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Analytical treatment of the polytopes regularly derived
from the regular polytopes.

Section II: PoLYTOPES AND NETS DERIVED FROM THE MEASURE POLYTOPE.
A. The symbol of coordinates.

46. The distance r between two points P, P’, the ordinary
rectangular coordinates of which are (2, t,,. . ., g, and 'y, s, . ., £y,
is represented by the formula '

= ’E_l i(,u,. — P euswnnns e 2).

Now we repeat here the question of art. 1:

“Under what circumstances will the series of points obtained
by giving to the set of coordinates y,, ,,. .., ¢, a determinate
set of values taken in all possible permutations form the vertices
of a polytope all the edges of which have the same length, say
unity ?”’

The answer is nearly the same as that given in art. 1:

“If the » values ay, a,,...,a, are arranged in decreasing order,
so that we have

G0 . G g 2 Ay,

the difference @, — a, ., of any two adjacent values must be either
V2 or zero.”
The proof runs on the same lines as that given in art. 1. The
geometrical result can be stated in the following general form:
“Under the conditions stated, the polytope the vertices of which
are represented by the. symbol

(a, ay, ay, ...,a,)

is the same as that obtained in the first section for » — 1 and
a,— a, ., either one or zero. It is a derivative of the regular
simplex the vertices of which determine on the » axes OX; of
coordinates positive segments 04;, ( =1,2,...,2), of the same

length 4 = i a”.
1

1%
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This simple result, in close connection with the new deduction
of formula 1), shows us that we shall have to enlarge the scope
of our symbol of coordinates in order to find something new.

47. We remember that the symbols [, 4, 4] and [$ V2,0, 0]
represent the coordinates of the vertices of cube and octahedron
with edge unity, if the square brackets indicate that all the per-
mutations of the values they include must be taken, each value
being affected successively either by the positive or by the negative
sign. Moreovor [, %,4] and — 4[4, 4, 4] can represent in the
same way the two tetrahedra, the vertices of which form together
the vertices of the cube [1, 4, 1], if by the coefficient } we indi-
cate the vertices with an even, by the coefficient — } the vertices
with an odd number of negative coordinates.

In connection with this we amplify the question of art. 1 as
follows: “Under what circumstances will the symbols

lay, a5, .. .1 a,], £ X[a a5 ...,a,]

represent the vertices of polytopes in §,, all the edges of which
have the same length, say unity?”’

The answer to this question runs as follows:

Turorem XXVIII. «If the values a,, a,, ..., a, are arranged in
decreasing order, a, being the smallest non vanishing one, and if
a,, a, ., represent any couple of adjacent unequal ones, we must have
in the case of the first symbol [a,, @, .. ., a,]

either p=n,a,=1 ,a,—a, ., =%1V2|
or r<nm, ,,=J‘,‘-\/2,ak—ak+,=%\/2 ”

in the case of the second symbol + i[a, a, ..., a,]
p =7z, an_1 =an = '}_‘Vz,ak'—ak_'_i =‘%'\/2.”

Proof. The part of the proof concerned with the common value
3 V2 of the difference @, — a, ., of two unequal adjacent digits
1s the same as that given in art. 1. So we have to add only a
few words about the values of a, in the case of the first and of
a,_4 and «, in the case of the second symbol.

Symbol [a;, ay, . .., a,]. In the supposition a, —a, =3 V'2
the length of the edge of the polytope is. unity. Therefore the
distance 24, between the points

F oun dlly = Byl By = Oy s
Q...oy,=—a,vy—a,0=2ay; ...

which are transformed into each other by inverting the sign of
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a,, must be unity, which gives 2, = 1, unless P and Q coincide
which happens for @, = 0. So in the case » = » we have a, = }.
In the case » << » we consider the points

P....Z’1=a,,,:z‘,_=0,¢z’3=ai,a'4=a2, « e
Q..py=0,;,=a,B—=a,z,—a,, ...

passing into each other by interchanging 2, and z,. The distance
a,V'2 between these points is unity for 2, = V2.

Symbol + % [ay, ay, ..., a,). Here a, differs from zero; for the
supposition @, = 0 is incompatible with the division of the vertices
represented by the symbol [a,a,, ...,a,] into the two groups
= -;-[ai, @, ... a,], the inversion of the sign of zero having no
effect whatever.

Here the point

P...w1= an ,«z’2= fl,,_i,{t'3=a,,_2,...
must be considered in combination with the points

Q...2,= a, 4, B,= @, ,83=0q, 95 -+
R..oy=—a, ,2,=—0a, y,23=0,_, ...
corresponding with it as to the coordinates g, 24, . . . @, , 4, as these
points Q. and R are the nearest ones to P obtainable either by
interchanging two digits or by inverting the signs of two digits.

Now we have under these circumstances

PR =2 (e, — an-—i)2, PR* =4 (agn + azn— 1>
from which ensues PQ << PR. So we must have PQ = 0, PR =1,
giving a2, =a, , = } V2.

48. In the case of the first symbol [a,, a,, . . ., a,] we are confronted
with two possibilities, as we have to choose between «, = } and
a,= 0, i. e. between a group containing the measure polytope
(3,4, ... 4] and an other group containing the cross polytope
[4V2,0,...0] Do the two regions lying on different sides of
the limiting demarcation line cover the same ground as the group
of the measure polytope on one side and the group of the cross
polytope on the other? The answer to this question depends on
the manner of deduction of these two groups. If we follow closely
the geometrical manner of deduction developed by M™. Srorr the
contraction forms derived from the measure polytope do possess
coordinate symbols winding up in zero, whilst on the other hand
the form derived from the cross polytope by means of a set of
expansions under which e,_; occurs are represented by coordinate
symbols containing no zero. These two exceptional facts which
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prove the close relationship between the progeniture of the two
patriarchs, cube and octahedron, can be extended so as to make
the two families quite identical with each other; to that end we have
only to derive from each of the two, cube and octahedron, a//
the expansion and contraction forms, the number of which amounts
in §, to 2" — 1. This important fact, which will be. proved later
on, enables us to treat in the second and third scctions the forms
with the symbols [a, ay, ..., 1] and [ay, ay, . . ., 0] successively,
without being obliged to postpone the study of the corresponding
nets built up by forms of both groups.

In order to avoid fractions we will multiply the digits by two
in this section and the next one; under this circumstance the last
digit is unity or zcro, the difference @, — a, ., of two unequal
adjacent digits is V'2 and the symbol represents a polytope with
cdge 2. Moreover in order to simplify the symbols we will write
P for 14+ pV2 and put if possible V'2 outside the brackets,
substituting e. g. [11100]V'2 for [V'2,V'2,V'2,0,0].

49. For n=2,8,4,5 wc have successively in thc symbols
explained in the memoir of M'. Srorr: 1)

n=2.
(11] =p, | (V1] =e py=ps | | (10]1°2=ce,p, = p,
n=3.
niy= c¢ I'11]= &C=RCO (10071 2= ce,C= O
V1) =6 C=1C |21 11=¢,6,C=1C0 |[11071/2=ce,C=CO0|[210112=ce,e,C=10
n=4d.
1111 = G| 2211 =  ¢6C (2110]p 2= ceye; Gy
UV = Gl [PV = 660 (110] 2= cC| [2110]p2=  coesCy
V11 = G| (V11 =  eegCy| [110072=  ceyCy| [2100]12=  ceyes Gy
(M'L11] = ¢C| 3'2'1']) = e ee3C| [1000]12= cegCy| [3210]12= cre,e5C
n=2>5.
11111]= Gl 2211 11= ¢¢,Cppl [22100]p 2= ceye3 Oy
UV = Co|[@ V1= ee, G |[11110]1°2= ce, (o |[21100]12=  ceye,Cpg
VUV 1= 0|2V 111=  ee,Cf|[11100]1°2= ce,Cyo |[21000]p°2=  ce,e,Cyq
[1’1’1 1 1] = & 010 [8"’2’[’1]= €y 6é3¢; C]O [11000]V2= 6'03010 [33210] V2= cey e, ey Clo
(V111 1)= ¢Co|[8221V11= eee,Cy|[10000]1-2= ce,C,|[32210]1/2= ceree,Cyg
[2'2°2"1' 1) =€) 6, (4 |[8'2'1' Y1) = e e5e,C0|[22210]1°2 = ceje,Cyq | [32110] 2= ceie5¢,Cp
221"V 1] =¢65C1 |{8'2'1'L V] = eye5¢, (1| [22110]17°2 = ceye; (4 |[32100] 2= cegege, Oy
YY) =ee3 Gy |[4'3'2'1 1 =¢)¢,65¢, Ci | (211101172 =ceye3 Cy | [43210] 172 = ce; egeg 64 Cyy

') For the deduction of the ¢ and ¢ symbols from the symbol of coordinates compare
the part D of this section; here p, means: p, turned 45° about the centre.
In Table IV added at the end of this memoir are put on record for n =3, 4, 5, the

different polyhedra and polytopes deduced from the measure polytope. Of this table the first
column contains the symbols of deduction of the polytope from measure polytope and cross
polytope — with the first of which we are concerned in this section only — and the third the
symbol of coordinates. The second and the following columns will be explained farther on.
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Herc we have [1100]V'2 = C®,,,[1000]V'2.== (P4, [10000]V'2
= 0%,

Remark. If we invert the sign of all the coordinates of a vertex 7
of the polytope we get the coordinates of an other vertex 77 of
that polytope for which the centre of the segment £ P’ is the
origin of coordinates O. So, all the forms derived analytically from
the measure polytope admit central symmetry, as the geometrical
deduction by means of the operations e and ¢ requires it.

B. The characteristic numbers.

50. In the case of the simplex the direct method for the deter-
mination of the characteristic numbers proceeding regularly from
vertices ‘ to edges, from edges to faces, etc. ‘'was preceded by an
easier method fulfilling the exigencies of the cases # = 4 and » =5,
working from both sides, the vertex side and the side of the limi-
ting element of the highest number of dimensions; in this case of
the measure polytope we will do likewise. 1)

Here also the number of vertices is easily found. If all the »
digits of the symbol of coordinates are different it is 2". z!; of the
two factors 2" and z! of this product the first is due to the
power of choosing arbitrarily the signs of the # digits, whilst
the second corresponds to the power of permutating them. This
product must be divided by 2! for any two, by 8! for any three
digits being equal, etc.

In order to be able to find the number of the limiting bodies
(n =4) and that of the limiting polytopes (» = 5) we have to
prove here the

Turorew XXIX. “The non vanishing coefficients ¢; of the coor-
dinates @; in the equation ¢,z + c,2,+...=p of a limiting
space -8, ; of the polytope deduced from the measure polytope
of §, must all of them have the same absolute value.”

The difference between this theorem and the corresponding one
for the simplex (theorem II of art. 6) lies in the addition of the
word “absolute”, therefore printed in italics. This amplification is
necessary here, in connection with the power of assigning to each
of the » digits of the coordinate symbol either the positive or the
negative sign. But the proof runs quite in the same lines. If in
the case of the polytope [1 4+ 2V'2, 1+ V2, 1 4+ V2, 1] we
start from the equation 22 — 2, =p and try to determine the

') The treatment of the offspring of the measure polytope with which we are con-

cerned now — and of that of the cross polytope which comes next — will be copied
as much as possible fromn Section I,
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vertices of the polytope for which the expression 22, — 2, becomes
either a maximum or a minimum we find the maximum 8 - 5V/2 for
2y=1+42V2, 2,=—=—(1 +V'2) and the minimum — (3+4-5V/'2)
of the same absolute value for 2, = —(1+2V'2), z,=1+4 V2.
So, for values of » between 8 + 5V'2 and — (8 + 5V'2) the
space 2z, — @, = p intersects the polytope, whilst it cannot contain
a limiting body but at most a limiting face only for the extreme
values 4 (3 4 5V'2) of p, as each of the two couples of equations
2=14+2V2, 2,=—(1+4+V2) and z,= —(1 + 2V2),
2z, =1 -+ V2 determines a plane. Herc too, as far as the vertices of
the polytope are concerned, any linear equation ¢, @, ¢, 2, .. .=p
represents £ different equations if the non vanishing coefficients ¢; admit
£ different absolute values. Here too the theorem is not reversible.
As to the theory of the determination of the number of faces (» = 4)
and the number of limiting bodies (» = 5) compare the end of art. 6.

Remark. In accordance with the central symmetry of the polytope
[a,a,,...,a,] any two parallel spaces §,_,, represented by the
equations @; +- 2, + @, +. . . = = p and lying therefore on different
sides at the same distance from the origin, bear either both or none
of them a limit (/),_, of the polytope. So, in the determination
of the limits (/),_, we can restrict ourselves here to the equations
z,-+- o+ 2+ ... = maximum.

51. We now treat at full length two examples, one in §; and
one in S;.
Fzample [1 4+ 272, 1 4+ v2, 1412, 117).
The number of vertices is 2% 4! divided by 2!, i e.
16. 24:2 = 192.
The number of the edges passing through each vertex is five.
For the pattern vertex
14-2vV2,14 V2, 14+ V2, 1
is adjacent to the five vertices
I+ V2 ,142vV2, 14+ V2, 1
14+ V2,14 V2, 142V, 1 J
1+42v2, 1 , 14+ V2 ,14V2 ),
14+2v2 , 14+ V2, 1 ,1—|——\/2s
1+2v2,14+ V2, 14+ V2, —1
") In vol. XI of the ,Wiskundige Opgaven” we have recently treated the polytope
(14312, 142172 14172 1] and its projections on its four kinds of axes (pro-
blem 78) and deduced the symbol of characteristic numbers of the polytope [1 + (n—1) 12,
14-(n—2)172,..., 14 172,1] of Sn (problem 80). For the latter point compare also

my paper ,On the characteristic numbers of the polytop:s e, ¢,... e, o e, 4 S(n+1)and
e e... e, o €, 4 M, of space S,” (Mathematical congress, Cambridge, August 1912).



DERIVED FROM THE REGULAR POLYTOPES. 9

which may be indicated by the brackets and the negative sign
after 1 in the symbol

A—/_\
14-2v2 , 1FVv2, 14+V2, I(—)
\_/\_/

1925

So the number of edges is = 480.

In order to find spaces which may contain limiting bodies we
have to consider the equations

@) s + @ =1 42V,
b ... +a +u =2 43V,
& ... taoyta+ta =8 +4Ve,

d ... e+ +a+a2 = 414 V2.

a). The equation #, =1 - 2V/2 gives us for the other coordi-
nates the system represented by z,, @;, , =[1 + V2, 1 4 V2, 1],
i.e. an ¢, C. This ¢ C presents itself 2.4 times, as in the equation
+ 2, =1-+42V2 the sign may be either positive or negative
(factor 2), while the index i may be any of the four indices 1, 2,
3, 4 (factor 4).

8). The condition 2, + 2, = 2 4+ 3V'2 gives 2, z, = (1 4 2V'2,
14+V2) and 23,2, =[1+ V2, 1], i.e. we have for the coor-
dinates in their natural order of succession

Lyy By, X3y Ty — (]. —I— 2\/2, 1 —I— \/2)[1 —I— \/2, 1]

representing an octagonal prism P, with end planes parallel to
O(X; X,) and edges normal to these planes parallel to the lines
2y + 2, = constant in O(X, X,); this P, occurs 2% 6 times, as we
dispose in + 2, -+ #; = 2 4 3V/2 over two couples of signs (factor
2%) and the pair of indices ¢, j stands for any of the combinations
of the four indices by two (factor 6).

¢) In the supposition @, + 2, + @3 = 8 4+ 4 V2 we find in the
same way

2, @y @y, 2y = (1 4+ 2V2, 1 V2, 14+ V2)[1],

i.e. a triangular prism 25 occurring 2°. 4 times.
d) Finally for T2 = 4 (1 4 V'2) we get

Ly, Ty, T3y 1'4=(l + 2\/2, 1 —I_' \/2: 1 + \/2’ ])’

which — compare the last result of art. 46 — is a C O, occur-
ring 2* times.
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So, all in all we have got the limiting bodies
§¢C, 24P, 32 P, , 16 CO;

so their number is S0.
As the numbers of faces of ¢ C, Py, Py, CO are respectively 14,
10, 5, 14, the total number of faces is

L (88X 14 424 X104 32 X5+ 16 X 14) = 368.
So the final result is (192, 480, 868, 80), in accordance with
the law of Euler.
Remark. In the case of the measure polytope G of §, repre-
sented by [1, 1, 1, 1] the spaces represented by

a .... =1

) .... o+ a, =2

) ... oyt +t23=3

d ... oo+ a+a,=4

contain respectively a limiting cube, a face, an edge, a vertex of
G. So we find here in the case of the chosen example

8 ¢tC of body import,
24 Py ,, face ’
32 P; ,, edge ’
16 CO ,, vertex ,,

52. Frample [1+312, 14212, 1+212, 1 +12, 1].

The number of vertices is 2°. 5!: 2! = 32. 120 : 2 = 1920.

The number of edges passing through each vertex is six, as can
be derived from the symbol

—_————— . —
14+3V2,14+2V2, 142V2, 14V 1(—),

containing five brackets and the negative sign after 1. So the
1920 X 6

number of edges is = 5760.

2
In this case the limiting polytopes can only lie in spaces S, with
equations of the form

a ...+ a =143V?2,
B... +o +a —215V2,
... +tao+a+ =847V,
...+t t+ao+ao+a =4+ 8V2,

...+ttt t+az=5+8Ve,

corresponding respectively to
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a)..2 . Hpolytopes(14+3V'2)[142V2, 142V2, 14V2, 1],
6)..2*.10 , (1438Ve, 142V [142V2, 14V2, 1],
¢..28.10 , (14+38Ve, 142V2, 142V2)[14V2, 1]
d)..2*. 5 ,  (14+8V2, 142V2, 142V2, 14+V2)[1],
e..2". »  (143Ve,142V2, 142V2, 14V2, 1),

Of these groups of polytopes the first, of polytope import, can
be studied by itself; it proves to be a form with the characteristic
numbers (192, 3S4, 248, 506), an e, ¢, G. The second group
consists of prisms on [1 4+2V2, 14+ V2,1]=1¢C0 as base,
the third group of prismotopes (8 ; 8), the fourth group of prisms
on (14+3V2 14+2V2 1+4+2V2 1+ V2)=CO as base.
According to art. 46 the fifth group, of vertex import, contains
forms e, e; 8(5). So we find

10 € Cy CYS—I_4O'PtCO+ SO (8; 3)+80 PCO+32 €y €3 S(5)=

= 242 polytopes,

and, as ee, G, Py, (8;8), Pgpy, € ¢; 85) admit respectively
56, 28,11, 16, 30 limiting bodies

F(0X 56440 284+80X11480X 16432 X30)=

= 2400 polyhedra.

So, according to the law of Euler, the number of faces is 6000,

and the final result a (1920, 5760, 6000, 2400, 242). 1)

53. We pass now to the more direct method going straight on
from vertices to limits with the highest number of dimensions, and
apply it to the sccond example

[1+812 14212, 1202, 142 1]
of the preceding article. But in order to make the symbols less
clumsy and thereby the method more manageable we represent
once more 1 4+ pV'2 by .

The number of vertices was and remains 1920.

According to the symbols the edges split up into four groups,
viz. (3°2), (2'1), (1'1), [1]. Here (3'2") means that any deter-
minate pair of coordinates each affected by a given sign take the
interchangeable values 3’ and 2', the other coordinates retaining
the same values; whilst [1] means that any determinate coordinate
takes successively the values 4 1 and — 1, the other coordinates
remaining unaltered.

'} The fourth and the sixth column of Table IV contain the characteristic numbers
and the limiting elements of the highest number of dimensions. The meaning of the
second column, of the small subscripts in column four and of the fraction in column five,
will be explained later on.
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It is easy to calculate the numbers of edges of each group.
Through the pattern point with the coordinates 8', 2’ 2" 1', 1 pass —
on account of the two digits 2° — #wo edges (3'2) and (2'1),
and oze edge (1'1) and [1]. So there are in toto
1920 edges (3'2"), 1920 edges (2'1’), 960 edges (1" 1), 960 edges [1],
i. e. 5760 edges.

Remark. We may notice that [1] with one digit only is equi-
valent, as to the representation of edges, to (3'2), 2'1’),(1'1)
with two digits. This difference is explained by the different cha-
racter of the symbols: the digits between square brackets have given
absolute values, whilst the digits between round brackets satisfy a
linear equation, the sum of the digits being constant. This diffe-
rence will repeat itself throughout the whole section; so [1'1] is
a face, an octagon, and (8’2’ 2') is a face, a triangle, etc.

By applying the notions of “unextended’ and “extended’’ symbols,
of the “syllables” of these symbols, etc., given for the offspring
of the simplex in art. 9, to the group of polytopes deduced from
the measure polytope we easily extend this direct method to faces.
According to the symbols the faces split up into eight groups, viz:
the triangles (3'2"2") and (2’2’ I'), the squares (3'2") (2" 1),(3"2")(1' 1),
(8"2)[1],(@ 1)[1], the hexagon (2'1'1) and the octagon.[1"1].
In the pattern vertex P concur one of each of the two groups of
triangles, one octagon and — on account of the two digits 2" —
two of each of the four groups of squares, two hexagons. So we find

1920 2 trigngles + 8 sq:ares + 2 hezagons + 1 oc;agon)
= 1280 triangles |- 3840 squares | 640 hexagons 4 240 octagons,
i.e. 6000 faces.

According to the symbols the limiting bodies split up into nine
groups:

(37272'1",(3'2°2)(1'1),(8'2'2)[1],(8'2) (2 1'1), (8'2) (2" 1" [1],
(8'2)[1'1],(2'2'1'1),(2'2' 1) [1],[2'1'1],

1. e. taken in the same order of succession, of

00 ’ -Ps ’ P3 ’ PG ’ C 4
P, , & , B 100

So we find through P
CO+3P+2P,+2C+ 2P+ tT+21¢C0O

and therefore in toto
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8Py 2P  2C 2P 2 tCO
1920 (12+ T tE T +12 48

=160 CO + 960P3+ 320 P+ 450 C+ 2401’8—{— 160¢7'+-80¢C0O

i.e. 2400 limiting polyhedra.

According to the symbols the limiting polytopes split up into five
groups viz. (3'2'2°1'1),(3'2'2'1)[1],(3'2'2)[1'1], (3 2)[2'1"1],
[2°2'1'1], i. e., taken in the same order of succession, of e, e; §(5),
PC(): (3 H 8): I)ICO» €1 6y 08

So we find through 2

ey ey 8(8) + Poo+ (358) + 2 Pieo + €16, Gy
and therefore in toto

¢ eyeg85) . Peo | (358) | 2Py | @6 G
1920 { 59 24 T2z TTos T iop
i. e. the same 242 polytopes found in the preceding article.

54. If we exclude once more the “petrified” syllables (11), (111),
etc. introduced in art. 9 we can state the:

Tneorem XXX. “We obtain the extended symbols of all the
groups of d-dimensional limits (), with different symbol of any
given z-dimensional polytope (P), derived from the measure
polytope M, of space §,, if we split up the = digits of the pattern
vertex in all possible ways, eitker into n — d or inton — d 41
groups of adjacent digits, place all these groups with exception of
the last one of the sccond case between round and this last one
between square brackets, and consider these bracketed groups as
the syllables of the extended symbol.”

Proof. As in art. 10 we represent the » — & different syllables
in round brackets by (..)*, (..)% ..., (. )m=4 8o, in the first
case we have the relation #, + 4, ... + %, _, = =, whilst addition
of the syllable [..]* with 4 digits leads in the second case to
the condition # + 4, + .. -+ £,_,+ # = #. In both cases we
suppose in order to fix the ideas that to (..)" correspond the coor-
dinates @, @,, ..., @, to (..)" the coordinates @, .1, @, 42, - . -»
@y 41, etc. and in the second case to[..]* the coordinates z, _ ;. 4,
Tp—kr 425 o0y Ly

Here too the proof splits up into three parts. As the first case
can be deduced from the second by supposing £ = 0, we indicate
the alterations which the three parts of the proof of art. 10 have
to undergo for the second case only.
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a). The polylope obtained is a (P),.

By the exclusion of petrified syllables we are sure here too that
any syllable (..)* with £ digits allows the vertex, the coordinates
of which are the » digits of the symbol of (2),, to coincide successively
with all the vertices of a definite # — 1-dimensional polytope (P); _ 4
situated in a space §, _, determining equal segments on £ of the »
axes OX;. Morcover the unique syllable [..]* with Z digits allows
that vertex to coincide successively with all the vertices of a definite
'-dimensional polytope (P),. situated in a space §,. parallel to the
space of coordinates &',. containing the 4 axes OX;, where ¢ is
successively » — & 4~ 1, 2 — 4 4+ 2, .. ,%. "The spaces bearing
these n — d 4 1 polytopes (P)., (k= Iy, £y, . .. ku_y), and (P)
are by two normal to each other. For (#), lies in the space S, =
0X, X,. . . X,), (P),, lies in the space 8, = O(X,, . X, 12 - - Xiy 1),
etc. and now the spaces §,, §,,..., §,_,, 8. form a set of
coordinate spaces containing together all the axes OX; once, i. e.
they are by two perfectly normal to each other. So, as two spaces
lying in spaces perfectly normal to each other are themselves perfectly
normal to each other, the spaces bearing the » — & - 1 polytopes
found above partake by two of that property. So the polytope under
consideration is a prismotope with » — « 4 1 constituents and
this prismotope is a (2),; for its number of dimensions is the
sum of the numbers 4 —1, & —1,...,4,_,—1, & of the
dimensions of the constituents, i. e. the sum of the numbers
ki, ks, ... k,_4 diminished by »—d, i. e. 2 diminished by
n—d, 1.c. d.

b). The (P), obtained is a limit of (P),.

According to the manner in which (), is obtained the coordi-
nates of its vertices satisfy the n—d mutually independent equations

&y + &y +. . .—|—.Z',.,. =_p1,:z’,..l+, +J’,|.I+2 "l"‘. . .—i" 'z'l."-l-k, = P etC.,

if p, is the sum of the first # digits of the pattern vertex, p,the
sum of the next £, digits, etc. As in art. 10 these equations
can be written in the form

Iey+key LA A O )

ky
Zwi=l’1»§1wi=lﬁ‘|‘7’2’ % o ’,_21‘7":'=771 +2+ oo TP

i=1

representing z—d limiting spaces §,_, of (P),, as each of the
right hand members is a maximum. For the rest of this part we
refer to art. 10.
¢) By means of the theorem we oblain all the limits (P), of (P),.
For this part compare also art. 10.
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55. We apply the notion of end digits and middle digits of
the syllables, introduced in art. 12, to the syllables in round
brackets occurring in the symbols of the polytopes deduced from
the measure polytope, in order to be able to repeat theorem XXX,
in a version connected with the more practical unextended symbols,
in the following form:

Turorem XXX'. “We obtain the unextended symbol of a poly-
tope (P), the vertices of which are vertices of the given (2),, if
we put the lowest £ digits of the pattern vertex between square
brackets, where 4 takes successively one of the values 0, 1, 2,.. ., 4,
and place before it, of the » — # remaining digits, between
round brackets either one group of 4 — % 4 1 interchangeable
digits, or two groups containing together & — £ - 2 interchange-
able digits, or three groups containing together d — % - 8 inter-
changeable digits, etc., this process winding up where the total
number of groups is # — d + & for » << 2d — £+ 1 and d for
n>W—F—1".

“I'his (), will be a limiting polytope of (P),, if the syllables
hetween round brackets satisfy the two following conditions:

19. each syllable with middle digits exhausts these digits of the
symbol of (P),,

20, no two syllables without middle digits have the same end
digits”’.

The proof of this new version can be deduced fron the articles
10, 12 and 54.

By means of theorem XXX' we deduce the limits (P); of the
polytope (), represented by the symbol [5'4'4'332221'1],
of which — as is easily shown!) — the (P)y of art. 12 represen
ted by (5443322210) is the limit g, of vertex import. If we put
together the different (£); for which the 4 has the same value
we find for £=10 the 55 polytopes given in art. 12 and for
k=1,2,..., 6 successively groups of 33, 11,9,6,2,1, i.e.
in toto 120 polytopes. If for brevity the last syllable — betwcen square
brackets -— is put at the head of each group, these are

') In rectangular coordinates the polytope g, is (5'4'4'3'3'2°2°2'1'1) which may
be simplified by passing to parallel axes with the point 1, 1,..., 1 as origin, i.e. by
subtracting a unit from all the coordinates. If we then bear in mind that according to
art. 1 we have to divide the coordinate values by L2 if we pass to barycentric coor-
dinates on account of the new unit of length, we find (5443322210).

From this relation between a polytope deduced from the measure polytope and its
polytope of vertex import can be deduced gencrally that the number of these polytopes
in Sn, the measure polytope itself included, is C 4+ 2N 4 1, where C and N represent
the numbers of central symmetric and of non central symmetric polytopes in Sn—1 of
simplex extraction, the simplex itself included.
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k=1, last syllable [0]

(544382), — (54433) (21) — (5443) (322), (5443) (32) (21), (5443)
(221), — (544) (3322), (544) (332) (21), (544) (3222), (544) (322)
@1), (544) (32) (221), (544) (2221), — (54) (43322), (54) (4332)
(21), (54) (433) (221), (54) (43) (3222), (54) (43) (332) (21), (54)
(43) (32) (22 1), (54) (33222), (54) (3322) (21), (54) (332) (221), (54)
(832221), — (443322), — (44332) (21), — (4433) (221), — (443)
(3222), (443) (322) (21), (443) (32) (221), — (438222), — (48322)
(21), — (4332) (221), — (483) (222 1), — (43) (32221), — (332221)

k= 2, last syllable [10]
(54438), — (5443) (32), — (544) (322), (544) (322), — (54)(4332),
(54) (43) (322), — (44832), — (4438) (322), — (43322), — (48)
(3222), — (33222)

k=3, last syllable [210]
(3448), — (544) (32), —— (54) (433), (54) (43) (32), — (4433), —
(443) (32), — (4332), — (43) (322), — (3322)

k=4, last syllable [2210]
(544), — (54) (43), — (443), — (433), — (43) (32), — (332)
k=175, last syllable [22210]
(54), — (43)
' k= 6, only syllable [322210].

We remark, that in general the £ of the theorem indicates how
many of the axes of the rectangular system of coordinates are
parallel to the space & bearing the (P);. For d=n—1, i.e. if
we determine the limits of the highest number of dimensions, the
£ is at the same time the index of the symbol g, indicating the
import. For comparison we put side by side in the next table the
different g, of the polytope (P), just treated and those of its
polytope of vertex import

(5443322210) ... ... %o
(544832221)[0]. . . .. g | (344332221) ....... %
(54433222)[10]. .. .. 7, | (54433222)(10)..... 71
(5448822)[210]. .. .. g5 | (5443322)(210). .. .. P
(544382)[2210]. . . .. 7 | (544332)(2210). . ... 75
(54438)[22210]. .. .. g5 | (54433)(22210)..... A
(5448)[322210]. .. .. g6 | (5448)(322210). .. .. I3
(544)[3322210]. .. .. g | (344)(3322210). . ... 7
(54)[43322210]..... g | (54)(43322210)..... 7
[448322210]. . ... P (443322210).. .. g,
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From the examples given in the art. 51 and 52 it is clear that
in the enumeration of the limits of the highest number of dimen-
sions we proceed from %= -—1 to £= 0; this principle has
been followed too in column five of Table IV.

C. Extension number and truncation integers and fractions.

56. Taeorem XXXI. “The new polytopes, all with half edges
of length unity, can be found by means of a regular extension of
the measure polytope followed by a regular truncation, either at
the vertices alone, or at the vertices and the edges, or at the
vertices, edges and faces, etc.” 3

This theorem is an immediate consequence of that given in art. 50
(theorem XXIX) about the equality of the absolute value of the
non vanishing coefficients ¢; of the coordinates #; in the equation
+ e @y + @, + . ..=p of alimiting space 8, _, of the polytope.
As to the proof we can refer to art. 15.

The extension number is always equal to the largest digit of the -
symbol of coordinates. So, if in the case [2'1'1] of #CO of three-
dimensional space the cube [111] with edge 2 is extended to the
cube [2'2'2'] with edge 2 (1 4 2V/2) it is precisely large enough
to enable us to deduce [2'1'1] from it by truncation; for the
limit of face import lies in the space + 2z, = 2. Likewise in the
case [V'2,V'2,0,0] of Cy in &8, which symbol winds up in zero,
we have to extend the eightcell [1111] to [V'2,V2,V2,V2]
by multiplying its linear dimensions by V'2, etc,

The manner in which the amount of truncation is measured
most easily can be explained as follows. If the measure polytope

n

M,>=[11...1] of 8§, with centre O is extended to A,*"

= [e¢...c], & being the extension number, and this extended
M, is truncated at a A-dimensional limit M, with centre M
by a space §,_; normal to OM cutting in R any edge PQ of
M, one end point P of which belongs to M%), then ﬁ—g is
considered as the “truncation fraction”. Now, as we will prove
immediately, PR is always a multiple of V'2 with half the edge of
M@ as unit, whether the symbol of coordinates of the polytope
deduced from M,*? by truncation terminates in unity or in zero;
so, in the relation PR = ¢V'2 the multiplicator ¢ which is
integer may be called the “truncation integer”. So the truncation
Verh. Kon. Akad. v. Wetensch. 1¢ Sectie DI XI No. 5. E2
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AR
2¢
polytope winds up in 1 and rational if the last digit of that symbol

is zero.

fraction

is irrational if the symbol of coordinates of the

57. If we indicate the truncation numbers corresponding succes-
sivily to a truncation at a vertex, an edge, a face,. .. by 7, 7, 75, . . .
and p' stands once more for 1 4 pV'2 we have:

Taeorem XXXII. “If [wy, m'y, m'y,. .., m', _4] is the symbol of
coordinates of a polytope deduced from the measure polytope M,
of §, — where m', _, stands for either 1 or 0 — the truncation
numbers 7y, 7,, T,,. .. are

n—1 n-2 n-—3
To=nmy—2 m;, Ty=@n—1)my—2Z m;, To=0—2) my—X m,,. . .

i=0 i=0 i=0

»”

Proof. Here w'y is the extension number. Now, if we wish to
calculate 7, and we take for the vertices P and Q of the extented
measure polytope [m'y, m'y,. .., m'y] the points m'y, w'y,..., m'y
and — 'y, w'y,. .., o'y differing in the sign of 2, only, we have
to apply the theorem of page 27 (art. 17) with respect to the equation
owt+a+... 42, =c¢, (=1, 2, 8), where ¢, is determined
by the condition that this space is to contain successively the points
P, Q and the pattern vertex 'y, w'y, w',,. .., m',_, of the polytope

under consideration. So we find
n—~k—1
o=@m—kwy, c;=@m—F—2)w,y, c;=Zm';
i=0
and therefore
n=—~hk=141

- k ’I __E /Ii
PR (n ) g i=0m

PQ — 2wy
But, as 2y is PQ, the numerator is PR. As the rational part
n—k-1
of (n — k)m'y is cqual to that of Zw';, viz. n — & for w,,_, =1

i=0
and zero for m',_, = 0, this numerator is a multiple of V'2,

as we have stated at the end of the preceding article. So we find
n—k—1
T = (n — £) mg — X m;, as the theorem has it.

i=0
In the case of the polytope 2,, represented by [5'4'4'8'3'2'2'2'1'1]
and in the case of [5443322210] we get

To=24, 7, =19, T, =18, =12, =9, 7—=06, T3 —= 4,
7-7:2, Tg=l.
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But the extension number of the first polytope is 1 4 5V/2, that
of the second is 5.

Remark. In the application of the method of measuring the
amount of truncation introduced for the simplex to the measure
polytope we experience that the truncation fraction may become an
improper fraction. This means that the point of intersection R of
the truncating space S, _, with the edge PQ lies on PQ produced
at the side of Q.

If we wish to avoid this inconvenience we can determine the
amount of truncation in the following new way. If O is once more
the centre of the polytope and A7 the centre of the limit 27,%* of
the extended measure polytope M,”at which the truncation is to
take place, whilst the truncating space §,_; normal at OM cuts

N . PM
OM in P, we may consider —— as measure for the amount of

oM
truncation. Then we find
n—k—1
PM (n — B)ym'y — X ',
. i=0
oM (n — &) w'y

from which it ensues that the new truncation fraction is deduced from
the old one by multiplication by p—

But instead of altering our method of measuring the amount
of truncation we prefer to put up with the inconvenience indicated.
So in Table IV the truncation numbers are indicated, after the
extension number where ¢ =1+ ¢ V'2 and ¢" = ¢ V'2, according
to the original system in column seven.

D. Ezpansion and contraction symbols.

58. We now prove the theorem:
Trrorem XXXII. “The expansione, (4 =1,2,3,...,2—1),
applied to the measure polytope #,® of 8, changes the symbol of

coordinates [1, 1,..., 1] of that polytope into an other symbol
which can be obtained by adding V'2 to the first » — £ digits.

Proof. The operation of expansion e, is performed by imparting
to all the limits A7, of M, a translational motion, to equal
distances away from the centre O of M,®, each M, moving in
the direction of the line OM joining O to its centre M, these M,

remaining equipollent to their original position, the motion being
o
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extended over such a distance that the two new positions of any
vertex which was common to two adjucent M,® shall be separated
by the length 2 of an edge.

Now if we move the limit 47, for which we have
k

z’1={02=. =8y = ]., zl',,_k_H, w,,_k+2,. .,wn=[l, l,. . .,1]

in the manner described in the direction of the line joining O to
its centre M, for which

¢Z'1=ﬂ'2=..= n—k=1' "L’n_k+1 =wn—k+2="=wn=0’

to a A times larger distance from O we get a new position of this

M@ characterized by
k

By=8y=..=@p_ =N, @y 11> Cpn_rr2r-s8=[11...1],
n—k k

in which it is a limit 2,2 of the new polytope [AA. .. A 11...1]

and according to the last ten lines of art. 48 this polytope belongs

to the progemtme of M,® if we have A =14 V2. So the 1esult

n—k

is [1'1"...1'11...1], which proves the theorem, and we find
by the way

Treorem XXXIII. “In the expansion ¢, the limits M, of M,
are moved away from the centre to a distance always equal to
1 4+ V2 times the original distance.” |

This comes true, for 1 4+ V'2 is the first digit of the symbol
of coordinates of the new polytope and, as we found in art. 56,
this first digit represents the extension number.

As the distance OM was V/(n — %) it becomes (1 + V' 2)V/ (2 — ).

Remark. We mav express the influence of the operation ¢, on

the symbol [11...1] without interval between the digits by saying
that it creates an interval V'2 between the » - A" and the

n 4 k-4 1* digit.
59. Turorem XXXIV. “The influence of any number of expan-

sions e, e, e,,...of M,? on its symbol [11...1] is found by
adding together the influences of each of the expansions taken
separately.”

Proof. We begin by combining two expansions only.

In the succession of two expansions the subject of the second
is to be what its original subject has become under the influence
of the first. So in the case e, e, C of the cube C (fig. 13") the
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original subject of e, (the square) is transformed by e, into an
octagon (fig. 18°) and now the octagon is moved out, in the case
es e, C the linear subject of e, (the edge) is transformed by e, into
a square (fig. 13°) and now this square is moved out; in both
cases the result (fig. 13 is the same, a £CO. In general, for £ > /,
in the case e, e, M, the subject M,? of e, is transformed by e,
into an M,®, while in the case e e, M,® the subject M,® of ¢
is transformed by e, into an z» — 1-dimensional limit g, of the
import /. Here also the geometrical condition “that the two- new
positions of any vertex shall be separated by the length of an edge”
makes the distance over which the second motion of any of these
pairs has to take place equal to the distance described in the first
motion of the other pair; i.e. if #® is a limit of the limit 4/,
of M, and A is a vertex of that M®, the segments described
by 4 in transforming M,® into the two polytopes e, e, M, and
ere, M, are the two pairs of sides, with the length V'2(z—#) and
V'2(n—1), of a rectangle leading from A to the opposite vertex 4'. -
So we find the coordinates of 4’ by adding to the coordinates of A the
variations corresponding to the motions due to each of the opera-
tions e, e, taken separately. So, in the case of three or more ex-
pansions we will have to use the extension of this rule to parallel-
opipeda and parallelotopes; to this geometrical composition of motions
always corresponds the arithmetical addition of influences. So the
general rule is proved.

By the way we still find the theorem:

Tueorem XXXV. “The operation e, can still be applied to any
expansion form deduced from A/, in the symbol of coordinates
of which the » — 4" and the » — £ 4 1* digit, i. e. the 2" and
the £ -+ 1* digit counted from the end, are equal”

This theorem enables us to find immediately the expansion symbols
of an expansion form deduced from #,® with given coordinate symbol.
We show this by the example [6'4'4'83'8' 222 1'1] of art. 55.

In [5°4"47878'2"2" 21" 1] five intervals occur, viz, if we represent
the p" digit from the end by d, between (d,, d), (&5, d3), (ds, ),
(dy, dg), (dy, dy)- So we find e, e, €5 ¢, 69 M.

60. By means of the operations ¢, we can deduce from M,® all
the possible polytopes the square bracketed symbol of coordinates
of which winds up in a unit. If we wish to deduce from M, also
all the forms with a square bracketed symbol ending in zero — which
is a desideratum as to the treatment of the nets — we have to
introduce the operation ¢ of contraction. The subject of this contraction
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is the group of limits (/),__, of vertex import, sometimes denoted
by g0, the vertices of which form exactly all the vertices of the
expansion form, each vertex taken once, and now the operation ¢
consists in this: all these limits undergo a translational motion, of
the same amount, towards the centre O of the expansion form, by
which any of these limits gets a vertex or some vertices in common
with some of the others. By this contraction the edges of the expansion
form parallel to the axes of coordinates are annihilated.

We have now the general theorem :

Turorem XXXVI. “By applying the contraction ¢ to any expansion
form all the digits of the symbol of coordinates of this form are
diminished by a unit”.

This theorem, which shows that the preceding one still holds for
contraction forms deduced from M, ?, is almost self evident. So,
as the motion of the limit g, lying in that part of S, where all
the coordinates are positive takes place in the direction of the line
making in that part of §, equal angles whith the » axes, all the
coordinates of the pattern vertex diminish by the samne amount, and
this process has to go on untill the smallest of the digits disappears.
For then we once more obtain a polytope the symbol of coordinates
of which satisfies the laws of the first part of theorem XXVIII
(art 47).

Remark. By combining the theorems XXXV and XXXVI we can
find the symbol in the operators ¢ and ¢, of any form deduced from
M,®. But this process can be simplified by introducing the opera-
tion e, which transforms the centre O of M, considered as an
infinitesimal measure polytope 4/, into M,. Then the contraction
symbol ¢ can be shunted out by substituting e, ¢, . .. e, M, for
cece...e, M, but this implies that we replace ¢ ¢e,. . .e, M,®
by ey e.e...e, M, . This remark will be useful in part F of the
next section (compare theorem LIII).

E. Nets of potytopes.

61. The theory of the nets derived from M,™ is based entirely
on the consideration of the most simple of these nets, the net
N (M) of the measure polytope itself. So we begin by the analytical
representation of that net N (M,?).

By means of the symbol [2a, 41, 2a,+1,.. ., 2a, + 1] the
net of M, is decomposed into its measure polytopes, if ay, a,, . ., a,
are arbitrary integers and the heavy square brackets mean that in order
to obtain a definite 2, of the net we have to permutate and to
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take with either of the two signs the units printed in heavy type
only. Of the M,? brought to the fore by this symbol itself the
centre is the point 24, 2a,, ..., 2a,. So [2a,, 2a,, . . ., 2a,] may
be called the “frame” of the net, and this symbol may be written
quite as well with round or even without brackets, as the faculty
of taking for the a; all possible integer values includes permutation
and changing of signs.

62. If we consider the net NV (M,®) as a polytope!) of 8§, .,
with an infinite number of limits (/), which instead of bending round
in 8,,, fills §,, we can apply to this polytope the expansions
€1,6,...,e, and the contraction ¢, either separately or in possible
combination ; in this simple way the measure polytope nets ¢, NM,,),
es N(M,), etc. have been determined by M™. Srorr. We introduce
the corresponding analytical considerations by the following:

TreoreEM XXXVII. “Let any expansion or expansion and con-
traction form (P), of M, be represented by the symbol of coor-
dinates [a,, a,,...,a,_4, a,]. Let M,*" be the measure polytope
with edge 2a concentric and coaxial to this (P), and N(M,*") the
net of measure polytopes to which the A7, *" belongs. Let us suppose
in each of the oo™ measure polytopes of this net a concentric polytope
equipollent to (2),. Then the vertices of all the o" polytopes
obtained in this manner cannot form together the vertices of a net,
if a differs from @, and from @, + 1.”

This theorem of a negative tendency can be proved thus. If we
call two (P), “adjacent” if the measure polytopes M, *" concentric
to them have this position with respect to each other, i. e. if these
M,?" are in M,_,? contact, and we consider the limits (/), _,
of the highest import of any two adjacent (P), deduced from the
common M, _,*” of the two M,?" concentric with these (P),, we
see at once that these limits ¢, _, coincide for @ = a,, whilst they
are at edge distance from each other and form therefore the end
polytopes of a prism for @ = @, | 1. In all other cases two adjacent
(P), are either too near to each other or too far apart.

What we shall have to show farther is this that the vertices of
the o" polytopes (P), do form together the vertices of a net in
each of the cases @ = 4, and « =, + 1. We prepare the general
proof of this assertion by indicating by the special case of the
threedimensional net of truncated cubes [1 4+ V2,14 V'2,1]
included in larger cubes M;*", where a = 2 + V2, how the other
constituents are to be found. This will give us occasion to introduce

') Compare art. 39.
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some new geometrical terms by the use of which the expression of
general laws will be simplified.

In fig. 14 is represented in heavy lines one of the ¢C with
centre O and an eighth part of the A7,%” surrounding it, viz. that
part lying in the octant of the positive coordinates taken in the
directions OV';, OV, OF,. Now we make to correspond to the
different limiting elements of the surrounding cube the limiting
elements of the #C into which the first are transformed if the #C
is deduced from the surrounding cube by truncation at vertices,
edges and faces. So the triangle 4BC of vertex import corresponds
to the vertex 7, the edge 44’ (or the face of edge import which
replaces it in an other case) corresponds to the edge V' #,, the
octagonal face B'BCC'... corresponds to the face W, V' W, 'Then
by reflecting the triangle 4BC into the three faces of M;** through
the corresponding vertex 7 as mirrors and by dealing in the same
way with the edge 44" with respect to the two faces through the
corresponding edge 7 W, and with the face B'BCC’. . . with respect
to the corresponding face W, V'W; we get successively the eight
triangular faces of an RCO with 7, the four upright edges of a P,
with 7, the two end planes of a P with 77, as centre. We simplify
these expressions by saying that “multiplication” of the triangle 4BC
round 7, of the edge 44’ round VW, of the face B BCC'. . . round
W, V' W, generates the indicated polyhedra RCO, P,= C, P

In fig. 14 have been represented in ordinary lines the ECO
generated by the triangle 4BC, the three cubes generated by the
edges 44, BB, CC' and the three P generated by the faces
BBCC..,CCAA' .., /ABB .. From this diagram it is clear
that the indicated RCO, C, P; fill up the interstitial space between
the #C, 1. e. that the net bearing in ANDREINI’S memoir the number
22 exists; we facilitate the inspection of this diagram by adding
a stereoscopic representation of it. )

The deduction of the coordinate symbols of the new constituents
RCO, C, Py from those of the £C and its surrounding cube shows
us, what we have to do in general in order to obtain the coordinate
symbols of the new constituents.

We begin with ZCO obtained by multiplying the triangle 4BC
round /7. In order to get the representation of the triangle 4BC
with respect to the original axes we have to replace the square
brackets of the symbol [1 4+ V2,1 4+ V'2,1] of #C by round
ones. In order to represent that triangle with respect to new axes

') The effect is enhanced if we place it so, as to have the small arrow at the left.
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vv,, VV,, V'V, we have to replace the digits of (1 | V2,14+V2,1)
by their complements to ¢ =2 4+ V'2, giving (1,1,1 -+ V'2),
Le. (1 4+V2,1,1). In order to multiply the last triangle round
the new origin 7 we have to return to square brackets. So
[1 4 V2,1,1] is the symbol of the new constituent 2CO. We
repeat that the digits of this new symbol are the complements to
a=2 + V'2 of the digits of the “groundform” ¢C'taken in inversed order.

In the case of the edge 44  and the cube derived from it we
have to assume 7, the centre of the cube, as new origin, and
ViV, Vy V', V, Vs as new axes. Thereby ; =[1], z,=1-+4V2,
#3=1-4 V2 is transformed into 2, =[1],2,=1,23=1; so by
multiplication we get 2, = [1], @y, #;=[1, 1] or shorter [1], [1, 1],
which in this special case may be combined to z;, 5, #3=[1,1, 1]
or shorter [1, 1, 1], the cube.

Finally the face 4'ABB'. . .represented by ay, z, =[1 4+ V'2,1],
@3 ==1 - V'2 passes by multiplication into 2,, 2, =[1 + V2, 1],
@y =1] or shorter [1 4 V2, 1][1].

So if we arrange the constituents in the order gs, ¢,,94, 40 of
decreasing import we get

7=[1+V214+V2, 1]

gp=[14V2, 1] [1]

p=( 1 1 [1 ,1]

p=00+Ve, 1 ,1]!
the first and the last being semiregular polyhedra deduced from
the cube, whilst the intermediate ones appear as prisms. We remark
that the pairs of syllables of the symbols of g, and g, can be derived
from the symbols of g; and g, by taking for g, the last two digits
of g3 and the last digit of g,, for g, the last digit of g5 and the
last two digits of g,.

Now it is obvious that in the general case of the polytope (P),
of §, represented by [a,a,,. .., 4, 4, a,] the introduced multipli-
cation of the limits of different import, which multiplication can
be performed for any value of the constant @, leads in general to
n 4 1 constituents g,,,4,_4,. ., 41,90, represented by
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where g, is given, g, is obtained by subtracting the digits of g,
from a and taking the differences in inverted order, while the two
syllables of g,_, are got by taking the last »—# digits of g, and
the last # digits of ¢, for £ =1,2,...,2—1.

63. We now prove the following problem of positive tendency
completing the preceding one.

TueoreM XXXVIII. “In either of the two cases a = @, and
a=a, + 1 the vertices of the " polytopes (P), of the preceding
theorem do form together the vertices of a net. The constituents
of this net are obtained by means of the algorithm developed at
the end of the preceding article.”

We march in the direction of the proof of this general theorem:

1°. by deducing from the symbol of courdinates of the given
groundform (P), the symbol representing all the repetitions of this
polytope and therefore all the vertices of the system,

2°. by deriving from this new symbol the symbols of the polytopes
different from the groundform the vertices of which belong to the
system (which set of new constituents will prove to be equivalent to
that obtained above by the geometrical multiplication introduced above),

3°. by showing that the system of polytopes obtained in this way
fills space, i.e. that there is neither overlapping, nor hole.

Symbol of the total system of vertices. The symbol of a definite
repetition of the groundform is

[26,a + @, 2b,a+@,,. .., 26, 14+ 6y, 2, a+@,],...T)

where &,, b,, ..., b,_4, 6, is a definite set of arbitrarily chosen
integers. So this symbol represents the total system of vertices, if
the 4, denote all possible sets of integers.

From the symbol 7' we deduce the frame symbol

(26, a, 2b,a,..., 20, 44, 2b,a],........... F)

representing the system of vertices of a net of measure polytopes
M2, one of which has the origin as vertex and the = spaces
2;=0,(=1,2,...,2) as limiting spaces.

Presumptive new constituents. The most general transformation by
which the total system of vertices 7') passes into itself consists in a
transport of p.a units from the permutable to the unmovable part
of #;, the » quantities p, being integer. But this process is limited
by the restriction that in the case of a new constituent sought
the permutable parts placed within the same pair of square
brackets have to satisfy the conditions of theorem XXVIII, from
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which it ensues that the extent of the restriction depends on the number
of syllables which the symbol of any constituent may contain. This
number is evidently two at most. For the process can only afford
besides the original minimum digit @, one new minimum digit,
viz. zero in the case a = a, and unity in the case a = a, + 1.
So we have to hunt up only new constituents the symbols of which
are either monosyllabic or composed of two syllables.
If we take a// the p; equal to one we find

(@44 Det+a,—a,2b,+ o+ a,—a,. . .,
(25'1-—1+ l)a —I_an—l_a, (2611_'— l)a + (Lu - ('/]s

or, if we replace negative permutable parts by the positive ones
of the same absolute value, rearrange these positive parts according
to decreasing order and substitute for brevity @ for 2641,

[B1lﬂ+(t—a“, ﬁz’dJ.—(L- (tu—l’ « e ey ﬁ’"_1 a+a_w29 ﬁlna_l_a_al]s - T)

winding up in zero for a=ga, and in unity for a=a,+ 1. So
we find the repetitions of the new constituent g, of the last list
of the preceding article. This form g, and the given form g, we
started from are the only constituents of mecasure polytope descent
proper.

If we transform the first £ digits of 7" by the transport of
units from the permutable parts to the unmovable ones and put
each of the two sets of digits, the set of the % transformed ones
and the sct of the »—#% untransformed ones, between square
brackets, we get after rearranging, 1f £ still replaces 26, + 1 and
; is substituted for 28,

[Bre+a—a,Prat+a—a,_,, ...,Re+a—a,]
(Biv1a~+ @y, Bryra+ o, ., Lrata, B.ata.),..T

revealing the new constituent

[a_ak YAl _q5. -+, a—(h] [ak_'_i ?ak+2’ /e e M B

a prismotope (P,; P,_,) with the constituents (P), and (P),_, repre-
sented by each of the two syllables of the symbol taken separately;
if the digits of the second syllable correspond to the coordinates ,
@y . .., &,_, and those of the first syllable to @,_, .1, @, 42, - -5 Zu>
this prismotope is the constituent g,_, of the last list of the
preceding article. In the latter case the different positions of (P),_, are
parallel to O (X, X,. . .X,_,), those of (P).to O (X, _41 Xp—tsy1- - - X)-
So we find again all the new constituents obtained formerly by
geometrical multiplication.
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No overlapping and no hole. By a translational motion in the
direction of one of the axes over a distance 2a the system of
vertices 7') is transformed in itself; so, if the central measure poly-

tope [a, @, ..., a] is filled exactly by the set of constituents found
above, these constituents form a net By a reflection in one of the
n spaces 2;=0, (1=1,2,...,n), the system 7') also is transformed
in itself; so, if the part of the central measure polytope A7,
containing the points with positive coordinates only is filled exactly,
the constituents form a net. We indicate this part of the central
measure polytope by the symbol A/,(+%.

We now prove the following lemma:

,Let (P)* be a constituent lying partially within 47, and
(Py:t any of its limits lying partially within 27,. Then the
set of polytopes obtained above always contains one and ouly one
polytope (P),! having with (P),* the limit (P)}_} in common; this
(P),! lies with respect to (P)," on the opposite side of (P)i.}.”

The condition that (7). lies at least partially within 2,9 is
fulfilled, if we consider that repetition of the chosen constituent
the coordinates of the centre of which admit the values 4 « and
zero only. We find, if all the coordinates are zero the groundform
contained in 7'), if all the coordinates are 4 a a polytope contained
in 7"), if some coordinates are - @ and the other ones zero a
polytope contained in 7). Now the first case, of the groundform,
and the second case, of all coordinates = -+ @, are included in
the third case, as we get them by putting 2 =0 and £ =ux.
So we can choose for (P)," the polytope

[eta—a,a+a—a,_,,...,o+a—a][t41, 040, . .,8, 14,
cZ", 41'2, ...... 9 wk wk+1, «Z‘k+2, ....... ,wn

where the z; placed under the two syllables indicate the coordinates
to which the two sets of digits refer, and occupy ourselves with
the question how to get a limit (/),_, of this prismotope. Now in
general the limits (/),_, of the prismotope (P,; P,_,) present them-
selves in two groups, viz. if (P),_, is any limit (/),_, of (P), and
(P),—r_q any limit (J),_,_4 of (P),_y, in the fwo forms (P,_y; P,_,)
and (P,; P,_,._,). So 1), we have to consider the two different cases

') For a limit (P):'_b1 lying at least partially within M:a none of the coordinates
may assume values equal to or surpassing + a for all the vertices of that limit; therefore
in the first case (P,_4; P,_,) we have to place between round brackets a certain

number s, of the largest digits [a + e — @;] where & — s; is taken with the reversed
sign, i. €. a @j_4,0..y 6 1y taken in inverted order.
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[a+@-@_,,a+Q Qs 4,. . .,0+ @)@ g 11, Vo35 - %)
By @y e s By, By g 413 Bemg s+ + o> &p
[N T N ‘ ’
NP ——
[e+a—a;,at+a—a,.,,. . .,a+a—a,]

By @ye e e v enns s
( 1\’
ak_'_’ > ak+2 90 e 0 s o o ’ ak+s,) [ak+8,+‘ ’ ak+s,+2’ ¢ 0 &y aﬂ—1 ’ an
I ENPL N PR '@y, i y,415 Lhesytyr » » =2 Pn

which two limits (/),_, admit as centres the points

k-8, 8 n—k
aa...a tt,...4 00...0
k & n=k—s, ?

aa. . .a tyty. ..t 00...0
4 and % being determined by the relations

k k43,
81’1=2a,- N 82t2=2a,' )
i=k—s,+1 i=k+1

showing that we have 0 << ¢ < a for ¢ = 1, 2. So the centres of
these two (/),_, lie on the boundary of the measure polytope
M, *® and therefore the (/),_, themselves lie partially within that
measure polytope.

Now for each of the two cases there is only one constituent
passing through the chosen limit (/),_,, viz.

[a+@—Ct_,, 0+ Ay, . . ., A+ A Q][ 11, Bpg 20+ + > Tty B

w1 ) wz g o oy wk__s. 'Z'k-—s,+i > wk_8l+2 g0 o oy 12'”
[a+a—ak+s,’ a+a'ak+s,—b 1§ iy a+a—a1] [ak+s,+l’ ak+s,+2’ cees @y yq,qy
Ly s Byse ooy Tpys, Pryg, 41 Lhps, 429+« +9 Tn

So, all we have to do yet is to investigate the position of the
centres. If we indicate these points by the letters G,, G, G,,, G,
G., and we remark that for these five points we have

&4 =,z‘2= i % =w/¢—8,’ mk\—o,+l =‘z'lc—s,+‘2 =, . =wk’

Lyt =B 2=+ . = Tpyg,> Lhoys,+1 = Lhys, 2=+ - = Tp;
we find the following list of coordinates

By w5 4 By passwn Bpprises  Pppgpdress
G, a a | 0 0
G, a 0 0 0
G, a a a 0
G, a ¢ 0 0
G, a a t, ‘ 0

According to this list of the two triples (G,, G, , G.), (Go, G, Gop,)
of collinear points G, lies between G,, G, and G,, between
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G,, G,. So the proof of the lemma is given. So neither of the two
systems of constituents can admit holes.

In order to show that no two polytopes of any of the two
systems can overlap we remark that by means of the symbols 7'),
7"), T") any polytope of the chosen system can be promoted to
central polytope, which shows that not a single vertex can lie
inside that polytope.

So we have proved completely now the theorem under consi-
deration.

64. We now formulate the manner of deduction of all the
measure polytope nets as follows:

Turorem XXXIX. “Let G = [ay, a,,. . .,a, _1,a,] be the symbol
of coordinates of the “groundform” of the net. Deduce from it the
symbol 0 =[a¢—a,,a—a, _,....,a —a, a— a,] of the “opposite
form”, where a is either @, or @, 4 1. Derive from these two
symbols &, O the mixed symbol 7, of the “intermediate forms”
represented by

[an—k+1’ a, k422 0> a,_1, @,

e —ayn_, a—a,_y_4,..., ¢ —ay, a—a],
of the two syllables of which the first contains the last 4 digits of
G, the second the last » — £ digits of O. Then @, the forms 7,
#k=n—1, 2—2,..., 2, 1), O are respectively the constituents

InsGn—1>Gn—25+ -+ J2: 91> o of the net.”
“The frame of the constituent g, _, is

[ﬁn—k+i a, Bn—k+2 a,... ﬁn—i a, Bn a, B,n-—k a, ﬂ,nv k=15 .. :Blz a, ﬁll a]’

where we have 8, =26, and B, = 24, + 1, the 4, being integer
and the digits of the first syllable being related to the odd, those
of the second syllable being related to the even multiples of .

“If (e, c), etc. indicates a net with an expansion groundform and
a contraction opposite form, the theorem includes the four cases:

=l R ssssrnnrnerun (e, 0,
=2l =L nernarna (e, €),
By = =SB pus v wmmnninnins (e, ),
g, =0, 8=t Leisrasrsneus (c, €).”

In this theorem the deduction of the intermediate constituents
differs slightly from that given in the preceding article, the two me-
thods passing into each other by interchanging # and # — £, and
the two syllables. In the new form the succession of the different
constituents is a more regular one, as the following examples prove.
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Example 1. The two nets with [5'4'4'83 82 2 2 1'1] as ground-
form admit the constituents:

g0 . ['A43322211] g0 .. [5'4'4'88°22211]
7. .. [44'8322211],[1]
Js. - [48'822211],[10]V2 | g...[48822211],[1']]
gr. . [FFLYUVI110]V2 | gy .. [8822211],[1'11]]
Jo- - [322211],[2110]V2 | ge...[32°2°21°1], [2'11']]
g5 [22211],[22110]V2 | g,...[2221'1], [221'1']]
Ja--[2211],[822110]V2 |g,...[221'1], 87221 1'1]
gs---[2V1],[8822110]V2 |g...[21°1],[8822111]
9. [11],[38822110]V2 |g...[1'1],[3'8822111]
$1-..[1],[488822110]V2 |g...[1],[43882211'1]
Jo ... (643882211012 |g...... [6'4'8'8'822111]

Ezample 1I. The two nets with [5443322210]V'2 as ground-
form admit the constituents:

g0 - - [5448822210]V/'2 Jro-...[6448822210]V2
go..-[1],[448322210]V2
- - - [488222101V2 , [10]V'2 | g5...[1'1],[4 38222 10]V2
gr- - - [3822210]V2 , [110]V'2 | g,. . .[1'11],[38 222 10]V2
go- - - [322210]V2 , [2110]V2 | g,...[21'11],[32 2 2 10]V2
g5 - [22210]V2 , [22110]V2 | g5...[2'2'1'1'1],[2 2 2 10]V2
Ja- - - [2210]V2 , [322110]V'2 | 4,...[3'2°2'1'1"1],[2 2 10]V'2
gs- - [210]V2 , [8822110]V'2 | gy...[3'32°2'1'1°1],[2 10]V'2
ga- - [10]V2 , [33822110]V'2 | 4. ..[3'8'8°2°2'1'1'1],[10]V2

P s 555 654 5 [6433322110]V'2 | g,...[6'4'8'8'3'2'2'1'1']]

The nets of measure polytope extraction of the spaces S;, S, S;
are put on record in the Tables V and VI. The first column of
these tables is concerned with the “name’ of the net; it contains
“the system of operators ¢, and ¢ which are to precede the general
symbot &V (M,? in order to obtain the symbol of the net. This
system of operators is in close connection with the consideration of
the net of §, as a simple polytope of S, ,; for @ = q, it is equal
to the system of operators characterizing the groundform, for
a=a; + 1 it consists of latter system completed by e,. So of the
three parts into which each of the three cases =38, z—=4,2=25
has been subdivided, the first contains the nets (e, ¢), the second the
nets (e, e), the third the nets (c, ¢). Therefore the question rises where
the nets (c, ) are to be found.

The algorithm indicated in our last theorem immediately shows
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that by interchanging the two extreme forms with one another the
intermediate constituents return in inverted order of succession.
This remark suggests an answer to the question raised just now.
By taking the constituents ¢,,¢,_4,...,41, 90 contained in the
second, third,...,» 4 1%, 2 4+ 2" column of the same horizontal
line corresponding to a certain net in reversed order of succession
we get the constituents ¢',, ¢, _4,..., 474, of a net bearing in
general an other name, the operators occurring in which are inscri-
bed in the z 4+ 8™ column; this net with constituents with com-
plementary import is essentially the same as the original one. So by
inverting the order of succession of the imports the three groups
(e, c), (e, e), (c,c) pass into (c,e), (e, €), (¢, ), in other words the
first group furnishes the group (c, ¢), whilst each of the other groups
passes into itself. We have used this fact, to which we shall have
to come back in part F of this section, in order to simplify the
Tables V and VI. So on one hand the nets (c, e) have been omitted
totally, whilst on the other the number of lines of the groups (e, e)
and (¢, ¢) have been diminished by writing down the nets in a trans-
parent systematical order and omitting at any time the net appearing
already in inverted order under the preceding ones.?!)

In the column under the heading p. some particularities of the
nets have been inscribed. By ». we have indicated that the net is
regular, by s. . that itis “semiperiodic”’, i. e. that the two extreme
forms are the same which implies the equality of any two consti-
tuents with complementary import.

The other columns will be explained later on.

A survey of the results contained in the tables suggests the
following remarks:

a). There is a great difference in character between the consti-
tuents of a simplex net proper on one hand and those of a measure
polytope net. All the constituents of a simplex net proper are expan-
sion and contraction forms of the simplex, whilst we found just now -
that in a measure polytope net in general only two of the consti-
tuents, the groundform and the opposite form, are expansion and
extraction forms of the measure polytope.?)

*) The cases ce, N(C,), ce, N(C,), etc. do not figure in the first third part of Table IT
contained in the memoir of Mrs, Stort, as they appear already as expansion forms
under either N(C,,) or N(C,,).

In order to spare room we have omitted in Table VI the column containing the name of
the net taken in inversed order. For the upper and middle part it is always the symbol
before M, under gy, to which e, has been added, for the last part it is that symbol itself.

*) Compare for the prisms and prismotopes entering here my paper: “On the cha-
racteristic numbers of the prismotope”, Proceedings of Amsterdam, vol. XIV, p. 424.
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This difference in character implies a difference in the number of
different positions a constituent of definite form may admit. In the
case of a simplex net proper this number is fwo in general and
only oxe if the form is central symmetric. In the case of a measure
polytope net this number is oze for the two extreme constituents,
whilst the intermediate form /, generally occurs in a number of
different positions indicated by half the number of limits 37,® of
M®, i.e. in 2" %1 (n), different positions.

In the case of the simplex net we have considered as kind of
constituent any polytope of the net with equipollent repetitions; when
the partition cycle was a power cycle we have even been obliged to
split up a #Aind of constitucnt into scveral groups, in order to keep
the analytical treatment in contact with the geometrical facts. On
account of the extreme transparency of the measure polytope nets we
can allow ourselves to be less exacting and extend the notion of
constituent here by admitting that the 2" =*~* (), different positions
of the intermediate form 7, introduced above belong to the same
constituent.

6). In order to be able to indicate the number of different con-
stituents according to the new point of view we fall back on the
different cases (e, ¢), (e, ), (c, ¢), (¢, ¢) mentioned at the end of the
last theorem. By generalizing the results of the two examples given
above one finds immediately that the required number is in general
n—p -+ 1, where p indicates the number of ¢'s contained in the
symbol. But this general number » — p 4 1 is still to be considered
as a maximum, 1. e. under circumstances the number of constituents
may become less. This decrcase can be due to two different causes.
If in the first place in one of the two groups (e, ¢), (¢, ¢) of a net
in §, the expansion operator with the largest index is e,, where
k < n—1, the constituents g,, g 4 1,- . -, 9. — o are lacking together
with ¢, _,. If in the second place in one of the two groups (e, e),
(¢, ¢) a net is semiperiodic the equal constituents of complementary
import may count for onec constituent.

¢). Some of the intermediate constituents may become measure poly-
topes, this being even the case with a// the intermediate constituents
of the net e, N(M,). So by extending the notion of constituent
still more the number of the different kinds of constituent is lessened
in these cases, this number being unity for the net e, MM,).

d). By comparing the cases g, under » = 4 we remark that the
prismotope (4 ; 4) which is the measure polytope G of §; is indi-
cated by three different symbols; in the cases of the nets (e, ¢), of
the nets (e, ¢), of the nets (¢, c) we get successively:

Verh, Kon. Akad. v. Wetensch. 1¢-Sectie DI. XI No. 5. E3
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[11] . [10]V'2, [11].[11], [lo]Vv2 . [l0]V2
corresponding (fig. 15) to the projections

ABCD ABCD FFGH
KFFGHY ABCDY) FFGH

on the planes O X, X, and O X, X,, if in these symbols the suc-
cessive digits refer to 2, z,, @;, #,. Of these the second, equal to
[1111] occurs in one position only, whilst the two others admit
respectively six and three positions in accordance with the splitting up of
&y, By, @y, 2y, 1IN (24, 2y), (@3 @), 0 (24, @), (@3, @), I (24, Z,), (@2, 23).

F. Polarity.

65. If we polarize an expansion or a contraction form derived
from the measure polytope A7, of §, with respect to a concentric
spherical space (with oo™ points) as polarisator we get a new poly-
tope admitting one kind of limit (/),_, and equal dispacial angles 1),
to which corresponds the inverted symbol of characteristic numbers
of the original polytope. Moreover, if [a, a,,. .., a4, a,] is the
coordinate symbol of the original polytope, this symbol represents
also the limiting spaces §,_, of the new polytope in space coor-
dinates.

For the manner in which the process of truncation is transformed
by inversion compare page 69 of Section I.

66. We now pass to:
Turorem XL. “Any polytope (P), of measure polytope descent
in 8, has the property that the vertices 7 adjacent to any arbi-

t

trary vertex 7 lie in the same space §,_, normal to the line joining

') Compare for this inversion page 68 of Section I.

By inversion of the measure polytope we find the cross polytope. Moreover we find
in S,, in the notation of the foot note of page 63, if L ¢, ¢, e, stands now for the
“limiting bodies of the reciprocal polytope cf ¢, e, e, G,”,

Ley =64 T (13, 32+1),
Ley =96 P%4,,
LP;; =64 X,
Ley e =192 T (l3+41, 1241, 21+1+1),
Ley e3=192 symm. Ply,, .4,
Lege3 =192 symm. Ply,, .4,
Lel ege3— 384 Y,

Lce1 =32 P32,
Leeg= LCy =240,
LC('3 = LC](‘, =8 C,
Leey eg =96 T (241, 22+1),
Lcel o3 = 96 P32,
L(‘(‘2 ey = 48 P41 (square)?
Leey eg e3 =192 T (13, 32+1),

X representing a polyhedron limited by six faces, two groups of three equal deltoids
connected in such a way as to give rise to an axis of period 3, and Y a tetrahedron
limited by four unequal scalenc triangles. For the shape of the tetrahedra Y compare
problem 79 of vol. XI of the “Wiskundige Opgaven”, where the projections of these
tetrahedra on the four sels of axes of the polytope are given into the bargain.
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this vertex 7 to the centre O of the polytope. The system of the
spaces §,_, corresponding in this way to the different vertices 7
of (P), include an other polytope (P),, the reciprocal polar of (P),
with respect to a certain concentric spherical space, umless (P), be
the cross polytope ce,_y M, in which special case all the spaces
8,_4 pass through the centre 0.”

After the first section of this memoir had been published we
perceived that the analytical proof of the corresponding theorem XXII
might have been replaced by a much simpler geometrical one 1),
applicable to any polytope (P), deduced from a regular polytope,
whether simplex or not, by the operations ¢, and e.

This simple geometrical proof runs as follows:

All the vertices 7 adjacent to 7 lie on two spherical spaces
(with o"=* points), the circumscribed one with centre O and an
other with centre 7 and radius »7; equal to the cdge. So they

¢
n—2

lie in the spherical space (with o"~* points) common to these two
spherical spaces and therefore in the space 8, , normal to 70
containing this intersection. If this §,_, cuts 70 in P we have

n—

2
2 VP. VO =/FV, from which it ensues that the distance PO is the
same for all the vertices 7, i.e. that the spaces §,_, are the polar
spaces of the vertices 7 with respect to a definite spherical space
(with o”~' points) round O as centre.
Moreover the special case of the cross polytope, where P coin-
cides with O, is self evident.

67. In the section concerned with the simplex we have explained
by the laws of reciprocity why it may happen that two different
groups of operations of expansion applied to the simplex produce
under circumstances either two polytopes equal and concentric
but of opposite orientation, or the same polytope. What corres-
ponds to this here is that any polytope derived from A/, can also
be derived from the cross polytope Cp of S, which is the reci-
procal polar of M,. As we had already occasion to remark in
art. 48 we shall have to come back to this assertion in the third
section.-

But the state of affairs with respect to equal measure polytope
nets with different expansion symbols is a quite different one. In
a joint paper of M™. Storr and myself published two years ago?)
it is shown geometrically that we have in general the relations:

*) To some of the free copies at my disposal I added a post-scriptum, containing
this remark, on page 69.

*) Compare the second foot note of art. 38 of Section I.
g
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FEN=cE'e,N', Fe,N= Ee,N, cEN=cEN,

where V and N’ represent polarly related regular nets of §,, whilst
the sets of operations ¢, (=1, 2,...,2—1), contained in # and
F' are complementary to each other, i.e. that 2" contains the ope-
rations e,_, complementary to the operations ¢, of % and no other
one. Now, in the case of the net of measure polytopes we have
N = N; so we get:

Turorem XLI. “We have the relations:

e.e,6...e,e,e, NMP =ce.e,e,...c.c.e.e, NM,?,
€.lyC. - .0 e, NM, P = e, e c....e.eq.e.e, NM,®,
ce,e,e,...e.ee, NM,® =ce.c e,...e.e.e, NM?P,

under the conditions
at+t=b+8=c+r=...=r4+c=s+b=t+d=mn;

then the constituents gy, ¢1, g5,+ - .5 Ju_2: Ju—1, 9 of the one are equal
to the constituents g',, ¢'n_s, 9'n_as- s J2 91 g of the other.
So the nets e,ee,...e.e,ee, NM,® and ce,eye,. . .e.e,e, NM,?
are semiperiodic under the conditions

at+t=bt+s=ct+r=... =n

In the latter cases there is an unpaired middle constituent for z even.”

Proof. We prove cach of the three relations by showing that the
extreme constituents g,, ¢, of the net at the left of the sign of equality
are equal to the constituents ¢, g’y of the net at the right. But
we suppose that it will do to enter into defails for one of the
three relations, say the second.

In the case of the net e,ee,...e.e,ee, NM,®, where as in
art. 38 we suppose the indices of the 2 - 1 factors e,,e,,. . .¢,
to be arranged according to increasing values of the subscripts,
the principal constituent g, is, according to theorem XXXYV:

n—¢ t—s 8—1r

[FF, K, k—1Y,(k—1),. .(b—1), (k—2), (;—2), . .(k—2),. . .,

c—b b—a a
7.2, 2,70, T, L1, 1]
So we find according to theorem XXXIX for g, by subtraction
from ' 4 1:

a b—a c—
[#.F,. ¥, (k—1),;k—1),..k—1), (4—2),(k—2),. .(A4—2),. . .,
8—r t—s n—t

2,2, .2, 1, 1,..1, 1,1,. .1].
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Likewise we get for the constituents ¢, and g’y of the second
net represented by e, e, e,. .e. e, e.e, N M, the same expressions
in which the a, b,¢,...r, s, ¢ are dashed. From this it ensues that
we shall have at the same time ¢, =¢', and ¢, =g, under the
conditions

a=n—1t,b—a=t—¢§,¢c—b=¢—171,...
s—r=c—¥b,t—s=8—d, n—t=4d,

giving immediately

at+t=b+sd=c+r=...=r4+c=s+4+b=t4d=n
These conditions pass into
at+t=bts=ct+r=...=n,

if the two nets coincide in a semiperiodic one ?).

Remark. If we count as one the two nets which pass into each other
by interchanging the two extreme forms (and also the two nets 2V and
e, IV of measure polytopes only) the number of measure polytope
nets is 84-2.5=18 in §;, 164-2.9=34 in §;, 324-2.19=70
in 8, 6442.35=1834 in §,, 128+42.71=270 in &, etc.

68. The circumstances under which polarization of a measure
- polytope net leads to an other measure polytope net are easily
indicated. For, though in the case of a net belonging to the family
(e, €) the centres of all the constituents are the groups of centres of
the different limits (Z),, (2);, (D). « - » (D)u_1, (£),, of the net NV (M ™),
m being the extension number, and these points form together the
vertices of a net V(M,™), it is only NV (M,?) itself which satisfies
the condition that an M, the vertices of which are centres of the
M,® of the net includes only one vertex of this net. So, if we
discard the case ce, M(M,) = MC,), the net MM,) and the one
deduced from it by polarization form together the only pair of fwo
reciprocal nefs of measure polytope descent.

In general the system of vertices of a net obtained by polarizing
a measure polytope net is the combination of several groups of
centres of limits 2, of the measure polytopes of the net MA/,*™),
m being the extension number. So we find in §;:

') In the case of the first relation, where we do not obtain the second member by
dashing the subscripts a,b,¢, ...,n,s,¢ of the first, the proof is a bit more complicated.
Here we find for g,, the expression given above, but for g, — as we have to subtract
from k, instead of k, +1 —

a b—a c—b s—r t—s n—t
| kykyo oy k—1,k—1,. . k—1, k- 2,k—2,..k—2, ...,2,2,..2,1,1,..1,0,0,..0 ] 12,
etc.
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in the case of N centres of limits 4,

w eeN,cegN,ce e, N ’ ’ w My, M,

» eV, e e, N o e s My, My, My,
whilst — as we remarked above — in the cases where e; occurs

all the groups of centres contribute to the system of vertices.
In the case of the groups A,, M, a space filling double pyramid
on a square base may be considered as the constituent of the reci-
procal net, in the case of the three groups M, M\, M, we are
obliged to consider as constituent a polyhedron (5, 9, 6) which may
be got by dividing the double pyramid mentioned into four equal
parts by bisecting the pairs of parallel sides of the square base ).

G. Symmetry, considerations of the theory of groups, regularity.

69. We determine the spaces of symmetry Sy,_, and consider
successively the case of the measure polytope M, of 8, and that of
any polytope (P),, deduced from M, by the operations of expansion
and contraction.

Case of the measure polylope. let us suppose Sy, , is a definite
space of symmetry of M, and let 4, be a vertex of A/, not con-
tained in Sy,_,. Then the mirror image of A, with respect to
Sy,_4 is an other vertex 4, of M,, which implies that A, 4, is
either an edge or a central diagonal of a certain limit A/, of M,
where 4 may be the case of the edge included — one of the
numbers 1, 2,. .,z 1. Let §, be the space containing that 47,.
Then any edge A, A" through 4, of M, not belonging to M, is
normal in 4, to 8, and therefore to A, .1,; so these n—Z% edges
4y 4" arve parallel to Sy,_, and M, can be generated by prismati-
zing M, in these dircctions, i.e. Sy, , s a space of symmetry of
M,, if and only if its section §,_, with S is a space of symmetry
of M,, which condition is fulfilled in the cases £ =1, £ =2
only. For in all the remaining cases 4= 8,4,..., 2—1 (and
also for £=u) the two simplexes S(#) the vertices of which are
the groups of vertices of A/, adjacent to 4, and to A, are equal
but of opposite orientation, which proves that the space §,_; of S
normally bisecting 4, 4, is no space of symmetry of M,.

For =1 the line 4, 4, is an edge, for # = 2 it is a diago-
nal of a face. So the two groups of spaces Sy,_, are the z spaces
#;=10 and the » (» —1) spaces ; + 2, = 0; so the number of
spaces Sy,_, is 2%

') We defer further developments about reciprocal nets to an other paper also des-
tined to complement art. 39; compare “Nieuw Archief voor Wiskunde”, vol. X, p.273,
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Case of the polylope (P), deduced from the measure polytope.
The #* spaces S8y,_, found above are spaces of symmetry for
(P),;; so here again the only question is if (2),, can admit a space
of symmetry Sy,_, which is no 8y,_, for the M, from which (P),
has been derived. We suppose that there is such an Sy,_,, repre-
sent by A/, the mirror image with respect to that Sy,_, of the
M, from which (£), has been derived by a set of ¢, and ¢ opera-
tions, and remark now that — as Sy,_, is space of symmetry for
the figure consisting of (), and the two measure polytopes A7,
M, — it must be possible to derive (P),, from M, by the same
set of operations. This particularity presents itself in the case of
the octagon e, (p,) only, as the p, itself may be represented either
as [1, 1] or as [1, 0] V'2. So we find:

Tareorem XLII. “The measure polytope [1 1...1] of §, and
the polytopes deduced from it by expansion and contraction admit
n* spaces 8y, _, of symmetry, the » spaces #; = 0 and the » (z—1)
spaces #;, + 2, = 0. Only in the case of the plane we have to add
for e, (py) the four new axes of symmetry passing through pairs of
opposite vertices of the octagon”.

70. Moreover we find: 1)

Tueorem XLIII. “The order of the group of anallagmatic displa-
cements of the measure polytope 2/, of 8, and the polytopes
deduced from it by expansion and contraction is 2"~*'. 2!”

“The order of the extended group of anallagmatic displacements
of these polytopes, reflexions with respect to spaces Sy, _, of sym-
metry included, is 2". z! In this extended group the first group
of order 2"~'. n! forms a perfect subgroup”.

For » = 2 these general results have to be completed in the
known way for the octagon.”

For the simple proof we refer to the article quoted.

71. Finally we have to apply to the polytopes and nets of measure
descent the scale of regularity due to M". Erre. As to the theory
we can only repeat here what has been remarked in the art®. 42
and 43, with omission of all that refers to the central symmetry
of some of the polytopes of simplex extraction. So theorem XXV
must take here the simpler form:

Turorem XLIV. “Any two limiting elements (/); belong to the
same subgroup or to different subgroups, in the sense of the scale

*) Compare “Report of the British Association, 1894, p. 568.
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of regularity, according as their symbols of coordinates are equal
or different.”

As the application of Evrme’s scale!) to polytopes and nets of
measure descent is rather easy it may suffice to give some examples,
both of polytopes and nets.

a). Fzample [3'3'21'1]. Here we find four different groups of edges
(8,29, (2,19, (1%, 1) (1, — 1). So the contributions to the numerator
are 1 from the vertices and 1 from the edges and the fraction is

1+4_ 3
5 10’
b). Bzample [33210]V'2. Here three groups of edges appear, viz.
3,2)V2, 2, HV2,(1,0) V2. So we find once more 130
¢). Ezxawple [11000]V'2. Only one kind of edge, viz. (1, 0)V/'2.
So we have to examine the faces. As it is clear that we find
triangles (V'2,V'2,0)0 0 and squares [V'2,V'2]0 0 0, the degree
2
_5.
d). Ezample e, Nm,»). The groundform [1'1111] admits two
kinds of edges (1’1)111 and 1'111[1] of a different character.
raar
So we find l“-: 1
6 4
e). Erample ce, e, e; e, N(m,»). Here we have to deal with four
groups of constituents represented wich their frames in the table

9s.[43210]....... (2, , 2P, s 2p5 , 20, » 2p; )4
gs---[210][10] ... Q2p, .2 .22 L2+ 1,294 1)4
Goe - -[10][210].. 2,2 L2+ 1,22+ 1,2+ 1)4

the minimum value in 8.

. |
f eg 1 '1t _— =
o1 regularity 18 10

Fowazonse [(48210).2p 41, 20,4+ 1, 25+ 1, 29+ 1, 2p,+ 1) 4
So through the vertex 4, 8,2,1, 0 pass
[ 4 3 2 1, ° 0]..... 4,
s+4 3 2 1, 0]...... 4,
[440,44+1] [2 1, 0]...... B
4+04+1,44+2] [1, || c |’
(44+0,441,44+2,4+43, 4-+4]...... D,
[440,4+1,442418 —4+4]...... D,

1. e. six polytopes and more in detail four cells [43210]and two
prismotopes [2 10][10]. Now the edges (48)210 and 482 (10)
belong to both the prismotopes, whilst each of the edges 4(82)1 0

') We stick here to the original scale (compare Proceedings of Amsterdam, vol. XV,
P- 200).
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and 43(21)0 belongs to only one. So there are two different kinds
R 1

f ed d w = = =

of edges and we find 6= 3

Remark. In 8, the degree of regularity is a minimum, i. e.

for a polytope and —— e ‘I‘l for a net,
. if the symbol of the polytope or that of the groundform of
the net contains no zero,

2°. if the net admits a constituent g, ;.

For in both cases there are at least two kinds of edges: in the
first case the edges [1], in the second case the erect edges of the
prisms g, , differ in character from the remaining ones.

The results about regularity have been indicated in the T'ables IV,
V, VI. In Table IV the regularity fraction is contained in column
5, whilst the subscripts in column 4 give the different groups of
limits (/). In Tables V and VI in the cases # = 4 and » = 5 the
last column contains the regularity fraction, the last but one?) the
different groups of limits (/),, whilst the part z = 8 of Table V
contains two columns more, one indicating the number of the
Axpremnt diagram of the net, the other indicating the particularities
of the edges passing through a vertex (see ANDrEINI’s list, page
30—382 of the memoir quoted in art. 22).

2n

O

Section III: PoLYTOPES AND NETS DERIVED FROM THE CROSS POLYTOPE.
A. The symbol of coordinates.

72. In this section which is so closely related to the immediately
preceding one that it may be considered as a mere supplement of
the latter we have to start from the cross polytope Cpn® of S, repre-

n—2
sented by the symbol [100 ... 0] V'2 and to remember that we
are to prove by and by that there is no difference whatever between

the offspring of this cross polytope and that of the measure polytope

[T1...1] of &8,
For =28, 4, 5 we have successively in the symbols of M*. Srorr:2)

') The numbers of the different groups of limits (I), for 5>>1 have been found in
the manner indicated for the simplex in Table III, but we have judged it of no impor-
tance to insert an analogous table for the measure polytope.

*) For the deduction of the e and ¢ symbcls from the symbols of coordinates compare
part D of this section.

In Table IV second column are inscribed the e and ¢ symbols of the polytopes deduced
from the cross polytope corresponding to the symbols of cvordinates of the third column.
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{1 00072
(210072
[21107p-2
(111]

100002
(2100072
2110072
2111012
1]

(8210072
(3211072
211
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n=3.
= L= ¢ 0=RCO 111] =
210012 =¢ 0=10| 2V11=¢e0= {00 |[1101p2 =cq O=(0 | L'I'l] =
n=4,
= (| [3210]p2 = ¢, 2210]p2
= G| 21117 = €650, |[110011°2 =ce (g =0y, | (11’111
= G| [211]] = ey (| 11101172 =ceyCyq [rren
= g l| 3211 = eaeaelg (L1} =ce =0 | [2271]]
n=2>5.
= (3513221012 = a3 Coq 2221072
= U |2UTL1] = 4e,Cq|{110001 172 = ce Cgy|{1'1'1L1]
= U 21U = e, 111007 12 = cey Cp|(1'T1°1°1]
= U | 43210712 = ey |T111101 72 = cey U5 332101172
= ¢ Cu|B2U11] = eeelyi[11111] = ce, Cgy |[221'11]
=eey (5 | 321'1]] = ee4e,03, (221007 12 = ceyey Uy |122°1'1°1)
=ejey Uge '3'2UL'L] = eye5e,Cy0 [[22110] 172 = cepey 5o |[22°21°1]
=00, Uy | 431D =epeee,Cy| IV = cepe, Gy |[3'8'271°1]

B. e characteristic numbers.

73. From the preceding section concerned with the measure polytope
can be gathered the symbols with the characteristic numbers of the
polytopes deduced from the cross polytope, the symbols of coor-
dinates of which wind up in a unit, as these polytopes also belong
to the offspring proper of the measure polytope. So we have only
to add a couple of examples about polytopes, the symbols of coor-
dinates of which end in zero.

Ezample [2110], method working from two sides 1).

The number of vertices is 2% 4! divided by 2!, i. e. 8. 24:2
== 96.

The number of the cdges passing through the pattern vertex is
six, for this vertex is united by edges to the vertices:

1210, 2011, 201—1,
1120, 2101, 210—1.

= 288.

So the number of edges is

In order to find spaces containing limiting bodies we consider
successively the equations:

+to=2 toutaxr=3 tTotataztas=4
The equations + z; = 2 give 8 forms [11 0], i.e. 8 C O of vertex

import.

') In the two examples we omit the common factor /2.

1| T O (O (R T

ey 0= C
ce ey O =10

ce ey Cpe
ceyeg Crg
ceye3 Oy
ceyege3 G

cegeg Cyqy
cee, Cyy
cegey gy
ceyeye3Cgq
cereze,Cs,
ceyege, Cyo
ceyeze, Cgq
ce,eyege, (g
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The equations + z, + #, = 3 give 24 forms (21) [10], i. c.
24 P, of edge import.

The equations ¥ + 2z, =4 give 16 forms (2110),1i.e. 16 CO
of body import.

So, we find 24 CO and 24 C,i.e. 48 polyhedra, and therefore
1(24 X 14 4 24 X 6) = 240 faces.

So the result is (96, 288, 240, 48) in accordance with the law
of Euler.

Example [32110], direct method.

The number of vertices is 2% 5! divided by 2!, i. e. 1920:2
= 960.

The edges split up into three groups (32), (21), (10). Through
the pattern vertex pass: ome edge (32), fwo edges (21) — on
account of the two digits 1 — and four edges (10) — on account
of the two digits 1 and of the facuity to make the last digit to
correspond either to - z; or to — ;.

So there are in toto

480 edges (32), 960 edges (21), 1920 edges (10),
i.e. 3360 edges.

The faces split up into six groups, viz. the triangles (211) and
(110), the squares (32)(10), (21)(10) and [10] and the hexagon
(321).

In the pattern vertex concur:

one triangle (211),
two triangles (110), on account of + 2,
Jour squares (32) (10), on account of the two digits 1 and of + ;,

”» ” (2 l) (l O), 2 i 9 ”» ”» ” ” ”» 9 I ]
two ” [1 0]’ ” i1 ” ’” ”» ”» 0
two hexagons (321)’ 99 ’ 2 9 bR} bRl 99 1)'

So we find:

3 triangles 10 squares 2 hexagons

+ 4 + 6
= 960 triangles | 2400 squares 4 320 hexagons,

i. e. 3680 faces.
The limiting bodies split up into the seven groups:

(3211) = ¢7, (321) (10) = P,, (32) (110) = P, (2110) = €O,
(82)[10] = (21)[10] = P,,[110] = CO.

960

) In the case [10] the difference between -+ 25 and — x; has no effect, on account
of the square brackets.
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Of these seven polyhedra concur, on account of the reasons given
above, in the pattern vertex in the indicated order:

17, 4 Py, 2P, 2 CO,
2 P, 22, 1 Co.
So we find:
_— (isjz 43 00 n 41’6 N 4P4 n 26P3)

=80 7+ 240 CO + 320 Py + 480 P, + 820 P,,

i. e. 1440 limiting polyhedra.
Finally the limiting polytopes split up into four groups:

(32110), (321)[10], (32)[110], [2110]
and so we find:
32 e,e; 8(H), 80(6;4), 40 Psy, 10ce, e Gy,

i.e. 162 limiting polyhedra.

So the result is (960, 3360, 3680, 1440, 162) in accordance
with the law of Euler.

With respect to the import we have still to add that we pass to
the complementary import, if a polytope of the measure polytope
family is regarded as a polytope of cross polytope descent. So in
the first of the two examples where the cross polytope import has
been indicated the result is complementary to that registered in
Table IV read from left to right.

C. Extension number and truncation integers and fractions.

74. Turorem XLV. “The new polytopes, all with edges of length
unity, can be found by means of a regular extension of the cross polytope
followed by a regular truncation, either at the vertices alone, or at the
vertices and the edges, or at the vertices, edges and faces, etc.”

For the proof we refer to the art®. 15 and 56.

Here the limit (/),_, of the highest import, i.e. g, _,, corresponds
to the equation @, 4+ 2, + ... 4 @, = constant. So the extension
number is the sum of the digits of the new polytope divided by
the sum of the digits of the cross polytope i.e. by V2. So the
extension number of [8'8'2" l] is 54 9V'2 divided by V2,

1e9+

We can stlck here to the method of measuring the amount of
the different truncations on the edges. But we must point out a
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difficulty underlying this method. So, in the case of truncation of
an octahedron (fig. 16) at the edge BC, it makes a difference
whether we choose BA or BC’ as the edge on which we deter-
mine the amount of truncation. For if we move the truncating
plane (through BC normal to OM, where M is the midpoint of
BC) parallel to itself untill it passes through O it contains the
other extremity A of the edge B4, while it bisects the edge BC'.
This difficulty can be overcome by stipulating that the edge to be
chosen may not contain a vertex opposite to one of the vertices
of the limit at which the truncation takes place. But this implies
always that we measure quite as well on the line M0 joining the
centre of that limit to the centre of the polytope. So if the trun-

. " . MmP
cating space cuts M0 in P the amount of truncation is WO Now

M?) of this quantity can be deduced immediately
from the symbol of coordinates [a,, a,,. . ., «,] of the cross polytope
form considered. If we suppose that the truncation takes place at the ]imit

n——i

the complement

(2)—, of the corresponding extended cross polytope [1, 0, . . O]Za
lying in the space represented by #, +a, +4...+ @ = constant
]Tll)% is equal to the quotient
of the sum Za of the first % dlglts of the symbol of the trun-

it is immediately evident that

cated po]ytope by the corresponding sum of the extended cross

: n PO 24
polytope, i. e. by Xa. So from —— = 1 we deduce:
1 MO n
oo
! n

Xa;

jon = —— £+_“

amount of truncation = W0 — i .

a;

1
We illustrate this theory by the example [3'8'2'1'1] for which
we have determined above the extension number. Here we find
moreover

5

Se—4+6V2, S, =348V2, Sa=2+ V2, 6—1
2 3 4

and therefore
44+ 6V2 3+ 3V2 2+ V2 1
519V2 ’ B+ 9V2 ' 549V2 ' 54 9V2
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as the amount of truncation at (J),, (/),, ({)y, ({)s. As these
numbers
— (8 +18V2),—

_(44-+ 8V'2), 27(13+4\/2) L ova_s)

137 137 137

are rather impractical, we only put on record in Table IV the

results relating to the cross polytope forms proper, where the

denominator and the numerator of the fraction ;—g—(}; are both

integer multiples of V/2. Here the result 9 | 6,3, 1 correspon-

ding to [33210]V2 expressca that the amount of truncation at
1

Dos (D15 ()2 18 respectlvely S T

D. Fzpansion and contraction symbols.

75. What we have to prove here is:
TueoreM XLVI ,,The expansion e, (k=1, 2, 3,..,2—2), applied
to the cross polytope ’»® of 8, changes the symbol of coordinates

n—1

[100...0]V'2 of that regular polytope by addition of V2 to the

ke n—k—1
first £ 1 digits into [211..1 00..0]V/2, whilst in the case of
e,y Wwhere application of this rule would give a symbol without
zero we have to add unity instead of V'2 to all the digits, giving

_n—1

(1'11. 1]”
Proof We treat the cases # < z—1 and £=n — 1 separately.
Case k<n— 1. The operation e, acts upon the limits (/), =8k +-1)
of the cross polytupe. Now the centre M of the limit (), represen-
ted by

Wy By ¢ & 430 +1—(100 V2, =@ ys=—...—=2,=0

has the coordinates

V2

P
If we move this limit (/). parallel to itself in the direction

‘OM to a position (2, for which the centre M’ satisfies the rela-

tion OM' = A. OM, where A is to be determined, we find for the
coordinates of M’

‘z'1=[[,',,=_,,={pk+|= ‘z'k+2='z‘k+3'="‘='z'n=0‘

AV'2
w1=m2=___=wl.+1=—’ wk+2=mk+3='°'=wn=0'
- 41
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So by this motion the coordinates 2, @,,. . .,#..4 of any vertex

4 of (J), increase by = k—}—):/2 whilst the coordinates z,. ., .3,
. @, of this point remain zero. So (), is represented by
k
A—1 a—1 A—1
Lyy Ty oo oy Bppq = -+ s ). 2
o 2r c v -0 Bep (1 ey — ,{:—l)\/
Dppo=Tpy3= ... =a,=0,

from which it ensues that the symbol of coordinates of the new poly-

tope becomes
k

—1 a—1  aA—1 _noht
1 i
[ + 1" 2—1""" "V k—1" ao 0]‘/2
So the new polytope satisfies the law of the equality of all the edges
expressed in theorem XXVIII if, and only if, we have either A =1

or A=4#4. As A=1 corresponds to the cross polytope itself, we have
lc n—~k k-1

to take A=1~% in which case we find {2 11..100. 0] as the
theorem requires it.

- Case k =n—1. We consider the limit (/), _, = S(x) repre-
sented by

n—1

Zyy Bye o o By = (1 00...0)V2
with the centre M, the coordinates of which are
_Vve
=—,
and move this (/),_, parallel to itself in the direction OM to a
position the centre M’ of which is determined by the relation
OM' = 2.0M. Then we find in the way indicated above for the

symbol of coordinates of the new polytope
n—1

R it st M ety [V

n ) n

So, if we discard lmmediately the supposition A =1 leading
back to the original cross polytope, the mew polytope the symbol
of which contains no zero satisfies the law of theorem XXVIII,
if — and only if — we have

A—1\ A—1
(l—}— - ): - =(14+V2):1
giving A—1=12V2. So we find the polytope with the symbol
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n—1

[|-|-1\/z,§\/“2 CLEVeIV2=[14+VeI,1,...,1]

in accordance with the statement of the theorem.

By the way we find:

Tarorkm XLVII. “In the cxpansion ¢, the limits S(& 4 1) of
Ca® are moved away from the centre to a distance equal to %
times the original distance for £ <2 — 1 and to a distance equal
to 1 4 4 »V'2 times the original distance for # =n —1".

This comes true, for this extension corresponds in both cases to
that deduced from the sum of the digits of the symbol of coordi-
nates of the new polytope.

As the distance OM was ZL’ it becomes # I/_z-._
n—+V?2

/ll -

for £ < n—1 and

76. Turorem XLVIIL. “The influence of any number of expan-
n—=1

sions ¢, ¢, ¢,,.. of C"® on its symbol [l()_()_iﬁ] V2 is found

by adding the influences of each of the expansions taken separately”.

Proof. Here likewise, in the succession of two expansions the
subject of the second is to be what its original subject has become
under the influence of the first. So in the case of e,e¢, O of the
octahedron (fig. 17*) the original subject of e, (the triangle) is
transformed by ¢, into a hexagon (fig. 17°) and now the hexagon
is moved out, in the case e, e, O the lincar subject of ¢, (the edge)
is transformed by e, into a square (fig. 17°) and now this square
is moved out; in both cases the result (fig. 17%) is the same, a
tCO. In general, for £>/, in the case ¢,¢ G, the subject
Sk + 1) of ¢, is transformed by e, into the form e, S(& -+ 1) of
the same number of dimensions, while in the case ¢ ¢, G, the
subject S(/ 4 1) of ¢, is transformed by e, into an 2 — 1-di-
mensional limit g, of import /. Here also the geometrical condi-
tion: “that the two new positions of any vertex shall be separated
by the length of an edge” leads to the ordinary composition of
the motions of the centre accord ng to the rule of the parallelogram
in the case of two expansions, eic.

By the way we find:

Turorem XLIX. “The operation ¢, can still be applied to any
polytope deduced from C,® in the symbol of coordinates of which
the £ 4 1% and the % -+ 2" digit are equal.”

We indicate by means of this theorem the expansion symbol of
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the example [5'4'4'8'8'2'2'2'1'1] of art. 55, considered as a descen-
9

dent of [1 00_—0] Of the five intervals V'2, indicated by (d;, ),
(45, dy), (ds, dy), (ds, dy), (d,, dy) the first corresponds to the original
interval of the symbol of coordinates of C,{® whilst according to the
theorem the others result from the four operations e,, ¢, €;, €.
But as the symbol winds up in a unit instead of a zero we have
to add e, So we find e,e,e,65¢, C2.

77. By means of the operations ¢, we can deduce from C,
all the possible polytopes the square bracketed symbols of coordinates
of which are characterized by the fact that there is an interval V'2
between the first and the second digits. If we wish to deduce from
C,\? also polytopes with square bracketed symbols the two digits
dy, d, of which are equal we have to follow M™. Srorr by intro-
ducing the operation ¢ of contraction, the subject of which is the
group of limits (/),_, of vertex import. With respect to this opera-
tion we can prove the theorem :

Tarorem L. “By applying the contraction ¢ to any expansion
form deduced from G, the largest digit of the symbol of coordi-
nates of this form is diminished by V'2.”

Proof. Here we have to consider the two cases of the symbol
of coordinates, winding up either in 1 or in 0.

Case [14+(@+1)V2, 1 +aV2, 14+6V2,...,1]. — If we
replace 1 4+ (@a+1)V'2 by 14 a«V'2 the limit g, represented by

z=1+@+1)V2, zpz,...,2,=(14aV2,14+6V2,..,1)
passes into
z2=1+4aV?2, T, @y, . . ., 2, = (14+aV'2,146V2,...,1),

i.e. that limit (/),_, moves parallel to the axis OX, towards the
centre O over a distance V'2. Evidently application of this process
to all the limits g, corresponds to a substitution of 1 + aV'2 for
the digit 1 4+ (¢} 1)V'2 within' the square brackets. Evidently any
two adjacent limits represented originally by

n=14+@+1)V2, anz,...0,—=14aV2,14+0V2,...1),
n=14+@+1)V2, a,z,...2,=(14+aV2,14+56V2,...0),

which were separated by the right prism
oy, 5= (14+@+DbV2,14aV?2), az,...,2,=(146V2,...,1),

pass into the two limits
Verh. Kon. Akad. v. Wetensch. 1+ Sectie D1. XI No. 5. E4
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w1=1 +a\/2, :1’._,_,51?3,. # .,¢’L‘“=(1—|—(t\/2, ]. +b\/2,. . .,].),
n=14+aV2 anazy,...2,—(4aV2146V2,...,1),

which are in contact with each other by the » — 2-dimensional
polytope
on=14aV2,2,=1+aV2 a3 a..., 2,=14+6V2,...,1).

Case [a+1, a,b, ..., 0]V'2. — Here we have to consider the
influence of the replacing of « + 1 by a. The proof runs exactly
in the same lines.

Remark. By combining the theorems XLVIII and XLIX we
can find the symbols in ¢ and e, of awy form deduced from G,
But this process can be simplified by introducing the operation
e, which transforms the centre O of G, considered as an
infinitesimal cross polytope G, into C,?. Then the contraction
symbol ¢ can be shunted out by substituting e, e¢,. . .e, G for
cei 6. ..e, CP, but this implies that we veplace e, e...e, G
by e,e.e...e, GY. This remark — corresponding literally to that
of art. 60 — will also be useful in part # of this section.

Meanwhile we Zave shown now that any coordinate symbol be-
tween square brackets satisfying the laws of the first part of theorem
XXVIII (art. 47) can be interpreted both ways, either as a form
deduced from the measure polytope or as a descendent from the
cross polytope. So we have proved the following theorem already
stated implicitly in art. 48:

Tarorem LI. “The families of polytopes deduced from the two

patriarchs, measure polytope and cross polytope, are identical.”
E. Nets of polytopes.

78. In accordance with the last theorem the net of measure
polytopes IV (M,?) can also be considered as a net 2V (ce,_, C,?) of
polytopes ce, 4, G,>. So the nets put on record for » =3, 4, 5
can be transcribed as nets of cross polytope descent.

But instead of doing this we point out a particularity of
the case # = 4. Ior #» = 4 both the half measure polytopes
+ +[1,1,1,1] are cells Cq and in relation with this fact we find
a new fourdimensional net of regular polytopes, i. e. §, possesses
besides the measure polytope net exceptionally a cross polytope net
too. If we suppose that the net IV (44,%’) be composed of alternate
white and black polytopes, so that two M, with a common M,
differ in colour, and that each white 2/,?% is truncated at one
set of eight vertices, so as to retain a -4 3[1,1,1, 1], whilst
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each black 4/ is truncated in the same way so as to retain a
—%—[l, 1,1, 1], the interstitial spaces between these two sets of
inclined Cy272) can be filled up by a third set of erect C,(?2+'2, and
we obtain a fourdimensional net formed by three equally numerous
groups of cells Cig(22) with the property that all the polytopes of
the same group are equipollent. Moreover we can transform the net
N (M) of alternate white and black polytopes into a net of regular
cells C,® by decomposing each white M,® into eight mutually
congruent pyramids with the centre of the polytope as common
vertex and the eight limiting cubes of the polytope as bases, and
uniting each of thesec whitc pyramids to the black measure polytope
with which it is in contact by its base ). Now what concerns us
here is that by treating the new regular net NV (C) in the same
way in which the net N (3/,) has been treated we find several new
fourdimensional nets; for these nets the reader may compare Table 11
of the memoir of M™. Srorr quoted several times 2).

Remark. In art. 64 we have seen that with respect to measure
polytope nets any net (c, ¢) is also a net (e, ¢). This particularity
does not present itself for the ncts deduced from N (Cyg). So here
we will have to distinguish four cases 9), i. e. (e, ¢), (¢, €), (¢, ¢) and
moreover (c, ¢).

79. We have seen that the vertices of the .net N (M,®) can be.
represented by the symbol [2a4, + 1,24, + 1,24, + 1,2 a, 4 1]
where the a; are arbitrary integers. By considering the point2; =1,
(¢t=1,2,3, 4), as the new origin of parallel axes and omitting the
square brackets we get for the coordinates of these vertices

Qay, 2a, 2a,, 2a,.
From this we deduce that the vertices of the net IV (C¢2V'2)) can
be represented by the same coordinate values under addition of the
&4

condition that X a; has a defined character of parity. If we choose
1

4
the condition “X @; is cven” we get for the three sets of Cy(272)
1

the coordinate symbols:

') Compare p. 242 of vol. Il of my textbook “Mehrdimensionale Geometrie” or
Proceedings of the Academy of Amsterdam, vol. X, p. 536, 537.

) In the part of that Table concerned with the nets deduced from N(Cjg)the Py of
the line with the number 28 ought to find a place in the same column in the line
with the number 27. Moreover we can add in the last column of the line 29 that
this net is equal to that of line 47.

The fact that several nets of this part are equal to nets deduced from cell Coy will
be explained in part F of this section.

*) In (e,c), ete. the first letter is related to Cyg, the second to Cpy. ;
4%
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I.... [Ra+ 22+ 02+ 02a+  0],Zaeven,
II.... {24 +1412¢,+1+4+1,2¢;+1-4+1,24,4+141], ,, odd,
II. .. .—3[2e¢,4141,2¢,+1+41,2a;+1+1,20,+ 141}, ,, even.

Of these three sets I represents the erect group, while II and III
form the two inclined groups.

If we wish to represent analytically the fourdimensional nets derived
from N (Cy) we have to start from the three symbols I, I1I, III,
and to study the influence of the operations e, c. As to the repre-
sentation of all the vertices of these new nets by coordinate symbols
these influences can be split up into two inadequate parts; of these
the first deals with the variation in form of any Cj; of each of the
three groups, whilst the second is concerned with the variation of
the distance of any two Cj;. We treat each of these two parts for itself.

a) Variation in shape. We know the influence of the operations
e;, ¢ on the coordinate symbol [2000] of the central C5(212) of
the erect group and from this we can deduce the corresponding
influences on the C,(22) of each of the inclined groups by means
of the transformations of coordinates by which [2 00 0] passes into
$[1111] and —4[1111]

The formulae corresponding to the first transformation are

p=a+a,+ 25+
g =) 2 — 23— @,
py=ay— a2 — a4
ph=ay—a,— a3t @,

by changing the sign of y, we get formulae corresponding to the
second transformation. In the following small table we put on record
the result of the first transformation:

102000]........u.... F1111]
qﬁzg% ............. ;331%
eg[4220............ 4220
11172 .o.... .. Ji2111]and — 3110, 2 —1]
e e(6420]............. (6 420]
e e [2V11]L2 . ....... 334223117 and —}[3+ 12, 3412, 1, v2e—1)
e (21 11]12 ..., f44-22,220) and —3[44+12 2+ 12, 2412, 12
ey e (B2 ... ... ... [64-2,2,420] and —}[6412, 4412 212 12]
e [22000=CF ... [2200]
ceg[2220]........... —}[8111]
s 1111]2=¢"" (2000 p2and —}[1111]p2
ce e [4420]........... —3311]
cey e [UV112 ..., [24-2,2,2 0 0] and —}[1'1'1 1]12
ceye (111112 ... .. — 33422111 and — 43412, 1'1'1)

ceyegeg[2°2'1'1]V2 ..., —3054+292,8110and —§[54+12 8412, 1412, 14 2]
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b) Variation in distance. We account for the variation of the
distance of any two sixteencells due to the extension of these cells
by multiplying the immovable parts of the digits of the three sym-
bols of coordinates given above for the three groups of sixteencells
by a certain constant. This constant is the extension number itself
when the operation e, is lacking, i.e. in the two general cases (e, c)
and (¢,¢) of nets deduced from N(C); in the remaining general
cases (¢,e) and (¢, ¢) we have to add V'2 to that multiplier in order
to create room for the intermediate prisms with 2V'2 as height.

As we start from [2 000] the extension number is half the sum
of the digits. So we find for the multiplier the values given in the
following table

(e,c) (e, €) (e, ¢) (c, )
e...14+ V2 cey...V'2

e...3 ee. . .34+ V2 cey...2 ce6. . .2+ V2
e...4 esey. . 4+ V2 cey. . .3 cese,. . .3+ V2

e...142V2 ese,. .. 14+3V'2 cey...2V'2 cese,. . .83V'2
ee,. . .0 eese,. . .64+ V2| cee,...b ceezey. . .5+ V2
ere3. .. 34-2V'2 ey, . .83+3V2| ceey...2-42V2 | ceee...243V2
eey. . . 44+2V'2| eese,...4+8V2| ceey...8+2V2| ceese,...34+3V2
eee;. . .642V'2 ee00,.. 643V 2] ceeney.. .52V 2| ceereie,. . .5+8V2

S0. By means of the preceding developments we can find the
three net symbols for all the different nets deduced from N (C).
But this work can be reduced by the remark that it will do to
use only the net symbol of the erect group in the cases of the
seven nets 1, e, e,, ¢, e,, cey, ce,, ceye,, while we want these of two
groups only for the eight nets ey, ¢, ¢;, e, 65, €, €563, ce3, cey 63, ce, €5,
ceye,e;, and all the three symbols in the remaining cases where e,
occurs. The proof of this assertion is based on the following theorem,
where we distinguish the three sets of cases just indicated as the
set without e; and e,, the set with e; and without e,, and the set
with e, :

Turorem LII. “Any of the three net symbols represents all the
vertices of the net in the set without e;and e,, two thirds of all
the vertices in the set with e; and without e,, one third of all the
vertices in the set with e,”.

This theorem is an immediate consequence of the following lemma:
“Any limiting tetrahedron of the net N (C) is common to two
Cis belonging to different groups, any limiting triangle is common
to three Cjs no two of which belong to the same group”.
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The first part of this lemma is evident by itself. As to the second
part related to a face we state that the angle formed by the two
spaces of adjacent tetrahedra 4ABCD, ABCL of (g at the common
face ABC is 120° (sec my paper: “On the angles of the regular
polytopes, etc.”, Awer. Jowrn. of Math., vol. XXXI, p. 307),
from which it ensues that any face is common to three Cy; as any
two of these three (g have a limiting tetrahedron in common they
belong to different groups, ete.

The lemma just proved immediately shows the truth of the
theorem. 1f, after having driven asunder the cells Cyg22) of the
net N(C},) so as to create room for the extension recorded above,
the extended Cy; receive the shape cexacted by the character of the
net under consideration by means of a regular truncation, the
contact of the cells — helonging to difterent groups — by faces will
remain uninfluenced if the operations ey, ¢, do not yet present
themselves, the truncations being then restricted either to the ver-
tices alone or to vertices and edges; so, as any, vertex of the net
belongs at least to one face and each face belongs to three poly-
topes of the set without ey, ¢,, one of each group, each vertex of
the net must be contained in each of the three net symbols of
any case of that sct.

So in this case the net itself can be represented by any of the
three symbols, which includes that the constituents furnished by
one symbol are identical with those furnished by each of the two
others, though constituents of polytope and body import of one
symbol may become under certain circumstances constituents respec-
tively of vertex and edge import of an other.

Now the state of affairs changes as soon as ¢, makes its appea-
rance. This operation still preserves the contact by limiting bodies
of body import between cells belonging to different groups, but it
annililates at the same time face contact between limiting bodies
of body import of the same cell. So here the limiting bodies of
body import of any constituent have been split up into two sets
P and Q dividing the vertices equally between them, in such a
way that any two of these limits which were in face contact
before belong to different sets. So here the arrangement of the
three groups 4, B, C' of constituents is such that any constituent
of group A is in body contact by its set of limits 2 with consti-
tuents of group B, by its set of limits Q with constituents of
group C. So each of the three net symbols contains all the verti-
ces of one group and only half the number of vertices of each of
the two other groups, i.e. 2 of the total amount.
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Iinally, in the set with ¢,, two cells — belonging to different groups
— cannot have a vertex in common; so here each net symbol
represents only 1 of the system of vertices.

We now indicate schematically how we can determine all the
constituents of the different nets of C;. To that end we have

1°. to deduce from the preceding developments the net symbols
necessary in cvery case, ‘

2°. to calculate the coordinates of the centres of the different
constituents, by multiplying the coordinates of a vertex, of the
midpoint of an edge, of the centre of a face and of the centre
of a limiting body of [2, 0,0, 0] by the extension number,

3°. to determine the vertices contained in the net symbols, lying
at the same minimum distance from these centres.

As we shall have to consider the “extended’ vertex, midpoint of
edge, centre of face, or centre of limiting body mentioned sub 2°
as new origin of parallel axes of coordinates in order to be able
to obtain the simplest representation of the sets of vertices menti-
oned sub 3° we will denote this extended point henceforth by O'.

Of each of the three sets we will treat some examples, of
the first e, e, V(Ci) and ce, e, N(Cj), of the second e, es N(Cig)
and ce; e; N(Cy), of the third e, e, M Cy), e e, e3¢, N(Cg) and
cey e, 63, NCig. Afterwards we will put on record the coordinate
symbols of all the constituents in Table VII.

81. Case e e, N(€y). Net symbol
A
[124,46, 124,44, 1203+ 2, 124, + 0], = o; even.
1

Here the constituent of polytope import is [6, 4, 2, 0] = ¢, &, Cj.
There are no constituents of body and face import as the opera-
tions ¢, and ¢; do not present themselves. So we have only to
determine the polytopes of edge and vertex import.

Edge gap prism. By extension the centre 1,1, 0, 0 of the edge
(2,0)00 of [2,0,0,0] becomes 6, 6, 0, 0. By putting in the net
symbol 2, =0, (i =1, 2, 3,4), we find among others the vertices
(6,4) [2,0] and by putting @y =a,=1, a3=12a,=0, and taking
the movable digits 6,4 with the negative sign we find also the
vertices (6, 8) [2, 0]; with respect to the new axes with the point
6,6,0,0 as new origin O’ these two groups of vertices can be
represented together by the symbol [2, 0] [2,0]. So we find a
measure polytope C; which is to be interpreted here as a prism on
a cube, Pg.
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Vertex gap polytope. By extension of the vertex 2,0,0,0 of [2,0,0,0]
weget 12,0,0,0 as new origin O'. By substituting «,=0, (:=1,2, 3,4),
n the first place and ¢, =2, ¢, = 0,(/ = 2, 3, 4), in the second (with
he movable digit 6 taken negatively) we put in evidence the two
sets of vertices G[4,2,0] and 18[4,2,0], i.e. with respect to O the
vertices [6][4,2,0] contained in the net symbol. But this symbol
still contains other vertices lving at the same minimum distance
2V'14 from O, i.e. all the vertices represented with respect to that
point by [6,4,2, 0] and no other. So we find e.g. the point 4, 6,2, 0,
with the coordinates 16, 06,2, 0 with respect to the original axes,
by counsidering the vertices 12a,+ 4, 124,—6, 124342, 124,
and putting ¢,=a,=1 and a;=2,=0, etc. So the result is
that the constituent of vertex import is a [6,4,2,0]=¢, ¢, C;s and
therefore identical with the constituents of polytope import.

Case ce, e, N(Cy;). Net symbol
4
[10a,44,10a,+4,10¢;+ 2, 10a,+4 0], Za; even.
1

Here the constituent of polytope import is [4,4,2,0] = ce, e, Cyg.
As in the preceding case of e e, M((y) the constituents of body
and of face import are lacking. Moreover by the contraction the
original edge and therefore also the constituent P of edge import
is annihilated, i.c. P, is reduced to its base C. We verify this
analytically as follows. By extension of the midpoint 1,1,0,0 of
the edge (2,0) 0,0 of [2,0,0,0] we get 5,5,0,0 as new origin
O'. Now the vertices at winimum distance from O’ contained in
the net symbol are found by putting ¢,=0,(t=1,2, 8, 4), giving
4,4(2,0], and ¢y=ay,=1, ay=0¢,=0 (with the two digits 4
taken negatively) giving 6,6[2,0], i.e. with respect to O’ the two
squares 1,1[2,0] and —1,—1[2,0] forming two opposite faces
of a cube with O as centre.

Finally we remark that the contraction ¢ does not affect the con-
stituent of vertex import. This is easily verified by determining the
vertices at minimum distance from the point O’ with the coordi-
nates 10,0,0,0 presenting itsclf here.

82. Case e,e; N(Cy). As the operation e; presents itself here we
have to find besides the constituent [2'1'1'1]V'2 =e¢,¢; Cjg of
polytope import those of face, of edge and of vertex import, and
in order to be able to gather all the vertices of these constituents
we have to use two of the three net symbols. But we prefer to
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investigate how far we can proceed in this way by using the first
net symbol only. This much more complicated symbol is

2+ 2a) +4+172, 42+ 2ay +2+172, 424+ Dy + 24172, 42+ 2)a, +172],
2a; being even. We abridge it into the following form, clear by itself:

- . 4
[4+V2,24V2,2+V2, V2] (84+4V2) a1,(12,a3,a4,2a‘- even,

where «,,a,,a,,a, pleceded by the common factor 8 -|- 4\/2 repre-
sents the immovable part.

Face gap prismotope. By extension the centre 2 2, j, 5 0 of the
face (2,0,0) 0 of [2,0,0,0] passes into the new origin O' with
the coordinates 4 (2 | \/2) , 2 @+VR), 4R@+V2),0. By
supposing the four «;, of the net symbol to disappear we get inter
alia the set of vertices (4 +V'2, 24+ V'2, 24 V2)[V2], ie
a P, These are the only vertices contained in the net symbol above
mentioned lying at minimum distance 4 V'3 from.0’, but as we
shall see immediately the two other net symbols contain other ver-
tices partaking of this property. However, in order to sharpen our
analytic tools, we leave these other net symbols alone for a moment
and try to deduce these lacking vertices from the simple properties
of the prismotope with two regular generating polygons in planes
perfectly normal to each other. By means of the P just found
we know ‘that one of these polygons is a triangle, and the
character of the other polygon can be deduced from its circum-
radius. For the rvelation p,® 4 p,> = p* between the circumradii p,,
P2, p of the two genelatin polygons and the prismotope itself
gives, as we have p=4V'8 and o, =2V, p,=2 V6,
the second polygon is also a triangle and the prlsmotope a (3; 3)
We have therefore only to find a third position of the first triangle,
the two end planes of P, containing already two positions, and
this third position can be found by remarking that the centres of
these three equipollent triangles are the vertices of an equilateral
triangle with O as centre. So, if p, ¢, », s are the coordinates
of the centre of this third position we have that the triangle with
the three vertices

$84+Ve, $4V2, $4V2, V2
$4+Vve, $+4Ve, 84V2,—V2
? , q , r , 8

must admit

$@+V2, 4@ +VY, $2@+V2), 0
as centre. From this it ensues that we have
p=g=r=45§42V2,8=0,
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furnishing (4 4+ 2V'2, 2 +2V'2, 2 4 2V'2), 0 for the third po-
sition of the first triangle !). Indeed the part of the second net
symbol corresponding to [+ 4 2V'2, 2,2, 0], i.e.

o o 1
[¢442172,2,2,0], (4422) 24,1, 2ay4-1, 254!, 2¢,4 1, Za; odd,
4

gives for ¢, = a, = a; = 0 and @, = — 1 the set of vertices
represented by

(442v2—0,442V2—2,442V2--2)442V2—4—-2V2,
e (442V2, 242V2, 242V2)0.

Lidge gap prism. By extension the centre 1, 1, 0, 0 of the edge
(2,0)0,0 of [2,0,0,0] gives 2(2+V2),2R@+4+V2),0,0
for the coordinates of O'. By reducing the first net symbol to this
point as new origin we get

4
[44-12, 24-172, 212, 1°2), (442172) 20y — 1, 205 —1, 2a3, 2a,, Sa; even.
1

By putting ¢, =0, (:=1, 2, 3, 4), and taking the permutable
digits in the indicated order and with the positive sign we find the
vertex —V'2, —(2+V'2), 24V'2, V2 lying at minimum distance
2V (44 2V'2) from O. As this distance is smaller than 4 4 V2
we are obliged, in order to find all the vertices contained in that
symbol lying at that distance from O', to put ¢; = a, = 0 and to
take either ¢y = @, = 0 or ¢y = a,= 1. So we find the 32 ver-
tices 4 [2 + V2,V 2][2 + V'2,V2], where the } refers to the
first syllable corresponding to the coordinates z;, z, only. Now we
have furthermore to examine the other two met symbols. For O as
origin the second net symbol is

4492, 2 9, 2 , 0]
—444 12, 2412, 2412, 2l

4
, (44 212) 24y, 2ay, 20541, 20,41, Za; odd,
1

) Until now we have only used implicitly the condition that the planes of the
generating polygons are perfectly normal to each other, in the equation p;2 4 po? = p2.
As the plane #; + x5 4+ 23 =0, ;=0 is parallel to those of the first triangle, the
plane x; = 2, = x3 perfectly normal to it must be parallel to thcse of the second. We
verify this by the following table of the nine vertices of the prismotope
44+ V2,24 12,24 V2, V2 “2+ V2, 4+ 12,24 V2, V224 12,24 V2,44 V2, V2
44 V2,24 V2,24 V2 — 12 24 124+ V2,24 V2, — 12 |24 12,24 V2,44 V2, — V2
4421°2,2420°2 94912, 0 |2+22 44202 24212, 0 |2+21°2, 2420244212, 0
the three rows forming the positions of the first triangle and the three columns (of sets
of coordinates) those of the second. So for the triangle of the first column we have
T — 2y =2, Ty =23, etc.
By continuing this research it can be verified, that cach of the three net symbols con-
tains the six vertices of a P3 with two positions of the first triangle, i.e. two rows of
the table of the nine vertices, as end planes.
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the two sets of permutable digits having to be combined with the
same set of immovable ones. Here we find only vertices lying at a
greater distance from (, unless we take @, = a, = 0. So we get
for ay,a,= (0, — 1) by means of the upper half of the symbol
the 16 new vertices [2, 0][2 (1 —|- V'2), 0], by means of the lower
the 16 vertices 2y, 2, =4 [2 V2, V2], 2, 2, = —1[24V2,V2]
already contained in the set 4[24+ V2, V2] [2 4+ V2, V2]
deduced from the first symbol From this may be deduced that
the two halves of the third symbol will furnish the two sets
[2,0][2(1 +V'2),0] and 2y, @, = {[2 4+ V2, V2], 2, &=
FR4+VeV z]

So the result is a polytope with 48 vertices represented by the
combination of the two symbols 4 [2 + V'2,V2][2 + V'2,V2]
and [2,0][2 (1 + V'2), 0]. Tt proves to be a P, For, by applying
on the /C represented by the symbol [V'2][2 + V2,2 +V'2,V'2]
the transformation

2t o=9V?2
2 — =y, V'2
we get 4 (2 + V2, V2] [2 4 V2, V2] for the 32 vertices
[V2][2 + V2I[2 + V2, V2] md [2,0][2Q0 + V2),0] for
the remaing 16 vertices [V'2][V'2][2 + V2,2 4 V2]
Vertex gap polytope. By extension the vertex 2,0,0,0 of [2,0,0,0]
gives 4 (24172),0,0,0 for O'. With respect to this origin the first
net symbol is

| wta=5»V2)
|

’ {E'J—Zl’4=y4\/2,

[44+V2,24+V2,24V2, V2], B8+4V2)a—1,a,a,a,Zaeven,
1
which can be reduced to
A
[44+V2,24+V2,24+V2V2],8+4V2) a,a,aa, Zaodd.
1

By taking in this last symbol a,, a,, a;,a,=[1,0, 0, 0] and putting
the digit 4 4 V2 always where the 1 stands with the opposite sign
of it, we get the 192 vertices [4+3V'2,2+ V2,24V, V2]
lying at the minimum distance 4 (1 4 V'2) from O'.

With respect to the same origin O’ the second net symbol is

a+22, 2 , 2
—44+ 12,2412, 2+V2 V2]

the immovable part of which can be reduced to

4
4+2vV)2a,+1,2a,+1,2a,+1,2a,+ 1, Za;even.
1

E (44 212) 2a,—1, 2a3+1, 2ag+1, 20,1, Za, odd,
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By considering the threec groups of cases

ai=0’(i= 1,2: 3, 4‘)_,(11’[‘2,“3’”4:: (—1’_ 1’0’ 0’)_’
a=—1,(0=1,2,3,4),

and adding to the immovable parts the permutable ones taken in
any order, generally affected by the sign which tends to decrease
the absolute value of the coordinate but — in connection with the
negative sign before the lower half of the symbol which exacts
an odd number of negative permutable digits — with exception of the
smallest of these digits V'2 the sign of which is to be chosen inversely
so as to increase the ahsolute value of the coordinate, we get by the
upper half the 96 new vertices [4 4 2V'2,2 4+2V'2, 2 4 2V'2,0]
and by the lower the 96 vertices 1[448V'2,24V2, 2+V'2,V2],
obtained above. So the result is a polytope with 288 vertices repre-
sented by the combination of the symbols

[44+3V2,24+V2,24+V2, V2], [442V2,2+42V2,2+42V2,0].

As we will prove in section V this polytope with the characteristic
numbers (288, 576, 336, 45) limited by 48¢C is ce e, 0y,

Case ce e; N(Cy). Besides [1'1'11]V'2 =ce,e; G5 we have to
look out for the face gap filling and the polytope of vertex import,
the edge gap filling being reduced by contraction to the base poly-
hedron of the prism occurring in the case of e e; V(Cy).

Face gap prismotope. Here we get for the new origin O' the
coordinates § (2 4-2V'2), 2(2 +2V'2),2(2+2V'2),0,as24-2V'2
is the extension number.

So the first and the second net symbol are
4

R4+ 12,2412 12, V2, 4+42) a—3 az—3, a3—13, a , Sa; even,
1

2+2r2 2 |,
—i2+ 12, 2412, V2 2y

! (24219) 2, F 8, 22313, 20543, 2a,+1, za, odd.

By taking in the first symbol ¢,=0,(:=1,2,8,4), we find

the vertices ( 3'/ - 2_3'/ B _4’—'/2) [2] lying at minimum dis-

tance $V'8 from O, i.e. a Py; by substituting in the upper half
of the second symbol ¢;,=0, (1=1, 2, 3),a,= — 1 we get moreover
(2 +32V2, 2+:V2, —4_'3_2'/2> 0, the third triangle of the pris-
motope [8;8] to be found.
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Vertex gap polytope. The new origin is 2(2 +2V'2),0,0,0
and the first and second net symbol become, in the shortest form
possible,

4
[2+ V2’ 2+V2’ st Vzls (4’+4V2) a’l ’ az ’ as ’ a{ 9 Eai Odd:
1

2422, 2 ,0,0

A A s R TR S DR S PR N za, even.

Putting into the first symbol @, @, a;,4,=[1,0,0,0] and com-
bining with the a; differing from zero one of the two digits 2 V2
taken with the sign tending to decrcase the absolute value of the
coordinate we get the 192 vertices [2 +3V'2,2 +V2,V2,V2]
Putting into the upper half of the second symbol ¢,= 0,(i=1,2,8,4),
we find moreover the 96 vertices [2 +2V'2,24+2V'2,2V'2,0].
So the result is a polytope with 288 vertices which will prove later
on to admit the characteristic numbers (288, 864, 720, 144) and
to be e, C,,.

83. Case e e, N(Cy). Here the extension number is 83 + V2. So
we have to reduce the three net symbols

4
[4,2,0,0],(6+2V'2) q , , a3, ay ,2aeven,
1

4
1(8,8,1,11,8+ V2)24,41,2a,+1,2a,+1,2a,+1,Z4;0dd,
1

4
—1[8,3,1,1],834+ V2)2¢,-+1,2a,-+1,2a,-+1,20,+ l,iZa.even

for the constituents of body, face, edge, vertex import to the new
origins (34+V2)1,1,4,4, 84+V?2) 2,3 2,0, B+Vv21,1,0,0,
(8 4+ V2)2,0,0,0 vespectively, the constituent of polytope import
being [4,2,0,0]=¢, (.

Body gap prism. The three net symbols become

5
(4,2,0,0],(34+V'2)2a,—},2a,—3,20,—1,2a,—4,Za; even,
1

4
1[8,8,1,13,(8 + V' 2)2a, 41,24, 4 §. 22,1 %, 24,1, X, 0dd,
1

4
—4[8,3,1,16 + VD20 14,261,204, 20,14, Za,even.
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By making the a; to disappear the first and the third?)
symbol give the sets of vertices (" _2'/2, ! _2'/2, —3 :Vg, —3 2_V2),
412 1412 —3+1p2 —34- 12
S R T T
a (2100), i.e. to a ¢7. So the result is a P, all the vertices of
the second symbol lying at larger distance from O’ than the circum-
radius V'i8 of this P,,.

Face gap prismotope. Here the three net symbols are

each of which corresponds to

o o o A
(4,2,0,0], B4V'2) 2a,—2, 20,—2, 2a,— %, 2, , Xa; even,
1

L 4
108,3,1,1], 8+ V'2) 24,41, Rav-t+-1, 2054 1, 204,41, 12(1,- odd,

4
—:1,[3,3,] 1], (34 V'2) a4, 2a,+ 1, 203+, 20441, 12(1,- even.

By taking in the first symbol ¢, =0, : =1,2,3,4), in the
second ¢,=0, (/=1,2,8), a,=—1, in the third o, =0,
(t=1,2,3,4), we get the three hexagons
2—2Ve, —2V2, —2—3V72) 0
24 1V2, V2, —241V2) —V2 .
24-1Vv2, 1ve, —241ve V2

So the result is a [6; 3]
Fdge gap prism. Now the three net symbols become

A
[4,2,0,0], (3 +V'2) 2a,—1, 2a,—1, 2a, ,2a, , Zaeven,
1

4
103,3,1,1, 8+V2)2a, ,2a, 211, 20,41, Za, 0dd,

- 4
—1[8,3,1,1], (8 +V'2) 24, ,2ay 20341, 20,41, ?ai even.

By taking in the first symbol @3 =@, = 0 and either ¢y =@, =10
or ¢y =a,=1, in the second a,—=a,=0 and a3, a,=(—1,0),
in the third @, == @, = 0 and either gy =2, = 0 or a3 —0a, = —1
and by combining with the not disappearing immovable digits the
greater permutable ones, generally affected by the sign tending to
decrease the absolute value of the coordinate but — on account of
the sign before I [3,3,1,1] of the second and the third symbol —

') That one of the three symbols must remain inactive in the generation of the body
gap prism is an immediate consequence of the lemma of art. 80.
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with exception of one of the permutable units, we get successively
the three quadruples of vertices

{1+V2:_] +V2j0:0'—:(1,—1)'%[VZ:V23_)(1)—1)(V29_V2)

lying at minimum distance V6 from O'. These 12 points form
the vertices of a prism P, with octahedral base; each of the three
quadruples just found lies in a plane passing through the axis
of the prism and consists of a pair of opposite vertices of each of
the two limiting octahedra. The equations of the three planes are

,z»3=0,,z'4=0—,,z'1_|-.;p2=O,m:;=,z’4—,m—|—.z'2=0,w3+wé= 0.

So the axis of the prism is represented by 23, =0, #, =0,
2z + 2, = 0.

Moreover it is easily verified that the three quadrangles are
rectangles with sides 2V'2 and 4. As we can unite the second
and third symbols the P, can be represented by the two symbols
i1 +ve,—14VvV2]0,0 and (1,—1)[V2,V2].

Vertex gap polytope. Finally the three net symbols are, in the
simplest form,

]
[4,2,0,0],(6+2V2) o , @, , a3 , @ ,2a; odd,
1

4
1[8,3,1,1], 3+ V'2) 24,41, 2a,+1, 2a5-+1, 2a,+1, Za; even,
1

4
—1(8,3,1,1], 8+ V'2)2a+1,2a,}1, 22,41, 24,41, Za; odd.
1

By taking for a,,a,,a,,a, in the first symbol [1,0,0,0], in the
second either 0,0,0,0 or (—1,—1,0,0) or —1,—1,—1,—1,
in the third either (—1,0,0,0) or (—1,—1,—1,0), and by
assigning to the permutable digits the sign which decreases the
absolute value of the coordinate, we find the three sets of 48
points represented by the symbols

24+12200,3i2+1r2,24 12,12, 12, —324+12,24+12,12,12),

which can be reduced to
[2+2V2,2,0.0],[24+V2,24+V2,V2,V2]

These 144 points prove to be the vertices of the polytope e; Cy, with

the characteristic numbers (144, 376, 672, 240).

e e,e, e, N(C,,). Extension number 6 4 3V/2, three net symbols
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4
64+ 2,442,244 12,12, 124612 g , a3 , a3 , @, ,-?'ai even,
(6212, 4 , 2
—4064+ 12, 4412, 2412,19]

[6-|—2V2 s, 2

2 ( 64+3172)2a, 1,203+ 1, 2054 1, 22, -1, za‘ odd,

which are to be reduced to the new origins, indicated in the pre-
ceding example e, ¢, MC)g). But in the case of the body gap we will
mention only the first net symbol and the lower part of the third,
which lead to the desired result.

Body gap prism. We find

- ) 4
6-4-1-2,4412,24+172,172), (6 +3172) 20y — 4, 205 — §,2a3 —4§,2a,—}, X a; even,
1

3(6-} 172, 44172, 2412, 1), (64 31-2) 20, -+ }, 205 - §. 205 -+ }, 20, 1}, z‘;a,- even,

giving by means of the suppositions of the preceding example the
prism P,, the two bases of which are

B—3iVe,1—4V2, —1—}V2, —3—-}V?),
(3—|—7\/2 1 -|—l\/2 —1 —|—l\/" --8 +1V2).
Face gap prismotope. Here we have

4
64+ v2,44+12,2-+12,12), (6+312)2a —3%, 209 —3%, 2a5—%, 24 ,}.'a; even,

6422 4 , 2
—3064+ 12,44 12,24172,112)

6422, 4 , 2 , 0) . _
%:EG_"{: 12,4419, 241, V2]" (6+4312) 24,4 %, 2ag -} %, 203} 4, 2a4—|—1,fa,-even,

z (6+3172)2a; + 4. 205+ 3, 2a3 + %, 2a, -1, Z‘a.odd

giving by means of the suitable substitutions easily found succes-
sively

R—V2, —V2, —2-—-V?2) [V2]

@+Vve V2 —24V2— V2,

( 2 , 0, 2 ) —2V'2,

R+Ve V2, —24V2 V2,

( 2 , 0, 2 ) 2V2,

which can be combined to _
2—1v2,—12,—2—12) 12— R+121 2, —2+12) 12— (2,0,—2)[212],

representing together a prismotope [6;6].
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Edge gap prism. We get

- 4
O+ 12, 44-172,24172,12), (64-312) 200 — |, 205 —1, 24 , 2a, , Ja; even,

1

622, 4+, 2
— 364 12,4412, 2 Vz V2

6422 + , 2 , 0]
§64 12, 44172, 2412, 128

4
} (64-312) 2¢; , 2, ,23-+1, 2a,-} 1, Za; 0dd,
1

4
(64-312) ¢, , 2ay s 20341, 2¢, 41, Za; even,
1

giving by means of the suitable substitutions
24+2ve, 2ve] [24 V2, V2]
2, 0]-i[24+3V2, V2]
24+ V2, V2] -Ll[242V2,2V2],
[ 2 ; 0] i[2+43Ve, V2],
e+ Ve, v2] 1[242V2,2V2],
which can be combined into
1222, 202]2412,172] —, (2,0] (24312, 12] —, $(24 12,122+ 212 2],
representing together the 96 vertices of a £,,. For the transformation
(Z'1+¢l72—J1 \/2/ ' ¢?]3+(L’4 =y3\/2
o —ay, =y, V2 ) oy — a2y =yg, V2
gives immediately

72=[M2] . pypn=[4+Ve24+V2, V2]
Vertex gap polytope. Finally we have to deal with

4
[6+ V2:‘I'+V272—i V27V23’ (12+6V2) @) s O y U3 )y @y 'Eai Odd'
622, 4, 2
—30+ 12,44 12,2412,

G223, 4+, 2, 0]
M6+ 12,44, 2+V1 Lol y ( 64-3172) 20y 4 1, 245+ 1, 203+ 1, 20,4 1, za, odd,

g ( 64 312) 20341, 2a3 4- 1, 2a5+ 1, 2,1, za, even,

giving by adequate substitutions
[64+5V2,4+ V2,24 V2, V2]
1[64+38Vve,443Vv2 24+3Ve, V2],
3[6+4V2,442V2,2-4+2V2,2V2],
—1[64+3V2,443V2,24+3V2, V2],
—3[64+4V2,4+2V2,24+2V2,2V2],
1. e.
(645172, 4+172, 2+172, 1/ 2]—, [6+3172, 4+31°2, 243172, 172]—, [6+4172, 4+2172,2+2172,21°2),
representing together the 1152 vertices of the polytope e e, e5 Cy.

Verh. Kon. Akad. v. Wetensch. 1¢ Scetie DI. XI No. 5. Eb
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Case ce, e;e e, N(Cy). Extension number 5 + 8 V'2, three net
symbols

)
4+ ve2,4+1v2,24+12, 12 1, (104-62) & , @g , a3 , @, ,2a;even,
1

—y5+22, 3, 1 , 1
—ztﬁ_-il: 52 S 11214, 1+V212 (5 +381-2) 20 + 1, 203 + 1, 2051, 20,41, 2a,odd

:L:izﬁ 3_;3'/2’14_1'/2’1_'_!/21‘ (5 4-312) %, 1, 2a3 1, 205 F 1, 2a4-|-l,.‘.a,even,
which are to be reduced to the new origins, to be formed according
to the indications of the preceding example. Here the polytope of
edge import is lacking. In the case of the body gap we mention
only the first net symbol and the lower part of the third, which
lead to the desired result.
Body gap prism. We find

4412, 4412, 24172 12 ), (543172) 20, —14, 203 — }, 205 — 3, 20,— 3, %a,- even,

y6412 3412, 1412, 1412), (5-+31-2) 20, + 4, 205+ §, a5 + 1, 20,3 , z:'a; even,

giving by means of the substitutions ¢, = 0, (i =1, 2, 8, 4), the
prism P,,, the two bases of which are
3—1p2 3—p2 —1—p2 —5—2
2 3 2 H] £
(i:!"/,z 3+12 —1+12 —54172
’ 2 bl 2 ’

Face gap prismotope. Here we have

4
[44 v2,4412,24+1v2, 2 ], (5-4+312) 20 —3,2a5—3, 205— 3, 2a, ,Za,-even,

—3B+aw2 3, 1
—4i5+ 12,342,141
5422, 3 , 1 , 1
354+ 2,834+ 12,14+1p2.1412

,2 14 V2]2 (5+312) 2a; 4 3,205+ 3,205} &, 2a4-|—1, ...a, odd,

} W(54-312) 20y 4+ 3, 205 + 3, 203+ 4, 20,41, = -a. even,

giving by means of the suitable substitutions easily found

E—V2, 3—V2, —4—V2) [V2],
G+Ve, 24V2, —44VY— V2,

(2 2 , —4% )—2V2,
G+Ve 3+Ve —44Vve) vz,
% - 3 ., —% ) 2V,

which can be telescoped into
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E—V2,3—Ve —4—V[V2]—,
G+V28I+VE— 4+ VYV - .G § — D2 Vel

representing together the vertices of a prismotope [6; 3].
Vertex gap polytope. Here we find finally

4
M+ v2,+4+4+12,2412, 2 J, A04+612) a0y , @y , a3 , a, ,Za.-odd,

— 2, 3 , 1
_if;‘f‘ :jz AR, 1+V2"$ ( 5+ 81°2) 24,11, 20511, 20511, 22,41, Za, even,

HB4ne 3, 1, d
54 19,341l 1+V2$( 5—}—3V2)2a1+1 2a9-+1, 2a3+1, 2a,4-1, Ea. odd,
giving — as it ought to do — quite the same result as in the

preceding example.

84. Probably after all the indications contained in the treatment
of several special cases Table VII would be quite clear by itself
but for the first column of the part corresponding to the second
extreme polytope and the last column but one; so we have to
add a few words about these two columns. 1)

In the two special cases treated in art. 81 the vertex polytopes
proved to be polytopes all the vertices of which can be represented
by one symbol, i. e. polytopes of measure polytope extraction, viz.
cey e, e3 Gy = e, e, Cig. But in the five cases studied in the art®. 82,
83 we had to deal with vertex polytopes the vertices of which
cannot be represented by one symbol only, i. e. with forms which
do not belong to the measure polytope family. These forms were
said to be derivable from the cell Cy by applying respectively the
sets of operations ce, e,, e,, €5, €, ¢, ¢;. Now in part F of this section
will be shown, not only that a// the forms appearing here as vertex
polytopes — whether their vertices are represented by ome, two
or three symbols — can be deduced from cell C, by applying
the operations e, and ¢, but also by which set of operations any
required result is to be obtained. This set of operations is indicated
for all possible cases in the first column of the part of Table VII
corresponding to g,. So in the second case of art. 52 we found
e, Cy; but as the general theory (compare Theorem LV) demands
ce, e3 Cy, which is equal to e, Cy, we have inscribed ce, e; Cly. 2)

The remark of the second foot note of art. 78 — that several
nets deduced from MN(Ci;) are equal to nets deduced from MC,,) —

D) The-very last column will be explained later on.
*) The deduction of the symbols contained in the Table by applying the operations
e, and c to the cell Cy, i.e. to |1,1,0,0]172, will be given in the last section of

this memoir.
B*
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must now be generalized to this: “Every net deduced from N(Ci)
can at the same time be deduced from MC,).” Now the last
column but one indicates the name of the corresponding Cy-net.
So we have e; e, N(Cis) = ¢, e, N(Cy), etc.

We must remember that the symbols given in Table VII have to
be completed by applying the transformations indicated in art. 79.
Moreover we fix our attention on the particular+form in which
the symbols of each constituent appear. Every prismotope g, is
decomposed as to its vertices into two or three fourdimensional
prisms, one of which degenerates in some cases into a regular polygon ;
of the fourdimensional prisms g,,g; the first is determined by its
two bases, whilst the latter appears as prismotope (4;4) or as a
combination of prismotopes, etc.

F. Polarity.

85. In art. 67 we remarked that in §, any polytope derived
by means of the operations e, with or without ¢ from the measure
polytope M, can also be derived from the cross polytope C,n. In
art. 77 we stated this result in the form of theorem LI after having
demonstrated it by showing that the fofal set of symbols of coor-
dinates of the group derived from Cj: is equal to that of the group
derived from M,. We have to come back to this result once more
here, in order to indicate how it depends on the laws of reciprocity
and what is the general relation between the two symbols of expan-
sion operations of the same polytope deduced from A7, on one
hand and from (. on the other, which couples of symbols have
been given for » = 8, 4, 5 (compare the foot note in art. 72) in
the first and the second column of Table IV.

It goes without saying that the dependence between theorem LI
and the laws of reciprocity merely consists in this that the polar
reciprocal polytope of a regular polytope 4 of 8, with respect to
a concentric spherical space is an other regular polytope 4" and
that in this polarity the vertices, edges, faces, etc. of the one cor-
respond to the limits (J),_y, ({)n_s, ())._s, etc. of the other. So we
have still only to deduce the relation between the two symbols of
the same polytope. This task can be performed by comparing the
first two columns of Table IV with each other and by generalizing
for an arbitrary » the outcome of this comparison. So for
a<lb<l...<<s<t<n—1 we immediately deduce from Table

IV the following general laws:
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Caby .60 €, 4 Mz = €, -1€g-1 -+ Cacp—1Cu-a1Cn 02”‘
cee, ...ee¢6, M, = e, 1€, o 4. Cpy1_qqCOn

e.e ...e,e, M, =C€, 1 1Crs5q -+ CrttCrc-1Cug On|
céity ... e, € Mu =CCy—y—1 €n—s—1 - - - Ch—p-1Cu-n—-1 aﬁ"’ '

The proof of these general laws can be based on the remark
that each pair of polytopes forming the two members of any of
these four equations admits the same symbol of coordinates; if £ 1s
the number of the symbols e, ¢, . .., ¢, ¢, these symbols of coor-
dinates are successively:

n—t—1 t—s l;—af “ \
[l 4+ ¢+1Ve,14+2Ve, 1+(z—1)\/ . 1+"\/~, 1 ]
n—t—1 b—a
(k41,4 ..., kk—1, 1-1,.,1,1., 0]
n—t t—s b—a
[14-4V2, 1+(4—1)\/z,...,1 + Ve, 1 ]\
= L B

[ T =TT 1,0,0]

By introducing the operation ¢, corresponding to the generation
of the regular polytopes starting from a point and representing
this point for M, by P,, for Cy by P we can unite these four
general laws in:

Turorem LIII. “The two polytopes

v 5 i
€0 e ... 60 Py, ecepe. ...e.e.0. Py
are cqual 1) if and only if we have generally

at+tl=b4+sd=ct+r=..=r+=s84b=t+4+d=n—1."

86. The influence of theorem LIII on the results laid down in
art. 65 and 66 is cvident.

By polarizing an expansion or contraction form derived from the
cross polytope Cpn of S, with respect to a concentric spherical space
(with "' points) as polarisator we get a new polytope admitting
one kind of limit (/), ; and cqual dispacial angles?), to which corres-
ponds the inverted symbol of characteristic numbers of the original
polytope, ete.

') This theorem gives for M, and C,n what theorem XXIII contains about the two
differently orientated positions of the simplex; it holds not only for M, and Cyn, n being
general, but also for the polytopes Cj and Cyo of Sy and in the same way there
exists a theorem analogous to theorem XXIII for the cell Cyy of Sy in its two different
positions with respect to the system of coordinates. We shall have to come back to this
point in the fifth section of this memoir.

*) Compare for Si the foot note of art. 63.
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TaroreM LIV. “Any polytope (P), of cross polytope descent in
S, has the property that the vertices 7; adjacent to any arbitrary
vertex 7 lic in the same space S,_; normal to the line joining this
vertex 7 to the centre O of the polytope. The system of the spaces
8,_4 corresponding in this way to the different vertices 7 of (P),
include an other polytope (P),, the reciprocal polar of (P), with
respect to a certain concentric spherical space. But in the case of
the cross polytope itself these spaces pass through the centre.”

This theorem is a mere transcription of theorem XL.

87. If we apply the general relations of polarity, which have led
us in art. 67 to theorem XLI, to the particular case of the polarly
related nets N(Cy) and N(Cy) of S, we get:

Tueorem LV. “If the sets of operations # and £ are comple-
mentary to each other, i. e. if Z’ contains the operations ¢,_, comple-
mentary to the operations e, of # and no other, we have

EM 016) =ck ,eAJV( Co), Eey N Cie)=F '6’4 N(Cy), c EN( Cw) =cE'M ( 024),
cEe, N(Cg) = E'N(Cza)”

An analytical proof of this theorem would require a more ample
knowledge of the net symbols of the nets deduced from N Cy) than
we have at our disposal, after having nearly finished the third part of
this memoir. We will therefore invert the order of ideas, i. e. we will
content ourselves here by giving the analytical form of the geometric
facts and use theorem LV and the last column but one of Table VII
based on it in the last section of this memoir dealing with the extra
regular polytopes, to facilitate and control the deduction of the
polytopes and nets, deduced from C,,. There we shall have occasion to
apply the same principle to the polarly related polytopes Cip and Ciy.?)

88. 'The connection between G, Cy, Ci, according to which the
Cy® can be split up with respect to its vertices into a G® and
a C{?2) and with repect to its limiting spaces into a C4(212) and
a Cy® leads to connections between the polytopes and the nets
which cannot be deduced from polarity only. So we find:

Coy = ce, Cg (= ce; Cyg), ¢, Cyy = €1 €, Cg
and
N(Cy) = cey V(Cie) = cey N(Cyg) = ces N(Cyy).

But there is still a more striking coincidence to be indicated, viz.

that the nets e, V(C¢) and e, e, V(Cjq) are respectively equal to the nets

') We defer the investigation of the reciprocal nets of those given in Table VII to
the paper announced in the foot mote of art. 68.
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cey e3 N(Cy) and ce, e, e; N(G), the constituent C; forming at the same
time the g, of the former couple and the g, of the latter. We shall
have occasion to profit by this coincidence in the next article.

G. Symmetry, considerations of the theory of groups, regularity.

§9. On account of the fact that the offspring of the cross polytope
is identical with that of the measure polytope, the theorems XLII
and XL1II may be applied to any form of cross polytope descent.

So we have only to add a few lines with respect to the regularity
and for the same reason this task has to be performed with respect
to the nets deduced from N(Cy) only.

If we individualize the 31 nets of Table VII by an XV bearing
the rank number as subscript we can say that the nets V;, N;;, Ny
are regular and -that the degree of regularity of the nets XN, IV;
with two equal extreme constituents is known, as these nets are
at the same time measure polytope nets. As moreover each of the
26 remaining nets admits faces of at least two different shapes, the
degree of regularity of each of these nets is either 4; or 5%, according
to its having only one kind or more than one kind of edge. But
now it is immediately clear that any net admitting a constituent
gs has at least two different kinds of edges, as the erect edges of
the fourdimensional g, characterized by the property that the same
coordinates of the two end points differ by unity, cannot be at the
same time edges of the groundform in any of its three orientations.
So we have still to treat the twelve cases N,, NV,, N;, NV;, Ng, Nyg,
Nyg, Ny, Ny, Nyyy Noy, Ny, forming two different groups, one of the
nets N;g, Vyg, N,; with groundforms admitting only one kind of edge
and one containing the other nine not characterized by this property.
Now we can decide the question with respect to any of the nets
of these two groups with the least amount of trouble by means of
the following general problem, where G is the groundform given
in Table VII, P the pattern vertex obtained by omitting the square
brackets of @, whilst Q and Q’; represent the vertices of the net
adjacent to P, of which @, are and @ are not vertices of G:

“Determine the repetitions » of @ (in its three orientations)
with P as vertex and examine whether or not all the vertices
Q; and Q; are vertices of the same number of these repetitions
(G included)”.

The first case must present itself for the three nets Vg, V9, V.
For the groundform of each of these nets admits one kind of edge
and its repetitions containing P are grouped regularly round 2;
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so these repetitions must be arranged in the same manner round
every edge. But this decides that the arrangement of a// the con-
stituents round every edge is the same, as there is only one other
constituent, viz g,. So the degree of regularity of NV,g, Ny, Vo is 2.

In all the nine cases of the second group there are two or more
different kinds of edge and the degree of regularity is %. From
these cases we treat a couple of examples. :

Lixample ey N(Cy). All the repetitions of the groundform are repre-
sented by the system of the three symbols

[6a, +4,6a, +2,6a; +0,0q, +0], Za; even
1 [6a,+8+3, 6a,+ 843, 6a;+3+1, 6a,+3+1], Za; 0dd | .
— 3 [6a,+43-+3, 6a,+ 3+3, 6az+3-+-1, 62,4 3+41], Za, even

So the repetitions » with 4, 2,0, 0 as vertex are:

[ 4, 2, 0, 0]...n

[6 —2,6 — 4, 0, 0]...n,

3+ [ 341, 8—1,—6+3+43, 3—3]...4
10 341, 31, 583 —64+348]...8
—3 [ 341, 3 —1, 3$—3, 3—3]... 4
—i[ 841  8--1,—6+3+3 —6-+3+3]...4

which may be indicated by the symbols 7, 7, .., 7. Now the
adjacent vertex 2,4, 0, 0 is vertex of the six repetitions and 4, 0, 2, 0
of 7,8, # only. So there are two kinds of edges and the degree
of regularity is -%;.

Liwample ey N(Cyq).1f we telescope [ g+ Qy, pp,+ Qo s+ Qs, pos+ Qs

into (¢4, ¢, ¢3, ] () 1> 2o P, P4 the repetitions of the groundform
[24+V2,V2,V2,V2] can be represented by

- 4
24+ 12, ve2 , v2 , 2 ) (4+2)2 L2 ,2; ,2, 3 even,
. 1

1422, 1, 1 , 1 7 ; - L
Ml b2 142 11— _,s,(l—i—QVZ) 2a,1-1, 2a9+1, 2031, 2a4—|—1,2a, odd,

—4l4+2p2, 1 , 1 , 1
So the repet.itions r with 2 4+V'2, V2, V2, V2 as vertex are only
L 2+, e, e, e,
Ll+2V2+1—V" I+22 — 1412, 122 —(1+12), 1 + 22— (14 12)].
Now V'2,24-V2,V2, V2 is vertex of both, whilst on the
other hand 24 V2, V2, V2, —V'2 is vertex of the first only.
So two kinds of edges, degree of regularity %
The very last column of l'able VII contains the results.

2(14-2;/2) 24,11, 24511, 2a3 11, 22,11, za, even.
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Section IV :

PorYroPEs AND NETS DERIVED FROM THE HALF MEASURE POLYTOPE.
A. The symbol of coordinates.

90. Several times we have commemorated the fact that the
eight vertices of a cube can be split up into two groups of four
points, the vertices of two regular tetrahedra, and that with respect
to the cube the vertices of each group may be said to be non
adjacent, i.e. not connected by an edge of the cube — see e. g.
the introduction of section I and the foot note of art. 4.1) Also
that the sixteen vertices of an eightcell can be split up into two
groups of eight non adjacent points, the vertices of two regular
sixteencells (compare e.g. art. 78). So in general the 2" vertices of
the measure polytope M, of space &, can be split up into two
groups of 2"~' non adjacent points, but the polytopes of which
these groups of points are the vertices are not regular for
n>4. So in the case =275 there are two different kinds of limits
(O, viz. cells Cyg forming what remains of the limiting eightcells
of M, and simplexes S§(5) replacing the vanished vertices of M.
In relation with their generation we call these new polytopes Zalf
measure polytopes and we investigate in this section these polytopes
and the nets which can be derived from them.

In the cases [111] and [1111] of cube and eightcell we have
represented the two half measure polytopes by the symbols + $[111]

and +3[1111] respectively. Likewise we indicate by +4[11...1]
the two half measure polytopes into which #, can be decomposed

n

according to the vertices, where 4 1 [11 .. .1]includes all the vertices

of which an even number of coordinates is negative and — 4[11.. .1]
all the vertices of which an odd number of coordinates is negative.
These symbols immediatcly reveal a difference in character betwcen
the half measure polytopes of 8,, and 8,,,, which we will represent
for short by HJl,, and HM,, . In the case of HM,, the polytope
admits a centre of symmetry, as the reversion of the signs of all
the coordinates of any vertex furnishes an other vertex of the same
group; on the contrary in the case of HM,, ., every vertex is

') The result mentioned contains a numerical error; it ought to be replaced by
GO+ 12, 18+12), }p2—1), 1 G+ 32),
GT+32),138—12),11+12), 20+ 12),

see , Wiskundige Opgaven”, vol. XI, problem 96.
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opposite to the simplex replacing the opposite vertex of the measure
polytope. So in this respect HAM,, presents analogy to measure
polytope and cross polytope, whilst HA/,, , imitates the simplex.

We still remark that the case =2 is exceptional in this sense
that the corresponding HM, is a line, i. e. a diagonal of the square,
instead of a form of two dimensions; as we shall see this remark
is essential in the theory of the nets derived from the half measure
polytopes.

91. It is easy to prove that the half measure polytopes partake
of the two properties characterizing the semiregular polytopes con-
sidered in the preceding sections, i.e. that all the vertices are of
the same kind and all the edges of the same length, here 2 V2.
Indeed we already solved incidentally in art. 47 the more general
(uestion :

“Under what circumstances will the symbols

+ ilenay. .., a,

represent the vertices of polytopes in §,, all the edges of which
have the same length, say 2V/2”?
For the length 2V/2 of the edges the solution takes the form of
Tueorem LVI. “The symbol + }[ay,a,,...,a,] for which

represents a polytope admitting the required properties under the

conditions: @, _; = a, = 1 and the difference between any two unequal

adjacent digits equal to 2.

So we find

in 8, the two forms 1[111], 3[311],

w & 5 four ,, LI[1111], 3[3811], &[8111], L[5311],

» 8, eight , 1[11111],3(33811], 4[383111],4[31111],
31[55311],1[58811], 4 [53111], $[756311],

etc., which are represented in the following table by other sym-

bols referring to 7', Cs and HAM; these symbols will be explained

later on. 1)

n=—3
—‘}[111]= 7= HM,, %[311]=tT=e._,HJ[3.
n =4

0] = Cg= HM,| }[8111]= ce,Cy= e HM,|
1(8311] =¢, Cs = e, HM,)’ L([53811] = ce, e, Cig = ey ¢ HM)

') We remark here that the symbols e before HM,, are related to the limits of M,
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n=2>5

111111)= HM, 1[56811]= ee HM,
1[838811]=¢, HM, 1[68811]= e, M|
1[88111]=¢, M’ 1[68111]= e3c¢I{M5‘
1[81111] =, HM, 175311 =e,e5e, HM,)

We introduce for these forms and for the corresponding ones
in spaces of a higher number of dimensions the collective “half
measure polytope descendent”, which we abreviate to Zmpd.

B. The characteristic numbers.
92. It is not difficult to determine the characteristic numbers

of HM, for a general ». For, if a, and &', denote the numbers
of limits (J), of M, and H M, respectively, we have the relations

’
a 0 =55 ‘%‘ ao
ady = a,
a,2 = 4 (13

a,s = a +%(”)4 a,
= ‘|‘%(”)5 @,

.....................

Apn_ 4= Qy_4 + %(”)n ay

where at the right the numbers are arranged in two columns of
which the first contains old, the second new limits. Indeed the
process transforming M, into HM, — which may be called an
alternate truncation — destroys half the number of vertices, all
the edges, all the faces, and maintains all the other limits (/);,
Drs+ oy (Dp—y of M, but in an altered shape, bringing new sets
of edges, faces, limiting bodies, ete. into existence. Now each face
of M, produces an edge of HM,, each limiting body of M,
— becoming a 7' — produces four triangular faces of HM, and
finally in general any set of p+ 1 vertices of M, adjacent to a
vertex destroyed produces a regular simplex § (p-}-1) forming a limit
(5, of HM,, for p=4,5, ..., 2—1. This accounts for all the
relations given above. Now, as the characteristic numbers of M,
are given by the equation

a,={n),2" ?, (p=0,1,2,...,2—1),
we find for HM,,:
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do=2""1, di=@)p2" 7, dy=@)2"",
’ = —_
ad,= @), 2" P4 ), 2", p=28,4,...,2— 1.

Neither is it difficult to prove that the characteristic numbers
d', satisfy the law of Euler. To that end we go back to the
relations given above and transform the Eulerian expression

dy—ay+dy—... 4+ (—1y"d, , into

Flao—aa—l—% +( "= 'a]

— [ay— 42y + } )y — ()5 + . . + (— 1) ()],
of which two sums between square brackets the first contains the
contributions of the first column (old elements) and the second of
the second (new elements). Now we add to each of these two sums
between square brackets 1 a, — @, + @,. So we get

[ep—ay+a,—...4+ (— 1),
— [} @ — a4 20, — das 4§ @ @) — )+ - . .- (— 1) ()]

But as we have
— a4 2y — day =} a,{— (n), 4 (1), — (w)]
the second sum disappears, as it is equal to
Yol — @)+ @) — )+ .. . (— 1) @)} =Fa(l— 1)

8o we find that the Eulerian -expression of HM, is equal to
that of M, and has therefore the value 2 for z odd and the value
0 for = even, etc.

We give here the results up to » = 8. They are

n=25%...(16, 80, 160, 120, 26),

n==0...(32 240, 640, 640, 252, 44),
n="T...(64, 0672, 2240, 2800, 1624, 532, 178),
n=28 ... (128, 1792, 7168, 10752, 8288, 4032, 1136, 144).

In the outset we remarked that AHA/; admits two kinds of limits
(D), viz. cells Cig and simplexes S(5). Here we remember that in
gencral for # > 4 the HM, is bounded by two kinds of limits
(D)u—1, viz. limits KM, _, forming what remains of the limits M,,__,
of M, and limits S(z) replacing the vanished vertices of #/,. 1t will
be useful to call the HM,_, the “original”’, the S(z) the “trun-
cation’’ limits,

93. In the cases of the offspring of simplex, measure polytope,
and cross polytope we have used two different methods for the
determination of the characteristic numbers, one fulfilling the exi-
gencies for » < 6 as far as these numbers only are concerned, an
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other giving for » > 5 not only the characteristic numbers but
also the numbers of any limit of any kind; here we will do likewise.

So in the case of the polytopes connected with HAf; in the
manner indicated in theorem LVI we have to determine:

1°. the number of vertices according to general principles,

2°. the number of edges concurring in any vertex and thereby
the total number of edges,

3°. the limiting polytopes (/),, which limits reveal at the same
time the limiting bodies (/),,

4°. the number of faces (by means of Euler’s rule).

But before applying this method to a definite example we give
some further explanation with respect to the equations of the four-
dimensional spaces containing the limits (/), ., of the lmpd. deduced
from HM, in §,, as this will save us trouble in the exposition
of the direct method.

If 1[aya,...a,] is the symbol of coordinates, where the digits
have been arranged in diminishing order, we consider the vertices
represented by

(@ ay... a) 3[0p1 @pys... a,]

Loy Ly v v oy P '7)1:+1’ mp+2" ey @y,

lying in the space §,_, represented by the equation

’1—|-w2—|—...-|—a',,=¢1+”2+-'-+ap'

Evidently these vertices will dctermine a limit (/),.., of the po-
lytope, if (aya,...a,) and L[e, 1@,,,...a,] represent polytopes
(P),.-y and (P),_, respectively, this (/),_, being then a prismotope
which may be denoted by (,_4; P, _,). Now (4 a,...a,) always
represents a (P),_,, unless all the digits «, a,,. .., @, are equal,
in which case (¢, a,...a,) is a petrified syllable. On the other hand
3 [@ps1apyq ..a,] always represents a (P),_,, unless we have
either p—=n-— 2, or p=n—1; for, as we remarked already
p=mn—2 gives the syllable 1[11], i.e. a line segment instead
of a square, and p = » — 1 gives a vertex only instead of an edge.

To this we have to add a few words only about the extreme
cases p=1 and p==n. For p=1 we find the polytope with
the coordinate symbol [, a; ...qa,] lying in a space §,_, repre-
sented by 4 2, = a,; it can be deduced from HM,_,. For p=n
the result is different for » even and » odd, the polytope having
as HM, itself a centre of symmetry in the first case and two
different limits, either a vertex and an (/),_, or two differently
shaped (/),_,, opposite to each other in the second. Or otherwise,
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as follows. For #» even the diagonals of A/, split up into two
groups of non adjacent ones, of those bearing vertices belonging also
to HM, and of those bearing vertices cut off by the alternate
truncation leading from M, to HAM,; the 2"~ diagonals of the
first group are normal to two limits of vertex import 1) in the
considered polytope, whilst the 2"—? diagonals of the second are
normal to two limits which may be called of truncation import
as they are derived from truncation limits of HA/, in passing to
the polytope under consideration. For z odd there is only one
group of diagonals of A/,, each of which bears only one vertex
of HAM,; so each of these diagonals is normal to two differently
shaped limits of the polytope, to one limit of vertex and to one
limit of truncation import. But in the two cases, of » even and
n odd, we have to deal with the two equations X + #;, = Xaq;
and ¥ 4 2, = Za; — 2, the last digit ¢, = 1 having to be taken
with the positive sign for limits of vertex import, with the negative
sign for limits of truncation import.
After this introduction we treat a definite example.

94. Case L [58311].
The number of vertices is 2* times 5! divided by 22, i. e. 480.
The vertices adjacent to the pattern vertex 53311 are

5133l|
33511 | 531381
35311 | 51313
53113

which may be indicated by the brackets and the negative sign after
the two units in the symbol

533—1-1

—_  ~——
5 8 3 1 1{
=  __— -

So seven edges concur in any vertex, i. e. the total number of
edges is half the product of 480 and 7 , i.c. 1680.

Now we have to pass to the limiting polytopes.

The spaces §, represented by + @, = 5 give 2.(5); = 10 limits
3[8811] of polytope import.

') Also the import of the different limits (1), _, of HM, will be considered in relation
with the limits (I),_, of M,. So the equations * x; = q; will give limits of ({),,_,
import, the equations + z; + z; = m + a will give limits of (D)y—o import, etc.,
this series ending in general in limits of body and limits of vertex import, as no edge
or face of M, partakes in the limitation of HM,,
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The spaces S, represented by + #; + z; = 5 - 8 give 22 (5), =
40 limits (53) 4 [811] of body import.

The spaces S, represented by = 4z, = 13 give 2" limits (53311)
of vertex import, where (63311)=(42200). ?)

The spaces 8, represented by X + 2, = 11 give 2*limits(5331—1)
introduced by the alternate truncation.

So the limiting polytopes are

10 ¢, Cjg + 40 P,z + 16 ¢, S(5) -+ 16 e, e, 8(5),

i.e. 82 in toto.
Now from the list of limiting bodies

e Cg ...80,16:T
Py ...2tT, 4P, 4P
e, §0B) ...5C0, 10P,, 50
ee;8GB) ...5¢7, 10 Pg, 10 P, 5 CO

of the four different limiting polytopes we can deduce that our
polytope is limited by

F(A0X 8416 X 5)0, £(10 X 16 + 40 X 2 + 16 X 5) ¢7,
1(16 X 5 4 16 X 5) €O, 1(40 X 4+ 16X 10416 X 10) P,
1(40 X 4 416 XX 10) P,

i.e. by 720 polyhedra, viz.
80 0, 160 /7, 80 CO, 240 P;, 160 P,

Now finally, according to Euler’s rule, the number of faces is
1840. So the result is

(480, 1680, 1840, 720, 82).

This example shows that the method explained és sufficient for
§;, as far as the characteristic numbers themselves are concerned.
But if we want to extend our knowledge of these Zmpd. — in
relation with the difficulty of realising their lopsided form — by
determining the numbers of the different kinds of limits the method
is insufficient even in §; and has to be completed, in one sense
or other, with respect to the different kinds of edges and of faces.
We shall see that the direct method, which will be explained in
the next article, furnishes this complement at least expense.

95. Here once morc the direct method in view is based on the

') This (42200) with edges 22 is similar to (21100) with edges 172, i.e. to ey S(5).
Likewise (5331-1) leads by (64420) to (32210) or (32110), i.e. to e; e3 S(5).
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distinction of the different kinds of limits (/), by what we have
called formerly “unextended’” symbols. If we take care to exclude
always the petrified syllables we can formulate the method in:

Tarorem LVII. “We obtain the unextended symbol of a poly-
tope (P), the vertices of which are vertices of the given Ampd.
of 8§, by applying to the z digits of the symbol of coordinates
iaya,...a,_4a,) of this polytope one of the three following
processes:

1°. Take the last digit a,, first with the positive and afterwards
with the negative sign, and place for both cases between pairs of
round brackets either one group of & 4 1 digits, or two groups
containing together d |+ 2 digits, or threc groups containing together
d -+ 3 digits, etc., omitting the digits not included.

2°. Place before 1[11] of the remaining digits a, @,,...,a,_,
between pairs of round brackets either one group of & digits, or
two groups containing together & -4 1 digits, etc., omitting the
digits not included — and the syllable with one digit for 4 = 1.

3°. Place before L[a,_, 14, _j4s...4,_1a,], where £ =3,
4,...,d successively, between pairs of round brackets either one
group of d — £ -+ 1 of the remaining » — £ digits, or two groups
containing together ¢ — % 4 2 of these digits, etc., omitting the
digits not included — and the syllable with one digit for d = £.”

“In cach of these cases the (2#); obtained will be a Zimiting poly-
tope of Zmpd., if the syllables between round brackets satisfy the
two following conditions:

a) each syllable with middle digits exhausts these digits of the
symbol of the given Zmpd.,

) no two syllables without middle digits have the same end digits.”

The proof of this theorem, forming an adaption of theorem XXX
to the special character of the /Zmpd., embodicd in the 1 before
the square brackets of their symbol, can be copied from that of
theorem XXX and theorem XXX

We apply it to two definite examples, one in §(5), the other
in S

Case 1 [55311]. —

If we place before a vertical stroke the limits deduced from
55311 and after it the djfferent ones furnished by 5531 — 1,
we get

(D . .(58),, (31),, $[11],

D)z - -(358),, (531),, (311),, (53) 1 [11], (31—1),

(). . .(5581),,(5311),, (553) L[11],, 1 [311]; | (531 —1),

(- . .(33311),, 1 [5311], (5531 —1),
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where the small subscripts at the right indicate the number of limits
concurring in any vertex !). So we find through any vertex

tive edges,

two pg, two p,, six g,

one P, five ¢7', four 0,

one (55311) = ce, e, 8(3), two (5531—1) = ¢, e, S(5),

two 4 [5311] = ce, ¢, Cj,

and this gives in a trausparent way in toto

é_;;&() ................................................... i.e. 1200 (),
.4 . .

2—382=320p3 ,2—:—80=240m ,6—28—0=480pﬁ ey 1040 (2),,
480 5.480 , 4.480
. Wi 80 P, T 200 7 Y 80¢0.... ,, 360 (J),
480 .. 2.480 . 2.480
30 — 16 ce, e, 8(5), 50— 16 ¢, e, 8(5), W= 10 cey e, Cpg 42 (0)s.

So the result is
(480, 1200, 1040, 360, 42)
in accordance with the law of Euler.
Case L [155311]. —
In the same way we find here the table:
(D1 |(75),, (53),, (81),, ¥ [11],
(£),[(T55), (75) (53),, (75) (81), (53),, (531),, (811),, [ (31—1),
(75) $[11],, (58)4[11],
(£)31(7553),, (755)(31),, (75)(531),, (75)(811),, (5581),, | (75)(81—1),, (531—1),
(8311),, (755) [11];, (75)(38)4[11],,(558)3[11],,

1[811],
(0| (15531),, (755) (311),, (75)(3311),, (55311),, (755)(31—1),, (75) (631—1),,
(7553) 1[11],, (75) $[811],, 3[5811], (5581—1),

(£),|(755811),, (755) 1 [811],, (75)$[6311],, 3[35311}, | (75581—1),

So we find through any vertex
seven edges,
three p;, ten p,, six pg,
one CO, five T, six P;, eight P;, two C, four ¢0,
two (32110), one (22100), two (32100), four P,,, four P,
one Pg,, one (3;38), two (8;0), two 4[5311],
one (322100), one (p; 7)), two Py, one §[35311],
two (432110);
') 8o (531) is to bear the subscript 4, as the 5 may be related either to x5 or to xg
and the 1 either to x4 or to x5; so (31—1) is to admit the subscript 2, as the three

digits may apply either to + x3, + x4,— a5 or to + x3, — 24, + x5, etec.
Verh. Kon. Akad. v. Wetensch. 1e Sectie Dl. XI N° 5. E6
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as the number of vertices is 2° 6! divided by 22 i.e. 5760,
we get in toto

e et axsms m ams s s a2 i.e. 20160(2),
3. 53760_5%0 10 2799_14400;;,,,6 561§0—5760ﬁu » 25920(0),,
??329:48000, %=2400m 05760 _ 57602,
8“;’260_38401)G 238769—14400:
T 96010 ., 14880(2),
200 192¢,0,805), 10— 192 c016,86),
2-2360__192 16’28(5),4_5?—9601)”’
2 '2260=480P,0,3%=240Pco,
M0 6403;3),> 2190 64063; 0),
?;_3_(’;@:1200%016 ................... . 8656(2),
5178600 —32¢,¢, 8(6), 5.760 =160 (zy; (T),
2 -1097260 =60P,,,, Cie’%= 12 e,es HM,
2_:;)70@_32&«:,%8(6) .................. L 206(),

So the result is, in accordance with the law of Euler,
(5760, 20160, 25920, 14880, 3656, 2906).

The results obtained in this way are tabulated in Tables VIII and IX.

Table VIII, concerned with the Zmpd. in §;, §;, S;, has been
divided vertically into six main parts, giving respectively the ex-
pansion symbol, the symbol of coordinates, the symbol of charac-
teristic numbers, the faces, the limiting polyhedra, the limiting
polytopes. The part of the faces is split up into three columns
successively related to triangular, square, hexagonal faces; likewise
that of the limiting bodies is split up into seven columns corres-
ponding to the seven possibilities 7', O, P, ¢7, CO, Py, {0. Of the .
two numbers given in any case the first always indicates the total
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number of the limits, the second that of the limits concurring in
any vertex. But in the sixth part, making its appearance for = = 5,
the arrangement is an other one, the character of the limiting poly-
topes and their total number having interchanged places; so in any
case the total number appears at the head of the column and the
character at the first of the two horizontal places in the column.
So the polytope e, HM; = 4[31111] with the characteristic num-
bers 80, 400, 720, 480, 82 is limited by 480p; and 240p, of
which 18 and 12 respectively meet in any vertex, by 2407 and
240P; of which 12 and 18 respectively mcet in any vertex, and
by 100, 40PT, 168(5) and 16e;8(5) of which 1, 4, 1 and 4
respectively meet in any vertex.

Table IX, concerned with the Zmpd. in S;, has been divided in
the same way into seven main parts. 1t will be clear without farther
explanation; only we are bound to add that in the first column of
the sixth part 2 ,, means that 20 is to be taken 60 times and
that in this part and the next the numbers of limits concurring
at any vertex have been omitted.

96. We insert a few remarks about the character of the limits.

Faces. We find only ps, py, pe.

Limiting bodies. The set of limiting bodies obtained for » =5
is completed by the addition of C for » = 6.

Limiting polytopes. In general the limiting polytopes are

1°. Simplex forms, deduced from §(z), §(»—1), ..., §(3), |

2°. Half measure polytope forms, deduced from HM, 4, HM,_,,

. M,

3°. Prismotopes the constituents of which are simplex forms, deduced
from S(z—1), ..., 8(8), and at most one half measure polytope
form, deduced from HM,_,, ..., HM,.

This general result shows that the list of limiting bodies is
complete for » = 6. Moreover that the list of fourdimensional limits
will be complete for » = 8, as the case » = 8 brings G; for the
first time, etc.

In order to show how theorem LVII works we give the list of
the limits (P); of the tendimensional form 1 [9775533311]:
(9775533), — (9775) (5333), (9775) (5633) (31), — (977) (55333),
(977)(5533)(31),(977)(553)(331),—(97)(755333),(97)(75533)(31),
(97)(7553)(331),(97)(755)(3331),(97)(75)(53381),(97X75)(533)(311),
(97)(75)(538) (31—1), (97) (75)(53)(3311),(97)(75)(53)(331-—1),—
(7755333), — (775533) (31), —(77553)(331), — (7755)(3331), —
(775)(53331),(775)(583)(311),(775)(533)(31—1),(775)(53)(3311),

6*
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(T75)(33)(381—1),—(7558381), —(75533)(211),(75538)(31—1),—
(7588) (3811), (7553) (831—1), (755) (38811), (755) (3331—1),
(75)(533311), (75)(53881—1), — (5533811), — (55383 L —1),——
(977558) 1 [11], — (9775) (583) 3 [11], — (977) (55388) 4 [11], —
(97) (75583) 4 [11], (97) (75) (5388) 3 [11], — (775538) 1 [11], —
(775) (5388) 4 [11], — (755838) 3 [11], —— (9775) 4 [811], —
(97) (755) 4 [811], (97) (75) (58) 4 [811], — (7755)  [811], —
(775) (58) 4 [311], — (7553) § [311], — (75) (533) 4 [811], —
(9TT)4[3311],—(97)(75)4[3811],—(775)4[3311],—(755)4[8811],—
(75)(53)3[8811),—(558)3[3311],——(97)4[33811],—(75)4[38311),
15338117,

C. Faxtension number and truncation fractions.

97. Turorem LVIII. “The polytopes i[@,a,...a, 4a,] of §,,
all with edges 2V/2, can be found by means of a regular exten-
sion of the measure polytope A/,* followed by a regular trun-
cation at the two groups of non adjacent vertices of A/, either
with or without truncation at the limiting (/);, or at the limiting
(/); and (/),, or at the limiting (2),, (/), and (/);, etc. or at the
limiting (£)g, (2)s» ($)s5, cte. and (4),_,.”

This theorem is an immediate consequence of the character of
the equations of the spaces §,_, bearing the limits (/),_, of the Zmpd.

The extension number is once more the largest digit of the sym-
bol of coordinates, i.e. a,;so here it is always odd.

On account of the lopsidedness of the Zmpd. we measure the
amount of truncation on the corresponding /a/f diameter limited
at the centre O of the polytope. So in the case 4[775533311] the

5
truncation corresponding to the space S; with the equation X2, =27,
1

i. e. the truncation at the limits A/, of M, extended, is %%, if P

is the centre of the A/, and Q the point of intersection of OP
5

and the indicated space Sz As X z; is 85 for M, extended we find
1

PQ_PO—QO_35—21_ 8 . ..o 8
PO-_. 70 = 35 —5'5 0 thne truncation iraction 1 35

in this case.

This case shows clearly that iz general the fraction number admits
as denominator the product of the extension number by the number
of coordinates figuring in the equation of the truncating space. So
reducing this denominator to the extension number the numerator
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itself becomes in general a fraction. Therefore it is impossible to
introduce here the notion of truncation integer.

The following list contains the truncation fractions for the Ampd.
in 8, 8, 8, §; here 7,, 7/, 73, T, represent successively the
two truncations at the vertices and the truncations at the limits

OON

~

'To To T3 To To Ts T
sBI] [ $1§] | $[333311]| & | &
3(888111]| 4 | ¢
3[831111]( 4| 5 |2
[303811] | & |4 F811111)| & [ & | 4| %
Sﬁk F8111] | L | % 1[655311]| 4 | £
$[9311] [ § | ¢ 3[558311]| ¢ |15 |75
$(683311] 1% | |5 | &
84 3(553111]| 15 | %5 | 5%
3[33311]) | 2 y[538111] 5| 3 || 4
$[33111]| % |5&% $[531111]) 31 ¢ | £ §
F[81111]|& | 3 | & (7753110 4 |39 |
8 4[55311]| £ |44 $[755311)1 39| $1 |5 | ¥
$[93311]|4% 34| 4 $[753311) 141 4 | % | 4
F[63111] 34481 3 \%[75?’111] AR Ak
$[75311]|48| 4 | 4 $[975311][44( § [ § | &
D. Ezpansion and contraction symbols.
98. For £#=2, 8, ,2—2,2—1 any limit 25,® of the

AM,P from which the ILM (21/2) has bheen deduced bears a limit of

HM,(22), this liit L [ll .1] being a HM,(21°2) and thercfore an
D for k=3,4, .. ,n—l but an edge for £= 2. Now we
will define the expansion e.of HM,2v'2) —for k=2, 3 8 — 2 —

as the influence of the motion of the limits l[ll .1] contained
in the limits A/, of M, caused by a translational motion of these
limits A7,% and what they contain, to equal distances away from
the centre O of M,®, each M,® moving in the direction of the
line O joining O to its centre 1/, these A/,® remaining equi-
pollent to their original position, the motion being extended over
such a distance that the two new positions of any vertex which
was common to two A/, shall be separated by the length 2V 2.
In order to justify this definition we have to show for what reasons
we deviate here from the custom followed until now: to bring the

operation ¢, in relation with the limits (4), of the polytope itself.
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For the deviation indicated we have two reasons. The first
is of a didactic cast: it is easier to imagine the motions of the
limits of A7,® than those of H/,(2172). But the second is of
more importance: “if the limits of H1/,(2V°2) are carried away by
the limits of the circumscribed 37,2 which contain them, these
latter limits being moved out in the ordinary way, we get precisely
those expansion operations which lead to the whole set of poly-
topes Ampd. of §,.” This advantage is twofold. In the first place:
the only expansion of A1/, (2V°2) which has no equivalent under
the e, applied to 1/,, i. e. the expansion according to the faces,
is excluded, and this is right, for we will show afterwards that
this expansion is either impossible or it leads to a polytope which
can be derived from A7,™. But, what is still more, by adhering
to the limits of 1/, we are never at a loss with respect to the
question to which group of limits of FJ/,(2V°2) the expansion is
to be applied. So in the case of §; the A/, admits as limiting
bodies tetrahedra only, but they are of two different kinds, i. e.
we must distingaish between a 7' common to two Cjg and a 7'
common to a cell G5 and a cell Cr;; so, of these two groups the first
must undergo the operation e;, if we wish to apply it, as a 7’common
to two Cj is contained in the cube common to the two adjacent
eightcells bearing the two Cs. Moreover we will prove afterwards
that the contraction operation always leads to forms deducible from
M, ®; so we have to consider here the operations e, only.

On the other hand we do not deny. that the new definition has
a drawback with respect to the operation of expansion according
to the edges of A1/ ,(21°2), a difference in the notation making its
appearance there. According to MM, itself this operation ought to
be called ¢, HM,; nevertheless we propose to indicate it by the
symbol e, /M. 'This is still more annoying in §; and S, where we
have e, HM; = e, I'= tT and e, HM, = e, Cy; (sec the small table
at the end of art. 91). But still we reckon the advantages so pre-
vailing that we do not mind of accepting this small disadvantage
into the bargain, the more so as it is easily held under control.

Starting from the new definition we prove:

Treorem LIX. “The expansion ¢, (=2, 8, ..., = — 2), applied
to H21,(22) changes the symbol of coordinates [ﬁ_l] of that

n—»nL 5
polytope into }[33..311..1].”
Proof. If we move the limit /£.1/,(21°2) represented by

k
ZU1=:Z'2= o s =$n_k= l,w,,_,:+1,wn_k+2. s .,w,,=:}[ll. " .1]
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in the direction of the line joining O to its centre A, for which
.’L’1=¢z‘2= e — n—k — 1, wn_k+l=w"_k+2= oo . =(Z'n=0,

to a A times larger distance from O we get a new position of this
M \(2v'2) characterized by

B =8y = ... =By = A Tyt Tnpyrs - - B =F[11...1],
n--k

in which it is a limit ZA/,(21°2) of the new polytope 1[AA. . A ll 11..1]

According to theorem LVT this new polytope has edges of the same

length if and only if we put A = 8. This proves the theorem

and leads moreover to the result:

Turorem LX. “In the ecxpansion e, the limits HM,(21'2) of
HM,(2v'?) are moved away from the centre to a distance always
three times the original distance.”

This result is also an immediate consequence of the fact that
the largest digit 3 of the symbol of the new polytope is the
extension number.

Remark. We may express the influence of the operation e, on

the symbol 4 [11...1] by saying that it creates an interval 2 be-
tween the » — A and the » — £ + 1* digit. 'This is in accordance
with the remark inserted at the end of art. 58. In moving out
the limits A/, of M, the distance to be described in order to give
the new edges a length 2V'2 is V2 tines the distance to be
described in order to give these edges a length 2; so the interval
created which was V2 in the case of A/, must be V'2 times V'2,
i.e. 2 in the case of HAM (212),

Tuarorem LXI. “The influence of any number of expansions

€y €5 €. of HM,(2V2) on its symbol J-[11 l] is found by adding
together the influences of each of the expansions taken separately.

The proof of this theorem can be copied from art. 59. It leads
immediately to:

Tarorem LXII. “The operation ¢, can still be applied to any
expansion form deduced from HA/(21°2) in the symbol of coordinates
of which the » — #" and the » — £ 4 1* digits, i. e. the " and
the £ 4 1* digits counted from the end, are equal.”

So in the case 4[9775533311] we have an e;e;e; e, HM,.

99. We have to come back to the face expansion of the Zmpd.
and to their contraction.
The faces of the polytope 4 [a; ,.. .a,_,1 1] replacing the faces
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(11—1) of HM (2v2) are represented by (31—1) for @, _, =3

and by (11—1) for @,_, = 1. So we treat these two cases together

by considering the face.

z,i=a,0=12,...,20—38) , @_o Z_ @, = (a,_,1—1)

with the centre

z,=a,0¢=12,...,2—383) , 8z, ,=382,_4,=8z,—a,_,.
By moving this face away from the centre O to a distance A

times as large its centre is transported to the point

&z, = Aai(i= ]., 2,. “« iy B — 3) N 3(2’,,_2 = 3:Z’n_1=3wn — Aan—?’

So the new position of the face leads to a new polytope
A4y, Aas,. . . Aa,_3,...] As the length 2V/2 of the sides of this
face is maintained and the length of the edge (Aa,, Aa; . ,) is 2AV'2
if a, and «, ., are unequal, we only can arrive for A 1 at a
polytope all the edges of which have the same length 2V/'2 if all
the digits o, a,,. .., a,_5 are equal, i. e. in the four cases

n—3 n—=2 n—3

%[11? 1], 4[33..8111], 1 [88..311], 4 [55..5311].

In these cases the face becomes
; A4+2 A4+2 A—4
42',-= A’ (2=1’ 2,"', ”—3)’ wn—‘b"vn—l’m"= ( —!'3__, +7’- >I

3 3
d',-=3A, - 5¥ = 5% 3
2= 32, ., ., =(A+2, A ,A—2)‘
:Z',-=5A, - - == -

furnishing for the edge (a,,_3, @, ,) of the new polytope the four symbols

(,\, i‘g 2), (3;\,)‘—;‘;3), (32,24 2), (54,44 2).

So, if & represents either 2 or 0 we have in these four cases
=364+ 1,SA=38:+4+2,20=¢42, dd=¢+42;

so the values of A different from unity are respectively

4 ) 1 , 2 ) % ,
of which the integer values are the only available ones. So the
n - n—3
face expansion can be applied to L [11..1] giving [44..4220]
n—2 n—3

and to §[33..811] giving [66..6420], i. e. in both available
cases measure polytope forms deducible from A/,®. Therefore we can
disregard altogether the expansion of the Zmpd. according to their own
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faces and take into consideration the expansions ¢,, (¢=2,3,...2—2),
of the M, only.

We now pass to the contraction. A motion of the limits of vertex
import of { (@ a, ... a,_4a,],i.e. of (¢ a, ... a, 4 a,) towards the
centre gives (@, — A, a,—A, ...,a, —A,a,— A). So the only new
form we can get is (¢y —1,8,— 1, ...,42,.,—1,0,0), i.e. a
form deducible from AM,*, etec.

100. We conclude this part by proving the following theorems,
which will be useful in the next:

Tueorem LXIII. “The limits of truncation import of
€y Chy -+ Ok, G HM, (2V'?) are Chiy—1 Gyt - + G\ 41k 1 S(n) 202).”

According to the preceding theorem we have

n --kp I:p—kp_1

e HM, =3[+ 1,2 —1, ...,83..8,11..1]

k2—k1 I.‘1

C. €. ..C
Iy Cr, kp—1

So the limits of truncation import are

n—kp kp—l.'"_l

@p+1,2%—1,...,33..3,11..1,—1),

l-'.z—k1 l.'1 —1

n— "lp I:p— kp—i ky—ky ky—1

Cp+2, % ,...,44..4,22..2,0),
or reversed

Iy —1 ky—ky kp=kp_qg  n=ky
—(Ep+2, ., —2,..... ,22..2,00..0),
L e — g1 Gyt -+ €, 41 Cr 1 S(n)(212),

Turorem LXIV. “The number # of the units figuring in the

ky
symbol of coordinates }[a,@,_4 ....11..1] of an /Jmpd. in 8§,
indicates how many limits of truncation import pass through any

vertex.”’
n—~l." . k s k p—1 ky—ly Iy

The number of verticesof 4 [2p + ‘l, % —1,...,33..3,11..1],

n—I.'” I.p—l.'p__1

I.',_,—-I-'i It'i -1

respectively of its limits (2p + 1,2 —1,...,33..8,11..1,—1)
of truncation import is represented by

an—1, 5! n! -
(k) (kp—p—) ... (br—h0) " " o) (ey—Rip—tl oo Br— o) (B — 1)1

So the 2" limits of truncation import admit together a number
of vertices equal to £, times that of the Zmpd. itself.
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E. Nets of polylopes.

101. Let us consider the net N (47,2 and suppose that it is
composed of alternate white and black /,®, so that any two A/,®
with a common limiting A7,®, differ in colour. Let us imagine
that each white A/, is split up into an inscribed positive

HM, (= 4+ 3} [F—_l]) and 2"' pyramids on regular sim-
plexes §z)(22) the vertex edges of which have a length 2 and
meet at right angles, and that in the same way each black A7, is

split up into an inscribed negative HM, (= — 4[11..1]) and
2"~ pyramids. Then it is clear that a space filling of §, is formned
by three groups of polytopes, two groups of HA/,, i.e. a group

of positive ones and a group of negative ones, and one group of
n—1

cross polytopes [200 .. 0], each of which has for centre a vertex
of the net N'(A/,?) not belonging to an HM, and is generated by
the addition of 2" of the equal pyramids. This net, which may be
represented by the symbol N(4- HM,, Cr,), forms our starting
- point here. It is our aim to deduce from this simple net several
other ones the constituents of which are forms derived from the
regular polytopes and Zmpd., partaking with each other of the proper-
ties of admitting one kind of vertices and one length of edge, by
considering in the application of the expansion operations either the
two sets of half measure polytopes as independent and the set of
cross polytopes as dependent variables, or reversely.

Any HM, of the original net N(+ HA/,, Cr,) is limited by
H,_, of (J),_, import and by simplexes S(z) of truncation import;
by each HAM,_, it is in contact with an /M, of the other kind,
by each 8() with a Cr,. We now follow two polytopes HM,,
Cr, in Sx) contact through any group of expansion operations
leading to a new net, by which operations KA/, and its S(z) pass
into (P), and (Q),_, and likewise Cr, and its S(») into (P), and
(Q),—4- 'Then it is evident that (Q),_, and (Q),_, must coincide,
as the application of the operation e, with respect to the group
of Cr, origin on one hand and the group of HA, origin on the
other would lead to a net with two different kinds of vertices,
those of the group of Cr, origin and those of the group of HA/,
origin. This coincidence dominates the Zmpd. nets, as it creates a
very close relation between the two chief constituents. If we denote
by the symbol ¢, HM, the separation of the two groups of KM,
from each other by the intercalation of prisms on their original
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limits, the relation between the two chief constituents of an Zmpd.
net can be thrown into the following form:

TeorEM LXV. “In the Zmpd. nets the constituent of HAM, origin
unequivocally determines that of Cr, origin and vice versa. If the
former 1is Cry Chye - -Chy_y O, HM,, the latter is represented by
€hyt Gyt~ + Ok, 1 G 1 (4 e

We divide the proof of this theorem in two parts. In the first
part we suppose £, different from .z, in the second we trace the
influence of the occurrence of e, HAM,.

Let the set of operations to be applied to the Cr,, in order to obtain
a polytope able to form an Zmpd. net with ¢, e,.. ‘g O, Hi,,

be represented by e, e,...e, e, . Then according to the
. :

q—1
results obtained in the preceding section the limiting S(z)(2V2) of Cr,,

is transformed into Oy Ciye - O, O, S(zn)(112), whilst on the other
hand the S(z)2V2) of HM,, is transformed into

_—_ e,‘.1_1 ek.-)__i 2 & @ ekp_i_i C’/_.p_i S(ﬂ)(2l/2).

As the negative sign of the second symbol is accounted for by the
position of the two polytopes at different sides of the common limit
deduced from S(z) the coincidence requires that we have

Fom by —1, Fy=ly—1, ..., F_y=k_—1, ¥, =k, —]1,

as the theorem states.

We now suppose that the operation e, is added to the set of
e, expansions to be applied to the HA/,, i. e. that we drive the
two groups of MM, apart by prisms. Then the enlargement of the
sidle H, H_ of the triangle CH,  H_ (fig. 18), formed by the
centres C, H,_, H_ of any triplet of constituents of different kind
in mutually (/),_, contact, caused by the intercalation of the prism
implies enlargement of the two other sides, as the triangle must
remain similar to itself. This enlargement of C/, and CH_ cannot
be effected by the application of the operation e, between the two
constituents of different form (see pag. 90); so it must be caused by
application of the operation e,_, to the polytopes of Cr, origin. In other
words: the theorem to be proved also holds for the case that e,
occurs under the operations ¢, to be applied to the /A/, groups.

Moreover from theorem LXIV we deduce:

Taeoren LXVI. “The totality of the vertices of any Jmpd. net
can always be represented by means of one net symbol, viz. that
corresponding to the constituent of Cr, origin.”

We still remark that the number of Ampd. nets in 8, is 2"~*.
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For we can start either from HJ/, as it is, or from one of the
{(n—1), forms e, HM,, or from one of the (x—1), forwms e, e, HM,,
etc., giving altogether

14 (—1) +(e—1)%+ . . .... + (a—1)y =1 + 1)t = 2"

possibilities. These nets must all be new for z >4, if they prove
to exist. On the other hand a preparatory study of the cases » =3
and » =4 will show that » == 8 furnishes nothing new, whilst
n = 4 produces four new cases only.

102. Hwpd. nets in 8;. — If we interprete the net of 7 and O
as V(4 HM,, Cr;) the four cases we meet here are

1.... HM;, O 3.... e HIM, e, O,

2 ....ellM;, e O 4 ....ee, HM;, e e, Cry

or in other form

1....7,0........... 1218.... T RCO,.. C....19
2....t1¢t0,..CO..... 24\ 4 ....¢t1, tCO,..tC....23

Here the third constituents CO, C, {C are polyhedra filling gaps,
whilst the numbers 12, 24, 19, 23 refer to the stercoscopic
diagrams of ANDREINI. Compare also Table III of M™. Srorr’s
memoir.

Let us pass now to the deduction of the coordinate symbols of
these four nets. To that end we have to start in the first case
from a 7' and an O in face contact — and in the other cases
from what these polyhedra have become — and to calculate by
means of the distance of their centres the periodic term which is
to figure in the symbol. We therefore elucidate the mutual position
of the two polyhedra in face contact in fig. 19, in projection on
to a plane normal to one of the three diameters of the O group.
But for clearness’ sake we have represented in each of the four
cases the 7' and the O — or what they have become — lying
apart; in order to re-establish the real state we have to move the
T parallel to itself so as to bring the invisible shadowed face of
7' indicated by dotted lines in contact with the visible shadowed
face of O, 1. e. 4' B’ into coincidence with A4B. As we want
only the net symbol with respect to the group of O, the origin
of the system O(XYZ) of coordinates has been chosen in the centre
of the O of the diagrawm.

The simple diagrams of fig. 19 show an easier way leading to
the knowledge of the periodic term of the net symbol. Indeed, in
each of the four cases the O — or what it has become — is in
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contact by the edge 4B with an other polyhedron congruent to it.
In other words: if the coordinates z,y of the centre M of 4B
are p, the centres of the O group are represented by the frame

v 3
[2a, p,2a,p,2 a;p] under the conditions a,, a,, a;integer and Xa; even,
1

1. e. 2 is the period of the net. So, as the p has in the four
cases successively the values 1,8,1+V 2,3 4+ V' 2 we find for
the four net symbols under the stated conditions

1..¢ 2a,+4 2 ; 2a3+ O s 2a34+ O,
- 6ay+4 , 6ay+ 2 i 6ag+ 07,
3“@a+qu+2+yzuL+Vn%+ye y (L4 12)e 412,
4.2+ 1a +44+12,28+12)a+ 241223+ 12)e+ 12

Though we pursue the study of these threedimensional nets

merely from a didactic point of view it is not necessary to deduce
from these net symbols of the O group the net symbols of the
two 7' groups. All we want is to show how the third constituents
CO, C, tC can be found. Therefore we give here the net symbols
of the two 7' groups in the form:
1.. 2ay +1 L1, 2ay + 1 -1, 2a;+ 1 1],
2.. 324y + 1)4-8, 3(2a, + 1)1, 3(2ag + D1],
3. 442 +1)A+1r2)+1,20+ DA+12)+1,(2a £ 1)1 412)-4-1],
4.. + 420 £1)(3412)+38,(2a3 £ 1)(3+4172)+1,(2a3 &= 1)(3412)4-1],
where the double sign refers to the two groups + HAM; and the
conditions about the a; and their sum remain the same.

As the polyhedra of the O group remain in contact by faces
with those of the two 7' groups and by edges with each other we
have only to look out for new polyhedra filling vertex gaps which
make their appearance in the second, third and fourth cases on
account of the truncation of the polyhedra of the O group at the
vertices. Though all the verfices of these new constituents are con-
tained in the net, the second and the fourth cases show that it
may happen that some of the faces of these new bodies have to
be furnished by the polyhedra of the 7' groups. At any rate we
have to determine the new constituent by starting from an octahedron
vertex and deducing from the net symbol the vertices at minimum
distance from that point.

We treat further each of the four cases by itself.

Case (0, T). — In this case there is no third constituent. Never-
theless we deduce from the net symbol of group O given above
that the vertices of all the COrepresentedby[2a, + 2,2a,+ 2,24, 0],

3
2 a; odd, are vertices of the net. But these CO are no constituents
1

HH
nb— :ﬂn—-

of the net; for the centre of the CO corresponding to any set of
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3
integers a; satisfying the condition X «; odd is the point 2 a,, 2 a,, 2 a;,
1

3
and for X« odd this centre itself is a vertex of the net, i. e
1

these CO overlap.

Case (t0, (T). — As we have p = 3 the point 2, 0, 0, originally
common to the central O and an other in vertex contact with it,
is carried away from the origin to thrice the distance and arrives
at 6, 0, 0. So with respect to this centrc of a new constituent as new
origin the original net symbol becomes[6(a;—1)-+4, 6 2,-+2, 6 2,-+0],
2a; even, i.e. [6a,+4,06a,+ 2, 0645+ 0], Za 0dd. Now the
supposition @y =—1,4,=a; =10 gives the square — 2[2,0]and
so the six suppositions @, a,, a3 = [100] give the six squares of
the [2,2,0], i.e. of the CO. The eight triangles of this CO are fur-
nished by #7, four of each group. So by putting 2, =0, a4y = —1,
ag = — 1 in the net symbol of the group of positive 77" we get

1[8+4+3,—84+1,—8+ l] i.e. reduced to the new origin
() 0, 0 the symmetrical foorm § [—8 43, —3 4+ 1, — 3 4 1],
the triangle (0, — 2, — 2) of which is a face of the CO found
above.

Case (RCO, T). — Here we have p = 1 4+ V/2 and the centre
of the new constituent becomes 2 (1 4+ V'2), 0, 0. So the net
symbol with respect to that new origin is

. 3
2A+1r2)a 42412, 201+ 12)a+ 12, 2(1 +12)a5 +1-2), o odd.

Here the six suppositions @, a,, ¢, = [100] give the six
limiting squares of the cube [V'2, V2, V2]

Case (£CO, tT'). — Here p = 3 + V/2 and therefore 2 (3 + V'2),0, 0
is the new origin, leading to the new form

3 .
26+ Do +44+12 2610+ 2412 2(3H1 0 + 12, S e oll

of the net symbol. Here the same suppositions give the six limiting
octagons of the #C represented by [2 4+ V2, 2 +V'2, V2] By
putting ¢, =0, @, = — 1, 4 = — 1 in the net symbol of
the group of positive ¢ 'we get here

JB+V2E4+8 —B+VH+1L—B+VY+1]
or with respect to the new origin

I[—B4+VY+3, —B+VH+1,—38+V2+1],
the triangle (— V2, —2—V'2,— 2 —V/2) of which isa face of the ¢C.

Remark. The p introduced above is not to be confounded with
the extension number of the octahedron group which according



DERIVED FROM THE REGULAR POLYTOPES. 95

to the rule connected with the sum of the digits would be
1,3, 1 4+3Vv2,3+4+3V2 in the four cases.

103. The four cases of Zmpd. nets in §; considered above agree
in this that the third constituent is the contraction form of the
constituent of octahedron origin. Indeed the contraction forms of
0, t0, RCO, tCO are respectively a vertex, CO, C, ¢C. This fact
is too general to be accidental, we will show why it mus? be so.

Therefore we recur to theorem LXVI. As all the vertices of the
net figure in the net symbol of the octahedron group — which
implies as we already remarked that all the vertices of the new
constituent are contained in the net symbol —, the faces which
that new constituent has in common with the adjacent polyhedra
of the octahedron group must define that new polyhedron. Now in
the original net (O, T) any vertex 7 is a point of concurrence of
six O, the centres of which are the opposite vertices 77; of the
six edges of the net of cubes from which (O, T) has been deduced.
So the six faces of contact of the new constituent with the six
polyhedra of octahedron origin lie in planes normal to the lines
OV’;, in the centres of these faces, lying at equal distance from
0. These simple considerations lead to three possibilities compatible
with the condition that the new constituent must admit vertices
of the same kind and edges of the same length: either the new
constituent is equal to the constituent of octahedron origin, or the
new one is the contraction form of the other, or the other is the
contraction form of the new one. But the first and the last sup-
positions are to be rejected. For the first would bring equality
between the two kinds of limits of the constituent of tetrahedron
origin which have been called original limits and limits of trun-
cation import, whilst the last is inadmissible as the constituent of
octahedron origin is no contraction form.

We now prove that the preceding result holds for any Zmpd. net
in 8,. If once for all we distinguish for short the constituent
of HM, origin as the first and that of Cr, origin as the second
we can extend theorem LXV by proving:

Tarorem LXVII. “Any /Zmpd. net has three different con-
stituents, none of which is u prism. The third is the contrac-
tion form of the second. So, if the first is Chy Crye - O,y G, HM,

and therefore the second Chiy—1 Gyt -+ + Gy —1 Ok —1 Cr,, the third
is CCLy—1 €y € 1 Ck 1 Cr,. In this form of the statement
- P— p

each of the three unequivocally determines the two others.”
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Proof. In the original N(/M,, Cr,) any two Cr, in contact
are either in edge contact, or in vertex contact, in other words
the contact of the highest order between two Cr, of the net is edge
contact. Now this contact of the highest order can only be annihi-
lated by separation of the Cr, i.e. by applying the expansion ¢, to
them. As this operation is excluded (as leading to a net with two
kinds of vertices) the edge contact between the polytopes of Cr, origin
is maintained, though it is chauged in character by the operations
e, 1 < k< n, contact by edge being replaced by contact of an
(D). -1 limit of edge import. This proves in the first place that there
is only room for one new constituent different from a prism, viz.
a new polytope with respect to the Cr, of vertex import; vertex
contact being annihilated in any net deduced from N(HM,, Cr,),
this third constituent always makes its appearance. Now we have
only to prove still that this third constituent is the contraction form
of the second; we prove this in two different ways, in the first
place by considering the contact with the second, in the second
place by considering the contact with the first constituent.

According to theorem LXVI here also the third constituent
is determined by the limits (/),_, of contact with the 2z adjacent
polytopes of Or, origin, the centres of which are the vertices of
a cross polytope with the centre of the vertex gap as centre. So,
here also, ¢f the 2z limits (/),_, are to determine a polytope with
vertices of one kind and edges of one length, there are three
possibilities: either the third constituent is equal to the second, or
it is the contraction form of the second, or it has the second for
contraction form. Here also the first and the last suppositions are
inadmissible for the reasons indicated in the case »=3. So the
theorem is proved.

We add the following second proof, which we consider even more
convincing, as a confirmation of the result obtained. In the notation
of the problem the limit of vertex import of Cuy Chy + + O, HM,

is — compare the proof of theorem LXIII — represented by

n—k, kp—k, 4 kg—1y ky

@p+1, 2p—1, ..., 33..3, 11..1),

n—ly,  kp—k, 4

C 2p ,2p—2,..., 22..2, 00..0),
or reversed

k2 - Ir1 lfi

ky by — iy kp—kp_q m—ky

—( 2p ,2—2,..., 22..2, 00..0),
i. e. —"cel‘.l_i e,,z_i. .(:‘kp_‘_1 ekp__| S(n)(gl/z). SO the limit (1)11—1 Of
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highest import of the third constituent is the contraction form of
the corresponding limit of the second constituent, i. e. the third
constituent itself is the contraction form of the second. Or shorter still:
by the reversion of the symbols the transition from (q, a,. . .a,_, 1-1)
to (a4 a,. ..a, o1 1) manifests itsclf by the diminution of the first
digit by 2, i.e. by the operation of contraction, leading to the
result mentioned in the theorem.

Remark. There is a characteristic difference between the three
groups of nets — ® the simplex nets,  the measure polytope nets,
“ the half measure polytope nets — as to the character of the con-
stituents. As we have seen in the preceding sections the simplex
nets admit exclusively principal constituents, i.e. neither prisms
nor prismotopes, whilst the measure polytope nets admit only fwo
principal constituents with cxception of the original net of measure
polytopes. Now in the case of the Zwpd. net we always find Ziree
principal constituents with exception of the original net (27, Cr,);
as soon as two of the threc constituents hecome equal to each other
we fall back on a measure polytope nct. This only happens for
» >3 in §,, as we shall see in the next article.

104. Fmpd. nets in S,. — Here we have to examine the eight cases:

] HM,, OCr|5..... e;es HM,, e e, Cr,
- S e HM,, ¢, Cr, |6 ..... e;es HM,, e e, Cr,
3. es HM,, e, Cr, | T ... ..e;e, HM,, e,e; O,
4. ... ..., e, HM,, e, Cr, | 8 ... ese5e, HM,, e, eye5 O,

Of these eight cases only four are new. The first is MNC), the
three equal groups of Cig being the groups of + HM,, — Hi,, Cr,.
The second case is ¢, M(Cy); as e, HM,= e, Cr, we find only two
principal constituents. The third case is ce, V(C\e); as es HM, = ce, Cr,,
the third constituent is equal to the first. Finally the fifth case is
ce, e, M(Chg); as ey e; HM, = ce, e, Cr,, here also the third constituent
is equal to the first. In the four remaining cases the three chief
constituents are different; so these cases are new. We represent
them in the following small table
I e lIM,, es Cr,, ce3 Cry, Prl, 20412 e; (2412, V2 , P2 ,
L eye lIM,, eeCr,, ceeCr,, Pi7], 283412 w [4+12, 2412, P2 ,
oege, My, e;eCr,, ceyegCry, Prl, 2834+ 1 2a; 44+12, 2412, 24172,
weaege, IIM,, e eqes Cry, ceyeyes Cry, Py, 234-1"2) i 64172, 44172, 24172,
enumerating the quadruplets of constituents and in condensed form
the net symbols; in latter symbols the immovable parts of the digits
are placed before the square brackets, whilst the sum of the four
integers a; is always even.
Verh. Kon. Akad. v. Wetensch. 1e Sectic DI XI No. 5. E1

Vz} ’
l/2] >
L2,
V2l
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In order to get a better insight into the constitution of the fourdi-
mensional /Zmpd. nets we tabulate the contact between the different
constituents. To that end we introduce first a short notation with
respect to the nets themselves and to their constituents and the
threedimensional limits of these. We denote the /Zmpd. nets in S,
by the collective symbol NVH, and distinguish them mutually from
each other by putting before that symbol the system of expansion
operations applied to the second constituent Cr,; so the four nets
found above are e, NH,,e, e; NH,, e,e; NH,, ¢, €, ¢, NH,. More-
over we indicate the four conmstituents of each net, i.e. the three
principal ones taken in the order of succession assumed in
theorem LXVII and the prism, by 4, B, C, D and we represent
their different limits (/); by means of subscripts in connexion with their
import; so A;, 4,, 4, will represent the limits of body, truncation,
vertex import of 4, whilst B;(¢ =38, 2,1, 0) and C,(4#=3,2,0)
will represent the limits of (/); import of B and of (/), import of
C, and Dj, D,, D, will stand for the bases of D and the upright
limits (/); of that prism which correspond to the faces of face import
and of vertex import of the bases. So we find the following small
table, where the numbers under the columns show how many
()3 of cach kind each polytope admits:

Net 4y | 4 | 4y | By | B, | B | B°| G | G | G | Ds | Dy |
egNH,| T T | — g! T | P | P, c | — | — c I r | Py !
eves # || 8T | ¢T | O | ¢T | P | P, | RCO| O | Py | RCO|l T | P
wes » | T |co| 7| co| By | By | tC ‘ T | = |w| 1| P
ey # | 4T | 20 ‘ tT | tO | P, | P | tCO| ¢T | Py | tCO || T .| Py i
8 8 | 8 16 | 32 | 24 | 8 | 16 | 82 8 2 4 |

This table shows that the contact between the four different
constituents is the same in the four nets, i.e. that we have in general

43 = Dy, 4, = B;, 4y= G, B, = Dy, By= G, (;, = D,

whilst B is in contact by its limits B; of edge import with other
polytopes B, this transformed edge contact being preserved. So the
different threedimensional limits cover each other two by two.

The contact between the different constituents can also be deduced
from the following small table in which we repeat the constituents
of the net in an other form:

Net c | B | 4 D
e VH, [[1111]V2|[1'111]V2[4[1111] {4 [111][1]V2
ees ,, |[1111], |[2111], |, [33811]],[811][1] .,

eyey » (11117, |[2111], |.[8111]],[111][1] .
eee,  ([2211], |[3211], |,[6811]],[811][1] ,,

we® ]S
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So from this table we deduce 4;= D; by remarking that the
digits of the first syllable of D are the last three digits of the
unique syllable of 4; in order to facilitate comparison of 4 and D
we have reversed the order of 4, B, C.

So we find 4, = B, (or rather 4, — — B;) as we get the same
form by placing the four digits of 4 between round brackets after
having taken the last unit with the negative sign and by placing
the digits of B, multiplied by V'2, between round brackets; etc.

105. Before passing to the case » = 5 we will put the last two
small tables of the preceding article on duty as to the general
_results they may suggest for » > 4.

We begin by fixing our attention on the extreme case of the relation
between the two constituents 4 and C, being governed in the case
es NH, by a vertex only. Here 4,, the limit of vertex import of
4, is still a vertex; so we have to accept for C the polytope deduced
from COr, which admits as limit C; of body import a vertex and
this is the eightcell ce; Cr,, The same remark holds for e, VH,
already, i.e. for the third of the four cases treated in art. 103.

But the first of our two tables, i.e. the table of contacts,
suggests a remark of much wider scope. We deduce it from the
fact that each constituent with three kinds of limits (/) is in contact
with the three others, whilst the only one with four different kinds
of limits (/); is in contact with the three others and with itself.

This fact suggests that in space S, we will want in all z different
constituents 4, B, C,. .., of which B only admits at most » different
limits (/),_, and all the others at moest » — 1. We have used this
suggestion as working hypothesis and found by its help the sixteen
Impd. nets of 8j; this was an easy task : as theorem LXVII gives the
three principal constituents 4, B, C and the prism D can be deduced
from them, the table of contacts shows immediately which™ limits
(/), remain uncovered and these limits reveal the character of the
fifth constituent. 1)

But there is an other method of deducing the new constituent,
much more capable of being extended to §,, viz the determination
of their coordinate symbols by transformation of the net symbol to

') It may seem in accordance with this suggestion that in the cases e, NH, and
e, e, NH, of S; we have found no fourth constituent i.e. no prism, though they require
the operation e, with respect to the two groups of HM, of different orientation, driving
these groups asunder. But this not appearing of the prism is rather due to the fact
that two adjacent HM, of difterent orientation are in contact by an edge only instead

of by a face, so that the separation intercalates a square instead of a prism.
T*
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new origins. We introduce this method by remarking that the
addition of the sccond syllable [1]7V'2 of the symbol of the prism
D in the last table of the preceding article has a deeper meaning
than might be supposed: in this form the coordinate symbol of D
is derived from the net symbol, and by examining how this process
runs in §, we easily hit upon its generalization for §,, if necess-
ary by the assistance of the knowledge of the fifth constituent in
S, found in the manner described ahove. So we indicate for any
net in 8, how the coordinate symbol of the constituents can be
derived from the net symbol.

In fig. 20 we represent by O (X; X, X; X,) the system of
coordinates and by the shaded pentagon with the axis of symmetry
OM a fourth part of the section of the plane O(X, X,) with the central
polytope B. Then OP, is the “period” p of the net and the point
Py of OX, lying at twice that distance from O is the centre of
an adjacent polytope C filling a vertex gap, whilst P, with the
coordinates 2p, 2p, 0, 0 is the centre of an other polytope B in
contact with the central one by a polyhedron of edge import.
Moreover P’ is the point 2p, 2p, 2p, 0 and P, the point all the
coordinates of which are 2p; of these P, corresponds in character
with P,, and P, with O and P,. So the midpoint Q, of OP, must
be the centre of a polytope in threedimensional contact of body
import with the two polytopes B with the centres O and 24, i.e.
of a polytope 4. On the other hand the midpoint Q; of OP; must
be the centre of the prism interposed between the two polytopes
A4 of different orientation with the centres @,, latter point being
the image of @, with respect to the space @, = 0 as mirror, as
these polytopes are derived from the two Z/3/, of the original net
({IM,, Cry) which were in body contact in that space z, = 0.

In this manner we find in general for all the cases in §; for
the coordinates of the centres of the adjacent polytopes

2p, 0, 0, 0, in the case of C ,
277 ’ 2/7 ’ 0 ] 0 T ”» ’ 5y AN Othel' .B s
p ’ ]1 ’ [) ’ P ’ ’ ”» E2] (3] A ’
p b [’ b ]) ] 0 ’ ’” 9 2. EE] D ’

whilst the upright edges of the prism D are parallel to the
axis 0X,.

Now we consider the casc e, e, e, ¥NH, in order to show how
the process runs. Here we have p = 5 4+ V’2, whilst the central
B is represented by [6 4+ V2,44 V2,2 4+V2,V2] So we
obtain C, 4, D successivey as follows:
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6 V2 ,44-V2,24V2, V2
1042ve, 0 , 0 ., 0

— @IV ,41Ve,2FVe, V2
furnishing the polytope [4 +V'2,4+4-V 2,2 4 V2,V 2],i.e.C;
64V2 ,44V2,24V2, V2
54Ve ,54V2,54Ve, 54+ V2

subtr.

] ——1 . —3 _5subtr.
leading to the polytope — 1[5311] , i.e. 4;
64+Ve ,44+V2,24+Ve, V2]
5+Ve ,54Ve,54Ve, 0

1 , —1 , =3 ,[V?]
giving finally the polytope }[311][V'2] , i.e. D.

This will be clear, if we only add one word about the factor
1 before the symbols of 4 and D, viz. that we want this
factor in order to have symbols representing polytopes with one kind
of vertex and one length of edge.

106. Hmpd. nets in S;, — We have determined the sixteen Zmpd.
nets of §; by means of the two methods given in outline in the
preceding article.

The results of the first method are put on record in Table X.
This table is divided by vertical lines into eight parts; of these
the first contains the symbol of the nets, the last two their consti-
tuents and the five others the limits (/), of each of the five
constituents 4, B, C, D, E. In the construction of this table we
started from theorem LXVII enabling us to register in the last
part but one in the columns with the superscripts 4, B, C the
character of the three principal constituents and to add under D,
in the cases where ¢, appears amongst the expansion symbols of the
net, the prisms on the polytopes of polytope import of 4 as bases.
After having finished this task we have inscribed in the columns
with the headings 4,, 4,,...D,, D, the limits (/), of these consti-
tuents 4, B, C, D, taken from the tables given in the preceding
sections of this memoir; this will be clear if we add the remark
that the notation D, D,, D, for the limits (/), of D differing from
the bases D, has been chosen in accordance with the consideration of
these bases as deduced from ZZ#/,. This second task having been
performed we can formulate the contact between the constituents
4, B, C, D; we find generally:

4, = 4, (if e, is absent) and 4, = D, (if e, is present),

4=B,,4=0C,B,=D,,B, =B, By= G, ;= D,.
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So 4,, B,, C,, D, remain uncovered, i.e. have still to be covered
by limits (/); of Z. We represent these limits (/), of & by Z,,
EB,, E,, E,, indicating by the subscripts the constituents with which
they are in (/), contact and repeat these limits in the column with the
headings Z,, E,, ,, E,. Finally from these limits we deduce the
constituent Z itself, see the last column of the seventh part of the
table. We remark that this fifth constituent is a prismotope, the
two components of which are HM; (or e, HMj3) and p, (or py); it
presents itself if and only if either e;, or ¢,, or both operations
are present.

In applying the second method to §; we have to extend the
M of fig. 20 with the broken line O P, P, P; P, of edges leading
from O to the opposite vertex P, into an M°” with O Py P, P; P, P;
as corresponding broken line of edges from O to the opposite vertex
P. 1f we represent the midpoints of OP;, OP,, O P, respectively
by Q;, Q,, Q; we find for the new origins leading to the consti-
tuents C, 4, D, F the points P;, Q;, Q,, Q; with the coordinates

2p, 0, 0, 0, 0
2 2 y Y2 2
? V2 V2 Y2 0
[/) ﬁ, P, 0’ 0

So in the case e, e;e, NH,, i.e. [3'2'1'1'1]V'2 withp=5+ V2
the constituents 4, D, F are obtained by the three processes

64+V2, 44+V2, 24V, 24V, V2

54+V2,54V2, 54V, 54Ve, 54Ve
r , —1, —8 , —s8 , —sp %
64+V2,4+V2,24+V2, 24V, [V2]
54+V2,54Ve, 54Ve, 54Ve, 0
T, —1, —8 , —3 ,[ve "
64-V2, 44V, 24V2 [24V2, V2]
54+V2,54+V2,54Ve, 0 -

0
T, —1, —8 ,24V2, V2]

giving respectively 1[53311], $[8811][1]v'2, L [811][1'1]V2.
The results obtained in this way are collected in Table XI. To
this we have only to add a few remarks.

The processes used just now show clearly why the syllables

1[8311] and 4[311] of D and Z must correspond in digits with
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the last digits of 4 [53311], the symbol of 4, and likewise why
the other syllables [1]V2 and [1'1]V'2 must correspond in the
same manner with either of the symbols [8'2'1'1'1] and [2'2'1°1'1]
of B and C. Also why D must be a prism and Z a prismotope,
in connexion with the faculty of inverting the signs of V'2 in the
case of D, and of 24+ V'2 and V2 in the case of Z, these in-
version having no influence whatever on the distance of the vertices
obtained of the new origin which is to be the centre of the gap
filling polytope.

Moreover the processes themselves indicate under which circum-
stances the prism D and the prismotope Z present themselves.
If the symbol of B winds up in zero the second syllable of the
symbol of D is [0], i. e, the prism is lacking; but we know from
theorem XXXV that the last digit of the symbol of B s zero, if
the operation ¢, has not been applied to B. Likewise, if the last
two digits of the symbol of B are zero, the second syllable of
F is [0,0], i.e. there is no prismotope #, and the last two
digits of the symbol of B are zero, if neither e; nor e, has been
applied to B.

Finally it is evident why we cannot add a fourth process to the
three considered ones and subtract 54+V2, 54V2, 0, 0, 0.
For then we would get 1, —1,[2+4+V2,24V2, V2], leading
to $[11][1'1'1]V2, i.e. — as 4[11] is an edge instead of a
face — to a limiting body and not to a limit (/),.

107. Hmpd. nets in S,. — It is easy to see how the processes
of the preceding article must be extended to S,, as the algorithm
always remains the sume and the number of the subtraetions has
to be augmented until only three digits of the subtrahend differ

from zero. So, if we indicate by A® the. constituent obtained by
n—k k

the subtraction of pp..p 00..0 we can formulate the general
result in the following theorem :

Tueorem LXVIII. — “In any net deduced from NH, we find,
besides the three principal constituents A4, B, C always present,
under certain circumstances one or more prismotopes 4% for k=1, 2,

.., #—3, which may be ‘called accidental constituents. The pris-
motope A® presents itself if — and only if — one or more of
the expansions e,_,,€,_,,4,€,_, have contributed to the trans-
formation of Cr, into B; the two syllables of its symbol are the
last » —# digits of 4 between square brackets preceded by 4 and
the last Z digits of B between square brackets.”
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So we find in the case B=[5'44'332221'1]V2 of 8,:

C = [4448322211V2
4 =1[97555838111]
4" = [755588111] [1V2

4% = ,[55588111] [1'1],,
4% = ,[5588111] [211],,
4% = [583111] [2'211] ,,
49 = ,[38111] [2'2'211] ,,
49 = ,[3111][322211],,
4P = [111][3'322211],

By applying this theorem we find immediately the sixteen nets -
of &§;, as they have been registered in the eighth part of Table X
with the heading “constituents in an other notation”. Moreover
Table XI gives the corresponding results for the 32 nets of §,.

F. Polarity.

108. By polarizing an z-dimensional /Ampd. with respect to a
concentric spherical space (with oc™~' points) as polarisator we get
a new polytope admitting one kind of limit (/),_, and equal
dispacial angles, to which corresponds the inversed symbol of
characteristic numbers of the original polytope. Moreover, if
3[ay, a5,...,a,_4,a,] is the coordinate symbol of the original
lmpd., this symbol also represents the limiting spaces S8,_; of the
new polytope in space coordinates.

The fact that there is no /mpd. proper in §; and §, implies the
corresponding fact with respect to the new forms. So, if by the
subscript 8 is indicated that space coordinates are meant, we have:
3111, =(4,6,4)=7, }1[311],=(8,18,12) =T with py-

ramids on the faces,
$[1111],=(16, 82, 24, 8)=M,, 1[8311],=(24,96,120,48)=271,
with pyramids on the cubes, etc.

109. Tarorem LXIX. “Any /Zmpd. in S, has the property
that the vertices 7; adjacent to any arbitrary vertex 77 lie in the
same space §,_; normal to the line joining this vertex 7 to the
centre O of the polytope. The system of the spaces §,_, corres-
ponding in this way to the different vertices of the Ampd. include
an other polytope, the reciprocal polar of the original polytope with
respect to a certain concentric spherical space, unless the chosen
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lmpd. be the cross polytope HM, of §, in which case all the
spaces 8y pass through the centre.”

The simple geometrical proof of this theorem can be copied from
that of theorem XL (see art. 66).

110. We have to add a single word about the reciprocation of
the Zmpd. nets. The results obtained here run parallel to those of
art. 68.

In general the system of vertices found by polarizing an Zwpd.
net is the combination of several groups of limits A/,%” of the
measure polytopes of the net N(J/,%), p being the period. These
groups are formed by the centres of the constituents B, C, 4,
A, .., A9, e

n

for B the even vertices of N(M,(21), represented by (2pay,. . ., 2pas), Sa; even,
1
n

n v odd " ” v, ” " " , Sa; odd,
1

n oA » centres of the A, of N(AM,(2M),

v A1) ” " v n limiting M, —1 of the M, of N(M,2r),

n A2 " " v on " My_o v w nw u ” s

d . @ . ,
n  fn=3) 4 " n ” s 3 w o onoon " "

In the case of the net NVH, itself only the first and the third
group are present; so in 8, we find then the net MC,,). In all
other cases we have to deal with at least three groups, the first
three. As we already remarked in art. 68 an other paper, also
destined to complement art. 39, will contain more ample develop-
ments about these reciprocal nets.

G. Symmetry, considerations of the theory of groups, reqularity.

111. We first determine the spaces of symmetry Sy,_, of HAl,
itself and afterwards those of any Zmpd. derived from it.

Case of HM,. — We have to investigate here how the reasoning
which led us to the spaces of symmetry of the measure polytope
is affected by the alternate truncation.

In the case of M, we found two possibilities under which the
space §,_, bisecting orthogonally the join 4, 4, of two vertices
A4y, 4, is a space Sy, _, of the polytope, i.e. that 4, 4, is either
an edge or the diagonal of a face; in the first case we got the »
spaces @; = 0, in the second the n(z — 1) spaces z; + #,=0. Now
on the one hand it is immediately evident that the alternate trun-
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cation behaves itself differently with respect to these two groups
of spaces: it destroys the symmetry property of the first and pre-
serves that of the second. But on the other hand we have to
examine whether the alternate truncation does not enervate the
force of the argument by means of which we excluded the cases
that 4, 4, was a diagonal of a limiting A/, of the £, for 2> 2,
i. e. that the projections of the two regular simplexes S(%) of the
vertices of A/, adjacent to 4; and to A4, on the space normal to
4, A4, are of opposite orientation. Indeed this argumentation has
to be revised, as the two simplexes S(4) disappear altogether by
applying the truncation and are replaced as groups of vertices of
HM, adjacent to A4, and to 4, by the two sets of } £ (4—1) ver-
tices of M, lying in the following layers S, , normal to 4, 4,.
But the two polytopes') determined by these groups of vertices are
neither central symmetric and maintain the property of the diffe-
rently orientated projections, unless they coincide in the space §,_,
normally bisecting 4, 4, for £ = 4. So any space orthogonally bisec-
ting a diagonal of a limiting sixteencell of HAf, is an Sy,_, and
therefore K/, also admits two groups of spaces S8y,_,, the spaces
#; + @, = 0 and the spaces #z; + z, + 2, + 2, = 0. The number
of the former is always 2 (»—1), whilst that of the latter is
L+ n(n—1) (n—2) (»—38) for » > 4 and four for » = 4.

Case of the hmpd. derived from HM,. — From the structure
of the Zmpd. it is immediately evident that a space §,_, is an
8Y,_4 for an Zmpd. if and only if it is an Sy,_, for the A/, from
which the /Zmpd. has been dirived. So we have proved the

TaeoreM LXX. “Auy /Ampd. of 8, admits two groups of
spaces 8y,_s, viz. the 2 (n—1) spaces @, + 2, = 0 and the
3 n(n—1) (»—2) (n—3) spaces z; + z, + 2, + z,, = 0".

112. From theorem XLIII we deduce:

TueoreM LXXI. “The order of the group of anallagmatic
displacements of M, and of the Ampd. derived from it is 2" 22!
for n > 4”.

“The order of the extended group of anallagmatic displacements
of these polytopes, reflexions with respect to spaces Sy, _, included,
is 2"~ z!. In this extended group the first group of order 2"~*#!
forms a perfect subgroup”.

1) Compare for these polytopes: “The sections of the measure polytope Mn of space
Sp,, with a ceatral space Sp,_, perpendicular to a diagonal”, Proceedings of Amster:

dam, vol. X, p. 495.
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The proof of this theorem is to be based on the remark that the
order of the group must be half of that of theorem XLIIT on
account of the alternate truncation.

113. As to the application of ErnTe’s scale of regularity we have
to use theorem XLIV. We illustrate this, sticking to the original
scale, by the following examples.

a). Fzample 1[11111]. Here we find one kind of edge, one kind
of face, but two kinds of limiting tetrabhedra, viz. tetrahedra of
body import and tetrahedra of truncation import. So the contribu-
tions to the numerator are 1 from each of the three groups of
vertices, edges faces and } from the limiting bodies. So the frac-

-I-%

tion is ——=2
10

b). lo.z-ample 3[553111]. Here we find three different groups of
edges (5, 3),(3, 1), 4[1, 1]. So the fraction is 1 —(ij_ +_ 1

¢). Ezample ¥ cmM,, Cry). This simple net admits one kind of
edge, one kind of face, but two kinds of limiting tetrahedra, as a
tetrahedron of body import of HAM; is common to four HAM;, a
tetrahedron of truncation import to two HAM; and one Crs. So we

3+%
find 12

d). lm'ample e e; NH,. Here we have to deal with three groups
of constituents represented with their frames in the table

. [32100072... (2p, s 2pg s 2pg y 20, 2p5 s 2pg ) 5,Zpeven,
c.. [22100012... (22, .2 .25 .2, 2 2 )3, Zpodd,
{555311] oo (2o 1,241, 29541, 20,41, 29+ 1, 2 - 1)5.

So through the vertex 6, 4, 2, 0,0, 0 pass

6, 4 2 0, 0, 0].....B
[10+4,104+6, 2, 0, 0, 0]..... B,
[10+4, 4, 2 0, 0, 0]..... C

—3[ 541, 5—1,5-3, 5—b, 5—b, 5—b]..... A,
3 5+1, 5—I1,5—3, (—5+5, 5—b, 5—D)]..4, 4, 4,
_"%[ 5+1’ 5_1’ 5—3’ (—-O—|—5 —'5+0’ 5_5)] . Ay, Ag, 4

- 3 541, 5—1,5—8, —54-5, —5+5, —5+b]..... A,.

Now the edge (64)2000 belongs to all these polytopes with
exception of C, 6(42)000 belongs to all with exception of B,,
whilst 64(20)00 belongs to seven only. So we find three kinds of .
cdges and the fraction is 3.
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. . . .7
itself admits a regularity fraction -

Remark. Only the HM, 5,

n

all the Zmpd. derived from it a fraction %

As a rule the net NVH, admits the fraction — and a net

7
2(n+-1)
3
241y

derived from it

Groningen, December, 1912.
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LIST OF POLYTOPES DEDUCED FROM MEASURE POLYTOPE AND CROSS POLYTOPE. Table IV.

n=3
6 12 8
0| = ce, O [111] ( 8, 12, 6) 1 2 - et 1
e C= 0|= cey e, O [ 1'1"1 ] (R4, 306, 14,) % Y2 - Vs iy 1
e,C= RCO | = &0 | [111] (24, 48, 26,) 1 P " pa 1| 21
eel= I00)] = e e, 0 [ 211 ] (48, 72, 26,) 1 Ps A Pe 2 3,1
e, C= (0| = ce, 0 | [110]v2 (12, 24, 14, 1 P = P 1" | 1 2 |1
cgC= 0= 0 | [100]v2 ( 6, 12, 8, i — — s 1| 21 1
ceye, C— 10| = e 0 | [210] V2 (24, 36, 14,) 1 " — P 2| 3,1 3|1
n =4
8 24 32 16
ol = ces Co | [1111] (16, 82, 24, 8, 1 C I _ 1
e G| = ce, e5 Cig [1'1'1'1] ( 64, 128, 8b, 24,) 2 ic s — 7 1’ 1
0 C | = cepey Cg | [1/1'11] ( 96, 288, 248, 56,) 3 RCO — P, 0 V| 21
e C | = e Cs| [1'111] ( 64, 192, 208, 80,) 3 C B, A T '] 38,2,1
e O | =  ceeen G| [22°11] (192, 384, 248, 56,) 3 1CO — P, 4T 2 | 8,1
0,6, Cy | = eses O | [21 11 ] (192, 480, 368, 80,) 3 1« P, P, co o | 4,21
o I | == eresCo | [2111] (192, 480, 368, 80,) 3 RCO P, Py 4T 2 | 5,81
bee G| = eeeCe| [3211] (384, 768, 464, 80,) 3 1C0 P, P, {0 3| 631
ey G | = ce, Cg | [1110]V'2 ( 82, 96, 88, 24,) 1 co — — T 17| 1 3| 2,1
cey Gy | = Cu= ce, Cp | [1100]V/2 (24, 96, 96, 24,) 1 0 N 0 1| 2,1 2 |1
oy O | = Co | [1000]V2 (8, 24, 32,16, 1 — - — 7 | 8,21 |1
ceye, C, | = cerey Cg | [2210] V2 ( 96, 192, 120, 24, 3 10 7 2| 3,1 5 | 3,
ce e, G | = e Cio | [2110]V2 ( 96, 288, 240, 48)) 3 co F—— co o | 49,1 |4]oe
oy g T | == e Co | [2100]V/2 ( 48, 120, 96, 24,) H 0 — — gy | 581 |[3]1
i, 0ty O | = ere, G | [3210]V2 (192, 384, 240, 48,) 3 10 P, — {0 3’| 6,31 |6]s,
n=25
10 40 80 80 32
. | = e Cp | [111117 )¢ 32, 80, 80, 40, 10)] 1 o — — — — |1
& By | == cese, G | [U1'1'11] | (160, 400, 400, 200, 42;) | e G — @ — — sy 1] 1
Bl | == ceyer G | [ 1171 17 | ( 820, 1280, 1520, 680, 122,) | & 0,G — — P, eSO |1 21
es Co | = cepe, Gy | [11'1 117 | ( 320, 1440, 2160, 1240, 202,) | 2 G — 4;8) Py e 80| 1| 821
e Co | = e Cy [ [U1 1117 [ (160, 640, 1040, 800, 242,) | & G P, (4;3) P, 5G| 1] 48,21
ere, Gy | = ceyege, G | [°2°2°11] | (640, 1600, 1520, 680, 122y | 4% e GG — — Py ey 8(0) [ 2 3,1
ereyCo | = cepee, Gy | [22°1°1°17 | ( 960, 8360, 3760, 1560, 202)) | & ee,C, — (8;8) P, 680 | 2| 421
ere, Gy | = eses o | [211 1717 | ( 640, 2240, 2960, 1600, 242,) [ 3 e, G Po (8;8) Py e85 | 2| 5321
ere Co | =  cerere, Gy | [2721°1 1] | ( 960, 2880, 2960, 1240, 202,) | % 0,0 — (4;8) Py coe,85)| 2| 5,81
exe, C | = erey O | [211°1 17 | ( 960, 3840, 4720, 2080, 242;) | 6,C Puw (4:3) Poo  e,805)| 2| 6,4,2,1
ese, Co | = eres G | [27171117 | ( 640, 2240, 2880, 1520, 242,) | 43 eC P, (4:6) P, e 8®) | 2| 7,581
ereyes Co | = ceeeqe, o | [373° 21717 [ (1920, 4500, 4240, 1560, 202) | &5 | erees G — (858) P ee,83)| 8 | 63,1
erege, G | = erese, Coo | [32°2°11] | (1920, 5760, 60005 24005 242;) | 75 e,e,C Peo (8;8) Peo ee8OB)| 3 7,4,2,1
ese,Co| = erese, Cn| [32 1117|1920, 5760, 5760, 2160, 242) | & | eeG Po (8:6) Pr  ees® | 3| 8581
rese, O | =  erese,Co | [321°11] | (1920, 5760, 5920, 2320, 2429 | 3 eyes G Puoo (4;6) P e85 | 3| 9,631
eieree, Co | = eresene, Cn | [432° 117 [ (3840, 9600, 8160,02640,,242) | 5 | eere,Co Proo (856) Po erene, 8(5) | 4| 10,6,8,1
ce, G | = ces C | [11110]V/2 | (80, 320, 400, 200, 42| 2 gl — @ — se 17| 2 4| 8,2
oty Gy | = ce, Cyy | [11100]V/2 | (80, 480, 640, 280, 42, | 1 0, G — — —  e8G]|1| 21 3| 2.1
oty Oy | = ce, Gy, | [121000]v/2 | (40, 240, 400, 240, 42, | 1 e, G — — — oqg8G)[17| 3,21 2| 1
ot G | = c, | [100007v2 | ( 10, 40, 80, 80, 82)]| 1 e e s 85y 17| 4,8,2,1] 1
ceyey Cp | = ce,e, Gy, | [22210] V2 | ( 820, 800, 720, 280, 42)| 3| iz — — — eSG) | 2| 81 7| 5,3
ceyey G | = ce,es Coy | [22110] V2 | ( 480, 1920, 2160, 8405 1229 | % ceye;Cg — (4;8) — e 80B) 2| 4,2,1 6| 4,2
ceye, G | = e G, | [21110] V2 | ( 320, 1440, 2160, 1200, 162,) | ce, 0, Py (A;8) — e85 | 27| 5.8,21] 5| 38,2
cese, o | =  cepey Gy | [22100] V2 [ ( 160, 480, 560, 280, 42) | & | cmeG — — — cqe,8G)| 2| 53,1 5| 31
ot 2 Oy | = e Coy | [21100] V2 | ( 240, 1200, 1520, 640, 82 | @ Py  — — e,806)| 2] 6,4,2,1| 4| 21
eesey Cp | = e, Gy, | [21000] V2 | ( 80, 280, 400, 240, 42) | % ces o — —_ — e 8S(B)| 2" 7,6,3, 1| 3] 1
ceeres G | =  cegeyes Gy | [83210] V2 | (960, 2400, 2160, 8405 122y | 35| ce e,esC;, — (4;8) — e e 8(B)| 3| 6,3,1 9] 6,38
ce, esey Gy | = eses Gy | [32210] V2 | (960, 28805 2960 12005 162,) | 155 ce,e, o Py (4;8) — ee;80B)| 8| 7,4,2,1] 8| 5,3
cey o5 €, Cyp | — e e Gy | [32110] V2 | ( 960; 3360, 3680, 1440, 162) [ & | cee G Poo (4;6) — e 80)| 87| 8,581 7| 4,2
cesese; Cpp | = ere, Oy | [82100] V2 | (480, 1440, 1520, 640, 82 | 1% ceye3 G Py — — e S8BG)| 8| 96,381 6| 3,1
ce,e,e5e, Cpp | = e, ee; Cyy | [43210] V2 | (1920, 4800, 4160, 1440, 162,) | 35 | ce e;es G Py (456) — eje,e38(5)| 4°110,6,3,1[10] 6,3
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MEASURE POLYTOPE NETS IN 8; AND 8,

Jo

:l 0 0] V2e=20

:1 1 0] V2= CO
:2 1 0] V2 =10
[1 ] 1] = C
:1'] 1] = RCO
:2'1'1] = ¢C0
il 0 0] V2=20

:2 1 0] V2 =1¢0

[1 1] [1 0] V2= (pas pu) = Gy

[10] V2 = (ps; 2a)
L O] VE= (245 pu) = Gy
10] V2 = (ps; p)

= (pg; pu)

= (ps: Ps)

]
J
]
%lj = (P85 2s)
] = (ps; Ps)

[10] V2 [10] V2 = (p; p) = Gy

= (pu; p) = Cg

= (pi; ) = Gy

=8
»p D (D
r 1 1
cey ey 2 P/
cey ey 2 2
cey ey ey 3 3
ey r. 1 1
e, ey 3 3
ey €6 65 8. p. 2 3
ce, 1 2
cey ey 8. p. 1 2
n =4
J1

[1][100] V2 = P,
[17[110] V2 = P,
[1][100] V2 = P,
[17[110] V2 = Pgp
[1][210] V2 =P,
[1][210] V2 =P,

[1][111] =P,
[1][111] =P,
[1][1'11] = Pueo
[1][111] = Py
[1][111] =P«
[1][211] = Puo

1

3|17
3| 20
3] 2l

1

—g- ?2bis
3| 24
% 18
1] 14

Jo po Dy Dy Dy (s
» |1 ]1]1]|1
[1000] V' 2= ce3 = Cyg|cese, 212 |2|2]|+
(1100] V2= ce, = Cy|ceye, 212 (3|38
[1110] V2= ce cey ey 212 (44|
[2100] V2=ceye3 cey e; e, 2 44|38+
[2110]V2=ce, ¢ cepese, |s.p |2 8|56 |4+
[2210] V2=ce e, cey ey e, 218|544
[3210]V2=ceje,e3 |cere,eze|s.p.| 2 |8 |5 | 4|7
1111 =1 & ro 1110
[1'111] =& ey e, 2135 |5+
[1'1'11] = ey e, s.p.| 22|43
[2'1'1 1] = g & ey 656, 2 147|567
[2'11'1] =@ & e 658, s.p.| 218|437
[3'2'1'1] = ¢ e e eresese, |s.p | 218|538 ¢
[1000] V2 = ce; = Cig | ces 12212
[1100] V2 = ce, = G |ce, rl1l1]1]1
(2100] V2 =ceye5 . ce, ey 218 |3 |2]|+
[2110] V2 =ce, e cey ey s.pl1 2122
[8210] V2 =ce,e,e5 |cereres |s.p.| 2| 2|2 | 2]

Table V.

45 (0, 2lcg), 1, (Alegs)
44 (¢, cogy, 1C0s,), 25 (€, 27C04,)
15 (¢, 2£coug), 25 (c, teoy, o), 13 (2Ecogg, T0gg)

1, (e, 21”843; legs) , 23 (c, 7):44, rcoy), 23 (]1843: lesg, 7C03,)
25 (psl;e, Puss 1e0ig), 25 (Pug, LC0gs, £C04g)

83 (2003-’1: 0)
44 (2405, 2t04;)

0 _ o8 =

S e e s

oo oo oo oo

o
=]

oo oo
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NETS OF MEASURE POLYTOPE DESCENT IN &.. Table VI.

Is I I3 g 1 Jo P Do U (D (D
1|[11111]= M, . | 1
e |[1'1111]= ey s [10000] V2 = ce, M, 1 9 | 1
& | 117l 1]= e . [1][1000] V2 = P, [11000] V2 = cey 1| 2 | 1
g | [TTFTI11]= e [11][100] V2 = (z; O) [1][1100] V2 = P, ., [11100] V2 — ey » 1| 2 | 1
g |[P1111]= & [111][10] V2 = (C;p) = M, | [11][110] V2 = (p,; CO) [1][1110] V2 =P, [11110] V2 = ce, » 1 2 1
e |[221'1]= &y 8y 5 [1][1000] V2 =P, . [21000] V2 = ce, e, 1| 2 1
€y C3 [21 2, ].’ 1'1 ] == ey ey [1/1] [].00:' \/2 == ([}8; 0) [1: [1100] \/2 = Pce,C,, [2[100] \/2 — ce, e, ,, 1 9 iﬁ
e | [21'1Y] )= ey 0y [1'1'1][10] V2 = (¢C; py) [1'1][110] V2 = (ps; CO) [1][1110] V2 =P, . [21110] V2 = cey e, s, 1| 2 1
ee|[221'11]= e ey s [11][100] V2 = (p; O) (1][2100] V2 =P, . [22100] V2 = ce, ey ,, 1 | 2 1
e |[21'1'11]= ey e, s [1'11][10] V2= (RCO; p,) [11][110] V2 = (p,; CO) (1][2110] V2 =P, [22110] V2 = cey ey 1| 2 1
ey |[21111]= e . o [111][10] V2 = (C;p) = M, | [11][210] V2 = (p,; 10) (1][2210] Ve =P, . ¢ (222101 V2= cee5 ., 1] 2 1
Goes |[38211]= eee ., [1'17[100] V2 = (z,; O) [1][2100] W2 =P, [32100] V2 = ce,epe, . 1] 2 1
Gee |[32211]= eee . [2'11][10] V2 = (4C0; 1) [1'1][110] V2 = (; C0) [][2110] V2 =P, .. [32110] V2 = ce,e;e, ., 1|2 1
bat | [FETT 1] = eeh » [1'1'1][10] V2 = (/C; ) [1'1][210] V'2 = (z4; £0) [1][2210] V2 =P, . (322101 V2 = ceepe o, 1| 2 1
Gese, |[32111]= eee ., [1'11][10] V2 = (RCO; p) [11][210] V2 = (p,; t0) [(1][3210] V2 =P, vve | [33210] V2= ce e, ., 12 1
aeseye, |[43211]= eerere [2'1'1][10] V2 = (1C0; p,) [1'1][210] V2 = (#5; £0) (11[3210] V2 =P, .oc |[48210] V2 = cee,er0, 1|2 i
[ [11111]= My |[[1111)[1]=Pg =M, [[11 1] [11]=(Cipd) =M |[[11][111]=(p;O) =M, |[1][1111] =P, =M, |[11111]= M| o | 1
g | [TTTTL]— e |[111T][1] =P, (1117 [11] = (C; p) [V1][111]=(z;0) [17[1111]=P; =M, [[11111]= e 1|2 | 1
e |[11111]= e, |[V111][1] =P, [1'1 1] [11] = (RCO; ) (11][111]=(p; ) =M, |[1][V111] =P, [(U1111]= e 1|2 | 1
cee |[22211]=  eae, |[22V1][1]= P, (2117 [11] = (CO; p,) [1'17[11 1] = (z; O) [1][F111] =P [21111]= e, 1|2 | 1
wee [[22111]=  ee. |[ZIVI][1]=P,.q [1'V1] [11] = (C; py) [11][11 1] =(p; RCO) |[[1][1111]=P.. [21111]= e, 1 2 | i
bee |[[21111]=  ee . |[1111][1]=P. g [1'11] [1'1] = (C; py) (V1] [ 11 1] = (p; £O) [1][1111]=P.q (211 V1]=  ee, |sp| 1|2 | L
oo |[[22111]= erey | [2111][1] = Py e, [1'1 1] [11] = (RCO; py) [11][1'1 1] = (4; RCO) (1] 11 =2 [22111] = e, |op| 1] 2 ' 1
aeee |[33211]= e, |[3211][1]=Proee |[211][11]=(t00;p) [11][ V1 1] = (ps; RCO) [1][2111] =2, .. [(32111]= eee. 1| 2 | 1
eoe e |[32211]=  coee, |[2211][1]=P .0 [2/1'1] [1'1] = (£C0; py) [T [1°1°1] = (mg 40 [1][2111]=P,.¢ [32111]= eee,, 1|2 1
aesese o | [43211]= cievene, » |[$211][1] = Prvee  |[211] [V1]=(C0;p) [11][21'1] = (; £C0) [1][321V1] =P, e |[#8211]— tate, |opl|1 ]2 i
ce, | [11110] V2 — ce, My [10000] V2 = ce, M, 11112 1
eep | [11100] V@ = cey [11000| V2 = cey 1 1 1 2 | 3
ceye; | [22210] V2 = cey ey [21000] V2 = ces ey 1 2 Y
cey ey | [22110] V2 = cey ey [10] V2[100] V2 = (p; 0) [21100] V2 = cey e, 1|2 | . .
cece, | [21110] V2= cere, ., [110] V2[10] V2 = (CO;p) | [10] V2[110] V2 = (s; CO) [21110] V2= ceje,n |sp |1 | 1|2 1
ceye5 | [22100] V2 = ce, ey ,, [22100] V2 = cesey,, |sp.| 1 | 1| 2 1
cepe,es | [83210] V2= ceey ey, [10] V2[100] V2 = (p,; O) [82100] V2 = ce,eye, o, 1| 2 L
ceyeye, | [32210] V2= ¢e 650, o [210] V'2[10] V2 = (£0; p,) [10] V'2[110] V2 = (p,; CO) [32110] V2= ce e5e, ,, 1|2 1
ceyeyeye, | [43210] V2 = ceyeyeye, [210] V2[10] V2 = (£0; p,) [10] V2[210] V2 = (p,; t0) [48210] V2 = ce,ere5¢, ,, |s.. ] 1 @ 2 | | 1




CROSS POLYTOPE NETS (IN 8§,). Table VIL

-
o ke

g
1 1 o2 o, 0, 0] i 72 % & e,
2 A el 4, 2, 0, 0] - cey |[ 2, 2, 0, 0] ceg €, |
3 € e[ 4, 2, 2, 0] P, | [ 2; 0][ 2, 0] ce, | 4, 2, 2, 0] cey e
4 e e [2+ V2, Ve, Ve, V2] 3:3)|4—1Ve —3—1Ve, —3—1VY[ V2]|P, |3 V241, Ve—-1][ Ve, V2] ce [ 3V, V2, Ve, V2] ce, e, |
G42Vve, —24+2Ve, —24+2VY 0 [ 1, 1] 2Vve 0] [ 2V, 2V2, 2ve, 0]
5 ey ey e el 6, 4, 2, 0] P, | 2, 0][ 2, 0] ceyeqll 6, 4, 2, 0] cegeye,
o ee| eel[4+V2 24+V2, Ve, V2] 3;6)|]@—LiV2, —iV2 ,—2—1V9[ V2]|P, [ V2+1 V2-—-1] V2, V2| ceel[24+3V2 24+ V2, Ve, V2| ce e el
@+2ve, 2ve ,—2432VY 0 [ 1, 1] 2Vve, 0] [24+2V2, 212V, 2V, 0]
7 epeg| epeg|[44+V2 24 V2 2+ V2, V2] 3:8) 44+ V2, 24 ve, 24+ vl V2J|P. [4[ 24+ Ve V2 24 V2 V2| e [4+3VR 2+ V2,24 V2 V2R el
4+2ve, 24+2Vve, 242V2 0 [ 2, 0][2+2Ve 0] [44+2V2, 242Ve 2+2Ve, 0]
Bl eepes| e epe|[6+V2 44+ V2, 24 V2, V2] 3;6)|@—+ V2, —1iVve ,—2—3Vvey[ V2]|P. |$[2+ Ve V2 ]2+ V2, V2llee e,e,|[6-+3V2 4+ V2,24 V2, V2l geeld
@4+2ve, tve ,—24+:V2 0 [ 2, oj[24+2Ve 0] [64+2V2 44+2Ve 24+2Ve 0]
9 e, 1|[ 2, 0, 0, o]|P, |G—1Ve, —3—1Ve,—3+—3Ve, —1—1V2|B;3)|4t—2V2, —3—%V2,—3—2V2 0 [P |§[ V241 V2—1] 0, 0 [ 2V 0, 0, 0] €|
G+ive,—i+ive,—14+1ive,—1+4+1vY G+ive,— i+ive,—34+{VY[ V2] ( L =Dl V3 Ve [ Ve Ve, ¥a, ¥
10 e, e e |[ 4, 2, 0, 0)|Pr|G—1iVe, 1—3iV2,—3—4Ve, —3—-1V2[B;6)|@—2Ve, —2V2 ,—2—2V2 0 [Py |§[ V2+1, V2—1] 0, 0 eg|[21+2V72, 2, 0, 0] e e4| 10
G+ive, 141V, —3+1iVve, —34+1VY @+1ve, i1ve ,—24+1vy[ Vel ( 1, — 1 Ve, V2] 24+ V2,24 V2, Ve, V2]
11 ey €, ey |[ 4, 2, 2, "0]|Pel@—LVe, —tV2 , —iVe ,—2—-1Vval@;®|¢—2Ve,—2—32V2,—3—2V2 0 I Pro|d[2+ V2 V2 ][ 2, 0] ey [41+2V2, 2, 2, 0] €y 4|7
@+1ve, Ive | 1ve ,—24+1VYQ) G+ive, —2+1iVve, —3—1VY[ V2] [ 2, 0j[e+ V2, V2] 44+ V2,24 V2,24 V2 V2]
12 eg ey e|[24V2, Ve, Ve, V2P (G—iVe,—1—1Ve, —1—1V2,—1—1tVY|6;8)|¢Et— V2, —2— V2,—%2— V[ V2P, [$[2V2+1 2V2—1][ Ve, V2] e |l BV, Ve, Ve, V2] AR
G41ve,—i4+3vVe,.—1+1ve.—141ve G4 ve,—i4 Ve, —i4+ VY[ V2] ( N — [ 8Ve, V2] [ 3Vy, 3Ve, 3vVe, V2]
( 2 e —3 2ve] 1[ ve41, ve—1][ 2Ve, 2Ve] [ 4V, 2V'2, 2V'2; 2V2]
131 eee e 6, 4, 2, 0)|Po|3—1V2, 1—1V2,—1—1V2,—3—-1V2[E3;6@—2Ve, —2V2 ,—2—2V2) 0 |Puo|}[2+ V2 V2 ][ 2, 0]] e e|[6+2V2, 4, 2, O] ee5ey
Gf+ive, 141ive,—1+1Ve —341VY @+1ive, lve ,—241VvYy[ V2] [ 2, 0][24+ V2, V2] 6+ V2,44 V2,24 V2, V2]
14 e ege| e el[4+V2, 24+ V2, Ve, Ve|Pr G —1Ve, 1—1Ve,—3—1Ve,—3—L1VR[6:6|e— V2, —Ve ,—2— V[ V2]|P, |$[2VRe+41 2V2—1]] Ve, V2]l eell2+5V2 24 V2, Ve, V2]l eee
@++ve, $+4Ve,—i4+4Ve,—i1+3VE @+ V2, Ve ,—24 V[ V2] ( 1, — D[ 8V V2] [2438V2, 2 3V2, 3V2, V2]
( 2 , 0 ; —2 H[2V?2] i[ ve+1, V2—1][ 2 V2, 2V2] [24+4V2 242V, 2V, 2V'2]
15| eyepe,| epe|[4+VE 2+VE 24V VE|Pole—L Ve, —iVe , —1Vve ,—2—31v|6;9)|d— V2,—2— V2, —2— V[ V2]|Py|i[2+2V282Ve 24+ V2 V2| ee|[4+5V2 24 Ve, 24 V2, V2| eee
@+1ve, 1ve 1ve ,—241Vv9) G+ v2,—% Ve, —2i4 V[ V2] [ 2, 0][2+3 V2, V2] [4438V2 24 3V2e 243V, V2]
«( % — . —2 ) 0 124+ V2, V2 1242 Ve, 2V?2] [4+4V2 242V2, 242V2, 2V2]
16| e, eye5e,] e eye|[64+V2, 44+V2 24V VP, |[8—FV2, 1—}V2,—1—1V2,—3—-1VY|©6;6)|2e— V2, — V2 ,—2— V[ V2)[Pe|F[2+2V22V2 ]2+ V2 V2]leee [64+5Ve 44+ V2,24 V2, V2l eee el
B+4V2, 1+4+4VE,—1-44VR,—8+4VY @+ Ve, Ve ,—24+ Vo[ V2] [ 2, 0j[2+3 V2, V2] (6 +3V2 4+ 3V2 243Ve, V2]
( 2 0o, —2 )[2ve] 12+ Ve, Ve J2+2Ve 2Ve] [6+4V2 44 2V2 212V2 2V2]
17 ce, ce, |[ 2, 2, 0, 0] cey |[ 2, g, 0, 0] oo
18 cey cey |[ 9. % 2, 0] ce2[ 4, 2. 2 0] ce,
19 eey ce|[ 2, 2, 2, 2] ce, |[ 3V2, Ve, V2, V2] ce,
[ 2V, 3V9, 2ve, 0]
20 ce, 6] ce; ey[ 4, 4, 2, 0] cey g |[ 6, 4, 2, 0] ce, €y
21 ce,e3| ce eg|[24+V2, 24 V2, V2, V2] 3:;3)|@—1Ve, 2—1Ve —4—1VY[ V2] ce,es|[24+3V2, 24+ V2, Ve, V2] ce, eg|+
G+2ve, 24+3Vve,—i42Vvey O (2+2V2 242V, 2ve, 0]
22 ceges| ceyeq|[2+V2,24V2 24 V2 V2] ce,e,|[4+3V2 2+ V2,24 V2 V2] ce, e |5
[44+2Ve 242Ve 24+2Ve, 0]
23| ce ey eglce ey e5([4+V2, 44 V2, 24 V2, V2] 3;8)|@—1Vve, 2—1iVe,—4—1VY[ V2] ce,egeg|[6+3V2, 44 V2,24 V2 V2] ceeely
@4 2Vve, 242ve, —44+2ve O - [6+2V2 4+4+2V2 242V2, 0]
24 ce, 1I[ 2V8, 0, 0, 0] 1
[ Ve, Ve, Ve, V2]
25| cepey| e[ 2, 2, 0, 0]|Po |A—4V2, 1—4V2,—1—1V2,—1—1V2|@;9)|@+ive, 24ive,—44+1vy[ V2] e|[2+2V2, 2, 0, 0] e |
Q+Ive, 14+1ve, 1+1ve,—141ve e Egigvg gié\/g_gié\/g))[ 0 ‘lle4- va.2+ Ve Ve, V2] ?
26 cey ey cey || 2, 2, 2, O0]|Pr |G—%V2, {—1%Ve, 1—1V2,—3_1VY e,|[4+2V2, D 2, 0] e |+
G+ive, f4+ive, 141ve —341vy [44 V2,24 V2, 24 V2, V2]
27 cey e, ceg|[ 2, 2, 2, 2] e |[ 5V'2, Ve, V2, V2] e,
3V2, 3V2, 3V2, V2]
[ 4Ve, 2V2, 2V'2, 2V2]
28| cepepe | ce e[ 4, 4, 2, 0]|Pr|@—1Ve2, 3—1vVve,—1_1ve 5 1vyl@3.8|@t+ive, 224Live,—44+1vyr V2] e e, |[6 42V, 4, 2, 0] e, e, |3
I R I RS B RS ik 21 ARl SF RSO S VS0 B RV 1A le b va e vaat+ va ovel
29| ce ege,| ce e|[2+V2, 2+ V2, Ve, Ve]lP, |A—FVe, 1—3Ve,—1—1Ve —1—-3VvYyl@G:8)|leg— Ve, 2— Ve, —4— V[ V2] e el[2+5V2 24+ V2, Ve, V2] e, e3|1%
A4+4Vve, 14+3iVve, —141Ve,—141VY) G4+ ve, :4 ve,—i4 vyl V2] [24+3V2e, 2+3Ve, 3ve, V2]
s, g, — 4 H[eve] [24-4V2, 242Ve, 2V'2, 2V'2]
30| ceyege,| cepe|[24+V2,24V2 24V V2P (d—+VE, (—1VE, 1—1V2, —3_1V9 e epl[44+5V2 24+ V2,24 V2, V2] e, e, |35
G+Live, f14+4ive, L4ive,—3i41vy [4+3Ve 24+3Ve 2438V2, V2]
" [44+4V2, 24+2Ve 24 2VY 2V2]
31|ce, ey ezeyfcey cuep|[4+V2, 44V, 2+ VR V2P, |E—FV2, $—1V2, —f—1V2 —3__1VYl6;8|@E— V2, 22— V2,—4— VI V2] e e,e|[64-5V2, 4+ V2,24 V2 V2] eee
G+3ve, §+iVve.—f+ive,—3+1VY e+ Vv, & Ve, —i4+ v V2] [6+3V2 443V2 24+3Ve V2]
) C oz, 2 — 4 H[2Ve] [6+4V2 4+4+2V2 24+2V2,2V2]

w0 e dw
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<l <l

<l

H
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82 €3 ¢4

Symbol of
coordinates
111l]= T
1[811]=1¢T
3[1111]=
+[8311]=
3[8111]=

016

el »

ey 1

%[5311]:06’16‘2 ”

1111111]
1788311]
1738111]
1[81111]
1[55311]
1[58811]
158111]
1[75311]

Characteristic numbers.
(4, 6,4)
(12, 18, 8)

(8, 24, 32,16)
(48,120, 96, 24)
(32, 96, 88, 24)
(96, 192, 120, 24)

( 16, 80, 160, 120, 26)
(160, 560, 640, 280, 42)
(160, 720, 880, 360, 42)
( 80, 400, 720,480, 82)
(480, 1200, 1040, 360, 42)
(480, 1680, 1840, 720, 82)
(320, 1120, 1280, 560, 82)
(960, 2400, 2080, 720, 82)

HMPD. IN 8, 8,, 8.

Faces.
P3 Py P
n=3
4| 3 Limiting polyhedra.
4| 1 42
7 0 Py 17 co | P, t0
32(12 16| 8
64| 4 324 8|1 164
64| 6| 24| 3 16/ 2 83
32 1| 24/ 1| 644 162 812
160,30 12030
480 9 1606 | 80 21803 12009
640/12 1240 6 120/ 31803 80| 3 806
480(18 | 240/12 240(12 240(18
320 2240 2|480/6 80| 1]200|5 804
800) 5720 6]3204 S0[1]240] 3|160/4| 802]160
640| 61480 61603 | 160 2 166 3| 803 803]| 80
320| 1|960] 4]800/5 160} 111602 24013 116014

Table VIII.

n =4
Limiting polytopes.

10 40 16 16
Ci | ® NOIE
e » |8 ce, §(5) 1 e u |2
cey 5, |2 ey o |l € » |38
Cig | 1| Py |4 §6B)1 eg , |4
ce e , |2 2é, € » |1 e 5 |2
& = 11| P & 5 |1 e g 5 |2
ceg, , |1| Pr o = |4 N
ee; 8 o (L] Par|l]| ¢ » |llejgeg » |2

I



HMPD. IN §,. Table TX.

Faces. Limiting polyhedra. Limiting polytopes (2),. Limiting polytopes (2),.

;ij;‘fﬁit;’: o T RCUITYP R—— Ps P4 Ze 7 0 P, C ir co B 10 G0 192 192 192 240 | 240 | 240 | 640 | 640 12 60 160 32 32
$(IT1111]1C 32, 240, 640, 640, 252, 44)| 640[60 640/80 1C6|  1865) 111111] | S(6)
$[333311]|( 480, 2160, 3200, 2080, 636, 76)|2560/16 640(8| 960/ 8| 4806 640(16 e 1, e, S(5) c e, 8(5) 1[38811] ¢ e, S(6) e
$[383111]|( 640, 3840, 5920, 3520, 876, 76)|4480/21| 1440| 9 11200 7] 9609]| 960 9 480|9 cey e ce . ce, ,» | Py 3[88111] ¢l & n
3[331111]|( 480, 3360, 7360, 6240, 1996, 236)|4480/28 | 2880|24 1920(16 | 4806 | 384048 1, 1, & ge, & |2P:] By (3 ;3) 1831111] 331)1[111] ce es
$[B11111]]C 192, 1440, 4000, 4800, 2344, 296)| 256040 | 1440(30 192040 288090 2 . I » I & 5 P, (3;3) 3I(11111) BHE[1111]](831)4[111] S(6) ey »
F[555311]|( 1920, 5760, 6560, 3520, 876, 76)12560 4| 1440 3| 2560/8]| 480| 1 960, 3 1600(10 48061 ce e, e &8 » | 688 » Po 1[565811] B8 G o & By w
+[553311]|( 2880, 12960, 18240, 10560, 2636, 236)| 7680 8| 864012| 19204 960/2 576012 960 4| 96041920 8 e » ey s B u &8 »| Pyl|BBy (3:3)8;6)]4[58811] (553)L[811]] ce ey o e e .
$[533311])( 1920, 9600, 16800, 12480, 3656, 296)| 7680{12| 720015 1920|6 | 1440 3| 9603 [ 672021 1440, 9 1920(12 2¢ , & e ceg o | Pr|2Pp [4P;(8:3)(3;6)]4[38811]|(33)1([3811] (533)4[311] ey e ey
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