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Fig. 3. p16 and p53 suppress transformation by oncogenic ras.

Prolonged expression of an activated ras oncogene induces a permanent cell cycle arrest with features
of senescence. Both p53 and p16 levels increase in response to oncogenic ras and contribute to the
arrested state. Escape from ras-induced arrest allows transformation of rodent cells, and may contribute
to the transformation process in human cells.

made in identifying tumor-specific mutations, and how these mutations alter normal
gene function. For example, mutational activation of ras results in a protein that con-
stitutively transmits mitogenic signals, and inactivation of p53 disrupts cell-cycle
arrest or apoptosis. However, much less is known about how these mutations interact
to produce the malignant phenotype (Why are these mutations often found in the
same tumors? Why does ras mutation often precede p53 mutation?).

Perhaps the simplest model for studying the multistep nature of cancer involves
oncogenic transformation of primary cells. Primary cells are genetically normal and
capable a limited number of cell divisions in culture, after which they permanently
arrest by a process known as senescence. At low frequencies, primary cells acquire
mutations that disrupt senescence, allowing these variants to be established into
‘immortal’ cell lines. Expression of oncogenic ras typically ‘transforms’ immortal
cells to a tumorigenic state, but cannot transform primary cells. However, primary
cells are made tumorigenic if ras is co-expressed with second oncogenes such as
E1A (a phenomenon known as ‘oncogene cooperation’), or when expressed in the
absence of tumor suppressors such as p53 and p16. When expressed alone, these coop-
erating mutations (E1A, p53 loss, p16 loss) facilitate the immortalization process.

We recently demonstrated that prolonged expression of oncogenic ras in primary
fibroblasts induces a permanent cell-cycle arrest involving p53 and p16 (Serrano et
al., 1997). Remarkably, this arrest is indistinguishable from senescence. Inactivation
of either p53 or p16 prevents p53-induced arrest in rodent cells, and E1A achieves a
similar effect in human cells. These observations suggest that the onset of cellular
senescence can be prematurely activated in response to an oncogenic stimulus. Inac-
tivation of this senescence program, by a cooperating oncogene or as a result of spon-
taneous mutation, allows proliferation to continue unabated and facilitates oncogenic
transformation. Consequently, premature senescence may be an important safeguard
against neoplasia.
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