+ > - -
W= [rddo,e@=—ifs [0’ 257 ) 1v*exle yT ¥ eaowl, -
xl
The new field variables satisfy

- . -,
I'=grad 2, A=— Q+r,divl+ A=2x*Q.

By means of these equations, one finds after some calculation, using
identities like (36)

£ lef- 9;}'

Migy — — [s Milyct

inv inv

_p2les 03} (E—E, 3.
T ’ Ay

the latter being not identical with the second of equations (55). However,
both give the same result for the fs-fluctuation energy for a particle at
rest.
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CHAPTER IIL

On the theory of the electron.

Summary.
§ 1. Introductory remarks on classical theory. — § 2. The situation in
quantum theory; statement of the problem. — § 3. The quantum electro-

magnetic self-energy. — § 4. Self-energy due to vector f-field. — § 5.
Case of e- and vector f-field. — § 6. Subtractive vector f-field. — § 7.
Criticism of the introduction of subtractive fields. — § 8. f-fields of other
type. — § 9. The universal length. — Appendix: Force on surface element
of finite electron.

§ 1. Introductory remarks on classical theory.

As is well known, the MAXWELL-LORENTZ theory, which provides us
with a successful description of electromagnetic phenomena in the classical
domain as long as distances of the order of the “classical electron radius”
do not come into play, exhibits grave difficulties in the small distance
region. This essentially finds its origin in that the theory does not involve
a consistent model of the electron, which in particular is demonstrated by
the fact that the electromagnetic self-energy of a point electron is infinite.
In an attempt to remove this difficulty within the framework of classical
theory, it has recently been suggested by STUCKELBERG 1) to consider the
electron to be the point source not only of the electromagnetic field, but
furthermore of a second field of the scalar type, the variables of which
satisfy an equation of the form

O—-Yy=0 . . . . « . .« . . (1)

Thus, although the electron has zero radius, the theory involves a funda-
mental length x—1, the range of the field, which should not exceed an
order of magnitude of 10-13 cm, so as not to disturb the perfect accordance
which exists between electromagnetic theory and experiment for larger
distances. '

The static field energy of a system of particles interacting through the
intermediary of such a scalar field is given by

f2 e—xrik
87 ik rix

(2)

rik being the distance between i-th and k-th particle. The constant f
determines the strength of the coupling between the particles and the field,
to which we from now on will refer as f-field. f has the dimensions of a
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charge, and is expressed in Heaviside units. The static energy of the
electromagnetic field (e-field) is

e? 1

LR Zk' Tik ®
Combining the self-energy terms of (2) and (3), viz. those terms for which
i = k, it follows that the self-energy due to both e~ and f-field has a finite
value W provided that

e I I -

This value then is

W=% .. ... .. (4
8=

Putting W equal to the rest energy of the electron:

W=mc, . . « ¢« « « « « « (4b)

one gets

1 e?

%z 8amc?’

i.e. one half of the electron radius; according to this relation, »~1 is of the
acceptable order of magnitude of 10-13 cm (see above). Thus there
are two fundamental relations between the constants of this theory: one
between the charges only, arising from the condition of finite self-energy,
and one between %, m, and e, following from the assumption that the total
field self-energy for an electron at rest equals c2 times its rest mass.

Another way of formulating the difficulties inherent in the classical
Lorentz theory is: the energy momentum tensor Tix of the total system
should satisfy the relation: 07%%/0x* — 0. However, this condition is, on
Maxwell-Lorentz theory, well known to be incompatible with the presence
of charged particles in the system. This incompatibility can be overcome by
adding to the electromagnetic tensor a tensor of other origin in order to
let the total tensor have zero divergence; furthermore, the additional tensor
should have zero i4-elements (i 5% 4) in the system in which the electron
is at rest *).

An example of a tensor which satisfies the just mentioned requirements
is the tensor of internal stresses of POINCARE, who, in fact, was the first
to point out that the solution of the electron problem might be sought in
this direction **),

*) Cf. W. PAULl, Relativitatstheorie, § 63, Teubner 1921; R. BECKER, Theorie der
Elektrizitat, Bd. II, § 66, Teubner 1933,

**) Cf. H. POINCARE, La mécanique nouvelle, Gauthier-Villars 1924; H. A. LORENTZ,
Theory of Electrons §§ 180—181.
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Now the energy-momentum tensor of the f-field does satisfy these
requirements too: its i4-elements, i >~ 4, like those of the energy momentum
tensor of any field, vanish in the rest system, as they are the components
of the “f-Poynting vector”, while the condition of zero divergence is
closely connected with the “convergence relation” ‘(4). In order to show
this, consider a spherical electron with finite radius r and with uniform
superficial charge distribution siich that the total charges are e and {. In
order to have zero total divergence, it is sufficient to show that, in the
rest system of the electron, the forces on a surface element cancel each
other. In the Appendix it is shown that this is true if

e2=f*.gxr) ; gx)=>1ifr—=0. . . . . (40

Thus (4) expresses the stability condition in the limit of a point electron.
Another theory of the same kind has been proposed by Bopp 2), who

introduces an f-field of the vector type with vector (no tensor) inter-

action. Instead of (2), we have for the static interaction in this case

fz e *Tik

8nix rik

In order to obtain a finite result in combination with (3), it is therefore
necessary to take the Hamiltonian, or, generally, the energy momentum
tensor of this field with the minus sign, an artifice which leads to such
disagreeable consequences as a field energy which is not positive definite.
This theory again gives rise to the relations (4), (4a), the assumption (4b)
again is made, while it can be shown that (4c) holds too, cf. also the
Appendix.

It is a characteristic feature of the LORENTZ electron theory as well as
of those of STUCKELBERG and BoPP, that the equation of motion of the
electron is derived from the condition that the integral, over a narrow tube
surrounding the world line of the electron, of the divergence of the
energy momentum tensor density of the total system vanishes. These
theories may therefore be called unitary — though not in the sense
of MIE — as the equation of motion is, for given initial conditions
of the source functions, essentially a consequence of the equations
of the fields. Consequently, the electron mass has to be introduced
into the theory as a function of the field variables, which, in their
turn, now must be considered as functions of the kinematical variables pf
the electron which enter the theory by means of the source functions. It
will be remembered from the LORENTZ theory that a convenient definition
of m is provided by

f 2,00 dV = me?,

where Zix(0) is the energy momentum tensor in the electron rest system.
As the left member is equal to W, this then justifies the definition (4b).

4
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§ 2. The situation in quantum theory; statement of the problem.

The present quantum field theories, based on the assumption of zero
radius of the elementary particles, likewise give rise to an e-self-energy
of the electron, which, like the field self-energy of any elementary
particle, turns out 'to be infinite, but here ‘this disturbing feature reveals
itself in a far more complicated way than in classical theory. This has in
particular become clear from WEISSKOPF's investigations 3: 4): Besides the
particle having a self-energy solely due to its charge, which is quite
analogous to what is called self-energy in classical theory such properties
which have no classi¢al counterparts, as its spin, interference effects due
to the hole theory interpretation of the vacuum, as well as typical fluctu-
ation effects, originating from the quantization of the fields created by
the particle, also are intricately involved in the determination of the total
quantum field self-energy which turns out to be entirely different from
its classical counterpart. In fact one may say that the field self-energy of
the electron is fundamenttally a quantum effect, because by introducing
the quantum of action h there enters in the theory of the electron a new

quantity; | hc which has the same dimensions as the electric charge e but
which is well known to be much larger than e. Thus quantum ‘theory
demands a complete revision of the whole self-energy problem.

In this chapter it will be examined, whether the assumption that the
electron does, besides the electromagnetic field, also create another field
of short range, will lead to ia finite self-energy in a relativistic quantum
theory, i.e. whether such a theory will yield convergence relations, similar
to (but not necessarily identical with) '(4). Furthermore, the possibility
of the establishment, analogous to (4b), of a relation involving m, and e
[all final outcomes here depending on e only through some power of the
fine structure constant) will be discussed. In this connection a fundamental
difference between quantum and classical theory must be observed at the
outset:

Indeed, the theory which will, be outlindd hereafter, is, contrary to
classical theory, non-unitary: while in classit@l theory the equation of
motion of the electron represents a secondary feature, because it is in some
way or other derived from the field equations, its quantum mechanical
analogue, the wave equation, cannot be obtained from the equation of the
fields (now also involving certain commutation relations between the field
variables), as long as the electron is considered as a point, the coordinates
of which aretaken as quantum variables. On this assumption, the impossibility
of a unitary treatment has been shown by PRYCE 5) *). Thus, the wave

*) The main point is that the commutation relations between position and momentum
coordinates of the electron are incompatible with those of the field variables if one defines
the electron momentum as integral over space of the field momentum density. Furthermore,
the spin properties of the electron cannot, as must be required from a really unitary theory,
solely be derived from the properties of the fields.
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equation, which involves m, has to be introduced as independent basic
postulate into the theory, so that no definition a posteriori of m in terms of
field variables is possible in the same sense as in classical theory.

The non-unitarity of the theory is expressed by the occurrence in the
Hamilton operator H of the total systdm of electron and fields of a term
Hn which involves m explicitly:

g :
H= Hm + Hperas + Hcoupling; Hpn =ftp1' (hT.c aV o= 03 mCZ) Y dv.

Hn denotes the operator of a “free” Dirac electron, Hgq, is that part of
the Hamilton operator which depends only on the field variables, while
Houpiing involves both vy and the field variables.

Now the total quantum mechanical self-energy W, is defined as

Wt = FI =me+ W
the overlining denoting the expectancy value for the state in which the
electron is at rest, and it is ‘an important consequence of the non-unitary
aspect of the theory that the field self-energy W itself will now depend
on m. Thus, if we assume the charge f to be.eliminated by means of a
convergence relation, we generally have in a two field theory:

W= (e )
—_— h_cvml” .

Still, the theory might be interpreteld in such a way as to yield an electron
mass which, similar to ithe kituation in classical theory is equal to the total
field self-energy, viz. by assuming the parameter m occurring in Hm to
have a provisorily undetermined value which ‘then is fixed by putting the
final result for the 'self-energy of an electron at rest equal to mc2:

w(E —
h_c,m,x)__mcz. e e e e e e . (4d)

Considered in, this way, (4c) represents an implicit equation for m from
which an expression of m in iterms of e2/Ac and » can be found *).

It has been observed in connection with the da§si'ca'l equation (4b),
that a relation like (4d) can only be maintained, however, if it leads to a
sensible value of x». To investigate this, we have to insert into (4d) the
experimental value of m and then to express x in terms of e2/fic and m.
Now it is shown in § 10 that

Wealghme L ()

*) The c-number C = mc2 should then be subtracted from H in order that the
expectancy value of H shall correctly be equal to mc2. Added in proof: A more detailed
analysis of the relation of the field self-energy of an elementary particle to its total mass
will be given in a forthcoming paper. The results obtained there are in agreement with
the present treatment of considering W as a perturbation compared to mc2, cf. p. 52. The
transformation properties of W will also be more fully discussed.
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where @ is the fine structure constant. Hence (4d) yields

1
e l.e—:'v 10-% cm.
* mec

Thus the range of the field and, correspondingly, the mass of the field
quanta, would be of a quite unfamiliar order of magnitude.

There is, however, an alternative way to obtain a theory involving ore
main mass contribution, viz. by considering the field self-energy to be a
small perturbation compared iwith the “mechanical” mass m, which implies
that m can practically be identified with the experimental mass. This can
be achieved by putting

2
x1~—% —28.10"Bcm,

4 mc?
for then W is, according to (4d) ~ 0,01 mc2. The further discussion is
given in § 10, where it is shown that it is not trivial that W can be
considered as a perturbation.

More arguments against the unitary treatment and in favour of the method, which will
be followed hereafter, of treating the field self-energy as a perturbation on the a priori
fixed mass m, are provided by the results obtained in a subsequent paper on the theory of
nucleons. There it is found:

1. A theory of the mass difference of proton and neutron can be given by assuming
the proton to interact with the f-field, too, but only if the range of the [-field is of the
order of the classical electron radius.

2. If one tries to compensate by means of convergence relations the divergences due
to the interaction of nucleons with meson fields, it turns out that the remaining finite part
of the mesic self-energy is < M2 M= M, on = Mpmmn). whether the unitary
method is followed or not, for here we have no liberty to dispose of the magnitude of the
tield range, which is < h/Mc: Thus the consideration of the field self-energy of the
electron as a perturbation unifies the connection between field self-energy and mass for
all Dirac particles.

For details we refer to Chapter III

The unitary method ‘will therefore be discarded and we base the further
considerations on the perturbation concept, i.e. on the relation W <& mc2.

The more technical aspects of the problems on hand have been devel-
oped in the previous chapter ‘which will be cited as I. For reasons to be
explained in § 8 we shall, in this chapter, in particular be dealing with the
results obtained in I on the f-interactions; as to the notations used for
the various 'types of fields and interaction’s, the reader is begged to refer
to the table in I, § 1.

After a short survey of the properties of the e-self-energy in § 3, the
consequences of the introduction, similar to BoPP's classical theory, of a
“subtractive” f-field of the vector type ‘will be 'discussed according to the
scheme just outlined (§ 6); to this purpose we will however, first treat
the “addiive” vector field (§§ 4—5). It ‘appears that the subtractive
vector theory can be ideveloped more completely than theories involving
f-fields of other type, but, as previously mentioned, it has the dis-
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advantage of a non-definite field energy, the consequences of which are
discussed in some detail '(§ 7). Since these are, in quantum theory, even
more serious than in classical theory, the conception of subtractive field
has to be discarded, and we turn to the investigation of other than vector
f-fields (§ 8), which leads ‘to the result that an f-field of the scalar type
yields, at any rate in first approximation, to finite results; there turns
out to be no correspondence between this theory and STUCKELBERGS
claissical formalism outlined in § 1. Finally, § 9 is devoted to a further
discussion of 'the place of the universal length x—1 within the present
scheme,

§ 3. The quantum electromagnetic self-energy.

An investigation of its properties has been made by WEISSKOPF 3 4)
who arrived att ‘the following main results:

a) Hole theory *). The self-energy of any order diverges at most
logarithmically.

b) One-electron theory. Here no such general statements can be made.
The first order contribution appears to involve a quadratic and a linear
divergence.

Furthermore, it was shown in I that

-> N
Wop)=wap 1—, . . . . . . (5
(cf. I eq. (la)), where from now on we indicate the value of the n—th

-+ -
order self-energy for a particle with momentum p by W("(p) and the
corresponding quantity for p = 0 by W), In particular '(5) also applies
to the e-self-energy Wn.

One may ask why the factor (1 -'2/3), familiar from classical theory does not occur
in the transformation formula for W,: this is just because the classical theory, contrary to
quantum theory, is wunitary, i.e. the emergy momentum tensor density governing the
behaviour of the total system of the electron and its field is given by

ik =— Fu Fi' + % gix Fpq F?9,

(Fiy is the e-field), which does not involve the dynamical electron variables explicitly,
and which, of course, does not contain the (electromagnetic) mass of the electron at all.
This quantity, it will be remembered, is first introduced into the theory by the definition

T(0) =fz?,(0) dV =mc.

*) As well known, the concepts of hole theory lead to a non-linear electrodynamics
of the vacuum. This is expressed by the occurrence of terms in the Hamiltonian being
non-linear in the potentials and field strengths, (the terms Hp, Hs and Hg of
HEISENBERG 6) ). These terms do not give rise to electron self-energy contributions, because
their expectancy value for the states “vac £ 1" is the same as that for “vac”, as they do
not depend on the occupation numbers of the electron states.
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Supposing the electron to move in the 1-direction, the factor (1 + f?/3) is then obtained
from the well known formula

T%(0)— 2 T4 (0)
V1—p '

and from symmetry considerations, noting that the trace of T;; vanishes,

T; =

§ 4. Self-energy due to vector f-field.

Consider now a particle with spin, 14 fwhich we assume to be the (point)
source of-a neutral short range field of the vector type, the variables of
which satisfy a wave equation of the form (1), (“neutral vector meson
field”). We take the four-vector source function to be proportional to a
constant f which represents the corresponding ‘“‘charge’ of the particle. If
the universal length, thus introduced, tends to infinity, we obtain the
e-case if f —e.

Now it was shown in I, § 7c *) that the f-self-energy diverges at most
logarithmically to gny order of approximation and that the 'divergent term
is independent of x. This means that the divergence occurring in the
n-th order contribution due to the f-field is identical with that of the
e-field provided that e2* — {2, Consequently, a sufficient condition for
the f-divergences of all orders to be identical with the corresponding
e-divergences is

=P . « « « » » ¥ » 5 5 [8)

As (5) also holds for 'the f-field, it follows that the condition (6), as
expressing the identity of e~ and f-divergences, is relativistically invariant.

§ 5. Case of e~ and vector f-field.

From these considerations we infer that, if an electron would be the
source of the e- as well as of the vector f-field, its self-energy of n—th
order would, always in the positon theory, contain a logarithmically
divergent (multiple) integral which stands multiplied with aa(e2" + f2"),
the factor a, not depending on x nor on e and f. This integral, however,
forms only a part of the total n—th order divergence which now occurs.
In fact, as the n—th order contribution is now generally brought about by
means of virtual processes in which p photons and q f-quanta come into
play, p+q=n, p=0,1,...,n, there must, more generally, occur
divergent integrals ~ apme2(®-m) f2m m — 0, ..., n. From the reasoning of
I, § 7, it will be immediately clear that these integrals will at most diverge
logarithmically, while @ll a,m will be independent of x». Furthermore, the
relative magnitude of the anm for varying m but constant n depends only
on the relative magnitude of the domains in momentum space involved.

*) In loc. cit. f, corresponds with the f of this section.
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Taking all this into account, it is easily seen *) that the total logarithmic
divergence of n—th order stands multiplied with a.(e2 + f2)".

§ 6. Subtractive vector f-field.

We now have to go one step further to attain a theory of the Dirac
electron which is in some respects the quantum mechanical analogue of
the classical linear theory of the electron proposed by BoPp 2): let us
consider the electron, besides of 'the e-field, to be the source of a “sub-
tractive” f-field, that is to say, we take that part of the energy momentum
tensor (operator) of the 'total system which refers to the f-field, and to
the interaction of the f-field with the electron field, with the minus sign.
Obviously this will alter nothing of ‘what has been said about the type of
the divergences, this change makes itself felt only with respect to the
coefficient with which the integral stands multipliad. We show that this
coefficient becomes

an (e>—f).
The fundamental difference with the case of the “additive” f-field
consists in the different domains of the values which the energies of the
' f-quanta may take in the intermediate states. Indeed these values range
from fcx to + o for the case of the additive field, but from — fcx to
— o for the subtractive field. Now, the logarithmic divergent integral
which stands proportional with e%»-m)f2m js in the additive case,

fdp, fdpz y f onen. (2, i, J EJ .o

the g: denoting absolute values of the momenta q: of the f-quanta. As
q}=¢€2/c2 — h2x2, where & is the f-quantum energy:
dqi __deg; h?c?x?
S %Ry
qQ & ta

+) = g (er) .

&

Thus the integral [“q;!dq: may be replaced by [Zo(e1)de, where (&)

*) The argument runs as follows: Consider the contribution to the divergent term, due
to e-interaction only, of the part of momentum space which lies between p; and p1 + dpi,
«.ss Pp + dpp. This can be written as

d| d d,
const, e2n, SPL  CPi CPn

1 4 Pi Pn
Replace the e-contribution to the i-th shell by the corresponding f-contribution. The
contribution to the divergent term is now ~ e22-2f2, but is, fon the rest, identical with the
former one. The replacement can be performed in (}) ways, the relative magnitude of
the total contribution ~ e27-2f2 as compared to that ~ 27 is thus (}). Now replace the
contribution to two shells by f-contributions. the facton of relative magnitude now is

(%): etc.
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is an odd function. The corresponding integral in the subtractive case will
then bE/_w(P(Ex‘)dEl = —f‘”qo‘(ei)dsi. The integral (7) therefore — (—1)™
times the integral for the subtractive case which proves our assumption.

Consequently the condition (6) is sufficient to obtain finite results in
every approximation *). From what has been said before on the invariance
of the identity between e- and f-divergences, it follows that the “con-
vergence condition” (6) is relativistically invariant.

§ 7. Criticism of the introduction of subtractive fields.

A definitely unsatisfactory feature of the above theory lies in the rather
artificial way in which the minus sign has to be introduced with regard
to the f-field energy. The free f-field has consequently to be considered
as a superposition of plane waves with which correspond quanta of
negative energy. An electron therefore has a chance of emitting a negative
f-quantum in going through a static field (‘“‘f-bremsstrahlung”), thereby
passing itself to a state of higher emergy. Though the total f-radiation
probability can be estimated to be small, compared to that for e-radiation,
if » is large, the relative number of processes in which an electron emits
an f-quantum thius being very much less than for ordinary bremsstrahlung,
it is hard to conceive how such f-effects should be possible at all. It is
true that, as shown by BopPP 2), they do not occur in the case of a classical
electron describing a closed orbit: in such a case, the work dome in over-
coming e- and f-radiation damping is in fact always positive. But this
result, however interesting, is by no means sufficient to remove the
objection. ,

Pair formation and annihilation involving f-quanta instead of photons
are impossible because these processes require a positive amount of energy
to be absorbed or emitted. Still, if one assumes the negative energy levels
to be (nearly all) occupied, as in the hole theory, there is a possibility for
the creation of pairs which has no analogue in the e-case and which presents
new difficulties: if a static field is present, an electron of negative energy
may be scattered by it in emitting a negative f-quantum, the energy
of which may be such that the electron has positive energy in its final
state. This process thus results in the formation of a pair as well as of
an f-quantum (its inverse can therefore be ignored, being a morebody
problem). Consequently, the infinite distribution of negative energy
electrons would become unstable in the presence of static fields, however
slowly varying. The theory sketched in §§ 6—7 must therefore be con-
sidered as to be inconsistent with the very existence of an infinite electron
distribution in vacuum; we thus discard the idea of substractive fields.

§ 8. f-fields of otHer type.
Another way of solving the self-energy difficulties in position theory
which might lead to finite results without the device of a subtractive field,

*) This also holds if the multiple divergent integral (7) would be less than n-fold.
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suggests itself by considering the introduction of an f-field of other type.
In fact, it was shown in I, § 7d that all f-self-energies diverge at most
logarithmically to any order of approximation and that the divergent term
is independent of x. Consequently, other f-fields might compensate the
divergences due to the e-field and that in a relativistically invariant way
on account of (5). It cannot be ascertained without explicit.calculation,
though, whether the corresponding ‘“convergence relations” have any
physical meaning. Indeed the condition for convergence of the n—th
approximation will have the form

=anfl . . . o . . (8

In order to be comsistent, a theory of this kind imposes two conditions on
the an:

1. They should be independent of n.
2. an should be positive.

A general criterion for these conditions to be satisfied would require
the knowledge of the connections between the e-field and the f-fields of
various types, with regard to the coefficients of their respective logarithmic
divergences of any order; on account of their x-indepenidence, it would be
sufficient to establish such connections between the various “photon”
fields. I have not succeeded in arriving at general results.

On the other hand, one can, as an orientation, perform explicit calcula-
tions to a certain approximation. This might, in any case, be instructive
with regard to f-fields which have to be excluded. Such computations
have been performed in I for the first order approximation of the self-
energy. Let us first consider the fs-case. From I, table 3, it is seen that
the log fs-divergence compensates the log e-divergence if

e=%fr. . . . e ... 9

The factor } provides a striking example for the fact that this theory
stands in no correspondence with STUCKELBERG's classical theory: In the
latter, the self-energy due to e~ and scalar f-field for a point electron at
rest is finite, as we have seen in § 1, eq. (4), if e2 = f2.

It would be of great interest to know whether this factor % also occurs
in the higher order approximations, i.e. whether the log divergence in
n-th approximation stands multiplied with (e2— f2/2)*,

The other f-fields, envisaged here, yield, according to I, table 3:

fpo-case, (pseudovector theory with pseudovector interaction): a; = 5/3,
f ps-case, (pseudoscalar ,, .» pseudoscalar ” ): a; = —1/6.

Thus, while the second one has to be discarded, the first one also may
be taken, at all events in first approximation, to obtain convergence.
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It has been shown in I, that the self-energy due to g-interactions
involves, already in first approximation, a qu and a log divergence (on
hole theory). As the e-self-energy has a log divergence only, this means
that, in order to get a finite self-energy in first approximation, it would
be necessary to introduce at least two g-fields; on account of its greater
intricateness we therefore discard the possibility of introducing simultane-
ously various g-fields to ensure convergence.

Finally, one may inquire into the possibility of establishing convergence
relations on one-electron theory: though we have no knowledge of the
divergence properties of the higher order approximations in this case, it
might anyhow be interesting to find out whether convergence in first
approximation is possible. That this is not the case can be found from a
closer examination of I, tables 1 and 2, however, from which it is seen, on
one-electron theory: first, that W}l‘l)v and W(ﬂ“)lct (the sum of which is equal
to W) have, for given type of field and interaction, divergences of different
kinds which means that we have to look for combinations leading to
compensations of the divergences of W' and of W) _ separately; secondly
that all quadratic divergences occurring in the various W{)  have positive
sign. As such a divergence especially occurs in the e-ase, it is impossible to
establish, on one particle theory, convergence relations for the electron,
whatever combination of fields is chosen.

Thus we arrive at the conclusion that only with a scalar f-field does
one, at any rate in first approximation, obtain a finite self-energy on hole
theory, but not on one-electron theory.

§ 9. The universal length.

The further physical implications of all “two field theories” essentially
depend on the magnitude of . Apart from the condition z-1 =< 10-13 cm,
which has to be required because the pure e-theory at all events is known
to hold well if only distances large compared with the “classical electron
radius” are involved, the theory leaves the value of x undetermined: the
requirement of finite self-energy solely leads to a relation between the
charges. In order to verify whether, as already asserted in § 2, W can
indeed be considered as a perturbation if x ~ 1013 cm-1, we have to
compute W in terms of the fine structure constant, » and m.

But here we are faced with a difficulty: W is represented by an infinite
series and we do not dispose of a method for generally determining its
n—th term, so that, even apart from the still open question, whether (9)
serves to cancel the higher order divergences, we cannot ascertain the
convergence of the series as a whole. However, we will for the moment
make the perhaps too optimistic assumption that the first order contribution
roughly determines the order of magnitude of the total self-energy:

W~Wl=wl+w§d) . . . . . . (10
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From the expressions given in I, table 1, one obtains after some simple
transformations (the charges have been expressed in Heaviside units),

WO = D me D=goo. g%zgp“LV’f:T"?.mca
w =—D—32§hc. me? [1 —e— (6 — ) IgE — (11)
—efewa-(-F)eva]
with
=t p=fp,
C (22, p) = Principal value of ﬂ xz—}.l)‘li;xT-}-_,uz

_ 1 g V44
N2 A E Y

Here y is ‘understood to be = 0, i.e. £ = 2; the principal value integrals
occur because, if & =2, there is a particular intermediate state with
negative energy, for which the energy denominator in the well known
formula for the second order energy perturbation becomes zero; the
momentum of the electron in this state is just y.mc. The condition § = 2
means that the rest-energy of the f-quantum should at least be 2 mc2,
the breadth of the energy zone, which separates positive and negative
electron levels; cf. I, § 4b. After some transformations, the finite part of
W‘,‘: can be written as

A" P —8 + (' —68) | 2 —29 1. 12
= 327%hc - gé+y (¢ 4)lgEz . (12)

+2y

On developing the logarithm one then finds

2
wW ~ l6€sh mc’[lgé‘ 1}_{_o(lgE)]_16":211‘:4;1(:2. (13)

which, according to (9) , is =~ 0,015 mc2 if x ~ 1013 cm-1. This is the
result quoted and partly discussed in § 2. In order to examine whether the
occurrence of the lg &-term in (13) is specific for the scalar field, we have
computed the finite parts of the self-energies due to the other f-inter-
actions. The results are:

2
—an;hc.mcz[1—e=+e*tge+y(sz+2)lax]

vector
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2
ps. vector — %ﬁ . mc? [1—52 + (&*—8&) Ig & + y (£2—6) Ig X]

2
ps.scalar — 32{:;shc . mc? l:l—é'z-i- E—28)lgt+yilg X ]

where the argument X of the logarithm is the same as that of the last term
of (12). Developing gives

scalar 3
vector 3f? —1
wo ~ .mct.lgék. .. (19
ps. vector 8ahc W 3
ps. scalar —3

Thus in all cases the lg é-term is the principal term; the same has been
verified to be the case for g-interactions. Another feature of the regularities
of the self-energies on hole theory is demonstrated by comparing the
coefficients behind the brace with the constants a; of § 9: the ratio of the
finite parts of the self-energy is the same as that of the corresponding
f2 to e2 in the convergence relations.

We should like to point out that it is by no means trivial that the self-
energy can be considered as a small perturbation for the conveniently
chosen order of magnitude of ». For if we would have taken x to be, say,
~ 1020 cm-1, W would have been ~ 0,1 mc2, which is already a very
inconvenient value, as it would necessitate us to distinguish quantitatively
between experimental mass and m. In fact, only the two extremely opposite
points of view: either all mass is due to field self-energy, or the latter is
small, lead to a theory involving only one mass characteristic for the
electron itself, as has already been pointed out in § 2. It seems therefore
gratifying that the “perturbation method” is characterized by e2/4x mc2
being roughly the upper limit for -1, while it is at the same time its lower
limit on the general physical grounds discussed in § 1, so that we may
state: a consistent theory in which the self-energy can be considered as a
small perturbation compared with mc2 is possible if, and only if, x-1 has
roughly the same order of magnitude as the classical electron radius.

The results obtained can therefore be summarized as follows: The
electron has, at all events in first approximation, a finite self-energy if we
assume it to be the source of a scalar field of short range, besides the
electromagnetic field; the higher order divergences of the f-field are, like
those due to the e-field, all of logarithmic type, But we have not been able
to prove that these divergences generally compensate each other. The
theory is non-unitary in the sense expounded in § 2, the field self-energy
is considered as a small perturbation, which is possible if the range of the
field, which is the new fundamental constant of the theory, is chosen to be
roughly of the same order as the classical electron radius. Further, this
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theory does not exhibit any correspondence with a theory in which the
self-energy singularities are eliminated by means of classical considerations
and where the scheme thus obtained is subsequently subjected to quantiza-
tion, because the two fundamental problems to which the present theory
gives rise: the determination of a “‘convergence condition” and of a relation
between m, » and the fine structure constant, require for their solution
that one from the outset shall take into account the interaction of the
electron with the infinite vactum distribution of electrons and with the
e~ and f-"zero fields”.

Appendix.

Force on surface element of [finite electron in a classical picture.

We take
0

X=X, Xo=— U, X3— 2, X4— — ct; a‘uE W’
The field equations of the scalar theory are
In=—0,.9, 0.I"*=x*Q—R.

The first set defines the f-field vector as four-gradient of the scalar
potential Q. R is the “source”. The energy momentum tensor is

Lyp=—Tu I+ guw ([ I + %> Q7).

Its divergence, the space components of which represent the f-force
density, is

9, T =—T*R.
The field equations of the vector field of short range are
Fuy = 0u ¢o—0, @y, 0uF*" =x? ¢"—s"

@u is the four-vector potential, sy is the “charge-current density”. The
energy momentum tensor is

Lyr = — Fiie F.*—%* @ 9, +  guv [Fes F& + 2% @, 9°),
hence

0, ¥ = Frv g,

The second member of this equation does not explicitly depend on x and
is therefore also obtained on e-theory. The components of the total force
density therefore are

on STUCKELBERG's theory: Fiy s©'—I'* R
rp=1,273.

on BoPP's theory: Fly s"'—Ff] s
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The quantities marked with (0) refer to the e-field (x = 0), those with

() to the subtractive vector f-field. The difference in relative sign of e-

and f-force density in BOPP's theory occurs because there the f-energy

momentum tensor is to be subtracted from the e-tensor.

In the case of a charge distribution which is at rest, these expressions
become, in obvious vector notation

- - -

(*0)) E(o) — PR ’ '—=— grad .Q,

-

E

- -
o0 Eo—ewEwn ., E=—gradV,

with
AR—x2Q=—R,
A Vig—x? Vig=— 0w,
A Vig=— o

R’ is the function in which R goes over for zero velocity. Taking a spherical
electron with finite radius r and with uniform superficial charge density
0() = e/4nr2, the e-force on a surface element dO is, taking for the field
strength at the surface the mean of its outer and inner value:

l ->
er e
= .5—5 . 5—5 . dO.
2 " 4nr® " 4nr

Supposing further the electron to have a uniform superficial f-charge
density f/4nr2, due to which it is the source of either scalar or subtractive
vector f-field, we have for Q (scalar case) as well as for V, (vector case)
in a point at a distance £ from the electron centre

_f e’ sinhx &
4n" ¢ ° =&

_xe :
f e sxnhnr'$>r.

.ESI:E-E. xr =

So the corresponding field strengths are

4
fe [&—nh—’g cohné:l —".§<r

4n k2 x&
45553 [ 4 xg] e SR s

Therefore the total force on a surface element of the electron becomes, in
STUCKELBERG's as well as in BopPP’s theory
—’

1 o
T T dar OO0
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with

1— (1 4 xr) e=2r
xr

g (xr) = =1 if r—0.

This is the result quoted in § 1.
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CHAPTER III.
On the self-energy of nucleons and the theory of nuclear forces.

Summary.

§ 1. Introduction. — § 2. Statement of the problem. — § 3. The proton-
neutron convergence relations; their connection with the electron con-
vergence relation. — § 4. The mass difference of proton and neutron. —
§ 5. The nucleon convergence relations. — § 6. Introduction of the F-field.
— §7. The magnifude of the mesic self-energy. — § 8. Concluding remarks.

§ 1. Introduction.

In Chapter I (referred to as I in the following), the self-energy pro-
perties have been examined of particles with spin 14 which are the source
of one or more neutral or charged fields of either scalar (s), vector (v),
pseudovector (pv) or pseudoscalar (ps) type. For the present purposes,
some of the main results obtained in I will here be summarized.

a) The self-energy W due to an arbitrary field and to either f- or g-
interaction (for this notation see I, § 1), can be developed in an infinite
series with respect to a dimensionless constant “‘(charge)2/Ac”. Calling
the n—th term in the development for a particle with momentum

- -
p W (p), we have (cf. I, § 1)

W(;)=§W‘"’(—;;); W""(Z): wep 1—g, . . L (1)

W () referring to zero momentum. (1) is true in the “one particle theory”
as well as in the “hole theory” interpretation of the negative energy levels
of the spin 14 particle concerned. According to (1), the divergence pro-
perties of the self-energy can uniquely be found from the case that the
particle is at rest; in what will follow we can therefore, without loss of

generality, confine ourselves to the problem for ; =0,

Whereas (1) is independent of the alternative points of view which may
be held with regard to the occupation of the vacuum levels, the further
general results, to the survey of which we now turn, only apply to hole
theory. As this case will mainly be dealt with in the present chapter, we
will, if not explicitly stated otherwise, understand by W(» the n—th order
self-energy under the assumption that in vacuum all negative energy levels
are completely occupied.

b) It has been found in I, § 7, that, whether the interaction concerned
be of the neutral or the charged type, or a mixture of both, all f-self-
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energies diverge at most logarithmically to any order of approximation,
while the situation with respect ot W("’ is fundamentally more complicated.
This finds its origin in that the ° g—sources are proportional to a coupling
constant which, unlike in the f-case where this constant has the dimensions
of a charge (called f), here has the dimensions of charge (g) times length.
In particular it was found that, generally, Wg) exhibits a quadratic and a
logarithmic divergence. Furthermore, if both f- and g-interaction of the
same field type are present, there occur, in the v- and ps-case, self-energy
terms proportional to fg, which also diverge quadratically and logarithmi-
cally. Finally, it has been found in I that terms of direct g-interaction lead
to self-energy contributions which, in first approximation, again yield
divergences of the two above mentioned types. For this notion of “direct
self-energy” cf. esp. I, § 6, 4°.

c) It has been explained in Chapter II, (further on referred to as II)
how the property of W@ to diverge at most logarithmically, irrespective of
the field type, may lead to a finite self-energy of the electron on the
assumption that this particle creates, besides the electromagnetic (e-) field,
another, or in principle more than one other, f-field of short range, pro-
vided that a certain relativistically invariant relation between e and the
charges f, which we call convergence relation, can be satisfied. As this
relation generally is of the form

PO fl. .. f2)=0 . . . . ...

(n) denoting the order of W), we may state the conditions for (2) to be
satisfied as follows: first, the coefficients of the various powers of e, ... fps
should be such as to allow real values for e, ... fps *); secondly, the
relations (2) for n =1, 2, ... should be mutually compatible. If, as has
been done in II, only one f-field is introduced besides the e-field, F(1)
becomes (cf. II § 8)

e+a;f2=0, i=s,v,pvorps. . . . . . (3)

and the requirements, just mentioned, now imply: first, ai <0; secondly,
(3) substituted in F(®), n> 1, should yield an identity. Whereas a: can
be determined by calculating explicitly the first order self-energy concerned,
which led to the result that a; <0 if i = s, pv and a; >0 if i = v, ps, the
investigation of the second condition is hampered by the difficulty that
we do not dispose of a method enabling us, without the impracticable
computation of W(" for any n, by means of perturbation theory, to find
an explicit expression for the coefficient of its divergent part. Thus we
had to content ourselves with the establishment of (3), and to leave open
the question, whether (3) with a; <O suffices to eliminate divergence of
higher order.

*) F(n) is a homogeneous polynomial in the charges of degree 2n.
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d) It is an essential feature of the present quantum field theories (cf.
II, § 2), that they are necessarily non-unitary, i.e. that the wave equation
of the particles cannot be obtained from the equations governing the
behaviour of the fields they create. It has been shown in II how, conse-
quently, W depends, besides on e2/Ac and f2/#c (the latter being eliminable
by (3) in the case of one f-field) and on the f-field range, also on the mass
parameter M occurring in the Dirac equation. It was then remarked that,
in principle, it is possible to give a unitary treatment of the electron mass
m, viz. by considering it to be a priori undetermined and then to be fixed
by the implicit equation W = mc2. However, arguments were given in II,
§ 2 for the inapplicability of this method which was therefore discarded in
favour of the alternative way of treating the field self-energy, viz. as a
small perturbation compared to mc2, m being the mass of the electron as
occurring in the Dirac equation. This appeared possible only if the range
of the f-field is roughly of the same order as the classical electron radius,
cf. II, § 9.

§ 2. Statement of the problem.

It is the aim of the present chapter to discuss the self-energy problem
for the “heavy Dirac particles”: proton and neutron on similar lines as has
been done for the electron *).

It is well known how the idea, originally put forward by HEISENBERG 1)
that protons and neutrons are the sole constituents of the atomic nucleus,
has led to a rapid advance of our theoretical knowledge concerning nuclear
physics. In order to understand such fundamental features as the f-
transitions and the exchange properties of the neutron proton interaction,
it is, on the proton-neutron picture of the nucleus, convenient to consider
proton and neutron as different states, with respect to an e-charge coor-
dinate, of one and the same particle, now generally called nucleon. To this
concept, which at present underlies all considerations within the nuclear
domain, we will in this paper refer as “nucleon concept”.

The theory of nuclear forces, after passing through a half-phenomeno-
logical stage, was founded on the concept of interaction through the inter-~
mediary of fields by the remark of YUKAWA 2) that a complex field (now
called meson field) satisfying the relativistic Schrédinger—-Gordon
equation leads to a short range exchange force between nucleons. Since
1938 the various a priori possible 3) meson field theories have been the
subject of many detailed investigations. Though the question which meson
field or combination of fields is the most suitable to account, if possible,

*) As the wave function of the proton satisfies the Dirac equation, this implies, in the
hole theory interpretation, the existence of its anti-particle. The anti-proton has never
been observed experimentally, but this in itself cannot be considered as a serious argument
against the assumption that the proton is a spin 14 particle, as, on account of its large
mass, the cross-section for proton-anti-proton pair formation by a photon (of energy
=1,8.10°eV) passing through matter is very small compared to the probability for
negaton-positon formation by a photon of the same energy.
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for all phenomena of short range nuclear interaction, as well as to establish
the generally assumed connection with the properties of the penetrating
component of cosmic radiation, is far from settled 4), the basic idea of
employing meson fields for this purpose anyhow seems fertile. It is,
however, beyond the present purposes to enter into a detailed discussion
of the merits and defects of the various current meson theories of nuclear
forces,

We can thus, proceeding on similar lines as in II, confront these theories
with the self-energy problem of the nucleons: Indeed, we have found in
the case of the electron that, with certain combinations of fields of the
types s, ..., ps correspond, at all events in first approximation, finite self-
energies of the particle by which they are created. The assumption of a
short range field being produced by the electron constitutes an essential
new feature within the framework of the present picture of elementary
particles, but in the nucleon case the situation is different as there the
existence of one or more short range fields has already been postulated
in order to account for the nuclear forces. Thus, the idea of attaining finite
self-energies by means of suitable combinations of fields naturally leads
one to inquire whether any of the (mixtures of) meson fields, may, besides
describing more or less satisfactorily the nuclear interaction phenomena,
moreover serve to obtain finite nucleon self-energies. From this point of
view we will discuss the current meson theories of nuclear forces in
section 5; however one remark of general order may already here be made
on this subject:

Whereas we have already seen in connection with (2) that the conver-
gence relations of various order, for a given type of divergence, should
be mutually compatible, we meet in the case of g-self-energies with a new
feature: according to I, § 7e, every new approximation will generally
involve convergence relations for divergences of new order, or, in other
words, the number of convergence relations will increase the further the
approximation is pushed. Therefore, the compatibility must now be required
of the convergence relations for the divergences of various types. On
account of the difficulties referred to in § 1, it does, with the present
methods, not seem feasible to attain to decisive conclusions on this question.
Anyhow, we shall confine ourselves in this chapter to the consideration of
the first order convergence relations, thereby making use of the explicit
expressions for the first order self-energies obtained in I *).

*) Due to their interaction with the electron-neutrino field, the nucleons also have an
“electron-neutrino self-energy”.Whether this interaction is ‘“direct” or brought about
through the intermediary of mesons, the lowest self-energy contribution is of the second
order, viz. proportional to the square of the ‘“electron-neutrino charge” times the square
of the mesic charge. Thus the first order convergence relations do not involve the electron-
neutrino charges of the nucleons. As these quantities are very small compared to the mesic
charges, it is, for the rest, improbable that this self-energy will, in any theory, play an
essential role, as regards convergence as well as their contribution to a finite nucleon
self-energy,
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Before we are able to turn to the problem of the connection between
theories of nuclear forces and the concept of convergence relations, another
problem necessarily has to be tackled first, however: in fact, the nucleon
concept, in its form enunciated above is incompatible with the very notion
of convergence relations. This can be seen as follows:

As we know (see I) that the e-self-energy leads to a log divergence in
first approximation, there is certainly a relation

e24+X=0

which has to be fulfilled to ensure convergence of the first order proton
self-energy *); X denotes the totality of terms arising from the log diver-
gences due to the proton creating a certain set of meson fields. Thus X
depends on the particular set of fields chosen; but whatever this choice
may be, there will be, as a consequence of the previously given form of the
nucleon concept, a corresponding relation

X=0,

necessary *) to let the first order neutron self-energy be convergent. And

so neutron and proton relation are clearly incompatible. Thus, if we assume

that the finiteness of the proton and neutron self-energy is brought about

by convergence relations, the nucleon concept must be restated in the
following way:

Proton and neutron are, with respect to the electric charge and

at least one other parameter, different states of one and the same
particle.

Therefore, the present problem can be stated more precisely as follows:

a) The compatibility has to be required of the convergence relations
for proton and neutron. In § 3 it is shown that this can be fulfilled by
assuming the proton to be the source of the same scalar f-field as supposed
in II to be created by the electron.

B) Is it possible, once the compatibility mentioned in a has been
established, to choose a mixture of meson fields responsible for nuclear
interaction in such a way that the mesic nucleon charges satisfy certain
convergence relations, while, moreover, the fields considered allow of the
interpretation of — to put it mildly — a reasonable number of nuclear and
cosmic ray phenomena? It may be noted that, if such a set of fields can be
found, the existence of convergence relations leads to a reduction of the
number of constants of the theory **).

*) This relation is necessary but not sufficient, as we shall see in § 3.

**) It should be remarked at the outset that there is at least one discrepancy between
current theory and experiment on which the present considerations can throw no new
light: as has been pointed out by YUKAWA 8), it is inconceivable that the experimentally
found order of magnitude of the cross-section for the scattering of fast mesons by nucleons
can be accounted for by the assumption that it is some mixture of meson fields and not a
single one which is responsible for nuclear interaction.
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The total Hamiltonian governing the behaviour of the nucleons and
their surrounding fields can be written as

H = H,a. + Hgeias + Heoupiing

Hpaas being that part of H which only involves variables of the fields
created by the nucleons, while H oy, depends both on the nucleon and on
the field variables. For H, we take

. Ao =
Hmat— wf Tav+ﬂMC2 ‘lﬂdv.

Thus we let only one “mechanical” mass M enter explicitly in H, i.e.
we do not introduce different mechanical masses for neutron and proton.
This departure from ‘the customary treatment finds its justification'in the
following fact: the effective mass Mp for proton (My for neutron) is now
defined as the expectancy value of H, for the proton (neutron) state of
the particle present, in terms of the mechanical mass:

Mpc?=(Mc*+ Wp)
Mpyc? = (Mc® + W), but unequal to Mpc?,

due to the fact that Wp and Wy, the expectancy values of H guping for
the proton and neutron state respectively, are not identical. Now it will
be shown in § 4 that A, the empirical mass difference of proton and neutron
can, to sign as well as to order of magnitude, just be accounted for by
the difference of Wp and Wy (and that in first approximation indepen-
dently of the particular choice of meson fields responsible for nuclear
interaction). It will be clear beforehand that the scalar f-field created by
proton as well as by electron (see above) plays into this result; indeed
it appears from the considerations of § 4 that A is equal to about minus
two electron masses if the range of the f-field has, not roughly as was
already implied by the results of II. § 9, but rather precisely the order of
magnitude of the classical electron radius. These results therefore corro-
borate the self-energy treatment of the electron given in II, the whole
scheme shows a satisfactory consistency.

Furthermore, it will appear in § 7 that the self-energy due to the meson
fields cannot be adapted to be made either large or small — as could a
priori be done for the f-field self-energy of the electron — by suitably
fixing the ranges 1/x; of the fields. After having eliminated the divergent
parts by means of the convergence relations, we have, in fact, to insert
into the remaining finite part the experimentally known order of magnitude
of the % and to see what comes out. Now it appears that in all cases, for
fi- as well as for gi-interactions, the result is that the contribution is
< Mc2.

Thus, while with regard to the magnitude of the self-energy one could,
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in the electron case, consider a priori two possibilities: either the electron
mass is wholly due to the self-energy, or the latter is a small perturbation
compared to the former, in the nucleon case the situation is different: here
the self-energy simply turns out to be a perturbation. This means that
the mechanical mass is practically equal to the experimental proton (and
neutron) mass.

As regards nuclear interaction problems, the occurrence in Hps of M
instead of both Mp and M y does not lead to any material modification. For
it means that the most convenient system in e.g. the deuteron problem is
that in which the centre of gravity of the mechanical masses is at rest. But
this system is, for all means and purposes, identical with the actual centre
of gravity system; in fact, calculations are usually performed in the first
mentioned system,

We now turn to a general discussion of the compatibility of proton and
neutron convergence relations (problem a), after which in § 4 an expression
for the mass difference of proton and neutron is derived. We then are
able to examine the nucleon convergence relations as a whole (problem g):
§ 5. The current theories are found not to satisfy the convergence require-
ments. It is then proposed (§ 6) to introduce, somewhat similarly to the
solution of the difficulties for the electron, advocated in II, a neutral scalar
field to ensure convergence without influencing the main aspects of the
interaction problem. It appears from the convergence relations that this
field is more strongly coupled with the nucleons than the other meson
fields, from which it is inferred that its range is shorter than those of the
other fields. Possibilities of experimental tests of this assumption are
considered. § 7 consists of the discussion of the magnitude of the mesic
self-energy of the nucleons, while § 8 reviews the situation.

§ 3. The proton-neutron convergence relations; their connection with

the electron convergence relation.

In first approximation, an arbitrary mixture of f- and g-interactions
gives rise to a quadratic and a logarithmic divergence. Consequently, there
are two convergence relations for the proton as well as for the neutron
which generally can be written as

@+ L (f.g.mn) + g~ proton . . 40D
Q@gan) +Qlgxn) =0 6 P
Llfgonntt Dlomn =0y (60
Qgxn) +Qxn) =0 6N)

In (4P), which serves to eliminate the logarithmic divergence in the proton
self-energy, L’ is a function of the constants f, ..., n referring to the neutral
meson fields, while L7 is the same function of the constants of the charged
fields, as follows from the connection between W(1)» and W(1)? found in
I, § 1. The fields and direct interactions of which f, ... n are representative
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are those responsible for nuclear interaction (for the precise definition of
the constants n see I, eq. (58), (58a), (58b)). Besides these, the proton
also creates an e-field, due to which a term e2 will occur in the conver-
gence relation for the logarithmic, but not for the quadratic divergence
(5P), as we know that the e-interaction, belonging to the f-group, leads
to a logarithmic divergence only. In (5P) Q” and Q7 are defined similarly
to L” and L?. Furthermore, the nucleon concept implies, that, apart from the
e-properties of the proton, neutron and proton are identical. Thus apart
from a term e2 missing in (4N), the convergence relations (4N), (5N).
will be identical with (4P), (5P).

The incompatibility of (4P) and (4N) has already been alluded to in
§ 2, where it was stated that, besides the electric charge there must be
another parameter which takes different values for the neutron and proton
state of the nucleon.

Now there is a condition, not yet taken into account, which has to be
imposed on the nucleon convergence relations: this will lead to the intro-
duction of a parameter of the desired properties and, it may be noted,
make the compatibility of the first order convergence relations independent
of the particular choice of meson fields describing the nuclear forces. This
condition is obtained by considering the mechanism by which, within the
framework of the present theories, the processes of f-radioactivity can be
described. These are twofold: first, it may be assumed that there exists a
direct coupling between nucleon- and electron-neutrino field, giving rise to

DP— N+4et+n, N—->P+4e +n . . . . (6

where e+ (e—) is a positon (negaton) and n (n’) an (anti)neutrino.
Secondly, g-decay may be brought about by the disintegration of a positive
or negative meson, emitted in an intermediate state by proton and neutron:

Po>N+4+Y+, Ytsetd+n; N=>P+Y-, Y-=e +n. (7)

Now it has been shown in II how the assumption that the electron has
an f-coupling of the scalar type leads, at all events in first approximation,
to a finite negaton and positon self-energy. Denoting the corresponding
coupling constant by f (instead of fs), the convergence relation for the
electron is (cf. II, eq. (9))

E—31f2=0,. . . . . .« . . (8

obviously, the theory is independent of the relative sign of e and f. We
choose e.g. the negaton to have charges —e, —f; consequently those of
the positon are e, f. We now shall require: first, that for (6) and (7)
not only the (already satisfied) conservation of e-charge, but also that
of f-charge be true; secondly, the compatibility of proton, neutron and
electron convergence relation. To examine this, we put the f-charge of
neutrino, neutron and proton equal to 4af, Anf and Apf respectively, where



72 ON THE THEORY OF ELEMENTARY PARTICLES

An, AN and 1p may take the values == 1 or zero. The first mentioned
condition yields

ip=An+ 1+ 1,
the second

1—1+ % =0.

Elimination of 4, gives

=1} T,,‘I-FT_(‘"J”) =0,+1,...

with the unique solution 4, = Ay = 0, so Ap = 1. Thus our two conditions
suffice to determine uniquely the f-charges of all particles concerned, alse
that of the meson: Y= has the charge = (1 + 42)f = = f.

Summarizing the results we have found: for all electrically charged
elementary particles, an f-charge is inseparably connected with the e-
charge. The compatibility of the convergence relations of proton and
neutron is, independent of specific assumptions on nuclear interaction,
expressed by (8), which is at the same time the convergence relation of
the electron. The nucleons have, at all events in first approximation, a
finite self-energy provided that

L'(fg»n)+L(f g»n=0 . . . . . (9
Q(g.%xn) +Q (g, %n =0 . . . . . (10

which denote two relations between the constants of the fields responsible
for the nuclear interaction. Henceforth (9) and (10) will be referred to as
“the” nucleon convergence relations.

In II it was found that the range x~1 of the f-field is, in order that the
self-energy of the electron shall be small compared to its rest energy,
roughly ~ 10-13 cm. This range is of course identically the same whether
the f-field is created by electron, meson or proton. This shows a way to
decide experimentally whether the f-field indeed exists, viz. by considering
the cross-section for proton-proton scattering as compared with the proton-
neutron scattering.

We next proceed to show that the nucleon concept, which now has to
be stated as follows:

Proton and neutron are, with respect to their- e- and f-charge,
different states of one and the same particle,

leads to a mass difference of proton and neutron which has the right sign
and order of magnitude.
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§ 4. The mass difference of proton and neutron.
Generally we may write for the self-energy of the

proton : Wop (e, f, #; nucl; M),

neutron: Wy (e, f, »; nucl; M),

where the assembly of parameters of the nuclear interaction fields, being
the same for proton and neutron, has been written as “nucl”. (It should
be noted that, in a theory which is not purely neutral, Wy depends on e,
f and x, too as a consequence of higher order transitions.) Hence the mass
difference A of proton and neutron is given by

A= Wp—Wh.

On account of the frequently mentioned inaccessibility of the higher order
terms, we replace this relation by its first order approximation. We have
WP =w (e, f. x, M) + WO (aucl, M)
wi = W (nucl, M),
where w(1) is the sum of e- and f-self-energy, while W) (nucl, M)

denotes the contribution due to the nuclear fields of force and thus is the
same for proton and neutron. Thus

A=V e fx,M) . . . . . . . (11)

independent of the particular choice of meson fields responsible for nuclear
interaction. We introduce the dimensionless quantity

hx _m hx_ m

= _—, — — £~ —4
C—MC—M.mC—ME~5.10 F s Coe (12)

where m is the electron mass and & the same as in the formulae of II, § 9.
Furthermore, we put

& &
2S5 _ p2 — 25
y_4 £2>0, 22=¢ g

y2 is again the same as in II, § 9; we remind that y2>0 if £ > 2. Now
let us suppose for a moment that also

(>2,ie.22€<0: « s 5« « s « s « (1I3)
so, according to (12):

£>4.10%

As { > 2, we find the right member of (11) simply by replacing in II eq.
(11):

mby M, &by, y?by —22, C(y% 1)by C(—22 1), C(y> & by C(—2z% ).
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Further, all results of II, § 10 can m.m. be taken over, so we get according
to II (13)

3e?
8ahc
which would give the wrong sign of A. It is important to note that, more-

over, the order of magnitude of A would be quite wrong if we would have
put the self-energy of the electron equal to mc2. For from (13), (14) and

3e?
8x?hc’
it would follow that A ~ M!

The situation changes completely, however, if still taking &> 2, we
put, instead of (13)

3 f M
1672 Ac l =

Mlgt>0, . . (14)

.mc? lg & = mc?

(<2, i.e. 22>0.
_Then, according to (12)

-—;— . mlc> % >—;— . MLC' or lO"“cmE—,l‘— =10""cm.
More precisely, we can take as upper limit of x—1 the order of 10-13 cm,
for a larger x—1 would be at variance with the harmony between experiment
and a purely electromagnetic theory of the interaction between electrically
charged particles in the corresponding domain of distances; thus we place
»—1 roughly between 10-13 and 10-14 cm.
To find w(1) we now have to replace in II, (11) *)

mby M, &byl y2by+z2, C (428 by C’'(z42). C(y% 1) by C' (2% 1),

but the integrals C’(z2, ¢) and C’(z2, 1) are now no longer, as in II, § 9,
principal value integrals, for ¢ << 2:

" _{_ dx . _ i dx
¢ _oj wravere C e sf 2+ 2+ 1

and A becomes (all charges are expressed in Heaviside units):

IN=— & me— L me.
¢ 8= 16x?hec" 32a%hc

(15)
.[1—C2+(C‘—6C2)lgt—éz’%C’ (zz.t)-—(l—zz—)C’ (% l)%]

*) This is most easily seen by noting that
= W 4 W,

where W(e‘) is given by the first equation of II, (11). wi s given in I, table 1, viz.
by taking together the “inv"” and the “fluct” term for the fs-case. As to the treatment of
the integrals, we especially refer to I, § 4b.
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‘Asz=1 and z <{, we get, using (8):

— a m— 1
A== MI+FQlLa=15

2, ( (16)
FQ=1—-0*4((*"—6{)Igl+22z(*—4) arctyg —C—z—

In the accompanying figure, —/\/mc2 has been plotted against the range
of the f-field in units ry — e2/4n mc2. For an order of magnitude of »-1
which is smaller than that of ry, A is positive. It becomes negative for
x~1 = }r, and has the value —1,25 mc2 for x-1 =ry, —1,90 mc2 for

0,5

° l 1 2 i
==Y in units r

»—1 = 3r,. For x — 0 it tends to —2,14 mc2. Generally we may state that

if x-1 = ry, A has the right sign and order of magnitude, the experimental

value being —2,47 mc2 *).

In II it was found that x2—1 should roughly be ~ r¢, to ensure that the
electron self-energy shall be <€ mc2, with which the present result, satis-
factory in itself, is consistent.

We do not know whether the higher order contributions will be finite
too, but, if so, it is reasonable to expect that they are small compared with
w(l), as the fine structure constant a <€ 1, so that the present result would
indeed determine the order of magnitude of the whole effect to be expected
theoretically. These higher order contributions then might possibly account
for the fact that | A|, according to the present first order computations,
turns out to be somewhat too small.

Having thus shown that, at all events in first approximation, ‘the
possibility in principle exists of obtaining simultaneously a finite self-
energy of proton and neutron, it remains to examine whether this possibility
indeed can be realized, i.e., according to the program of § 2, whether the
nucleon convergence relations (9) and (10) admit of solutions with which

*) This value for the mass difference is obtained from the determination of the deuteron
binding energy by MYERS and VAN ATTA 42) combined with that of the mass difference
of the hydrogen molecule and the deuterium atom by MATTAUCH'4?). I should like -to
thank Dr. KUSAKA for kindly checking the calculation of A.
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correspond mixtures of meson fields that are suitable for the description
of nuclear interaction phenomena.

§ 5. The nucleon convergence relations,

According to (9) and (10), these are characterized by two functions L
and Qof the parameters fi, ..., ni, from which L”, Q” and L?, Q7 are found by
putting f, =f%,...,n,=n}and f,= f’, ..., n, = n} respectively. From I,
table 3, we immediately obtain:
L=—%fl+f—30,++F2+49ini—4g2n2(1—% ) +

+495, 15, 6—3n)— % gk i (1 —n)—2 o gome (1 +077)—
— % fos gps Mps (1 + ’7;32) + § ns g§ ’7§_2 n, 93 ’7,2, + .
+ 2np, 9;,, ﬂf,, — 4 nps gf,s ’7;,

Q=—gn’+tgin—4g %, +Eg i+ 4o + % o
F 4 fos gps N — s gL + 4 o gL L — 4 g g5, M, T+ R G M
in which
M
I | )
ta Hi (17a)

We may replace (9) by (Lv + 4 Q») + (Ly + $Qy) = 0. For this pur-
pose a function L’ = L + 4 Q must be introduced. As L will henceforth
no more occur, we write L instead of L’ and have

L=— 3P+ B4+ 46+ iai— bl + )
+ 392 —269.1;" — % fos Gps Mg

independent of gs and the n’s. By (17) and (18) the most general form of
the convergence relations is determined.

Now it must be remarked that the total self-energy is, on account of
the possibility of introducing terms of direct g-interaction for any of the

types s, v, pv, ps with corresponding coefficients ns, ..., nps, not unambi-
guously defined. It is therefore necessary to dispose of a physical argument
to determine the value of these constants ns, ..., nps. Now it has been

pointed out by MgLLER and ROSENFELD 5) that the constants n are fixed
by the requirement, which will here be used too, that the operator of static
interaction between nucleons shall, in order to ensure the (static) binding
energy of the deuteron to be finite 6), not contain d-interactions. This
condition is the first of a minimum number which will be laid down in the
present paper, in order to arrive at a convenient limitation of the choice
of meson field mixtures that are a priori admitted by the most general
convergence relations, viz. those involving the coupling constants corres-
ponding with all possible neutral and charged interactions and the con-
stants n, without any inter-relations between them. Thus we state
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A. The static nuclear interaction shall not contain terms of the é-type.
From this it is not difficult to prove that*)

ns=np=np=—l,n=0 . . . . . . (19

As a first simplification, we now impose the condition A on (17), i.e.
we use (19). Writing Q instead of 4Q, this gives

Q=g’n?+g2, 72, —2g% 02+ 6f. 9o+ 2fps gps tlps- - (20)

In this way, both L and Q have become independent of gs. This implies
that, as regards convergence, the inclusion of a gs-interaction in the nuclear
interaction is immaterial. We will now discuss various assumptions on
nuclear interaction from the point of view of the convergence relations,
given by (9), (10), (18) and (20).

(a). The simplest a priori possibility is to describe nuclear forces by
either one f- or one g-interaction; we will directly assume that an arbitrary
mixture of the corresponding charged and neutral fields is employed.

However, it is evident from (18) and (20) that such an assumption
cannot give rise to a finite nucleon self-energy. An exception should, in
principle, be made for a gs-theory, but this does not give rise to any
static interaction between nucleons at all, and is therefore of no interest.
In particular it follows from this result that BETHE's “single force hypothe-
sis” 7), or, in the present terminology, a g -theory, is incompatible with

*) These values of n are obtained if the total static interaction between two particles
1 and 2 has, apart from dependence on isotopic variables, the form

—XF
[a + B o 6@ 4 y (o) grad™) (o? grad?@)] CT-—- + O-terms,
12

the latter vanishing on account of (19). However, the term proportional to y yields, on
performing the spatial differentiations, also terms of the J-type: the longitudinal
d-interaction15), Thus if » % 0 there are still d-terms hidden in the dipole-dipole
interaction. To eliminate these from the static interaction, too, other values, "’i' should
be taken which are discussed in a paper by F. J. BELINFANTE"6). However, it can be
seen that those theories which are examined on their convergence hereafter for which
? 7 0 do not yield convergence whether we use n; or n; (in particular n) = — §,
n;,,=— %): furthermore we are ultimately interested in theories for which y =0 (see
condition D further on), and for these our values n; apply. To simplify the trend of the
discussion we have therefore confined ourselves to the n; given by (19) and have used
these values also in discussing the theories with y % 0. It will be noted that, as the n}
differ in numerical value only slightly from the n;, the qualitative discussions of the vector
and the pseudoscalar theory in § 6 are practically unaffected by using the n} instead
of the n;.

One may also introduce terms of direct f-interaction into the Hamiltonian which
generally are of the form n"P _/' S...(f) S (f)dv, where n"” again is a numerical
coefficient and ! a length. As, except for the f pv-case, the constants n” should be zero
according to condition A, we have thought it reasonable not to introduce direct
f-interactions at all. g



78 ON THE THEORY OF ELEMENTARY PARTICLES

the idea of obtaining finite self-energies by means of convergence relations.

(B). Next we try to satisfy (18) and (20) by taking a mixture of
either charged or neutral f- and g-interactions of the same type.

This yields, omitting the superscript » or ,

Type s: The only solution is fs = 0, gs arbitrary. This case has just
been discussed.

Type v: One finds no non-trivial solutions. This especially applies to
BETHE's f,, g,~theory *).

Types pv, ps: no non-zero solution.

Thus all purely neutral or purely charged one-field theories of nuclear
forces are incompatible with the convergence relations, combined with
condition A. ’

(7). The following step will be to consider one-field theories involving
a mixture of neutral and charged contributions. For the cases s and pv
we get the same result as under (f); the same holds for v and ps if -

WA, Ky =HL. o e e . (21)
In order to see whether (21) is essential with regard to the argument, we"
consider the case that (21) is not satisfied, but at the same time, in order
not to have to deal with unnecessarily complicated formulae, impose,
besides A, a new condition:

B. The theory shall be charge-independent, i.e. the forces between
nucleons are independent of their state of e-charge.

Within the framework of a one-field theory, the two possibilities to
which B leads are: the neutral theory, which has already been discussed
from the present point of view, and the symmetrical theory, characterized
by the following relations between the constants

le1=1el lgl=lgt e o o oo o . (22)

and

=W 5 % v v & v v v 5 B3

for any type s—ps. Thus (21 expresses that an exactly symmetrical vector
or pseudoscalar theory does not yield finite self-energies. This result is
readily seen not to be affected by a slight deviation which may exist from
charge-independence, which can e.g. be obtained by putting instead of
(23): %, ~=r, w ~ur, or by replacing (22) by |f"|=|{"| (1 + &),
|g”| = |g"| (1 + &), where ¢ and ¢’ are small. As small deviations from B
appear to be insignificant, we will in the following for simplicity assume B
to be exactly valid.

Thus there is no meson theory involving sources of one type s—ps
only, which satisfies the requirement of convergence and it is therefore
necessary to examine more complicated interactions. Of course, there is a

*) The constants f,. g, correspond with g, f of loc. cit.
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large choice of combinations which are in accordance with the convergence
relations as well as with the conditions A and B. However, it is hardly of
physical interest to consider all these cases in detail. We will therefore
now introduce two new conditions which lead to a convenient further
limitation of the number of theories which are in agreement with (18),
(20) and the conditions A and B only. As such we take:

C. The theory shall give the right relative position of the 3S- and
1S-level of the deuteron.

D. The static interaction potential of the proton-neutron system shall
not contain an 1/r3-singularity.

The latter condition is of basic importance in any theory which attempts
to eliminate the self-energy divergences. Indeed, the requirement that a
theory which is free of these divergences shall not contain infinities of
other origin is but a matter of course. Now it is well known, that 1/r3-
terms in the deuteron potential entail an infinite binding energy; thus, as
the present endeavour to obtain finite self-energies doet mot implicitly
involve a prescription by which the 1/r3-terms are discarded, it is quite
natural to impose condition D as an accessory requirement on the theory *).

On the next simple assumption of only two fields of different types being
involved, it has been shown by MgLLER and ROSENFELD 5) that there are
only two possibilities to satisfy the conditions A—D viz.: a symmetrical
vector-pseudoscalar theory in which **)

g2nt=g2nl, (for both v and 7), . . . . . . (24)
or, if %, = #ps, as in loc. cit.:
g2=gl, - - « « . .« . . . (249

and a neutral scalar-pseudovector theory with

ff,,:g;,.........(ZS)

The latter theory is easily seen, irrespective of (25), to admit no solutions
of the convergence relations, while using (24a), the symmetrical theory
appears to yield only the trivial zero solution.

Thus the symmetrical mixed theory which on the whole gives a satis-
factory account of nuclear as well as cosmic ray phenomena is, notwith-
standing the fact that it does not involve 1/r3-singularities, still beset with
the difficulty of diverging self-energies. The situation is somewhat analo-~
gous to that of the electron theory, where the perfect accordance of a

*) If C and D would have been introduced at the outset, all one-field theories would,
irrespective of the convergence relations, have to be discarded. However, in view of the
interest which sometimes is attached to vector and pseudoscalar theories involving cut-off
prescriptions to eliminate the r-3-singularity, it seemed justified to show that, even apart
from D, such theories do not satisfy the convergence relations.

**) Cf. the tablein I, § 1.
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‘purely electromagnetic theory with experiment which always is found if
only distances == 10-13 cm do not come into play, is in disharmony with
the consequences of the theory with regard to the structure of the electron,
as is most clearly expressed by its leading to an infinite self-energy for a
point electron. Thus the possibility, discussed in II, of eliminating the
divergence in the electron case by assuming the electron to be the source
of a short range scalar field besides the e-field, suggests to proceed like-
wise in the nucleon case, i.e. to introduce a scalar short range field besides
the field already attributed to the nucleons in order to describe nuclear
interactions *).

However, there is one difference as regards electrons and nucleons:
whereas physical phenomena connected with electrons can be distinguished
in “long range” and “short range’ phenomena, the former being describable
by the purely electromagnetic interactions, while the latter exhibit new
features on the f-field assumption, all typical nucleon effects have exclu-
sively reference to the short range region and so the question presents
itself, whether the introduction of an additional scalar field in the nucleon
case will modify those effects which are, with more or less success, des-
cribed by the meson fields hitherto employed. This problem is discussed in
the next section.

§ 6. Introduction of the F-field.

A mixture of charged and neutral scalar fs-fields leads to a term, (cf.

(9) and (18))
—§ fP—

in the convergence relation which serves to eliminate the logarithmic diver-
gences, but leaves the other convergence relation unchanged. Although
from the point of view of convergence it is immaterial whether the scalar
field y which we are now introducing, and to which we shall refer as F-
field, is charged or neutral or a mixture of both, it can be seen from an
investigation of the coupling of this field with the electron neutrino field
— a question to which we hope to return elsewhere — that it should be

neutral. This is the case we therefore consider in the following and we
denote the corresponding coupling constant by F:

B=F . ..+« o« (26

We might, proceeding on the lines of the previous section, immediately
turn to the consideration of the simplest cases which are in accordance
with the condition A—D, viz. the symmetrical and the neutral mixed
theory, either of them combined with the F-field. However, it is of some

*) This new scalar field should not be confused with that which serves to make the
proton and neutron convergence relations compatible, and which, as we have seen, is in
point of fact identical with the electron scalar field.
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interest to discard provisorily condition D and to consider the vector and
pseudoscalar theories involving a cut off r—3-potential.

In the first place we remark, that the introduction of the F-field can
never lead to finite self-energies within the framework of theories which
for the rest are based on a “single force hypothesis”, i.e. in which the
nuclear forces are described by one g-interaction only. Indeed, according
to (20), (10) will have the form g2 = 0, irrespective of the presence of
the F-field. Thus we will now consider an (F, f,, g,)- and a (F, fps, gps)-
theory. BETHE's neutral (f., g,)-theory, generalized by the introduction of
the F-field, yields

—4F 4+ § =2 g0 =
g:+6f,g.n'=0

or, equivalently,
_ g e |Gl B _
F*=2f+1 g0 |£|= g ~Igo|. if 7, ~10.

Assuming a purely neutral F-field, taking its range to be the same as that
of the vector field and expressing all charges in BETHE's f = gv, it can
be seen that f, being essentially fixed by the 1S-level, becomes ~ 14 of
its value on the single force hypothesis. This means that the cut-off should
become smaller, too, in order that the non-central term in the triplet inter-
action shall ensure that the 3S-level becomes lower than the 1S-level; this
is, in itself, a satisfactory feature.
A charged (fps, gps)-theory, combined with the F-field gives

F=3f,=%g2n,~30g%, if nps~10. . . . (27)

It is remarkable that the non-symmetrical theory under consideration,
which has recently been proposed by HULTHEN ?), who takes a purely
neutral F-field *), satisfies all requirements laid down in (27): it is approx-~
imately charge independent, because F2 > g2. Furthermore, the cut-off
R, is, according to HULTHEN, fixed by

_Tps _F?
”;s Rg Ro
which is necessary to obtain the correct binding energy of the deuteron.
With (27) this gives
‘ 4
Ro~ e

in accordance with HULTHEN's result. The mass of the F-mesons is taken
to be larger than that of the pseudoscalar mesons. The theory furthermore

*) The constants g, £, # of loc. cit. correspond with F, gps, # s respectively.
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gives the right sign and order of magnitude of the deuteron quadrupole
moment.

Thus, notwithstanding the objections of principle which can be raised
against the device of cut-off potentials, it is noteworthy that the concept
of the F-field seems anyhow qualitatively to support the basic ideas under-
lying theories of this kind.

We now reinclude condition D in the discussion, and thus turn to the
mixed theories. Obviously, the neutral mixed theory still yields diver-
gences, for if no convergence can be attained by a pseudovector and one
scalar field, this cannot be remedied by introducing another scalar field.
The symmetrical theory gives

Fr=4(f24+4f2,+11g). . . . . . . (28
go=29103f+efo) e=x1. . . . . . (29

As in the previous cases, F is larger than the constants which, in the theory
not involving the F-field, determine the strength of the nuclear interaction.
We must therefore assume that the range of the F-field is much smaller
than that of the other meson fields, for otherwise the interaction would
be preponderantly of the scalar type, in contradiction with condition C.
Furthermore, (29) provides a new relation between the constants of the
mixed theory. We will discuss its consistency under the assumption that
the F-range is such, that the F-field does not appreciably contribute to
the binding energy of the deuteron. In this case, the static interaction is
determined by f,, g, and 5. Therefore (29) can be considered as defining
fps in terms of these quantities. Estimations based on the position of the
deuteron S-levels give *)
g: f;

4.” hc = 0,56 17"1 + 0,009, 4n—hc = 0,027 . o . . (30)

Taking the meson mass to be = 240 m gives, for £, g,> 0

g2

-~ 0.082 |fos|~2lge| . . . . . . (30a)

which seems a reasonable order of magnitude. Inserting this in (28) one
gets

|Fl~35|gol. - « « « . . . . (31)

An experimental indication, (which led HULTHEN to consider the scalar-~
pseudoscalar theory mentioned above), of the presence of the F-field may
perhaps be found in the results of AMALDI and collaborators 10) who
obtain an angular distribution for the scattering of high energy neutrons

*) Cf. loc. cit.B), eq. (106), (107) and the table of I, § 1.
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by protons which is in definite disagreement with the mixed theory. in
its symmetrical form. It has been pointed out by HULTHEN 11) that this
discrepancy may be overcome by the introduction of an additional neutral
interaction of appreciably shorter range than, that of the vector and pseudo-
scalar mesons of the symmetrical theory. However this may be, it is clear
that experimental evidence on scattering in the high energy region may
provide important clues with regard to the problem of the self-energy of
nucleons and in particular with respect to its tentative solution on the
lines presented here. _

HULTHEN proposes another modification which makes the theory more
asymmetrical than that discussed above: he assumes a purely charged
vector-pseudoscalar interaction combined with a purely mneutral scalar-
pseudovector interaction. It is readily seen that the corresponding conver-
gence relations can be satisfied in a great variety of ways; more definite
statements will therefore have to wait for more specified calculations.

Anyhow, the considerations of this section show, that it would seem
possible to attain a theory of nuclear forces which involves, at all events in
first approximation, no self-energy divergences and which is, moreover, free
of r—3-singularities in the deuteron potential, while we also have found
that the introduction of an F-field is qualitatively reconcilable with the
current theories involving cut-off. Just as for the f-field of § 3, experi-
mental evidence on nucleon scattering in the high energy region will be
able to throw more light on the validity of the present assumptions.

§ 7. The magnitude of the mesic self-energy.
The ratio of the meson mass and M is such that
ni~ lO.

Whether the mesons actually have a mass, say, 200 m or 300 m, is
irrelevant for the general result that the self-energy is <€ Mc2. One
example of this we have already found in § 4, where a (neutral) scalar
field was examined. Other fi-interactions lead to quite similar results for
the finite part W of the self-energy. We will here only state the results,
that are readily obtained from I, table 1, (see also the footnote on p. 74)

W, =— L Me|1tegera-(1+45) A
© =7 16a?hc o 2;%
2
Wpo=— rele M 11 + (=88 lg &+ 2: (- 6) Al
2
Wpe=— polr . ME[1 + (¢ —28) lg £ +2: £ A],
4
=y A=arctgi—f z’=£’———i—>0-

For # ~ 10 all these contributions are

_ 1 & F?
3 Tnhe M~ g 01 ME
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In order to estimate more quantitatively the ratio of self-energy and Mc2
the actual values of the constants f and 7 should be inserted. We will
content ourselves with one remark of qualitative order, however, which
throws new light on the convergence relations: Consider all four f-inter-
actions to be present. The total contribution then is easily seen from (15)
and the above equations to be, for all meson masses for instance equal to

274 m:
~(—033f;+1.9f2—15f3;, +05f3).

It is interesting to note that the alternation of signs is the same as in the
convergence relation which, for this set of fields, is
—$ 4 F—3 £+, =0.

This means that the existence of convergence relations tends to decrease
the magnitude of the finite part of the self-energy. Thus the convergence
relations favour, so to say, the treatment of the self-energy as a pertur-
bation. This is particularly borne out by II, eq. (14) from which it is seen
that, for smaller %’s, the convergence relations lead to a decrease of the
self-energy of at least one order of magnitude. In the case of different
meson masses involved the situation is more complicated but the same
general trend exists.

It remains to consider the g-interactions. To show the main point we
take the expressions which are found in the vector theory:

1. g,—interaction

W= M & lim [%+i——-(l—%£’)lgpm:|

8n2 hc

52 :
~ s Me [ 1=F @ e ge 168 (145 ) A

2. Direct g,-interaction.

_3n,g3 ~2 | Es 1 2
W—m.Mcz.f l!:!:loo _W"I"g-—(l-l-f)lgpm .

3. f.g.-interaction.

2
W= 3f,gv.Mcz'5_1 lim 1%2+%—(1+§2)19PM:|

472 he P> |

_+ff""’ Mc [Blgt+&22 Al

4. f,-interaction.

W=g 3f _ Me* lim Ig P,

f?
" 16a%hc

ME[1—848igE+z (8 +2) Al



ON THE THEORY OF ELEMENTARY PARTICLES 85

where

P+I/PZ+M2¢2
Mc

Py=

If we would suppose a vector field to be present only, it is easily seen from
the convergence relations that the terms in the first line (in the case of
the direct self-energy: the only line) of the various W’s cancel each other.
Thus the terms of the second lines remain. The contribution of the fg-inter-
action is, for 9 ~ 10, readily seen to be negligible compared to that of
pure f- and g-interactions which, for the same order of 7, are

2
L frorg® wra001 Me
47" 4nhic’

for

frorg® _
47 he Wl

which is roughly the order of magnitude of the mesic coupling constants.
Similar results are obtained if a mixture of fields is present. We note that
in the first lines a finite term occurs, the “}"-term which would yield a
large contribution, but that these 3-terms just cancel out by virtue of the
convergence relations.

It is particularly gratifyifg, with regard to the non-ambiguity of the
scheme, that the direct self-energy does not contribute to the finite part at
all. For, had this not been so, we could have chosen, discarding condition
A, the n; such that the self-energy would have any order of magnitude.
Thus the direct self-energies are, whether the “unitary” or the “perturba-
tion” view is held, irrelevant as concerns their mass contribution, they only
piay into the theory in the convergence relations.

Thus we have shown that the meson field self-energies are all <€ Mc2
with which the “perturbation method” for nucleons is justified.

§ 8. Concluding remarks.

In briefly recapitulating the results of II and the present chapter, we
divide the self-energy problems of Dirac particles into two groups:

a. The convergence problem for the electron.
b. The “compatibility problem” for the proton-neutron (cf. §§ 2 and 3).
c. The convergence problem for the nucleon (cf. §§ 2 and 5).

‘These are representative of that crisis of divergences which mark the
relativistic quantum field theories in their present stage.

The second group comprises:

a’. 'The mass problem for the electron.

b’. The mass-difference problem for the proton-neutron.
¢’.  The mass problem for the nucleon.
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By mass problem we understand the question whether the masses con-
cerned can be derived from the “‘universal constants of the first kind'’ 12)
e, h, c and a universal length. It has often been suggested that the solution
of a problem of the first group would entail that of the corresponding
problem of the second group, analogous to the situation in classical electron
theory, where a non zero electron radius ensures finite self-energy and at
the same time allows us to consider the electron mass to be of purely
electromagnetic origin. Let us call (a, a’) a simultaneous solution of a and
a’. The results of a theory based on convergence relations can then be
summarized as follows:

(a, a’) is possible a priori (unitary method) but leads to contra-
dictions with regard to (b, b’): if we would assume the mass of the
electron to be entirely due to field self-energy, the proton ‘would be
twice as heavy as the neutron (cf. § 4).

(b. t’) is possible if (a, a’) is discarded: perturbation method.

(c, ¢’) is anyhow impossible: the mesic self-energy of nucleons is
always <€ Mc2.

Thus we see that the present theory essentially disconnects a and &’,
c and ¢. This demonstrates a characteristic feature of the present
method: with the introduction of any universal length, a charge, too,
is introduced; the latter plays the decisive réle inasmuch as convergence
is concerned, while both charge and length enter the mass problem.
Thus the solution of the convergence problem does not necessarily lead to
that of the mass problem, contrary to classical electron theory involving
an electron radius £ 0, but there only a length is introduced.

On the other hand, the fact that the theory yields (b, b’) might seem
to support the present point of view of considering all self-energies as
perturbations. For a consistent theory on these lines necessarily must
account for the only observable perturbation viz. the quantity A. The
range of the f-field of the electron, though of the same order of magnitude
as the so-called classical electron radius r,, plays a fundamentally different
role compared to that of rj in classical theory: whereas the latter is deter-
mined by the condition that the (electromagnetic) self-energy shall be’
equal to mc2, in accordance with the unitary aspect of classical theory,
x~1 is roughly fixed by the condition that W <« mc2, in order to attain'
a non-unitary treatment, cf. II, § 9.

As regards the possibilities of experimental tests of the f-field as well
as the F-field hypothesis, the high energy nucleon scattering has already
been alluded to. A fuller account will be given in chapter IV.

From the results up to the present it cannot be concluded whether or
not all divergences proportional to higher powers of the charges remain.
In this respect we recall that in one case (cf. II, §§ 5 and 6) it appeared
possible to find relations between higher order divergences. In this con-
nection, the belief which sometimes has been expressed 13), that the diffi-
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culties encountered, also in interaction problems, when considering higher
order effects, may at least partly be due to the inappropriateness of the
perturbation theory methods, seems worth noticing. Even quite apart from
the self-energy problem it would indeed seem questionable whether any
physical meaning can be attached to these higher approximations in the.
approximation procedure,

Furthermore the theory should be generalized to the discussion of self-
energy effects in the presence of external fields, amongst which the proper
magnetic moments of nucleons is of foremost importance. This has been,
discussed by SERPE 14), who has, in accordance with the general prescrip-
tions of the M@LLER-ROSENFELD-theory 5), considered the static contri-
bution due to vector and pseudoscalar fields on a “one-nucleon theory”.
However, the present point of view necessitates: first, the treatment on
hole theory, secondly the inclusion of non-static effects; for the distinction
between static and non-static contributions cannot be maintained as far as
an exact treatment of self-energy effects is considered.
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CHAPTER 1V.
On some further consequences of the f-field hypothesis.

Let us first briefly recapitulate what we know already about the f-field:
1. On hole theory it ensures, at all events in first approximation, con-
vergence of the electron self-energy provided

e=4%f. . . . . . . ...
f being the charge of the electron describing the coupling with the f-field.
Furthermore, this same f-field is also created by the proton; but not by
the neutron.
2. The electron field self-energy (divided by c2) should be small
compared to its mechanical mass. This holds true if

wl TO o o o o o o o o o (2)

where x is the inverse f-field range, r( the classical electron radius. As a
consequence of this same connection (2), the proton-neutron mass diffe-
rence could be accounted for, as to sign and order of magnitude.

3. We have already pointed out in chapter III, § 3 that the production
of an f-field by the proton may, in principle, be verified by comparing the
proton-proton scattering with the proton-neutron scattering.

Woe shall now turn to the consideration of some further consequences of
the f-field hypothesis.

According to (1) the static electron-proton potential becomes

—-‘ri[l—ze—"], A

reaching a minimum value of =~ 0,375e2 x for r =~ 5/3x; for smaller r the
attraction goes over into a repulsion. This leads to a shift of (especially)
the S-levels of hydrogen towards higher energies, which can be computed
by means of a perturbation calculus 1), The result is, (a = 1/137, n =
principal quantum number)

_ 8a® 1 mc
AV(I‘IS)~—"-3—.7;ZO—.TCHI e e e e e e (4)

The following table gives the values of Ay (2S) for various values of &

defined by x-1 = £, ’

& A»(2S) in cm™!,
1 0,6.10-3

2 26.10°3

3

5,9.107.
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R. C. WiLLIAMS 2) has reported a deviation in the fine structure of the
Ha line from theoretical expectations which has been interpreted by
PASTERNACK 3) as due to a shift in the 2S-level of the H-atom of about
0,03 cm-1. This would correspond with a range of the f-field of about 6
times the classical electron radius*). Later experiments performed by
DRINKWATER, RICHARDSON and H. E. WILLIAMS 5) do not confirm R. C.
WILLIAMS' result. It is therefore not yet possible to infer anything quan-
titative from the experimental evidence.

It may be noted that the shift (4) is somewhat larger than that following
from SOMMERFELD's perturbation potential 1), because the latter is different
from zero in a finite region, while the Yukawa potential has a small
“tail”. The relative influence of this tail is well known from calculations
on proton-neutron scattering, in which a Yukawa potential is compared
e.g. with a box potential 8).

As far as can be judged from calculations based on BORN's approximation
the potential (3) cannot remove the discrepancy between theory and
experiment as regards MOTT's polarization effect in double scattering of
electrons by heavy atoms 5).

With regard to non-static effects, the first question is whether evidence
can be found for the existence of free f-quanta. However, this particle is
unobservable: in any theory of the electron in which the universal length
is introduced as the range of a field, the accompanying field quanta are
unstable as their Compton wave length necessarily is shorter than twice
that of the electron, enabling them to decay into a negaton-positon pair.
In the present case the life time 7 in the rest system is given by

1 _f? - 21 gpo—1
—=+—.xc=2ac~10¥sec! . . . . . . (5
1, hc

Hence 7 is so small that the f-quanta escape detection. It is noteworthy
that a theory of the type considered automatically involves a universal time
as the consequence of the introduction of a universal length. According to
(5) the fine structure constant thus can be expressed in terms of “universal
constants of the first kind"” 5), viz. as the ratio of a universal length and
a universal time (in units c).

It should furthermore be noted that the undetectability of the f-quantum
is a consequence of the fundamental concepts of the theory, and thus
should not be compared with the ad hoc unobservability of the neutrino.

All further modifications of current theories due to the f-field can be
traced back to either one or both of the effects (3) and (5). The survey
we shall now give of the modifications occurring in the domain of cosmic
radiation should be considered as merely a rough outlining of the situation.

*) In the preliminary report of this work 4) the equation for A is erroneously given
with # instead of h; the statement in loc. cit. that WILLIAMS' shift corresponds with
%1 = 2,5 ¢ is therefore incorrect. I am indebted to dr. KIKUCHI for pointing this out to me.



90 ON THE THEORY OF ELEMENTARY PARTICLES

1°. Pair formation by photons in the field of a proton. The momentum
absorbing field is now given by (3) which leads to a decrease of the
differential cross-section by a factor

"-(“m)

where ¢ is the ratio of #x and the momentum absorbed by the proton.
Thus in the non-relativistic as well as in the extreme relativistic (ER)
approximation all results remain unmodified, while a decrease occurs in
the region of about 137 mc2 (to fix thoughts we put »—1 = r,).

On the other hand, an increase is obtained in the same energy region
due to the “e—f effect”: a photon of energy = 137 mc2 may be absorbed
and an f-quantum subsequently be emitted which “immediately’ decays in
a pair. In the ER case the cross section for the total number of produced
f-quanta is

mc? E
~r E Vet (6)
where E is the energy of the incoming photon. The effect is independent
of screening.

2°, Bremsstrahlung of electrons. The differential cross section again
decreases by the factor x. Thus on the present theory fast electrons of
energy ~ 137 mc2? are more penetrating than on purely electromagnetic
theory.

3°. Pair formation by electrons of energy > 137 mc2. By passing
through a field (3) electrons of this energy may emit an f-quantum: “f-
bremsstrahlung” which leads to the formation of a pair. By (5) this may
be considered as a first order effect. :

4°. Annihilation of positons. The two-photon annihilation remains
unaltered. A new effect, however, is the two f-quanta annihilation for
energies > 274 mc2 which effectively leads to the creation of two pairs
by one pair, and the one photon- one f-quantum annihilation for energies
> 137 mc2 giving a photon and a pair. In the ER case all three effects
are of the order (6) where E now means the energy of the positon in the
rest system of the negaton; thus they are small.

It is clear that these effects generally only can play a réle in that cosmic
ray energy region where the hard component is already of importance. In
this connection BHABHA's remark may be recalled 7) that the difference in
properties of the hard component of cosmic radiation from those of the
soft component may either be due to different properties of electrons at
energies = 137 mc?2, or to the fact that the hard component mainly consists
of other particles than electrons; or to both causes.

With regard to the f-interaction between electrons, jt should be noticed
that this cannot be treated by means of the customary expansion in powers
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of v/c, for here the field quanta are very heavy compared to the generating
particles so that the neglect of recoil as a first approximation has no sense:
the effect is from the outset relativistic.
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