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Analytical trealment of the polytopes regularly derived 
f'rom the regular polytopes. 

Section 11: POJ,Y'l'OPES AND NE'rs DERIVED PROM TUE MEASURE POLYTOPE. 

A. The 8!/IJlboI Ol coordillate8. 

46. 'fhe distance r between two points P, P', the ordinary 
rectnngular coordinateR of which are (.L.i , f,L,2" •• , f,L"j and f,L,'t, f,L,'2' •• , f,L,'n 
is represented by the formulo. 

ti 

r? = L (f,L,i - f,L,'i)2 • •••• • • • ' ••••••• , 2). 
i = i 

Now we repeat here the question of art. 1: 
"Undp,r what circumstances wiU the series of points obtained 

by giving to the set of cOOl'dinates f,L,., f,L,t. •• .. , f,L,,, a deterlllillate 
set of values taken in all possible permutatiolls form the vertices 
of a polytope all the edges of which have the same length, say 
unity?" 

The answer is nearly the same as that given in art. 1: 
"If the n vallles at, a"!., • . . , a,. are arranged in decreasing order, 

so that we have 

01>a2>'" >a,.çak+t?: . . . >an , 

the diffel'cncc ak - ak +. of' nny two adjacent vnlues must be either 
l V2 or zero." 

'fhe proof runs on the same lines as that given in art. 1. The 
geomet.rical result eau be stated in. the following general form: 

"u nder the cond itions stated, the polytope the vertices of w hich 
are represented by the. symhol 

(a., a"}. , a;~, ... , a/l) 

IS thc same as thnt obtained in thc flrst section for n - 1 and 
ak - ak + 1. eitller one or zel'O. It is a derivative of the regllJar 
simplex the vertices of which determine on the n axes OXj of 
cool'dinates positive segments OAi' (i = 1,2, ...• n), of the same 

ti 

lellgth ,,= Lat . 
• 

1* 
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This simple result, in close connection with the new deduction 
of fOl'lnula 1), shows us that we shall have to enlarge the scope 
of our symbol of coordinates in order to find something new. 

47. We remcmber that the symbuis [~-, i, iJ alld [t V2, 0, OJ 
represcnt the coordillntcs of the vel·tices of cllbe anel octahedl'on 
w.ith edge unity, if the 8quare brackets indicate th at all the per­
lllutations of the values they include must be taken, each value 
being affected succcssively either by the poaitive 01' by the negative 
. M . J [1. J IJ d 1 [J 1. 1.J . ' h sIgn. oreovOl I! 2' 2- ' ï! Uil - 2- 2"' 2' 2 eau repI eseul In t e 

same way the two tetl'ahedra, the vertices of which form together 
the vertices of the cu be [i, ~, lJ, if hy the coefficient t we indi­
cnte the vel·tices with an evell, by the coefficient - t the vertices 
with au odd lIumbe}" of negntive coordinates. 

In connection with this we nmplify the question of art. 1 as 
follows: "Undel' what circumstanccs will the symbols 

represellt the vertices of polytopes in 8", all the edges · of which 
have the same length, say unity?" 

1'he allswel' to this question runs as follows: 
'rHEOUEM XXVIII. "If the vnlues at> a!., ... , a'l are arranged in 

decreasing order, ap being thc smnllest non vanishing one, alld if 
a,,, al; + t represent any cotiple of adjacent unequal ones, we must have 
111 tbe case of the first symbol [al, a2, ••. , artJ 

either p = n, all =! ,al; - a,dt = t V2 I 
01' p<1l,ap =!V2,ak -ak+t=!V2j' 

In the case of thc second symbol + t [at, a2' •.• , a"J 

p = n, an_t = an = t V2, ak - ak+t = t V2." 

Proof. 'fho part of thc proof concemed with the common value 
t Vz of tbe difference ak - ak + t of two unequal adjacent digits 
is the same as that given in art. 1. 80 we have to add onIy a 
fcw words about the values of On in the case of tbe first and of 
an-t and a'l in the case of tbe second symbol. 

8ymbol [at> u2, ••• , an ]. In tbe sllpposition al; - ak + t = t V2 
tbe length of the edge of the polytope is unity. TherefoI'e thc 
distnnce 2an bet ween the points 

p . . . Xt = an, x;/. = at> Xa = ~, ... 
Q ... Xt = - au, X2 = at, Xs = a;/., ••• 

which are transformed into each other by inverting the SIgn of 
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a", must he unity, which gives all = t, unless Pand Q coincide 
which happens for all = O. 80 in the case p = n we have all = t. 

In the case p < 11 we consider the points 

P ... Xt = ap' x;/. = 0 , Xa = at> x. = az, ... 
Q ... Xt = 0 , x;/. = a/I' Xa = ai> x. = a!, .•• 

passing into each other hy interchanging Xl and X;/.. The distance 
ap V2 between these points is ullity for ap = t V2. 

8ymbol + t [at, a;/., ... ,all]' Here all differs from zero; for the 
supposition an = 0 is incompatihle with the division of the vertices 
represented hy the symhol [at> a2, ••• ,all] into the two gl'oups 
+ t [at>~, •.. all], the inversion of the sign of zero hoving 110 
effect whatever. 

Here the point 

P ... Xt = 

must be considered in combination with the points 

Q .•. Xl = all-t, X'}. = an , Xa = att-2, ••• 

R ... Xt = - all ,X;/. = - all-t,. Xa = fl,,_2' ••• 

corresponding with it as to the coordillates Xa, X., ... X'I + t, as these 
points Q. and R nre the netu'est ones to P obtainahle either hy 
interchanging two rligits or by inverting the signs of two digits. 
Now we have nnder these circumstances 

PQ2 = 2 (an - all._t?, PR2 = tI (a2
n +. a~l_t), 

from which ensues PQ < PR. 80 we must have PQ = 0, PR = I, 
giving an = all_t = 1 V2. 

48. In the case of the first symhol [at, az, ... , an ] we are confronted 
with two possibilitie8, as we have to choose between all = tand 
an = 0, i. e. between a group containing the measure polytope 
Ct, t, ' .. !] and an other group containing the cross polytope 
[1 V2, 0, ... 0]. Do thc two regions lying on different sides of 
the limiting demarcation line cover the same ground as the group 
of the measure polytope on one side and the group of the cross 
polytope on the otherr rrhe answer to this question depends on 
the manner of deduction of these two groups. If we follow closely 
the geometrical manner of deduction developed by Mrs. 8'roTT tbc 
contraction forms rlerived from tbe measure polytope do possess 
coordinate symbols winding up in zero, whilst on tbe otber band 
tbe form derived from tbe cross polytope by means of a set of 
expansions under which ell-t occurs are represented by coordinate 
symbols containing no zero. 1'hese two exceptional facts which 
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prove the close l'elationship between the pl'Ogcniture of the two 
pntriarehs, cube and octahcdron, can be extended so as to make 
tbe two families quite idelltical with en eh other; to that end we have 
only to derive fr0111 eaeh of t.he two, eube and oetahedron, all 
the expansion and contraction fOl'IIIS, the numbel' of whielt amounts 
in S'l to 2" - 1. 'fhis impol'ttmt faet, whielt will be proved later 
on, enahles us to treat in tlte secolld and third sectiolIs thc fonus 
with the sYllIbols [at, a2 , •• ,,~J and [at> a2' . , "OJ sncccssively, 
without being ohliged to postpolle thc study of t1le eorrespon~liJlg 

nets built up by forms of both groups, 
In order to Hvoid fractions we will lnultiply the digits by two 

in this section Hlul thc next one; nnder this circumstanee the last 
digit is unity or zcro, the ditference a" - a" + 1 of two unequal 
alljacent digits is V2 alld the symbol l'epresellts a polytopc with 
cdge 2. Moreovet· in ordel' to simplify tbe symbols we will write 
p' for 1 + p V 2 anel put if possible V 2 outside thc brackets, 
substitnting e. g, [l1100J V2 for [V2, V2, V2, 0, 0]. 

49. Fot, n = 2, 3, 4, 5 wc have successively in thc symbols 
eXplained in the memoir of :M'8, S'J'OT'l'; 1) 

1t = 2. 

n=3. 

[111J= ° 1[1'11]= e2 0 =RCO I l[100~ V2= ce~O= 0 
[1'l'IJ = ti C = tO L2'1'lJ = el es 0= t CO [1l0Jv2 = cel 0= CO [210J V2 = cel e~ C= t 0 

It = 4. 
[1 1 1 I J - O~ I [2'2'1' IJ = el e~ Os [2110] V2 = cel e2 O~ 
[1'1' l'l] - .el C~ [2'1' l'l] = el es 0d [1l10]V2 = cel°c! [2l10] V2 = cel es Os 
[1'1'1 IJ - [2'1'1 IJ - e9 es O~ [1100J1/2 = ce20S [2100]V2= cei e" Os 
[I'111] - e2 0sl 

e$ Os [lJ'2'l'l] = el e~ es Cd [1000]v2= ces Ol! [321U] V2= cel el e" Os 
n=5, 

[1 1 1 1 IJ = C;o I [2'2'1'1 IJ = ei eg 010 I 1[22100] V2= ce~ es C;o 
[1'1'1'1' 1] = el 010 [2'1'1'1 I J = ei e4 010 [11110]V2= cel 010 [21100] V2= ce~ e, C;o 
[l'l'l' J 1] = ei C;o [2'1'111J= es e~ C;o [11100]V2= cel 010 [21000J V2= ce .• e~ 010 
[1'1'1 1 1] = e,\ CIO [3'3'2' l' 1] = el es e.\ C;o [1l000]V2= ce3 CIO [33210] V2= cel e~ es 0IO 
[1'1 1 1 I] = e., CIO [3'2'2' I' lJ = el e~ el CIO [10000JV2= l'e~ C;o [32210]V2= cel e~ e~ OIO 
[2'2' 2' l' IJ = el es GJo [3'2'1'1'lJ = el eJ e~ ClO [22;HO] V2 = cel e~ ClO [321lU]V2= ce leS e~ 010 
[2'2' l' l' IJ = el eS 010 [3'2' l' 1 1] = e~ es el C;o [22110JV2= cel eg (10 [32100J V2 = ceies e .. qo 
[2'1'1'1'1] = ell es Cto [4' 3' 2'1' IJ = el et es e, 010 [21110] V2 = cele" 010 [43210J V2 = cel eleS e, CIO 

1) For the deduction of tbe e and c symbols from tbe lJymbol of coordinates compare 
tbe part .1) of tbis section; here P. means : P. turned 45° about tbe centre. 

In Table IV added at the end of this memoir are put on record for n = 3, 4, 5, tbe 
different polybedra and polytopes deduced from the measure polytopt', Ofthis table the first 
column coutaiDS the symbols of deduction of tbe polytope from measure polytope aDd cross 
polytope - with the first of wbich we are cODcerned iD this section only - and tbe tbird tbe 
symbol of coordinates. Tbe second and tbe following colDmns will be explained fartber on. 



DERIVED FRO~[ TUE REGULAR POLYTOPES. 7 

Here we have [1100]V2 = 0(2)24, [lOOO]V2 .= Ct(2)16, [lOOOO]V2 
= 0,2)32' 

Remark. If we invel't the sign of all the coordinatcs of a vertex V 
of thc polytope we get the cOOl'dinates of an other vertex V' of 
that polytope fOl' which thc centre of the segment P P' is the 
ol'igin of cool'dinatcs O. 80, all the forrns derived analytically from 
the mellSllre polytope admit centml symmetry, as the geometrical 
declnctioll by mealls of thc operations e and c requires it. 

n. J.'he chamcleriatic nU1Jlbera. 

nO. 111 the case of the simplex the direct method for the deter­
minatioll of the characteristic llumbers proceedillg regulal'ly from 
vertices' to edges, from edges to faces, etc, was preccded by an 
easier mothod fulfilling the exigencies of the cases 1t = 4 and n = 5, 
working from ho th sides, the vertex sidc and the si de of the limi­
ting element of the highest number of dimensions; in this case of 
thc meaSUl'e polytope we will do likewise. 1) 

Here also the Ullmber of vertices is easily fouIld. If all the 'IJ 

digits of the symbol of cOOl'dillates are different it is 2». n!; of the 
two factors 2" and n! of this product the fi1'st is due to the 
powel' of choosing arbitrarily thc signs of the n digits, whilst 
the seconcI cOl'l'esponds to the power of permututing them. 1'his 
product must he divided by 2! for any two, by 3! for any thl'ee 
digits being eq ual) etc, 

In order to be able to find the llumber ·of the limiting bodies 
(IZ = 4) and that of the limiting polytopes (n = 5) we ha\'c to 
pl'OVC here the 

'l\IEORE~1 XXIX, "'fhe non vanishing coefficients Ci of the coo1'­
dinates Xi in the equation C1 XI + C2 X~ .+ ... = p of a limiting 
space ·8" __ t of the polytope <led uced fl'om the measure polytope 
of 8 11 must all of t.hem have the same abaolute value." 

'fhe difference bctween this theorem and the corresponding one 
for the simplex (theorem 11 of art. 6) lies in the addition of the 
word "ahsolute", therefore printed in italics, 'fhis amplification is 
necessary here, in connection with the power of assigning to each 
of the n digits of the coordinate symbol eithel' the positive or the 
negative sign. But the proof runs quite in the same lines, If in 
thc case of the polytope [1 + 2V2, 1 + V2, 1 + V2, 1] we 
start from the equation 2Xt - X 2 = pand try to determine tbe 

') Ths treatrnent of the olfspring of the rneasnre polytope with which we are con­
cerned now - and of th at of the cross polytope which cornes next - will be copied 
as mnch as possible from Section I. 
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vertices of the polytope for which the e'<pression 2Xl - X2 becomes 
either a maximum Ol' a minimum we find the maximum 3 + 5V2 for 
Xl = 1 + 2V2, X2 = - (l + V2) and the minimum - (3+5V2) 
of the same absolute value for Xl = -(1 + 2V2), X2= 1 + V2. 
80, for values of p bet ween 3 + 5V2 and - (3 + 5V2) the 
space 2Xl - X'}. = pintersects the polytope, whilst it cnnnot contain 
a limiting body but at most a limiting face ollly for the extreme 
values + (3 + 5V2) of p, as ench of the two couples of equations 
Xl = 1 + 2V2, X'}. = - (I + V2) nnd Xl = - (1 + 2V2), 
X2 = I + V2· determines a plane. Here too, as far as the vertices of 
the polytope are concerned, any linear eqllation Cl ,l\ + C2 X'}. + ... = p 
represents Ic different equations if the non vanishing coefficients Ci admit 
Ic different absolute values. Here too the theorem is not reversibie. 
As to the theory of tbe determination of the numbcr of faces (n = 4) 
811d the number of limitillg bodies (n = 5) compare the end of art. 6. 

Remarlc. In accordance with the central symmetry of the polytope 
[al' al' . .. ,a,l] any two parallel spaces 8"_1' represented by the 
equatiOlls lCi -t- xJ~ + XI + ... = + p nnd Iying tberefore on different 
sides at the same distance from the origin, be ar either both or none 
of them a limit (I),. _ 1 of the polytope. 80, in the determination 
of the limits (I)n -1 we can restriet ourselves here to the equations 
X, ·t- X k + XI + ... = maximum. 

51. We now treat at full length two examples, one in 8" nnd 
one in 85, 

./]xa11lple [I + 2V2, I + V2, 1+ V'2, I] I). 
'rhe nllmber of vertices is 2\ 4! divided hy 2!, i. e. 

16. 24: 2 = 192. 
The number of the edges passmg through each vertex is five. 

l"or the pnttern vertex 

1 -t- 2V2 • 1 + V2 • 1+ V2 . 1 
IS adjacent to the five vertices 

1+ V2 , 1 + 2V2 , 1+ V2 , I 

I 
1+ V2 ,1 + V2 , 1 + 2V2 , 1 
1 + 2V2 , I , 1+ V2 ,1 +V2 

\ . 1 + 2V2 , 1+ V2 , I ,1 +V2 
1 + 2V2 , 1+ V2 , 1+ V2 , -1 

I) In vol. XI of the n Wiskundige Opgaveo" we bave receotJy treated tbe polytope 
[1 + 3 V2, 1 + 2 V2, 1 + V2, 11 aod i ts projections on its foor kinds ofaxes (pro­
blem 78) and dedoced the symbol of characteristic numbers oftbe polytope [1 + (n-l) V2, 
1 + (n-2) V2, ... , 1 + V2,1] of Sn (problem 80). For the Jatter point compare al80 
my paper nOn tbe cbaractcristic numbers ofthe polytop. s el e •••• en_2 en_l S(n+l)and 
el e • .•• en _2 en_ t Mn of space s,t (Mathematical congre8P, Cambridge, August 1912); 
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which may be indicated by the brackets and the negative sigu 
af ter ) in the sym bol 

~ ----- --1 + 2V2 , 1 + V2 , 1 + Vz , 1(--). --- -------. 192X5 
80 thc number of edges IS 2 = 480. 

In order to find spaces which may contain limiting bodies we 
have to consider the equatiol1s 

a) + x. - 1 +2V2, 
b) ± X1 +J1J2 - 2 +3V2, 
c) + XJ + x :! + Xs - 3 +4V2, 
ti) + ICJ + X2 + ,t'a + x,. - 4( 1 -t- V2). 

a). rrhe equation IC1 = 1 + 2V2 gives us for the other coordi­
nates the system l'cpresented by X2' Xa, x" = [1 + V2, 1 + V2, IJ, 
i . e. an e1 O. This t 0 presellts itself 2. 4 times, as in the eq uation 
+ Xi = 1 + 2V2 the sign may be either positive or negative 
(factor 2), while the index i may he nny of the four indices), 2, 
3, 4 (factor 4). 

b). The condition X1 + X2 = 2 + 3V2 gives XJ' IC2 = (1 + 2V 2, 
1 + V2) aDd Xa, X" = [1 + V2, IJ, i. e. we have fOl' the coor­
diDates in their nlltmal order of successioD 

represellting an octagonal prism Ps with end plu nes parallel to 
O(Xa X 4) and edges normal to these planes parallel to the lines 
IC1 + X 2 = constant in O(X1 X 2); this Ps occurs 22.6 times, as we 
dispose in + X j + <t'j = 2 + 3V2 ovel' two conpIes of signs (factor 
22) and the pair of indices i, j stands for any of the comhinatiolls 
of the four indices by two (factor 6). 

c) In the supposition ICt + X2 + IC3 = 3 + 4 V2 we find in the 
same way 

Xt, X2' Xa , X" = Cl + 2V2, 1 + V2, 1 + V2) [IJ, 

i. e. n triangular prisIn Ps occurring 23• 4 times. 
ti) Fillally for LX = 4 (l + V2) we get 

X1' IC2' XS, X" = (1 + 2V2, 1 + V2, 1 + V2, 1), 

which - compare the last result of art. 46 - is a 00, occur­
ring 2" times. 
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80, all in all we have got the limiting bodies 

ti t 0 , 24 p~ , 32 Pa , lû 0 0; 

so their Jlumber is 80. 
As tbe lllunbers of faces of t 0 , Ps, Pa, 00 are respectively 14, 

10, 5, 14, the totnl mun bel' of faccs is 

t (8 X 14 + 24 X 10 + 32 X 5 + 16 X 14) = 368. 

80 the fillal reslllt is (l U2, 480, 368, 80), in accordaJlce with 
the law of Eulel'. 

Re11larlc, In thc case of thc measlll'e polytope Os of Sl& repre-
sented hy [1, 1, 1, 1] tbe sraces represelltcd hy 

a) Xt = I 
b) XI + ,7]2 = 2 
c) Xt + X 2 + X;j = 3 
d) Xt + x-}. + Xa + Xl& = 4 

contain respectively a limiting cllbe, a face, an edge, ft vel·tex of 
Os. 80 we filld herc' in the casc of the cboseu exalllpie 

8 tO of booy import, 

24 Ps "face " 
32 Pa ,; edge 
16 00 " vertex 

" 
" 

52, h"xample [I + 3 V2, 1+ 2 ,,/ 2, I + 2 V2, I + V2, IJ. 
'fhe numbel' of vertices is 25

• 5!: 2! = 32, 120 : 2 = 1920. 
'fhe number of edges passing througb each vertex is six, as cau 

be derived from the symbol -------- ----1 + 3 V 2, ] + 2 V 2, ] + 2 V 2, 1 + V 2, 1 (-) , - ---------containil1g five brackets and tbe negative sign af ter 1. 80 tbe 
. 1920 X 6 

number of edges IS 2 = 5760. 

In tbis case the limiting polytopes can Ol1ly lie in spa ces 8/4 with 
equations of thc form 

a) , .' +- Xt = 1 + 3 V2, 
b) . .. + X1 + X-}. = 2 + 5 V 2, 
c) .• ' + Xt + X'1. + Xa = 3 + 7 V2, 
d) ... + Xt + X'1. + Xa + Xl& = 4 + 8 V2, 
e) ... + Xt + 3:2 + Xa + Xl& + XiJ = 5 + 8 V2, 

corresponding respectively to 
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a) .. 2. 5polytopes(I+3V2)[1+2V2, 1+2V2, 1+V2, IJ, 
b) .. 22 .10 " (1+3V2, I+2V2)[I+2V2, I+V2, IJ, 
c) . • 23 .10 " (1+3V2, I+2V~, 1+2V2) [l+V2, IJ, 
á) .. 24 .5 " (1+3V2, 1+2V2, 1+2V2, 1+V2) [IJ, 
C) • • 25

• " . Cl+3V2, I+2V2, 1+2V2, I+V2, I), 
Of these grollps of polytopes the fh'st, of polytope import, can 

be stlldied by itself; it pl'Oves to be a form with the cbarnctcristic 
numbcrs (192, 384, 24·8, 56), un Ct e'l.~' The second group 
consists of prisms on [I + 2 V2, 1 + V2, IJ = tCO as base, 
the third gl'OUp of prismotopes (3 ; 8), the foUt·th group of prisms 
on Cl + 3 V2, ] + 2 V2, 1 + 2 V2, I + V2) = CO as base. 
According to art. 46 thc tifth group, of vertex import, eontains 
forms Ct ea 8( 5). 80 we ti nd 

10 Ct C:!. CII + 40P tCO + 80 (8; 3) + 80 Peo + 32 et ea 8(5) = 
= 242 polytopes, 

and, as et e~~, P tCO ' (8; 3), P eo , et c38(5) ndmit respectively 
56,28,11,16,30 limiting bodies 

t (10 X 56 + 40 X 28 + 80 X 11 + 80 X 16 + 32 X 30) = 
= 2400 polyhedl'fl. 

80, accol'(ling to thc law of Euler, the nlllllber of faces is 6000, 
and tbe fin al result a (1920, 5760, 6000, 2400, 242).1) 

53. We pass now to the more direct metbod going stl'Right on 
fl'om vertice .. to limits with the higbest number of dimellsions, and 
apply it to the second eX!l.Iuple 

[I + 3 ,/ 2, 1+ 2 ,,/ 2, I + 2 1'2, I + V2, I] 
of the preceding al·ticle. But in order to make the symbols less 
clumsy and thcreby the method more mnnageable we represent 
onee more 1 + p V2 hy p'. 

The numher of vcrtices was anel remains 1920. 
According to the symbols the edges split up into four gl'OUpS, 

viz. (3' 2'), (2' I'), (1' 1), [1 J. Here (3' 2') means that any deter­
minate pair of cool'dinates each aft'ected by a given sign take the 
interchangeable val nes 3' and 2', the other coordinates retaining 
the same vallles ; wbilst [L J means that any determinate coordinate 
takes snccessively tbe values + 1 and - I, the other coordinates 
remaining unaltered. 

') The fourth and the sixth column of Table IV contain the characteristic nnmbers 
and the limiting elements of the highest number of dimensioDs. The meaning of tbe 
second column, of the small subscripts in column four and oftbe fraction in colnmn five, 
will he eXplained later on. 

file://-/-pV2
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Tt is ensy to calculate thc numbel's of edges of each group. 
'l'hrough the pattern point with the coordinates 3', 2' 2' 1', 1 pass -
on account of tbe two digits 2' - two edges (3' 2) And (2' 1'), 
and one edge (l' I) and [1]. 80 there are in toto 
1920 edges (3' 2'), 1920 edges (2' 1'), U60 edges (1' I), 960 edges [I], 
i. e. 5760 edges. 

Re1llark. Wc may notice tbat [1 J with one digit only is equi­
valent, as to the repl'esentation of edges, to (3' 2'), (2' 1'), (l' 1) 
wit.b two digits. This diffel'ence is eXplained by the different cha­
l'actel' of the symbols: the digits between square brackets ha.ve given 
ab80lute vallles, whilst the digits between round brackets satisfy ft 

linear equation, the sum of the digits being constant. 'l'bis diffe­
l'ence will l'cpeat itself thl'oughollt the w hole sectioll; so [1' 1] is 
a face, an octngon, aJul (3' 2' 2') is a face, a tJ'iangle, etc. 

Byapplying the notions of "unextended" and "extended" symbols, 
of the "syllabies" of these symbols, etc., given for tbe offspring 
of the simplex in art. U, to the group of polytopes deduced from 
the measure polytope we easily extend this direct method t.o rnces. 
According to the symbols the fnces split up into eight gl'OUpS, viz: 
the triangles t 3' 2' 2') and (2' 2' 1'), the sq uares (3' 2') (2' 1), (3' 2') (1' 1), 
t3' 2') [l], (2' 1') [I], the hexagon (2' l' 1) and thc octagon [1' IJ. 
In the pattern vertex P concur one of each of thc two groups of 
triangles, nnc octagon and - on account of thc two digits 2' -
two of each of thc four gl'OllpS of squures, two hexngons. 80 we find 

1920 (2 tt'iangles _/- 8 squares + 2 hexllgons + 1 octagol1) 
3 4 ij 8 

= 1280 tt-inllgles + 3840 squares + 640 hexagons + 240 octagolls, 
i. e. 6000 faces. 

A.ccOI'ding to thc symhols tbc limiting bodies split up into ni ne 
groups: 

(3' 2' 2' I'), (3' 2' 2') (l' 1), (3' 2' 2') [I], (3' 2') (2' l' I), (3' 2') (2' 1') [1 ], 
(3' 2') [I' 1], (2' 2' I' 1), (2'2' I') [1], [2'1' 1], 

i. e. taken in the same order of succession , of 

co 

80 we find tl1l'ough P 

Pa 
tT 

C 

co + 3 Pa + 2 P6 + 2 C + 2 Ps + tT + 2 tCO 

and therefol'e in toto 
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1020 (00 + 3 Pa + 2 P~ + 2 0 + 2 Ps + ti!.. + 2 tOO) 
12 6 12 8 16 12 48 

= 16000+960Pa+320P6 + 4tiO 0+ 240Ps+ 16011'+80tCO 

i. e. 2400 limiting polyhedrn. 
According to the symbols the limiting polytopes split up into five 

grollps viz. (3'2'2' L' 1), (3'2'2'1')[IJ, (3'2'2')[1' IJ, (3'2')[2')' IJ, 
[2' 2' l' 1 J, i. e., taken in the same order of successiolJ, of e2 e;) 8( 5), 
Pc;o, (3 ; 8), P'CO' el e"J. Cs· 

80 we fiud through P 

e"}. ea 8(5) + Peo + (3; 8) + 2 Pa:o + ei e"J. Cs 

alld thercfore in toto 

1920 (e2 ea 8(5) + p(:o +. (3; 8) + 2 P ll:O + ei e"J. Cs) = 
60 24 24 96 192 

= 32 ei ea 8(5) + 80 Peo + tiO (3 ; 8) + 40 PICO + 10 ei e"}. Cs, 
i. e. the same 242 polytopes fOlmel in the preceding lu-ticle. 

54. If we exclnde once more the "petl'ified" syllahles (11), (111), 
etc. introduced in art. 9 we eau state the: 

'l'HEOltEM XXX. "We obtnin the extended symbols of all the 
gl'OUpS of d-dimensional limits (P)d with different symbol of any 
given n-dimensional polytope CP),. derived from the measure 
polytope M" of space 8 111 if we split up the n digits of the pattern 
vertex in all possible ways, either into 1l - d 01' into n - d + 1 
grollps of adjacent digits, plnce all these groups with exception of 
thc last one of the secolld case net ween roulId anel this last one 
between square bmckcts, and consider these bracketed grollps as 
the syllables of the extellded symbol." 

Prooj. As in art. 10 we represent the n - d different syllnbles 
in round brackets hy ( .. )"', (, . )"', ... , (, . )"Il-d, 80, in thc first 
case we have the relation &1 + &2 ' , , + &,,_ ,I . n, whilst addition 
of the syllable [, ,J'" with Ic' digits leads in the secolld case to 
the condition &1 + 1'2 + .. , . -t Ic" _ d + Ic' = n. In both cases we 
suppose in order to fix thc ideas that to (, ,)k. correspond the COOI'-
dinates cT.1' cT.2' ••• , tV".' to (, ,)". the coordinates cT.k • + i, {C", + 2, "" 

cT.k .+ k.' etc. and in the second case to [, ,J'" the coordinntes {Cn -,,' +1' 

c2'''-k'+2' "" c2'". 
Here too the proof splits up illtO th ree pnrts, As the first case 

cau be deduced from the second hy snpposing Ic' = 0, we indicate 
the alterutions whieh the three parts of the proof of art. 10 have 
to undergo for the secoud case only, 
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a). The pO~l/tope obtained ia a (P)d' 
By the exclllsion of petrified syllabies we arc sure bere too tbat 

any syllable ( . . )" witb Ie digits allows the vertex, tbe coordinates 
of which m'e tbe 11 digits of the symbol of (P),,, to coincide successively 
with all the vertices of a definite k - 1-dimensional polytope (Ph- i 

situated in a space 8,. _ i determining equal segmcllts on k of the n 
axes OXi • Moreover tbc unique syllable r .. J'''' with Ie' digits allows 
that vertex to coincide successively with all tbe vertices of a definite 
Ie'-dimensional polytope (P), .. situated iJl a space 8", parallel to the 
space of coordinates 8',: COlltAiuiJlg the 1/ axes OX;, wberc i is 
successively n - k' + 1, 1l - k' + 2, .. , '1l. The spa ces bearing 
tbese n - d + 1 polytopes (P)" , (Ie = kt, kj" ... kn - tl), and (P), .. 
are by two normal to each other. }'Ol' (P)", lies iJl the spnce Sk, = 
O(X. X2 • •• Xh), (P)", lies iu the space 8", = O(X", + I X", + 2 •• X", + ,.), 
etc. a Ild no w the spaces 8", ' S,:, ,. . ., S". _ J' 8", form a set of 
cOOl'dinate spa ces cOlltAining togethel' all the axes () Xi once, i. e. 
they al'e by two perfectly 1I0rmai to each othel·. So, as two spaces 
lying in spaces perfectly normal to cach othcl' arc thelllselves perfectly 
nonIlal to each other, the spaces bearing the Jl - d + 1 polytopes 
found above plU'take by two of that propet'ty. So the polytope lInder 
consideratioll is a prismotope with 1t - ti + 1 constitucnts And 
this prismotope is a (PL; for its numuer of dimensions is the 
sum of the numbcl's k l -1, k2 - 1, ... , IeIl _ I , - I, k' of tbe 
dimensions of the constituents, i. e. the SUIII of the Dumbers 
let, 1e2 , '" Ie" _ à diminished hy 11 - d, i. e. 1l diminished by 
n - d, i. e. d. 

b). The (P)d obtained ia a lilldt of (P)". 
Aceo1'ding to thc manner in which (P)d is obtained the eOOl'di­

nates of its vet·tiees satisfy the n-d mutllully independent equatioDs 

IXt + IX2 + ... + IX,,; = Pt ,IX,; , + t + IX", + 2 + ... ,+ IX",+k, =P2' etc., 

if Pi is the sum of the fi1'st let digits of tbe pattcl'l1 vertex, P'l. the 
sum of thc next k~ digits, etc. As in al·t. 10 these eqllations 
caD be writteD in the form 

k. k,+k, k. + k, + ... + "n-IJ 

L IXi = Pi , L IX; = PI + fJ:l. , •.• , L IX; = Pt + P:l. + .... + P"-ll' 
;=1 ;=t ;=t 

representing n-d limiting spaces 8,1-t of (P),,, as each of the 
right hand melllber::; is a maximum. l~ol' the rest of this part we 
rcfel' to art. 10, 

c) Rl! lIlea118 of the thcOI'eJII tee obtai1t all !he liJJlita (P),/ of (P)'I' 
1<'01' this part cOIupare also art. 10. 



lJElUVED FROM TUE REGULAR POLYTOPES. 15 

55. Wc apply the notion of end digits and middle digits of 
the syllahles, illtroduced in art. 12, to the syllahles in round 
brackets occllrring in the symbols of the polytopes deduced from 
the measure polytopc, in order to he ahlc to repcat theorem XXX, 
in aversion cOllnected with tbe more· practical Uil extended symbols, 
in the following form: 

'l'IUWn.EM XXX'. "\Ve obt.ain the unextcndcd symbol of a poly­
topc (P)tl thc vertices of whicb m'e vertices of the givell (P),p if 
we put the lowest Ic digits of the pattern vertex between square 
brackets, where Á' takes successively one of the values 0, ], 2, ... , d, 
and plaee before it, of tbe 7l - Ic rcmaining digits, between 
round bmckets either one group of d - Ic + 1 interchangeable 
digits, or two gwups containing together d - Ic + 2 interchangc­
able digits, Ol' three gl'OUpS containing togcther d - · Ic + 3 inter­
cbllllgeable digits, etc., t.his process winding up whel'c the total 
number of gl'OUpS is 7l -- d + k for 1t < 2d - Ic + 1 and d for 
11 > 2d-lt - 1", 

"'l'his (P)" wiII be a limiting polytopc of (P),p if tbe syllables 
hetween round bmckets satisfy tbe two following conditiolIs : 

1°, ench syllable with middle digits exhausts tbese digits of tbe 
symbol of (P)", 

2°, no two syllabI es without llIiddle digits have tbe same end 
digits". 

'l'he pl'oof of th is new version can he deduced fron thc Rrticles 
10, 12 alld 54. 

By means of theorcm XXX' we deduce the lilllits (P)G of tbe 
polJtope (P)10 reprcsented hy the sYlllbol [5"'" 3' 3' 2' 2' ~' I' I], 
of which - as is easily shown 1) - thc (P)9 of art. 12 represen 
ted bJ (5443322210) is the limit [Jo of vertex import. lf we put 
t'lgcther the different (P)G for whicb the k bas the some value 
wc find for Ic = 0 the 58 polytopes given in al't, 12 and for 
k = 1, 2, ' . " 6 successivcly grollps of 33, 11, U, Ö, 2, 1, i, e. 
in toto 120 polytopes, Jffor brevity the last syllable - between square 
bl'Uckets -- is put at the hend of each group, these are 

') 111 rectangulal' coordinates the polytope go is (f>' 4' 4' 3' 3' 2' 2' 2' I' 1) which may 
be simplified by passing to parallel axes with tbe point 1, I, ""las origin, i. e. by 
subtracting a unit from all fhe coordinates. If we then bear in mind tllat according to 
art. 1 we have to divide the coordinate values by V2 if we pass to barycentric coor· 
dinates on account of the new unit of length, we find (5443322210). 

From this relation between a polytope deduced from the measure polytope and its 
polytope of vertex import can be deduced gencrally that the numb~r of these polytopes 
in S .. , the measure polytope itself included, is C + 2N + 1, where C and N represent 
the numbers of central symmetric and of non central symmetric polytopes in Sn - t of 
simplex extraction, the simplex itself included, 
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Ic = 1, last syllable [OJ 

(544332), - (54433) (21) - (5443) (32:!), (544·3) (32) (21), (5443) 
(221), - (544) (3322), (544) (332) (21), (544) (3222), (544) (322) 
(21), (544) (32) (221), (544) (2221), - (54) (lt3322), (54) (4332) 
(21), (54) (433) (221), (54) (43) (3222), (54) (43) (332) (21), (54) 
(43) (32) (221), (54) (33222), (54) (3322) (21), (54) (332) (221), (54) 
(32221), - (443322), - (44332) (21), - (·1433) (221), - (443) 
(3222), (443) (322) (21), (443)(32)(221), - (433222), - (43322) 
(21), - (4332) (221), - (433) (2221), - (43) (32221), - (332221) 

Ic = 2, last syllahie [1 ° J 
(54433), - (5443) (32), - (544) (322), (544) (322), - (54)(4332), 
(54) (43) (322), - (44332), - (443) (322), - (43322), - (43) 
t3222), - (33222) 

Ic = 3, last syllahlc [210J 

(5443), - (544) (32), -- (54) (433), (54) (43) (32), - (4433), -
(443) (32), - (4332), - (43)(3~2), - (3322) 

Ic = 4, last syllable [2210J 

(544), - (54) (43), - (443), - (433), - (43) (32), - (332) 

Ic = 5, last syllable [22210J 
(54), - (43) 

Ic = 6, onl!! syllable [322210J. 

We remark, that in generRl the Ic of the theorcm illdicates how 
mnny of the axes of thc rectnllglliar s)stelll of coordinates al'e 
parallel to the space & bearing thc (P)G' For d = 1l -- 1, i, e, if 
we determine the limits of thc highest DllIll bc I' of dimensions, the 
Ic is at the same time the index of the symbol 11k indicnting tbe 
import.l<'or compnrison we put side by side in the next table the 
different l/k of thc polytope (P)tO just treated and those of its 
polytope of vertex import 

~544332221 0) , , , .. , 1/0 
(544332221)[OJ .... , I/t 
(54433222) [1 OJ .. , ., 1/2 
(5443322)[210J ..... I/a 
(5 lt4332)[2210]. . , .. 1/4 
(54433)[22210J, .... 1/5 
(5443) [32221 OJ ..... 1/6 
(544)[3322210]. , . . , 1/7 
(54)[ 4332221OJ. , .. , !Is 

[443322210J. ",. I/Y 

(544332221) , ... , .. I/s 
(54433222) (l 0) . , , . , !h 
(5443322)(210) .. , '. 1/6 
(544332)(2210) ..... 1/5 
(54433)(22210) .... , 1/4 
(5443)(322210), , . '. I/a 
(544.)(3322210) ..... I/'/. 
(54)(43322210) ..... 1/1 

(443322210) .... 1/0 
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From tbe examples given in tbe art. 51 and 52 it is clear tbat 
in the enume.-ation of the limits of the highest number of dimen­
sions we pl'oceed from Ic = n -- 1 to Ic = 0; tbis principle has 
been followed too in colulLm five of Table IV. 

C. ElCtenlJion number and truncation itttegers and jractions. 

56. THEOREll XXXI. "rrbe new polytopes, all witb half edges 
of lengtb unity, can be found by means of a regular extension of 
tbe measure polytope followed hy a regulal' truncation, either at 
tbe vertices alone, or at tbe vertices and tbe edges, or at tbe 
vertices, edges and face~, etc." 

This tbeorem is an imlllediate consequellce of tbat given in art. 50 
(tbeorem XXIX) about the equality of the absolute value of tbe 
nonvanishing coefficients Cj of the coordinates lCi in tbe equation 
+ C1 1C1 + C2 IC'}. + ... = 11 of a limiting space 8,. _ 1 of tbe polytope. 
As to tbe proof we can refer to art. 15. 

The extension llumber is always equal to tbe largest digit of the 
symbol of coordinates. 80, if in the case [2' l' 1 J of teO of three­
dime~lsional space the cube [lIL J with edge 2 is extended to tbe 
cube [2' 2' 2'J with edge 2 (1 + 2V2) it is precisely large enougb 
to enable us to deduce [2' I' 1 J from it by truncation; for the 
limit of face import lies in the space + ICj = 2'. Likewise in tbe 
case [V2, V2, 0, OJ of 024 in 81&, wbich syrnbol winds up in zero, 
we have to extend the eightcell [11 lIJ to [V2, V2, V2, V2J 
by multiplying its linear dimensions by V2, etc, 

'fhe manller in which the amount of truncation is measured 
most easily can be explained as follows. If the measure polytope ,. 
M,?) = [11 ... 1 J of 8" with centre 0 is extended to M n(2.) 

n 

= [ê ê ... ê J, ê· being the extension number, and this extended 
M n(~) is truncated at a Ic-dimensional limit Mk(2,) with centre M 
by a space 8n -1. normal to OM cutting in R any edge PQ of 

M,P') one end point P of which belongs to M,;(2.), tben ~~ is 

considel'ed as tbe "truncation fraction". Now, as we will prove 
immediately, P R is always a multiple of V2 with half the edge of 
M.,('l.) as unit, whether the symbol of coordinates of the polytope 
deduced from )-1 n (~) by truncation terminates in unity or in zero; 
so, in the relation PR = q V2 the multiplicator q which is 
integer may be called tbe "truncation integer". 80 the truncation 

Verb. Kon. Aknd. v. Wetenseb. ie Se<-tie Dl XI No. 5. E 2 
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fraction q ~2 is irrational if the symbol of coordinates of thc 

polytope winds up in 1 and rational if the last digit of that symbol 
IS zero. 

57. If we indicate the truncation numbers corresponding succes­
sivily to a truncation at a vertex, au edge, a face, ... hy To, Tl T 2, • •• 

and p' stands once more for 1 + p V 2 we have: 
THEOREM XXXII. "H [m'o, m'1, m'2,' .. , m'n-ij is the symbol of 

coordinates of a polytope deduced from the measure polytope M nl 2) 

of 8,. - where m'n -1 stands for either 1 or 0 - the truncation 
numhers T o, Ti> T 2 , • •• are 

n-1 n-2 n-3 

To=n mo-L mj, T1=(n-1) 11I0-L m;, T2=(1l-2) 1Il0-Lmj, •.. " 
;_0 ;=0 ;=0 

Proof. Here m'o is the extension number. Now, if we wish to 
calculate TI> and we take fol' the vertices Pand Q of the extented 
measure polytope [m'o, m'o, ... , m'oJ the points m'o, m'o,.·., m'o 
and - m'o, m'o, . .. , m'o differing in the sign of tV1 only, we have 
to apply the theorem of page 27 (art. 17) with respect to the equation 
tV1 + tV2 + .. . + tVlI_I> = Ct, (t = 1, 2, 3), where Ct is determined 
by the condition that this space is to contain succeSsively the points 
P, Q and the pattern vertex m'o, m'l' 1/1'2' ... , m'n_lof the polytope 
under considel·ation. 80 we filld 

n-k - 1 

C1 = (1l - k) 1}I'o, C'}. = (1l - 1.: - 2) m'o, Ca = L m'j 
-j=O 

and therefore 

PR 
PQ -

n-I.'-1 

(n - k) m'o - L m'; 
;=0 

2 m'o 

But, as 2m'o is PQ, the numerator is PRo As the rational part 
,, - k-1 

of (n - k) m'o is equal to that of L m';, viz. n - k for m'n-l = 1 
;=0 

and zero for m',. -1 = 0, this numerator is a multiple of V 2, 
as we have stated at the end of the preceding article. 80 we find 

n-k-1 

T k = (n - k) 1JlO - L mj , as the theorem has it. 
;=0 

In the case of the polytope P10 represented hy [5' 4' 4'3'3'2'2'2']' 1 J 
and in the case of [5443322210J we get 

To = 24, Ti = 19, T2 = 15, Ta = 12, T" = 9, T:; = 6, To = 4, 
T 7 = 2, Ts = 1. 

file://-/-pV2
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But tbe extension number of tbe first polytope is 1 + 5V2, tbat 
of tbe second is 5. 

Re'l1larlc. In the applicatiou of tbe method of measuring the 
amount of truneation introduced fol' tbe simplex to the meaSl1re 
polytope we experience that tbe tl'Uncation fraction may become an 
improper fractioll. This meallS tb at the point of intersection R of 
tbe truncating space S .. _ t with tbe edge PQ lies on PQ prodnced 
at the side of Q. 

IC we wish to avoid this inconvenienee we eau determille tbe 
amOl1nt of truneation in tbe following new way. If U is once more 
the eentre of tbe polytope and M the eentI'e of the limit M k(2.) of 
the extended measure polytope M,~2') at wbieb tbe truneation is to 
take plaee, whilst the trnncating space 8,. _ t 1I0rmai at OM cuts 

PM 
OM in P, we may consider OM as measure for the amount of 

truneation. 'l'hen we find 

PM 
OM 

n - k-t 

(n - Ic) m'o - L m'i 
; =0 

(n -Ic) m'o 

from whieh it clIsues that the new tl'Uncation fraction is deduced from 

the old oue by multiplication by 2 Ic' 
n-

But instead of altm'ing our method of measuring the amount 
of truncation we prefel' to put up with the inconvenience indicated. 
80 in Table IV the truncation J1umbers are indicated, aftel' the 
extension number where q' = 1 + q V2 and q" = q V2, according 
to the ol'iginul system in column seven. 

D. E:cpansio}l and conh'actio1l s!llllbols. 

58. We now prove the theorem: 
'l'HKOREM XXXl1. "Tbe expansion ek , (Ic = 1, 2, 3, ... , n - 1), 

applied to the measure polytope Mn('l) of Sn changes the symbol of 
n 

coordinates [1, 1, . .. , IJ of that polytope into an other symbol 
which can he obtained by adding V 2 to the first n - Ic digits. 

Proof. 'l'he operation of expansion ek is perfol'med hy imparting 
to all the lirnits ~f,P) of ~J,P) u trallslational motion , to equal 
dist8nces away fl'om tbe ccntl'c 0 of M .. (2), each M,?) moving iu 
tbe direclion of tbe lille OM joinillg U to its centl'e M, these .I.l1.k

2 

remaining equipollent to their original position, tbe motion being 
2* 
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extended over such u distance that the two new positions of any 
vertex which was common to two adjucellt M k(2) shnll be separated 
by the length 2 of an edge. 

Now if we move the limit M,?) for which we have 
k 

a?1 = {C2 = .. = a?Ol-k = 1, a?'l _ k + l' a?1I _ k + 2" ., aJll = [1, 1, ... ,1 J 
in the manner described in the direction of tbe line joining 0 to 
its centre M, for wbicb 

aJn _ k + 1 = aJll - k + 2 = .. = aJOl = 0, 

to a A times larger distance from 0 we get a new position of tbis 
M k(2) characterized by 

k 

aJl = 112 =. . = a?n _ k = A, aJu _ k + l' a?Ol _ k + 2,· ., aJn = [11 .,. 1 J, 
Ol-k k 

in which it is a limit M k(21 of the new polytope [AA . .. A u.~ 
and according to the last ten lines of al't. 48 this polytope belongs 
to the progeuiture of M Ol(2) if we have A = 1 + V2. 80 the l'esult 

n-k k 

is [1' l' ,~' 1 1 ... 1 J, wbich proves the theorem, and we find 
by the way: 

1'HEORE1t1 XXXIII. "In the expansion ek tbe limits Mt) of M n(2) 

are moved away fl"Om the centre to a distance always equal to 
1 +. V2 times the original distance." 

Tbis comes tl'ue, for 1 + V 2 is the first digit of the symbol 
of coordinates of the new polytope and, as we found in art. 56, 
this first digit represents the extension numbel'. 

As the distance OM was V(1t-l:) it becomes(l +V2)V(n-k). 
lle11lark. We may express the illflnellce of the operatioll ek on 

k 

tbe symbol [~IJ without interval between the digits by sayillg 
that it creates an interval V2 betweell the n + pil alld tbe 
n + k + 181 digit, 

5H. THEOItEM XXXIV. "The illfluellce of any number of expan-
Ol 

sions ek, el' em ,. , • of M n(2) on its symbol [11 ... IJ is found by 
adding together the influences of each of the expansions taken 
separately." 

Proof. We begin by combinillg two expansiolls only. 
In the succession of two expansions the subject of the second 

is to be what its origillal subject has become under the influence 
of tbe first, 80 in the case e2 et 0 of the cu be G (fig. 1311

) the 
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original subject of c"}. (the square) is transformed by ei into an 
octagon (fig. 13b

) and now the octagon is moved out, in the case 
ei e2 0 the linear subject of ei (the edge) is transformed bye"}. into 
a square (fig. 13C

) and now this square is moved out; in both 
cases the result (fig. 13") is the same, a tea. In general , for Ic > I, 
in the case ek e, Mu("}.) the subject M k(2 ' of ek is transformed by e, 
into an M k(2') , while in the case e, ek if1u(2) the subject M,'2) of e, 
is transfornled by ek into an n - l-dimensional limit f/l of the 
import I. Here also the geometrical condition "that thc two new 
positions of any vertex shaU be separated by the length of an edge" 
makes the distance over w hich the second motion of any of these 
pairs has to take place equal to the distance described in the first 
motion of the other pair; i. e. if M ,(2) i& a· limit of the limit J.f1k('l) 

of M,p') and A is a vet·tex of that M?), the segments described 
by A in tl'ansforming M

II
(2) into the two polytopes ek e, M,/2) and 

e, e" MY) are the two pait·s of sides, with the length V2(li-Ic) and 
V 2(n -I), of a rectangle lead.ing from A to the opposite vertex A'. 
80 we find the coordinates of A' hy addillg to tbe coordinates of A the 
variations cOl'responding to the motions due to each of the opera­
tions ek , e, taken separately. 80, in the case of th ree or more ex­
pansions we wiU have to use the extensiou of this mie to parallel­
opipeda and parallelotopes; to this geometrical composition of motions 
always corresponds the al'ithmetical addition of influences. 80 the 
general rule is proved. 

By the way we still find the theorem: 
'JlHEOREM XXXV. "'Jlhe opcration e" cau still be applied to any 

expansion form deducedfrom M n(2) in the symbol of coordinates 
of which the n _-kth and the n -Ic + 181 digit, i. e. the Iclh and 
the Ic +- PI digit counted from the end, are equ~l" 

'rhis theol'em enables us to find immediately the expansion symbols 
of an expansion form deduccd from M ,P) with given coordinate symbol. 
We show this by the example (5"'" 3' 3' 2' 2' 2' I' I] of nrt. 55. 

In [5' 4' 4' 3' 3' 2' 2' 2' l' IJ five intervals occur, viz, if we represent 
the pil. digit from the end by dp between (d., dl)' (f4" fis), (ds, dij), 
(d" da)' (dg, dio)· 80 we find ei e2 es e7 e9 M iO' 

60. By means of tbe operations Ck we can deduce from M~2) aU 
the possible polytopes the square bracketed symbol of coordinates 
of which winds up in a unit. IC we wish to deduce from M~2) also 
all tbe forms with a square bl'acketed symbol ending in zero - which 
is a desideratum as to the treatment of the nets - we bave to 
introduce tbe operation c of contraction. Tbe subject of this contraction 
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is the gl'OUp of limits (t),. --i of vertex import, sometimes denoted 
by !lo, the vertices of which form exactly all the vertices of the 
expansion form, each vertex taken once, and now the operation c 
consists in this: all these limits uudergo a translntional motion, of 
the same amount, towards the centre 0 of the expansion form, by 
which any of these lirnits gets a vertex or some vertices in eommon 
with some of the others, By this contraction the edges of the expansion 
form parallel to the axés of coordinates are annihilated, 

We have now the general theol'ern: 
THEOREM XXXVI. "By applying the contraction c to any expansion 

form all the digits of the symbol of eOOl'dinates of this form are 
diminished hy ft unit", 

'l'his theorem, which shows that the preceding one still holds for 
contraction forll1s dedueed f!'Om ll"Y'), is nl most self evident. So, 
as the motion of the limit !lo Iying in that part of Bil where all 
the eoordinates are positive takes plnee in the diI'ection of the line 
making in th at part of 8,. equal angles whith the n axes, all the 
eoordinates of the pattem vertex diminish hy the same amount, and 
this process has to go on untill the srnnllest of the digits disappears. 
Fm then we once 1\10re obtain a polytope the symbol of eoordinates 
of which satisfies the Inws of the first part of theorem XXVIII 
(art 47). 

Re1llal'1c. By comhining the theorems XXXV nnd XXXVI we can 
find the symbol in the operatol'S c and e" of all!! f01'01 dedueed from 
M,?). But this pl'ocess CRU be simplified Ly introducing the opera­
tion eo which tl'8nsfol'll1s the centre 0 of M,p') cOllsidered as an 
infinitesimal measure polytope 51 .. (0) iuto M,p·). 'l'hen the contraction 
symbol c can be shunted out by substituting ek el ... em M .. (O) for 

M (2) b t th' . I' h I h (2) eek el' . . em .. , U IS Imp les t at we rep nce ek el' . . e", .Lu .. 

by eo el; el' .. e", itl n (0). 'l'his remark wiJl be useful in part F of the 
next section (compare theorem LIII\ 

E. Nela of potytope8. 

61. 'l'he theory of the nets derived from M .. (2) is based entirely 
on the consideratioll of the most simple of these nets, the net 
N (Mn(2») of the measure polytope itself. So we begin by the analytical 
representatioll of that net N (M,,(2»). 

By means of the symLol [2ai + 1, 2a2 + 1, ... , 2a" + 1] the 
net of M,?) is decomposed into its mensure polytopes, if ai' a2 , • • , an 

are arbitrary integers nIJd the heavy square hrackets mean that in order 
to obtain a definite M n(2) of the net we have to permutate aod to 
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take with either of the two signs the units printed in heavy type 
only. Of the M,,2 brought to the fore by this symbol itself the 
centre is the point 2tzt, 2all , ••• , 2an• So [2ato 202' ... , 2an ] may 
be caUed the "frame" of the net, and this symbol may be written 
quite as well with round or even without brackets, as the faculty 
of taking for the a j all possible integer values includes permutation 
aud changing of signs. 

62. IC we consider the net N (~l,P» as a polytope 1) of Sn + i 
with au infinite number of limits (l)" which instead of bending round 
in 8" + i fiUs 8", we can apply to th is polytope thc expansions 
ei' c2 , ••• , en and the contraction c, either separately or in possible 
combination ; in this simple way the measure polytope nets eI 1f(Mn ), 

e2 N(M,,), etc. have been determined by Mrs. STOTT. We introduee 
the correspondillg analytical considerations hy the foUowing: 

'fHEOREM XXXVII. "Let any expansion or expan!\ion aud con­
tra.ction form (P)" of M}"!) be represented by the symbol of coor­
dinates [al, a'}., ... , a" _ i' all]' Let Jlf,P") be the measure polytope 
with edge 2a coilcentric and coaxial to this (P)" nnd },' (M,,(2fl» the 
net of measure polytopes to which the M,P'~) belongs. Let us suppose 
in each of the 00" measure polytopes of this net a concentric polytope 
equipollent to (P)". 'rhen the vertices of all the 00" polytopes 
obtained in this manner cannot form together thc vertices of a net, 
if a differs from ai and frolll ai + 1." 

This theorem of a negative tcndency can be proved thus. If we 
caU two (P)n "adjacent" if the measurc polytopes M,,(2'1) concentric 
to them have this position with respect to each other, i. e. if these 
M,P") are in M .. _ i (2a) contact, and we consider the limits (I),,-t 
of the highest import of any two adjacent (P),. deduced from the 
common Mil -i (lla) of the two M" (2 '1) concentric with these (P),,, we 
see at once that these limits fin _ t coincide for a = al' whilst they 
are at edge di!\tance from each other and form therefore the end 
polytopes of a prism for a = ai + 1. In aU other cases two adjacent 
(P)'I are either toO near to each other or too far apart. 

What we shall have to show farther is this that the vertices of 
the 00'1 polytopes (P)II do form together the vertices of a net in 
each of the cases a = lit and a ~ ai + 1. We prepare the general 
proof of this asscrtion by indicating by the special case of the 
thl'eedimensional net of tl'Uncated cubes [1 + V2, 1 + V2, ]] 
included in large I' cubes Ma(211), where a = 2 + V2, how the other 
constituents are to be found. 'rhis will give us occasion to introduce 

') Compare art. 39. 
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some new geometrical terms by the use of which the expressioll of 
general laws will he simplified. 

In fig. 14 is represellted iil heavy lines one of the tO with 
centre 0 and an eighth part of the M{J.II> surroullding it, viz. that 
part lying in the octant of the positive cQ(wdinates taken in the 
directions 017'1' 017'2' o Va'. Now we make to correspond to the 
different lituiting elemellts of the sUlTounding cube the limitÎlJg 
elements of the tO into which the fir8t are trallsfornwd if the tO 
is deduced from the SUITOUlldillg cube by truncation at vertices, 
edges and faces. So tbe triangle ABO of vertex import corresponds 
to the vertex V, the edge AA' (or the face of edge import which 
replaces itin an otber case) con'esponds to the edge VlP1 , the 
octagonal face B'BGe' ... corresponds to tbe face lP'}. VWa. 'l'hen 
by reftecting the tl'iangle ABC into the three faces of M/2

(1) through 
the cOlTesponding vertex V as mirrors and by dealing in the same 
way with the edge AA' with respect to the two faces thmugh the 
corresponding edge 171171 and with the face B' BGG' ... with respect 
to the corresponding face JY2 V Wa we get successively the eight 
triangular faces of an ROO with V, the fOUl' upright edges of a p. 
with ~, the two end planes of a Ps with 17'1 as centre. We simplify 
these expressiolls hy saying that "Illultiplicatioll" of the triallgle ABC 
round V, of the odge AA' rOllnd V1f1 , of the face B BGG' ... round 
W2 VWs generatcR the illdicated polyhedra RGO, p. = G, Ps. 

In fig. 14 have been represented in ordinary lines the RGO 
generaterl hy the tIiangle ABG, the th ree cubes generated by the 
edges AA', BB', GG' mul the three Ps gellerated by the faces 
B BGG' .. , G' GAA' .. , A' ABB' .. From this diagram it is clear 
tbat the indicated RGO, C, Ps fil! up tbe interstitial space between 
the tO, i. e. that the net bearing in ANDREINI'S memoir the number 
22 exists; we facilitate the inspection of tbis diaglllm by adding 
a stereoscopie representation of it. 1) 

'l'he dedllction of the coordinate symhols of the new constituents 
ROO, G, Ps from those of the tG and its surrounding cube sbows 
us, what we bave to do in general in order to obtain tbe coordinate 
symbols of the new constituents. 

We hegin with RGO obtained by multiplying the triangle ABC 
round V. In order to get the representation of the triangle ABC 
with respect to the original axes we have to replace the square 
brackets of the symbol [1 + V2, 1 + V2, 1] of tG by round 
ones. In order to represent that triangle with respect to new axes 

I) The eJfeet is enhanced if we place it so, as to have the small ,arrowat the left., 
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Vv., l' J/'l' Vl'a wc have to replace thc digits of (l + V2, 1 + V2, I) 
by thcir complcments to a = 2 + V2, giving (l, 1, 1 + V2), 
i. e. (l + V2, 1, 1). In order to multiply the last triangle round 
thc new Ol"igill V we have to return to sc!uare bl'8ckets. So 
[1 + V 2, I, 1] is tbe symbol of thc new constituent ROa. We 
rcpeat that thc digits of th is lIew symbol are the complements to 
a= 2 + V 2 of the digits of the "gl"Oul1dform" tOtaken in inversed order. 

In thc case of thc edge AA' and the cuhe derivcd from it we 
have to ussume V., thc centl'e of the cube, as new origin, and 
V. V, V. r 2 , V. ra as new axes. rrherehy X1 = [I], X 2 = 1 + V2, 

''Va = I + V2 is tmnsformed into X 1 = [1 J, X''l = 1, x'a = 1; so hy 
multiplicat.ion wc get Xt = [1 J, X"!.' ''Va = [1,1 J or short er [1 J, [I, IJ, 
whieb in this special case may be combined to Xt, X'2' x'a= [1 , I, IJ 
Ol' shorter [1, 1, IJ, the cube. 

Finally the face A'ABB' . .. represented by 3"1' X2 = [I + V2, IJ, 
<'Va = 1 + V2 passes by JIIultiplication into Xi' X'}. = [1 + V2, 1 J, 
''Va = [1] Ol' shol'ter [1 + V2, IJ [1 J. 

So if we UITRnge the constituents in the order ,9a,/h,!l1,!lo of 
deereasing import we get 

!Ia = [1 + V2, I+V2, IJ 
!l2 = [1 + V2, IJ [1] 
!l1 = [ 1 J [1 ,IJ' 
!lo = [1 + V2, 1, IJ , 

the first and the last heing semiregulur polyhedl'a deduced from 
the cube, whilst the intermediatc ones appear us prisms. We remark 
th at tbe pairs of syllablcs of the symhols of!l'l. and !l1 can be derived 
from the symbols of !l3 and !lo by taking for !l2 the last two digits 
of //3 and the last digit of !lo, for !l1 the last digit of !Ia and the 
last two digits of !Jo. 

Now it is obvious that in the general case of the polytope (P)" 
of 8" represented hy [at, a2, . . " a,,_1' aliJ the iutroduced multipli­
cution of tbe limits of different import, which multipJication can 
be pel{ormed for any "alue of the constant a, leads in general to 
n + 1 constituents!ln' !I,,-1, , .,!l1, !lo, represented by 

!lo = [at 
!ln-1 = [a2 

, a.) , . , , , .... , ., an-2, an _ 1 , anJ ' 
" , , , . , . , , " a;I_1, anJ [a-atJ 

, ...... , a"J [ a-ak, a-ak_1, . , " a-atJ 

fit = [a,.] [a-a,,_1, a-a,,_2' . , .. , , , .. , . , ' " a-~, a-atJ 
flo = [a-a'IJ a-a,,_1 ,a-an_2" . , , , , , . , , . , , " a-a2, a-ad 
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where !In is given,!lo is ohtained hy snhtracting the digits of !lil 
from a and taking the differenccs in inverted ordeI', while the two 
syllables of !In_I< are got hy taking the last u-Ic digits of !lil and 
the last Ic digits of !Jo tor Ic = J , 2, ... , n--l. 

63. We now prove the following problem of positive tendency 
eompleting the preeeding one. 

THEoREM XXXVIII. "In either of the two cases a = al and 
a = al + 1 the vertices of the 00" polytopes (P)n of the preceding 
theorem do form together the vertices of a net. 'fhe eonstituents 
of this net are obtained by means of the algorithm developed at 
the end of the preceding article." 

We march in the direction of the proof of this general theorem: 
1°. by deducing from tbe symbol of courdinates of the given 

groundform (P)" tbe symhol representing all the l'epetitions of this 
polytope and therefore nll thc veltices of tbe system, 

2°. hy del'iving from this new symbol the symhols of the polytopes 
different from the groundform the vel·tices of whicb belong to the 
system (whieh set of new eonstituellts will prove to be equivalent to 
th at obtained above by the geometl'ical multiplication intl'OdllCed ahove), 

3°. by showing that the system of polytopes obtained in th is wny 
fiUs spa ce , i. e. that there is neither ovel'lapping, nOl' hole. 

89111bol of the total B9Bte'l1l of vertice8. The symbol of a definite 
repetition of the gl'onndform is 

[2bl a + al' 2bl a +. al" .. , 2b,,_t a + (t,._I, 2b" a + (t,,], . .. 1') 

where bI' bl , ••• , b"-I' b" is a definite set of arbitrarily chosen 
integers. 80 this symbol represents the total system of vertices, if 
the bj denote all possible sets of integers. 

From the symbol l' we deduce the frame symbol 

[2b l a, 2b;!a, ... , 2bn _ t a, 2bn aJ, ........... F) 

representing the system of vertices of a net of measl1l'e polytopes 
M,,(2"), one of which has the origin as vertex and the n spaces 
X j == 0, (i = I, 2, ... , n) fiS limiting spaces. 

Pre8umptivfJ new conatituentB. 'fhe most general tmnsformation by 
which the total system of vel'l.ices 1') passes into itself consists in It 

transport of pja units from the permutable to the unmovahle part 
of X j , the 'ft qllantities pj being integer. But this process is limited 
by the restrietion thltt in the case of a new constituent sought 
the permlltable psrts placed within the same pair of square 
brackets have to satisfy the conditiolIs of theOl'em XXVIII, from 
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whieh it ensues that the extent of the restriction depends on the number 
of syllahlcs which the symhol of any constituent may contain. 'l'his 
nnmber is evidently t\\'o at most. For tbe pl'ocess can only afford 
besides the original minimum digit all one new minimum digit, 
vix. zero in the case a = a1 and unity in the case a = a1 + 1. 
So we have to hunt up only new eonstituents the symbols of whieh 
are either monosyllahic or composed of two syllabies. 

IC we take all the Pi equal to one we find 

[(2b t + 1)a+a1 -a,(2b2+ l)a+~-a, ... , 
(2b ll_1 + l)a + a'l-t- a, (2bn + 1)a + au -- (t], 

or, if we replace negative permutabie parts by the positive ones 
of the same absolute value, rearrange t.hese positi\'e parts according 
to decreasing order and sllbstitllte for brevity {3' for 2b + 1 , 

[{31'a+lt-a", {3/ a+lt-(l,,_1,' .. , (3',,-t a+a-al ,{3'"a+a-at] •. 1") 

winding up in zero for a = at and in unity for a = a1 + 1. So 
wc TInd the repetitiolIs of tbe new constituent !Jo of the last list 
of the preceding Rrticlc. 'rhis form !Jo and the given form !JII we 
started from are the only constituents of measure polytope deseent 
proper. 

Ir we transform the first Ic digits of T by the transport of a 
units f\"Om the pennntahie parts to tbe ullmovable ones and put 
each of the two sets of digits, the set of the Ic transfoflued ones 
and the !.'ct of the n-Ic untransformed on es , between square 
hrackets, we get af ter reaJ'ranging, if {3'i still replaces 2b; + 1 and 
{3; is substituted for 2bj 

[{3't a + a-(t",{3'2 a +a-(tk-t • ... , {3'k a + a-at] 
[{3H1 a + a k +!, {3k+? a + aH?' ... , {3 .. -t a + all-t, (3" a + a,,] • .. 1"') 

revealing the new constituent 

a prismotope (Pk ; PIJ_/;) with the eonstitllents (P)k and (P)II-k repre­
sented byeach of the two syllahles of the symbol taken separately; 
if the digits of the second syllable correspond to the coordinates Xt, 

X2, • •• , X,._k and those of the first syllable to XII-Ht, X u-k+2' ••• , X n , 

th is prismotope is the constituent fllI-k of the last list of the 
preeeding article. In the lattel' case tbe different positions of (P),,-k are 
parallel to 0 (Xi X2 , , ,Xn- Ir), those of (P)k to 0 (Xn_',+i X"-Hi' . ,X,.), 
So we find again all the new cOllstituents obtailled formerly by 
geometrical multiplication, 
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No overlapping and no hole. By a tl'anslatiollal mot ion in the 
directioll of one of the axes over a distallce 2a the system of 
vertices T) is transformed in itself; so, if the centI'ul measure poly-

11 

tope [a, a, . .. , a] is filled exactly hy the set of constituents found 
above, these constituents form a liet By a reflection in one of the 
n spaces rei = 0, (i = 1,2, , , " n), the system T) also is tl'ansformed 
in itself; so, if the part of the central measure polytope Al,pn) 
containing the points with positive coordinlltes only is filled exactly, 
the constituents form a net. We indicate this part of the central 
measure polytope hy the symhol M,!+n), 

We now prove the following lemma: 
"Let (P)IIQ he a constituent lying partinlly within M.,(+fI) and 

(P)~:..~ any of its limits lying partially withilI MII<+a). 'fhen the 
set of polytopes ohtained above always contains one and ollly one 
polytope (P),: having with (P),," the limit (P)~ '_~ in common; this 
(P),: lies with respect to (P),~ on the opposite sidc of (P)~~~," 

'fhe eondition that (p)"a lies at least partially within M,!+n) is 
fulfilled, if we consider that repetition of thc chosen constituent 
the coordinates of the centl'e of which admit thc val lies + a and 
zero only. We find, if all the coordinates are 7.ero the groundform 
contained in T), if all the coordinates are 4- a a polytope contained 
in T), if some coordinates are + a and the other ones zero a 
polytope contained in Tl Now the first case, of the groundform, 
and the second case, of all coordinates = + a, are included in 
the thÎl·d case, as we get them by putting Ic = 0 and Ic = n, 
80 we can choose fol' (P),," the polytope 

[a+(l-Uk, fl + a-(tl._t,. , " a+a-at] [ak+t, ak+2" , " a,,_i' all] 
ret, re'}." • , , , " rek 

where the rei placed undel' the two syllahles indicate tbe cOOl'dinates 
lo wbich tbe two sets of digits refel', and occupy ourselves with 
the question how to get a limit (I),,-t of this prismotope, Now in 
general tbe limits (l),,-t of the prismotope (PI.'; P n ._,,) present them­
selves in two groups, viz, if (P)k-t is any limit (1)"-1 of (P)k and 
(P)II-k-t any limit (l)YI-k-t of (P),,-k' in the two forms (Pk- t ; P II- k) 
and (P;,; P,,-k-t)' 80 1), we have to consider the two different cases 

') For a limit (1')'" IJ lying at least partially within ,V+a 
none of the coordinates 

n-t n 

may assume values 'qual to or surpassing + a for all the vertices of that limit; therefore 
in the first case (Pk- t ; Pn_k) we have to place between round bracket. a certain 

number s, of tbe lal'gest digits [a + a- ail where a-a. is taken with the reversed 
sign, i. e, aki ak_t' , '." ak-s,+t taken in inverted order, 
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[a+a-ak_B"a+a-ak_B, __ l,' .• , a +u--a1J(ak-B,+t' ak- B,+2" .. ,ak) .1 

tVl , tV2, • ••...•.. ,tVk-s, tVk-B.+I, tVk-B,+2, •.• , tV" 

WI, tV2,' •••....• , tVk 

[ak+l, ak+2, ••• , an _ 1 , anJ , ' 

tVk+1 , tVk+2" .• , Wn 

(ak+t , ak+2, .••.•. , ak+B) [ak+B.+t, ak+8.+2,' •• , an -l' anJ ' 

tVk+l' tVk+2' •.•... , cXk+s. Wk+B.+l, W"+B,+., •.. , tV .. 

which two limits (1) .. -1 admit as centres the points 
k-II, 8. n-k 1 

aa . .. a ti tt ... t1 00 ... 0 ( 
__ k __ __ 11,__ n-k-s, " 
aa ... a t212 ••• t2 00 ... 0 J 

t1 und ~ being determined by the relations 
k 

81 t1 = L ai 
i=k-B,+l 

k+8. 
82 t2 = L ai 

i=k+l 

showing that- we have 0 < ti < a for i = 1, 2. 80 the centres of 
these two (1) .. -1 lie on the boundary of the measure polytope 
M n (+ a) aud therefore the (1),,-1 themselves lie partially within that 
measure polytope. 

Now for each of the two cases there is only one constituent 
passing through the chosen limit (l)n -1' viz. 

[a+U-ltk_ B" a+a-ak_8._1, . • . , a+a-l'·1J [ak-B.+1' a''-8,+2' •.• , an-l' a,;J 

iVl , W2,· •• , tVk_ lI• tVk-B,+t' Wk-t'.+2 , •.. , Wn 

[a+a-uk+B., a+a-ak+B,_h ... , a+a-a1J [ak+8,+1' ak+B.+2' .. " an- t , a"J 
Wt , W2 , ••• , tVk+8• Wk+B.+t , Wk+B.+2 , ••• , w .. 

80, all we have to do yet is to investigate the position of the 
centres. If we indicate these points by the letters Ga, Gb" Gb" Gab., 
GlIbs and we remark that for these five points we have 

tVt =W2=· . =tVk-B.' ét'k_8,+t =tV"-B,+2=' • =tVk' 

tVk+t = tVk+2 = .. = tVk+B.' tVk+s.+t = Wk+8.+2 = .. = tV,,, 

we find the following list of coordinates 

Ga 
GI> , 
Gb • 
Gab 

a 
a 
a 

a , 

a 
o 
a a 

o 
~b a a ~ • 

tVk +B.+1'· •• 
o 
o 
o 
o 
o 

According to this list of the two triples ( Ga' Gb" G(lb), (Ga. Gb" Gab,) 
of collinear points Gab, lies bet ween Ga' Gb" and Gab. between 
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Ga' Gb •• 80 the proof of the lemma is given. 80 neither of the two 
systems of constituents rAln . admit holes. 

In order to show that no two polytopes of any of the two 
systems can overlap we remark that by means of the symhols T), 
1"), T) any polytope of the chosen system can be pl'omoted to 
central polytope, which shows that not a single vertex eau lie 
inside that polytope. 

80 we have proved completely now the theOl'em under consi­
deration. 

64. We now fOl'lllUlate the mal1l1er of deduction of all the 
measure polytope nets as follows: 

'rHEOREM XXXIX. "Let G = [ai' a2, . .. , a,l_i, all] be the symbol 
of coordinates of the "gronndform" of the net. Oeduce from it the 
syrnbol 0 = [a - all' a - au _ i', .. , a - tI.z, a - ai] of tbe "opposite 
form", wbere a is eitlwr ai or ai + 1. Derivc from these two 
symhols G, 0 the mixed symbol I" of the "intermediate fOrlns" 
represented by 

[a,._k+1, all - k+2'· · ·' au-i' all] 
[a - au _ k, a -au _ k _ 1 , ••. , a-az, a - ai], 

of the two syllahles of ",hich thc first contains the Jast Ic digits of 
G, the second the last n - Ic digits of O. 'l'hen G, the forms Ik' 
(Ic = II - 1, n - 2, ... , 2, 1), 0 are respectively the constituents 
!lu,!lII-i,!/n - 2'" ·,(h,!li,go of thc net." . 

"Tbe fmme of the constituent !lu _ ,.. is 

where we have f3i = 2 bi and f3' i = 2 bi + 1, tbe bi being integer 
and the digits of the first sy llahle being related to the odd, tbose 
of tbe seconn syllabie being related to the even multiples of a". 

"H (e, c), etc. illdicates a net witb an expansion gl'oundform and 
a con tmction opposite form, the theorern includes the four cases: 

au = 1, a = ai' ... . .......... (e, c), 
(l" = 1, a = al + 1 ........... (e, e), 
an=O,a=ai .•••.•.•••••••. (c,c), 
au = 0, a = ai + 1 ........... (c, e)." 

In tbi!l tbeorem the dednctioll of the intermediate constituents 
differs slightly from that given in the preceding article, tbe two me­
thods passing into eacb other by interchanging Ic and 'IJ - Ic, and 
the two syllabIes. In the ncw form the succession of the different 
constituents is a more regulnr one, as the following examples prove. 
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Exalllple I. Tbe two nets witb [5"'" 3' 3' 2' 2' 2' I' I] as ground­
form ndmit tbe constituents: 

fl10 •• [5' 4' 4'3'3'2'2'2'1'1] fl10 •• [5' 4' 4' 3' 3'2' 2'2' 1'1] 
fl9' •• [4' 4'3' 3' 2'2'2'1'1] , [1] 

fis, •• [4'3'3'2'2'2'I'l],[l0]V2 fis", [4'3'3'2'2'2'1'1], [1'1] 
fl7" .[3'3'2'2'2'1'1],[l1 O]V2 fl7'" [3'3'2'2'2'1'1], [1'1'1] 
fl6' •• [3'2'2'2'l'I],[2110]V2 fll!" .[3'2'2'2'J'l], [2'1'1'1] 
fl5 ••• [2'2'2'1'1],[22110]V2 fl5 ••• [2'2'2'l'I], [2'2'1'1'1] 
fl4 ••• [2'2'1'1],[322110]V2 fI,. ••• [2'2'l'l], [3'2'2'1'1'1] 
fis' •• [2' l' 1] , [3 3 2 2 I 1 O]V 2 fl3'" [2' I' 1] , [3' 3' 2' 2' I' I' 1] 
fl2' •• [1'1], [3 332 2 1 10]V2 fl2'" [1' IJ ' [3' 3'3'2'2' I' 1'1] 
fit· .. [l] , [4 3 3 3 2 2 1 1 0JV2 fit ... [1] , [4' 3' 3' 3' 2' 2' I' J ' IJ 
flo .... [54 3 3322 11 0JV2 flo ••••• • [5' 4'3' 3'3'2'2' 1'1'1] 

Example 11. 'J'he two nets witb [5" 3 3 2 2 2 I 0] V2 RS ground­
form admit tbe constituents: 

fl10 •• [544332221O]V2 fl10' ••• [5 4 4 3 3 2 2 2 10JV2 
fl9' •• [I J ' [4 4 3 3 2 2 2 10 J V 2 

fll!'" [433222IOJV2 , [10]V2 fis •• • [1'1], [433222 lOJV2 
fl7' •• [33222IOJV2 , [l10JV2 fl7" .[1'1'1], [33 2 2 2 IOJV2 
fin· •• [322210JV2 , [211 0JV2 fiG'" [2'1'1' 1 J ' [3 2 2 2 IOJV2 
fl6'" [22210]V2 , [22110JV2 fl5" .[2'2'1' l'lJ, [2 22 10JV2 
fl4' •• [22IOJV2 , [322110JV2 //4'" [3'2'2'1' 1'1 J, [2 2 10JV2 
fla··. [2IOJV2 , [3322110JV2 fla •• • [3'3'2'2'1'1'1], [2 IOJV2 
/12··. [10JV2 , [33322110JV2 fl2:' .[3'3'3'2'2'I'I'IJ, [lOJV2 

flo· •••••••• [5433322110JV2 I flo· •• [5' 4'3'3'3'2'2'1'1'1] 

rrbe nets of meflsure polytope extt-action of tbe spaces 83,84,85 

are put on record in the 'l'ables V and VI. The first column of 
these tables is concerned with tbe "name" of the net; it contains 

. the system of operators el; nnd c whicb are to precede tbe general 
symbot N(Mn

2
) in order to obtain the symbol of tbe net. This 

system of operators is in close connection witb tbe consideration of 
the net of 8n as a simple polytope of 8n + 1; for a = at it is equal 
to tbe system of operators characterizing tbe groundform, for 
a = at + I it consists of latter system completed by en' 80 of the 
three parts into wbich each of tbe tbree cases n = 3, n = 4, n = 5 
has been subdivided, tbe nrst contains tbe nets (e, c), the second tbe 
nets (e, e), tbe tbird tbe nets (c, c). 'rherefore tbe question rises where 
the nets (c, e) are to be found. 

'l'be algoritbm indicated in our last tbeorem immediately shows 
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that hy interchanging the two extreme forms with one another the 
intermediatc constituents return in inverted Ol'der of succession. 
'fhis remark suggests an answer to the question l'aised just now. 
By taking the constituents g .. , g .. -1, .•. ,g1' go contained in the 
second, third, ... , 'Il + pt, n + 2nd column of the same horizontal 
line corresponding to a certain net in reversed order of succession 
we get the constituents g' n' in -1 , ••• , g' l' g' 0 of a net hearing in 
general an other name, the operators occurring in which are inscri­
bed in the n + 3rd column; thü~ net with constituents with COOl­

plementary import is essentially the same as the original one. 80 by 
inverting the order of succession of the imports the th ree groups 
(e, c), Ce, e), (c, c) pass into (c, e), (e, e), (c, c), in other words the 
first group furnishes the group (c, e), whilst each of the other grollps 
passes into itself. We have used this fact, to which we shall have 
to co me hack in part F of this section, in order to simplify the 
'fahles V and VI. 80 on one hand the nets (c, e) have been omitted 
totally, whilst on the other the number of lines of the groups (e, e) 

and (c, c) have heen diminished by writing down the nets in a trans­
parent systematical order and omitting at any time the net appeal'ing 
already in inverted order under the preceding ones. 1) 

In the column under the heading p. sorne particularities of the 
nets have heen inscrihed. Ry r. we have indicated that the net is 
regular, hy 8. p. that it is "selfiiperiodic", i. e. tbat tbe two extreme 
forms are tbe same wbich implies tbe equality of any two consti­
tllents with complementary import. 

'fhe otber columns will he· explained later on. 
A survey of the results contained in tbe tables suggests the 

following remarks : 
a). There is a gl'eat difference · in character het ween tbc consti­

tuents of a simplex net proper on one hand and those of a measnre 
polytope net. All the constituents of a simplex net proper are expan­
sion and contraction forms of the simplex, whilst we found just 1l0W . 

that in a measure polytope net in general . only two of tbe consti­
tuents, the groundform and the opposite form, are expansion alld 
extraction forms of the measure polytope. 2) 

1) The cases ce. N(G.), ce. N(G.), etc. do not figure in the first third part of Table II 
eontaioed in tbe memoir of Mrs. STOTT, as they appear al ready as expansion forms 
under either N(G .. ) or N(G .. ). 

In order to spare room we have omitted in Table VI the column containing tbe name of 
the net taken in inversed order. For the upper aod middle part it is always t11e symbol 
before M. under Y. to which e. has beeo added, for the last part it is th at symbol itself. 

') Compare for the prisms and prismotopes entering bere my paper: "On the eha­
racteristic numbers of the prismotope", Proceedings of Amsterdam, vol. XIV, p. 424. 
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'rhis diffel'ence in chamcter implies a difference in the numher of 
different. positions !l constitucut of definite fOl'lI1 may admit, In the 
case of a simplex net pl'Oper this \Iumhel' is lwo in general nnd 
only one if thc fonn is ccnh'nl symllleh'ic. 111 the ense of a measllre 
polytope net this numbCl' is Olle fol' the two cxtl'eme constituents, 
whilst thc intenuediate fonB //, generally OCCUI'S in a number of 
different position8 indicated by IlI1lf thc lIumbcr of limits M,?) of 
iJl,?'), i. e. in 2" -,. -i (n)" diffel'cnt positions. 

In the case of the simplex net wc have considercd as kind of 
constituent any polytopc of the \Iet with c'lilipolleilt repetitions; whcn 
the partition cycle was a }lOWCl' cyclc we hR\'e cv en been obliged to 
split up a lcÎ1zd of constituent into scveral IJ1'OUpS, in order to keep 
the analyt.ical treatlUcut in contact with thc geomctl'ical faets, On 
account of the cxtt:emc tl'ltnsparency of the mcasllre polytope nets we 
can allow oUJ'selves to he less exacting and cxtend the notion of 
constituent here hy admitting that the 2'1 -" - 1 (n)" different positions 
of the intermediate forlll Ik intl'Oduced above belong to thc same 
constituent, 

b). J norder to be able to indicate the 11 u m bel' of diffcrcnt con­
stituents accOl'ding to the uew point of view we fall baek on the 
different cases (e, c), (e, e), (c, e), (c, e) mentioncd at the end of tbe 
last theorem. By genemlizing the results of the two cxamples given 
above one filHls immediately that the required number is in gencral 
1l -p + 1, where p indieates the number of e's contailled in the 
symbol. But this generni numbel' 1l - P + 1 is still to be considered 
as a maximum, i. e. under cireumstanccs the lIU1ubel' of constituents 
may become less, This dect'case cun be due to two diftereut causcs, 
If in the first plllce in one of the two groups (e, c), (c, c) of a net 
in 8.. the expansion operatOl' with the largest index is e", where 
Ic < 1l - 1, the constitucllts IJ", IJ" + 1" , ., IJ .. _ 2 lire lnckillg together 
with IJ,. -i' If in the second place in Olle of the two groups (e, e), 
(c, c) a net is semipel'iodic the equal constituellts of complementnry 
import may count for onc constituent. 

c). Some of thc intel'lnediatc constituents may beeome measUl'e poly­
topes, this heing even the case with alt thc intermediate constituents 
of the net en .N(Mn). 80 by extending the notion of constituent 
still more thc number of the different kinds of constitueut is lcssened 
in these cases, this numbel' heing unity fOl' the net en N(Mn), 

d). By compnring the cases IJ2 under n = 4 we rem8l·k th at the 
prismotope (4; 4) whieh is thc mensure polytope ~ of S4 is indi­
cated hy three different symbols; in t.he cases of the nets (e, c), of 
the nets (e, e), of the nets (c, c) we get successively: 

Verb. Kon. Akad. v. Wetenseb. io ·Sectie DI. XI No. 5. EB 
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[llJ . [lOJV2, [llJ. [l1J, [lOJV2 . [lOJV2 

COl'l'esponding (fig. 15) to the projections 

ABCDI ABC])I 
EFGH' ABC])' 

EFGHI 
RFGH 

on tbe planes 0 Xi X2 and 0 X j X4 , if in tbese symbols tbe suc­
cessive digits refer to tV1 , tV~, tVa, tV4' Of these tbe second, equal to 
[11 11 J occnrs in one position only, wbilst tbe two otbers admit 
respectively six and three positions in accoi'dance witb tbe splitting up of 
•711' tV"}., tVa, tV,. in (tV1' tV2), (tVa tV,.), in (tV1' (713), (tV;!, tV~), in (tV1' tV4), (.712' tVa). 

F. Polarity. 

65 . IC we polarize an expansion Ol' a contraction form derived 
from tbe measure polytope M,,12} of 8,1 with respect to a concentric 
spberical space (witb ootl- -1 points) as pohu'isator we get a new poly­
tope admitting one kind of limit (1)/1 _1 anel equal dispacial angles 1), 
to wbicb corresponds tbe inverted symbol of cbaractcl'istic numbers 
of tbe original polytope. Moreover • if [a1, az, ... , a,,_1, aliJ is tbe 
coordinate symbol of tbe original polytope, this symbol represtmts 
also the limiting spaces 8

11
- 1 of tbe new pulytope in space coor­

dinates. 
For tbe mannel' in whicb tbe pl'ocess of trllllcation is tl'anSfOfllled 

hy inversion compore page 69 of Section 1. 

66. We now pass to: 
'fHEOREltl XL. "Any polytopc (P)" of tneasure polytope descent 

in 8 11 bas tbe pl'OpeJ·ty tb at tbe vertices ~ adjacent to any arbi­
trary vertex V lie in tbe same space 8,1-1 normal to tbe line joining 

') Compare for this inversion page 68 of Section 1. 
By inversion of the measure polytope we fiud the cross polytope. Moreover 1I"e find 

in B .. in the notation of the foot note of p'1ge 6S, if L e, e. e. stands nOlo for the 
"limiting bodies of the reciprocal polytopc cf c, e. e. Cl'" 

Lel = 64 T(Js, 32+1), Lcel = 32 PiJ, 

Le2 = 96 p2.l+lo LCC2 = LC24 = 24 0, 

Le;l = 64 X, LC('3 = LC16 = 8 C, 

Lel ('2 = 192 T(12+1, 12+1, 21+1+1), L C"l 1'2 = 96 7'(22+lt 22+1), 
Lct 1'3= 192 symm. pldelloid, LcelCS= 96 Pa2, 

Le2 es = 192 symm. pldeltoirl' LC('2 Ca = 48 p.l (square)' 

Lel 1'21'3 =384 Y, Leel 012 ('S = 192 T(13,~+1), 
X representing a polyhedrou IimiteJ by six races, two groups of three equal deltoids 

connected in such a way as to give ri se to an axis of pel'iod 8, and Y a tetrabedron 
limited by four unequal scalenc triangles. For the shape of the tetrahedra Y compare 
problem 79 of vol. XI of the "Wiskundige Opgaven", where the projections of these 
tetrahedra on the four seIs of BUS of the polytope are given into the bargain. 
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this vertex V to the cenh'e 0 of tbe polytope, Tbe system of the 
spaces 8 n- t correspolldillg in this way to the different vertices V 
of (P)'l include an othel' polytope (P)',p tbe reciprocal polar of (p)n 

with respect to n certain concenh'ic spherical spaee, u111ess (P)n be 
the cross polytope cen_t Mil in which special case all the spaces 
8 n - i pass tbrough the cenh'e 0." 

After the first sectiou of this memoÏl' had heen published wc 
pe,'ceived that thc analytical proor of the cOl"l'esponding theOl'em XXII 
might have heen rcplllced hy n mllch simpier geomett'icnl one 1), 
applicl\.hle to any polytope (P)" dedllced from a regnlar polytope, 
whether simplex Ol' not, hy the operations ek and c. 

'fhis simple geometricnl proof runs as follows: 
All the vertices ~ adjl\.cent to V lie on two spherical spaccs 

(with oo,,-i points), the circumscribed onc with centt'e 0 and an 
other with centre V and radins VVj eqllal to the cdge, 80 they 
lie in tbc spherical space (with 00,,-2 points) commoll to thesc two 
sphericnl apaces alHl therefore in thc space 8" -t normnl to va 
containing this intersect.ion. If this 8"_i cuts 170 in J> we have 

_ _ 2 

2 VP. 170 = F 1"; from whieh it ensues th at the distnnce PO is the 
same for all the vertices V, i. e. that thc spa ces 8,1-1 ure the polar 
spaces of the vertices 17 with respect to I\. definite sphericl\.l space 
(with 00,,-1 points) round 0 as centre. 

Moreover the special case of the cross polytope, w here P coin­
cides with 0, is self evident. 

67. In the section concerned with the simplex we hl\.ve explained 
by thc laws of reciprocit.y why it may happen that two different 
groups of operations of expansion npplied to the simplex produce 
under ci,'cumst.ances either two polytopes equal I\.nd concentric 
but of opposite orientntion, or the same polytope. What COl'l'eS­
ponds to this here is that any polytope derived from M n cau I\.lso 
he derived from the cross polytope O2" of 8" which is tbe reci­
proeal polar of Mil' As we had ah'eady occasion to remark in 
art. 48 we shaH have to co me back to this assertion in the third 
section.· 

Bllt tbe state of affail'S with respect to eqllal meaSlll'e polytope 
nets with different expl\.nsion symbols is a quite different one, In 
a joint paper of Mrs, STOTT and myself publisbed two years ago 2) 
it is shown geometrically tbat we have in general the re]ations: 

1) To some of the free copies at my disposal I adtled a post-scriptom, containing 
this remark , on page 69, 

') Compare the second foot note of art. 88 of Sectioll I. 
s* 
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EN=eE'e"N', Ee"N=Ee,.N', eEN=eE'N', 

where N nnd N' repl'esent polal'ly related regulal' nets of 8", whilst 
the sets of opel'ations ek , (k = I, 2, .. . , n - I), contained in E and 
E' are complementnry to each othel', i.e. that .E' contains tbe ope­
rations en _" complementary to the operntions ek of Band no other 
one. Now, in the case of the net of measure polytopes we have 
N' = N; so we get: 

'fHEOREM XLI. "We have the l'elations: 

eaebec ' • • ere.el NM,,(!) = eeu,eb,ec" • • e,.,e~,e"enNMn(2), 
eaebec ' •• e,. CR el e" NMn(2) = ea,eb, eo:, . .. er' e., et'e" NMn(2), 

eeu.ebec " • ere. et NJt/,,(2) = ee .. ,el/e~, .. . er' ex' et' NM,,(2), 

under tbe conditions 

a+t'=b+8'=e+r'= ... =r+e'=8+b'=t+a'=n; 

then tbe constituents !Jo, !Jt, !J2" •. , !Jn-2' !I'I-t,!Jn of the olie are equal 
to tbe constituents g'n, g'''-1' g'n-2" .. , g'2' g't, g'o of the ot her. 
80 the nets Ca eb ec • • ,e" es et e" N M,p> and ecu eb ec • •• er es el NM,/2> 
are semiperiorlic under the conditions 

a + t = b + 8 = e + r = ... = n. 

In tbe latter cases thel'e is an unpaired \1Iiddle constituent for neven." 
Proof. We prove cach of the three relations hy showing that the 

extreme constituents !lo,!ln of the net at the left of the sign of equality 
are equal to the constituents g'JI' g'o of the net at the rigbt. But 
we suppose that it will do to enter into detftils fol' one of the 
three relations, say the second. 

In the Cftse of t.he net eaebec " .e,.e.ele"NM .. (2), where as in 
art. 88 we suppose tbe indices of tbe k + I factors ea , eb" .. en 
to he al'l'anged accol'ding to increasing values of the suhscripts, 
the principal constituent !lil is, according to theol'em XXXV: 

11-1 1-. .-r 
[k',k', . . k', (k-I)',(k-1)', . . (k-I)', (k-2)', (k-2)', . . (k-2)', .. . , 

80 we find according to theol'em XXXIX for !Jo by subtraction 
from k' + 1: 

a ~a _ 

[k', k', . . k', (k·-I)', (k-I)', .. (k-I)', (k-2)',(k-2)', . . (k-2)', ... , 
B-r 1-8 II-t 

2',2', .. 2',1',1', .. 1', D~J. 
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Likewise we get fol' the constitnents fin and !/o of the second 
net represented bye". et, ec" . er' es. et' en N jJln (2) the same expressions 
in which the a, b, c, . .. r, 8, t are dashed. From this it ensues that 
we shall have at tbe same time!/n [/0 and !/o =!Jn llllder the 
conditions 

a=ll-(, b-a=t'-a', c-b=8'-r', ... 
8 - r = c' - b', t - 8 = b' - a', n ._- t = a' , 

giV~llg immediately 

a + t' = b + l = c + 1.' = ... = r + c' == IJ + b' = t + a' = 11. 

'fhese conditions pass into 

a+t=b+8=c+r= ... =n, 

if the two nets coineide in a semiperiodie one 1). 
Re11larlc. Ir we count as one the two nets whieh pass into eaeh other 

hy interchanging the two extreme forms (and also the two nets N and 
en N of measure polytopes only) tbe nllmber of measure polytope 
nets is 8+2.5=18 in 8,., 16+2.9=34 in 85 ,32+2.19=70 
in 86 , 64+2.35=134 in 87 , 128+2.71=270 in 8s, etc. 

68. The eirellmstances nndel' whieh polarization of a measure 
polytope net leads to an othel' measure polytope net are easily 
indicated. Fol', though in the case of a net belonging to thc family 
(e, e) the centl'CS of all the constituents are the gl'onps of centres of 
the different limits (1)0, (I)., (lh , ... , (/),,_1' (1)11 of the net N(Mn

21l1), 
11Z heing the extension number, and tbese points form togetber the 
vertices of a net N (itl'l"') ' it is only N (ld,~) itself which satisfies 
tbe condition tbat an M n(2) the vertices of whieh are een tres of the 
M n(2) of the net includes only one vertex of this net. So, if we 
discard the case ce2 N(Mll) = N( C':!ll), the net N(Mn) and the one 
dedueed from it hy polnrization form together the only pair of ttOO 

reciprocal nef.a of measure polytope descent. 
In general the system of vertices of a net obtained by polarizing 

a measure polytope net is the combination of several groups of 
centres of limits MP"') of the meaSUl'e polytopes of the net N(Mn

2m), 
m being the extension numbel'. Sowe find in 8a: 

') In the case of the firat relation, where we do not obtain the second member by 
dashing the snbscripts a, b, Ct ••• , ", 8, t of the firat, the proof is a bit more complicated. 
Here we find for Yn the expreFsion given above, but for g. - as we have to snbtraet 
from ka instead of ka + 1 -

a b-a c-b _r t-s n-t 

I k, k, . . /;, k-l, k-l, .. k-l, k- 2, k-2, .. k-2, ... ,2,2, .. 2, 1,1, .. 1, 0,0, .. 01 V2, 
etc. 
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in the case of N cellh'es of limits M'J, 
"eIN,ce1N,cele'l..J.V " " " ltl'J,J;Jo, 
" et. N, el ~'l. N """ .1J13 , M 1 , Mo, 

whilst - as we rcnuu'ked above - in the cases where e'J OCCUl'S 

all the groups of centi'es contribute to the system of vertices, 
In the case of the gl'oups M'J, Mo a space filling double pyramid 
on a square hase may he considcl'ed as tbe constituent of the reci­
procal net, in the case of thc thl'ce groups M3 , Ati" Mo we arc 
ohliged to cOllsidcl' as cOllstituent a polyheclron (5, 9, 6) whieh may 
be got hy dividing the double pyl'amid mentiolled into four equal 
parts hy hisecting the pail's of parallel sides of the squlll'e hase 1), 

G, 8/J11l11wtr/J, cOJlaideraliolla of the them,!! of g1'oupa, 1'egltlarUy, 

69, We determine tbe spaces of symmetl'y 8!/n_1 and consider 
successively the case of the measure polytope M" of 8" Imd that of 
any polytope (P)"t deduccd fl'om Mil hy the operations of expansion 
anti contraction, 

Ca8e of the meaailre poll/tape, Let us suppose 8J" -1 is a definite 
space of symmetry of M" and let A1 he a vertex of hl" not con­
tained ill SY"_1' 'rhen thc mi l'I'O l' imogc of A1 with respect to 
/))11-1 is all othel' vertex A2 of jJl", whiclt illlplies that A1 A2 is 
eithel' an edge Ol' a celltral dil1gonal of a ccrtaill limit hik of M" 
wherc lt' may he - the case of the cdge ineluded -. one of the 
llumhel's 1, 2" ., n --- I, Let 8" he the space containillg that MI,' 
'l'llen auy edgc A1 A' thl'ough A1 of Atl" not belonging to MI.: is 
norl1lal in A1 to 81, alld thcrefore to A1 A'l.; so these n-Ic edges 
A1 A' are parallel to 8.'1"-1 and M" call he generated hy pI'ismnti­
zing MI, in these dit'cctiolls, i, c, 8y". 1 ia a space of symmetry of 
Mn' if and only if its 8eetioll 81._1 with 8k is a space of symmetry 
of MI.:, which condition is fulfilled in the cases Ic = ], Ic = 2 
only, 1<'01' in all the remainiug coses Ic = 3,4" , ., n -1 (and 
also for Ic = u) the t\\'o simplexes S(Ic) the vertices of which are 
the groups of vCl'ticcs of ltIk adjacent to Al and to A'l. are equal 
but of opposite orientatioll, whieh proves thut the space 8k _ t of 8k 

normally hisecting Al A2 is ilO space of symmetry of M k • 

_Fol' Ic = 1 the line A1 A2 is an edge, for Ic = 2 it is a diago­
nal of a face, 80 the two gl'oups of spaces 8YIl_t are the n spaces 
X j = 0 and tbe 1l (n -1) spaces Xi + X k = 0; so the numher of 
spaces 8/Jn-1 is 1t

2
• 

') We defer further developments about reciprocal nets to an other paper also des­
tined to complement art, 39; compare "Nieuw Archief voor Wiskunde", vol. X, p.273. 
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Caae uf the jlol!Jtope (P)", dedllced fro11l the meaaure polytope. 
rrhe n2 spaces 8.'111-1 found nbove al'e spaces of symmetry for 
(P)III; so hel'e again the only question is if (P)", can admit a space 
of symmetry S!JII-1 which is no SJ/II-1 for the Mil from which (P)m 
has been tiert veel. We sllppose that there is sueh an SJ/II-tt repl'e­
sent by frJ'" the mirror image with respect to that 81/11_1 of the 
Mil from which (P), .. has been derived by a set of ek and c opera­
tions, and l'emark now that - as 8!111_1 is space of symmetl'y for 
the figure consisting of (P)". and the two measure polytopes Mn' 
~l1',. - it must bc [>ossible to derive (P), .. from .l.M'" hy the same 
set of operntions. 'rhis particnlarity presents itself in the case of 
the octagon el (p~) ollly, as the p,. itself may be represented either 
as [1, IJ or as [1, OJ V2. 80 we find: 

n 

'l'HEoREM XLII. "The mensure polytope [1 I ... IJ of Sn and 
the polytopes deduced from it by expansion and contraction admit 
n2 spaces SJ/u _ 1 of symllletry, the n spares ,ei = 0 and the n (n - 1) 
spaces tei + te" = O. Ouly in the case of the plane we have to add 
for el (P~) the four new flxes of symmetry passing through pairs of 
opposite vertices of the octngon". 

70. Moreover wc Hnd: 1) 

'rHEOItE~1 XLIII. "The ordel' of the gl'oup of anallagmatic displa­
oements of the measure polytope Mil of Sn and the polytopes 
dcduced from it hy exp!lllsion and contraction is 2n-l. n!" 

"The order of the extended gl'OUp of anallagmatic displacemellts 
óf these polytopes, reflexions with respect to spaces S!/n -1 of sym­
metry inclllded, is 2n

• n! In this extended group the first group 
of order 2n - 1. n! forms a perfect subgroup". 

}'or II = 2 these general resnlts have to be completed in the 
known way fol' the octagon." 

}'or the simple proof we refer to the article quoted. 

71. Finally we have to apply to thc polytopes and nets of measure 
descent the scnle of regularity due to Mr. ELTE. As to the theory 
we can only repeat here wh at has heen remarked in thc art8

• 42 
and 43, with omission of all that refers to the central symmetry 
of some of the polytopes of simplex extmction. 80 theorem XXV 
must take here the simplel' form: 

THEOREM XLIV. "Any two limiting elements (l)d belong to the 
same subgroup or to different subgroups, in thc sense of the scale 

I) Compare "Report of the British Aasociation", 1894, p. 568. 
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of regnlal'ity, according liS their symbols of coordinlltes are cqual 
or different." 

As the n.pplieation of EL'rJo:'s scale 1) to polytopes and nets of 
meaSlll'e deseent is rather ellsy it may suflice to give some examples, 
both of polytopes mul nets. 

a). BXflIllple [:r 3' 2' I' I]. Here we find fOllr diffel'ent groups of edges 
(3',2'), (2', I'), (1',1)(1, -1).80 the contrihutionstothenumerator 
are 1 from the vertices mul t from thc edges and the fraction is 

l+i 3 h .. I' 8 - 5--- = 10' t e 1II11lUllIIIU VII ue 111 1;' 

b). R..vnmple [332 I 0lV2. Here thrce groups of edges appeal', vi?. 
. 3 

(3, 2) V2, (2, 1) VZ, (l, 0) V2. 80 we find once more Hf 

c). Emmple [IIOOO]V2. Only one kind of edge, viz. (1, O)V2. 
80 we have to eXllmÎllc the faces. As it is clear that we find 
triangles (V2, V2, 0) 0 0 alld squares [V2, V2J 0 0 0, the degree 

f I ·· 4 2 o regu Ill'lty IS - = -
v 10 5' 

d). Example e-l A'l.Jl's(2». Tbe groundforlll [I' 1 1 1 IJ admits two 
kinds of edges (1' 1) 1 1 1 and I' 1 1 1 [1 J of a different character. 

p - ] 
80 we find _ 2_ = -o 4' 

e). Exarnple eel el! e3 e4 :'(615('}.». Here we have to deal with four 
gl'OUpS of constituents represented wich their frames in the table 

95.[43210]. , .... , (2pt ,2pz ,2P3 ,2pl6 ,2p" )4 
ga" .[210J[10J ... (2pt ,2pz .2p3 ,2pl6+ 1,2ps+ 1)4 
g'}. ..• . [10J[210J .. (2pt ,2P2 ,2Pa+ J, 2p,,+ J,2Pä+ 1)4 
flo ....... [4321 0]. (2pt + 1, 2p'/. + 1, 2pa + 1, 2p" + 1, 2p., + 1)4 

80 through the vertex 4, 3, 2, 1, 0 pass 

[ 4:, 3, 2, 1, OJ ...... At \ 
[8 + 4:, 3, 2, 1, OJ .... .. Az 
[4+0,4+1J [2, 1, OJ ...... B 
[4 + 0, 4 + 1, 4 + 2J [1, 0]. .... . 0 
[4 + 0,4 + 1, 4 + 2, 4 + 3, 4 + 4:J ...... Di 
[4 + 0, 4 + 1, 4 + 2, 4 + 3, - 4 -t- 4: J ...... D2 

i. e. six polytopes and more in detail four cells [482 1 OJ alld two 
prisrnotopes [2 1 OJ [l 0]. Now tbe edges (43) 2 1 0 and 432 (I 0) 
be long to both the prisrnotopes, whilst each of the edges 4(82)10 

') We stick bere to the oliginal Bcale (compare PI'oceedifl!l8 of Amsterdam, vol. XV, 
p. 200). 
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alld 43 (21) 0 belongs to only one. 80 thel'e are two different kinds 
2 1 

of edges and we find (3 - 3' 

Re11ladc. In 8" the rlegree of regularity IS a mlllInlUIll, 1. e. 
33. 
-2 fol' a polytope and --+ 1. tor a net, 

n 2~ ) 
1°. if the symbol of the polytope or that of the groundfol'lll of 

the net contains no zero, 
2°. if the net admits a constituent !I" _I' 

For in both cases th ere are at least two kinds of edges: iu the 
first case the edges [1J, in the second case the erect edges of the 
prisms !I,,- 1 d iffe l' in charactel' from the remaining ones. 

'l'he results about regularity have been indicated in the 'l'nbles IV, 
V, VI. In Table IV the l'egulal'ity fraction is contained in column 
5, whilst the subscripts in column 4 give the different groups of 
limits (I)". In 'fables V mul VI in the cases n = 4 nIJd 1l = 5 the 
last column contains the regularity fraction, the last but one 1) thc 
different groups of limits (l)k' whilst thc part n = 3 of 'l'nhle V 
contains two columns more, one indicating the l1umber of the 
ANDRF.INI diagram of the net, the other indicating the particularities 
of the edges passing thl'ough a vertex (see ANDRlmn'S list, page 
30-32 of the memoir quoted in art. 22). 

Section 111: POLY1'OPES AND NE1'S DERIVEU JöltoM 'fHE CROSS POI.YTOPE. 

A. Tlte 8!111lbol of coordinatea. 

72. In th is section which is so closely related to the immediately 
preceding one that it mny be considel'ed ns a mere supplement of 
the latter we have to start from the cross polytope G2n(2) of 8" repre-

11-2 

sented by tbe symbol [100 ... OJ V2 and to remember th at we 
are to prove hy aud by that there is no difference whatever between 
the offspring of this cross polytope and tbat of the measure polytope 

" 
pI . . . 1 J of 8U' 

For n= 3, 4, 5 we have sllccessively in the symbols of Ml"s. S'roTT:2) 

') Tbe numbers of tbe dift'erent groups of limits (l)k for k> 1 bave been fouud in 
the manner indicated for tbe simplex in Table 111. but we bave judged it of no impor­
tance to insert an analogous table for tbe ml'8Snre polytope. 

I) For tbe deduction of the e and c symbcls from tbe ~ymbols of coordinates compare 
part D of tbis section. 

In Table IV second column are inscribtd tbe e and c symbols of tbe polytopes deduced 
from tbe cross polytope eorresponding to the symbols {Jf loordinates oftbe tbird column. 
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It = 3. 

[100] V2 = 0 I [1'1 IJ = e2 0 =llCO I IlIIIJ 
C2IOJV2=c.O=tO L2'l'l~=cle20= teO [IIUJV2 =celO={O yl'l] 

eeg 0 = C 
- cel t's 0 = to 

It = *. 
[1 OOOJ V2 = ~10 1 ~3,2,l 01 V2 -
[21('0]V2 el (,10 L2illJ -

el e2 016 1 1 C2 2 1 0] V2 = 
cJ es (110 [ IIOOJ V2 = cel (116 = CH ~I'l'l IJ = 

[2110J V2 - eg Cu 1 [Z'ITI] 
[1'111] - e;j UlO ::\'2'1' IJ 

CgC;I {ia 1 [1110] v2 = ce9(.'16 1 [1'L'l'lJ = 
- elc2 cJ l.'10 [l11IJ = ce.,C10 =Us [2'2'1'1J = 

11 = 5. 

cel eg CIO 
cel es C16 

cege;l°IG 
cel eg es CIO 

[1001HIJ V2 = (:u ~ :3 2 2 I O' V2 = 
l: <! 1000' V2 = el (Z~2 ~2ï'l'1 IJ 
~2 I 100.1 V2 = (' ',",:n' lï' 1,1 

1'2I1;1(.~121 j:l22101V2= (:ege;lCS2 
1'2e"f,~2 Cll OOOJ V2 - cel CS2 ~nTllj - ce2e,(S~ 

- l!2 -';i;3 .1-

[2 1 il OJ V2 = e.! C:~2 ' l:3 2 1 Ol V2 = 
[nlllJ - e,C!2 ~3'2'l'llj 

e;je" ('!l2I L llllJO~ V2 = ceg C32 llTI'l'lJ - ce3e,,{'s3 
ell'2e3{'S2 ~ll110~V2 = cea OS2 ~33210]V2= cele2e;l0S2 
Cl e2 e, US2 [ l I 111 J = ce., CS~ ~2'2'l'l IJ - cel ege" CS2 

[3 2100~V2 =elc~ (;u ~:rnTIJ - elc:\e,,(S2 [2 2100J V2 = cel eg US2 L2'2Tl'IJ - cel eS e" CS2 
- eg p.;se,CS2 [22110J V2 =cele;l(sg!C2'2'2TIJ - ce~e3e .. CS9 [3 2 11 u] V2 = el c;I (32 '[:r2'2'l' 1 J 

[2'1'11 IJ = Cl e" OS91 ~.j.'a'2'l'lJ =el e~I'SP"(S2 LI'I'III] = celc" C;lg [3'3'2'I'IJ ==-cel eg es e, CS3 

H. 'l'he characleristic nU11lbers. 

73. Frolll the preceding section concemed with the measure polytope 
call he gathCl'ed the sYlllhols with the characteristic numhers of the 
polytopes dedllced fl'Ont the Cl'OSS polytope, the symbols of COOl'­

dinntes of which wincl lip in n unit, as these polytopes also belong 
to the offsp"ing proper of the measllre polytope. 80 we have only 
to add a couple of examples about polytopes, the symbols of coor­
dinates of which end in zero_ 

B7JOlllple [2110], method wOl-king from two sides 1). 
'l'he number of vertices is 23

• 4! divided by 2!, i. e. 8. 24: 2 
=96, 

'l'he numher of the cd ges passing through the pattern vertex is 
six, for this vertex is united hy edges to the vertices: 

1 210, 
1120, 

2011, 
2101, 

80 the nnmber of edges is 9~. Û = 288. 

201-1, 
210-1. 

J norder to find spaces containing limiting bodies we consider 
successively the equntions: 

+ ali = 2, + ali + al"}. = 3, + Xi + X'}. + Xs + .!V~ = 4. 

'l'he equations + Xi = 2 give 8 forms [1 1 OJ, i. e. 8 CO of vertex 
import. 

1) In the two examples we omit the common factor V2. 
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'l'he equations + (J}i + (J}j = 3 give 24 forms (21) [L OJ, i. c. 
24 P", of edge import. 

'l'he equations ~ + (J}i = 4 give 16 forms (211 0), i. e. 16 CO 
of body import. 

80, we find 24 00 and 24 0, i. e. 48 polyhecha, nnd therefore 
t (24 X 14 + 24 X 6) = 240 faces. 

So the result is (96, 288, 240, 48) in accordnllce with the law 
of Euler. 

E(J}ample [32 I 10], dü'cet methoo, 
'l'he number of vertices is 2"'.5! dividcd by 2!, i. e. 1920: 2 

= 960. 
'l'he edges split up into three groups (32), (21), (10). 'l'hrough 

the pattern vertex pass: one edgc (32), 1100 edges (21) - on 
account of the two digits 1 - and JOU1' e.dges (10) - on account 
of the two digits 1 and of the facuJty to make thc last digit to 
correspond either to + ter, or to - ter,. 

80 there are in toto 
480 edges (32), 960 edges (21), 1920 edges (10), 

i. e. 3360 edges. 
The faces split up into six groups, viz. the tl'iangles (21 L) anu 

(110), the squares (32) (10), (21)(10) and [10J and tbe hexagon 
(321). 

In the pattern vertex COIlCur: 

one triangle (211), 
!wo triangles (110), on account of + (J}", 
jou1' squares (32) (l 0), on account of the two digits 1 and of + (J}r" 

" " (21)(10),,, " "" " " " " " " '" 
two" [10J,,,,,,, " " " " , 
two bexagons (321),,, " "" " " ,,1). 

80 we find: 

960 (3 tri~ngles + 10 squares + 2 hexagons) 
3 4 6 

= 960 triangles + 2400 squares + 320 hexagons, 

1. e. 36öO faces. 
'l'he limiting bodies split up into the seven groups: 

(3211) = tT, (321) (l0) = Ps, (32) (110) = Pa, (2110) = 00, 
(32) [10J = (21) [10J = P"" [110J = 00. 

1) In the case [10] the difference between + Xs and - x" has no effect. on acconnt 
of the square brackets. 
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Of these seven polyhedra concur, on account of the rP,llsons given 
above, in the pattern vertex in the indicated order: 

1 tT, 4 Pij, 2 P3' 2 CO, 
2 P", 2 Ph 1 CO. 

80 we find: 

!Joo (t l' + 3 CO + ~ P6 + 4 p .. + 2 Ps) 
12 12 12 8 6 

= SO 11'+ 240 GO + 320 P6 + 480 p .. + 320 Ps, 

i. e. 1440 limiting polyhedra. 
Finally the limitillg polytopes split up into four gronps: 

(3211 0), (321) [10], (32)[110], [2110] 

Hlul so we find: 

32et e3 8(5), 80(Î);4), 40Pco , 10cetesCs, 

i. e. 102 limiting polyhcdra. 
So the result is (960, 3360, 3680, 1440, 1(2) in accordance 

with the law of Enler. 
With respect to the import we have still to add that we pass to 

the cornplemelltm'y import, if a polytope of the measure polytope 
fmnily is regardcd as a polytope of cross polytope descent. 80 in 
the first of the two examples where the cross polytope import has 
been indicated the result is complementary to that registered in 
'fabie IV read from left to right. 

C. lf-àJten8Ïon ntl1llber alld trltncati01t i1de!/era and jra'Jtiona. 

74. 'l'HI<:ORElII XLV. "The ncw polytopes, all with edges of leng th 
unity, can be found hy means of a regular extension of the cross polytope 
followed by a regnlar truncation, eitber at the vertices alone, Ol' at the 
vertices and the edges, or at the vertices, edges and faces, etc." 

.1:<'01' the proof we refer to the artS. 15 and 56. 
Here the limit (1)"-1 of the highest import, i. e. !/ .. --t, corresponds 

to the equation '/;'1 + te-). + ... + ten = constant. 80 the extension 
number is the sum of the digits of tbe new polytope divided by 
the sum of tbe digits of the cross polytope, i. e. by V2. 80 tbe 
extension number of [3' 3'2'1' 1] is 5 + 9 V2 divided hy V2, 

i. e. 9 + ~ V2. 

We can stick here to the method of measuring the amollnt of 
the different truncations on the edges. But we must point out a 
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tlifficulty underlying tbis metbod. 80, in tbe case of truncation of 
an octahedron (fig. 16) at the edge BG, it makes a ditference 
whetber we choose BA or BG' fiS the edge on which we deter­
mine the amount of truncation. I·'or if we move the trullcating 
plane (through BG normal to OM, where M is the midpoint of 
BG) parallel to itself untill it passes through a it contains the 
other extremity A of the edge BA ,- \vhile it hisects the cdge BG'. 
This difficulty can he overcome hy stipulating tbat thc edge to he 
chosen may not contain a vertex opposite to one of the vertices 
of tbe limit at which the truncation takes place. But tbis implies 
always that we measurc quite as weIl ou the line Ma joining thc 
centre of that limit to the centre of the polytope. 80 if the trull-

cating space cuts Ma in P the alUount of truncation is Z~, Now 

the complement ~~ of this quantity can he deduced immediately 

from the symbol of coordinates [al, a2" , " all] of tbe C\'OSS polytope 
form considcred. Ir we suppose that the trullcation takes place at tbe limit 

u - i n 

(lh'_1 of the corresponding extended cross polytope [1, O~.-~OJ~ai 
1 

lying in the spaee represented hy Xi + 'V2 + . , . + X k = constant 

I't . d' I 'd h PO. I h . IS Imme late y eVI ent t at Ma IS equa to t e quotIent 

k 

of the sum ~ ai of the fh'St Ic digits of the symbol of the trun-
1 

cated polytope by the 

n 

polytope, i, e, by ~ai' 
1 

corresponding sum of the extended 
k 

PO ~ai 
80 from Ma = ~ we deduce: 

~ai 
1 

n 
~a . 

f ' MP k+t' 
amount 0 truncatlOll = Ma = -,,- , 

~aj 
1 

cross 

We illustrate this theory by tbe example [3' 3' 2' I' I] for whieh 
we have detel'mined above the extension llumher, Here we find 
moreover 

5 5 ;1 

~i = 4 + 6 V2, ~i = 3 + 3 V2, ~i = 2 + V2, as = 1 
2 S 4 

and therefore 

4+6V2 
5+9V2 

2+ V2 
5+9V2 

1 

5 + 9V2 
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as the amount of truncation at (1)0' (1)1 , (/)2 , (lh. As these 
numbers 

1:7(44,+ 3V2), 1:7(13 + 4V2), 1~7(8 + 13V2), 1~7(UV2-5) 
are rnther impmctical, we only put on record in 1'able IV the 
results relnting to the cross polytope forms proper, where the 

denominator Rnd the Ilumel'atol' of the frnction Z~ are both 

integer multipIcs of VZ. Here the result 9 I 6, 3, 1 correspon­
ding to [3321 OJ V2 expresscs thai the RIllOtlnt of truncation at 

1 1 I · '1 211 
( )0' ( )1 , ( h IS respectIve y 3' 3' 9' 

]). A'31prLnsion mul COll tmction sJ/11lho18. 

75. What we havc to pl'Ove here is: 
'l'HEoRKli XLVI ,,'l'he expanslon e/,;, (k= 1, 2, 3, .. , n-2), applied 

to the CI'OSS polytope (J~,.(2) of 8,. changes the symbol of coordinntes 
11-1 

[1()O~~)JV2 of that regulnr polytope hy addition of V2 to the 
I' n-k-t 

11r8t Ic + 1 digits into [2IT.~I O~OJV2, whilst in the case of 
en - t where npplication of this mIe would give a symbol without 
zero we have to add unity instead of Vz to all the digits, giving 

n-t 

[1' 11 ... 1]". 
Proof. We treat the cases /.: < n -1 and Ic = n - 1 separately. 
Ca8e k < 11 -1. The operation e" acts upon the limits (I)" = ótk + I) 

of thc cross polytlJpe. Now the centl'C M of the limit Cl)" represen­
ted by 

k 

lt't,(t'l'" .,it',,+t=(lO(j"~V2, rCk + 2 =31k +S='" =31 1 =0 

has the coordinates 

V2 
31t = 312 = ... = 3110+1 = k + 1 ' 31,,+2 = 311.:+S ·= ••• = 31n = O. 

If we move this limit (1)1> parallel to itself in the direction 
. OM to a position Cl)'k fol' which the centre M' satisfies the rela­
tion OM' = À. OM, where À is to be determined, we find for the 
coordinates of M' 
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80 hy this motion the coordinates Xl' X'}., • •• ,Xk+l of nny vertex 

A of (l)k increase hy (À ~ ~ i 2 
,whilst the coordinates Xk+2' Xk+3' 

... Xn of this point remain zero. 80 {l)'k is l'eprescnted hy 
/, 

(
À -- 1 À-I À-I) 

XI> X2 , ••• ,XkH = 1 + Ic-I' Ic-I"'" Ic-I V2, 

cVk +2 =Xk+3 = ... = Xu = 0, 

from which it cnsues that the Rymhol of cool'dillates of thc ncw poly­
tope hecomes 

/. 

[
À - 1 À-I - -À--=-- 1 »-"-1 

1+r-_I' Ic-I'" "k-=-l' 0, ... ,0J V2. 

80 the new polytope satisfies the law of thc eqllality of all thc edges 
cxpressed in theorem XXVIII if, and only if, we have either À = 1 
or À = k. As À = 1 cOI'l'esponds to the cross polytope itself, we havc 

Ic »-/;-1 

to take À = k in which case we find [2 ïl~ 00. ~OJ as thc 
t1leOl'em rcquires it. 

Ca8e k = 1Z - 1. We considel' the limit (l)n __ 1 = 8(~l) repl'e­
sented hy 

n-1 

Xt , X2,' •• , X n = Cl 00 .. ~) V2 

with the centl'e M, the coordinates of which are 

V2 
XI = X2 = .. = X n = --, 

n 

nnd move this (l)n _ 1 parallel to itself in thc dircction OM to a 
position the centre M' of which is detcrmincn hy thc relution 
o.M' = À. 0 M. '}lben we find in the way indicated ahove for tbe 
symhol of coordinates of the ncw polytope 

»-1 

[ 
À-I À-I À-IJ 1 + _ ., -- , ... , -- -- V2. 

n n 1Z 

80, if we discard immedintely the supposition À = 1 lending 
back to the originnl cross polytope, the new polytope tbe symhol 
of whicb contains no zero satisfies the Inw of theorem XXVIII, 
if - nnd only if - we have 

(
1 + À - 1) : ~ - 1 = (1 + V2) : 1 

1t n 

giving À-I = t n V2. 80 we fiod tbc polytope with tbe symhol 
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tl -1 

in accordance with the statemellt of the theOl'em, 
Dy the way wc nllll: 

tl -1 

'rH1<:oRlm XLVII, "111 the cxpallsion e" the limits 8(k + 1) of 
C~tl(2) arc moved away from the centre to a distanee equRl to k 
times thc oJ'igillal distance fol' 1.: < 1l - 1 and to R distance equHl 
to 1 + l1t V 2 timcs the original distance fol' k = n - 1", 

This comes tJ'ue, fOl' this extension COl'l'cspondsin both cases to 
that deduced fl'om thc sum of the digits of the symbol of coordi­
nates of the new polytope, 

As the distance OkI was V- 2- - , it becoines !t~ V --2 --
k+l k+l 

lt + Vz 
fOl' 1.: < Jl - 1 and fOl' k = 1l - 1. V/~--

76, 'J'HEOIlEM XLVIII. "Thc influencc of Rny numhel' of expan-
11 - 1 

sions e,.., el' e.n " , of C-J.tl('1.) on its symbol [1 00 ~OJ V 2 is fount! 
by adding thc illfluences of eaeh of the expansions taken separately" , 

Proof. Here likewise, in the suecessioll of two expansions the 
subject of the second is to be what its originnl subject has become 
undel' the illfluellce of the fhst, So in the case of e2 et 0 of the 
oetahedl'Oll (fig, 17a) the ol'iginal !)ubject of el (the triallgIe) is 
transfonned hy et into a hexagoll (fig, 17b

) alld now the hexagon 
is movcd out, in the case e, e~ 0 the lincnr subject of el (the edge) 
is transfol'med bye'}. into a sqllal'e (fig, 17C

) and now this squal'e 
is moved out; in both cases the result (fig, 17d) is the same, a 
tCO, In general, fol' k > I, in the case e" e, C211 (2) the suhject 
8(k + I) of el.' iR tJ'Rnsformed hy e, into the forlll e, SC!.: + 1) of 
the same nurnber of dimensions, while in the case e, ek C2tl(2) the 
subject 8(1 + 1) of e, is tl'allSfol'lued by el.' int.o nll 1l - · l-di­
mensional limit fit of import I, Here also the geometrical condi­
tion : "that the two llew positions of any vertex Rhall be separatcd 
by the length of Hll edge" leads to the ordinary composition of 
tbe motiolls of the celltl'e aecord 'ng to the I'U Ie of the pal'allelogram 
in the case of two expansions, etc, 

By the way we find: 
'rHEOltK\l XLIX, "The operation el.' can still be npplied to nny 

polytopc deduccd from C-J.,,(2) in toe symbol of coordinates of whicb 
the k + 1 st and the k + 2"'/ digit are equal." 

We indicate hy mcans of this theorem tbe expansion symbol of 
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the example [5' t' t' S' S' t' t't' I' I] of art. 55, consirlered as a deseen-
9 

dent of [100.-:-0]. Of the five intervals V2, indicated by (d .. dJ, 
(~, d,,). (d5 , d6), (ds, dg), (dj , dlO) the fit'st eonesponds to tbe original 
interval of the symbol of coordinates of 02'P) w bilst aecording to tbe 
tbeorem tbe otbers result from the four operations e2 , e" e7 , es. 
But as tbe symbol winds up in a unit instead of a zero wc have 
to add eg. So we find e-z e" e7 es eg 02,J2>. 

77. By means of tbe operations ek we can deduce from O2<;> 
all tbe possible polytopes thc square bracketed symbols of coordinates 
of wbich are charaderized by the fact that tbere is an interval V2 
bet ween tbe first and the second digits. Ir' we wish to deduce from 
02~2) also polytopes with square bracketcd symbols the two digits 
di, dJ. of wbich are equal we have to follow M ..... S'l'OTf by intro­
ducing tbe operation c of contl'action, the subject of wbich is the 
group of lilllits (I)n-t of vertex import. With respect to this opera­
tion we can prove tbe theorem: 

THEOREM L. "By applying the contraction c to any expansion 
form deduced from 02!?) tbe lat'gest digit of the !\}'mbol of eoordi­
nates of tbis form is diminished hy V2." 

Prooi. Here we have to consider the two cases of the symbol 
of eoordinates, winding up eitbcr in 1 or in O. 

Oase [l +(a+ 1)V2, 1 +aV2, 1 +bV2 , ... ,1]. - If we 
replace 1 + (a + 1) V2 by 1 + a V2 the limit.9o represented by 

~t = 1 +(a+I)V2, ~2,,1:'3,'" , ,1:'n =(l+aV2, I+bV2 . . .. , 1) 

passes into 

i.e. that limit (I)n-i moves parallel to tbe axis OXt towards tbe 
eentre 0 over a distIlnee V2.Evidently applieation of this proeess 
to all the limits .90 eorresponds to a sul>stitution of 1 + a V 2 for 
the digit 1 + (a + 1) V2 withill' the square brackets. Evidently any 
two adjacent Jimits represented originally hy 

él't = 1 + (a + I)V2, 
~2= 1 +(a+ 1)V2, 

~~,él'3'" '~n=(l +aV2, 1 +bV2, . .. ,l), 
~t,~3,' • ' ~n = (1 +aV2, 1 + bV2, ... ,1), 

wbieh were separated hy tbe right prism 

él't'~2= lI+<a+I>V2, 1+aV2), ~s , ... ,~n=(l+bV2, . . . ,1), 

pass into the two limits 
Verb. KOD. Akad. V. Wetenecb . t o Sectie Dl. XI No. 5. E4: 

file://-/-bV2
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tei= 1 +aV2, 
te-].= 1 +aV2, 

,lJ2>it'a,' .. ,tV" = (1 + aV2, 1 + b V2, . .. ,1), 
it'i,tea, ... ,<'lJ,.=(l +aV2, 1 +bV2, ... , 1), 

which are in contact with each other by thc 1l --- 2-dimensional 
polytope 

tei = 1 + aV2, -it'2 = 1 +aV2"lJa, cV4,' •• , it',,=(l +b V2, . .. ,1). 

Case [a + 1, a, b, ... , OJ V2. - Here we have to consider the 
influence of the replacing of a + 1 hy a. 'l'he proof runs exactly 
in the same lines. 

Remark. By combining the theorems XLVIII and XLIX we 
can find the symbols in c and el; of alt!! form deduced from C2~;I. 
But this pl"Ocess eau be simplificd by introducing thc operation 
eo which tl'ansforms the centJ'e 0 of C2~~) cOllsidered as an 
infinitesimal cross polytope C2~:) illto C2;;). Then the cOlltraction 
symbol c can be shunted out by substituting el.- et . •• e'lI C2:~) for 

C(") 1 th' ' . l' h . 1 C. (2) cel; el' •• e". .;, mt IS Imp les t at we rcp ace el.- el' •• em 2.1 

bye" ek e/-• •. em C2~?)' 'rhis remark - con'esponding titerally to that 
of art. 60 - will also be useful in part F of this section. 

Meanwhile we have ShOWll now that any coordinate symbol be­
tween square brackets satisfying the laws of the first part of theorem 
XXVIII (art. 47) can be interpreted both ways, either as a form 
deduced from the measure polytope Ol' as a descendent from the 
cross polytope. 80 we have proved the following theorem already 
stated implicitly in art. 48: 

'rHEOREM LI. "'fhe families of polytopes deduced from the two 
patriarchs, measure polytope and ~ross polytope, are idelltical." 

E. Nets ol polytopes. 

78. In accordance with the last theorem the net of measure 
polytopes N (M~2» can also be considered as a net N (cen_i c2t;» of 
polytopes cell _ 1 C2~;)' 80 the nets put on record for n = 3, 4, 5 
can he transcribed as nets of cross polytope descent. 

But instead of doing th is we point out a pal·ticularity of 
the case 1t = 4. }'or n = 4 both the half measure polytopes 
+ t [I, 1, 1, 1 Jare cells q6 and in relation with this fact we find 
a new fourdimensional net of regular polytopes, i. e. 8~ possesses 
besides the measure polytope net exceptionally a cross polytope net 
too. If we suppose that the net N (jt}4,(2» be composed of alternate 
white and black polytopes, so that two Mt) with a C0l11m011 _Jl,j(2) 

differ in colour, and thnt each white M4 (2) is truncated at one 
set of eight vertices, so as to retain a + t [1, 1, I, 1 J, w hilst 
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each black M",(2) is trullcated in the same wny so as to retain a 
- t [1, 1, 1, IJ, the i ntel'stitial spaces between thcse two sets of 
inclined Ct6(2V2) can he filJed up hy a thinl sct of e1'ect CI6('?V2), and 
we ohtaill n fonrdimensiollal net formed hy three equally nmnerous 
gl'OllpS of cclls Qi2V2) with thc property that all the polytopes of 
the same group lU'e eqllipollent. MOl'eover wc can tranSfOl'lll the net 
N (M"I'!.» of altel'llate white and black polytopes illto n nct of l'eglIlar 
cells C2\(2) by decomposing caeh whitc M\(2) illto eight 1lllltually 
congruent pyramids with thc centl'C of thc polytope as eommon 
vertex and the eight limiting cuhes of the poJyt.opc as bases, and 
uniting each of these white pYl'Rl1Ii(ls to the black llleaSUl'e polytope 
with which it is in contact hv its base 1). N ow w lmt cOllcems us 
here is that hy trcating the new regltlal' net N (~(;) in tlle same 
way in which the net N (3[4) has heen treated we nnd scveral ncw 
fourdimensional net.s; for these nets thc reader l11ay comparc 'J'ohle Il 
of thc memoÏl' of l\F". S'l'O'l"r quoted several times 2). 

Reil/ark. In art. ()4 we have scen th at with respect to measure 
polytope nets ally net (c, e) is aJso II net (e, c). 'l'his particularity 
does not present itself fOl' thc nets dcd uecd from lV (CI6). 80 here 
we will ha\Tc to distinguish four cases 3), i. e. (e, (:), (e, e), (c, c) and 
moreover (c, e). 

79, We have seen that the vertices of thc .nct N(M,,(2» cau beo 
representcd hy the symhol [2 a1 + ),2 a2 + 1,2 aJ + ],2 a.\ + IJ 
whel'e thc ai al'e arbitl'ary illtegers, Ry considcl'ing thc point Xi = 1, 
(i = 1, 2, 3, 4), as the new origin of pamllel axcs and ornitting the 
squarc brackets we get fol' thc cool'dinates of these vertices 

2 at, 2 a'!., 2 ft;!> 2 a\. 
Prom this we dcduee that thc vertices of thc net N (C.S<2V2) can 

be repl'esented by the same coordinatc values uIlder nddition of the 

'" condition that L ai has a dcfilled character of parity. If we choose 
'1 
.\ 

the conditioll "L ai is even" we get for the three sets of ~6(2V2) 
1 

the coordinate symbols: 

') Compare p. 2-1,2 of vol. 11 of my textbook "Mehrdimensionale Geometrie" or 
Proceedinys of the Academy of Amsterdam, vol. X, p. 536, 537. 

') In the part of that Table concerned with the nets deduced from N (CI6) tbe P 1, of 
thc Hne with the number 28 o:lght to find a place in the same column in tbe line 
witb the number 27, Moreover we càn add in the last colnmn of the line 29 that 
tbis net is equal to that of line 47. 

The fact that several nets of this part are eqnal to nets deduced from cell C24 will 
be explained in part F of this section. 

') In (e, c), etc. the first letter is relnted to CIG, the second to ~4' 
4* 
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1.. .. [2ai+ 2,2a2+ 0,2aa+ 0,2a,,+ O],~aieven, 
II .... ·H2a l +l+1,2al!+l+1,2aa+l-f-1,2al,+1+1],,, odd, 

111 .... --![2a.+l+1,2al +l+1,2aJ+l+1,2a4+J +1], " even. 

Of these three sets I rcprestmts the erect group, while II and lil 
form the two inclined groups. 

If wc wish to represent analytically the fourdimensional nets derived 
from N (G,.fi) we have to start from the three symbols I, II, lIl, 
nnd to study the influence of the opel'lltions e", c. As to the repre­
sentation of all the \'ertices of thcse new nets hy coordinate symbols 
these inHuenccs call be split up into two inadequate pl1rts; of these 
the firstdeals with the val'intioll iu fOl'll1 of any Ci6 of each of the 
three groups, whilst the second is concel'lled with the variat.ion of 
the distallce of any two ~(l. We tl'eat each of these two pal'ts for itself. 

a) Vm'iali01l in s!tape. We know the inHllence of the operntions 
e", c on the coordinate symbol [2000J of the centml CI6(2V2) of 
the erect group and from this we can deduce the corresponding 
influences on the CI(j(2V2) of each of the inclilled groups by means 
of the tl'ansfol'mations of coordinatcs by which [200 OJ passes into 
t [11 1 IJ and - t [1 1 1 IJ. 

'l'he fOl'nmll1e cOl'respollding to lhe fil'st transformation are 

2Yi = Xi + trl! + Xa + Xl, 

2Y2 = XI + tv"}. - X;l - 3:4 

2Y3 = Xi - 3:2 + 3:3 - X ... 

2.'!1 ... = ,-1-'i - Xl! - ,t'a + it' ... 

by changing the sign of Yi we get fOl'ffiulae cOl'1'esponding to the 
second transformation. In the following small table we put on record 
the result of the fil'st transformation : 

1 [2 0 0 0]. .... . ... ... . HIlI IJ 
ti [4200] ... ........ .. i [~ 3 1 I~ 
tl! [42 2 O~........ .. ... L42 2 OJ 
es [1'1 1 I}V2 ....... . . iCt'III] aOlI -HI'IT, V2-IJ 

el ei [6 4 2 0]. . . . . . . . . . . .. [G 4- 2 0] 
el e;l [2'1' 1 IJ V2 .... .. ... H3 + 2V2, 3 1 IJ and - H3 + V2, 3 + V2, I', V2- 1] 
l1l!eOS [2'1' L'IJV2 ...... .. . [4 + 2V2, 2 2 OJ antI -t[4+V2, 2+V2, 2+V2, ViJ 

ti ei e3 (3'2'1' IJ V2 ...... ... [6 + 2V2, 4 2 OJ and - H6 + V2, 4 + V2, 2 + V2 V2J 

d2V2) -cel (2 2 0 OJ = 24 • • • l. 2 2 0 0] 

cei [2 2 2 OJ ........... - t [3 III J 
ce3 [lIl IJ V2 = ~2V2)... [2 0 0 OJ V2 antI - t [1 1 1 IJ V2 

cel e)l [442 OJ ........... - U5 3 1 IJ 
cel e3 (l'1' 1 IJ V~ ......... [~ + 2V2, 2 0 0] and - HIT 1 IJ V2 
celleOl[I'I'1'I]V2 ....... -![3+2V2, 1 lIJ and -i~3+V2, ITI'J 

cel 'elltS[2'2'1'lJV2 ....... -i[5+2V2,lS 1 IJ and -1[5+V2, 3+V2. I+V2, I+V2J 
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b) Variation in diatallce. We account for the variation of the 
distance of nny two sixteencclls due to the extension of these cells 
by multiplying the immovnble parts of the digits of thc three sym­
bols of coordinates given ahove for the thl'ee gl'OUpS of sixteencells 
by a certain cOllstant. 'rhis constant is the extension number itself 
when the opemtion e\ is lacking, i. e. in the two general cases (e, c) 
and (c, c) of nets deduced from N (c;6); in thc remaining general 
cases (e, e) and (c, e) we have to add V 2 to that multiplier in order 
to create roqm for tbe intel'mediate prisms with 2V2 as height. 

As we start from [200 OJ the extension nnmber is half tbe sum 
of the digits. 80 we find for thc multiplier the vnlues given in the 
following tahle 

(e, cj (e, e) I (c, c) 

e/o .• • 1+ V2 
ei' •• 3 eie" . .. 3+ V2 cei' .. 2 
e"). . .. 4 e:!,el)· . . .4+ V 2 ce"). . . . 3 
ea· .. 1+2 V2 eae4' .. 1+3 V2 cea . .. 2 V2 

eie"). ••• O eie~e4" .0+ V2 cete2 ... 5 
eiea . . . 3-+-2 V2 1 eteae4' . ' 3+3 V2 ce,e3 • •• 2+2 V2· 
e2eJ ••• 4+2V2 eleae-\ .. .4+3V2 ce~ea.' .3+2V2 

ei e2eJ' •• 0+2 V21 e,eA.le!o . .. 0+3 V2 I cele~ea' . . 5+2 V2 

(c, e) 

ce4' .• V2 
cete" •. . 2+ V2 
ce2 e" .. . 3+ V2 
cese" . .. 3 V2 

cet e2e" . .. 5+ V2 
ceieae4' .. 2+3 V2 
ce2eae-\ . .. 3+3 V2 

cet e2eae4 . .. 5+3 V2 

80. By means of the Pl'eceding develûpments we can find the 
three net symhols for all the different nets deduced from N (c;6)' 
But this work cau be reduced by the remal'k that it will do to 
use only the net symbol of the eréct group in the cases of the 
seven nets 1, ei' e2, ei e2, cei' ce2, cei el' while we want these of two 
groups onl y for the eigh t nets ea, ei es, e2 es, ei e2 es, ces, cei l'a, ce2 es, 
cei e2ea, and all thc three symbols in the remnining cases where e" 
OCCU1·S. The proof of this assertion is based on the following theorem, 
where we distinguish the three sets of ca.<;es just iildicated as the 
set withont ea and e-\, the set with es and without eh and the set 
with e,,: 

THEOllEM LIl. "Any of the three net symboIs represents all the 
vertices of the net in the set without es and e/o, two thirds of all 
tbe vertices in the set with ea mul withont el), one third of all the 
vertices in the set with el)". 

'rhis theorem is an immediate consequence of the following lemma: 
" Any limiting tetrahedroD of the net N (c;6) is common to two 
Ci6 belonging to different groups, any limiting triallgle is common 
to three Ct6 no two of which belong tothe same group". 
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'l'he tirst part of this lemma is evident by itself. As to tbe second 
part related to a face we I"tate that the angle formed by the two 
spaccs of adjacent tetmhetlm ABCD, ABClJ' of (~6 at the commOll 
face ABC is 1200 (sec lIIy papcl' : "On the allgles of the regular 
polytopcs, etc.", Ailler. JOU1"Il. of ~Mat!t., vol. XXXI, p. 307), 
from which it ellsues that uny face is COIllIlIOII to three ~6; as any 
two of these three G~6 havc a limiting tetmhedron in comUlon tbey 
belOlIg to difterent grollps , ek. 

'fhe ICllIllm .i ust 1)I'o\'c(1 ilJllllcdintely shows the truth of the 
theorem. lf, after Jlllvilig (hi"CII asunder tho cells (~6(2V:.!) of the 
net N (CiG) so as to crcatc room fol' the extellsioll I'ecorded above, 
the extended G~G I'cccive tlle shnpe exacted hy the cllamcter of tbe 
net nndel' cOllsideration hy Ilicans of Il I'cgulm' tl'llllcatiol1, the 
contact of thc eclls - heJoligillg to <lift'ercllt gl'OllpS - by faces will 
rellwin unillflllenced ij' tlte opemtions e~, e.\ do 1I0t yet present 
themselves, the tnlllcntiolis heilig thcn I'cstrictcd eithcr to the ver­
tices nlone or to vertices and edges ; so, as uny. vertex of the net 
belongs at least to olie litee alld each facc bclongs to three poly­
topes of the set w ithout e~, e,,, olie of each group, each vertex of 
the net must be contnillcd in each of thc thl'ee net symhols of 
ully CHse of th at set. 

80 in this case tlte net itsclf call he repreiSellted hy any of the 
three symbols, which includes that the cOllstituents fUl'l1ished hy 
oue s}mbol are identical with those fUl'IIished by ench of the t\\'o 
oUlers, though constituellts of polytope anti hody import of one 
symbol may becollle IllUlel' cel'tain cil'cllmstances constitnents respec­
tively of vertex and edge illlpOl't of an othel'. 

N ow the state of affairs changes as soon as ea makes its appea­
rance. 'rhis operntion still presel'vea the contact by lirniting bodies 
of body import hetween eclls helonging to different groups, but it 
annihilatea at the same timc face contact betweell limiting hodies 
of body import of the same cell. 80 here the limiting bodies of 
body import of ally constituent have been split up into two sets 
P alld Q dividing the vertices equally betwecn them, in such a 
wa.y tha.t uny two of these limits which wcre in face contact 
before belong to different sets. 80 here the arrangement of the 
th ree groups A, ]J, C of cOllstituents is such that any constituent 
of group A is in hody contact hy its set of limits P with consti­
tuents of group B" hy its set of limits Q with constituents of 
group C. 80 each of the th ree net symbols contains all the verti­
ces of one group and only half the numher of vertices of each of 
the two other gl'OUpS, i.e. t of the total aDlount. 
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Fillally, in the set with e4' two cells - belonging to different groups 
- cnnnot have !l vertex in connllon; so here each net symbol 
represents only t of the system of vertices. 

We now indicntc schematicnlly how we can determine all the 
cOllstitllcnts of the different nets of ~o. To that end we have 

1°. to deduce fl'om the precedillg developmellts the net symbols 
necessary in cvery case, . 

2°. to calculate the coordinntes of the centl'es of the different 
constituents, by multiplying the cOOl'dinates of a vertex, of the 
midpoint of an cdge, of the centrc of t\ face nnd of the centre 
of a limitillg body of [2, 0, 0, OJ hy the extellsion number, 

3°. to detel'mine the vertices cont.ained in the net symbols, Iying 
at thc same minimum distance f!'Om these centres. 

As we shall have to consider the "extended" vertex, rnidpoint of 
edge, cenh'e of face, or centre of limiting body mentioned sub 2° 
us new origill of parallel axes of coordinates in order to be ahle 
to obtain the simplest repl'esentation of the sets of vertices menti­
oned sub 3° we will denote th is extended point henceforth by 0'. 

Of each of the three sets we will treat sorne examples, of 
the fh'st ei e2 N( ~6) anel eei e~ N( ~6)' of the second e"}. es N( ~6) 
Hlld eei es N( CiO) , of the thÎl·d ei e" N( ~6)' ei e2 es e" N( ~6) and 
cei e"}. e3 e" ]V 016' Afterwnrds we will put on record the coordinate 
svmbols of all the constituents in 'fabie VII. 
" 

Here the constituent of polytope import is [6, 4, 2, 0] = ei e;! 0t6' 

There are no constitnents of body and face import as the opera­
tions e" and es do not present themselves. 80 we have only to 
determine the polytopes of edge and vertex import. 

Ed!Je !Jap p1·i811l. Dy extension the centre 1, 1, 0, 0 of the edge 
(2,0) 0 0 of [2, 0, 0, OJ becomes 6, 6, 0, U. By putting in the net 
symbol ai = 0, (i = 1,2,3,4), we fiod among others the vertices 
(6, 4) [2, 0] and by putting ai = a2 = 1, as = a" = 0, and takiog 
the rnovable digits 6, 4 with the negative sign we find also the 
vertices (6, 8) [2, 0]; with respect to the new axes with the point 
6, 6, 0, 0 as new origin 0' these two groups of vertices can he 
represented together by the symbol [2, 0] [2, 0]. 80 we find ft 

measure polytope 0d which is to be interpreted here as a prisrn on 
a cube, Pc. 
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rertex.'1flj} pol!ltope. By extension of the \"Cl'tex 2,0,0,0 of [2, 0, 0, 0] 
we get 12,0,0,0 as lIew origin 0' . Hy sllustituting {Ij = 0, (i = 1,2,3,4), 
n thc til'st pluce nnll al = 2 , fti = 0, Cl = 2,3,4), in the seeond (with 
he movnhle digit 0 taken lIegfltivelJ) we put. in evidencc the two 

:.ets of vertices () [4., 2, 0] nlHl IS [4, 2, 0], i.e. with respect to 0' the 
vertices [0] [4,2,0] eontnined in thc net .sYlllbo1. But this symhol 
still cOlltnins other \'CI·tiCC3 Iyillg ut the same minimum distunce 
2 V 14 frolll U', i.e. all thc vertices represented with respect to tbat 
poillt uy [0,4,2,0] alld 110 otller. So wc find e.g. tbe point 4, G, 2, 0, 
wilh thc coonlillutes I G, G, 2, ° with respect to the original axes, 
hy cOllsiderillg the vcrtiees 12 at + 4, J 2 a'}. - G, 12 as + 2, 12 a~ 
and putting {lt = ft ~ = 1 lllul as = (l~ = 0, etc. So the res111t is 
that thc constituent of vertex import is a [G, 4,2, OJ = et e2 Ct6 and 
thel'cfore irlellticul witb the constitnents of polytopc import. 

Hcre the constitnellt of polytope import is [4,4,2, 0J = eet eoJ. Ct6• 

As in thc precccling case of et e2 N( ~G) the eonstitllents of body 
and of face import are lackillg. Moreover by thc contraction the 
original edge llllll thcrcforc also the constituent Pc of edge import 
is annihilntcd, i.c. PI: is rcdllCed to its buse (;. We verify this 
analytically ns follows. By cxtension of thc llIidpoillt 1, 1,0,0 of 
the edge (2,0) 0,0 of [2,0,0, OJ we gct 5,5,0,0 as new origin 
0'. Now the vertices ut millimum rlistnnce from 0' contained in 
thc net symbol are foulld hy putting a j = 0, (i = 1,2,3,4), givillg 
4,4 [2, 0J, and {I1 = a'}. = I, aa = a" = 0 (with tbe two digits 4 
taken lIegatively) givillg G, 0 [2, OJ, i.e. witb respect to 0' the two 
squares 1,1 [2, 0J nnd -1, -1 [2, OJ forming two opposite faees 
of a cube with 0' ns celltre . 

. Finnlly we relllnrk that the contmctioll e does not affect tbe con­
stituent of vertex illlport. 'nlis is easily verified by determining tbe 
vertices at minimum distauce fl'om tbc point (j with the coordi­
nates 10,0,0,0 pl'eselltillg itsclf here. 

82 . Ca8e e~ es N(C1S)' As the operation e3 pl'esents itself here we 
have to find besides the cOllstituellt [2' l' l' 1 J V 2 = e2 e3 ~6 of 
polytope import those of face, of edge and of vertex import, and 
in order to be nble to gather all tbe vertices of these constituents 
we have to use two of the tbree liet symbols, Rut we prefer to 



DERIVED FROM 'l'HE REGULAU 1)0I.YTOPI4;8. 57 

investigate how far we cuu proceed in this wny hy using the fil'st 
net symbol ollly. 'j1his IUllch IUOI'C complicnted symhol is 
(4(2 +Vi)al +4 +V2, 4(2 +V2)a2 +2+V2, 4t2 +V2)aa +2+V2,4(2 +V2)a~ +V21. 

~i beilIg even. We nbl'idge it illto thc followillg fOl'lIl. clcar by itself: 
4 

[4+V2. 2 +\;"2,2 +V'2. V2], (ti+4V2) a1>rt2.aa,a<\.La; eVClI, 
1 

where aio a2' aa~ dil prcceded hy the comlllon factor 8 + 4 V2 rcpre­
sents thc immovnble part. 

Face !lap pri81l1otope, By extension thc ccutre '~ " '5. *,. 0 of the 
face (2.0,0) 0 of [2,0, 0,0] passes into the new origin 0' with 
the coordinates ~. (2 + V2), { (2 + V2), -~ (2 + V2), 0, By 
supposing the four ai of thc liet symhol to disuppcnl' wc get inter 
alia the set of vertices (4 + V2, 2 + V2, 2 + V2) [V2], i.~, 
a Pa. These are the only vertices containcd iu the net symholabove 
rnentioned ]ying at minimum distance ~ V3 from , 0', but as we 
shall see immediately the two other net symbols contaill other ver­
tices partaking of this property. However, in order to sharpen our 
analytic too]s, we ]eave these other net symbols al olie for n moment 
and tl'y to deduce these lacking vertices from the simple properties 
of the prismotope with two rcglIlar gencmting po]ygons ill plunes 
perfectly normal to each other. By melUIS of the Pa just fonnd 
we know thnt one of these polygons is a triangle, and the 
charactel' of the othcr polygon eau he dedueed from its circum­
radius. For the relation Pi2 + P'/ = l between the circummdii Pi' 
P2' P of the two generating polygons alld the pl'ismotope itself 
gives, as we have P =~, Vs and Pi =~, va, P2 = ~- va, i. e. 
the second polygon is also a triangle and the prismotope a (3; 3), 
We have therefore on]y to find a third position of the first triangle, 
the two end plan es of Pa contnining alrcady two positions, and 
th is third position can be found by remarking that thc centres of 
these th ree equipollent triangles are the vertices of an equilateral 
triangle with 0' as centre. 80, if p, q , 1', 8 are the cOOl'dinates 
of tbe centre of this third position we have that tbe triangle with 
tbe three vertices 

!+V2, 
!+V2, 

p 
must admit 

i-+V2, V2 
_8..+ V2 -V2 
3 ' 

r 8 

f(2 + V2), t (2 + V2), t (2 + V2), 0 
as centre, From this it ensues that we have 

p=q=r=!+2V2,8=O, 
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fmnishing (4 + 2V2, 2 + 2V2, 2 + 2V2), 0 fot, tbe tbird po­
sitioll of tb~ first triallglc 1). Indeed the part of the second net 
symbol correspondillg to p + 2V2, 2, 2, OJ, i. e. 

_ _ _ ____ _ ________ t 

[4+ 2V:?, 2, 2, 0=, (4 + 2V2) 2f1r-J- L, ::'''d-1, 2lts +!, 2u~ + I, l:ttj o:ld, 
4 

gives for (tt = a2 = aa = 0 IInd a~ = .- 1 the set of vertices 
represented by 

(4+2V2-0, 4+2V2-2, 4+2V2--2) 4+2V2-4-2V2, 

i. e. (4 + 2V2, 2 + 2VZ, 2 + 2V2) O. 
Erl.r;e !Jap pri8JlI. By extellsion the centre 1, 1, 0, 0 of tbe edge 

(2,0) 0,0 of [2,0,0, OJ gives 2 (2 + V2), 2 (2 + V2), 0,0 
for the coordinates of 0'. By rcdueing the first net symbol to this 
point liS new origin we get 

... 
[4 + V2, 2 -1-V2, 2 -1-V2, V2~, (.J + 2V2) 2"1 - 1, 2a2 -1, 2us, 2a~, l:aj even, 

t 

By putting a j = 0, (i = 1, 2, 3,4), and taking tbe permutable 
digits in tbe illdicated order nnd witb the positive sign we find tbe 
vertex -V2, -(2+V2), 2+V2, V2 lying at minimum distance 
2 V (4 + 2V 2) f,'om U'. As this distnllce is sl1laller than 4 + V 2 
we are obliged, in order to find all the vertices contnined in th at 
symbol lying at that distnnce from 0', to put aa = a ... = 0 and to 
take either at = a"}. = 0 or at = a2 = 1. 80 we find the 32 ver­
tices t [2 + V2, V2J[Z + V2, V2J, where the trefers to tbe 
tirst syllable correspollding to the coordinates Xt , X2 only. Now we 
have furthermore to examine the other two net symbols. For 0' as 
origin the second net symbol is 

') Until now we bave oDly used implicitly the coDdition tbat tbe plaDes of the 
generatiDg polygoDs are perfectly normal to each otber, in tbe equation P12 + Pil = r. 
As the plane Xl + X2 + xa = 0, 3"4 = 0 is parallel to tbose of tbe first triangle, tbe 
plaDe Xl = ~ = Xs perfectly norm al to it must be parallel to tbese of tbe second. We 
verify tbis by tbe following table of the nine vertices of the prismotope 

4+ V2,2+ 1.' 2,2+ Vt, V2 12+ V2,4+ V2,2+ V2, V2 12+ J/2,2+ V2,4+ V2, V2 
4+ V2,2+ V2,2+ V2, - V2 2+ V2,4+ V2,2+ V2, - V2 ! 2+ V2,2+ V2,4+ V2, - V2 , 
4+2V2, 2+2V2, ~H2V2, 0 12+2V2, 4+2V2, 2+2V2, 0 12+2V2, 2+2V2, 4+2V2, 0 

the three rows forming the positions of the first triangle and the three columns (of sets 
of coordinates) those of tbe second. So for the triangle of the first colnmn we have 
xl-~=2, ~=Xs, etc. 

By continning this research it can be verified, tbat (acb oftbe tbree net pymbols con­
tains the six vertices of a Ps with two positions of the first triangle, i. e. two rows of 
~he table of tbe nine vertices, as end planes. 
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the two sets of permutahle digits hnving to he comhined with the 
same set of immovllble ones. Here we fint! only vertices lying at a 
gl'cater distanee from 0', ulliess we tnke 0 1 = a2 = 0, 80 we get 
for aj , a" = (0, - I) hy lIleHnS of the nppel' half of the symhol 
the 16 new vertices [2, OJ [2 Cl + V2), 0J, hy means of the lower 
the 16 vertices X 1 , ,v~ = ~ [2 + VZ, V2J"v. I "t:. = - HZ + V2, V2J 
aJready contained in the set ~. [2 + V2, V2J [2 + V2, V2] 
dedllced froin the first symbol. FI'om this mny he deduced that 
the two halves of the third symbol wiU furnish the two sets 
[2,0] [2 (1 + V2), 0] Hud 'V1> [t:~ = l [2 + V2, V2J, Xj , x" = 
~- [2 + V2, V2]. 

80 the result is a polytope with 48 vertices l'epresented hy the 
cOlllbillatioll of the two !\ymbols~· [2 + V2, V2] [2 + V2, V2 J 
alld [2, 0] [2 (l + V2), 0 J. Tt proves to he a Pil;' .For, by applying 
on the tO represented hy the symbol [V2] [2 + V2, 2 + V2, V2] 
the transformation 

X1 + X2 = 7/1 Vz , ,t'J + ,v" =!l3 V2 , 
X1 - ,v"}. =!h V2 !' 'VJ - ,Vil = !I" V2 I 

we gct t [2 + V2, V2J [2 + V2, V2J fOl' the 32 vertices 
[V2] [2 + V2J [2 + V2, V2] anJ [2, OJ [2 (l + V2), OJ fOl' 
the remaing 16 vel,tiees [V2J [V2J [2 + V2, 2 + V2J. 

Vet'üJx !lap polytope, By extension the vertex 2,0,0,0 of[2,0,0,0] 
gives 4 (2 + V2), 0, 0, 0 for 0', With respect to this origin the first 
net symbol is 

4 

[4+V.2, 2+V2, 2+V2, V2J,(8+4V2)at-I,az,aa,a-i,LaieVen, 
t 

whieh can he reduced to 
~ 

[4+V2, 2 + V2, 2 +V2, V2], (8 + 4 V2) ät>02' aa, a", Laiodd, 
t 

By takillg in this last symhol at> a"}., a j , 0\ = [1,0,0, OJ alld putting 
the digit 4 + V2 always where the I stands with the opposite sign 
of it, we get the 192 vertices [4 + 3 V2, 2 + V2, 2 + V2, V2J 
lying at the minimum distance 4, (I + V2) from 0', 

With respect to the same origill 0' the second net symbol is 

L4+2V2, 2 , 2 ,0 ~l + .) - +1 2 +1 2 + I " . dd 
_1. -4+ 2 2+ 2 2+ 2 . - • (4 2V2 2al-l, 2a~ ,as ,a~ ,l:a. 0 , -,L V, V, V,V:lJ t 

the immovable part of which cnn he reduced to 
0\ 

(4 + 2V 2) 2 at + 1, 2tzz + 1, 2 €la + 1, 2 a" + 1, L ai even, 
s 
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By considering the threc gl'OUpS of cases 

ai = O,(i = 1,2,3, 4)-, flf, a2 , a;j) a.\ == (-1, - 1,0,0,)-, 
ai = -), (i = 1,2,3,4), 

nnd adding to the irnmovable parts the permutnble ones taken in 
any order, genernlly nffected hy the sign w hich tends to deC1'ea8e 
the absolute vulue of the cOOl'dinate but - in connection with the 
uegative sign before thc lower half of the symbol which exacts 
an:odd number of negative pcrlllutable digits - with exception ofthe 
smallest of these digits V 2 thc sign of which is to be chosen inversely 
so as to increa8e the absolute vfllue of the coonlinate, we get by the 
upper half the 96 new vertices [4 + 2V 2,2 + 2V2, 2 + 2V2, OJ 
and by the lowel' thc 96 vCl'tices t[4+3 V2, 2+V2, 2+V2, V2], 
obtnined anove, So the reslllt is n. polytopc with 288 vertices rep re­
sented by the combinatioll of the symbols 

[4+3V2, 2+V2, 2+V2, V2], [4+2 V2, 2+ 2V2, 2+2V2, 0]. 

As we will prove in section V this polytope with the characteristic 
numbers (288, 576, 336, 45) limited hy 48 tC is ce, e2 C-J.4' 

Ca8e eel es W( CIS)' Besides []' I' 1 ]] V 2 = cei ea ~6 we have to 
look out fol' the face gap filling and the polytope of vertex import, 
the edge gap filling being reduccd hy contraction to the base poly­
hedron of the prislll occllrrillg in the case of ei ea N( ~6)' 

Face gap pN81J1otope, Here we get for the new origin 0' the 
coordinates i (2 + 2V2), ~ (2 + 2V2), *(2 + 2 V2), 0, as 2 + 2V2 
is the extension numher, 

So the first and the second net symbol are 

4 
[2 + V2, 2 + V2, V2, V2~, (4 + 4V2) al - t, a3 - t, «3 -!, a, , l:ai even, 

i 

By taking in the first symbol ai =0,(i=I,2,3,4), we find 

h ' (2-V2 2-V2 -4-V2)[ ] I ' , , d' t e vertIces -8--' 8' 8 2 ymg at mInImUm lS-. 

tnnce t V3 from 0', i. e, a P3 ; hy substituting in the upper half 
of the second symbol ai = O,(i = 1,2,3), a, = -1 we get moreover 

(2 + ;V2, 2 + 82V2• - 4 t 2V 2) 0, the third triangle of the pris­

motope [3; 8J to be found. 
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Yerterc !Jap polytope. 'rhe new origin is 2 (2 + 2 V2), 0, 0, 0 
and the first flnd serond net symbol become, in the shortest form 
possible, 

4 
[2+ V2, 2+V2, V2, V2~, (4+4V2) Ilt ,all , ~ ,a" , l:aj odd, 

i 

Putting into the fil'St symbol a" ll:!, a3, a~ = [1,0,0, 0J nnd COlll­

bining with tbe a j differing fl'Om zero one of the two digits 2 + V2 
taken with tbc sign tendillg to decrcase the absolute value of the 
coordinatc we get. the 192 vertices [2 + 3 V2, 2 + V2, V2, V2]. 
Putting into the upper half ofthc secolld symbol a j = 0,(i=I,2,3,4), 
we find moreover the 96 vel'tices [2 + 2 V2, 2 + 2 V2, 2 V2, 0J. 
80 the result is a polytope with 288 vertices which wiU prove later 
on to admit the characteristic lIumbers (288, 864, 720, 144) and 
to be e2 C2\. 

83. Ca8e el e4 6(CI6 ). Here the extension number is 3 + V 2. 80 
we have to reduce the three net symbols 

4 

t[3,3,1,1 J,(3+ V2)2at+ 1,2a2+ 1,2a3 + l,2a~+ I,Laiodd, 
t 

4 

-t[3,3,I,l ],(3+ V2)2a1 + I ,2a2+) ,2fl:I+~1,2a4+ 1,La.even 
i 

for the constituents of body, face, edge, vertex import to the new 

origills (3 + V2) !, t, t, ~-, (3 + V2) t, -§-, i, 0, (3 + V2) D, 0, 0, 
(3 + V2) 2, 0,0, ° respectively, the constituent of polytope import 
being [4,2,0, OJ = et CiG• 

Bo(ly !Jap pri81Jl. 1'he three net symbols become 

4 

[4,2,0,0],(3 + V2)2tl1-t,2a.l-t,2aJ-t,2a4-t,Lai evell, 
i 

4 

t[3,3, 1,1],(3 + V2)2a,+t,2az+t,2aa+t,2a4+t,La j odd, 
i 

0\ 

-t[3,3,] ,1],(3 + V2)2at +t,2a2+t,2u3+t,2a4+~,Laieven. 
1 
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Dy making the ai to disappear the first and the third 1) 
. . (ii-V2 1- V2 - 3-V2 -3-V2) symbol glve the sets of vertICes --_., ---, -----.-- ' . - -~'----

2 2 t 2' 

en +_ V! , 1 +_V_2, :- 3_+ ~~, - a + V2) eaeh of which corresponds to 
2 ;~ 2 :t 

a (2100), i. e. to a 111
• 80 thc result is a PIT' all the vertices of 

thc second symbol lying at larger distance from 0' than the circum­
radius V j 3 of this PIP 

Face !lap prislIwtope. Hel'e the thl'ce net symbols are 

,. 
[4,2,0,OJ, (3 + V2) :la~=11- , 2a~-*, 2a:1-*, 2a~, Lai even, 

1 

" M3,3,1,1 J, (3 + V2) 2al+--}' 2a~+!-, 2aa+ t, 2a~+ 1, Lai odd, 
. 1 

" -~ [3,3,1,1 J, (~ + V2) 2ft l +{, 2{/~+*, 2aa+t, 211\+ 1, La i even. 
1 

By taking in the fil'8t symhol (li = 0, (i = 1,2, 3,4,), in the 
secollcl a. = 0, (i = 1,2,3), a,. = - 1, in the third ai = 0, 
U = ],2,3,4), we get the thl'ee hexagons 

(2-i V2 , -i V2 , -2-jV2) 0 I' 
(2+'i V2 , :tV2, -2+tV2) -V2 . 
(2+tV2, ~V2, -2+-lV2) V2 

80 the l'csult is a [6; 3J. 
Ed!le !lap prisJil. Now the th ree net symhols become 

,. 
[4,2,0,OJ, (3 + V2) 2a1-1, 2a2-1, 2a~ ,2a4 , Lai even, 

1 ,. 
t[3,3, 1,1 J, (3 + V 2) 2 at- -- , 2a:,! , 2a3+ I, 2a4+ 1, Lai odd, 

t 

- ~ [3,3,1,1 J, (3 + V2) '2;;;- - -- -----0-- 0\ 
, 2a., , 2a3+ I, 2a,,+ 1, Lai even. 

1 

By takillg in the fhst symbol lla = 11\ = 0 allll eithcl' a1 = a 2 = 0 
Ol' at = a'l. = 1, in the secOIld al = a2 = 0 and aa, a4 = (- 1,0), 
in thc thÏl·d al = (1'2 = 0 and either aa = a,. = 0 or a3 = a4 =-1 
and hy combinillg with the 1Iot disappearing illlmovabie digits the 
greater permutable 011 cs , gencmlly aflected by the sign tendillg to 
decrease the absolute value of the cool'dinate hut - on account of 
the sign befOl'c t [3,3, 1, IJ of the sccolld and the third symbol -

') That one of the tb ree symbols must remain inactive in tbe generation of tha body 
gap prism is an immediate consequence of tha lemma of art. 80. 
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with exception of one of the permutable units, we get successively 
the th ree quadruples of vertices 

i [1 + V2,- J + V2J 0, 0-, (1, -I) t [V2, V2J-,(I, -1)(V2, - V2) 

lying at minimum distance V6 from 0'. 'fhese 12 points form 
the vertices of a pl'ism Po with octahedral base; each of the three 
quadruples just found lies in a plane passing through the axis 
of the prism and consists of a pair of opposite vertices of each of 
the two limiting octahedra. The equation~ of the three plan es are 

80 the axis of the prism is represented hy <l's = 0, <l'" = 0, 
<l't + <l'2 = 0. 

Moreover it is easily verified that the th ree quadrangles are 
rectangles with sides 2 V2 and 4. As we can unite the second 
and third symbols the Po can be represented hy the two symbols 
~[l +V2,-I +V2JO,0 and (1,-I)[V2,V2J. 

Vertet(J !Jap polytope.Finally the three net symhols are, in the 
simplest form, 

" [4,2,0,OJ, (6 + 2 V2) at , a2 , as , alt , ~i odd, 
t 

4 

-H3,3,I, IJ, (3+ V2) 2at+I, 2a2+1, 2as+l, 2a.i+1, ~ai even, 
t 
4 

-lTS,3,1,IJ, (3+ V2) 2at+I, 2~+1, 2as+l, 2a4+1, ~i odd. 
t 

By taking for at, Q.l' a3' a4 in the first symbol [1,0,0, 0J, in the 
second either 0,0,0,0 or (-1,-1,0,0) or -1,-1,-1,-1, 
in the third either (-1,0,0,0) or (-1, -I, -1,0), and by 
assigning to the permutable digits the sign which decreases the 
absolute value of the coordinate, we find the three sets of 48 
point.., represented by the symbols 

[2 + V2, 2,0,0], I [2 + V2, 2 + Vi!, Vi!, V2~, -! [2 +V2, 2 + VZ, V2, V2], 

which can be reduced to 

[2 + 2V2, 2,0. OJ, [2 + V2, 2 + V2, V2, V2J. 

These 144 points prove to be the vertices of the polytope es O2\ with 
the characteristic lIumhers (144, 576, 672, 240). 
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, 
,a2 ,all ,a, ,l,'ai even, 

t 

[6+2V2, 4 ,2 ,OJl - '. 
-t[6+ V2, 4+V2, 2+V2,V2J ' ( 6+ 3V2) 2al -\- 1, 2art-l, 2a'3+ 1,2a,+ 1,~a, odd, 

[6 + 2V2, 4 ,2 , Oll ' 
lC6+ V2,4+V2,2+V2,V2j' (6+3V2)2al+I,2as+l,llas+I,2a,+I'fa,even, 

which al'e to be l'edllCed to tbe new ol'igins, indicated in tbe pre­
ceding example et CII N( Ctn). But" in the case of tbe body gap we will 
mention only the fhst net symbol and the lower part of the tbird, 
which lead to the desired resnlt. 

Bod!! (Jap pl'i/!lII. We 611«1 

i [6 -+ V2, 4+V2, 2+V2, V2J, (6+ 3V2)2al + ~,2a\l +l.2as +l, 2a .. + l, loa, even, 
I 

giving by rneans of the suppositions of the pl'eceding example the 
pl'lsm Peo, the two bases of which are 

(3-tV2, 1-~. V2, -1-~-V2, -3-tV2), 
(3 +tV2, 1 +!V2, -1 +tV2, -- 3 +!V2). 

Face iap pl'i811lotope. Here . we have 

, 
, Za, even, 

1 

[6+2V2, 4 , 2 , OJl ' 
-l[6+ V2,4+ V2, 2+V2,1/2J ' (6+3V2) 2a} +!, 2ai +!, 2as + t, 2a .. + 1, ~/Ji odd, 

[6+2V2, 4 ,2 ,O]l' _ ' 
U6 + V2, 4+V2, 2+V~, V2] , (0+3V2) 2al +!, 2~ +!, 2as+ t, 2a,+I, fa, even, 

glVll1g by means of the snitabJe suhstitutions easily found succes­
sively 

(2-V2, -V2, -2-V2) [V2J, 
(2+V2, V2, -2+V2)- V2, 
(2 , 0, 2 ) -2V2, 
(2+V2, V2, -2+V2) V2, 
( 2 0, 2 ) 2V2, 

which can he comhined to 

(2 - V2, - V2, - 2 - V2) [V2] -, (2 + V2, V2, - 2 + V2)[V2J -, (2,0, - 2) [2V2], 

represellting together a prismotope [6; 6J. 
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Ed!le !lap pri811l. We get 
4 

':6+ V2, 4-!-V2, 2-!-V2, V2~, (6+3V2) 2al-l, 2a3-1, 2~ , 2a" , 2'aj even, 
1 

~6 + 2V2, .. ~ , 2 ,0 1/ . --::-------::-------,---=--=----:--:- • 

-l[li+ Vil, 'I-!-V2, 2-!-V:l, V2j)' (6-!-3V2) :lal ,2a;! ,2as+ l , 2a,+I,-;0; odd, 

[6 + ~ V2, 4 , 2 ,0 11 ::-------=---::;----;---;-----=---;--;- " 

Hf) + V2, 1. + V2, 2 -!- V2, V2]' (6 -!- 3V2) tUl , 2113 , 2rls + 1, 2a, + 1, -;ai even, 

giving by lUellllS of the sllitable substitutiolls 

t[2 + 2 V2, 2 V2J [2 + V2, V2J, 
[ 2 , OJ -~[2 + 3V2, V2J, 

t[2 + V2, V2J -t[2 + 2 V2, 2 V2J, 
[ 2 , OJ ~ [2 + 3 V2, V2], 

{-[2 + V2, V2] -~ [2 + 2 V2, 2 V2]. 
which can be combined into 

~ [2 + 2V2, 2V2] [2 + V2, V2] -, [2, 0] [2 + 3V2, V2J -, I [2 + V2, V2,] [2 + 2V2, 2V2~, 

representing together the nG vertices of a P'CO' }'or the tl"RJlsformation 

,xt + ~t'2 _ !lt V~ I, 'Va + 'V4 _ lIa V~ I 
,xt -,x2 -!l2 V2 I ,xJ -,xii -!l4 V2 

gives illlmediately 

1/2 = [V2] , lIt,!l3,lI~ = [4 + V2, 2 + V2, V2J. 

Verte,x !lap l'0~1jtojJe. Finlllly we have to deal witÎl 

" [6+ V2.4+V2, 2--j V2,V2:, (12+6V2) al ,a2 ,lts ,a" ,~ai odd, 
I 

[6 -I- 2V2, " , 2 ,0 JI '. , , .~ . 
l-li+ .1 '-j "2-j .1 2" ' «(j+3V2)2((.l+1,2112+1,2as+I,211,,+I,~u, even, 

-"2LI V"" .. - V<, - V<,V _ 1 

[6 + 2V2, .~ , 2 ,0 J1 " " : . 
1[6+ V:l 4+ 2 2+ :l 2-: ' (h+3V2)2ltl+I,2{/2+1,2~+1,2a4+1,~a, olM, 
2 ,V , V ,V J 1 

gIVlllg by adequate substitutions 

1. e. 

[6 + 5 V2, 4 + V2, 2 + V2, V2], 
t [G + 3 V2, 4 + 3 V2, 2 + 3 V2, V2], 
-~ [G + 4 V2, 4 + 2 V2, 2 -t- 2 V2, 2 V2], 

- t [6 + 3 V2, 4 + 3 V2, 2 + 3 V2, V2], 
- t [(; + 4 V2, 4 + 2 V2, 2 + 2 V2, 2 V2J, 

[6+5V2, 4+V2, 2+V2, V2]-, [6+3V2, 4+3V2, 2+8V2, V2J-, [6+4V2, 4+2V2, 2+2V2. 2V2], 

representing together the 1152 vertices of the polytope et e2 ea ~. 
Verb. Kon. Akrul. v. Wetenscb. 1· Sectie DI. XI No. 5. E ó 
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Ca8e cel e9 es e.j,1f( CIS). Extension number 5 + 3 V 2, three net 
symhols 

-l[S + 2V2, :I , 1 , 1 11 ( + + 1 2 + 1 2 + 1 2 +1·' dl _.Lr5+ 2 + 2 1+ 2 1+ 2-1' 5 3V2) 2al ' 09 , as , a.j, ,.l:ai o 
C, "2L V , 3 V, V , V _ I 

U5 + 2V2, 3 , I , 1 11 + + +~, 
. -[5 + V2, 3+V2, 1+V2, 1 +V2j ' (5 +3V2)2al + 1, 2~ 1, 2a3 1,2a. l,,;,ai even, 

whieh are to be redueed to the new origins, to be fonned aceording 
to thc indications of the preeeding example. Here the polytope of 
edge import is laeking. In the case of the body gap we melltion 
ollly the first net symbol and the lower part of the third, whieh 
lead to the desired result. 

Botly !Jap pri81J1. We find 

• i [5+V2, 3+V2, 1+V2, I +V2], (S+3V2) 2~ +t, 2~+l. ~as +., 2a.+I, ~'ai even, 
I 

giving by meallS of the substitutions ai = 0, (i = 1,2,3,4), the 
prism Pt1" the two bases of which are 

(
3- V 2 3-V2 -1-V2 -S-V2) 

2 ' 2' 2 ' 2 • 

(3~!",,! 3+V2 -1+y2 -5+V 2) 
2 • 2' 2 ' 2 • 

Face !Jap p1·i8111otope. Here we have 

giving by means of the suitable substitutions easily found 

<~- - V2, i - V2, - t - V2) [V2], 
<i+ V2 , i+V2, -t+V2)- V2, (* ' i ' -t )-2V2, 
Ci + V2, * + V2, - t + V2) V2 , ( * i - { ) 2 V2 , 

w hieh ean be telescoped into 

• , Xai even, 
1 
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(i - V2,t- V2, -t- V2)[V2]-, 
(t+ V2,t+ V2,-t + V2)[V2]-, (t, i, -t)[2 V2], 

repl·esenting together the vertices of a prismotope [6; 3J. 
Vertex !lap pol!/tope. Here we find finally 
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• [4+ V2,4+V2,2+V2, V2 J, (lO+fiV2) al , IJs ' as , a" , ~ai odd, 
i 

- U5 + 2V2, 3 , 1 , 1 1! _ " 
-i[5 + V2,3 +V2, 1 +V2, 1 +V2Jl' ( a+ 3V2) 2al+l, 2~+l, 2as+1, 2a.+l, 7ai even, 

ilO + 2V2, :~ , I , 1 1! " od 1 
1[5+ V2,3+V2,1+V2,1+V2]j' ( 5+3V2)2al+l,21Js+l,2as+1,2a.+I,~aj (, 

giving - as it ought to do - quite tbe same result as in tbe 
preceding example. 

84. Probably af ter all the indiclltions contained in the treatlllent 
of severa.l special cases Table VII would be quite clear by itself 
but fol' the first cohunll of the part corresponding to tbe second 
extreme polytope and the last column but one; so we have to 
add a few words about these two columns. 1) 

In the two special cases treated in art. 81 the vertex polytopes 
proved to be polytopes all the vertices of which can be represented 
by one symbol, i. e. polytopes of measure polytope extraction, viz. 
eei e2 es Cs = ei e-}. 0i6. But in the ft ve cases studied in the artS. 82, 
83 we had to deal with vertex polytopes the vertices of which 
cannot be represented by one symbol only, i. e. with forms which 
do not belong to the measure polytope family. rl'hese forms were 
said to be derivable from the ceU 020\ by applying respectively the 
sets of operations eei e2 , e2 , es, et ei es. Now in part .F of this section 
will be shown, not only th at all the forms appearing here RS vertex 
polytopes - whether their vertices are represented by one, two 
or three symbols - can be deduced from cell 024 by applyillg 
tbe operations ek and e, but also by which set of operatiOlIS any 
l'equired result is to be obtained. 'l.'bis set of operations is indicated 
for all possible cases in the first column of the part of Table VII 
corresponding to !lo. 80 in the second case of art. 82 we fonnd 
e-}. Gk; but as the general theory (compare Theorem LV) demands 
eet es O2<\ which is equal to ez O~l", we have inscribed eet e3 O~". 2) 

Tbe remark or the second foot note of art. 78 - thatseveral 
nets dednced from N( C'tü) are eq ual to nets deduced from N( C~<\) -

') The very last column will be explained later on. 
a) The deduction of the symbols contained in the Table by applying the operations 

el; and c to the eeU Cu, i.e. to ll, 1, 0,01 V2, will be given in the last section of 
this memoir. 

5* 
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must now be genel'alized to this: "Every net deduced from N( Dt6) 
can at the same time be deduced from N(024)'" No\\' the last 
column but onc indicatcs the name of thc corresponding 024-net. 
80 we have ea e4 N( Dt6) = et el, N( 024), etc. 

We must remcmhel' th at the symbols given in 'l'llhle VII havc to 
be completed by applying the tranSfOl1llations indicated in art. 79. 
Moreover we fix our attentioll on thc particular ·fonTI in which 
the symbols of e.ach constituent appeal'. Evel'y prismotope f/2" is 
decomposed as to its vertices into two or th ree fourdimensional 
prisms, one of which degenerates in some cases into aregulal' polygon; 
of the fourdimensionul prisms fh'-flt thc first is detcrmined · hy its 
two bases, whilst the latte I' appears 3S prismotope (4; 4) or as a 
combination of prismotopcs, etc. 

I". Polarity. 

85. In art. 67 we remarked that in S" any polytope derived 
hy means of the operations e" with or without c from thc measure 
polytope Af" can also be dcrived from the cross polytopc C2". 111 
art. 7 '7 we stated this result in the form of theol'em Ijl aftel' havillg 
demonstrated it by showing that the total set of symbols of COOI'­

dinates of the gl'oup derived from O2,, is equal to that of tbe group 
del'ived from Mil' We have to co me back to this result once more 
here, in order to illdicatc how it depcnds on thc laws of reciprocity 
and wbat is the gcneral rclation bet\\'een the two symbols of cxpnn­
sion operatiolls of the 8ame polytope deduced frolll J/" on onc 
hand and from c.l." 011 the other, which coupIcs of symbols have 
been given for 1t = 3, 4, 5 (compare the foot note in art. 72) in 
the nrst and the second column of 'l'able IV. 

It goes without saying that tbe dependence hetween tbeorem LI 
and the laws of recipl'Ocity merely consists in tbis that the pol ar 
reciprocal polytope of a regular polytope A of SH witb respect to 
a concentric spherical space is an other regular polytope A' and 
tbat in this polarity the vertices, edges, faccs, ete. of the one cor­
respond "to the limits (1)11-1> (l)n-2, (l)n-3' etc. of tbe otber. 80 we 
bave still only to deduce thc relation between tbe two s)mbols of 
the same polytope. 'rhis task can be perfomled by comparing thc 
first two columns of 'l'able IV with each other and hy genern.lizing 
for an arbitrary n the outcome of this comparison. 80 for 
a < b < ... < 8 < t < 1/. - 1 we immediately deduce from 'l'able 
IV the followillg geneml laws: 
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en eb ... es et e,,_t M., = ell- t- t ell-s-t ... ell _b_t ell_a_t eu - t 
C ell eb ... eB el e,,_t M;, = e,,-t-t en-s_t ... en-b-t en-a-t 0.1." 

ea eb •.. e" et Al" = c ell-t-t e,,-s-t ... en - b- t e'll-a-t ell_t 

'fhe proof of these general lllws can he bascd on the remark 
that cach pair of polytopes fOl'ming thc two memhers of uny of 
these four equations admits the same symbol of coordillates; if Ic is 
the number of thc .symbols eet> eb' ... , es, et these symbols of coor­
dinatcs are successively: 

u-'-1 t-.~ u-a ft', 

[I + (I.' + I) V2, I t_:y2, 1 -t- (,{.:: 1) V2, ... , Tt(~2, ~ J) 
[Ic + I,~. ,- j, Jo-I, ., /.:-1, ... , L~~-.~, 0 , .. ,OJ\ 

1t-( I-I( IJ-a _ a I· 

[l--=t- '{:V2, 1 + (,{';:I)V2, ... , : -t:(~2, ~_J\ 
[I.: ,l-I, .. ,1.:-1, ... ,1, ... ,1,0 , .. ,OJ I 

By illtl'Oducillg thc operntion eo corresponding to the generation 
of the rcgular polytopes stnrting from a point alld represcnt.illg 
this point fol' i"1" hy Po, fOl' Gi , hy Po' wc can unite thesc four 
ge 11 el'll I la ws in: 

THEOltEl\I LIII. "Thc two polytopes 

aJ'c cql1al 1) if anel ollly if we have gcnerally 

ft + t' = b + a' = C + 1.' = .. , = l' + c' = 8 + b' = t + a' = u-I." 

86. 'l'hc influence of thcol'cm LTII on the results laid down in 
art." 65 Imd 66 is cvident. 

Ey polariûng an cxpansion or contraction fOl'm dCl'ived from the 
CI'OSS polytope O2,, of 8" with respect to a cOllcentric sphcricnl space 
(with (J),,-t points) as polal'isntor wc gct a new polytopc admitting 
olie killd of limit (I)" tand cquul dispacial angles2), to which con'cs­
ponds thc invcl,tcd symbol of characteristic lIumbers of the OI'igilllll 
polytopc, etc, 

I) This Iheol'em gives for M" anti C:!." what thenrem XXIII conlains about the two 
fliffercntly orienlated positions of the simplex; it hnlds nnt nnly rnr Mit and GZII, 11 being 
general, but also for the pnlytopes CI:ll and Giro of S4 and in the same way there 
exists a theorem analogons to theorem XXIII fnr tbc reIl C:u of 84 in its two diffcrent 
positions with respect to tIie sy~tem of coordinates. We sbaIl hll ve 10 come back to tbis 
point in tbe fifth $cction of this mel1loir. 

') Compal'e for Si tbe foot note of art. 65. 
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THEoREM LIV. "Any polytope (P)'I of cross polytope descent in 
Sn has the property that the vertices ~ adjacent to any arbitrary 
vertex V lic in tbe same spaee 8n - t normal to the lioe joining this 
vertex V to the cenh'e 0 of the polytope. The system of the spaces 
8n - t corrcsponding in this way to the different vertices P of (P)n 
include an other polytopc (P)'n' the reciprocal polar of (P)n with 
respect to a cerlain concentric spherical space. But in the case of 
the cross polytope itself these spaces pass through the centre. " 

This theorem is a mere transcription of theorem XL. 

87. U w~ apply the general relations of polarity, which have led 
us in art. 67 to theorem XLI, to the particular case of the polarJy 
related nets X( C't6) and 1\/( 024) of 8" we get: 

'fHEORJ.:M LV. "U the sets of operations E aod E' are comple­
mentary to each other, i. e. if E' contains the operations e4-k comple­
mentary to the operations ek of E and no other, we have 

EN( Ot6)=eE'e"N( ~), Ee4N( C't6) = E'e4lV(02,,),eEN( C't6)=eE' N( ~,,), 
eRe" N( C't6) = E' N( C2,,) " 

An analytical pt·oof of this theOl·cm would require a more ample 
knowlcdge of the net symbols of the nets deduced from N(02~) than 
we have at our disposal, af ter baving neal'ly finished the third part of 
this memoir. We will therefore invert the order of ideas, i. e. we will 
content ourselvcs here by giving the analytical form of the geometric 
facts and use theorem LV and thc Inst column but one of 'fabie VII 
based on it ill tbe last section of this memoir dealing with the extra 
rcgulal' polytopes, to facilitnte and control the deduction of the 
polytopes and nets, dcdueed from O!". There we shall have occasion to 
apply the same principle to the polarly related polytopes 0600 aod C't20. 1) 

88. 'l'he eonneetion between Os, C't6' O2,, aecording to wbieh the 
024(2) can be split up with ('cspect to its vertices into a Cs(2) aml 
a C't(pV2) and with repeet to its Jimiting spa ces into a Cs(2V2) and 
a Ct6(4) lcads to connections hctween tbc polytopes and the nets 
whieh cannot be deduced from polarity only. So we find: 

024 = ee2 Cs (= eet ~6)' et 024 = et e2 C't6 
Rnd 

N( O2,,) = eet N( C't6) = ce" N( 016) = ces N( c;\). 

But there is still R more striking coincidence to be indicated, viz. 
that the nets e2 N( C~6) and et e2 N( C't6) are rcspectiveJy equal to the nets 

') We defer the investigation of the reciprocal nets of those given in Table VII to 
tbe paper announced in tbe foot note of art. 68. 
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cei es N( Os) and cei e"]. es N( Cs), the constituent Os forming at tbe same 
time the 1/1 of the former eouple and the 1/2 of the latter, We shall 
have occasion to profit hy this coincidence in the next artiele, 

G, S!!1n11let'f!J, C01lsiderations of the thaor!! of !Jroupa, re!Jttlarit!!, 

8~), On account of t.he fact that the offspring of the cross polytope 
is identical with that of the measure polytope, the theorems XLII 
and XL I II may be applied to any form of cross polytope descent, 

80 we have only to add a few lines with respect to the regularity 
and for the same reason this task has to be performed with respect 
to the nets deduced from N( q,G) only, 

If we individualize the 31 nets of 'rabie VII by an N bearing 
the rank number as subscript we can say thnt the nets N., .Nn , N~4 
al'e l'egulal' and ·that the degree of regularity of the nets .Na,.Nij 
with two equal extreme constituents is known, as these nets are 
at the same time measure polytope nets, As moreover each of the 
26 remaining nets ad mits faces of at least two different shapes, the 
degree of regularity of each of these nets is either -ro or h, according 
to its having only one kind or more than one kind of edge. Hut 
now it is immediately clear that nny net admitting a constituent 
fjs has at least two different kinds of edges, as the erect edges of 
the fourdimensional !Js, chnracterized by the property that tbe same 
coordinat.es of the two end points differ by unity, cannot be at tbe 
same time edgcs of thc groulldform in any of its tbree orientations. 
80 we bave still to treat tbe twclve cases ]\72 , N,., Hs, N7 , .Ns, NiS' 
N.9' N'}f), N2i , .N22 , .N'}.3, N 27 forming two different. groups, one of the 
nets N.s, N.9' .N27 with gl'Oundfol'lllS admittiug only one kind of edge 
and one contailling the other nine not characterized by this propcrty. 
Now we eau decide tbe question with respect to any of the nets 
of these two groups with the least amount of trouble hy menns of 
the following general problem, where G is the groundform given 
in 'rabie VII, P the pattern vertex ohtained by omitting tbe squal'e 
brackets of G, wbilst Qi and Q'i represent the vertices of the net 
adjacent to p. of whieh Qi are and Q'i are not vertices of G: 

"Determine the repetitions r of G (in its three orielltations) 
with P as vertex and examine whether or not all the vertices 
Qi and Q'i are vertices of the same number of these repetitions 
(G included)". 

The first case must present itself for the three nets NiS' N.9' N27 , 

For the grolll1dform of each of these nets ad mits one kind of edge 
and its repetitions containing Pare grouped l'egularly round P; 
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so these repetitions must be arranged in the same manner round 
every edge, But this decides that the arrangement of all the con­
stituents round every edge is the same, as there is only one other 
constituent, viz !lo' 80 the degree of regularity of Nis, N'.t9' N27 is I, 

In all the nine cases of the second group there are two or mOl'e 
different kinds of edge and the degree of regulal'ity is 1\' l"rom 
these cases we treat a couple of examples, 

liJxample e1 .N(C16), All the repetitiolIs of the g.-oundform are repre­
sented by the system of the three symbols 

[6a1 +4:, 6 at. +2,6aa +0,6a4 +OJ, La i even 
~- [6a1 +3+3, 6~+ 3+3, 6a3+3+1, 6a il +3+ IJ. La i odd . 

-{- [6a1 + 3+3, üa:!+3+3, (ja3+3-t-l, 6a4 + 3+ IJ, La, even 

So the repetitions r with 4, 2, 0, 0 as vertex are: 

[ 4, 2, 0, OJ ' , , r1 

[6 -2,6 -4, 0, 0J ' , , r2 

1. [ 3+1, 3 - I, - 6 + 3 + 3, 3 - 3J " , 81 l! 
1. [ 3 + I, 3-1, 3 - 3, - û + 3 + 3J ' , , 8:! l! 

_1. [ 3 + 1, 3 - . I, 3-3, 3 - 3J " , t1 l! 
_1. [ 3+1, 3 --- 1, - 6 + 3 + 3, - (S + 3 + 3J ' , , t~ l! 

which l11ay be indicated hy thc symhols 1'1' 1't., ' , ,tl' Now thc 
adjacent vertex 2, 4, 0, 0 is vertex of the six repetitions and 4, 0, 2, 0 
of 1'1,8t., t1 only, 80 thcre are two kinds of edges and thc degree 
of regularity is T30' 

R,t'a/llple e;) .N(ci6).Ifwe telcscope [PP1 + Q1'PP~+ Q!,PPa+ Qa,'pp<\+ Q4J 
into [q1' q2' q3' q\,J Cp) P1'Pt.,}Ja, iJ\ thc repetitions ofthe groundform 
[2+V2, V2, V2, V2J can be repl'esented by 

.\ 
~2 + V2, V2 , V2 , V2 ~,( 1 + 2V2f 2al , 2a;! , 2aJ ,2a.. , l:lti e\'en, 

1 

l-1+2V2 1 1 1 11 ~ 
.1 =1-1'- 2'1+ 2' 1+ .; _ .,::,(1+2V2)2ltl+l, 202+1, 20:1+ 1, 2a .. +1,l:a, odd, 
~ ~ V , V , V _,IV ~_ 1 

- ![ 1 + 2V2, 1 , 1 , 1 ~'I + + + + +.\ -1' 1+ Ol 1-1- ., "1+ 2 1 ,~,(1 2V2) 2a l 1, 2°2 1,2as 1, 2a .. I,~a; even. 
"2 L V~, V·, V, -V2: i 

80 the repetitiolIs l' with 2 + V 2, V2, VZ, V2 as vertex are only 

[ 2 + V2. V2 , V2 , V2 ~, 
L 1 + 2V:l + 1 - V2. 1 + 2V2 - 1 + V2', 1 + 2V2 - (1 + V2), 1 + 2V2 - (1 + V2)J. 

Now V2, 2 + V2, V2, V2 is vertex of both, whilst on the 
other hand 2 + VZ, V2, V2, -V2 is vertex of the fh'st only, 
80 two kinds of edges, degl'cc of regularity 1\. 

The vel'y last column of Table VII contains the results. 
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Scction IV: 

POf.Y'l'OPES AND NE'ri> DERIVED FROl\l 'I'HE HAU' ~IEMmRE POI,Y'fOPE. 

A. l'he 8y1Jlbol of coordinate8. 

no. Se\'eral times we bave commemorated the fact that the 
eight ,'crtices of a cube cau be split up into two groups of four 
points, the vertices of two regular tetrabedra, and that witb respect 
to the cllbe tbe vertices of eacb group may be said to be non 
adjacent, i. e. not connected by an edge of tbe cube - see e. g. 
the introdllction of section land tbe foot note of art. 4,. 1) Also 
that the sixteen verticcs of an eightccll can be split up into two 
gl'Oups of eight non adjacent points, the vertices of two regular 
sixteencells (compare e. g. art. 78). So in general tbe 2n vertices of 
the measure polytope M" of space 8" can be split up into two 
groups of 2"-1 non adjacent points, but tbe polytopes of wbich 
these grollps of points are tbe vertices are not regular for 
II > 4. So in the case 11, = 5 tbere are two different kinds of limits 
Uh, viz. cells C'to fOl'ming what remains of the limiting eightcells 
of Mr. and simplexes 8(5) replacing the vanished vertices of M5' 
In relation with theÏl' generation we call these new polytopes half 
mea8ltre jJolytope8 and we investignte in this section these polytopes 
and the nets wbich cnn be derived fl'Om them. 

In the cases [lIl] nnd [1111] of cllbe and eightcell we have 
rcpresented the two half measure polytopes by the symbols + t [111 ] 

11 

anel +t[I] 11 J respectively. Likewise we indicate by + ~rIT.~ 
the two half measure polytopes into whieh Mil con be decomposed 

" 
according to the vertices, where + l [11 .-:-~lJ includes all the vertices 

11 

of which nn even nnmber of coordiuates is negntiyc and - ~{11 .-.-. 1 ] 
all the vertices of which an odd nllmber of coordinates is negntive. 
'rhese symbols immediatcly reveal a elifference in charncter betwcen 
the half mCUSUl'e polytopes of 8211 and 8.!II+1 which we wiII represcllt 
for short by H.lJ2" anel lIM'2,.+1' In the case of H.kh. thc polytope 
udmits a centre of symmetJ'y, as the J'eyersion of thc signs of all 
the coordinates of any yel·tex flll'l1ishes an other vertex of the same 
gl'Ollp; on thc cOlltrnry in the case of HL1I2u + t every vertex IS 

I) The result mentioned contaios a numerical error; it o\l!;ht to be l'eplaced by 
U (i + V2), 1(3 + V2), HVi-l), l(il + 3V2)) , 
(l (i + 3V2), H3 - V2), Hl + V2), t(5 + V2», 

see ft Wiskundige Opgaven", vol. XI, problem 96. 
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opposite to the simplex replacing the opposite vertex of the measure 
polytope. 80 in this respect HJ12n presente analogy to measure 
polytope and cross polytope, whilst HM2n+1 imitates the simplex. 

We still remark that the case n = 2 is exceptional in this sense 
that the corl'esponding HM2 is a line, i. e. a diagonal of the square, 
instead of a fOl1ll of two dimensions; as we shall see this remark 
is essential in the theory of the nets derived from the half measure 
polytopes. 

91. It is easy to prove that the half measure polytopes partake 
of the two properties characterizillg the semiregular polytopes COll­

sidered in the preceding sections , i. e. that all the vertices are of 
the same kind Hnd all the edges of the same length, here 2 V2. 
Indeed we ah'eady solved incidentally in art. 47 the more general 
(luestion : 

"Under what circumstances wiIl the symbols 

+ t [ah az,· .. , a"J 

rcpresent the vertices of polytopes in Sn, all the edges of which 
have the same length, say 2V2"? 

Por the length 2V2 of the edges the solution takes the form of 
'l'HEOREM LVI. "The symbol + t [ai' a2 •...• auJ for which 

a12':~ > ..... . . >an 

l'epresents a polytope admitting the requil'ed properties nndel' the 
couditions: all _ 1 = a'l = 1 aud thc diffcrence bet ween any two unequal 
adjacent digits equal to 2". 

80 we find 
lil 8a the two 

" R" " four 
" 8" " eight 

etc.. which arc 
bols referring to 
later ou. 1) 

formst[llIJ. {-[SllJ. 
" t[ll11J. t[S3IlJ. t[SIlIJ. t[5S11J. 
" {-[ 1 1111 J, {-[ SS 311 J, t [ 3 Slll J. t [8 11 11 J • 

~- [55311 J. t[5S311 J. t[53111 J. t[75311 J. 
represented in the following table hy other sym-
1', ~6 Rnd HM; these symbols wiU be explained 

n=S 

t [IIIJ = T=HMa, t [SIIJ = tT= e:!H.J;Ia· 

n=4 

t [1111J = ~6 = HM"1 t [SIliJ = ce2 C16 = ea HM41 

t [SSliJ = ei ~6 = e2 HM,,' t [5S11J = cet e2 ~6 = e2ea HM,," 

a) We remark here that the s1mOO18 e before H.lfn are related to the limits of Mn. 
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t [1 1 1 1 1] = HM5 

t [33311] = e2 BM" 
~ [3 3 1 lIJ = es H M5 ' 
l [3 1 1 lIJ = e. HM" 

n=5 

t [55 311J = e2 es HM,,) 
t[53311J= e-}.c.HMJ 
t [5 3 1 lIJ = es C4 IlM{ 
t [7 5 3 lIJ = e-}. es e4 HM5 , 

\V e introduce for these forms and for the corresponding ones 
in spa ces of a higher number of dimensions the collective "half 
measure polytope descendent". which we abreviate to hmpd. 

B. The characteri8tic nUlIlbera. 

92. It is not difficlllt to determine the characteristic numbers 
of HMn for a general n. For, if ap and a',> denote the numbers 
of limits (I)p of M n and H M n respectively, we have the relations 

, 
=tao ao , 

at - ~ , 
4 as a 2 -, 

as - as + t(n)4 ao , 
+ t(n)5 a4 - a4 ao 

, . ..... .. .. . .. . .. .... , 
+t(n)l'+tao a p - ap 

a'n_t = an -1 + Hn)Ol ao 

WhCl'C at tbe right the numbers are arrangcd in two columns of 
which thc fÎJ-st contains old, thc sccond llew limits. lndeed the 
process transforming MOl into HMn - which may be called an 
alternate truncation - destroys half the numhcr of vertices, nll 
tbe edges, all the faces, and maintains all thc other limits (Ik, 
(1),., . • . , (I)n-1 of Mn but in an altered shapc, bringing new sets 
of edges, faces, limiting bodics, etc. into existence. Now each facc 
of Mn produces an edge of HMn, each limiting body of Mn 
- becoming a T - produces four triangular faces of HMn alld 
finally in general any set of p + 1 vertices of Mn adjacent to a 
vertex destroyed produces a regular simplex 8 (p+ 1) forming a limit 
(l)p of HMn , fOl' P = 4, 5, ... , n -1. This accounts for all the 
relations given above. Now, as the charA.cteristic llumberR of Mn 

are given by the equation 

ap =(n)p2n .
p , (p=O, 1,2, ... ,n-l), 

we find for HMn : 
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, 2" 1 , ( ) 2/1-'> , ( ) 2"-1 ao= , a 1= 1/. 2 ~, {t2= Ua , 

, - ( ) 2/1-P + () 2/1-1 - - 3 4 1 a/,- uI' Il,,+1' p- , , ... ,u- . 

Neither is it difficult to pl"Ove that the characteristic numbers 
a'p satisfy the law of Euler. rro th at. end we go back to the 
relations given above and transform the Eulerian expression , , + ' + ( 1)/1--1' . t aO-a1 a 2-·.· - a n _ 1 mo 

Ct ao - aa + a,. - ... + (- 1)"-1 a .. ] 
- [a l - 4aa + t ao l(u)~ - (u)r, + ... + (- It (u)"D, 

of which two sums between square brackets the first contaills the 
contributions of the fh-st column (old elemellts) aud the secOlld of 
the second (new elements). Now we ndd to each of these two sums 
between square brackets tau - a1 + a~. 80 we get 

[(tu - a1 + a~ - ... + (- 1)"-1 a,,] 
- [i au - a1 + 2a2 - 4aa + t ao l(u)\ - (11):; + ... + (- 1)/1 (u),.!J. 

But as we have 

- a1 + 2~ - 4aa = t all 1-- (u), + (U)2 - (uh! 

the seeond sum disappears, as it is equal to 

tau 11 - (U)1 + (U)2 -(uh + ... + (-l)" (u)"l = ~- flu(l- I)". 

So we find that the Eulerian· expl'cssion of HM" is equal to 
that of M" and hus therefore the vallIe 2 for u odd and thc value 
o fOl' 1t even, etc. 

\Ve give here the results up to 1l = 8. 'rhey are 

u = 5 ... (16, 80, 160, 120, 26), 
1t = 6 ... (32, 240, 640, 640, 252, 44), 
II = 7 ... (64, 672, 2240, 2tiOO, 1624, 532, 78), 
1t = 8 ... (128, 1792, 7168, 10752, 8288, 4032, 1136, 144). 

In thc outset we remarked that HM5 admits two kinds of limits 
(I),,, viz. cells ~6 anel silllplexes 8(5). Here we remember that in 
gellcral for 1l > 4 the HjJl' lI is bounded by two kinds of limits 
(1)"-1' viz. limits ILiJlll _ 1 forming what remnins of thc lilllits .M" __ 1 

of M" nnd limits S(1t) replacing the vanished vertices of iJl,.. lt wiU 
be useful to eall the HM"_1 the "Ol'iginal", the S(u) the "trun­
cation" limits. 

93. In the cases of the otfsprillg of simplex, measure polytope, 
and cross polytope we have used t\\'o ditferent methods fOl' the 
determination of the chnracteristic lIumbet's, one fulfillillg the exi­
geneies for u < 6 as far as these numbers only are concerned, an 
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other giving for 1l > 5 not only the characteristic numbers but 
also the numbers of any limit of any kind; here we will do likewisc. 

So in the case of thc polytopes connected with HMr, in the 
mamler indicated in theorem LVI we have to determine: 

1°. the number of vertices aceording to general pl'inciples, 
2°. the numbel" of edges conculTing in any vertex alld thel'eby 

tbe total numbel' of edges, 
3°. tbe limiting polytopes (1)4' which limits reveal at the same 

time the limitillg bodies (I)a, 
4°. the number of faces (by means of Euler's rule). 
But hefOl'e applying this method to a definite example we give 

sorne fUlthel' explallation with respect to the equatiolls of the four­
dirnensional spaces containing tbe limits (t)" _ 1 of the hmpd. dedllced 
from HMn in 8", as tbis wiU save us trouble in the exposition 
of the direct method. 

If t [a1 a"l,' .. all] is the symbol of coordinatcs, where the digits 
have been arranged III diminishing order, wc consider tltc vel·ticcs 
rcpresellted by 

lying llJ the space 8/1_1 repl'esellted by the eqllation 

a'1 + x"l, + ... + Xp = a1 + a2 + ... + ap-

Evidently these vertices will dctel'mine a limit (t),._ .1 of the po­
lytope, if (ai (/t • • • aJl) Rml t [aJ'+1 {tJ'H' •• all] l'epresent polytopes 
(P)P --1 alld (P)u -- I> respectively, this (1)11 - 1 being then a pl'ismotope 
which may he delloted lIy (Pp - 1 ; P" -1,). Now (ai ftt • •. ap) always 
represellts a (P)P-1' unless all thc digits a1 ft1, ••• , ap are equul, 
in w hich case ({/1 al' •• (lJ,) is a petrified sylla bIe. On thc other hand 
-~ [ap+1 apH .. all] always l'epresents a (P)II_p, unless we have 
either p = 1t - 2, or p = 11 - 1; for, as we remarked already 
p = n - 2 gives the syllable t [11], i. e. a line segment instead 
of a square, and p = n - 1 gives a vertex only instead of an edgc. 

'1'0 this we have to ndd a few words only about the extreme 
cases p = J and p = n. For p = 1 we find tbe polytope with 
the cool'dinate symbol t [a2 a3 ••• an ] lying in a space 8,,-1 rep re­
scnted hy + élJi = ai; it can be deduced from HMn _ 1• For p = n 

thc resllit is different for neven and n odd, the polytope having 
as RMn itself a centre of symmetry in tbe first case and two 
different limits, either a vertex alld an (I)n-1 or two differently 
shaped (1)"-1' opposite to each other iu the second. Or otherwise, 
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as follows. For neven the diagonals of MOl split up into two 
groups of non adjacent ones, of those bearing vertices belonging also 
to HMOl and of those bearing vertices cut off by the aiternate 
truncation leading from MOl to HMn ; the 2Ol - 2 diagona]s of the 
fil'St group are normal to two lilllits of vertex import 1) in the 
considered polytope, whilst the 2Ol - 2 diagonals of the second are 
normal to two limits which may be called of truncation import 
as .they are derived from truncation limits of HMOl in passing to 
the polytope under consideratioll. For n odd there is only one 
group of diagonals of MOl, each of which bears only one vertex 
of HMn ; so each of these diagonals is nonnal to two differently 
shaped limits of the polytope, to one limit of vertex alld to ODe 
limit of truncation import. Bnt in the two cases, of neven and 
11 odel, we have to deal with the two equations L + tej = La; 
snel L + iCi = La; - 2, the last digit all = 1 haviug to be taken 
with the positive sign for limits of vertex import, with the negative 
sign fol' Iimits of tmncation import. 

Af ter this introduction we treat a definite example. 

94. Case t [5 3 3 I I]. 
'rhe nnmbcl' of vertices is 24 times 5! divided by 22 , i. e. 480. 
1'he vertices adjacent to the pattern vertex 5 3 3 1 I are 

33511 
35311 

51331 
53131 
51313 
53113 

533-1-1 

which may be indicated by the brackets and the negative sign after 
the two units in the symbol 

-;:::::::::::---;::::::::::---
5 3 3 1 1 (-) 

~----~ 
So seven edges concur in any vertex, i. e. the total numher of 
edges is half the product of 480 and 7 , i. c. 1680. 

Now wc have to pass to the limiting polytopes. 
1'he spa ces 84 represented hy + tej = 5 give 2.(5)1 = 10 limits 

~- [331 IJ of polytope import. 

1) Also the import of the different limits (I)n-1 of HMOl will be considered in relation 
with the limits (1)"-1 of ;lIn' 80 the equations ± x; = al will give limits of (l)tI-1 
import, the equations ± xi ± Xj = (f1 + Q2 will give limits of (1),,-2 import, etc., 
this series ending in general in limits of body aud limits of vertex import, as no edge 
or face of Aln partakes in the limitatioD of HMOl. 
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The spaces 8" represellted by + lCi + ICj = 5 + 3 give 22. (5)2 = 
40 limits (53) t [3 I 1] of body import. 

The spaces 8,. represented by ~ + IC, = 13 give 2" limits (5 3 3 1 1) 
of vertex import, where (5331 1) = (42200). 1) 

rfhe spaces 8" represented by ~ + IC, = 11 give 2~ limit.s (5331-1) 
introduced hy the altel'Date truncation. 

80 the limiting polytopes are 

10 ei Cta + 40 P,7, + 16 e2 8(5) +. 16 ei ea 8(5), 

1. e. 82 in toto. 
Now fl'om the list of limiting bodies 

ei Ct6 . . . 8 0 , 16 11' 
PtT .• • . 2 tT, 4 Ps, 

e28(5) . . . 5 CO, 10 Pa, 
ei ea 8(5) ... 5 tT, 10 P6 , 

4P6 

50 

of the four different limiting polytopes we can deduce that our 
polytope is limited by 

i (10 X S + 16 X 5) 0, t (10 X 16 + 40 X 2 + 16 X 5) tT, 
i (16 X 5 + 16 X 5) CO, tC40 X 4 + 16 X 10 + 16 X IO)Ps , 

t(40 X 4 + 16 X 10)P6 

i. e. by 720 polyhedra, viz. 

80 0, 160 tT, 80 CO, 240 Pa, 160 Pa. 

Now finally, according to Euler's rule, the number of faces is 
1840. 80 the result is 

(480, 1680, 1840, 720, 82). 

This example shows that the method eXplained ia sufficient for 
85 , as far as the characteristic numbers themselves are concerned. 
But if we want to extend our knowledge of these hmpd. - in 
relation with the difficulty of realising their lopsided form - by 
determining the numbers of the dijferent lcinda of limits thc method 
is illsufficient even in 85 and has to he completed, in onc sellse 
or other, with respect to the different kinds of edges and of faces. 
We shall see that the direct method, which will be explained In 

the next article, fllrnishes this complement at least expense. 

95. Here once more thc direct method in view is ba..~ed on the 

') This (42200) with edges 2V2 is similar to (21100) with edges V2, i.e. to e2 8(5). 
Likewise (5331-1) leads by (64420) to (32210) or (32110), i. e. to el e:l S (5). 
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distillction of the different kinds of limits (l)/. by what we have 
called fOl'mel'ly "unextended" symbols. If we take care to exclude 
always the petl'ified syllables we cau formulate the method in: 

'l'HF.OltEM LVII. "We obtain the unextended symbol of a poly­
tope (P)d the vertices of which are vertices of the given hIllpd. 
of S" by applying to the n digits of the symbol of coordinates 
t [at al ... a .. _t a"J of this polytope one of the th ree following 
processes: 

1°. 'l'ake the last digit an> fi)'st with the poaitive and afterwards 
with the negative sign, and place for both cases between pairs of 
round brackets either one group of d + 1 digits, or two gl'oups 
contaillillg togethel' d + 2 digits, Ol' threc gl'OUpS containing together 
d + 3 digits, etc., omitting the digits not ineluded. 

2°. Plaee befOl'e t [11 J of the remaining digits at, a2,. •• ,a"_2 
bet ween pairs of round brackets either one gronp of d digits, or 
two groups eontaillillg togethel' d + 1 digits, etc., omitting the 
digits not included - and the syllable with one digit for d = 1. 

3°. Place before t[a"_/;+ta,,-k+2 ... a,,-ta,,J, where k=3, 
4, ... , ti suecessively, bet ween pairs of round brackets either one 
gl'OUp of ti - k +- 1 of the I'emnining n - k digits, or two groups 
eontainillg together d - k + 2 of these digits, etc., omittillg the 
digits not illclnded - and the syllable with one digit for d = k." 

"In cach of these cases the (P)à obtained will be ft li1lliting poly­
tope of hmpd., if the syllables between )'ound brackets satisfy the 
two following cOllditions: 

a) eaeh syllable with middlc digits cxhausts these digits of the 
symbol of the given h1llpd., 

IJ) no two syllables without middlc digits have the same end digits." 
'11he proof of this theorem, forming an adaptioll of theorém XXX 

to the special character of the hlllpd., embodicd in the t hefOl'c 
the sq nare hl'Uckets of thcir sym bol, ean be copied from that of 
theol'em XXX and theorem XXX'. 

·We apply it to two defillite examples, one in 8(5), the othel' 
in 86, 

Caae t [5 5 3 I I]. -
If we place before a vertieal stroke the limits deduced fl'Om 

55311 and aftel' it the different oues furnished by 5531 - 1, 
we get 

(l)t· .. (53h, (31)2' t [111 
(l)2' .. (553)t, (531 )" (311)1> (53) -~. [11 J2 (31 - 1)2 
(lb· .. (5531)2' (5311):.!, (553) t[llJt, {[311Jt (531-1h 
(l),. . . (5 5 311)tt t [5 311 J~ I (5 5 31 - 1)2 
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where the small subscripts at the right indicate the number of limits 
concUl'ring in any vertex 1). 80 we find through any vertex 

tive edges, 
two Ps, two P'" six P6, 
one Ps, five 11', four tO, 
ODe (55311) = ee1 e'}. 8(5), two (5531-1) = Ct e2 8(5), 

two t [5311J = eet e'}. 0,6' 
and this gives in a tl'ansparent way in toto 

~:80 ................................................... i.e. 1200 (I)., 

~480 _ 320 2.480 _ 240 6.480 
3 - Pa , 4 - PIl ,-O=480P6 . ... " 1040 (l)2' 

48() 5 480 4.480 
6 - 80 Ps , --12 = 200 tT , - 24- -' = 80 tO . . .." 360 (1)3' 

480 In .Q''" 2.480 '0 2.480 10 rt 
30 - I) ee1 e2"-'\0), 60 = 16 e1 e2 1J(5) , 96 = ee1 e-}. Vta " 

::;0 the result is 

(480, 1200, 1040, 360, 42) 

in accordance with the law of Euler. 
Oaac t [765311]. -
lil thc same way we find here thc tahle: 

(I)t (75)2' (53h, (31)2' t[11 Jt 
(l)-}. (755)t, (75)(53)l' (75)(31)4' (:>53)t, (531)", (311)1' (31-1);l 

(75) t[l1 J2' (53)t[111 
(I}3 (7 553)t, (7 55)(31 )2' (75)(531)4' (75)(311 h, (5531 L (75)(31-1),., (531-1)" 

(5311 )2' (755) l [11 Jt, (75) (53) t[11 J2' (5 53) ~ [11 Jt, 
t[311 J1 

(lh (75531)2, (755)(311)1' (75)(5311)2' (55311)1' (755)(31-1L (75)(681-1)", 
(7553) t [11}, (75) t [311 Jol' ~- [5311 J'!. I (5531-1)'!. 

(1) '1 (755311)1> (755)t[311}, (75)t[5311J~, t[55311} (75531-1)1 

80 we find through any vertex 
se ven edges, 
thrce Pa, ten P'" six Pa, 
one CO, five tT, six Pa, eight Pa, two C, four tO, 
two (32110), onc (22100), two (32100), four Ptn' four PlO' 

011e Peo, one (3;3), two (3;6), two t[5311J, 
one (322100), one (Pa; tT) , two P U;,a1l1' 011e t[55311J, 

two (432110); 

I) 80 (531) is to bear the subscript 4, as the 5 may be related either to :1'2 or to a:s 
and the 1 either to Z4 or to .%5; 80 (31-1) is to admit tbe pnbscript 2, as the three 
digits may apply either to + .ra, + :1'., - Zó or to + .%a, - z4, +:1'5, etc. 

Verb. Kon. Akad. v. Wetenseb. te Sectie DI. XI NU. &. E6 
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as the number of vertices is 25.6! divided by 22
, i. e. 5760, 

we get in toto 
7.5760 . 

2 ........ '.' ..... . ..... .. ...... . ....... l.e.20160(/)t, 

3.5760 10.5760 6.5760 
3 =5760Pa' - 4- ---=14400p4' - 6-- - = 5760po " 25920(1)1' 

5760 5.5760 6 5760 
---- =48000 2400tT., . '6 = 5760P..'1' 

12 '12 

2.5760 
60 

8.5760 384.0]J 2.57Q.~=14400 
12 G, 8 ' 

4.5760 
24 = 960tO. . . . . . . . . . . . . . . . . . . . . .. ;, 14880(/}J, 

5760 _ 
192ct Ca S(5)'3()= 192 cetezS(t», 

2.5760 4.5760 ~ 
60 =192et e28(5), 24 =96011'/" 

4.5760 5760 
48 =480PtO'24=240Pco , 

5760 2.5760 
-9-=640(3; 3)' - 18-- =640(3; 6), 

2.5760 
---:96= 120cct e2 0t6' .................. " 3656(/)\, 

5760 5760 
180 = 32ezea 8(6)'36"= 160 (Pa; n'), 

2.5760 5760 
192 = 60P eet "2 ct6 ' 480 = 12 C'lCa HM", 

2.5760 
360 = 32 et e2e4 8(6) . . . . . . . . . . . . . . . . .." 296(/);;. 

80 the result is, in accordance with the law of Euler, 

(5760,20160,25920, 148t)0, 3656, 296). 

The results obtained in this way are tabulated in Tables VIII and IX. 
rl'ahle VIII, concerned with the hntpd. in 8a, 84 , 8 j , has been 

divided vertically into six main parts, giving respectively the ex­
pan sion symbol, the symbol of coordinates, the symbol of charac­
teristic numbers, the faces, the limiting polyhedra, the limiting 
polytopes. The part of the faces is split up into three columns 
successively related to triangnlar, square, hexagonal faces; likewise 
that of the limiting bodies is split up into seven columns corres­
ponding to the seven possibilities 1', 0, Pa, tT, 00, P G, tO. Of the 
two nnmbers given in any case the first always indicates the total 
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number of the limits, the second that of the limits concUl-ring in 
any vertex. But in the sixth part, making its appearance for n = 5, 
the arrangement is 11.11 other one, the character of the limiting poly­
topes and their total number having interchanged places; so in any 
case the total number appenrs at the head of the column and the 
character at the first of the two horizolltal places in the column. 
So the polytope e~ lljJf5 = t[31111 ] with the characteristic num­
hers 80, 400, 720, 480, 82 is limitecl by 480 Pa and 240 P4 of 
which 18 and 12 respectively meet in any vertex, by 240T aud 
240Pa of which 12 alld 18 respectively meet in any vertex, and 
by 10C16 , 40PT , 10st5) and 10eJS(5) of which I, 4, land 4 
respectively meet in any vertex. ' 

'rahle IX, concerned with the Imprl. in 86 , has heen divided in 
the same way into seven main pnrts. It wiII he clear without farther 
explanation; only we are bound to add that in the first column of 
the sixth part 2 " means that 2q6 is to be taken 00 times and 
that in this part and the next the numbers of limits concurring 
at any vertex have been omitted. 

90. We insert a few remarks about the character of the limits. 
Face8. We find only jJa,P'I'P6' 
Limitillg bodie8. The set of lillliting bodies obtained for n = 5 

is completed by thc addition of C for 11 = 6. 
himiting poll/tope8. In general the limiting polytopes are 
I". Simplex forms, deduced from 8(n), 8(n-l), ... ,8(3), . 
2°. Half measure polytope fGrms, deduced from Hkln __ 1 , HAfn __ 2 , 

... , ]lJJf5 , 

3°. Prismotopes the con8tituents of which are simplex forms, deduced 
from 8(tt-I), ... ,8(3), and at most one half measure polytopc 
f0l1n, dedllCed from HM,l-2, ... , llM5' 

This general result shows that the list of limiting bodies is 
complete for n = O. Moreover that thc list of fourdimensional limits 
will be complete for 11 = 8, as the case n = 8 brings Cs for the 
first time, etc. 

In order to show how theorem LVII works we give the list of 
the limits (P)6 of the tendimensional form t [9775533311]: 

(9775533), - (9775) (5333), (~)775) (533) (31), - (977) (55333), 
(077)(5533)(31),(977)(553)(331 ),-(0 '7)(7 55333),(H7)(7 5 533)(31), 
(97)(7553)(331 ),(97)(7 5 5 )(3331),(97)(75 )(53331 ),(97)(7 5 )(533)(311), 
(ü7) (7 5)( 533) C:H-l), (97) (7 5)(53)(3311),(97)(75)(53)(331--1 ),­
(7755333), - (775533) (31), - (77553)(331), - (7755) (3331),­
(775 )(53831), (775)( 533)(311 ),(77 5 )(533)(31-1),(775)(53)(3311), 

6* 
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(775)(53)(331-1),-(755333] ),-(75533)(811),(75533)(31-1),­
(7533) (3311), (7553) (331--1), (755) (33311), (755) (3331-1), 
(75)(5333] 1), (75)(53331-1),-(5533311),-(553331-1),-­
(977553) t [11], - (!>775) (533) t [11], - (977) (5533) t [11],­
(97) (75533) t [11], ($)7) (75) (5333) t [11], - (77 5533)t[11],-­
(775) (5333) t [11], - (755333) l [ lIJ, - (9775) t [311], -
(97) (755) t [311], (97) (75) (53) t [311], - (7755) t [a 11], -
(775) (53) t [311], - (7553) t [311], - (75) (533) t [311], -
(977)~{331l ],-(H7)(75)t[3311 ],-(775)l[33 I I ],-(755)t[3311 ].­
(75)(53)t[3311 ],-(553H{3311 ],-(97)t[3331 ] ],-(75)~-[33311]. 
-t[533311]. 

C. h'a:teJl8ion 1t1l11lber alld t1'll1lcal.ion fraclion8. 

97. rfHEOREl\I LVIII. "The polytopes t[ al a2 • •• au- 1 au] of 8,1' 
all with edges 2V 2, caD be fOUDd hy means of a reguJar exten­
sion of the measure polytope ffI,,(2) followed by a regldar trun­
cation at thc two groups of non adjacent vertices of Àfn , either 
with or without truncation at the limiting (lh, or at the limiting 
(l);) and (l)4' or at the limiting (l);), (l)4 and (lh, etc. or at the 
limiting Uh, (l)4' (1)5' etc. anel (1)/1-2'" 

rfhis theorem is an immediate consequence of the character of 
the eq uations of the spaces 8"_i bearing the limits (l)n-i of the hmpd. 

The extension llumber is once more the largest digit of the sym­
bol of coordinates, i. e. at; so here it is always odd. 

On account of the lopsidedness of the hmprl. we measure the 
amount of truncation on the corresponding half diameter limited 
at the centre 0 of the polytope. 80 in the case t[7 7 5 533311] thc 

5 

truncation corresponding to the space 8s with the eq uation L tei = 27, 
i 

i. e. the truncation at the Jimits Af4 of M9 extended, is ~~, if P 

is the centre of the M4 and Q the point of intersection of OP 
5 

and thc indicatcd space 8s. As L tei is 35 for Mo extended we find 
i 

PQ PO- QO 35-27 8 .. . 8 
PO = PO = . 35 = 35' 80 the truncatIOI1 fractIOn IS 35 
in this case. 

'fhis case shows cJearly that ill general the frnction number ad mits 
as denominator the product of the extension number by the number 
of coordinates figuring in thc equation of the truncating space. 80 
reducing this dellominator to the cxtension number the numerator 



itself hceOl~es in general a fraetion. 'l'herefol'e it is irnpossihle to 
intl'oduce here the notion of truncation integer. 

'fhc following list contains the truncation fraetions for the h1Jlpd. 
in 8J , 8,1.' 85 , 8(;; here 7o, 7 0', T 3 , T" represent sueeessivcly the 
two truneations at the vertices and the truncntions at the limits 
(1)3' (I),. , 

Tu T o Ta 70 T o' Ta T" 
S ~[311J 11, 1 i 1 l[3333II] .2. J_ 

J 9 3 

i[333Ill] l 1. 
3 9 

![33IllI] 1- 1!. .2. 
9 » 9 

\ {C3311] ~ ~ t[3Illll] ~- .2. t ti 3 2 3 

8~i t[311I] l t ~-[555311] I 2 
2 "3 0-

i[5311 ] t J t[553311] 2 T~ -(0-0-
t[533311] T~ /0- n I 

0-
86 t[553Ill] -f1r; /0- -(0-

t[33311 ] n i· t[533Ill] 10- a J~ I 
0- 1 [) 0-

i[3311I] i /0- i[53IllI] 4t .2. ~ t :> 3 :> 

![31111] -h ~ i- t[7753111 t H- ~-
IJ 2 I 

Sr, ![55311] ! l.2. t[755311] ~-t l~ _L + 2ö 2 I 2 I 
t[53311 ] ti H . I ![753311] J~ t 2 ti 2ö 0- 2 I T 

t[53Ill]ltt ·H ! t[75311I] 4 J 1l. l T 2 I ti ![75311]!~ f + ~[975311] t4- f, .ï 
ïï 9 

D. Eapansion and contraction 8!1111bo18. 

DS. For Ic = 2, 3, ... , n - 2, 1t -I any limit JIi?) of the 
.Af,/"l.) from whieh the IIM,,(2V 2) has been deduced bem'S a limit of 

k 

llJ'!,,(2V2), this limit t [I ~] bcing a HM,,(2V2) and thercfore an 
(l)" for Ic = 3,4, ... , tt -I, hut an edge for Ic = 2. Now we 
will define the expansion el; of HM,,(2V2) -- fOl' Ic = 2, 3, ... ,11- 2 -

" as the influenee of the motion of the lirnits t [IT~T] contnined 
in the limits JI/J.) of J'!,,(2) cansed by a translational motion of these 
limits JIJ?' and what they contain, to equal distances away from 
the eentre 0 of J'1,,(2) , each Jlf,,(2) moving in the direction of the 
line OJI joining 0 to its eentre i11, these J~?) remaining equi­
pollent to their original position, the motion being extended over 
su eh a distance that the two new positions of ally vertex whieh 
was common to two Mt) shall he separated by the length 2 V 2. 
In order to justify this definition we have to show rOl' whnt reasons 
we deviate here from the Cllstom fol\owed until now: to bring the 
opel'l.ltion ek in relation with the limits (l)k of the polytope itself. 
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11'01' the deviation indicated we have two reasons. 'fhe first 
is of a didactic cast: it is easier to imagine the motions of t.he 
limits of Jlf,pl than those of H 11f,.(2V 2). But the second is of 
more importance: "if the limits of llJlfn(2V2) are carried away by 
the limits of the circumscl'ibed jJf,.(~) which contain them, these 
latte I' limits being moved out in the ordinary way, we get precisely 
those expansion operations which lead to the whole set of poly­
topes h1llpd. of 8. .. " This advantage is twofold. In the first place: 
the only expansion of H 11f,.(2V2) which has no equivalent under 
the el, applied to 11f,.<2>, i. e. the expansion according to the lacea, 
is excluded, aud this is right, fol' we will show afterwards that 
this expansion is either impossible or it leads to a polytope which 
can be del'ived from i11/'). But, what is still more, by adhering 
to the limits of i1fn(~) we al'e never at a loss with respect to the 
question to which group of lirnits of H i1f,.(2V2) the expansion is 
to be applied. So in the case of 8;, the HJJI'j admits as lirniting 
bodies tetrahedra only, but they are of two different kinds, i. e. 
we must distinguish bet ween a T common to two Dt6 and a T 
cornmou to a cell Ot6 and a ceIl 01'5; so, of these two groups the first 
must UlJdergo the 'Jperation C3 , if we wish to apply it, as a T cornmon 
to two OtG is contained in the cuue commou to the two adjacent 
eightcells bearing the two 0,6' Moreover we will prove aftcnvards 
that the contraction operatioll always leads to forms deducible from 
.Af,.(4); so we have to consider here the operations Ck only. 

On the other hand we do not deny that the new definitioll has 
a drawback with respect to the operation of expunsion according 
to the edges of lL:lf,.(2V2), a difference in the notation making its 
appearance there. According to H.ilfn itself this operation ought to 
be calleel (1, H ilf,.; Hevertheless we propose to indicate it hy the 
symbol C2 IIil!, •. 'fhis is still more annoying in ' 83 and 84 where we 
have C"l, H 11/3 = e, l' = tT and e~ HJf4 = et 016 (sec the small tab Ie 
at the end of art. 91). But still we reckon the advantages so pre­
vailing that we do not milld of accepting this small d.isadvantage 
illto the hargnin, thc 1110re so as it is ensily held under con trol. 

Stnrting f\'Om the new definition we prove: 
'rHEOREM LIX. "'fhe expansioll Cb (k = 2, 3, ... , n - 2), applied 

ti 

to llJll/l(2V2) changes the symuol of coordinates -} [IT~J of that 
u-i." J; 

polytope into :t [33 .. 3 TT-:- ~J." 
Pt·ool. lf we move the limit HJ1J;(2V2) represented hy 

I." 

il't = il'~ = . .. = étn- k = 1, il'n-k+t, iVn-k+2' ••• , il'" = t [11 ... 1] 
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111 the direction of the line joining 0 to its centre M, for which 

to ft )" times larger distance from 0 we get a new position of this 
llMk(2V 2) chal'acterized by 

k 

/VI = /V2 = , .. = /Vn-k = )", iV"-k+1' /Vn-k+2' ' , ., /Vn -= t[II ... 1 J, 
n--k I> 

in which it is a limit llj"~,(2V2) of the new polytope t [)"),,. ,)" 11 .. 1 J. 
According to theorem LVI this new polytope has edges of the same 
length if and only if we put )" = 3. This proves the theorem 
and leads moreover to the result: 

THEoRE~1 LX. "In the expansion el> the limits HM,/2V2) of 
HMn(2V2) are moved away from the centre to a distance always 
three times the original distance." 

'l'bis result is also an immediate consequence of the fact that 
the largest digit 3 of the symbol of the new polytope is the 
extension numher. 

Remarle. We may express the influence of the operation ek on 

" 
the symbol t [TI~J by saying that it creates an interval 2 be-
tween the n - lerh and th~ It - Ic + 18t digit. 'l'his is in accordance 
with the remark inserted at the end of art. 58. In moving ' out 
the limits .iJl" of Mn the distance to be described in order to give 
thenew edges a length 2V2 is V2 times the distance to be 
described in order to give these edges a lengtb 2; so tbe interval 
created which was V2 in the case of Mn(~) must be V2 times V2, 
i. e. 2 in the case of HM,,(2V2). 

'l'HEOREM LXI. "'l'he influence of au'y number of expansions 
ti 

. e", el' em , ... of HNI,,(2V2) on its symbol t [TI~J is found by adding 
together the influences of each of the expansions taken separately. 

'l'he proof of this theorem can be copied from art. 59. It leads 
immediately to: 

'l'HEOREM LXII. "The operation ek can still be appliell to any 
expansion form deduced fl'0111 HJlI(2V2) in thc symbol of coordinates 
of which tbe 11 - R" and the n - Ie +- 1 st digits, i. e. the let!, alld 
the Ic + JBI digits counted from the end, ure equal." 

Sö in the case t[9775533311J we have an e2e;,e7e:)HLlFl·.1O' 

\'W. We have to come back to the face expansion of the hmpd. 
and to their contrnction. 

'l'he faces of the polytope t [ai a~ . .. an -2 lIJ replacing the faces 
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(11-1) of HMn(2V 2) are represel1ted by (31-1) for an - 2 = 3 
and hy (ll-l) fol' an _ ,! = l. 80 we treat tbese two cases together 
by considering the face. 

Xi = ai (i = 1, 2, . .. , n - 3) 

with the centre 

Xn- 2 , Xn - t' X" = (au _ =-! 1-1) 

Xi = ai (i = 1, 2, ... ; n - 3) 3 X n .- 2 = 3 X n -1 = 3 X n = an _ 2• 

By moving this face away from the centre 0 to a distance À 

times as large its centre is transpol'ted to tbe point 

Xi = Àai (i = 1, 2, ... , n - 3) , 3 X n -2 = 3 Xn -1 = 3 Xn = Àau _2' 

80 the new position of the face leads to a new polytope 
![Àat,Àa'!., ... Àa"_3""]. As tbe length 2V2 ofthesidesofthis 
face is maintailled and tbe length of the edge (Àa jO Àak+t) is 2ÀV2 
if ak and a k +1 are unequal, we ollly can arl'ive for À;6. 1 at a 
polytope aU tbe edges of which have the same lellgth 2V2 if all 
tbe digits at, a2, ... , an -3 are equal, i. e. in the four cases 

n ,,-3 .. -2 ,,- 3 

![IT.~J, t[33 .. 3111J, t[3~llJ, t [55 .. 5311J. 

In these eascs the face becOInes 

X j = À, (i=l, 2, ... , n-3).~._,.~ .. _"x .. ~ (~ t~. A t~· \ i) I 
Xi = 3À, " ,,= " , ~ _ 2 ) !' 
Xi = 3À, " ,,= ( À + 2, À '" 

Xi = 5À, " ,,- " 

furnishing fOl' the edge (au_a, fl" _2) of the lIew polytope the four symbols 

(
À + 2) (. À -I- 2) ,_. À, - 3- ' 3À, - 3-- , (3À, À + 2), (:JA, À + 2). 

80, if E l'epresents eithel' 2 or 0 we bave in these four cases 

A = ~-E + 1, SÀ = 3E + 2, 2À = E + 2, 4À = E + 2; 

so tbe values of À different from unity are respectively 

4 t 2 t 
of which the integer values are tbe ouly available ones. 80 the 

n n-3 

face expansion can be applied to t [U.~J giving [44 .. -4220J 
n-2 n-a 

and to t [33 . . 311 J giving [66 .. 6420J, i. e. in both available 
cases measure polytope forms deducible from Mn(fl). Therefore we CRU 

disregard altogether the expansiol1 of the hmpd. according to tbeir own 
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faces and take into consideration the expansions Ck, (K= 2, 3, ... n-2), 
of the N[,,(2) only. 

We now pass to the cOlltraction. A motion of the limits of vertex 
import of t [(tl a'}. ... (tn-l (tn], i. e. of (01 (tt. ... an-l an) towards the 
centre gives (al-À, az-À, .. . ,an l-À,an-À). 80 the ouly new 
form we cau get is (a1 -1,a2-1, ... ,afl_2-1,0,0), i.e. a 
form deducible from Hn (f&l, etc. 

100. We cOllclude this part by provllIg the followillg theol'ems, 
which will be useful in the nexl.: 

'fHEOREM LXIII. "'1'he limits of trullcatioll import of 
e" el; .. ek ek HHn(2V2) are el; -1 el' --1 •• ek -1 ek -1 8(n) 2(V2)." 

1 2 p-l p 1"1l p-l P 

According to the preceding theorem we have 

n-k/J kp-kP_1 kll-k1 lol 

e k1 e"ll •• Ckp_
1 

ekp HHn = t [2p + I, 2p - I, ... , 33~, 11 .. 1 J. 
80 the limits of trullcatioll import are 

(2p+l,2p-l, ... ,33 .. 3,11..1,--1), 
J. e. 

, ... ,44 .. 4,22 .. 2,0), 

Ol' rcversed 

k1-1 k2-"1 k/J-",,_l n-k" 

-('2p+ 2, 2p ,2p-2, .... . ,2"2 .. 2,00 .. 0), 

1. e. - ek -1 elo -1 •• Clo -1 Ck _I 8(1t)(2V2). 
1;.! /'-1 l' 

'fHlWRErrI IJXI V. "The number Kt of the units fignring in the 
k l 

symbol of coordiuates t [an an _l •••• 11 .. 1] of all h11lpd. in Sn 
indicntes how many limits of truncntion import pass through any 
vcrtex." 

no-k,l ""'-"1'_1 ";.!-k1 lol 

'rhe number of vertices of ~ ['lp + 1, 2p - 1, ... ,33 .. 3, fl~:T], 
11-10" "1'-"// __ 1 Io~--kl "l- t 

respectively of its limits ('lp + 1, 2p -::T~ ... , 33 .. 3, 1Ï~ - 1) 
of truncation import is repl'esented by 

2"-1. ,,! 11! 

(n-kp )! (k,,-kp-l)! ... (k~-kl)! kl!' resp. (n-k,,)! (kp-kl'_lIL .. ,K!-kl)!(k • ......:....l)!' 

80 the 2,t
-

1 limits of truncation import admit together a nUlllher 
of vertices equal to Kt times that of the h11lpd. itself. 
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E. Nets of polytopea. 

101. Let us consider the net N (11f'12
) and suppose that it is 

composed of alternatc white and black Af,P>, so that any two M,,(2) 

with a common limiting j1f"<:!1 differ in colour. Let us imagine 
that each white M,,(2) is split up into an inscribed positive 

" H il{" (= + t [11 .. 1 J) and 2"-1 pyramids on regular sim­
plexcs ótn)(2V2) the vertex edges of which have a length 2 and 
meet at right angles, nnd that in the same way each black M" is 

" 
split up into an inscribed negative HJ!,. (= - t [ll .. 1 J) and 
211

-
1 pyramids. 'rhen it is clear that a space filling of S" is formed 

by three groups of polytopes, two groups of HM'I> i. e. a group 
of positive ones and a gronp of negative ones, and one group of 

,,-1 

cross pol.Ytopes [200 .-~-OJ, each of which haS for centre a vertex 
of the net N(11l,,2) not belonging to an HJI" and is generated by 
tbe addition of 2" of the equal pyrnmids. 'rhis net, which may be 
represented by the symbol N( + H ilf", 01'11), forms our starting 
point here. It is our aim to deduee from this simple net several 
other on es the constituents of ",hieh are forms derived from the 
regular polytopes and h1Jlpd., partaking with each other of the proper­
ties of ad mitting one kind of vertices ·und one length of edge, by 
eonsidering in the application of the expansion opel'ations either the 
two sets of half measure polytopes as independent and the set of 
cross polytopes as dependent val'iables, or reversely. 

Any HM" of the original net N(± HAf'I> ('ril) is limited by 
HAfll_ 1 of (1)"-1 import and by simplexes Sen) of truneation import; 
byeach HJ:I .. _, it is in contact with an IiM" of the othel' kind, 
by eaeh Sen) with a Cr". We now follow two polytopes HM,,, 
0'" in ötll) contact through any group of expansion operations 
leading to a new net, hy whieh operations HM" and its Sen) pass 
into (P)" alld (Q)"-1 and likewise 01'" and its Sen) into (P)" alld 
(Q)'1I-1' 'fhcn it is evident that (Q)II-l and (Q)'''-1 must coincide, 
as the application of the operation en with respect to the gl'OUp 
of Cr" origin on one hand and the group of HM" origin on the 
other would lead to a net with two different kinds of vertices, 
those of the group of Crll origin anti those of the group of JINI" 
origin. This coincidence dominates the hmpd. nets, as it Cl'eates a 
very close relation hetweell the two chief constituents. If we denote 
hy the symhol e" HM" the separatioll of the two groups of HM" 
from eaeh other hy the intercalation of prisms on their ol'iginal 
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limits, tbe rel at ion between tbe two chief constituents of all !tmpd. 
net can be tbrown into the following form: 

'rHEOREM LXV. "In tbe !tmpd. nets the constituent of HM.n origiu 
unequivocally determine~ tbat of Orn origin aüd vice versa. If tbe 
fOl'mer is el' el-" .ek e" HMn , the latter is represented by 

'\ '2 p-1 p 

ek -1 ek -1' • . ek -1 ek -1 Orn:" 
i 2 p-i /' 

We divide tbe proof of tbis theorem in two parts. In the first 
part we su ppose /cp different from. n, in the secoud we tmce tbc 
influence of the occurrence of e" HJ1:lw 

Let the set of operations to be applied to the Or n' in order to obtail1 
u. polytope able to form an !t1llpd. net with ek ek .•• ek ek JlAf,." 

1 p-1 P 

be represented by ek• eh"" ek• e".. 'rhel1 according to the 
1 2 q-1 q . 

results obtained in the preceding section the limiting S(n)(2V2) of Orn 
is transformed into e". ek , ••• ek , el" 8(n)(2V2), whilst on the other 

1 2 'q-1' 'I 
hand the S(n)(2V2) of HMn is transformed into 

- ek -1 ek - ·1' •• ek -i el- -i S(n)(2V2). 
1 2 p-1 'IJ 

As the negative sign of the second symbol is accounted for by the 
position of tbe two polytopes at different sides of the COlllmon limit 
deduced from Sen) thc coincidence requires tbat we have 

/c'1 = /ci -- 1, Ic''!. = /c'}. .. - 1, ... , /r'q_1 = l/'_1-1, /c''1 = lp - 1, 

as the theorem states. 
We rlOW suppose that the operatiol1 ell is added to the set of 

el; expansions to be npplied to the HAfn , i. e. that we drive tbe 
two groups of IlJ1f" a part by prisms. 'rhen the enlm'gement of tbe 
side H+ H__ of the tl'iangle OH+ H_ (fig. 18), fornled by the 
centl'es 0, H +, H _ of ally triplet of constitueJlts of different kind 
in l11utunlly (/)/1-1 contact., caused by the intercalation of the prism 
implies enlargel11ellt of the two other si des , as the triallgle must 
remaiu similar to itself. 'rh is enlargement of 011+ aDd CH_ cannot. 
be effected by the application of the opel'll,tioll en between the two 
constituents of different form (see pag. 90); so it must be caused by 
application of the operatioD e,,_i to the polytopes of Or" origin. In other 
words: the theorem to be proved nlso holds for the case th at en 

occurs under the operations el; to be applied to the R jV" groups. 
Moreover from theorem LXIV we deduce: 
THEOltlnI LX VI. "'l'he totalityof the vertices of any !tmpd. net 

can always be represel1ted by l11eans of one liet symbol, viz. that 
correspol1diug to the constituent of Cl'n origin." 

We still remark that the number of hmpd. nets in Sn is 2,,-1. 
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For we can start either from HiV;, as it is, or from one of the 
(1l-1)1 forms ek, R ilf,u or from one of the (n-l}z forllls ek, ek• HilI", 
etc., gi ying altogether 

1 + (n-I)J + (n-lh + ...... + (n-I)"_l = Cl + 1)11-1 = 2"-1 

possibilities. These nets must all be new for n> 4, if they prove 
to exist. On the other hand a pl'eparatory study of the cases n = 3 
and n = 4 will show that n = 3 furnishes nothing new, whilst 
11 = 4 produces four new cases only. 

102. HIlIpd. neta in 83, - IC we intet'prete the net of Tand 0 
as N (+ R il/a, Cr a) the four cases we meet hel'c are 

1 .. .. HJ{a, Cra 
2 .... e'}. " ilfs, el ers 

or in other form 
1

3 . . . . ea 1IJ1I;j' e'}. Crs 
4 .... et. ea HJ/s, el e2 Cra 

1 . . .. '1.', 0 . . . . . . . . . . . J 21 3 . . .. '1.', RCO, . . C .... 1 ~J 
2 .... t'l', tU, .. CO ..... 24 4 .... t1', tCO, .. tC .... 23 

Here the thit'd constituents CO, C, tG lue polyhedra filling gaps, 
whilst the numbers 12, 24, 1!J, 23 refer to the stereoscopic 
diagrams of ANDREINJ. COIllpare also 'l'able 111 of Mrs. S'fOTl"S 

memOlr. 
Let us pass now to the deduction of the coordinate symbols of 

these four nets. To that end we have to start in the first case 
from a '1.' and an 0 in face contact - and in the other cases 
from what these polyhedra have become - and to calculute by 
meRllS of tbe distance of their centl'es the periodic term which is 
to figure in the symbol. We therefore elllcidate the mutual position 
of the two polyhedra in face contact in fig. 19, in projection on 
to a plnne normal to one of the threc diameters of the 0 group. 
But for clearness' sake we have represented in each of the four 
cases the Tand the 0 - or what they have become - lying 
apart; in order to re-establish the real state we have to move the 
'1.' parallel to itself so as to bring the invisible shadowed face of 
'1.' indieated by dotted lines in contact with the visible shadowed 
face of 0, i. e. A' B' into coincidence with AB. As we want 
only the net symbol with respect to the gl'OUp of 0, the origiu 
of the system O(X Y Z) of coordinates has been ehoscn in thc centre 
of the 0 of the diagram. 

'l'he simple diagrams of fig. 1!J show an easier way leading to 
the knowledge of the periodic term of the net symbol. Indeed, iu 
each of tbe four cases the 0 - or what it has become - is in 
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contact by the edge AB with an other polyhedron congruent to it. 
In oUler words: if the coordinates ~,!I of the centre M of AB 
are p, the centres of the 0 group are represented by the frame 

. a 
[2 at p, 2 a2P, 2 aapJunder the conditions ai' a'}., aa integer and Uz; even, 

i 

i. e. 2p is the period of the net. 80, as the p has in the four 
cases successively the values I, 3, I + V 2, 3 + V 2 we find for 
thc four net symbols under thc stated conditions 

1 .. [ 2 al + 2 2 as + 0 2 Os + 0 :. 
2 .. [ 6 a} + 4:, 6 a2 + 2, 6 as + O}, 
3 .. L2 (1 + V2)al +2+ V2, 2(1 +V2)a3 +V2 ,2 (1 +V2)as +V2;, 
4 . . [2(a + V2)a} +4: +V2, 2(8 + V2)az + 2+ V2, 2 (a + V2)as + V2;. 

'l'hough we pursue the study of these threedimensional nets 
merely from a didactic point of view it is not necessary to deduce 
from these net symbols of the 0 gl'OUp the net symbols of the 
two 11 groups. All we want is to show how the third constituents 
CO, C, tO can be found. 'rherefore we give here the net symbols 
of the two T gl'oups in the form: 
1 . . ±H 2a}±1+1, 2az±L+l, 2a3±1+1~, 
2 . . ±.H a(2a} ± L)+3, 3(2a3 ± 1)+1, 3(2as ± 1)+1]. 
3 .. ± h(2a} ± 1)(1 + V2)+ 1,(2°3 ± 1)(1 +V2l+ I, (t 03 ± 1)(1 +V2)-I- l]. 
4 . . ± l[(20} ± 1)(3+ V2)+3,(2as ± 1)(3+V2)+ 1,(2a3 ± 1)(3 +V2)+ 1], 

where thc double sign refers to the two groups + lIMa and the 
conditions about the ai and their sum remsin the same. 

As the polyhedra of the 0 group remain in contact hy fa ces 
with those of the two T groups and by edges with each other we 
have only to look out for new polyhedra filling vertex gaps which 
make their appeal'ance in the second, third and fourth cases on 
account of the truncation of the polyhedra of the 0 group at the 
vertices. Thollgh all the verticea of these new constituents are con­
tained in the net, the second and the fourth cases show that it 
may happen that some of the jacea of these new bodies have to 
he furnished hy the polyhcdra of the T groups. At any rat.e we 
have to determine the new constituent by starting from an octahedron 
vertex and deducing from the net symbol the vertices at minimum 
distanee from that point. 

We treat further each of the four cases by itself. 
Oaae (0, T). - In this case there is no third constituent.. Never­

theless we deduce from the net symbol of group 0 given above 
tbat the vertices of all the OOrepresented by[2ot +2,2a2+2,2a3+ OJ, 
3 

~ ai odd, arc vertices of the net. But these GO are no constituents 
i 

of the net; for the centre of tbe 00 corresponding to any set of 



94 ANAJ.Y1'ICAL TltEATMENT OF THl<: POLYTOPES REGULARLY 

3 

integers ai satisfying the condition ~ a j odd is the point 2 at, 2 {t2' 2 a;J, 
t 

:I 

and for ~ ai odd this cClltre itself is a vertex of thc net, i. e. 
t 

these CO overlap. 
Ca8e (t0, tT). - As we have p = 3 the point 2,0,0, originally 

common to tbe cent\'al 0 and al1 other in vertex COlltnCt with it, 
is carried away from tbe origin to thrice tbe distance and alTives 
at G, 0, O. 80 with respect to this centre of a new constituent RS uew 
origin tbe original net symbol becomes[G(at-l)+4-, 6a2+2, GaJ+{t], 
~ ai even, i. e. [G al + 4-, G (/2 + 2, 6 (la + 0], ~ ai oOd. Now the 
supposition at = -1, a2 = aa = 0 gives the square - 2 [2,0] Rnd 
so tbe six suppositions al' {t2' aa = [1 00] give the six squares of 
the [2,2,0], i. e. of t.be CO. '1'he eight tl·iangles of this CO are fnr­
llished by 11, four of each group. 80 hy putting al = 0, a2 = - 1 , 
aa = - 1 in the net symbol of thc group of positive 11' we gct 
t [3 + 3, - 3 + 1, - 3 + 1], i. e. reduced to the new origin 
Ü, 0, 0 the symmctrical form t [- 3 + 3, - 3 + 1, - 3 + 1], 
thc tl'iangle (0, - 2, - 2) of which is a face of the CO found 
above. 

Ca8e (RCO, T). - Here we have p = 1 + V 2 and the cel1tre 
of the new constituent becomes 2 (1 + V2), 0, o. 80 the net 
symbol with respect to that new origin is 

3 
[2 (1 + V2) 0l +2 + V2, 2 (1 + V2)l1g + V2, 2 (1 +V2)os + V2~, ~al odu. 

t 

Here tbe six suppositions al' a2, aa = [100] give the six 
limiting squares of tbc cu be [V 2, V 2, V 2 J. 

Ca8e (tCO, tT). - Herep = 3 + V2 antI therefore 2 (3 + V2), 0, 0 
is tbe new origin, leading to the new form 

3 . 
[2 \3 +V2)a l +4:+V2, 2(3 +V2) o~ + 2+V2, 2 (J+V2)os + V2], ~ aj 0(111 

t 

of tbe net symbol. Here thc same suppositions give the six limitillg 
octagons of the tC represented hy [2 + V2, 2 + V2, V2]. By 
putting al = 0, a2 = - 1, aa = - 1 in the net symbol of 
the gronp of positive tT·wc get here 

t [3 + V2 + 3, - (3 + V2) + 1, - (3 + V2) + 1], 
or with respect to thc new origin 

t [- (3 + V 2) + 3, - (3 + V 2) + 1, - (3 + V 2) + 1], 
the triangle (- V2, -2-V2,-2-V2) of which isafaccofthc tC. 

Relllarlc. The p introduced above is not to be cOllfounded with 
thc extension numbcr of thc octahcdron group which according 
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to the rnle connected with the sum of the digits would be 
1, 3, 1 + ï V2, 3 + ~- V2 in the four cases. 

J 03. 'l'he four . cases of !t1llpd. nets in 83 considered above agl'ee 
in this that the third constituent is the contraction form of the 
constituent of octahedron origin. Indeed the contraction fOrIns of 
0, tO, RCO, tCO are respectively 8 vertex, CO, C, tC. 'l'his fact 
is too general to be accidental, we wiJl show why it mU8t be so. 

~lherefore we recur to theorem LXVI. As all tbe vertices of the 
liet figUl'e in the net symbol of tbe octahedron gl'OUp - which 
implies as we already rernal'ked th8t all tbe vertices of the ncw 
éOllstituent are contained in tbe net symbol -, the faces which 
that ncw constituent has in common with the adjacent polyhedra. 
of the octahedron gl'OUp must detine th at new polyhedroll. Now in 
tbe origillal net (0, 1') any vertex Jl is a point of concurrence of 
six 0, the cClltres of which are the opposite vertices Vi of tbe 
six edges of the net of cubes from wbich (0, 1') has been deduced. 
80 tbe six faces of contact of tbe new constituent with tbe six 
polybedra of octahedron origin lie in planes normal to tbe lines 
o Vi' in the centres of these faces, lying at equal distallce from 
O. 'l'hese simple considerations lead to three possibilities compatible 
with the condition that tbe new constituent must admit vertices 
of tbe same kind and edges of the same length : eitber tbe new 
constituent is equal to the constituent of octabedron origin, or the 
new one is tbe contraction fOl'm of the other, or the otber is tbe 
contraction form of the new one. But the first and tbe last sup­
positions are to be rejected. For the first would bring equality 
bet ween tbe two kinds of limits of the constituent of tetrahcdron 
origin whicb have been called original limits and limits of trun­
cation import, whilst the last is inadmissible as the constituent of 
octahedron origin is no contraction form. 

We now prove tbat the preceding result holds for any hmpd. net 
in 8", If once for all we distillguish for short tbe constituent 
of HM" origin as the first and that of Cl'" origin as the second 
we can extend theol'em LXV by proving : 

THEOREM LXVII. "Any !til/pd. net has three different con­
stituents, none of wbieh is a prism. 'l'he tbird is the contrac­
tion form of the second. 80, if the first is ek ek ••• ek ek RHn 

1 2 1'-1 P 

and therefore the second ek1 - 1 e,.. -1' .• ek 1-1 e,.. -1 Crn • the third 
2 p- p 

is cek1 - 1 e"2-1" .e" 1-1 ek -1 C,·n• In this form of the statement 
. 1'- I' 

each of the three ullequivocally dctermines tbe two othcrs." 
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Proof. In the ol'iginal N (/lMn, Cr n) nny two Cr,. in contact 
Bre either in edge contact, or in vertex contact, in othel' wOl"(ls 
the contact of the highest order between two Or" of the net is cdge 
contact, Now this contact of the highest order can ollly be nnnihi­
lated by separation of the C1'" i, e. by applying the expnnsion e,. to 
tbem. As this operation is excluded (as leading to a net witb two 
kinds of vertices) tbe edge contact bctween the polytopes of Or" origin 
is mnintained, though it is changed in character by tbe operntions 
ek , 1 < Ic < 1l, contact hy erlge being replaced by contaet of an 
(I)" -1 limit of edge import. '1'his proves in the fhst place tbat therc 
is only room for one new constituent different from a prism, viz. 
a new polytope with respect to the Cr" of vertex import; verte~ 

contact being anllihilated in any net deduced from N(HM,,, Cr,,), 
this third constituent ahoal/8 makes its appearance. Now wc have 
only to prove still that this third constituent is the contraction form 
of the secolld; we prove this in two diffel'ent ways, in the fh'st 
pi ace hy considering tbe contact witb tbe second, in the second 
place by considering the contact with the first constituent, 

According to theorem LXVI here also the third constituent 
is determined by the limits (/),,_1 of contact with the 2n adjacent 
polytopes of Or,. origin, the centi'es of which ure the vertices of 
a cross polytope with the centre of the vertex gap as centre. 80, 
hcre also, ~f the 2n limits (l)/1-1 are to detcrmine a polytope with 
vertices of one kind and edges of one length, there are three 
possibilitics: either the third constituent is equal to the secOJld, or 
it is t.he contraction form of the second, or it has the secoud 1'01' 

contraction form, Here also the first and the last. suppositions are 
inadmissihle for the reasons indicated in the case n = 3. 80 the 
theorem is proved, 

We ndd the following second proof, which we consider even more 
convincing, as a cOllfirmation of tbc result obt.ained, In tbe notatioll 
of the problem the limit of vertex import of ek el.: ' , • el' el' DM,. 

1 2 p-I 'p 

is - compare tbe proof of theorem IJXIII - represellted hy 
n-I.,p k -k p p-t k2 -kt kt ---

(21'+ 1, 21'-1, . .. , 33 .. 3, 11. , 1), 
l. e. 

~'L kp-kp_t k2-/(t Irt 
----

( 21' , 21'-2, .,., 22, .2, 00, .0), 
or reversed 

~1_ ~-k1 kp-kp_t ~-kp_ 

-( 21' ,21'-2",., 22 .. 2, 00 .. 0), 

1. e. - ce"c1 e"2-1' ,ekp-c1 ekp- 1 8(n)(2V2), 80 tbe limit (1),,-1 of 
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highest import of the thil'n constituent is tbe contraction form of 
the conespónding limit of the secOlld constituent, i. e. tbe third 
constituent itself is tbe contraction form of tbe second. Or sborter still: 
hy the I'eversion of tbe symhols tbe transition from (ai a-}. • .• a n - 2 1-1) 
to (ai a2' .• all_2 I 1) manifests itsclf hy the diminution of tbe jh'st 
d igit hy 2, i. e. hy the operntion of contraction , leaning to the 
l'esult mentioned in the theorem. 

Re'lllrl1'lc. There is a chamctel'istic difference between tbe three 
gl'Oups of nets - n) the simplex nets, h) the measure polytope nets, 
,.) the half measlue polytope nets - as to the charnctel' of tbc COII­

stituents. As we have seen in the precening sections the simplex 
lIets admit exclusively principal constituents, i. e. neither prisms 
1101' prismotopes, whil~t the measul'e polytope nets admit only two 
principnl constituents with cxception of the original net of measnre 
polytopes. Now in the ca~e of the Iwpd. net we always finn t"ree 

prillcipal constitllents with exception of the original net (!lM", Cr,,); 
as soon as two of the three constitllents hecome equal to each other 
wc fall hack on a measure polytope net. This only happens for 
1/. > 3 in S,., as we shall see in the next article. 

104. llmpd. nets i'l S4' - Here we have to examine the eight cases: 

1 . . .... . .. . .. HJJf", , 01',. 5 ..... e2 ea HM" , ei e2 01'4 
2 . . .. .... .. e2 H111\, ei Cl'" û ... . . e"}. e" HM" , ei e3 C1'" 
3 . . . . . . . . . . e3 HM\, e"}. Cr" 7 .. , .. e;1 ell HJJf4 , e'l. Ca Or" 
4 ...... . ... e" HJJf" , e3 C1.,. 8 ... e'}. e3 e" HJJf4, et e2 e3 01'" 
Of these eight cases only four are new. The first is )/( l46), the 

three eqllal groups of Ct6 heilig thc gronps of + HM", - HJ1I" , Cr". 
'1'he seconn case is et N( CI6); as e2 H Jlf", = et Cr4 we finn only two 
principal constituents. 'fhe third case is ce"}. N( CI6); as ea HM", = ce2 Or", 
the third constituent is equal to the fil'st. Finally the fifth case is 
cet e"}. N( ~6); as e2 ea HM" = cet e'}. Cr", here also the third constituent 
is equal to the first. In the four remuining cases the three chief 
constituents Hl'e different; so these cases are new , We represent 
them in the following small table 

I?~ J[J{~, es C1'4' ce:3 Cr., PT], 2(1+V2)rti [2+V2, V2 , V2 ,V2], 
e~f'~lljl{~, /!leJCr~, cel/!;ICI'I' PI1'], 2(:1 +V2) fti [4+V2, 2+V2, V2 , V2], 

L /!;\('4 1fjlf" e~esCr~, ce~eSCr4' P7' ], 2(:1+ V2) ai [4+V2 , 2+V2, 2+V2, V2J, 
Lf'~ (f;\e~1fJlf4" e1 (fSeS Cr4 , cele3 e~Cr4' p/l'\ 2(5+V2)lti [6+V2, 4+V2, 2+V2, V2J, 

ellumeratillg tbe quadruplets of cOllstituents and in condensed form 
thc net symbols; in luttel' symhols thc immovablc parts of the digits 
are placecl hefore the square bracket.s, whilst the sum of the four 
intcgers ai is always even. 

Verh. Kon. Aknd. v. WeteD~b. Ie Sectie DI. XI N .. , 5, E 7 
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In order to get a better insight into tbe constitution of the fourdi­
mensional kl1lpd. nets we tabulate the contact between the different 
constituents. To that end we introduce first a short notation with 
respect to the nets themselves and to their constituents and the 
threedimensional Jimits of these. We denote the f,mpd. nets in 84 

by the collective symbol NH4 and distinguish them mutually from 
each other by putting before that symbol the system of expansioll 
operations applied to the second constituent C1'4; so the four nets 
found above are es NH4 , et es NH4 , e2 ea NH4 , et e2 es NH4• More­
over we indicate the four constituents of each net, i. e. the three 
principal ones taken in the order of successioll assumed in 
theorem LXVII and the prism, by A, B, C,]) and we represel1t 
their different limits Uh by means of subscripts iJl connexion witb their 
import; so Aa, A" Ao will represellt tbe limits of body, truncation, 
vertex import of A, wbilst Bi (i = 3, 2, 1 , 0) fmd Ck (k = 3,2, 0) 
will represent the limits of (l); import of Band of (l)" illlport of 
0, and ])S, ])2'])0 will stand for the bases of D and tbe uprigbt 
limits (/)s of that prism which correspOlld to tbe faces of face import 
and of vertex import of tbe bases. 80 we find tbe following small 
tabIe, where the numbers under the columns show bow many 
(lh of cach kind each polytope admits: 

Net 11 As I At I Ao 11 Ba I B. I Bl I BO 11 Gs I Gg I CO !I Ds I Di I Do -
esNH, T T -

I1 
T Ps P, 

RgO' 
- - R~O I T I Ps 

~ es 
e9 es 

el e2 es 

1/ tT tT 0 tT P6 P, 0 Ps tT P6 
1/ T GO T GO Ps PR tG T - tG I T Ps 
1/ tT tO tT tO P6 Ps teO tT Ps t~O j tT . Pa 

8 8 I 8 16 32 24 I 8 
T 

16 82 2 4 I 

This table shows that the contact bet ween the four different 
constituents is the same in the four nets, i. e. tbat we have in general 

As = ])a, At = Ba, ..10 = C;, B 2 = ])2' Bo = 00 , C2 = ])0' 

whilst B is in contact by its limits Bt of edge import with other 
polytopes B, this transformed edge contact being preserved. 80 the 
different threedimensional limits cover eacb other two by two. 

The contact between the different constituents can also be deduced 
from the following smaH table in which we repeat. the constituents 
of the net in an otber form: 

Net 11 0 I B I A I ]) 

esNIL. [1111JV2 [l'lllJV21!PllIJI![IlIJ[IJV2 
etes" [l'l'llJ" [2'l'llJ" ,,[3311J "[311J[IJ,, 
e2 es" [l'l'l'lJ" [2'l'l'lJ" "[3111J,, [1l1][1] " 

ete;lea " J2'2'l'IJ" 1[3'2'1'1]" ,,[5311J ,,[311J[IJ " 

-
Pa 
-

I Ps I .j, 
I 
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So from this tablc we dednce Aa = Da by remarking that the 
digits of the first syllable of D are the last three digits of the 
unique syllable of A; in order to facilitate comparison of A and D 
we have reversed the order of A, B, C. 

So we find At = Ba (or rather At = - Ba) as we get the same 
form by placing the four digits of A between round brackets after 
having taken the last unit with the negative sign and by placing 
the digits of B, multiplied by V2, between round brackets; etc. 

105. Before passing to the case 1l = 5 we will put the last two 
smaH tables of the preceding article on duty as to the general 

. results they may suggest for 1l > 4. 
We begin by fixing our attent ion on the extreme case of the relation 

between the two constituents A and C, being governed ih the case 
es NH" by a vertex only. Here Ao, the limit of vertex import of 
A, is still a vertex; so we have to accept for C the polytope deduced 
from Or" which admits as limit l:; of body import a vertex and 
this is the eightcell ces Or". The same remark holds for e2 NHa 
already, i.e. for the third of the four cases treated in art. 103. 

But the first of our two tables, i. e. the table of cOlltacts, 
suggests a remark of much wider scope. Wededuce it from the 
fact that each constituent with three kinds of limits (I)s is in contact 
with the three others, whilst the only one with four different kinds 
of limits (lh is in contact with the three others and with itself. 

This fact suggests that in space 8,. we will want iu aU1l different 
constituents A, B, C, . .. , of which B only admits at most 1l different 
limits (1)11-1 and all the others at most 1l -. 1. We have used this 
suggestion as working hypothesis and found by its help the sixteen 
lmpd. nets of 85 ; this was an easy task: as theorem LXVII gives the 
three principal constituents A, B, C and the prism D can be deduced 
from them, the table of contacts shows immediately which- limits 
(I)" remain uncovered and these limits reveal the characte)' of the 
fifth constituent. 1) 

But there is an other method of dedueing the new constituent, 
much more capable of being extended to 8", viz the determination 
of their coordinate symbols by transformation of the net symbol to 

') It may seem in accordance with this snggestion that in the cases e. NB. and 
e, e. NH. of S. we have found no fourth constituent i.e. no prism, thongh they require 
the operatioD e. with respect to the two gronps of HM. of different orientation , driving 
these groups asunder. But this not appearing of' the prism ia rather due to the fact 
that two adjacent HM. of difterent orientation are in' contact by an edge only instead 
of by a face, so that the separation intercalates a square instead of a prism. 

7* 
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new origins. We introduce thi::; method hy remarking that the 
addition of the sccond syllahle [IJ V 2 of the symbol of the prislll 
IJ iu the last table of the preceding article has a dceper mel1ning 
than migbt he supposed: in this form the coordinatc symhol of IJ 
is derived from tbe net symhol, aud hy examining how this process 
runs in S" we easily hit upon its generalizution for 8,,, if uecess­
ary by the assistulIcc of the knowledge of the fifth constituent in 
Sr, found in the manner described above. 80 we indicate for any 
net in S,. how thc cool'dinute syruhol of thc constituents can he 
del'ived from the net symhol. 

In fig. 20 wc l'epresent hy U (Xi X:,! X;j X",) the system of 
coordinates Hlul hy the shuded pentngou with thc axis of symllletry 
UjfiI a fonrth pnrt of the section of the planc O(Xi Xl) with the central 
polytope B. 'l'hen UPo is the "pcriod" p of the net and the point 
Pi of OX, lying at twice that distancc f"om U is the centre of 
au adjacent polytope C filling a vertex gap, · whilst P2 with the 
coordinates 2p, 2p, 0, 0 is the centre of lUl other polytope B in 
contact with the centl'al one by a polyhedron of edge import. 
Moreover P3 is the point 2p, 'lp, 2p, 0 and P ", the point all the 
cOOl'dinates of w hich are 2p; of these Pa corresponds in character 
with Pi' Rnd P", with 0 and P 2 • So the midpoint Q\ of OP", must 
he the celltl'e of a polytope in thl'eedimensional cOlltact of body 
import with the two polytopcs B with the centres U and P,., i.e. 
of n polytope A. On the othel' hand the midpoillt Q;j of UP;j must 
be the ccntre of the prislll intel'poscd between the two polytopes 
A of different oricntation with the ceutres Q4' latte I' point beillg 
the image of Q\ with respect to thc space .1-'4 = 0 as mirror, as 
these polytopes are derived from the two lfJlf", of the original net 
(11M"" Cr",) which were in hody contact in that space eX", = o. 

In this manncr we find in general for all the cases in SI); for 
the coordillates of the centres of the adjacent polytopes 

2p 0 , 0 , 0 , Hl the case of C, 
2p , 2p , 0 , 0 , 

" " " " 
all other B , 

p , p ,p , p , 
" " " " 

A 

P , P ,p , 0 , 
" " " . " 

j) , 

whilst thc upright edges of the prislll IJ are parallel to the 
axis OX\. 

Now we consider the case el f'2 e3 'NH l in order to show how 
the process mus, Here we have p = 5 + V 2, w hiJst the central 
B is repl'esented hy [6 + V2, 4 + V2, 2 + V2, V2J. So we 
obtain C, A, D successivey as follows: 
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6 + V2 • 4 + V2 , 2 + V2 , V2 

10 + 2V2, 0 () :2 subtt .. 
- (4 + V2) , 4 + V2 , 2 + V2 , 

furnisbing tbe polytope [4 + V2, 4 -t- V 2,2 + V2, V2],i.e.C; 

6 + V2 , 4 + V2 , 2 + V2 , V2 
5 + V2 ,5 + V2 , 5 + V2 , 5 -t V2 subtr. 

1 -1 -3 -5 
leading to tbe polytope -t[5311] , i.e. A; 

6 + V2 ,4 + V2 , 2 + V 2 , [V2] 
5 + V2 , 5 + V2 , 5 + V2, 0 bt. 

1 - 1 _ 3 [V2] su 1. 

giving finally tbe polytope t[311][V2] , i.e. ]). 
'rhis will be clear, if we only add one word about tbe factor 

t before the symbols of A and D, viz. that we want this 
factor in order to have symbols representing polytopes with one kind 
of vertex and one length of edge. 

106. H'I1lpd. nets in 8". - We have determined the sixteen hmpd. 
nets of SJ by means of thc two methods given in out.line in the 
preceding article. 

The results of the first method are put on record in Table X. 
'l'his table is divided by vertical lines into eight parts; of these 
the first contains the symbol of the nets, the last two their con~ti­
tuents and the five others the limits (l)tr. of earh of the five 
constituents A, B, C, ]), E. In the . construction of thiE, table we 
stal'ted from theorem LXVII enabling us to register in the last 
part but one in the columns ",ith the superscripts A, B, C the 
character of the three principal constituents and to add under ]), 
in the cases where e4 appears amongst the expansion symbols of the 
net, the pl'isms on the polytopes of polytope import of A as bases. 
After having fillished this task we have inscribed in the columns 
with the headings A~, At> . .. ])" Do the limits (I)~ of these consti­
tuents A, B, C, ]), taken from the tables given in the preceding 
sections of this memoir; this will he clear if we add the remark 
th at the notation ])3'])"])0 for the limits (l)tr. of D differing from 
the bases ])4 has been chosen in accol'dance with the consideration of 
these bases as deduced from IIM4' 'l'his second task having been 
performed we r.au formulate the contact between the constituents 
A, B, C,]); we find generally : 

..1\ = Atr. (if e\ is absent) and A4 = D4 (if e4 is present), 
AI = 114 , Ao = 0\ , Ba = Da , BI = Bi , Bo = Co , Ca = ])0' 
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80 As, B2' O2 , De rcmain uncovered, i. e. have still to be covercd 
by limits Cl)" of E. We represent these limits (I)1j, of .E by Ba, 
Eb' Be, Ed' indicating by the subscripts the constituents withwhich 
they are in (/)4. contact and repeat these limits in the column with the 
headings Ea, EIJ , Be, h~. Finally from these limits we deduce the 
constituent E itself, see the last column of the seventh part of thc 
tabie. \\r e rcmark that this fifth constituent is a prismotope, the 
two components of which are HMs (or e2 HMa) nnd P4 (or pg); it 
presents itself if and only if either ea, or elj" or both opcrations 
are present. 

In applying the second method to 85 we have to extend the 
MIj,(2

p) of fig. 20 with thc broken line 0 p .. P 2 Ps P4 of edges leading 
from 0 to thc opposite vertex Pij, into an Mtp

) with 0 p .. P 2 PaP 4 P ... 
as corresponding broken line of edges from 0 to the opposite vertex 
P. 1f we represent the midpoints of OP5 , OPIj" OPa respectively 
by Q5' Q\, Qs we find for the new origins leading to the consti­
tuents 0, A, lJ, B the points p ... Qs, Q4,> Q3 with the coordinates 

2p, 0, 
p, p, 
p, p, 
p, p, 

0, 
p, 
p, 
p, 

0, 
p, 
p, 
0, 

80 in the case el es e~ :NI .. i. e. [3'2'1'1' 1 ]V2 withp = 5 + V2 
the constituents A, lJ, E are obtained by the three processes 

6+V2, 4+V2, 2+V2, 2+V2, V2 
5+V2, 5+V2, 5+V2, 5+V2 , ö+V2 

subtr. 
1 -- 1 -3 , -3 -5 

6+V2 ,4+V2 ,2+V2 ,2+V2 , [V2] 
5+V2, 5+V2, 5+V2, 5+V2, 0 

subtr. 
1 -1 -3 , -3 , [V2] 

6+V2 , 4+V2 , 2-t- V 2,[2+V2, V2] 
5+V2, 5+V2 , 5+V2 , 0 0 

subtr. 
1 -1 -3 ,[2+V2, V2] 

gIvmg respectively t[53311], t[3311][1]V2, t[311J[1'I]V2. 
rrhe results obtained in this way are collected in 'rabIe XI. rro 
this we have only to add a few remarks. 

The proces.~es used j ust now show clearly why the syllables 
t [3311] and t [311] of D and E must correspond in digits with 
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the last digits of t [53311 J, the symbol of A, and likewise wh)' 
the other syllables [1 JV 2 and [1'1 JV 2 must correspond in the 
SRme manner with either of the symbols [3'2'1'1'1 J and [2'2'1'1'1 J 
of IJ and C. Also why D must he a prism and E a prismotope, 
in connexion with the faculty of inverting the signs of V2 in the 
case of D, and of 2 + V 2 and V 2 in the case of .E, these in­
version having no influence whatever on the distance of the vertices 
obtained of the new origin which is to be the centre of the gap 
filling polytope. 

Moreover the processes themselves indicate under which circum­
stances the prism D and the prismotope .E present themselves. 
If the symbol of IJ Willds up in zero the second syllable of the 
symbol of D is [OJ, i. e, the prism is lacking; hut we know from 
theorem XXXV that the last digit of the symbol of B 1-8 zero, if 
the operation e~ has not been applied to B. Likewise, if the last 
two digits of the symbol of IJ are zero, the second syllable of 
E is [0, 0 J, i. e. ' there is no prismotope E, and the last two 
digits of the symbol of IJ are zero, if neither e3 nor e4 has been 
applied to IJ. 

Finally it is evident why we cannot add a fourth process to the 
three considered ones and subtract 5 + V2, 5 -t- V2, 0, 0, O. 
For then we would get I, -I, [2+V2, 2+V2, V2J, leading 
to t [11 J [1'1'1 JV2, i. e. - as t [11 J is an edge instead of a 
face - to a limiting body and lIot to a limit (1)4. 

107. Hmpd. net8 in Sn. - It is easy to see how the processes 
of the preceding artiele must be extended to Sn, as the algorithm 
al ways remains the same and the number of the subtraetions has 
to be augmeuted until only three digits of the subtrahend differ 
from zero. 80, if we indicate by A(k) the. constituent obtained by 

n-k k 

the subtraction of p p .. p 00.:0 we can formulate the general 
result in the following theorem : 

THEoREM LXVIII. - "In nny net deduced from NHn we find, 
besides tbe three principalcon~tituents A, IJ, 0 always present, 
under certain circumstances one or more prismotopeR A(k) for Ic = I, 2, 
... , n - 3, which may be· called accidental constituents. Tbe pris­
motope A(k) presents itself if - and only if - one or more of 
the expansions en_k' en - Hi , en - t have contributed to the trans­
formation of Or n into IJ; the two syllables of its symbol are the 
last n - Ic digits of A between square brnckets preceded by tand 
the last Ic digits of IJ between square brackets." 
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So we find in the case B = [5""'3'3'!'!'!'I'I]V! of 8 10 : 

C = [4'4'4'3'3'2'2'2'I'IJV2 
A =t[S>755533111J 
.1.(1) = ,,[7 5 5 f) 331 lIJ [I JV2 
A(2) = ,,[ 5 5 5 3 3 I I IJ [1'1 J " 
A(3) = ,,[5533 I I I] [2'1'1 J " 
A("') = ,,[53 3111J [2'2'I'IJ " 
A(5) = ,,[33 I lIJ [2'2'2'1'1 J " 
A(H) = ,,[3 lIL] [3'2'2'2'1'1 J .. 
A(7) = ,,[1 1 I] [3'3'2'2'2'1'1 J " 

By applying this theorem we find immediately the sixteen nets . 
of 85 , as they have been registered in the eighth part of Table X 
with the heading "constituents in an otber notation". Moreovcr 
1.'able XI gives thc corrcsponding results for the 32 nets of 86, 

F. PolaritlJ. 

108. By polarizing an n-dimcnsional h11lpd. with respect to a 
cOllcentric spheriral spacc (with ex: n -1 points) as polarisator we get 
a new polytope admitting one kind of limit (/),,-1 and equal 
dispacial angles, to which corresponds tbe inversed symbol uf 
characteristic numbers of the original polytope. Moreover, if 
t [at> a"}., . .. , a"_1' a"J is the coordinate symbol of the origillal 
hmpd., this symbol also represents tbe limiting spaces 8"_1 of tbe 
new polytope in space coordinates. 

'fhe fact tbat there is no hmpd. proper in 83 and 8", implies tbe 
corresponding fact with respect to tbe new fonns. So, if by tbe 
subscript 8 is indicnted that space coordinates are meant, we have: 
t[ 111]~=(4,6,4)=11, t[311Js=(8,IS,12)=T witb py-

ramids on the faces, 
t [llll J8=(16, 32, 24, /;)=.1Jf"" t[3311J8=(24, 96, 120,48)=.Jf", 

with pyramids on thc cubes, etc. 

109. 'fHEORE~I LXIX. "Any lmtpd. in 8,. bas the property 
that the vertices Vi adjacent to any a"rbitrary vertex V lie in the 
AAme space 8"-1 normal to the line joining tbis vertex V to the 
centre 0 of the polytope. The system of the spaces 8,,_ t corres­
ponding in this way to the different vertices of the hmpd. include 
an other polytope, the reciprocal polar of the original polytope with 
respect to a certain concentric spherical spnce, unless the chosen 



UEmVED ]<'ROM THE REGULAR POJ~YTOPES. 105 

hlllpd. be the cros~ polytope llJlI,. of 8~ in which CfL"e all the 
spaces SJ pass through the ccntrc." 

'rhe silllple geometl"ical proof of this thcorelll eau he copied from 
that of theorem XL (sec art. 66). 

110. We have to add ft single word ahout the reciprocation of 
the hIJ/pd. nets. 'l'he results obtained here run pamllel to those of 
nrt. 68. 

Iu general the systelll of vertices foulld by polariûng 811 hlllpd. 
11et is the combination of sevcral groups of limits jl'I,tl.{) of the 
meaiSure polytopes of thc net AVJf,,(11'»), p being the pen:od. These 
gmups are formed by the centres of the constituents B, C, A, 
A(i), • •• , A(Il- 3>, i. e. 

/I 

for IJ the t'1)Clt vertices of N( ilf,,('!/J»), represcntcIl hy ~2pfll" .. , 2pa,,], ~aj even, 

" () 

" .4 
" ./(1) 

" A\"!.) 

" (){Id 11 " " 11 11 11 

" celltrcs of the Jf n of NCAf,,("!.I'»), 
" 11 "" limiting Jlf" -1 of thc /1'[" of 11\ ~[,,(2/") , 
// '/ "'1 " , •. H'Il-2 " " "" 11 

" .1(,,-:1) " " " ,/ 11 " 1/ " 11 

i ... 
, ~aj mld, 

1 

In the case of the net NH,. itself only the first and the third 
group are present; so in 8,. we find thell the net N( c;l4)' In all 
other cases ''''e have to deal with at lenst three gmups, the first 
three. As we already remarked in art. 68 an othe1' paper, also 
destilled to complement art. 39, will cOlltain more ample develop­
ll1ents ahout these reciprocal nets. 

G. S!l11l'/lletrl/, conaiderationa uf the theor!! of !Jroupa, re!Jularitl/. 

lIl. We first determine the spaces of symmetry 8$,,-1 of HAf" 
itself und afterwards those of any h11lpd. derived from it. 

Case of HM". - We have to investigate here how the reasoning 
which led us to the spaces of symmetry of the measure polytope 
is atfected by the alternate trullcation. 

In the case of M,I we found two possibilities under which the 
space 8,1_1 bisecting orthogonally the join At A2 of two ve1·tices 
At, A2 is a space ÓY'I -1 of the polytope, i. e. that At A2 is either 
nn eclge or the diagonal of a face; in the first case we got the n 
spnces X j = 0, in the second the n(n -1) spaces X j + Xk = O. Now 
on the one hand it i~ imlllediately evident that the altemate trun-
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catioll behavcs itself differently with respect to these two groups 
of spaces: it destroys the symmetry property of the first and pre­
serves that of the second. But on the other hand we have to 
examine whether the alternate truncation does not enervate the 
force of the nrgument by means of which we excluded thc cases 
that At Al was a diagonal of a Jimiting M k of. the M .. for Ic> 2, 
i. e. that the projectiol1s of the two regular simplexes S(Ic) of the 
vertices of Mk adjacent to At and to A2 on the space normal to 
At A2 are of opposite orientation. Indeed this argumentation has 
to he revised, as the two simplexes S(/.:) disappear altogether by 
npplying the truncation and are replaced as groups of vertices of 
HMk adjacent to At and to A2 by the two sets of t Ic (Ic-I) ver­
tices of Mk lying in the following layers 8 .. _t normal to At A2• 

Hut tbe two polytopes t) determined by tbese groups of vertices are 
neither central symmetric and maintain the property of the diffe­
rently orientated projections, unless they coincide in the space 8 .. _ t 

normally bisecting At A-}. for Ic = 4. 80 any space ortbogonally bisec­
ting a diagonal of a limiting sixteencell of RM .. is an 8!/ .. _t and 
therefore DM .. also admits two groups of spaces 8!/n-t' the spaees 
lCi + lCk = 0 and tbe spaees lCj + lCk + lC/ + lCm = O. The number 
of the fOl'mer is always n (1t-I), whilst that of the latter is 
t n (n-I) (n-2) (n--3) for 11 > 4 and four for n = 4. 

Caae of the hmpd. derived from HMn- - From the strueture 
of the h11lpd. it is immediately evident that 3. spaee S .. _t is an 
S!/ .. _t for an hmpd. if and only if it is au S!Jn-t for tbe HM" from 
whieh tbe h11lpd. has been dirived. 80 we have proved the 

THEc>REM LXX. "Auy lmpd. of 8 .. admits two groups of 
spaces 8!/n-t> viz. the n (n-I) spaces lCi + lCk = 0 and the 
t n (n-I) (n-2) (n-3) spaces lCi + m" -:r- lC/ + lCm = 0". 

112. From theorem XLIII we deduee: 
THEoREM LXXI. "The order of the group of anallagmatic 

displacements of ILM"" and of tbe h'l11pd. derived from it is 2,.-2 n! 
for n > 4". 

"The order of tbe extended group of anallagmatic displacements 
of these polytopes, reflexiom:: with respect to spaces 8!J,,-t included, 
is 2,.-t n!. In this extended gl'OUp the first group of order 2,.-t n! 
forms a perfect subgroup". 

1) Compare for these polytores: "The sections of the measure polytope Mil (\f space 
SPn with a central space SPn_t perpendicular to a diagonal", P"oceeditl{ls of Amster 
dam, vol. X, p. 495. 
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'fhe proof of this theorem is to be hased on the remark that the 
order of the group must he half of that of theorem XLUI on 
account of the aiternate truncation. 

113. As to the application of EJm:'s seaie of regularity we hüve 
to use theol'em XLIV. We illustJ'ate th is , sticking to thc ol'iginal 
senie, by the following exampies. 

a). Exarnple t[lIll1]. Here we find one kind of edge, one kind 
of face, but two kinds of lirniting tetrnbedra, viz. tetrahedra of 
body import and tetrahedra of truncatioJl import. 80 the contribu­
tions to the numerator are 1 from each of the th ree groups of 
vertices, edges, faces, and t from the Iimiting bodies. 80 the frac-
. . 3 +t 7 tlOn IS - --- = --

5 10' 
b). Example t[553111]. Here we find three different groups of 

edges (5,3),(3, 1), ~{1, IJ. 80 the fraction is 1 t ~- = t 
c). Exa111ple ~ ( •• s, CrJ. 1.'his simpie net ndmits one kind of 

edge, one kind of face, but two kinds of Iimiting tetrabedra, as a 
tetrahedron of body import of HM5 is common to four HM5 , a 
tetrahedron of truneation import to two HM5 and one Or5• 80 we 

3 + t 7 -
find ---=-

6 12' 
d). Example el ei •• a. Here we have to deal with th ree groups 

of constituents represented with their frames in the table 

B .• [321000J 2 ... (2P1 ,2Pi .2ps ,2P4 ,2Pi .2Pa ) 5.~peven, 
c .. [221000J 2 ... (2PI • 2P2 • 2ps ,2P4 • 2P6 .2P6 ) 5, ~P oM, 
A . . i~555311] .... (lipi +1. 2p2+1. 2ps+ 1, 2p4+1, fp6+1. 'lPa + 1)5. 

80 through the vertex 6, 4, 2, 0, 0, 0 pass 

[ 6, 4, 2, 0, 0, 0 ] ..... Bt 
[10+4,10+6, 2, 0, 0, 0] .... . B2 

[10+4, 4, 2, 0, 0, 0 ] ..... C 
-t[ 5+1. 5-1,5-3, 5-6, 5-5, 5-5] ..... Ai 

t[ 5+1. 5-1, 5-3, (--5+5, 5-5, 5-5)] .. A2' A3' Alt 
-tl 5+1, 5-1, 5-3, (-5+5, -5+5, 5-5)] .. A5, Aü, A7 

t[ 5+1, 5-1,5-3, -5+5, -5+6., -5+5] ..... Aa· 

Now the edge (64)2000 belongs to all these polytopes with 
exception of C, 6(42)000 belongs to all with exception of B"J.' 
whiist 64(20)00 .belongs to seven onIy. 80 we find three kinds of . 
cdges and the fraction is l4' 
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7 
Remadc. Only the HM" itself admits a regulllrity fraction 

2n' 

all the hmpd. derived from it a fraction 2
3 

. 
1t 

As a rule the net NH" admits the frnction 2(n~ 1) nnd a net 

derived fl'om it :) ~ 1 . 
;"(Jt ) 

G1'onillfJen, December, HH 2. 
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LIS'!' OF POLY'1'OPES DEDUCED FROM MEASURE POLyrl'OPE AND CROSS POLYTOPE. fl'able IV. 

n=3 

6 12 8 
C - ce2 0 [ 111 J ( 81 121 61) 1 PI, 1 

e1 C= tC ce1 e2 0 [ I' I' 1 J (241 362 142) t Ps }J3 l' 1 
e"}. C= RCO e2 0 [ I' 1 1 J (241 482 26s) l P4 P4 Ps l' 2, 1 2 

ei e2 C = tCO - ei e2 0 [ 2']' 1 J (481 72s 26s) 1 Ps PI, P6 2' 3,1 "lf 
ce1 C= CO - ce1 0 [110J V2 (121 241 142) 2 P4 Ps I" 1 2 1 "3 
ce2 C= 0 - 0 [100J V2 ( 61 12i 8i) 1 Ps I" 2, 1 1 

cei e2 [' = tO ei 0 [210J V2 (24i 362 142) l P4 P6 2" 3, 1 3 1 2 

n=4 

8 24 32 16 
Cs ces C16 [1111 J ( 161 3~1 241 81) 1 C 1 

ei Cs - ce2 es ~6 [1'1'1'1 J ( 641 1282 862 242) t tC T l' 1 
8..l Cs ce1 es ~6 [l'l'11J ( D61 2882 248" 5(3) t RCO Ps 0 I' 2, 1 
es Cs - es ~6 [l'lllJ ( 641 1922 208s 804) t C PI, Ps l' l' 3,2,1 

et e2 Cs - cei eo]. es Ci6 [ 2' 2' l' 1 J (1921 384s 248 1, 56s) .li tCO Ps tJ.' 2' 3, 1 8 
et es Cs e2 es ~6 [2'l'l'IJ (192i 480s 3685 804) .li tC Ps P CO 2' 4,2,1 8 S 
e2 es Cs el es C,6 [ 2' l' lIJ (1921 480s 3685 SOl,) .li RCO P4 P6 tT 2' 5, 3, 1 8 

el e2 es Cs - ei e2 e;j C16 [ 3' 2' l' 1 J (3841 7684 4646 8°4) 3 tCO Ps P6 tO 3' 6, 3, 1 "8 
ce1 Cs c e2 ~6 [1110J V2 ( 321 961 t:l8 2 242) l CO T I" 1 3 2, 1 2 
ce2 Cs = C24 = ce1 C16 [1100J V2 ( 241 961 961 241) 1 0 0 I" 2, 1 2 1 
ces Cs ~6 [1000J V2 ( 81 241 321 161) 1 'jl I" 3, 2, 1 I 

ce1 eo]. Cd - cel e2 C16 [2210J V2 ( 901 1922 12 Os 242) .li tO tT 2" 3, 1 5 3, 1 8 
cel es Cs e2 ~6 [2110J V2 ( 961 2882 24,04 48~) 3 CO P4 CO 2" 4,2,1 4 2, 1 "8 
ce2 es Cs - ei ~6 [9.100JV2 ( 48i 1202 962 24:J 3 0 tJ.' 2" 5,3, 1 3 1 "8 

cei e2 es Cs - ei e2 C16 [3210J V2 (1921 384s 240" 48s) ~ tO P4 tO 3" 0, 3, 1 6 3, 1 "8 

n=5 

10 40 80 80 32 
~o ce4 CS2 [lIlliJ ( 321 801 801 401 1°1) 1 Cs 1 

e1 ~o - ce;j e4 OS2 [l'l'l'l'lJ ( 1601 4002 4002 200"}. 422) 3 et Cs 8(5) I' 1 TI 
e2 CiD - ce2 e4 CS2 [1'1'1'1 IJ ( 320i 12802 1520[, 6804 122s) 3 e2 Cs P T ce1 8 (5) l' 2,1 TI 
es CiO - cei e4 CS2 [1'1'1 1 IJ ( 3201 14402 21601, 124.06 20.24) 3 es Cs (4 ; 3) Po ce1 8 (5) I' 3,2,1 Tn 
e4 CiO e4 CS2 [ I' 1 1 lIJ ( 160i 6402 1040s 8004 2425) _3_ Cs P (4 ; 3) P T 8(5) l' 4,3,2, I 

10 r. 
ei e2 C10 - ce2 es e4 CS2 [2'2'2'I'lJ ( 6401 16003 1520[, (j804 122s) 3 ei e2 Cs P T ei 8 (5) 2' 3, 1 lIT 
el es (,~o ce1 es e4 CS2 [2'2'l'l'IJ ( 9(jOi 3360s 37606 15607 2024) -L el es Cs (8 ; 3) Po e2 8 (5) 2' 4, 2, 1 

10 
e1 e4 CiO es e4 CS2 [2' I' l' I' 1 J ( 64,Oi 2240s 29605 16007 242[») TSO et Cs P tC (8 ; 3) P T es 8(5) 2' 5,3,2, 1 
e2 es ClO - cei e2 elj, Ca2 [2'2'1'1 IJ ( 960i 2880~ 29606 12406 2024) _lL e2 es Cs (4; 3) PtT ce1 e2 8 (5) 2' 5, 3, 1 

10 

e2 e4 ClO - e2 e4 CS2 [2'1'1'1 1 J ( 960i 3840s 47207 20809 2425) lo e2 Cs P/len (4 ; 3) Pco e-}. 8 (5) 2' 6,4,2,1 
es e4 CIO - el e4 Ca2 [2'1'11 IJ ( 6401 2240s 28805 15207 2425) 3_ e3 Cs Pc (4; 6) PtT el 8 (5) 2' 7,5,3,1 

10 

ei e2 es C10 - r.et e2 es e4 Ca2 [ 3' 3' 2' l' 1 J (1920i 45004 42407 15607 2(24) 3 ei e'.!. es Cs (8 ; 3) PtT e1 e2 8 (5) 3' 6,3, 1 Ta 
ei e2 el; CiO - e2 es e4 Ca2 [ 3' 2' 2' l' 1 J (19201 57604 (jOOOs 2400s 2425) 3_ el e2 Cs PICO (8; 3) Peo ei es 8 (5) 3' 7,4,2,1 

10. 

ei es e4 CIO - ei es e4 C32 [3'2'I'l']J (19201 57604 5760s 21609 2425) . iL el e;j Cs P tc ' (8 ; 6) PtT e2 e3 8 (5) 3' 8,5,3,1 
10 

e2 es e4 CiD - ei eo]. e4 CS2 [3'2'1'11J (192°1 57604 5920s 23209 2425) 10 e2 e3 Cs Pnco (4; 6) PlO ei eo]. 8(5) 3' 9,6,3,1 
el e2 e3 e4 CiO - e1 e2 es el; Ca2 [4'3'2'I 'l J (3840i ~)6005 81 H010 264.01,) 2425) .JL et eo]. e;j Cs P tCO (8 ; 6) PlO e1 e2 es 8 (5) 4' 10,6,3,1 

10 

cei ~o ce3 CS2 [11110JV2 ( 80i 320 1 4002 2002 422) 2 cei Cs 8 (5) I" 1 4 3,2,1 - 1) 

ce2 010 ce2 OS2 [11100J V2 ( 801 480 1 6402 280s 422) .1. ce2 Cs cei 8 (5) I" 2, 1 3 2, 1 
2 

ce3 ~O - cei OS2 [11000J V2 ( 401 240i 4002 2402 422) t ces Os cei 8 (5) I" 3,2,1 2 1 

ce4 CiO - CS2 [10000J V2 ( 10i 40i 80t 80i 32i) 1 8(5) I" 4,3,2,1 1 

cei e2 ~O - ce2 es Ca2 [22210J V2 ( 320i 8002 . 720s 280s 422) 3 cei e2 Cs e1 8 (5) 2" 3, 1 7 5, 3, 1 To 
cei es qo cei e3 Ca2 [22110] V2 ( 480i 19202 21(j05 8405 i 22s) 10 eet es Os (4; 3) e2 8 (5) 2" 4, 2, 1 6 4, 2, 1 

cei e4 ~O e3 OS2 [21110JV2 ( 320t 14402 2160[1 12006 1(24) -L cel Cs Peo (4; 3) e;j 8 (5) 2" 5, 3, 2, 1 5 3,2,1 
10 

ce2 es ' ClO - cei e2 CS2 [22100J V2 ( 1 (j01 4802 560s 280s 422) 3 ce2 ea Cs cei e2 8 (5) 2" 5,3,1 5 3, 1 
10 

ce2 el; OiO - e2 OS2 [21100J V2 ( 2401 12002 15204 6404 82s) .JL ce2 Cs Po e2 8 (5) 2" 6,4,2,1 4 2, I 
10 

ces el; ~O e1 CS! [21000J V2 ( 80i 2802 4002 2402 422) 3 ces Cs e1 8 (5) 2" 7,5,3, 1 3 1 
10 

ce1 e2 es ~o cei e2 es CS2 [33210J VZ ( 9601 2400s 21605 8405 122s) _3_ cel e2 es Ol (4; 3) ei e2 8 (5) 3" 6,3, 1 9 6, 3, 1 
10 

ce1 e2 e4 ~O - e2 es Ca2 [32210J V2 ( 960i 2880s 29606 12006 162J -L cei e2 Cs PlO (4; 3) e2 es 8 (5) 3" 7,4,2,1 8 5,3,1 
10 

cei es el, CiO ei e3 CS2 [32110J V2 ( 9601 3360s 36806 14407 1624) 3 cei es Cs Pco (4; 6) ei es 8(5) 3" 8,5,3, 1 7 4, 2, 1 - To 
ce2 es e4 ~O ei e2 CS2 [32100J V2 ( 4801 1440J 1520[, 6104 82s) .J!... ce2 es Cs Po ei e 2 8 (5) 3" 9,6,3, 1 6 3, 1 

10 

ce. e2 es e4 CiD ei e2 e3 CS2 [43210J V2 (19201 4,800" 41607 14407 1(24) -L ce e2 e3 CM P,~ (4 ; 6) ei e2 e3 8 (5) 4" 10,6,3,1 10 6, 3, 1 
10 



MEASURE POLY'fOPE NE'rs IN 83 AND 84, 'l'able V. 

n=3 

!h !h //1 //0 p. (/)i (/)2 (/)3 
1 [I lIJ =C r. 1 1 

I 
1 1 

ei [l'I'IJ = tG [1 OOJ V2= 0 ee2 e3 2 2 2 1. 17 43 (0, 2te38), 14 (4tess) Ji 
e2 [1'11J = RCO [1 J [1 OJ V2 = P 4 [110J V2 = CO ee1 eg 2 2 

I 
3 .a 20 43 (e, C034, reo31.), 23 (c, 2reo44) 8 

ei e2 [2'I'IJ = tCO [IJ[10J V2 = Pij, [210J V2 = tO ee1 e2 e3 3 3 3 1. 21 13 (e, 2te04S)' 23 (e, teo48, to48), 13 (Ueoss , tooo) 8 

e3 [1 lIJ =C [liJ Cl J = P t, [1][1 IJ = Pij, [1 lIJ =C e3 r. 1 1 1 
ei e3 [1 ' 1'1 J =tC [1'IJ[IJ=Ps [IJ[1 IJ =P4 [1'1 1 J = RCO e2 e3 3 3 4 3 22 l l, (e, 2pS4S: tess) , 23 (e , pS 44, re034), ~ 3 (pSlIS , te38 , re031,) -8 

ei e2 e3 [2'J'l J = tCO [l'IJ[lJ = Ps [IJ[l'IJ =Ps [2'I'lJ = tCO ei e2 e3 8.1'. 2 3 2 _3_ 24 bis 23 (pS48,pS44, teo48), 23 (pS'IS' teo68, te046) 8 

eei 1 [1 1 0 J V 2 = CO 1 [10 OJ V2 = 0 1 ee2 
18.1'.1 

1 2 2 l. 18 1 83 (2eo34 , 0) :ol 
eei e2 [2 I OJ V2 = tO [210J V2 = tO ee1 e2 1 2 1 J_ 14 43 (2to~6, 2t06(;) 2 

n=4 

//4 //3 //2 !11 //0 1'. (/)1 (/)2 (/)3 (/)1j, 
1 [lII1J =1 1'. 1 1 1 1 I 
ei [1'1'l'lJ = ei [I 0 0 0 J V 2 = ee3 = ~6 ee3 elj, 2 2 2 2 3 

10 
e2 [1'1'11J = e2 [lJ[100J V2=Po [1100J V 2 = ee2 = C24 ee2 elj, 2 2 3 3 /0 
e3 [L'111J = e3 [lIJ [1 0 J V 2 = (Pij,; 1'4) = Cs [ 1 J [1 1 0 J V 2 = P Cl) [1 1 1 0 J V 2 = eei ee1 e,. 2 2 4 4 3 

TU 
ei e2 [2'2' 1'1 J = ei e2 [IJ[l OOJ V2 = Po [2 1 OOJ V 2 = ce2 e3 ee2 e3 e,. 2 4 4 3 3 

To 
ei eg [2'I'l'lJ = ei e3 [1'1 J [I OJ V2 = (Ps; 1'4) [1 J [L 1 0 J V 2 = P co [2 I 1 DJ V 2 = eei e3 ee1 e3 e4 8.1'. Z 3 5 4 3 

To 
e2 e3 [2'J'11J = e2 e3 [L IJ [I OJ V2 = (P,4; P4) = Cs [IJ[210J V2 = PlO [2 2 1 0 J V 2 = ee1 e2 ee1 e2 e4 2 3 5 4 3 

To 
ei e2 e3 [3'2'l'1 J = ei e2 e3 [1'1 J [1 OJ V2 = (Ps; 1'4) [IJ [2 r OJ V2 = PlO [3 2 1 0 J V 2 = ee1 e2 e3 eei e2 e3 elj, 8.1'. 2 3 5 4 ~-

IO 

el, [1 J 1 IJ =1 [111J[lJ=Pc =Cs [1 1][ 1 IJ = (P4;p4) = Cs [lJ[111J =Pc = CS [l111J =1 e4 r. I 1 1 1 
ei e,. [l'I'l'lJ = ei [I'l'IJ [IJ = P tC [1'1 J [lIJ = (Ps; 1'4) [IJ[II IJ =Pc = Cs [1'1 liJ = e3 e3 e4 2 3 5 5 -'L 

10 
e2 e4 [I'I'~lJ = e2 [I'11J[lJ=Pnco [11J[11J = (l'lj,;P,.) = Cs [IJ[1'llJ = Puco [1'1'1 IJ = e2 e2 elj, 8.1'. 2 2 4 3 3_ 

IO 

ei e2 elj, [2'2'l'lJ = ei e2 [2'1' 1 J [1 J = PICO [l'IJ [lIJ = (Ps; 1',.) [1 J [1'1 IJ = Pnco [2'1'1 1 J = e2 e3 e2 e3 e,. 2 4 7 5 3 
10 

ei e3 e4 [2'I'l'lJ = ei e3 [l'I'lJ[lJ=P,c [l'lJ [l'lJ = (Ps; Ps) [lJ[l'l'lJ =P,c [2'1'1'1 J = ei e3 ei e3 e4 8.1'. 2 3 4 3 lo 
ei e2 e3 e4 [3'2'1'1 J = ei e2 e3 [2'1'1 J [1 J = PtCO [l'IJ [I'IJ = (Ps; Ps) [1 J [2'1'1 J =Ptcn [3'2'1'IJ = ei e2 e3 ei e2 e3 elj, 8.1'. 2 3 5 3 3 

10 

ee1 [1 1 1 0 J V 2 = eei [1 00 OJ V2 = eea = Dt6 ee3 1 2 2 2 .z. 
[) 

ee2 [1 10 DJ V2 = ee2 = C2I, [1 1 OOJ V2 = ee2 = C24 ee2 r. 1 1 1 1 1 
ee1 e2 [221 DJ V2 = ee1 e2 [21 OOJ V2 = ee2 e3 . ee2 e3 2 3 3 2 _3_ 

1 0 
ee1 e3 [2 1 10J V2 = ee1 e3 [10J V2 [I OJ V2 = (1'4;1'4) = Cs [2 1 1 0 J V 2 = ee1 e3 ee1 e3 8.1'. 1 2 2 2 2 

f) 

ee1 e2 eg [3 2 1 0 J V 2 = eei e2 e3 [10J V2 [1 OJ V2 .= (P4;p4) = Cs [3 2 1 0 J V 2 = ee1 e2 e3 eei e2 e3 8.p. 2 2 2 2 3 
10 



NETS OF MEASURE POLY'J'OPE DESCENT IN 85, Table VI. 

[Ju ,f/', g3 g [/1 go p . (1)0 (1)1 (l)~ (l)3 
1 [11111J= lIf, l' . 1 
ei [I'I'I'I'IJ= C1 " [10000J V2 = cel, MfJ 1 2 1 -4· 
e2 [I'I'I'11J= e2 " [IJ [1000J V2 = Pee,c. [11000J V2 = cea " 1 2 1 -4-

e3 [l'I'IIIJ = C:{ " [lIJ [100J V2 = (P4; 0) [1 J [11 OOJ V 2 = Pee, c. [11100J V2 = ce2 " 1 2 1 
"4 

el, [I'IIIIJ= e'l. " [IIIJ [10J V2 = (C;P4) = M5 [11J [llOJ V2 = (P4; CO) [1 J [lll 0J V2 =- Pec. c. [l1ll0J V2 = ce1 " 1 2 J_ 
4 

ei C2 [ 2' 2' 2' l' 1 J = ei C"]. " [1 J [1000J V2 = Pee,C. [21000J V2 = ce:) el, " 1 2 1 
-4 

C1 e3 [2' 2' l' l' 1 J = C1 ea " [1'1 J [100J V2 = (Ps; 0) [1 J [11 OOJ V2 = Pee,C. [21100J V2 = ce~ e4 " 1 2 _t 
4 

C1 el, [2'I'I'I ' IJ= C1 e" " [I'I'IJ [10J V2 = (tC;P4) [1'IJ [110J V2 = (Ps; CO) [IJ [1110J V2 = Pee,c. [21110J V2 = ce'l C" " 1 2 J. 
4 

e2 ea [ 2' 2' l' lIJ = C2 e:1 " [lIJ [100J V2 = (PI,; 0) [1 JL 210 0 J V 2 = Pee, c, c. [22100J V2 = cel ea " 1 2 l 
4 

e2 el, [2'l'l'11J= e:2 eh " [I'IIJ [10J V2'-' (RCO;PI,) [lIJ [110J V2 = (PI,; CO) [IJ [2110J V2 = Pee. e, c. [22110J V2 = ce'l Cil " 1 2 l 
4 

e3 el, [2'1'IIIJ = C;I el, " [IIIJ [10J V2 = (C;P4) =M5 [lIJ [210J V2 = (PI,; tO) [IJ [2210J V2 = pce.c,c. [22210J V2 = CC1 e"]. " 1 2 l 
4 

ei C"]. C3 [3'3'2'1'I J = e1 e'l. C3 " [1'1 J [100J V2 = (Pil; 0) [1 J [21 00 J V 2 = P cc, e, c. [32100J V2 = ce2 C;I el, " 1 2 l 
4 

C1 e2 el, [3'2'2 ' I'lJ= ei C"]. e" " [2'1'1 J [1 OJ Vi = (tCO; P4) [I'I J [110J V2 = (Ps; CO) [IJ [2110J V2 = P ee,e,c. [32110J V2 = ce1 C,; Cl, " 1 2 l 
4 

ei C3 el, [3'2'1'I'lJ= C1 e3 el, " [1'1'1 J [1 0J V2 = (tC; P4) [I'I][210J V2 = (Ps; tO) [IJ [2210J V2 = Pee.e,C. [32210J V2 = ce1 e2 ef, " 1 2 l 
4 

e2 C3 C" [ 3' 2' l' 1 1 J = C2 e;1 el, " [I'IIJ [10J V2 = (RUO;pl, ) [11 J [210J V2 = (p"; tO) [IJ [3210J V2 = P ce,e,e,Cu [3:3210J V2 = ce1 C2 e3 " 1 2 l 
4 

ei C2 C3 e4 [ 4' 3' 2' l' 1 J = ei e2 ea el, " [2'1'IJ [10J V2 = (tCO;P4) [I'IJ [210J V2 = (Ps; tO) [IJ[3210J V2 = Pcc,e,e"c. [43210J V2 = ce1e2c3e/, " 1 2 1 
'4 

er) [11111J= M5 [1 1 lIJ [1 J = pc. = )J15 [1 lIJ [lI J = (C; P4) = M5 [l IJ [ 1 lIJ = (PI,; C) =1115 [ 1 J [1 1 lIJ = pc. =M5 [IIIIIJ= M5 1'. 1 
Cl e5 [1'1'1'1'1J= ei " [1'1'1'1 J [1 J = Pe, c. [1'I'IJ [11],=(tC;p4) [ l' 1 J [1 lIJ = (Ps; C) [IJ [1111J = pc. =M5 [l'll11J= et. " 1 2 1 

'4 
e2 e r, [I'l'l ' llJ= e-J. " [l 'I'11J [1J = Pe,c. [1' lIJ [lIJ = (RCO ;P4) [lIJ [1 lIJ = (PI, ; C) = .1/15 [ 1 J [1' 1 lIJ = Pc, C. [I'I'IIIJ= e3 " 1 2 _t 

4 
el 1:2 Cr, [ 2' 2' 2' l' 1 J = C1 C2 " [2'2'I'IJ [IJ = Pe,p,c. [2'I'IJ [lIJ = (tCO;P4) [ l' 1 J [1 lIJ = (Ps; C) [ 1 J [1' 1 lIJ = Pc, c. [2'I'IIIJ= Ca el, " 1 2 l 

4 
ei ea e, [2'2'1'1'IJ= e1 e3 " [2'1'1 '1 J [1 J = P [ l' l' 1 J [lI J = (t C ; P4) [ 1' 1 J [1' lIJ = (Ps; RCO) [IJ [I'I'IIJ =Pc,c. [2'I'I ' IIJ= e2 el, " 1 2 1 

el el Cn '4 
ei el, e:, [2' l ' l' I' 1 J = C1 el, " [1' 1 '1' 1 ][ 1 J = Pc, c. [ I' l' 1 J [1 ' 1 J = (t C ; Ps) [ I' 1 J [1' l' 1 J = (Ps; t C) [ 1 J [1' l' l ' 1 J = Pc, c. [2'1'1'I'IJ= ei el, " 8. p. 1 2 1 

4 
e'2 ea c5 [ 2' 2' l' lIJ = e2 C3 " [2'I'I'IJ [IJ = P [1' lIJ [l I J = (RCO; PI,) [lIJ [1' lIJ = (}J 4 ; R CO) [ 1 J [2' l ' lIJ = P P, e, c. [ 2' 2' l' lIJ = el e3 " 8. p . 1 2 1. 

l'2 e3 CO 4 
e1 e2 e3 e" [3' 3' 2' l' 1 J = C1 e2 C3 " [3'2'I'IJ [IJ = Pe,e, e,C. [2' l' 1 J [lIJ -= (tCO ; PI,) [ l ' 1 J [1 ' lIJ = (Ps; R CO) [1 J [2'1'1 1 J = Pe,e,c. [3'2'1'IIJ= c"]. e3 ef, " 1 2 1. 

4 
e1 e2 el" e" [3'2'2' I'IJ= C1 e2 el, " [2'2'1'1 J [1 J = P [2' l' IJ [I'I J = (tCO;ps) [1'IJ [1'I'IJ =(Ps ; tC) [1 J [2' l' l' 1 J = P [3'2'1'1'IJ= ei C:) el, " 1 2 l e)eS Cn (' I el en 4 

el e2 C3 el, C" [ 4' 3' 2' l' 1 J = Cl e2 C3 C" " [3'2'1'1 J [1 J = P [ 2' l' 1 J [1' 1 J = (te 0 ; Ps) [I'IJ [2'1'IJ = (P8; tGO) [IJ [3'2'I'IJ = P I 4' 3' 2' I' 1 J = ei C2 e;) C4 " 8.p. 1 2 l 
el e2 cl Co el e2 e3 Cl 4 

CC1 [11110J V2 = ce1 M5 [10000J V2 = ce4 M5 1 1 2 1 
'3 

CC2 [1l100J V2= CC"]. " [llOOOJ V2 = CCa " 1 1 1 2 1 2-
ce1 e2 [22210J V2 = CC1 C2 " [21000J V2 = cea C4 " 1 2 1 

'4 
ce1 Ca [22110J V2 = cC1 c:J " [10J V2 [100J V2 = (Jlt,; 0) [21100J V2 = ce2 Cl, " 1 2 1 -4 
ce1 Cl, [21110J V2 = CC1 el, " [110J V2 [10J V2 = (CO;P4) [10J V2 [110J V2 = (P4; CO) [21110J VZ = ce1 el, " 8. p. 1 1 2 1 

'3 
ce2 e3 [22100J V2 = ce~ e3 " [22100J V2 = CC? e3 " 8. p . 1 1 2 l 

H 
('e1 e~ C3 [3821GJ V2 = CC1 C2 C:J " [10J V2 [100J V2 = (PI,; 0) [32100J V2 = CC"]. e;l el, " 1 2 J_ 

4 
ce1 C'l. C" [32210J V2 = CC1 C2 Cl, " [210J V2 [10J V2 = (tG ; PI.) [10J V2 [110J V2 = (PI,; CO) [32110J V2 = ce1 C3 e4 " 1 2 .1. 

4 
ce1 e~ C:I el, [43210J V2 = ce1 e2 C:I C4 " [210J V2 [10J V2 = (ta; PI, ) [10J V2 [210J V2 = (PI,; tO) [43210J V2 =- ce1 e2 e;l el, " 8.p. 1 2 l 

4 



1 

2 

3 

4 

5 

ti 

7 

1 2, 0, 

4, 2, 

e2 [ 4, 

es [2 + V2, 

2, 

VZ, 

el e2 [ 6, 4, 

el es [4+VZ, Z+V2, 

0, OJ 
0, OJ 
2, OJ 

VZ, VZJ 

2, OJ 
VZ, VZJ 

e2 eg [4+VZ, 2 + V2, 2 + V2, V2J 

CROSS POLYTOPE NETS (IN 84) . 

P c 

(3;3) (~- t Vz , - i -tVz,-t-tVZ)[ VZJ P co 
(t + t Vz , - i + i Vz , - i + i VZ) 0 

(3 ; 6) (2 -t V2, 
(2 + t V2, 

- t V2 , - Z - t V2)[ 
t V2 , - Z + t VZ) 

Pc 

vZJ P CO 
o 

[ 2, OJ [ z, 
-H Vz + 1, Vz - IJ [ VZ, 

[ 1, IJ[ Z VZ, 

[ Z, OJ [ z, 
t [ V2 + 1, V 'Z - IJ [ VZ, 

[ 1, 1][ Z V2, 

(3 ; 3) (4 + VZ, 
(4 + 2 V2, 

Z + Vz , Z + V2) [ VZJ Prc -H Z + VZ, Vz J[2 + V2, 
o [ Z, OJ [2 + Z V2, Z + 2 VZ, 2 + 2 V2) 

OJ 
VZJ 

OJ 
OJ 

VZJ 
OJ 

V2] 
OJ 

2, 

4, 

3VZ, 
2V2, 

!lo 

2, 

2, 

V2, 
2 VZ, 

0, OJ 
2, OJ 

V2, VZJ 
2 V2 , DJ 

ce2 eg [ 6, 4, Z, OJ 
cel es [Z + 3 V2, 2 + V2, V2, V2J 

[Z + 2 VZ, 2 + 2 VZ, 2 VZ, DJ 
cfl e2 [4+3V2,2+ VZ,Z+ VZ, VZJ 

[4 + Z V2 , Z + Z V2, Z + 2 VZ, OJ 

8 el e2 e3 [6 + V2, 4 + V2, 2 + VZ, V2J (3 ; 6) (Z - t V2 , -t V2 
i V2 

, - Z - i V2) [ V2J PtC t [2 + V2, Vz J [2 + V2, 
OJ [Z + Z VZ, 

V2J cel e2 ea [6 + 3 V2, 4 + VZ, Z + VZ, 
DJ [6 + Z VZ, 4 + Z VZ, Z + Z VZ, 

9 

10 

11 

12 

]3 

14 

15 

1 [ 2, U, 

4, 2, 

4, 2, 

es [2 + VZ, VZ, 

6, 4, 

el e3 [4 + V2, 2 + V2, 

(2 + -i V2, , - Z + t V2) 0 [ Z, 

0, OJ P T ( ~ - l V2 - l_l Vz _.- i _ l V2 - l _l VZ ) (3 ,. 3) (4 2 vz 2 2 V2 ..2. 2 VZ) 0 P l [ Vz + 1 Vz IJ 0 0 " 2 ' 2 2 ' 2 2 ' 2 2 --g- - --g- '- 3 - 3 '- H - --g- 0 2 ' - , 
(t + i V2 ,- i + i Vz , - t + t V2 , - i + t V2 ) (t + t V2 , - -} + t Vz , - t + t VZ ) [ V2J ( 1, - 1) [ V2, VZJ 

0, OJ PtT (i - t V2 , t - t VZ ,- t - t vz ,- t - t V2) 
(i + t Vz , i + t V2 , - t + t V2, - ~- + t V2) 

2, 'OJ P co (Z-i VZ, -i Vz -t Vz ,-2 - t V2) 
(Z + i Vz , i Vz -~ Vz ,- Z + t VZ ) 

VZ, VZJ P T (t -i VZ, -i-i VZ, - i - t V2, -i - i V2 ) 
( ~ + i Vz , - i + i V2 , - t + i V2 , - t + t V2) 

(3;6) (Z-tVz, -iV2 ,-z-tV2) 0 Po t[ V2+1, V2-1J 0, U 
(Z + -} V2 , t V2 , - Z + t V2)[ VZJ ( 1, -1) [ VZ, V2J 

(3; 3) (t - i- V2 , - ~- - i V2 , - t - t V2 ) 0 P RGO t [2 + VZ, Vz J [ Z, OJ 
(t + t Vz,- t +tVz,- t - t VZ)[ VZJ [ 2, OJ[2+ VZ, VZJ 

(6 ; 3) (t - V2 , - i - VZ , - i - V2) [ V2J PlO t [2 V2 + 1, Z vz - 1 J [ VZ, V2J 
(t + Vz ,- t + VZ, - t + V2)[ VZJ ( 1, - 1) [ 3 VZ, VZJ 
(t - t - t ) r Z VZJ t [ Vz + 1, vz - IJ [ Z VZ, Z VZJ 

2, UJ P tO (3 - i Vz , 1 - t V2 , - 1 - t V2 ,- 3 - t VZ) (3; 6) (Z - t VZ, - t VZ , - 2 - t V2) 0 P/lCO t [Z + V2, V2 J [ Z, OJ 
(3 + t Vz , 1 + t V2 , - 1 + t Vz ,- 3 + t VZ) (Z + t VZ , t vz , - 2 + t V2) [VZJ [ 2, DJ [2 + VZ, VZJ 

V2, VZJ PtT (~- t VZ, t - t VZ, - t - t VZ, - t - t VZ) (6; 6) (Z - VZ, - Vz ,- 2 - V2) [ VZJ Pro t [2 V2 + 1, 2 V2 -IJ [ VZ, VZJ 
(~ + t V2, i+tVz,- t +tV2,--t +tV2) (2+ VZ, V2 , - -Z+ VZ)[ VZJ ( 1, -1)[ 3 VZ, V2J 

(2 0 -Z )[2VZJ ~- [ VZ+l, VZ-IJ[ 2V2,ZVZJ 

e2 eg [4+V2, 2+VZ, Z+VZ, VZ] P eo (Z- i V2, 
(2 + t VZ, 

-t Vz 
t V2 

- t VZ , - Z - t VZ) (6; 3) (t - VZ, - i - VZ, - * - VZ) [ V2J P tCO t [Z + Z V2, Z Vz J [Z + V2, V2J 
-} Vz ,~2 + t V2) (t + Vz , - t + VZ, - t + V2) [V2J [ 2, DJ [2 + 3 VZ, V2J 

(t - t - t ) 0 t [2 + VZ , Vz J [Z + 2 VZ, 2 V2J 
16 el e2 es e4 Cl e2 es [6 + V2, 4 + VZ, 2 + VZ, V2J P,o (3 - -?t V2, 

(3 + t VZ, 
1 - t V2 ,- 1 - t Vz , - 3 - t V2) (6; 6) (Z - VZ, VZ, - Z - VZ) [ VZJ PtCO t [2 + 2 V2, 2 Vz J [2 + VZ , VZJ 
1 + t V2 ,- 1 + t V2 , - 3 + t VZ) (Z + VZ, VZ, - 2 + VZ) [VZJ [ z, OJ [Z + 3 VZ, VZJ 

I ( Z, 0 - Z ) [2 VZJ I i [Z + VZ, Vz J [Z + Z VZ, 2 VZJ 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Z, 

Z, 

Z, 

Z, 

2 , 

2, 

cel e2 cel e2 [ 4, 4, 

cel eg cel ea [2 + VZ, 2 + V2, 

2, 2 , 

2, 2, 

2, 2, 

4, 4, 

cel eg [2 + VZ, 2 + V2, 

0, OJ 
2, 0] 

Z, 2] 

Z, OJ 
VZ, V2] 

0, DJ Po (1 - i V2 , 
(1 + t Vz , 

2, OJ P T (t - i V2, 
<t + t V2, 

2, ZJ 

2, DJ PtT 

V2 , VZJ P o 

(i l. _ 1. V2 2 ~ , 

(t + t V2, 

(l - t V2, 
(1 + fV2, 

CP2 eg [2 + VZ, 2 + VZ , 2 + V2, V2] P T (t - t Vz , 
(i + t VZ, 

1 -- t V2 , - 1 - t Vz , - . 1 - t V2 ) 
1 + t V2 , - 1 + t V2 , - . 1 + i V2 ) 

-21 - -~ VZ , 1. _1 Vz - . .1 _l VZ) 
"2 2 2 ' ~ 2 

t + t Vz , t + t V2 , - . t + -} VZ ) 

-23_ ~\-VZ - J-_lVZ -l!. _lVZ) . ~ 'z 2' 2 2 
-23 +.}, Vz _.1. + 1. Vz - l!. + 1. V2) 

.. ' 2 2 ' 2 ::l 

1 - t V2 , - 1 - t V2 , - 1 - t VZ) 
1 + t Vz ,- 1 + t V2 ,- 1 + t V2) 

i - t Vz ,- ~- - t VZ) 
i + t Vz, - ~- + t V2) 

(3 ; 3) (t - -} V2 , 
(t+t V2, 

(3 ; 3) (i - t Vz , 
(t + i VZ, 

(3 ; 3) (t + t Vz , 
(t-i VZ, 

(3 ; 3) 

(6 : 3) 

(t + t ·VZ , 
(t - t V2 , 
(t - VZ, 
(t + VZ, 
( -i 

1- t V2 , - t - -J V2 , - ~ - t V Z) (0 ; 3) (t - V2, 
~ + i VZ, - t + t V2, - ~- + t V2) (t + VZ, 

!I ( 2_ 
:-l 

i - t V2 , - t - ~~- V2) [ V2J * + i Vz , - t + l V2) 0 

i-t V2,-t-t VZ)[ VZJ 
i + i V Z , - ~ + t V 2) 0 

i + -k VZ, - t + i V2) [ V2J 
i- i V2 ,- t -i VZ) 0 

i + t V2, - t + t VZ) [ VZJ 
t - i Vz , - t - i VZ) 0 

t - vz , - t - VZ) [ V2] 
i + Vz , - t + V2)[ V2J 

~ _.! )[ZV2J 
3 3 

i- VZ, -t - V2)[ V2] 
i + V2, - t + V2)[ V2J 

t ' - t ) [2V2J 

1 [ Z VZ, 0, 0, OJ 
[ VZ, VZ, VZ, VZJ 

es [Z + Z VZ , Z, 0, OJ 
[Z + VZ, 2 --l- V2, V2, VZJ 

e2 [4+2VZ, 2, 2, DJ 
[4 + VZ, 2 + VZ, Z + VZ, VZJ 

el [ 5 V2 , VZ, VZ, VZJ 
[ 3 V2, 3 V2 , 3 V2, V2J 
[ 4 V2, Z VZ, 2 V2; 2V2J 

e2 es [G + 2 VZ, 4, Z,_ DJ 
[6 + V2, 4 + V2, 2 + V2, V2J 

el es [2 + 5 V2, 2 + VZ, VZ, V2J 
r2 + 3 V2, 2 + 3 V2, 3 V2, V2] 
[2 + 4 V2, 2 + 2 VZ, Z V2 , Z VZJ 

e) e2 [4 + 5 V2, 2 + V2, 2 + V2, VZJ 
[4 + 3 VZ, 2 + 3 VZ, Z + 3 V2, V2J 
[4 + 4 V2, 2 + Z V2, 2 + 2 V2, 2 V2J 

et e2 eg [6 + 5 V2 , 4 + V2, 2 + V2 , V2J 
[6 + 3 V2 , 4 + 3 V2, 2 + 3 V2, V2J 
[6 + 4 V2, 4 + 2 VZ, 2 + 2 V2, Z V2J 

ceg [ 2, 2, 0, DJ 
ce2 [ 4, 2, Z, DJ 
cel [ 3 VZ, V2, V2, VZJ 

[ 2 VZ, 2 V2, 2 VZ, DJ 
ce2 es [ 6, 4, Z, 0 J 
cel eg [2 + 3 V2, 2 + V2, V2, VZJ 

[Z + 2 V2, Z + 2 V2, 2 V2, OJ 
eel e2 [4 + 3 V2, Z + V2, 2 + VZ, · VZJ 

[4 + 2 V2, 2 + Z VZ, Z + Z VZ, DJ 
ce) e2 eg [6 + 3 VZ , 4 + V2, Z + VZ, VZJ 
. [6 + 2 V2, 4 + 2 V2, Z + Z VZ, DJ 

1 [ Z V2, 0, 0, OJ 
[ V2, V2, V2, V2J 

e3 [Z + Z V2, Z, 0, DJ 
[Z + VZ, Z + V2, V2, VZJ 

e2 [4 + 2 VZ, Z, 2, DJ 
[4 + V2, Z + V2, Z + V2 ; V2J 

el [ 5 V2, V2, V2, VZJ 
[ 3 V2, 3 V2, 3 VZ, VZJ 
[ 4 V2, Z VZ, 2 V2, 2V2J 

e2 eg 1[6 + Z V2, 4, Z, OJ 
[6 + VZ, 4 + V2, 2 + V2, V2J 

el eg [2 + 5 V2 , 2 + V2, V2, V2J 
[Z + 3 V2, 2 + 3 V2, 3 VZ, VZJ 
[2 + 4 V2, 2 + Z V2, 2 VZ, 2VZJ 

Cl e2 [4 + [) V2, 2 + V2, 2 + V2, V2J 
[4 + 3 VZ, 2 +;3 V2, Z + 3 V2, V2] 
[4 + 4 VZ , 2 + Z V2, 2 + 2 V2, 2VZJ 

el e2 Cs [6 + 5 -V2 , 4 + V2, 2 + V2, V2J 
[6 + :1 VZ , 4 + 3 V2, 2 + 3 V2, V2] 
[6 + 4 V2, 4 + Z VZ , Z + Z V2 , 2 V2J 

Table VII. 

ce4 1 

ces e4 -h 
ce2 e4 !­
cel e4 i'o 

ce2 eg e4 -Ar 
3 cel es e4 To 

ces 1 

ce2 -l­

cel i 

ce2 Cg lTf 
3 

cel es To 

1 1 



e2 " 

e3 " 

e2 e3 " 

H M 5 

I " 

e2 e3 " 

e2 e4 " 

e3 e 4 " 

e2 e3 e4 " 

Symbol of 
coordil1ates 

![lIIJ= 17 

t [3 I IJ = tT 

t[l 11 1J = 

t [3 3 I IJ = 
q6 

el " 

t [3 I I IJ = ce2 " 

~ [5 3 l I J = cel e2 " 

t [1 1 I 1 I J 

{- [3 3 3 lIJ 

t [3 3 I lIJ 

t [3 1 I I IJ 

t [5 5 3 I IJ 

t[5331 1J 

t[5HIIIJ 

t [7 5 3 lIJ 

Characteristic l1umbers. 

(4, 6,4) 

(12, I S, 8) 

( 8, 24, 32, 16) 

(48,120, 96, 24) 

(32, 96, 88, 24) 

(U6, 192, 120, 24) 

lö, 80, I GO, 120, 26) 

(160, 560, 640, 280, 42) 

(160, 720, 880, 360,42) 

( 80, 400, 720.480,82) 
(480,1200,1040,360,42) 

(480,1680,1840,720,82) 

(320, 11 20, 1280, 560, 82) 

(960,2400,2080,720,82) 

Faces. 

Ps P4 P6 
--

4 3 I n=3 

4 1 42 -
T 

32 12 16 8 

64 4 32 4 

64· 6 24 3 16 2 

32 1 24 I 644 

160 30 120 30 

480 9 lGO 6 80 2 

640 12 240 6 120 3 
480 18 240 12 240 12 

320 2 24 0 2 480 6 

800 5 720 6 320 4 

640 6 480 6 160 3 160 2 
320 I 960 4 8005 1 1 

Limitil1g polyhedra. 

l a I P3 I tT I CO I P6 I ta 

~ 1 164 

83 

162 82 

803 1209 
80 3 80 3 80 6 

240 18 

80 1 2005 80 4 
SO 1 2401 3 160 4 80 2 160 4 

l 601 3 80 3 80 3 80 3 

1 1 16° 1 1 16°12 I 1 24 ° 13 16°14 

n=4 

Limiting polytopes. 
---~:--:---

10 

Cl6 5 

el " 
3 

c e2 " 
2 

q6 I 

cel e2 " 
2 

el " 
1 

c e2 " 
1 

cel e2 " 
1 

40 1 6 

ce 

ce 

1 8 (5) 

1 " 
PT 4 8 (5) 

2 " 
PtT 2 2 " 
P T 1 el " 
PIT 1 el e2 " 

trahle VIIl. 

16 

8(5) 5 

1 el " 2 

I e2 " 
3 

1 es " 
4 n=5 

I el e2 " 
2 

1 el es " I: 1 c2 es " 
I el e2 es " 1

2 



I Symbol of 
liJlfs cool'dinatcs. 

1 " {[lIl 1 l IJ 

e2 " t[333311J 

es " t [3 3 3 1 lIJ 
e4 " t[331111J 

es " t[3 1 1 1 lIJ 

e2 c3 " t[5 5 5 3 lIJ 

c2 e4 " t[5 5 3 3 lIJ 

e2 e" " t[533311J 

ea e4 " t [5 5 3 1 lI J 

ea es " ~- [5 3 3 1 lIJ 

e4 cG " t[5 3 1 1 lI J 
e2 ea e4 " t[7 7 5 3 1 l J 

e2 ca Cs " t[7 5 5 3 lIJ 

e2 e4 eG " t [7 5 3 3 lIJ 
e3 e4 e5 " t[7 5 3 1 lIJ 

e2 ea e4 e5 " t[9 7 5 3 I ] J 

Characteristic 1I um bers. 

32, 240, 640, 040, 252, 44) 

480, 2160, 3200, 2080, 630, 76) 

64-0, 3840, 5920, 3520, 876, 76) 

480, 3360, 7300, 6240,1996,236) 

192, 1440, 4000, 4800, 2344, 296) 

1920, 5160, 6560, 3520, 876, 76) 

( 2880, 12960, 18240, 10560, 2636, 23G) 

( 1()20, 9000,16800,12480,3650,290) 

( l()20, 7680, 10720, 0720,1990,236) 

( 1920,10560, 16U60, 11040, 3010, 2H6 

( 960, 5280 , 10720, 9120,3016, 2IJ6) 

( 5760,17280,10080,10560, 2U30, 236 

( 57(jO, 20100, 25H20, 1488 0,3650,290 

( 5760,23040,31200,17700,4136,296 
( 3840, 153GO, 21700, 13440 , 3490, 2IJO 

(11520,31500,38400,19200,4136 , 296 

) 

) 

) 

) 

) 

) 

HMPD. IK 86 , 

Faces. Limiting polyhedra. 

------'-----I--T--:--O-7"I-p-a--=---C I ·-tT-..,·,.-.,.'-C-c-, --:I:---p-s-:---U-) 
Pa I P4 I Ps 

64·0 60 

2560 16 
4480 21 1440 9 
4480 28 2880 24 

2560 40 1440 30 
2560 4 1440 3 
7680 8 f-l640 12 
7680 12 7200 15 
44,80 7 4320 9 
S320 13 8640 18 
5760 18 4320 18 
3840 2 10080 7 
G760 3 14400 10 
9600 5 15840 11 
7680 6 11520 12 

3840 1 23040 1 S 

640 

2560 

192°1 
1920 

1920 

640 

5760 

5760 

5760 

2560 

11520 

64080 

8 960 8 4806 

1120 7 0609 

8 

4 

6 

6 

4 

6 

6 
6 

1920 
lIJ20 

480 

1440 

960 

1440 

2880 

16 

40 

1 

3 

2 

3 

12 

4 1\:)20 2 

6 

4·806 

960 2 

960 3 

960 '3 

\J60 1 

640 Ui 

960 U 4809 
3840 48 

2880 90 

960 3 lnOO 10 
5760 12 !J60 4 960 4 19201 
6720 21 l4,40 9 lIJ20 
2880 9 1440 !J 480 3 960 
5700 18 1440 6 1440 9 

4800 30 480 6 !JOO 
4800 5 1440 3 2880 
5700 0 1440 2 2400 5 4801 3840 
6720 7 2400 5 H60 2 6720 

5760

1 

9 1440 3 960 3 960 3 1920 
3840 2 14401 1920 2 9600 

00 

1 CIS 

el " 
c e2 " 

1 
" 

2 
" 

C el e2 " 
el " 

2 el " 
C e2 " 

2 c e2 " 
2 

" 
cel e2 " 

2 C Cl e2 " 
2 el " 

2 c e2 " 
2 C el ez " 

I 192 

18(5) 

1 
" 

e2 " 
1 

" 
1 

" 
el " 
e2 " 
el " 
el " 
c2 " 
1 

" 
Cl C2 " 
el e2 " 

e2 " 
el " 

el e2 " 

Limiting polytopcs (P)4 ' 
---:---~--~--~--:----

l!.J2 1()2 I 240 I 240 I 24·0 I 640 I 040 

el 8(5) cel 8(5) 

C el " C el " 
ca " cel " 
1 

" 
el e2 " c el l?2 " 

C2 " el Ca " 
ea " C Cl " 

el c3 " C Cl e2 " 
1?2 " cel " 
el " c3 " 

el e2 " el ez ea " 
Cl Cg " cel C2 " 
Cl ea " el Ca " 
el ez " Cl eg " 

el Cl! eg " Cl ez e3 " 

P T 

2 P T Po 
5 P T 

P T 
P o 2PtT 
P T 2Po 

2 P T P'T 
4PT 3Pco 
6 P T P, ,/, 

3 P'T 
4, PtT P co 
2 Po 7P'T 
fl PtT 2P(;0 

G PtT SPtt) 

4 Pa 

2P,o 

P '0 

(3 ; 3) 

(3 ; 3) 

(3 ; 3) : (3 

(3 ; 3) (3 

(3 ; 3) 
(3 ; 3) 
(6 ; 3) , 

(3; 3) (3 
(3 ; 3) (3 
(0 ; 3) (0 

(0 ; 3) 

(G ; 3) (6 

; 6) 

; fl ) 

; (i ) 

; 6) 

; 6) 

; 6) 

'rabie IX. 

LilIliting polytopes (P)5' 

12 flO lflO 32 32 

~Pl111J 8(6 
t [3 3 3 1 IJ ce, 8(6) el " 
{ [3 3 1 lIJ C c2 " 

ez " 
t[31 1 lIJ (33 l )t P ] I J cel " 

ea " 
l[11111] (3 1){- [1 1 1 IJ (33l)HI1 I J 8(ö) e4 " 
t[5 5 3 ] IJ cel ez " el e2 " i [5 3 3 l IJ (55 B)t[3 1 I J c el Ca " Cl Ca " 
{- [3 3 3 lIJ (ii3ltr3311J (5 ~3 3){-[3 lIJ ca " Cl C4 " 
t [ 5 3 1 lIJ (553lHII I J cel e2 " 

C2 ea " t [3 3 1 lIJ (53) -1[3111J (533)HI1 1J ez " 
Cz e4 " 

t[3 I 1 ] IJ (53H[1111J (531){[111J Cl " ca e4 " l [7 5 3 lIJ (77 5) t[3 1 I J cel e2 ei] " el Cz ea " 
t[55311J (75H[5311J (755)H3]]J c2 ca " el e2 e4 " 
~. [5 3 3 lIJ (75H[3311J (753)t[311J el e3 " el eg e4 " 
H53 1 l IJ (75)H3111J (7 5 3H [l 11 J el e2 " ez eg e4 " t [ 7 5 3 lIJ (07H [5 3 1 1 ] (9 7 5)~- [3 1 I J el e2 ca " el ez e3 C4 " 



Net8 

el " 

ez " 

C3 " 

C4 " 

Cl I?Z " 

el Cg " 

el e4 " 

ez C3 " 

e2 e4 " 

Ca e4 " 

Cl C2 es " 
Cl C2 C4 " 

Cl Ca C4 " 

e2 ea e4 " 

Cl e2 Cs C4 " 

cel ez " 
c Cl C2 " 

el " 

c e2 " 

10 

At 1 Aa 1 Ao 
8(5)1 - -_ ... -

el " cel 8(5) 

C2 " cel " 

es" P T 8(5) 
8(5) 

el e2 " c Cl C2 S( 5) 

Cl ca" Po' C2 " 

Cl " C Cl 

C2 CS" 1~ T Cl " 

e2 " cel 

Ca" P 1, S(5) 

PIJ' el C2 

- ICCI C2 

el es " 1J,1' 1 Cz " 

C2 ea " 1~ T : Cl " 

16 40 

HMPD. NE'rS IN 8s. 'rabie X. 

CONS'fl'fUEN'fS. CONS'I'I'fUEN'fS 

in an oUter notation. 

: _ _ B_4'-------- 1 Ba 1 B 2 1 BI ,' __ B",-o _ -,O-_C--"'4_+-1 _o.",-a -;-1----,02,,-------,;-- _o.""y'O_ --+--_ J)..:!...4 --+1_D ____ s,-;,--1 _]).:....' +1_D....Y.o~I_E.::...a -,-I _.E.-.:h~_._Ec~_E---.:f d=-: ___ A_-:-__ B_ -+I ___ C _ _ +--b_a_8c_of,,-;-D-+-1 _ ._R_+-__ C _ _ 1 BAl IJ E 

8(5) 1- 1 - 1- - I HM5 Cr5 1 Cr5 1 1[10000J 2 t[l1111JI 

el " 

c2 " Po 
c3 " (4 ; 3) Pco 

8(.5) P T (4; 3) P e 

el ez " - Po 
clca " (4;G)Peo 

cl" P'T (4; G) Pc 

I?z c3 " (4. ; 3) P,o 

C2 " 

Cs " 

Peo (4; 3) FIl r.o 

P T 1(8 ; 3) F,c 
- (4; G) Pro : 
P,o (4; 6) PI/CO 

C c2 " 8(5) 

Cl " cel ez S( 5) Cl " 

e2 " e2 (4 ; 3) e2 " 

cS" C Cl " P o (4; 3) Cs 

cel ez " el cel C2 " 

cel ea " 

c c2 es " 

el ez " 
el ea " 

Cl e2 " 

cel C2 " 

P T CCI C3 " 

C ez e3 " 

(4 ; 3) el Cz " 
PtT (4; 3) Cl ea " 

Cl u2 Cg " 

Cl ez " 
Cl Ca " 

C2 Ca " 

Cl e2 es " 

P 'T (S; 6) P t C e2 ca " 

P m (8; 3) P, co [cel e2 Ca " 

PlO (8; fi) P,,:o 1 Cl e2 ca " 

C2 " P o (8; 3) e2 es " 
1) 1 - CC I C2 Cs " 
PtT 1 (8 ; 3), el e2 e3 " 

80 I so I 10 32 I' I 
I 80 1 80 40 I 10 

CC2 q6 P T P co P T 

q6 P T : P T 

P T (4; 3) 

(4 ; 3) 

P t T (4; 6)1 (4 ; 3) 

(4;6}(4;3) PtT 

P l' (4; 3) 

(4; 3) P T 

P T (S; 3) P T 

PtT (4; 6) (4; 3) 

(4 ; 6) (4 ; 3) PtT 

e2 e5 

ea e4 " 

ea e5 " 

e4 eli " 

e2 Cs c4 " 

e2 c3 e5 " 

el " P'T ' PtT Po PtT (S; 6) (8; iJ) PtT C2 e4 C5 " 

CC2 " PT Pco P T P'f (8; 3) - P'f c3 e4 e5 " 

P,,/, I P tO P'T 

S i 8 8 

Pn (8; G) , (8 ; 3) PtT Cz es e4 e5 " 

4 4 1 4 4 

el " cel " [11000J 2 
ez ce2 

c3 " cC3 " (T;P4) 

[1 1 1 OOJ " 
[11 1 1 OJ 

e4 " ce4 -~[IIIIJ (T;P4) [11 11 I J V2 
[22100J 2 

t [3 3 lIJ 

C c2 c4 t [3 1 lIJ 

c ca C 4 ' " ,,[ 1 1 1 11 

el e2 e4 " cel e'), c4 " t [5 3 lIJ 

el ea e4 " I ce]ea c4 " 1,, [3311J 
Cz ca e4 " c c2 ca c4 " I" [3 1 lIJ 

(I e2 ea e4 " (el ez es e4 " I" [5 3 1 IJ 

(tT ;P4) [2211 OJ " 
(t1';P4) [l'1'111JV2 

(T;P4) [22210J 2 

(T;P4) [I'I'I'11J V2 
( T ;ps) [1'1'1'1 '1 J " 

(t'l' ;P4) [3321 OJ 2 
(t1';P4) [2'2'I'l1JV2 

(n'; Ps) [2'2'1'1'1 J " 

( T; Ps) [2'2'2'1'1 J " 
(t'l' ; Ps) [3'3'2'1'1 J " 

I 

r21 000J " ,,[33311J 

[2 11 0 DJ " " [iJ 3 1 1 IJ 

[211 10J " "r3 1 1 1 11 1 [1 lIJ [1 OJ 2 
[1'1111JV2 "fl l111J t[1111J[IJV2,,[111J[11 JV 2 
[3210 DJ 2 ,,[5 5 3 1 IJ 

[3 2 1 1 DJ " ,,[5 3 3 lIJ t [3 lIJ [1 0 J 2 

[2'1'111J V2 ,,[3331 I J t [3 iJ 1 IJ [IJV2" [3 1 1][1 lJV2 
[32210J 2 ,,[5 3 1 lIJ " [1 lIJ [1 OJ 2 

[2'I'I '11JV2 ,,[3 3111J t[3111J[IJV2" [111J[11JV2 

[2'1'1'1'IJ" ,,[31 1 1 IJ ,,[1 1 1 IJ [IJ" ,,[1 1 IJ [1'IJ " 
[4321 OJ 2 ,,[7 5 3 1 IJ '" [3 lIJ [1 OJ 2 

[3'2'l'11JV2 ,,[55 311J t[5 311J [ IJV2" [311J[IIJV2 

[3'2'I'I'IJ" ,,[533 11J "[3311J[IJ,, " [311J[I'IJ,, 

[3'2'2'1'IJ" ,,[531 1 I J ,,[31 1 IJ [IJ" ,,[1 1 IJ [l'IJ " 

[4'3'2'I'IJ " ,,[7531 IJ ,,[531 IJ [IJ" I" [31 1][1'IJ " 
I 
1 



Nets 
NR6 

el 

e2 " 
eg " 
e4 " 
e5 " 

el e2 " 
el eg " 
el e4 " 
el e5 " 
e2 eg " 
e2 e4 " 
e2 e5 " 

eg e4 " 

eg e5 " 

e4 e5 " 

el e2 eg " 

el e2 e4 " 

el el! e5 " 
el eg e4 " 
el eg e5 " 
el e4 e5 " 
e2 eg e4 

e2 eg e5 " 
e2 e4 e5 " 
eg e4 e5 ." 

el e2 eg e4 " 

el e2 eg e5 " 

el e2 e4 e5 

el eg e4 e5 

" 
" 

e2 eg e4 e5 " 

el e2 eg e4 e5 

HMPD. NETS IN 86 , 'fabie Xi. 

CONSTITUENTS. 

C I B A A(5) A(4) A(3) 

'[1 0000 OJ 2 ! (lIl 1 lIJ 

[1 ] 000 OJ 2 [2 1 000 OJ" " [3 3 3 3 lIJ 
[11 1 00 OJ" [21 1 0 () OJ" ,,[3 3 3 1 1 IJ 
[1 1 1 1 OOJ" [2 1 1 1 OOJ" ,,[3 3 1 1 lIJ t [1 lIJ [1 0 OJ 2 

[1 1 1 1 10J" [21 1 1 10J" ,,[3 1 1 1 lIJ t [1 1 lIJ [1 0 J 2 
[111 111 J V2 [1'11111 J V2 ,,[1 1 1 1 1 IJ t [11 1 1 1][1 J V2 

[221 00 OJ 2 [321 00 OJ 2 ,,[5 5 5 3 lIJ 
[2 2 1 1 OOJ " [3 2 1 1 OOJ" ,,[5 5 3 3 lIJ ~- [3 lIJ [1 0 OJ 2 

[22 1 1 1 OJ " [3 2 1 1 1 OJ" " [5 3 3 3 lIJ t [3 3 lIJ [1 OJ 2 
[1'1'1 1 lIJ V2 [2'1'1 1 lIJ V2 ,,[3 3 3 3 lIJ t [3 3 3 lIJ [1 J V2 
[2 22 1 0 OJ 2 [3 2 2 1 OOJ 2 "f5 5 3 1 1 IJ t [1 lIJ [1 0 OJ 2 

[2221 1 OJ " [3221 1 OJ" ,,[5 3 3 1 lIJ t [3 3 lIJ [1 OJ 2 
[l'l'l'111J V2 [2'1'l'l11JV2 ,,[3331 1 IJ t [331 1 IJ [lJV2 
[2 2 2 2 1 0 J 2 [3 2 2 2 1 OJ 2 ,,[5 3 1 1 lIJ t [1 1 lIJ [1 Ol 2 t [1 lIJ [2 1 OJ 2 
[l'l'l'l'11J V2 [2'l'l'l'llJV2 ,,[3 31111J t[31111 J [lJ V2

1 

- ,,[111J[l'llJV2 

[l'l'l'l'l'lJ " [2'l'1'l'l'lJ" ,,[3 1 1 1 1 IJ ,,[1 1 1 1 l][lJ" t [11 1 IJ [1'lJV2 -

[3 3 2 1 0 UJ 2 1 [4 3 2 1 OOJ 2 ,,[7 7 5 3 1 IJ t [3 1 IJ [1 0 OJ 2 

[3321 10J " [432 1 1 OJ" ,,[7 5 5 3 lIJ 1- [5 3 lIJ [1 OJ 2 
[2'2'l'lllJ V2 [3'2'l'lllJV2 ,,[5 5 531 IJ t [5 531 IJ [lJV2 
[3 3 2 2 1 OJ 2 I [4 3 2 2 1 OJ 2 ,,[7 5 3 3 lIJ t r3 3 lIJ [1 OJ 2 t [3 lIJ [2 1 OJ 2 
[2'2'1'l'11J V2 ! [3'2'l'l'11JV2 ,,[553 311J t[5 3 311J[]JV2 ,,[31 lJ[1/11JV2 

[2'2'l'l'l'lJ ,, 1[3'2'1'1'l'l J 2 ,,[533311J "[33311J[lJ,, t[3311J[l'lJV2 
[3 3 3 2 1 OJ 2 i [4 3 3 2 1 OJ 2 [7 5 3 1 lIJ t [3 1 lIJ [1 OJ 2 t [1 lIJ [2 1 OJ 2 
[2'2'2'1'11J V2! [3'2'2'1'11JV2 :: [55 3111J t[53111J[lJV2 ,,[111J[l'llJV2 

[2'2'2'1'l'lJ" ![3'2'2'l'1'lJ" ,,[533111J "[33111J[lJ,, t[3111J[l'lJV2 
[2'2'2'2'1'lJ " [3'2'2'2'1'lJ" ,,[5 31111J "[31111J[lJ,, "[llllJ[l'lJ,, tP11J[2'l'lJV2 
[44321 0 J 2 [5 4- 3 2 1 OJ 2 ,,[9 7 5 3 lIJ " [5 :3 lIJ P OJ 2 ,,[3 lIJ [2 1 OJ 2 
[3'3'2'1'11J V2 [4'3'2'l'll]V2 ,,[775 311J t[75 311J[lJV2 ,,[311J[l'llJV2 

[3';1'2'l'l'lJ " [4'3'2'1'l'lJ" ,,[755 311J ,,[55 311J[lJ" t[5311J[l'lJV2 
[3'3'2'2'l'lJ" [4'3'2'2'l'lJ" ,,[753311J "[53311J[lJ,, "[3311J[l'lJ,, t[311J[2'l'lJV2 
[3'3'3'2'l'lJ" [4'3';:f2'l'lJ" ,,[753111J "[53111J[lJ,, "[3111J[l'lJ,, "[111J[2'l'lJ,, 
[4'4'3'2']'lJ" [5'4'3'2'l'lJ" ,,[975311J "[75311][lJ,, "[5311J[l'lJ,, "[311J[2'l'lJ,, 
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