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Abstract 

The so called mechanical world view outgrew Aristotle's interpretation of 
biologica1 nature. However, today it becomes more and more obvious that 
the reductionist methodology leads to anomalies when applied on living 
systems. When we consider open systems which exchange matter and 
energy with the environment and maintain en extend their own organiz
ation, it becomes relevant to return to the old Aristotelian concepts. By way 
of examples from chemistry, biology and physics it will be demonstrated 
how such systems can develop into highly organised objects which require 
an Aristotelian description to be comprehensible. Such Aristotelian descrip
tions can be given a precise mathematical formulation by applying and 
extending modem non-lineair dynamic system theory. 

Introduction 

Man is a complex physio-chemical machine and human diseases may be 
considered as faults in this machine. Such faults in the human machinery, 
like those in machines constructed by ourselves, may be caused by defective 
constructions, by the influence of the environment or by wear and tear1

• It 
is possible to define causal chains which lead from external factors to inter
nal defects which in turn lead to observabIe symptoms. The physician is the 
service mechanic who is able to identify the faults and to restore the normal 
functionality of the machine. A good physician must have a deep knowledge 
of the human machinery, he must know its structure and functionality, and 
he must know about the kinds of load and strain that influence it and may 
threaten its stability. 

Much of the progress of modem medicine is due to this mechanical 
picture of biological organisms. It is a simple and powerful analogy which 
has not yet been completely exhausted and probably never will because it is 

1. See Henrik R. Wulff: The disease Concept and the Medical View of Man. This 
Volume. 
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being continuously transformed and refined. In the 17th century when the 
mechanical world view appeared the machine concept was rather crude. 
Descartes, for instance, compared biological organisms with the beautiful 
fountains that could be seen in Parisian parks. The machinery involved was 
completely mechanical and could be described by Descartes' own physics. 
Today we know much more about mechanisms. We know that not only 
gravitational forces are involved. Since the formation of the mechanical 
world view we have achieved a deep understanding of nature on the atomic 
and molecular level and we are able to construct machines that are so com
plex that it is hardly possible to predict their behaviour. The machine 
metaphor of modem medicine is much more complex that the primitive 
ones used by iatrophysicists in the 17th century. 

In spite of the fact that the mechanical conception of disease has been 
continuously refined and, as a consequence of this, is still a very productive 
and fruitful theoretical framework we have the feeling that it in some serious 
sense is defective, that it gives us only a rather limited view of the nature of 
human diseases. Furthermore, one may also argue that this inadequacy 
cannot be repaired by considering more and more complex systems of the 
same nature. It is not only a question of complexity, it is rather a question of 
our conceptual framework which in a sense leaves something important out 
of sight. 

It has been argued by many writers that what is missing in our mechan
ical disease concept is the notion of homeostasis. Endocrinologists and 
experts in many other fields use this notion, and it is evident that the related 
concepts of self-regulation and stabie equilibria are important. But these 
concepts can and have be added in a natural way to our ordinary notion of a 
mechanism. They do not in themselves lead to a new view of biological 
organisms. A deep study of self-regulating system was initiated by the Eng
lish physicist James Clerk Maxwell in the last century. In his work on the 
stability of Saturn's rings and later in his important paper "On Govemors" 
Maxwell developed the mathematical ideas which later led to modem 
control theorY. At the time when Maxwell wrote his paper mechanical 
engineers were weIl aware of control theoretical problems and they were 
familiar with many examples of control devices, the most important one 
being the centrifugal regulator of steam engines. 

Asteam engine equipped with a centrifugal regulator (figure 1) is a self
regulating system. When the load on the engine is increased a message is sent 
(mechanically) to the regulator which adjusts the valves of the engine and its 
power is increased. Maxwell introduced the concept of stabie regulation in a 
precise mathematical way and he determined the conditions under which the 

2. The earliest known device for feedback control is a float regulated Greek water 
doek from the third century B.C. But a theoretica! understanding of such mechanisms 
had to wait until the works by Maxwell and others in the rniddle of the last century. 
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Figure 1 

Modem regulators are much more complex and elegant than the gov
emor. In addition to mechanical signals it is possible to use thermal, chemi
cal, electrical and many other forms of signals. Modem computer technol
ogy has made it possible to put low cost electronics and thermal regulators 
in houses, cars, power plants and human bodies. Con trol theory is a weIl
understood and mature scientific field which makes it possible for us to 
construct complex machines and devices. In this field notions like self
regulation, homeostasis and equilibrium are well-defined terms and they 
have been so for a rather long time. The field has matured since MaxweIl's 
famous papers and today advanced conttol theoretical methods are applied 
in all technological fields. Control theory leads to a natural extension of our 
machine concepts. Advanced machines are self-regulating and tend to 
restore their state of equilibrium when they are disturbed. The car regulates 
its temperature within some normallimits during even excessive driving, the 
power plant produces electricity at a voltage level which lies within narrow 
limits. In a similar way heart rate, body temperature, blood pressure, and 
many other biological parameters are all kept within natural limits by 
biological regulators. A fault in the machine may as weIl be a defect regula
tor as a broken pipe line. All this is, or should be, old knowIedge. The 
concept of homeostasis and other con trol theoretical notions are important 
and indispensable terms in a modem definition of physical as weIl as bio
logical mechanisms. 
Control theory leads to a natural extension of the mechanical models of 
disease. Complex machines as weIl as biological organisms contain many 
different kinds of interacting components or organs. They all serve different 
purposes, they regulate, store energy, transfer signals, etcetera. By this co
operation of a huge number of organs the whole system is kept close to a 
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state of equilibrium. Power plants and biological organisms are designed in 
such a way that they are able to cope with all kinds of threatening influences 
from the environment. Under normal working conditions they will stay 
close to their normal level of functioning and, in virtue of that, serve their 
ultimate purpose being it energy production or survival of the species. Only 
in extreme situations when influences from the environment exceed usual 
levels will the system, or the organism, break down. 

Modem man-made machines are designed to work within certain natural 
boundaries, they are self-regulation systems which have a characteristic level 
of normal function and by modem scientific analyses it is possible to 
describe precisely how the system will behave in a neighbourhood of this 
stabIe state of normality. By analogy biological organisms may be under
stood as self-regulation systems which are able to restore their normallevel 
of function when exposed to minor disturbances. As we do not know the 
design of biological systems it is part of biology to develop an understand
ing of nature's design, or to express it in another way, to define levels of 
normal function of biological organisms and organs. With such definitions 
available it may be possible to define disease entities in con trol theoretical 
terms. This does not by itself lead to any new conceptual framework. 

A pre-mechanistic view of nature 

A good way to get an idea of the limitations of our modem mechanical 
conception of biological organisms and related notions such as the disease 
concept is to go back to a pre-mechanistic view of nature. In the writings of 
Aristotle we find such an anti-mechanistic and also anti-reductionistic 
interpretation of biological nature. His main metaphor was not a mechanical 
device as Descanes' fountains which worked according to mechanicallaws. 
Contrary to this reductionistic picture he focused on how biological organ
isms, say plants, developed and changed their forms according to a plan. For 
him changes were not only movements from one location to another. It also 
comprised changes from one structure to another one, as when seeds devel
op into plants. This is an important point. Modem natural science does in 
fact also des cri be how systems develop in time. If a govemor regulated 
steam engine is pushed to increase its power the regulator will open its 
valves and it will slowly restore the normallevel of function. This process in 
time can be described precisely in con trol theoretical terms. It is even 
possible to calculate the time it will take the system to return to normality. 
But during this process the system has maintained its intemal structure. The 
laws goveming it during the extern al strain and af ter it has retumed to 
normality are the same. It is not this kind of changes Aristotle has in mind 
when he discusses how a seed develops into a plant or how bronze is trans
formed into a statue. Changes may be qualitative as weil as quantitative. 
Some qualitative changes are of a very radical nature. When an organisms 
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dies or is bom its internal structure is completely changed. Using a term 
from modem physics, we may characterise such changes as symmetry 
breaks. Symmetries characterising the new system are completely different 
from those characterising the old one. 

According to Aristotle we need several notions of change to describe 
natural processes. But in modem natural science there exists only one kind 
of change which we can dehne precisely, namely locomotion. This was also 
the view of Descartes who claimed that all natural processes could be 
reduced to the interaction of corpuscles and it is true of modem physics 
where motion in space has been generalised to motion or action in phase 
spaces. Modem science is reductionistic in the sense that it tells us next to 
nothing about qualitative changes. It does not say much about what is going 
on when a substance goes from solid state to fluid form, or when a fluid 
goes from larninar to turbulent flow, or when a human being goes from a 
state of health to a state of serious illness. It is true that modem physics is 
able to specify conditions under which a flow will become turbulent or the 
behaviour of a mechanical device will be chaotic. But it does not teU us 
much about what actually is going on when these conditions are met. It is 
possible to describe the structure before the symmetry break and the struc
ture af ter, but the process of transition and the states between the two new 
relatively stabIe structures are not weIl understood by modern science. 

Aristotle did not give us any useful clue that might lead to a better 
understanding of the process of structure change or symmetry break. But 
we can leam from Aristotle to raise that question again and he also intro
duced some abstract philosophical terms which might guide us. A main task 
of Aristotle's philosophy was to describe qualitative and substantial changes 
as we see them in our daily life. To accomplish this he introduced some 
important distinctions, namely the distinction between matter and form, and 
between actuality and potentiality. 

All cxisting mundane substances (e.g. plants, statues and human beings) 
consist of matter as weIl as form. A bron ze statue is a picce of bronze with a 
certain form. It can be deformed into a circular container and thereby it 
ceases to be a statue. The same matter can be changed into many different 
forms and in that way be brought to serve quite different purposes. In a 
similar way a fluid can go from a laminar to a turbulent state of flow, or a 
human ceU can change from a natural to a malignant state. By this transition 
the characteristic properties of the subject are being radically changed. The 
matter is not changed essentially but the form and thereby also the function 
is modihed in an essential way. The subject has some potentialities related to 
its form and matter. These possibilities can be actualized if the subject is 
exposed to the right influences, or they may never be actualized if it is not 
effected in the right way. Substantial changes of a substance are of this form. 
It realizes some of the potentialities that are built into it. This kind of change 
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is entirely different form locomotion and, as mentioned above, it has not 
been given much attention in modem natural science. 
Modem control theory has a lot to say about how to regulate a system when 
it is sufficiently close to an equilibrium. But it is almost silent when the 
system approaches a critical area of instability. In some sense this is strange 
because - as Aristotle's philosophy shows - many ordinary situations which 
are of greatest importanee to us are in fact critical · and unstable situation. 
This is the case with phenomena such as birth, death, outbreak of diseases, 
unfolding of flowers, etcetera - all symmetry breaking phenomena which 
constituted the prototypical examples for Aristotle. Aristotle gave a qualita
tive description of such structure shaping phenomena and he rightly empha
sized that the laws that govem the process should be found in the structure 
of the systems under transformation. We need a quantitative theory of these 
phenomena. 

Macroscopie changes in open, non-lineair systems 

A first important observation is that these transitions from one kind of 
symmetry to another one are macroscopie properties of the system. It is the 
whole organism that becomes ill, it is the whole seed grain that is trans
formed into a whole plant, etcetera. It is true that human beings, plants, 
fluids, etcetera all are systems consisting of molecules, but the transitions 
from one structure to another cannot be defined on the microscopie level. It 
is a joint venture of the whole set of molecules. A rather trivial example is 
the emergence of convection pattems in a fluid which is placed between two 
plates with different temperatures. 

If the plates have the same temperature the fluid wiIl be homogeneous. 
One wiIl not be able to differentiate between different locations within the 
fluid. But when the temperature of one of the plates is raised a very char
acteristic macroscopie structure will emerge. A characteristic convection 
pattem will suddenly appear (figure 2). If the temperature diHerence of the 

000 
Figure 2 

plates are kept constant this pattem will remain unaltered. At the global 
macroscopie level the system has changed radically, a new global symmetry 
has appeared. It is evidently impossible to discover these convection pattems 
by studying isolated water molecules. This pattem is due to the global 
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interaction between molecules, and it is not a linear superposition of prop
erties of water molecules. This transitional process from a homogeneous 
fluid to a fluid with a very regular convection pattern can only ~e described 
by applying macroscopie variables. 

Another well-known hydrodynamical example is the transition from 
laminar to turbulent flow. Consider a viscous flow that passes a cylinder. 
When the Reynolds number increases the symmetry of the flow will change 
from laminar to various kinds of non-Iaminar flows (figure 3). 

R= 0.01 
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R= 100 

Figure 3 

The flow is characterised by four macroscopie parameters, namely density 
(r), global velocity in front of the cylinder (V), diameter of cylinder (d) and 
viscosity (m). The relationship between these parameters defines the sym
metry of the system. With respect to turbulence the Reynolds number 

P'V-d R=--
J.l 

is important. lts value determines the type of the flow. 
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Figure 4 

A flow is a complex dynamical system that can be characterised by a vector 
field which varies with time. That is, we describe the flow by placing a 
velocity vector at each point in the fluid at a given time (figure 4). 

The time variation of the vector field is described mathematically by 
differential equations in which the parameters r, V, d, m appear as character
istic macroscopic constants. A very large group of interesting physical, 
chemical as weIl as biological systems can be described in this way. 

The pattern should be clear: the main symmetries of a system are defined 
by a set of macroscopic parameters. If these parameters are changed the 
system may suddenly break its symmetry and go from one characteristic 
structure to another one as when convection patterns or turbulence emerge 
in a fluid. At least at a phenomenologicallevel the situation in medicine is 
similar. A healthy organism has a characteristic structure or, depending on 
our level of description, a hierarchy of structures (symmetries) which in 
some cases may be characterised by parameters. If these parameters are 
modified too much some of the symmetries may break down and the 
organism wiIl develop a disease. The question we must pose is: Will it be 
possible to develop a satisfactory theory of these transitions ? The modern 
theory of complex dynamical systems has produced results and concepts 
which rnight lead to a positive answer. 

Another important feature of our examples is the fact that they are open 
systems. The convection pattern would disappear if we did not maintain a 
temperature difference between the plates, and the periodic turbulence 
would change if the Reynolds number were increased. We must supply the 
systems with energy or matter. Although the systems are in relatively stabIe 
state~ they would be destroyed if their energy and matter supply were 
stopped. In a similar way a biological organism would die if its food supply 
were cut off. So, the group of systems we are dealing with are open systems 
far /rom equilibrium. Furthermore, they are of ten strongly non-linear which 
among other things means that the principle of superposition does not in 
general hold3• A consequence of this is that properties of subsystems do not 

3. For a funher analysis of sueh systerns see, for insta nee, Grégoire Nieolis, Illua 
Prigogine: Exploring Complexity. W.H.Freeman and Co, New York 1989. 
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add up to properties of the whole system. Such systems are capable of 
changing their internal structure when exposed to certain environmental 
influences. 

Open non-linear systems far from equilibrium have not been studied 
nearly as thoroughly in classical natural science as closed systems and they 
possess properties which in some sense contradict weIl established laws that 
hold for isolated systems. As they are open the second law of thermody
namics does not generally apply. Such systems can in certain situations 
decrease their entropy. The emergence of convection patterns is an example 
of this. Let Seq be the entropy of a system in equilibrium, and let S be the 
entropy in some other state. Then the excess entropy 

M):::S-S eq 

is negative and increases to zero as time goes to infinity. Mathematically this 
means that the equilibrium is asymptotically stabIe and constitutes a global 
attractor: independently of which state the system starts from it must 
eventuallyapproach the state Seq (ngure 5). 

State with 
Entropy SI 

State with 
Entropy S2 

State with 
Entropy Seq 

dM) 
M):::S-S :sO and --~O, for isolated systems 

eq dt 

Figure 5 

Recall thataccordingly to Aristotle all mundane systems have some internal 
tendencies. Heavy systems will, if they are not supported, fall down in the 
direction of the centre of the Earth. Isolated systems are Aristotelian in the 
sense that if they are left to themselves, that is, do not exchange matter or 
energy with other systems, then they will approach the nnal equilibrium 
state with entropy Seq and rest there for ever. . 
. Anomer central Aristotelian claim is that subjects have certain potential
ities they are able to realise if they are placed in the right environment. A 
seed grain will develop into a plant if placed in the right surroundings. It will 
actualise its internal potentiality. But it cannot change its species. Maybe 
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there are some degrees of freedom during the development, but it is not 
completely free to grow as it pleases and we can only to some degree influ
ence its growth. It has some potentialities but not others. Open non-linear 
systems behave in a similar way. The fluid between two plates will necessar
ily develop convection patterns but it is free to select the orientation. In 
some cases the first cell in figure 2 will be clockwise in others it will he 
counter clockwise. But the system must realise one of the possibilities. It has 
no other choice (figure 6). 

Symmetry2< 
Symmetry 1 < < 

Symmetry 3 

••• 

Figure 6 

It will go from a state with only one possible symmetry to a state with two 
possible symmetries and when one symmetry has been selected it will stay 
in that state as long as the system is not disturbed too much. It is a locally 
stabIe state. This pattern of development into situations with more and more 
possible symmetries can be explained very nicely in the theory of complex 
systems. 

Systems and irreversibIe changes 

As our former examples show this tendency to bifurcate into systems with 
more and more possibilities is also related to the global parameters that 
characterise the system, for instance, the Reynolds number. Let us look at 
another example due to C. Zeeman4• As is well-known to you of course, 
the human heart is a pump which works in aspecific way. Initially the pump 
is in a relaxed state, diastole. Then an electrochemical stimulus forces the its 
muscle fibres to contract and push out the blood. This starts slowly in order 
to ensure no damaging backflow. But suddenly, however, the fibres make 
one big contraction and thereby push most of the blood into the aorta At 
this point the electrochemical stimulus ceases and the heart starts to fill 
again, first slowly and later quite rapidly. The whole process is repeated 
again and again. (figure 7) 

We can develop a very simple model of this in the following way. Let x 
be a state variabIe which expresses the length of a heart muscle fibre, and let 

4. C. Zeeman: Catastrophe Theory, Addison-Wesley, 1977. 
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y be the stimulus. The time variation of these variables are interrelated in the 
following way: 
1. The rate of stimulus change is proportional to the length of the fibre. 
2. The rate of fibre change is negatively proportional to the stimulus and to 

its own length. 
3. We need some un-linearity to take care of the sudden contraction and 

relaxation of the fibre. 
These requirements lead to a system of equations of the following form: 

x 3 
X I =J.l[ -y-(--ax)] 

3 
I x-xo 

Y =--
J.l 

These equations formalize how the change rates of fibre and stimulus are 
related to fibre length and stimulus. There are two parameters in the equa
tions. The parameter a expresses the tension of the fibre, and J.l is a kind of 
sc~ing. The equations have an asymptotically stabie equilibrium in the 
pomt: 

Xeq =Xo 
3 

Xo 
y =(--axo) eq 3 

In order to understand how the relationship between fibre length and 
stimulus change in time let us look at figure 8 which gives the relationship 
between the variables x and y and the parameter a. 

This surface actually passes through the (a,y) plane, but in order to make 
the figure more transparent we have lifted it a bit above the plane. When a is 
greater than zero the surface is folded such that a line parallel to the x-axis 
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Figure 8 

cuts it in three points, whereas it is not folded when a is less than zero. 
When a is big the distance between the upper and lower layer of the surface 
is big, and when a is negative there is only one layer. 

The dynamics of the system is in an essential way determined by the 
shape of this surface which is called a cusp surface. When a varies from a 
negacive value to a positive one the system's behaviour changes drastically. 
Consider the following (x,y) slices of the surface (figure 9). 
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Consider the case where a > O. When x is on the upper branch of the cusp 
surface the stimulus increases until x jumps down on the lower branch. 
Then the stimulus decreases and x moves to the left until it jumps to the 
upper branch again. The whole process is repeated. The system performs a 
cyclic process again and again. This cycle process is stabie in the sense that if 
the system initially starts a bit away from the cycle it will approach it in the 
limit. We eaU it a limit cycle. 

When the parameter a is less than 0 the situation is quite different. The 
cusp surface only has one branch and x cannot jump. The heart cannot 
perform cyclic movements. It wiB approach an equilibrium and eventually 
stop. This is a general phenomenon which is typical for a very big group of 
dynamic systems depending on one parameter a (figure 10). 

a<O a>O 

Figure 10 

When the parameter is below a critical value the system has an asymptoti
cally stabie equilibrium, but when the parameter takes values above the 
critical value the equilibrium becomes unstable and a limit cycle appears. 
The amplitude of the limit cycle increases with the parameter. This is called 
a H opf-bifurcation. 

There are many other kinds of bifurcations , for instance, the pitchfork 
bifurcation where a stabie equilibrium splits into two stabie equilibria as the 
parameter a passes a critical value. In some cases one wiB observe more and 
more bifurcations as increases and, eventually, when a approaches another 
critical value the number of bifurcations wiU be infinite and the behaviour of 
the system becomes chaotic (figure 11). 

These various possibilities can to some extent be classified by studying 
the global behaviour of the systems. So, modem global analysis of 
dynamical systems in a way gives flesh and blood to the Aristotelian claim 
that systems have some intrinsic potentialities which under suitable condi
tions may be realised. When a system in this way passes a critical value it 
grows in an irreversibie way. It cannot turn back. The child cannot become 
a foetus again, the energy lost by friction cannot be recovered, and when a 
system has chanced from a stabie state to a chaotic one its orbit in the past 
cannot be traced any longer. Consequently, the direction of time is import
ant in these kinds of developments where the Strllctural parameters of a 
system are changed. Time reversal does not in general make sense. 
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As we have seen dynamical systems behave in accordance which the 
Aristotelian claim. They have some inbom possibilities which are typical of 
their species. Depending of their relations to the environment they will 
realise some of these possibilities. They grow in a lawful way. A kind of 
growth which we are just beginning to understand. They may go from one 
stabIe state to another one but in some cases their behaviour may be chaotic. 
We observe chaotic behaviour all over the world and it is not necessarily an 
undesirable state, nor need it be unstructured. An interesting case is when a 
system oscillates between two attracting regions in an unpredictable way. To 
illustrate this nrst a couple of simple physical examples will be given and 
then, nnally, we shalllook at a medical application. 
. Consider a thin steel beam which is clamped in a rigid framework 
between two permanent magnets. When the beam is kept straight its dis
tances from the magnets are equal (ngure 12). 
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When no external forces are present the beam settles with its tip close to one 
or the other of the magnets. There is an unstable centra! equilibrium posi
tion right between the magnets. But the slightest disturbanee would cause 
the beam to oscillate and eventually settle down close to one of the magnets. 
Assume that the system is shaken periodically by an external force of the 
form: 

b cos rou 

It can then be modelled by the following system of equations: 

Xl =v 

vI =x-x 3-av+b cos rou 
uI =1 

This system of equations is called the Duffing equations, named af ter 
G. Duffing who studied them at the beginning of this century5. 

We know that if the system is not disturbed there are wee equilibrium 
positions of the beam. An unstable one right between the magnets and two 
stabIe ones close to one or the other of the magnets. But when the system is 
regularly disturbed it cannot settle down in any of the stabIe positions. It 
starts to oscillate between the attraction areas around the stabIe positions. It 
jumps back and forth between these regions in an unpredictable and chaotic 
manner (figure 13). 

Figurf 13 

5. For a comprehensive discussion of this example see J. Guckenheimer and P.]. 
Holmes: Nonlinear Oscillations, Dynamical Systerns and Bifurcations of Vector 
Fields, Springer-Verlag, New York 1983. 
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This is called a strange attractor of the system. The system is in fact behaving 
in a qualitatively predictable way as it oscillates around two stabIe equilibria, 
but its detailed behaviour is chaotic. It is impossible to prediet when it will 
jump to the other attracting region and when it willleave it again. 

Before we consider a medical application let us look at another strange 
attractor, the so-called Rössler attractor. The Rössler equations are the 
following 

Xl =-y-z 

yl =x+ay 

z I =bc -ez +xz 

For the values a = 0.32, b = 0.3 and c= 4.5 of the parameters we observe the 
following chaotic attractor of the system (figure 14). 

Figure 14 

The system oscillates in an harmonie way but it is completely unpredict
able whether it jumps or stays in the vertical plane. It the parameters are 
slightly changed the shape of the attracting region will change. 

Medical application 

Now to a medica! application of chaotic dynamics. The following figure 
(figure 15) shows monthly reported cases of various childhood diseases in 
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Figure 15 

Denmark6• A is measles, B mumps, C rubella, D chicken pox, Epertussis, 
and F scarlet fever. 

It is evident that the number of cases fluctuates in typically irregular ways 
which differ from one disease to another. Both frequencies and amplitudes 
vary with time. It is therefore natural to ask whether there is any underlying 
regularity in this variation or whether it is completely noisy. Let us look at 
measles and chicken pox. Let I(t) denote the number of infected at time t. 

We plot the numbers I(t), I(t+ T) and I(t+2T) in a three dimensional co
ordinate system. T is 3 months. For measles and chicken pox we get the 
following diagrams (figure 16). 

6. This and the following figures are from L.F. Olsen, G.L. Trutly, and W.M. Schaffer: 
Oscillations and Chaos in Epidemics: A Nonlinear Dynamics Study of Six Childhood 
Diseases in Copenhagen, Denmark, Theoretical Population Biology 33, 344-370 (1988). 
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Figure 16 

The measles curve looks very much like the Rössler attractor. Consequently, 
it is natural to expect that there is some kind of chaotic behaviour in the 
measles time series Im( t). The chicken pox curve looks more like a noisy 
limit cycle. This observation is further supported by constructing Poincaré 
sections and return maps. 

A Poincaré section is a map of the intersection between the curve and 
some plane (or surface) that cuts all trajectories of the system. Such sections 
for the two diseases are shown in the next figure (figure 17). 
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Figure 17 

It is line like in the case of measles whereas it seems to he more space filling 
in the case of chicken pox. 

Another technique to analyse the data is to construct return maps. That is 
done by plotting the position of the system af ter one cycle as function of its 
position at the beginning of the cycle. Return maps of measles and chicken 
pox are shown on the next figure (figure 18). 

With some right one can say that the points of the measles return map 
seem to lie on a bent curve whereas the chicken pox map consists of ran
domly scattered points. This also supports the fact that the development of 
measles is governed by chaotic attractors while chicken pox corresponds to 
a noisy limit cycle oscillation. 
It is not completely clear how these observations should be interpreted and 
the analysis is also prohlematic because, among other things, the random 
variables I(t), I(t+ T) and I(t+2T) definitely are stochastically dependent. 
Anyhow, there seems to he some deep difference between the dynamics of 
the two diseases which is worth studying further. 
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Figure 18 

Let us now return to the disease concept. From what has been said it is 
evident that the mechanic conception of a disease entity is an extremely 
fruitful notion. Many diseases seem to have real essences in the sense of 
Locke. They are classified with respect to which sub-mechanism in the 
organism that is defect. The mechanism may be a homeostatic unit, a trans
mission line, an anatomicallesion, etcetera. The machine concept is a strong 
and useful me tap hor and as the natural sciences develop the metaphor 
becomes richer and richer. U ntil now machines have mainly been considered 
as isolated system or systems not far from equilibrium. New developments 
in the theory of complex dynamical systems have made possible a beginning 
understanding of how open systems may undergo radical transformations. 
Usually, such transformations are irreversible and fundamentally new 
symmetries are created. In most cases it will be impossible to return to 
earlier symmetries in the same way as the newborn baby never will be a 
foetus again. 

Breakouts of diseases are such irreversible, drastic and fundamental 
changes in the internal structure of the organism. Possibly, and hopefully, 
we might have reached a stage in the scientific development where we are 
able to transcend Aristotle and give content to his claim that systems or 
organisms have inbom potentialities. This might then lead to a better under
standing of disease processes. 
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